KR20230157854A - Method of depositing thin films and method of manufacturing memory device - Google Patents

Method of depositing thin films and method of manufacturing memory device Download PDF

Info

Publication number
KR20230157854A
KR20230157854A KR1020230006158A KR20230006158A KR20230157854A KR 20230157854 A KR20230157854 A KR 20230157854A KR 1020230006158 A KR1020230006158 A KR 1020230006158A KR 20230006158 A KR20230006158 A KR 20230006158A KR 20230157854 A KR20230157854 A KR 20230157854A
Authority
KR
South Korea
Prior art keywords
formula
thin film
metal precursor
surface protection
carbon atoms
Prior art date
Application number
KR1020230006158A
Other languages
Korean (ko)
Inventor
조규호
김하나
김재민
한지연
서덕현
조현식
김명일
Original Assignee
주식회사 이지티엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이지티엠 filed Critical 주식회사 이지티엠
Priority to TW112117393A priority Critical patent/TW202348606A/en
Priority to CN202310526085.6A priority patent/CN117026207A/en
Priority to US18/314,840 priority patent/US20230287014A1/en
Priority to JP2023078213A priority patent/JP2023167011A/en
Publication of KR20230157854A publication Critical patent/KR20230157854A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/30Germanium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명의 일 실시예에 의하면, 표면 보호 물질을 이용한 박막 형성 방법은, 금속 전구체를 기판이 놓여진 챔버의 내부에 공급하여, 상기 금속 전구체를 상기 기판에 흡착하는 금속 전구체 공급 단계; 상기 챔버의 내부를 퍼지하는 단계; 그리고 상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 금속 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함하되, 상기 방법은 상기 박막 형성 단계 이전에, 상기 표면 보호 물질을 공급하여 상기 기판에 흡착하는 표면 보호 물질 공급 단계; 그리고 상기 챔버의 내부를 퍼지하는 단계를 더 포함하되, 상기 금속 전구체는, 하기 <화학식 1> 또는 하기 <화학식 2>로 표시되는 화합물 1몰 내지 3몰과, 하기 <화학식 3>으로 표시되는 화합물 1몰 내지 3몰을 혼합하여 형성된다.
<화학식 1>

상기 <화학식 1>에서, X는 O 또는 S이며, R1 또는 R2는 각각 독립적으로 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
<화학식 2>

상기 <화학식 2>에서, X는 O 또는 S이고, n=1 내지 5이며, R1 내지 R4는 각각 독립적으로 수소 원자, 탄소수 1 내지 5의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
<화학식 3>

상기 <화학식 3>에서, R1,R2 및 R3는 서로 상이하며, 각각 독립적으로 수소 원자, 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 디알킬아민, 탄소수 1 내지 6의 시클로아민기, 탄소수 1 내지 6의 알콕시기 또는 할로겐원소 중에서 선택된다.
According to one embodiment of the present invention, a method of forming a thin film using a surface protection material includes a metal precursor supply step of supplying a metal precursor to the inside of a chamber where a substrate is placed and adsorbing the metal precursor to the substrate; purging the interior of the chamber; And a thin film forming step of supplying a reaction material to the inside of the chamber to react with the adsorbed metal precursor and form a thin film, wherein the method includes supplying the surface protection material to the substrate before the thin film forming step. Supplying a surface protective material to adsorb; And further comprising purging the interior of the chamber, wherein the metal precursor is 1 mole to 3 moles of a compound represented by <Formula 1> or <Formula 2> below, and a compound represented by <Formula 3> below It is formed by mixing 1 mole to 3 moles.
<Formula 1>

In the above <Formula 1>,
<Formula 2>

In <Formula 2>, is selected from aryl groups.
<Formula 3>

In <Formula 3>, R1, R2, and R3 are different from each other, and each independently represents a hydrogen atom, an alkyl group with 1 to 6 carbon atoms, a dialkylamine with 1 to 6 carbon atoms, a cycloamine group with 1 to 6 carbon atoms, and 1 carbon atom. It is selected from alkoxy groups or halogen elements of to 6.

Description

박막 형성 방법 및 이를 포함하는 메모리 소자의 제조방법{METHOD OF DEPOSITING THIN FILMS AND METHOD OF MANUFACTURING MEMORY DEVICE}Thin film formation method and manufacturing method of memory device including the same {METHOD OF DEPOSITING THIN FILMS AND METHOD OF MANUFACTURING MEMORY DEVICE}

본 발명은 박막 형성 방법 및 이를 포함하는 메모리 소자의 제조방법에 관한 것으로, 더욱 상세하게는 매우 얇은 두께의 박막을 형성함으로써 박막의 두께 제어가 용이하고 스텝커버리지 특성이 우수한 박막 형성 방법 및 이를 포함하는 메모리 소자의 제조방법에 관한 것이다.The present invention relates to a method of forming a thin film and a method of manufacturing a memory device including the same. More specifically, the present invention relates to a method of forming a thin film that is easy to control the thickness of the thin film and has excellent step coverage characteristics by forming a very thin film, and a method of forming a thin film including the same. It relates to a method of manufacturing memory devices.

기존 2차원의 NAND Flash 공정은 좁은 면적 안에 집적도가 높아지면서 셀과 셀 사이 간섭과 누설 현상이 심화되는 기술적 한계를 보였다. 이러한 단점을 극복하기 위해 셀을 수직으로 적층하는 3D NAND Flash 기술이 등장했다.The existing two-dimensional NAND flash process showed technical limitations in which cell-to-cell interference and leakage phenomena intensified as integration increased within a small area. To overcome these shortcomings, 3D NAND Flash technology that stacks cells vertically has emerged.

다층 스택(multilayer stack)을 포함하는 3D NAND Flash 의 장점은 셀 사이의 간섭을 대폭 줄여 특성을 향상시키고, Stack을 증가시켜 데이터 용량 확대 및 원가절감을 이룰 수 있다는 것이다. 이로 인해 기존 NAND 메모리 소자와 비교하여 2배 이상의 쓰기 속도, 10배 이상의 내구성 및 절반의 전력 소비를 가진다.The advantage of 3D NAND Flash, which includes a multilayer stack, is that it can significantly reduce interference between cells to improve characteristics, and increase data capacity and reduce costs by increasing the stack. As a result, compared to existing NAND memory devices, it has more than 2 times the write speed, 10 times more durability, and half the power consumption.

그러나, 90단 이상의 초고적층으로 높이가 증가됨에 따라, 측벽에 균일한 박막을 확보하는 것이 더욱 어려워지고 최상단과 최하단 셀의 특성 차이가 생기는 등의 한계가 발생하고 있다. 따라서 종횡비가 큰 3차원 구조상에 우수한 단차피복성으로 균일한 두께의 박막을 형성할 수 있는 제조 방법에 대한 요구가 높아지고 있다.However, as the height increases due to ultra-high stacking of 90 or more layers, it becomes more difficult to secure a uniform thin film on the sidewall, and there are limitations such as differences in characteristics between the top and bottom cells. Therefore, there is an increasing demand for a manufacturing method that can form a thin film of uniform thickness with excellent step coverage on a three-dimensional structure with a large aspect ratio.

또한, 반도체 소자 제조에 있어서 알루미늄을 함유하는 박막은 매우 중요한 역할을 수행한다. 알루미늄을 함유하는 박막에는 알루미늄막, 알루미늄 질화물막, 알루미늄 탄화질화물막, 알루미늄 산화물막 및 알루미늄 옥시질화물막 등이 포함되며, 알루미늄 질화물막 및 알루미늄 산화물막은 패시베이션층, 층간절연막 또는 커패시터 유전층 등으로 중요한 역할을 수행한다.Additionally, thin films containing aluminum play a very important role in the manufacture of semiconductor devices. Thin films containing aluminum include aluminum films, aluminum nitride films, aluminum carbonitride films, aluminum oxide films, and aluminum oxynitride films, and the aluminum nitride films and aluminum oxide films play an important role as passivation layers, interlayer insulating films, or capacitor dielectric layers. Perform.

현재 알루미늄을 함유하는 박막을 증착하기 위한 전구체로 트리메틸알루미늄(trimethylaluminum, TMA) 또는 트리이소부틸알루미늄이 사용되고 있으나, 이 물질들은 폭발적인 인화성이 있어 취급시 상당한 주의가 필요하다.Currently, trimethylaluminum (TMA) or triisobutylaluminum is used as a precursor for depositing aluminum-containing thin films, but these materials are explosively flammable and require great care when handling them.

한국공개특허공보 2007-0015958호(2007.02.06.)Korean Patent Publication No. 2007-0015958 (2007.02.06.)

본 발명의 목적은 기화특성 및 열안전성이 우수한 박막을 형성할 수 있는 방법 및 이를 포함하는 메모리 소자의 제조방법을 제공하는 데 있다.The purpose of the present invention is to provide a method for forming a thin film with excellent vaporization characteristics and thermal stability and a method for manufacturing a memory device including the same.

본 발명의 다른 목적은 스텝 커버리지가 양호한 박막을 형성할 수 있는 방법 및 이를 포함하는 메모리 소자의 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a method of forming a thin film with good step coverage and a method of manufacturing a memory device including the same.

본 발명의 또 다른 다른 목적은 매우 균일한 두께의 박막을 형성하고 두께 조절을 용이하게 할 수 있는 박막 형성 방법 및 이를 포함하는 메모리 소자의 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a thin film formation method that can form a thin film of very uniform thickness and facilitate thickness control, and a method of manufacturing a memory device including the same.

본 발명의 또 다른 목적들은 다음의 상세한 설명으로부터 보다 명확해질 것이다.Further objects of the present invention will become clearer from the following detailed description.

본 발명의 일 실시예에 의하면, 표면 보호 물질을 이용한 박막 형성 방법은, 금속 전구체를 기판이 놓여진 챔버의 내부에 공급하여, 상기 금속 전구체를 상기 기판에 흡착하는 금속 전구체 공급 단계; 상기 챔버의 내부를 퍼지하는 단계; 그리고 상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 금속 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함하되, 상기 방법은 상기 박막 형성 단계 이전에, 상기 표면 보호 물질을 공급하여 상기 기판에 흡착하는 표면 보호 물질 공급 단계; 그리고 상기 챔버의 내부를 퍼지하는 단계를 더 포함하되, 상기 금속 전구체는, 하기 <화학식 1> 또는 하기 <화학식 2>로 표시되는 화합물 1몰 내지 3몰과, 하기 <화학식 3>으로 표시되는 화합물 1몰 내지 3몰을 혼합하여 형성된다.According to one embodiment of the present invention, a method of forming a thin film using a surface protection material includes a metal precursor supply step of supplying a metal precursor to the inside of a chamber where a substrate is placed and adsorbing the metal precursor to the substrate; purging the interior of the chamber; And a thin film forming step of supplying a reaction material to the inside of the chamber to react with the adsorbed metal precursor and form a thin film, wherein the method includes supplying the surface protection material to the substrate before the thin film forming step. Supplying a surface protective material to adsorb; And further comprising purging the interior of the chamber, wherein the metal precursor is 1 mole to 3 moles of a compound represented by <Formula 1> or <Formula 2> below, and a compound represented by <Formula 3> below It is formed by mixing 1 mole to 3 moles.

<화학식 1><Formula 1>

상기 <화학식 1>에서, X는 O 또는 S이며, R1 또는 R2는 각각 독립적으로 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.In the above <Formula 1>,

<화학식 2><Formula 2>

상기 <화학식 2>에서, X는 O 또는 S이고, n=1 내지 5이며, R1 내지 R4는 각각 독립적으로 수소 원자, 탄소수 1 내지 5의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.In <Formula 2>, is selected from aryl groups.

<화학식 3><Formula 3>

상기 <화학식 3>에서, R1,R2 및 R3는 서로 상이하며, 각각 독립적으로 수소 원자, 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 디알킬아민, 탄소수 1 내지 6의 시클로아민기, 탄소수 1 내지 6의 알콕시기 또는 할로겐원소 중에서 선택된다.In <Formula 3>, R1, R2 and R3 are different from each other and each independently represents a hydrogen atom, an alkyl group with 1 to 6 carbon atoms, a dialkylamine with 1 to 6 carbon atoms, a cycloamine group with 1 to 6 carbon atoms, and 1 carbon atom. It is selected from alkoxy groups or halogen elements of to 6.

상기 금속 전구체는, 에틸 메틸 설파이드 또는 에틸 프로필 에테르 또는 테트라하이드로퓨란과 트리메틸알루미늄을 혼합하여 형성될 수 있다.The metal precursor may be formed by mixing ethyl methyl sulfide, ethyl propyl ether, or tetrahydrofuran with trimethyl aluminum.

상기 표면 보호 물질은 하기 <화학식 4>로 표시될 수 있다.The surface protection material may be represented by the following <Formula 4>.

<화학식 4><Formula 4>

상기 <화학식 4>에서, n은 각각 독립적으로 0 내지 6의 정수이며, X는 O 또는 S이고, R1 내지 R3는 독립적으로 탄소 개수가 1 내지 6인 알킬기이며, R4는 수소, 탄소 개수가 1 내지 6인 알킬기, 탄소 개수가 1 내지 6인 알콕시기, 탄소 개수가 1 내지 6인 알킬싸이오기 중에서 선택된다.In <Formula 4>, n is each independently an integer of 0 to 6, It is selected from an alkyl group with 1 to 6 carbon atoms, an alkoxy group with 1 to 6 carbon atoms, and an alkylthio group with 1 to 6 carbon atoms.

상기 박막은 알루미늄 산화물, 알루미늄 질화물, 알루미늄 황화물 중 어느 하나일 수 있다.The thin film may be any one of aluminum oxide, aluminum nitride, and aluminum sulfide.

상기 박막 형성 방법은 50 내지 700℃에서 진행될 수 있다.The thin film forming method may be carried out at 50 to 700°C.

본 발명의 일 실시예에 의하면, 휘발성 메모리 소자의 제조방법은 앞서 설명한 박막 형성 방법을 포함할 수 있다.According to an embodiment of the present invention, a method of manufacturing a volatile memory device may include the thin film forming method described above.

본 발명의 일 실시예에 의하면, 비휘발성 메모리 소자의 제조방법은 앞서 설명한 박막 형성 방법을 포함할 수 있다.According to an embodiment of the present invention, a method of manufacturing a non-volatile memory device may include the thin film forming method described above.

상기 반응 물질은 O3, O2, H2O 중 어느 하나일 수 있다.The reactant may be any one of O3, O2, and H2O.

본 발명의 일 실시예에 의하면, 스텝 커버리지가 양호한 박막을 형성할 수 있다. 표면보호물질은 공정진행 중 금속 전구체와 유사한 거동을 가져, 고종횡비 구조에서 상부(또는 입구측)에 높은 밀도로 흡착되고 하부(또는 내부측)에 낮은 밀도로 흡착되며, 후속 공정에서 금속 전구체가 흡착되는 것을 방해한다. 따라서, 금속 전구체는 구조물 내에 균일하게 흡착될 수 있다.According to one embodiment of the present invention, a thin film with good step coverage can be formed. The surface protective material has a similar behavior to the metal precursor during the process, and is adsorbed at a high density at the top (or inlet side) in a high aspect ratio structure and at a low density at the bottom (or inside), and in the subsequent process, the metal precursor is absorbed. Prevents adsorption. Therefore, the metal precursor can be uniformly adsorbed within the structure.

특히, 우수한 단차피복성으로 초고적층 구조에서도 최상단, 최하단 셀 특성차이를 줄이면서 불순물이 없는 순도 높은 박막을 형성할 수 있으며, 소자의 전기적 특성 및 신뢰도를 향상시킬 수 있다.In particular, with excellent step coverage, it is possible to form a highly pure thin film without impurities while reducing the difference in characteristics of the top and bottom cells even in an ultra-high stacked structure, and improve the electrical characteristics and reliability of the device.

또한, 알루미늄 전구체가 공기 중 노출에 의해 자연발화하는 현상을 방지할 수 있으며, 열안전성이 우수하여 안정한 기체상으로 기판 표면까지 전달가능하다.In addition, it can prevent the aluminum precursor from spontaneously igniting due to exposure to air, and has excellent thermal stability, so it can be delivered to the surface of the substrate in a stable gas phase.

특히, 표면보호물질과 함께 도입되어 그 효과를 극대화함으로써, 사이클 당 증착 두께를 최소화하여 두께 조절을 용이하게 할 수 있으며, 증착된 박막은 우수한 균일도(uniformity) 및 스텝 커버리지(step coverage)를 확보할 수 있다.In particular, by maximizing the effect by introducing it together with a surface protection material, the deposition thickness per cycle can be minimized to facilitate thickness control, and the deposited thin film can secure excellent uniformity and step coverage. You can.

도 1은 본 발명의 실시예에 따른 박막 형성 방법을 개략적으로 나타내는 흐름도이다.
도 2는 본 발명의 실시예에 따른 공급 주기를 개략적으로 나타내는 그래프이다.
도 3은 실시예1 및 2에 대한 외기노출 후 무게변화를 나타내는 그래프이다.
도 4는 비교예 1-1에 해당하는 전구체 TMA와 표면보호물질 TMOF를 액상으로 혼합한 결과를 나타내는 그래프이다.
도 5는 실시예 2-1에 해당하는 전구체 TMA-THF와 표면보호물질 TMOF를 액상으로 혼합한 결과를 나타내는 그래프이다.
도 6 및 도 7은 동일한 증착 온도에서 전구체 Feeding time 증가에 따른 알루미늄 산화막의 GPC(주기당 성장률, Growth Per Cycle)를 나타낸다.
도 8은 본 발명의 실시예에 따른 알루미늄 산화막의 표면을 분석하기 위한 XPS Depth Profile을 나타내는 그래프이다.
도 9는 본 발명의 실시예에 따른 알루미늄 산화막을 패턴 웨이퍼에 증착하여 스텝 커버리지를 확인한 결과이다.
1 is a flowchart schematically showing a thin film forming method according to an embodiment of the present invention.
Figure 2 is a graph schematically showing the supply cycle according to an embodiment of the present invention.
Figure 3 is a graph showing the weight change after exposure to outdoor air for Examples 1 and 2.
Figure 4 is a graph showing the results of mixing the precursor TMA corresponding to Comparative Example 1-1 and the surface protection material TMOF in liquid phase.
Figure 5 is a graph showing the results of mixing the precursor TMA-THF corresponding to Example 2-1 and the surface protection material TMOF in liquid phase.
Figures 6 and 7 show GPC (Growth Per Cycle) of an aluminum oxide film as precursor feeding time increases at the same deposition temperature.
Figure 8 is a graph showing the XPS Depth Profile for analyzing the surface of an aluminum oxide film according to an embodiment of the present invention.
Figure 9 shows the results of confirming step coverage by depositing an aluminum oxide film on a pattern wafer according to an embodiment of the present invention.

이하, 본 발명의 바람직한 실시예들을 첨부된 도 1 내지 도 9를 참고하여 더욱 상세히 설명한다. 본 발명의 실시예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 실시예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 상세하게 설명하기 위해서 제공되는 것이다. 따라서 도면에 나타난 각 요소의 형상은 보다 분명한 설명을 강조하기 위하여 과장될 수 있다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the attached FIGS. 1 to 9. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as limited to the embodiments described below. These embodiments are provided to explain the present invention in more detail to those skilled in the art. Therefore, the shape of each element shown in the drawing may be exaggerated to emphasize a clearer explanation.

종래의 전구체 단독공정은 고종횡비 구조에서 상부(또는 입구측)는 박막이 두꺼워지고 하부(또는 내부측)는 박막이 얇아지는 등 박막이 균일하지 못하여 스텝 커버리지가 불량한 문제가 있다.The conventional precursor-only process has a problem of poor step coverage because the thin film is not uniform, such as the upper (or entrance side) thicker film and the lower (or inner side) thin film in the high aspect ratio structure.

그러나, 이하에서 설명하는 표면 보호 물질은 금속 전구체와 동일하게 거동하며, 구조물의 하부보다 상부에 높은 밀도로 흡착된 상태에서 후속 공정인 금속 전구체가 흡착되는 것을 방해함으로써 구조물 내에 균일한 두께의 박막을 형성할 수 있도록 한다.However, the surface protection material described below behaves the same as the metal precursor, and prevents the metal precursor from being adsorbed in the subsequent process while adsorbed at a higher density on the upper part of the structure than on the lower part, thereby creating a thin film of uniform thickness within the structure. allow it to be formed.

도 1은 본 발명의 실시예에 따른 박막 형성 방법을 개략적으로 나타내는 흐름도이며, 도 2는 본 발명의 실시예에 따른 공급 주기를 개략적으로 나타내는 그래프이다. 기판은 공정챔버의 내부로 로드되며, 이하의 ALD 공정 조건은 조정된다. ALD 공정 조건은 기판 또는 공정챔버의 온도, 챔버 압력, 가스 유동률을 포함할 수 있으며, 온도는 50 내지 700℃이다.Figure 1 is a flow chart schematically showing a thin film forming method according to an embodiment of the present invention, and Figure 2 is a graph schematically showing a supply cycle according to an embodiment of the present invention. The substrate is loaded into the process chamber, and the ALD process conditions are adjusted. ALD process conditions may include temperature of the substrate or process chamber, chamber pressure, and gas flow rate, and the temperature is 50 to 700°C.

기판은 챔버의 내부에 공급된 표면 보호 물질에 노출되며, 표면 보호 물질은 기판의 표면에 흡착된다. 표면 보호 물질은 공정진행 중 금속 전구체와 유사한 거동을 가져, 고종횡비 구조에서 상부(또는 입구측)에 높은 밀도로 흡착되고 하부(또는 내부측)에 낮은 밀도로 흡착되며, 후속 공정에서 금속 전구체가 흡착되는 것을 방해한다.The substrate is exposed to the surface protection material supplied inside the chamber, and the surface protection material is adsorbed on the surface of the substrate. The surface protective material has a similar behavior to the metal precursor during the process, and is adsorbed at a high density on the top (or inlet side) and at a low density on the bottom (or inside) in a high aspect ratio structure, and in the subsequent process, the metal precursor is absorbed. Prevents adsorption.

구체적으로, 금속 전구체는 하기 <화학식 1> 또는 하기 <화학식 2>로 표시되는 화합물 1몰 내지 3몰과, 하기 <화학식 3>으로 표시되는 화합물 1몰 내지 3몰을 혼합하여 형성된다.Specifically, the metal precursor is formed by mixing 1 mole to 3 moles of a compound represented by <Formula 1> or <Formula 2> below and 1 mole to 3 moles of a compound represented by <Formula 3> below.

<화학식 1><Formula 1>

상기 <화학식 1>에서, X는 O 또는 S이며, R1 또는 R2는 각각 독립적으로 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.In the above <Formula 1>,

<화학식 2><Formula 2>

상기 <화학식 2>에서, X는 O 또는 S이고, n=1 내지 5이며, R1 내지 R4는 각각 독립적으로 수소 원자, 탄소수 1 내지 5의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.In <Formula 2>, is selected from aryl groups.

상기 <화학식 2>에서, X=O, n=3, R1 내지 R4가 수소원자인 경우, Tetrahydrofuran 에 해당한다.In <Formula 2>, when X=O, n=3, and R1 to R4 are hydrogen atoms, it corresponds to tetrahydrofuran.

<화학식 3><Formula 3>

상기 <화학식 3>에서, R1,R2 및 R3는 서로 상이하며, 각각 독립적으로 수소 원자, 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 디알킬아민, 탄소수 1 내지 6의 시클로아민기, 탄소수 1 내지 6의 알콕시기 또는 할로겐원소 중에서 선택된다.In <Formula 3>, R1, R2 and R3 are different from each other and each independently represents a hydrogen atom, an alkyl group with 1 to 6 carbon atoms, a dialkylamine with 1 to 6 carbon atoms, a cycloamine group with 1 to 6 carbon atoms, and 1 carbon atom. It is selected from alkoxy groups or halogen elements of to 6.

또한, 상기 금속 전구체는 에틸 메틸 설파이드 또는 에틸 프로필 에테르 또는 테트라하이드로퓨란과 트리메틸알루미늄을 혼합하여 형성될 수 있다.Additionally, the metal precursor may be formed by mixing ethyl methyl sulfide, ethyl propyl ether, or tetrahydrofuran with trimethyl aluminum.

또한, 표면 보호 물질은 하기 <화학식 4>로 표시될 수 있다.Additionally, the surface protective material may be represented by the following <Formula 4>.

<화학식 4><Formula 4>

상기 <화학식 4>에서, n은 각각 독립적으로 0 내지 6의 정수이며, X는 O 또는 S이고, R1 내지 R3는 독립적으로 탄소 개수가 1 내지 6인 알킬기이며, R4는 수소, 탄소 개수가 1 내지 6인 알킬기, 탄소 개수가 1 내지 6인 알콕시기, 탄소 개수가 1 내지 6인 알킬싸이오기 중에서 선택된다.In <Formula 4>, n is each independently an integer of 0 to 6, It is selected from an alkyl group with 1 to 6 carbon atoms, an alkoxy group with 1 to 6 carbon atoms, and an alkylthio group with 1 to 6 carbon atoms.

이후, 챔버의 내부에 퍼지가스(예를 들어, Ar과 같은 비활성가스)를 공급하여, 미흡착 표면 보호 물질 또는 부산물을 제거하거나 정화한다.Afterwards, a purge gas (for example, an inert gas such as Ar) is supplied to the inside of the chamber to remove or purify non-adsorbed surface protection materials or by-products.

이후, 기판은 챔버의 내부에 공급된 금속 전구체에 노출되며, 기판의 표면에 금속 전구체가 흡착된다. 이때, 전구체 공급 단계는 50 내지 700℃에서 진행된다.Thereafter, the substrate is exposed to the metal precursor supplied inside the chamber, and the metal precursor is adsorbed on the surface of the substrate. At this time, the precursor supply step is performed at 50 to 700°C.

예를 들어 설명하면, 앞서 설명한 표면 보호 물질은 구조물의 상부에서 하부보다 조밀하게 흡착되며, 금속 전구체는 표면 보호 물질이 흡착된 위치에 흡착될 수 없다. 즉, 종래 금속 전구체는 구조물의 상부에서 하부보다 조밀하게 흡착되어 높은 밀도를 나타내었으나, 본 실시예와 같이, 표면 보호 물질이 구조물의 상부에서 조밀하게 흡착되어 금속 전구체의 흡착을 방해하므로, 금속 전구체는 구조물의 상부에 과흡착되지 않고 구조물의 상부/하부에 균일하게 흡착될 수 있으며, 후술하는 박막의 스텝 커버리지를 개선할 수 있다.For example, the surface protection material described above is adsorbed more densely at the top of the structure than at the bottom, and the metal precursor cannot be adsorbed at the location where the surface protection material is adsorbed. That is, the conventional metal precursor was adsorbed more densely at the top of the structure than at the bottom, showing a high density. However, as in the present example, the surface protection material was densely adsorbed at the top of the structure, preventing the adsorption of the metal precursor. can be uniformly adsorbed to the top/bottom of the structure without being overly adsorbed to the top of the structure, and can improve the step coverage of the thin film described later.

이후, 챔버의 내부에 퍼지가스(예를 들어, Ar과 같은 비활성가스)를 공급하여, 미흡착 금속 전구체 또는 부산물을 제거하거나 정화한다.Thereafter, a purge gas (for example, an inert gas such as Ar) is supplied to the inside of the chamber to remove or purify the non-adsorbed metal precursor or by-product.

이후, 기판은 챔버의 내부에 공급된 반응 물질에 노출되며, 기판의 표면에 박막이 형성된다. 반응 물질은 금속 전구체층과 반응하여 박막을 형성하며, 반응 물질은 O3, O2, H2O 가스 일 수 있고 반응 물질을 통해 금속 산화막이 형성될 수 있다. 이때, 반응 물질은 흡착된 표면 보호 물질을 산화시키며, 기판의 표면으로부터 분리하여 제거한다. 박막 형성 단계는 50 내지 700℃에서 진행되며, 박막은 알루미늄 산화물, 알루미늄 질화물, 알루미늄 황화물 중 어느 하나일 수 있다.Thereafter, the substrate is exposed to the reaction material supplied inside the chamber, and a thin film is formed on the surface of the substrate. The reactant reacts with the metal precursor layer to form a thin film. The reactant may be O3, O2, or H2O gas, and a metal oxide film may be formed through the reactant. At this time, the reactive material oxidizes the adsorbed surface protection material and is separated and removed from the surface of the substrate. The thin film formation step is carried out at 50 to 700° C., and the thin film may be any one of aluminum oxide, aluminum nitride, and aluminum sulfide.

이후, 챔버의 내부에 퍼지가스(예를 들어, Ar과 같은 비활성가스)를 공급하여, 미흡착 표면 보호 물질/미반응 물질 또는 부산물을 제거하거나 정화한다.Afterwards, a purge gas (for example, an inert gas such as Ar) is supplied to the inside of the chamber to remove or purify non-adsorbed surface protection materials/unreacted materials or by-products.

한편, 앞서 표면보호물질이 금속 전구체 보다 먼저 공급되는 것으로 설명하였으나, 이와 달리, 표면보호물질은 금속 전구체 이후에 공급되거나 금속 전구체 이전 및 이후에 모두 공급될 수 있다.Meanwhile, it has been previously described that the surface protection material is supplied before the metal precursor, but unlike this, the surface protection material may be supplied after the metal precursor or may be supplied both before and after the metal precursor.

- 비교예 1: TMA 증착 결과- Comparative Example 1: TMA deposition results

실리콘 기판 상에 알루미늄 산화막을 형성하였다. ALD 공정을 통해 알루미늄 산화막을 형성하였으며, ALD 공정 온도는 250 내지 400℃, 반응 물질은 O3 가스를 사용하였다.An aluminum oxide film was formed on a silicon substrate. An aluminum oxide film was formed through the ALD process, the ALD process temperature was 250 to 400°C, and O3 gas was used as the reaction material.

ALD 공정을 통한 알루미늄 산화막 형성 과정은 아래와 같으며, 아래 과정을 1사이클로 하여 진행하였다.The process of forming an aluminum oxide film through the ALD process is as follows, and the process below was performed as one cycle.

1) Ar을 캐리어 가스로 하여, 상온에서 알루미늄 전구체 TMA (Trimethylaluminium)를 반응 챔버에 공급하고 기판에 알루미늄 전구체를 흡착1) Using Ar as a carrier gas, supply the aluminum precursor TMA (Trimethylaluminium) to the reaction chamber at room temperature and adsorb the aluminum precursor to the substrate.

2) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 알루미늄 전구체 또는 부산물을 제거2) Supply Ar gas into the reaction chamber to remove unadsorbed aluminum precursors or by-products

3) O3 가스를 반응 챔버에 공급하여 모노레이어를 형성3) Supply O3 gas to the reaction chamber to form a monolayer

4) 반응 챔버 내에 Ar 가스를 공급하여 미반응물질 또는 부산물을 제거4) Supply Ar gas into the reaction chamber to remove unreacted substances or by-products

- 비교예 1-1 : TMA와 표면보호물질 TMOF를 사용한 증착 결과- Comparative Example 1-1: Deposition results using TMA and surface protection material TMOF

표면보호물질로 위 <화학식 4>에 따른 TMOF(Trimethyl orthoformate) 를 사용하여 실리콘 기판 상에 알루미늄 산화막을 형성하였다.An aluminum oxide film was formed on a silicon substrate using TMOF (Trimethyl orthoformate) according to the above <Chemical Formula 4> as a surface protection material.

ALD 공정을 통한 알루미늄 산화막 형성 과정은 아래와 같으며, 아래 과정을 1사이클로 하여 진행하였다.The process of forming an aluminum oxide film through the ALD process is as follows, and the process below was performed as one cycle.

1) 반응 챔버 내에 표면보호물질을 공급하여 기판에 흡착1) Supply surface protection material into the reaction chamber and adsorb to the substrate

2) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 표면보호물질 또는 부산물을 제거2) Supply Ar gas into the reaction chamber to remove unadsorbed surface protective substances or by-products.

3) Ar을 캐리어 가스로 하여, 상온에서 알루미늄 전구체를 반응 챔버에 공급하고 기판에 알루미늄 전구체를 흡착3) Using Ar as a carrier gas, supply the aluminum precursor to the reaction chamber at room temperature and adsorb the aluminum precursor to the substrate.

4) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 알루미늄 전구체 또는 부산물을 제거4) Supply Ar gas into the reaction chamber to remove unadsorbed aluminum precursors or by-products

5) O3 가스를 반응 챔버에 공급하여 모노레이어를 형성5) Supply O3 gas to the reaction chamber to form a monolayer

6) 반응 챔버 내에 Ar 가스를 공급하여 미반응물질 또는 부산물을 제거6) Supply Ar gas into the reaction chamber to remove unreacted substances or by-products

- 실시예1 : TMA-EMS의 제조 및 증착 결과- Example 1: Manufacturing and deposition results of TMA-EMS

본 발명의 <화학식 1>에 따른 EMS (Ethyl methyl sulfide)와 TMA를 혼합하여 Al 전구체를 형성하였다. 실온의 글러브박스 내에서 500ml 둥근 플라스크에 에틸 메틸 설파이드 10.56g(0.139mol)을 첨가하고 트리메틸 알루미늄 5g(0.069mol)을 매우 천천히 투입하여 전구체 TMA-EMS를 얻었다.An Al precursor was formed by mixing EMS (Ethyl methyl sulfide) and TMA according to <Formula 1> of the present invention. In a glove box at room temperature, 10.56 g (0.139 mol) of ethyl methyl sulfide was added to a 500 ml round flask, and 5 g (0.069 mol) of trimethyl aluminum was added very slowly to obtain the precursor TMA-EMS.

EMS에서 유래하는 화학적 이동 δ=2.19ppm, 1.76ppm, 1.20ppm의 피크가 전구체 형성 후에도 피크의 모양이 변하지 않고 각각 2.05ppm, 1.58ppm, 0.85ppm 으로 이동하여 안정한 물질을 형성했음을 확인하였다.It was confirmed that the chemical shift peaks of δ = 2.19ppm, 1.76ppm, and 1.20ppm derived from EMS did not change in shape even after the formation of the precursor and moved to 2.05ppm, 1.58ppm, and 0.85ppm, respectively, forming a stable material.

제조한 TMA-EMS를 사용하여 실리콘 기판 상에 알루미늄 산화막을 형성하였다. ALD 공정을 통해 알루미늄 산화막을 형성하였으며, ALD 공정 온도는 250 내지 400℃, 반응 물질은 O3 가스를 사용하였다.An aluminum oxide film was formed on a silicon substrate using the manufactured TMA-EMS. An aluminum oxide film was formed through the ALD process, the ALD process temperature was 250 to 400°C, and O3 gas was used as the reaction material.

ALD 공정을 통한 알루미늄 산화막 형성 과정은 아래와 같으며, 아래 과정을 1사이클로 하여 진행하였다.The process of forming an aluminum oxide film through the ALD process is as follows, and the process below was performed as one cycle.

1) Ar을 캐리어 가스로 하여, 상온에서 알루미늄 전구체 TMA-EMS를 반응 챔버에 공급하고 기판에 알루미늄 전구체를 흡착1) Using Ar as a carrier gas, supply the aluminum precursor TMA-EMS to the reaction chamber at room temperature and adsorb the aluminum precursor to the substrate.

2) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 알루미늄 전구체 또는 부산물을 제거2) Supply Ar gas into the reaction chamber to remove unadsorbed aluminum precursors or by-products

3) O3 가스를 반응 챔버에 공급하여 모노레이어를 형성3) Supply O3 gas to the reaction chamber to form a monolayer

4) 반응 챔버 내에 Ar 가스를 공급하여 미반응물질 또는 부산물을 제거4) Supply Ar gas into the reaction chamber to remove unreacted substances or by-products

- 실시예 1-1 : TMA-EMS와 표면보호물질 TMOF 사용한 증착 결과- Example 1-1: Deposition results using TMA-EMS and surface protection material TMOF

표면보호물질로 위 <화학식 4>에 따른 TMOF(Trimethyl orthoformate) 를 사용하여 실리콘 기판 상에 알루미늄 산화막을 형성하였다.An aluminum oxide film was formed on a silicon substrate using TMOF (Trimethyl orthoformate) according to the above <Chemical Formula 4> as a surface protection material.

ALD 공정을 통한 알루미늄 산화막 형성 과정은 아래와 같으며, 아래 과정을 1사이클로 하여 진행하였다.The process of forming an aluminum oxide film through the ALD process is as follows, and the process below was performed as one cycle.

1) 반응 챔버 내에 표면보호물질을 공급하여 기판에 흡착1) Supply surface protection material into the reaction chamber and adsorb to the substrate

2) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 표면보호물질 또는 부산물을 제거2) Supply Ar gas into the reaction chamber to remove unadsorbed surface protective substances or by-products.

3) Ar을 캐리어 가스로 하여, 상온에서 알루미늄 전구체를 반응 챔버에 공급하고 기판에 알루미늄 전구체를 흡착3) Using Ar as a carrier gas, supply the aluminum precursor to the reaction chamber at room temperature and adsorb the aluminum precursor to the substrate.

4) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 알루미늄 전구체 또는 부산물을 제거4) Supply Ar gas into the reaction chamber to remove unadsorbed aluminum precursors or by-products

5) O3 가스를 반응 챔버에 공급하여 모노레이어를 형성5) Supply O3 gas to the reaction chamber to form a monolayer

6) 반응 챔버 내에 Ar 가스를 공급하여 미반응물질 또는 부산물을 제거6) Supply Ar gas into the reaction chamber to remove unreacted substances or by-products

- 실시예2 : TMA-THF 의 제조 및 증착 결과- Example 2: Manufacturing and deposition results of TMA-THF

본 발명의 <화학식 2>에 따른 THF(Tetrahydrofuran)와 TMA를 혼합하여 Al 전구체를 형성하였다. 실온의 글러브박스 내에서 500ml 둥근 플라스크에 테트라하이드로퓨란 10g(0.139mol)을 첨가하고 트리메틸 알루미늄 10g(0.139mol)을 매우 천천히 투입하여 전구체 TMA-THF를 얻었다.An Al precursor was formed by mixing THF (Tetrahydrofuran) and TMA according to <Formula 2> of the present invention. 10 g (0.139 mol) of tetrahydrofuran was added to a 500 ml round flask in a glove box at room temperature, and 10 g (0.139 mol) of trimethyl aluminum was added very slowly to obtain the precursor TMA-THF.

EMS에서 유래하는 화학적 이동 δ=3.57ppm, 1.42ppm 의 피크가 전구체 형성 후에도 피크의 모양이 변하지 않고 각각 3.35ppm, 0.96ppm 으로 이동하여 안정한 물질을 형성했음을 확인하였다.It was confirmed that the chemical shift peaks of δ=3.57ppm and 1.42ppm derived from EMS did not change in shape even after the formation of the precursor and shifted to 3.35ppm and 0.96ppm, respectively, forming a stable material.

제조한 TMA-THF를 사용하여 실리콘 기판 상에 알루미늄 산화막을 형성하였다. ALD 공정을 통해 알루미늄 산화막을 형성하였으며, ALD 공정 온도는 250 내지 400℃, 반응 물질은 O3 가스를 사용하였다.An aluminum oxide film was formed on a silicon substrate using the prepared TMA-THF. An aluminum oxide film was formed through the ALD process, the ALD process temperature was 250 to 400°C, and O3 gas was used as the reaction material.

ALD 공정을 통한 알루미늄 산화막 형성 과정은 아래 과정을 1사이클로 하여 진행하였다.The aluminum oxide film formation process through the ALD process was carried out using the following process as one cycle.

1) Ar을 캐리어 가스로 하여, 상온에서 알루미늄 전구체 TMA-THF를 반응 챔버에 공급하고 기판에 알루미늄 전구체를 흡착1) Using Ar as a carrier gas, supply the aluminum precursor TMA-THF to the reaction chamber at room temperature and adsorb the aluminum precursor to the substrate.

2) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 알루미늄 전구체 또는 부산물을 제거2) Supply Ar gas into the reaction chamber to remove unadsorbed aluminum precursors or by-products

3) O3 가스를 반응 챔버에 공급하여 모노레이어를 형성3) Supply O3 gas to the reaction chamber to form a monolayer

4) 반응 챔버 내에 Ar 가스를 공급하여 미반응물질 또는 부산물을 제거4) Supply Ar gas into the reaction chamber to remove unreacted substances or by-products

- 실시예 2-1 : TMA-THF와 표면보호물질 TMOF 사용한 증착 결과- Example 2-1: Deposition results using TMA-THF and surface protection material TMOF

표면보호물질로 위 <화학식 4>에 따른 TMOF(Trimethyl orthoformate) 를 각각 사용하여 실리콘 기판 상에 알루미늄 산화막을 형성하였다.An aluminum oxide film was formed on the silicon substrate using TMOF (Trimethyl orthoformate) according to the above <Chemical Formula 4> as a surface protection material.

ALD 공정을 통한 알루미늄 산화막 형성 과정은 아래와 같으며, 아래 과정을 1사이클로 하여 진행하였다.The process of forming an aluminum oxide film through the ALD process is as follows, and the process below was performed as one cycle.

1) 반응 챔버 내에 표면보호물질을 공급하여 기판에 흡착1) Supply surface protection material into the reaction chamber and adsorb to the substrate

2) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 표면보호물질 또는 부산물을 제거2) Supply Ar gas into the reaction chamber to remove unadsorbed surface protective substances or by-products.

3) Ar을 캐리어 가스로 하여, 상온에서 알루미늄 전구체를 반응 챔버에 공급하고 기판에 알루미늄 전구체를 흡착3) Using Ar as a carrier gas, supply the aluminum precursor to the reaction chamber at room temperature and adsorb the aluminum precursor to the substrate.

4) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 알루미늄 전구체 또는 부산물을 제거4) Supply Ar gas into the reaction chamber to remove unadsorbed aluminum precursors or by-products

5) O3 가스를 반응 챔버에 공급하여 모노레이어를 형성5) Supply O3 gas to the reaction chamber to form a monolayer

6) 반응 챔버 내에 Ar 가스를 공급하여 미반응물질 또는 부산물을 제거6) Supply Ar gas into the reaction chamber to remove unreacted substances or by-products

- 열분석- Thermal analysis

아래 [표 1]을 참조하면, TMA-EMS 와 TMA-THF 모두 기화특성이 우수하면서 잔류 성분량이 0.1% 이하인 것으로 확인되어 박막에 불순물(impurity)을 남기지 않음을 알 수 있다. 또한, 분해 온도는 340℃ 이상으로 나타나 TMA 단독 사용 대비 유기 분자가 TMA 간의 Al-Al interaction을 효과적으로 블로킹(blocking) 하여 열안정성이 개선된 특성을 보이며, 안정한 기체상으로 기판 표면까지 전달 가능함을 확인할 수 있다.Referring to [Table 1] below, it can be seen that both TMA-EMS and TMA-THF have excellent vaporization characteristics and the residual amount is less than 0.1%, leaving no impurities in the thin film. In addition, the decomposition temperature was shown to be over 340°C, showing improved thermal stability by effectively blocking the Al-Al interaction between TMA as organic molecules compared to TMA alone, and confirming that it can be delivered to the substrate surface in a stable gas phase. You can.

T1/2(℃)T1/2(℃) TGA Residue(%)TGA Residue(%) DSC 분해온도(℃)DSC decomposition temperature (℃) TMATMA 6666 < 0.1< 0.1 319319 TMA-EMSTMA-EMS 9999 < 0.1< 0.1 343343 TMA-THFTMA-THF 138138 < 0.1< 0.1 353353

- 외기노출 테스트- Outdoor exposure test

도 3은 실시예1 및 2에 대한 외기노출 후 무게변화를 나타내는 그래프이다. 두 전구체 모두 대기 중에서 인화성이 극히 감소되어 공기 중에서도 발화하지 않고 액체상태로 존재함을 확인하였다. 자연발화가 억제되는 것은 Al의 empty P orbital을 유기분자가 완전히 블로킹(blocking) 함으로써 매우 안정한 물질을 형성한 효과로 볼 수 있다.Figure 3 is a graph showing the weight change after exposure to outdoor air for Examples 1 and 2. It was confirmed that both precursors had extremely reduced flammability in the air and did not ignite in the air and existed in a liquid state. The suppression of spontaneous ignition can be seen as the effect of forming a very stable material by completely blocking the empty P orbital of Al by organic molecules.

두 전구체 모두 무게 감소가 매우 느리며 산화 반응 속도가 느린 것을 확인할 수 있다. 외기노출 테스트는 표면에서 전구체가 흡착하는 화학반응과 유사하다고 볼 수 있다. 외기 노출 시 전구체는 대기 중의 H2O 와 반응하여 Al-C 결합이 끊어지고 Al-O 결합으로 대체되는 화학반응을 거치게 되는데 이는 산화막의 -OH* 종결된 표면과 전구체가 만나 리간드가 떨어지며 흡착하는 반응과 매우 유사하기 때문이다. 따라서, 대기 중 Al 전구체의 반응성 감소가 표면 반응에서도 동일하게 발생할 것을 유추할 수 있다.It can be seen that both precursors have a very slow weight loss and a slow oxidation reaction rate. The outdoor exposure test can be viewed as similar to a chemical reaction in which a precursor adsorbs on a surface. When exposed to outdoor air, the precursor reacts with H2O in the atmosphere and undergoes a chemical reaction in which the Al-C bond is broken and replaced by an Al-O bond. This is a reaction in which the precursor meets the -OH* terminated surface of the oxide film and the ligand falls off and adsorbs. Because they are very similar. Therefore, it can be inferred that the decrease in reactivity of the Al precursor in the air will also occur in the surface reaction.

도 4는 비교예 1-1에 해당하는 전구체 TMA와 표면보호물질 TMOF를 액상으로 혼합한 결과를 나타내는 그래프이다. 표면에서 표면보호물질과의 반응을 모사하기 위해, 비교예 1-1에 해당하는 전구체와 표면보호물질을 액상으로 혼합하였다.Figure 4 is a graph showing the results of mixing the precursor TMA corresponding to Comparative Example 1-1 and the surface protection material TMOF in liquid phase. In order to simulate the reaction with the surface protection material on the surface, the precursor corresponding to Comparative Example 1-1 and the surface protection material were mixed in liquid form.

Trimethyl Aluminium 1당량을 Trimethyl orthoformate 6당량에 서서히 첨가한 후 충분히 교반한다. 혼합 용액을 1H NMR(C6D6) 분석하여 Peak assign 하였다.Slowly add 1 equivalent of Trimethyl Aluminum to 6 equivalents of Trimethyl orthoformate and stir thoroughly. The mixed solution was analyzed by 1H NMR (C6D6) and peak assigned.

TMOF, HC(OCH3)2 : δ 4.82 (s), 3.12 (s)TMOF, HC(OCH 3 ) 2 : δ 4.82 (s), 3.12 (s)

(CH3)2Al(OCH3): δ 3.05 (s), -0.57 (s)(CH 3 ) 2 Al(OCH 3 ): δ 3.05 (s), -0.57 (s)

CH3CH(OCH3)2 : δ 4.42 (m), 3.10 (s), 1.17 (d)CH 3 CH(OCH 3 ) 2 : δ 4.42 (m), 3.10 (s), 1.17 (d)

Trimethyl orthoformate 과량 첨가하였기 때문에 반응하지 않은 표면보호물질에서 기인하는 δ 4.82, 3.12 이 확인되었고 전구체와 표면보호물질의 Ligand 치환반응으로 형성된 생성물 Peak 이 확인되었다. 반응 전의 Trimethyl Aluminium에서 기인하는 δ -0.36 은 모두 사라져 완전히 반응한 것을 확인하였다.Due to the addition of an excessive amount of trimethyl orthoformate, δ 4.82 and 3.12 resulting from unreacted surface protection material were confirmed, and the product peak formed by the ligand substitution reaction of the precursor and surface protection material was confirmed. All δ -0.36 resulting from Trimethyl Aluminum before reaction disappeared, confirming complete reaction.

도 5는 실시예 2-1에 해당하는 전구체 TMA-THF와 표면보호물질 TMOF를 액상으로 혼합한 결과를 나타내는 그래프이다. 실시예 2-1에 해당하는 전구체와 표면보호물질을 액상으로 혼합하였다.Figure 5 is a graph showing the results of mixing the precursor TMA-THF corresponding to Example 2-1 and the surface protection material TMOF in liquid phase. The precursor corresponding to Example 2-1 and the surface protection material were mixed in liquid form.

TMA-THF 1당량을 Trimethyl orthoformate 1당량에 서서히 첨가한 후 충분히 교반한다. 혼합 용액을 1H NMR(C6D6) 분석하여 Peak assign 하였다. Slowly add 1 equivalent of TMA-THF to 1 equivalent of Trimethyl orthoformate and stir thoroughly. The mixed solution was analyzed by 1H NMR (C6D6) and peak assigned.

TMOF, HC(OCH3)2 : δ 4.82 (s), 3.12 (s)TMOF, HC(OCH 3 ) 2 : δ 4.82 (s), 3.12 (s)

TMA-THF : δ 3.43 (m), δ 1.16 (m), -0.39 (s)TMA-THF: δ 3.43 (m), δ 1.16 (m), -0.39 (s)

(CH3)2Al(OCH3) : δ 3.05 (s), -0.57 (s)(CH 3 ) 2 Al(OCH 3 ): δ 3.05 (s), -0.57 (s)

CH3CH(OCH3)2 : δ 4.42 (m), 3.10 (s), 1.17 (d)CH 3 CH(OCH 3 ) 2 : δ 4.42 (m), 3.10 (s), 1.17 (d)

전구체와 표면보호물질의 Ligand 치환반응으로 형성된 생성물 Peak 이 앞선 결과와 동일하게 확인되었다. 하지만 Trimethyl Aluminium 전구체가 모두 반응하여 사라졌던 것과 다르게 반응하지 않은 TMA-THF와 Trimethyl orthoformate peak 을 확인하였다. 이 또한 TMA-THF 와 표면보호물질의 반응성이 매우 낮아진 것으로 해석할 수 있으며 증착 시 표면반응에서도 고착계수(Sticking Coefficient) 감소, 표면에서의 확산 증가로 이어져 기존의 전구체 대비 스텝 커버리지(step coverage) 가 개선될 수 있음을 예상할 수 있다.The peak of the product formed from the ligand substitution reaction of the precursor and the surface protective material was confirmed to be the same as the previous result. However, unlike all the Trimethyl Aluminum precursors that reacted and disappeared, TMA-THF and Trimethyl orthoformate peaks that did not react were confirmed. This can also be interpreted as the reactivity of TMA-THF and the surface protection material being greatly reduced, and the surface reaction during deposition also reduces the sticking coefficient and increases diffusion on the surface, resulting in improved step coverage compared to the existing precursor. It can be expected that improvements can be made.

아래 [표 2]는 본 발명의 비교예와 실시예1 및 2에 따른 알루미늄 산화막의 GPC(주기당 성장률, Growth Per Cycle)를 나타낸다.[Table 2] below shows the GPC (Growth Per Cycle) of the aluminum oxide film according to the comparative example and Examples 1 and 2 of the present invention.

전구체precursor 표면보호물질surface protection material 증착속도
(Å/cycle)
deposition speed
(Å/cycle)
전구체 대비
증착속도 감소율(%)
Precursor contrast
Deposition rate reduction rate (%)
비교예1Comparative Example 1 TMATMA -- 0.810.81 -- 비교예1-1Comparative Example 1-1 TMOFTMOF 0.560.56 30.9%30.9% 실시예1Example 1 TMA-EMSTMA-EMS -- 0.730.73 -- 실시예1-1Example 1-1 TMOFTMOF 0.220.22 69.9%69.9% 실시예2Example 2 TMA-THFTMA-THF -- 0.650.65 -- 실시예2-1Example 2-1 TMOFTMOF 0.200.20 69.2%69.2%

표면보호물질을 사용하지 않은 Al 전구체들의 GPC를 비교하면 TMA 단독 사용 대비 실시예 1 및 2의 GPC가 각각 26%, 23% 감소한 것을 확인할 수 있다. 이는 Al Blocking 효과로 인한 전구체의 반응성 감소, TMA 대비 Size 증가로 인한 Al center와 표면 -OH*의 접근성 감소로 해석할 수 있다.Comparing the GPC of Al precursors without using a surface protection material, it can be seen that the GPC of Examples 1 and 2 decreased by 26% and 23%, respectively, compared to the use of TMA alone. This can be interpreted as a decrease in the reactivity of the precursor due to the Al blocking effect and a decrease in accessibility of the Al center and surface -OH* due to the increase in size compared to TMA.

이러한 표면 -OH* 종결그룹과의 반응성 감소는 고착계수(Sticking Coefficient) 감소, 표면에서의 확산 증가로 이어져 균일한 막을 형성할 수 있으며 최종적으로 균일도(uniformity) 및 스텝 커버리지(step coverage)를 개선할 수 있다.This decrease in reactivity with the surface -OH* termination group leads to a decrease in the sticking coefficient and an increase in diffusion on the surface, which can form a uniform film and ultimately improve uniformity and step coverage. You can.

표면보호물질을 사용한 Al 전구체들의 GPC 감소는 더욱 극대화됨을 확인할 수 있다. 비교예 1-1에서 표면보호물질만 적용한 감소율은 30%인 반면 실시예 2-1에서 본 특허의 TMA-THF 전구체와 표면보호물질을 모두 적용하면 70%의 높은 감소율로 크게 증가함을 확인할 수 있다.It can be seen that the GPC reduction of Al precursors using surface protection materials is further maximized. In Comparative Example 1-1, the reduction rate when only the surface protection material was applied was 30%, whereas in Example 2-1, when both the TMA-THF precursor and the surface protection material of this patent were applied, the reduction rate increased significantly to a high of 70%. there is.

DRAM의 ZrO2/Al2O3/ZrO2 복합유전막에서 유전막 전체 두께를 50Å, 실시예2-1의 Al2O3를 3 cycle 정도 사용한다고 가정하면, 유전막의 EOT = 5.21Å 이며, 비교예 1의 TMA 단독 사용 대비 약 12%의 scaling down을 실현할 수 있다.Assuming that the total thickness of the dielectric film in the ZrO 2 /Al 2 O 3 /ZrO 2 composite dielectric film of DRAM is 50 Å and that Al 2 O 3 of Example 2-1 is used for about 3 cycles, the EOT of the dielectric film is 5.21 Å, and the TMA of Comparative Example 1 A scaling down of approximately 12% compared to standalone use can be realized.

도 6 및 도 7은 동일한 증착 온도에서 전구체 Feeding time 증가에 따른 알루미늄 산화막의 GPC(주기당 성장률, Growth Per Cycle)를 나타낸다.Figures 6 and 7 show GPC (Growth Per Cycle) of an aluminum oxide film as precursor feeding time increases at the same deposition temperature.

도 6의 비교예에서 표면보호물질을 적용한 GPC는 전구체 Feeding time이 증가함에 따라 지속적으로 증가하여 Saturation 특성이 좋지 않고 Control이 용이하지 않다. 반면에, 도 7의 실시예에서 표면보호물질을 적용한 GPC는 기존의 전구체 단독 공정 대비 GPC가 매우 낮으면서도 전구체 Feeding Time 증가에도 GPC 변화가 매우 적어 Saturation 특성을 보이며 ALD 공정으로 적합하다.In the comparative example of Figure 6, the GPC to which the surface protection material was applied continued to increase as the precursor feeding time increased, resulting in poor saturation characteristics and difficult control. On the other hand, in the example of Figure 7, the GPC applied with a surface protection material has a very low GPC compared to the existing precursor-only process, and the GPC change is very small even when the precursor feeding time increases, showing saturation characteristics and being suitable for the ALD process.

도 8은 본 발명의 실시예에 따른 알루미늄 산화막의 표면을 분석하기 위한 XPS Depth Profile을 나타내는 그래프이다. 박막 내 Carbon 농도는 0%로 불순물 없는 박막을 형성하였다.Figure 8 is a graph showing the XPS Depth Profile for analyzing the surface of an aluminum oxide film according to an embodiment of the present invention. The carbon concentration in the thin film was 0%, forming a thin film without impurities.

도 9는 본 발명의 실시예에 따른 알루미늄 산화막을 패턴 웨이퍼에 증착하여 스텝 커버리지를 확인한 결과이다(Aspect ratio 20 : 1). 모든 실시예에서 스텝 커버리지 100%로 우수한 특성을 나타내는 것을 확인하였다.Figure 9 shows the results of confirming step coverage by depositing an aluminum oxide film on a patterned wafer according to an embodiment of the present invention (Aspect ratio 20:1). It was confirmed that all examples showed excellent characteristics with 100% step coverage.

결론적으로, 본 발명의 Al전구체와 표면 보호 물질을 적용하여 높은 GPC 감소 효과를 얻을 수 있고, 이를 통해 정밀한 두께 제어 및 우수한 스텝커버리지를 얻을 수 있을 뿐만 아니라, 소자의 전기적 특성 및 신뢰도를 향상시킬 수 있다. 또한, 기존의 ALD 공정에 의해 얻어질 수 있는 하나의 모노레이어 두께보다 더 얇고 불순물 없이 순도 높은 박막을 형성할 수 있다.In conclusion, by applying the Al precursor and surface protection material of the present invention, a high GPC reduction effect can be obtained, which not only achieves precise thickness control and excellent step coverage, but also improves the electrical characteristics and reliability of the device. there is. In addition, it is possible to form a thin film of high purity without impurities and thinner than the thickness of a single monolayer that can be obtained by the existing ALD process.

이상에서 본 발명을 실시예를 통하여 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.Although the present invention has been described in detail above through examples, other forms of embodiments are also possible. Therefore, the technical spirit and scope of the claims set forth below are not limited to the embodiments.

Claims (7)

표면 보호 물질을 이용한 박막 형성 방법에 있어서,
금속 전구체를 기판이 놓여진 챔버의 내부에 공급하여, 상기 금속 전구체를 상기 기판에 흡착하는 금속 전구체 공급 단계;
상기 챔버의 내부를 퍼지하는 단계; 및
상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 금속 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함하되,
상기 방법은 상기 박막 형성 단계 이전에,
상기 표면 보호 물질을 공급하여 상기 기판에 흡착하는 표면 보호 물질 공급 단계; 및
상기 챔버의 내부를 퍼지하는 단계를 더 포함하되,
상기 금속 전구체는, 하기 <화학식 1> 또는 하기 <화학식 2>로 표시되는 화합물 1몰 내지 3몰과, 하기 <화학식 3>으로 표시되는 화합물 1몰 내지 3몰을 혼합하여 형성되는, 표면보호물질을 이용한 박막 형성 방법.
<화학식 1>

상기 <화학식 1>에서, X는 O 또는 S이며, R1 또는 R2는 각각 독립적으로 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
<화학식 2>

상기 <화학식 2>에서, X는 O 또는 S이고, n=1 내지 5이며, R1 내지 R4는 각각 독립적으로 수소 원자, 탄소수 1 내지 5의 알킬기, 탄소수 3 내지 6의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 중에서 선택된다.
<화학식 3>

상기 <화학식 3>에서, R1,R2 및 R3는 서로 상이하며, 각각 독립적으로 수소 원자, 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 디알킬아민, 탄소수 1 내지 6의 시클로아민기, 탄소수 1 내지 6의 알콕시기 또는 할로겐원소 중에서 선택된다.
In a method of forming a thin film using a surface protective material,
A metal precursor supply step of supplying a metal precursor to the inside of a chamber where a substrate is placed and adsorbing the metal precursor to the substrate;
purging the interior of the chamber; and
A thin film forming step of supplying a reaction material to the inside of the chamber to react with the adsorbed metal precursor and form a thin film,
The method is performed before the thin film forming step,
A surface protection material supply step of supplying the surface protection material and adsorbing it to the substrate; and
Further comprising purging the interior of the chamber,
The metal precursor is a surface protective material formed by mixing 1 mole to 3 moles of a compound represented by <Formula 1> or <Formula 2> below and 1 mole to 3 moles of a compound represented by <Formula 3> below. Thin film formation method using .
<Formula 1>

In the above <Formula 1>,
<Formula 2>

In <Formula 2>, is selected from aryl groups.
<Formula 3>

In <Formula 3>, R1, R2, and R3 are different from each other, and each independently represents a hydrogen atom, an alkyl group with 1 to 6 carbon atoms, a dialkylamine with 1 to 6 carbon atoms, a cycloamine group with 1 to 6 carbon atoms, and 1 carbon atom. It is selected from alkoxy groups or halogen elements of to 6.
제1항에 있어서,
상기 금속 전구체는,
에틸 메틸 설파이드 또는 에틸 프로필 에테르 또는 테트라하이드로퓨란과 트리메틸알루미늄을 혼합하여 형성되는, 표면보호물질을 이용한 박막 형성 방법.
According to paragraph 1,
The metal precursor is,
A method of forming a thin film using a surface protection material, which is formed by mixing ethyl methyl sulfide, ethyl propyl ether, or tetrahydrofuran with trimethyl aluminum.
제1항에 있어서,
상기 표면 보호 물질은 하기 <화학식 4>로 표시되는, 표면보호물질을 이용한 박막 형성 방법.
<화학식 4>

상기 <화학식 4>에서, n은 각각 독립적으로 0 내지 6의 정수이며, X는 O 또는 S이고, R1 내지 R3는 독립적으로 탄소 개수가 1 내지 6인 알킬기이며, R4는 수소, 탄소 개수가 1 내지 6인 알킬기, 탄소 개수가 1 내지 6인 알콕시기, 탄소 개수가 1 내지 6인 알킬싸이오기 중에서 선택된다.
According to paragraph 1,
A method of forming a thin film using a surface protection material, wherein the surface protection material is represented by the following <Chemical Formula 4>.
<Formula 4>

In <Formula 4>, n is each independently an integer of 0 to 6, It is selected from an alkyl group with 1 to 6 carbon atoms, an alkoxy group with 1 to 6 carbon atoms, and an alkylthio group with 1 to 6 carbon atoms.
제1항에 있어서,
상기 박막은 알루미늄 산화물, 알루미늄 질화물, 알루미늄 황화물 중 어느 하나인, 박막 형성 방법.
According to paragraph 1,
A method of forming a thin film, wherein the thin film is any one of aluminum oxide, aluminum nitride, and aluminum sulfide.
제1항에 있어서,
상기 박막 형성 방법은 50 내지 700℃에서 진행되는, 박막 형성 방법.
According to paragraph 1,
The thin film forming method is carried out at 50 to 700°C.
제1항 내지 제5항에 기재된 박막 형성 방법 중 어느 하나를 포함하는, 휘발성 메모리 소자의 제조방법.A method of manufacturing a volatile memory device comprising any one of the thin film forming methods according to claims 1 to 5. 제1항 내지 제5항에 기재된 박막 형성 방법 중 어느 하나를 포함하는, 비휘발성 메모리 소자의 제조방법.A method of manufacturing a non-volatile memory device comprising any one of the thin film forming methods according to claims 1 to 5.
KR1020230006158A 2020-05-10 2023-01-16 Method of depositing thin films and method of manufacturing memory device KR20230157854A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW112117393A TW202348606A (en) 2022-05-10 2023-05-10 Aluminum precursor, method of forming a thin layer using the same, method of manufacturing the same, and method of manufacturing memory device
CN202310526085.6A CN117026207A (en) 2022-05-10 2023-05-10 Aluminum precursor and method for manufacturing the same, thin layer and method for manufacturing memory device
US18/314,840 US20230287014A1 (en) 2020-05-10 2023-05-10 Aluminum precursor, method of forming a thin layer using the same, method of manufacturing the same, and method of manufacturing memory device
JP2023078213A JP2023167011A (en) 2022-05-10 2023-05-10 Aluminum precursor, method for forming thin layer using the same, method for manufacturing aluminum precursor, and method for manufacturing memory device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220057133 2022-05-10
KR1020220057133 2022-05-10

Publications (1)

Publication Number Publication Date
KR20230157854A true KR20230157854A (en) 2023-11-17

Family

ID=88968827

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020220113688A KR20230157843A (en) 2020-05-10 2022-09-07 Aluminum precursor and method of forming a thin layer using the same, method of manufacturing the same
KR1020230006158A KR20230157854A (en) 2020-05-10 2023-01-16 Method of depositing thin films and method of manufacturing memory device
KR1020230049570A KR20230158397A (en) 2020-05-10 2023-04-14 Method of depositing thin films and method of manufacturing memory device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020220113688A KR20230157843A (en) 2020-05-10 2022-09-07 Aluminum precursor and method of forming a thin layer using the same, method of manufacturing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230049570A KR20230158397A (en) 2020-05-10 2023-04-14 Method of depositing thin films and method of manufacturing memory device

Country Status (1)

Country Link
KR (3) KR20230157843A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070015958A1 (en) 2002-11-15 2007-01-18 Lilip Lau Cardiac harness delivery device and method of use

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378342B2 (en) 2004-08-27 2008-05-27 Micron Technology, Inc. Methods for forming vias varying lateral dimensions
US8065163B2 (en) 2007-09-11 2011-11-22 General Electric Company Methods and systems for providing patient registration information

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070015958A1 (en) 2002-11-15 2007-01-18 Lilip Lau Cardiac harness delivery device and method of use

Also Published As

Publication number Publication date
KR20230158397A (en) 2023-11-20
KR20230157843A (en) 2023-11-17

Similar Documents

Publication Publication Date Title
KR101502251B1 (en) Method of forming dielectric films, new precursors and their use in the semi-conductor manufacturing
TWI461562B (en) Method for forming a titanium-containing layer on a substrate using an ald process
EP1633904B1 (en) Methods for forming aluminum containing films utilizing amino aluminum precursors
KR102635125B1 (en) Depotisition inhibitor and method for forming dielectric layer using the same
JP2003338500A (en) Process for producing thin film of metal oxide by chemical vapor deposition using alcohol or atomic layer deposition
US11312730B2 (en) Metal complexes containing cyclopentadienyl ligands
JP7496634B2 (en) Thin film formation method using surface protection material
US9677173B2 (en) Precursors and methods for atomic layer deposition of transition metal oxides
KR20190040354A (en) Metal complexes containing allyl ligands
KR102643460B1 (en) Growth inhibitor for forming thin film for and deposition method for preparing film using the same
KR20150124603A (en) A precursor for zirconium oxide thin film, method for manufacturing thereof and a preparation method of thin film
KR20230157854A (en) Method of depositing thin films and method of manufacturing memory device
JP7485403B2 (en) Thin film formation method using surface protection material
US20230287014A1 (en) Aluminum precursor, method of forming a thin layer using the same, method of manufacturing the same, and method of manufacturing memory device
CN117026207A (en) Aluminum precursor and method for manufacturing the same, thin layer and method for manufacturing memory device
KR20210089015A (en) Yttrium compound, forming method of thin film comprising the same, and semiconductor substrate preapared thereby
KR20240070483A (en) Aluminum precursor and method of forming a thin layer using the same, method of manufacturing the same
KR102472597B1 (en) Group 4 organometallic precursor compound into which η6 borata benzene ligand is introduced, a method for manufacturing the same, and a method for forming a thin film using the same
CN114539295B (en) Rare earth precursor, method of preparing the same, and method of forming thin film using the same
KR20210103274A (en) Method of depositing thin films using protective material
KR20140136146A (en) Silicon-containing organic metal precursor compound, a method for the preparation thereof, and method of manufacturing a silicon metal-oxide thin film
KR102428276B1 (en) Group 4 metal element-containing compound, precursor composition containing same, and method for forming thin film using same
JP7271850B2 (en) organometallic precursor compounds
JP2023167012A (en) Method of depositing thin film and method of manufacturing memory device including the same
KR20230117368A (en) Indium compound, raw material for thin film formation, thin film and manufacturing method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal