KR20210103274A - Method of depositing thin films using protective material - Google Patents

Method of depositing thin films using protective material Download PDF

Info

Publication number
KR20210103274A
KR20210103274A KR1020200017824A KR20200017824A KR20210103274A KR 20210103274 A KR20210103274 A KR 20210103274A KR 1020200017824 A KR1020200017824 A KR 1020200017824A KR 20200017824 A KR20200017824 A KR 20200017824A KR 20210103274 A KR20210103274 A KR 20210103274A
Authority
KR
South Korea
Prior art keywords
surface protection
thin film
protection material
metal precursor
formula
Prior art date
Application number
KR1020200017824A
Other languages
Korean (ko)
Inventor
이근수
김재민
김하나
최웅진
Original Assignee
주식회사 이지티엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이지티엠 filed Critical 주식회사 이지티엠
Priority to KR1020200017824A priority Critical patent/KR20210103274A/en
Priority to PCT/KR2020/019429 priority patent/WO2021162240A1/en
Publication of KR20210103274A publication Critical patent/KR20210103274A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Abstract

According to one embodiment of the present invention, a thin film formation method using a surface protection material having an asymmetric ether group comprises: a metal precursor supply step of supplying a metal precursor to the inside of a chamber in which a substrate is placed, and adsorbing the metal precursor to the substrate; a step of purging the interior of the chamber; and a thin film forming step of supplying a reactant to the inside of the chamber to react with the adsorbed metal precursor to form a thin film. The method further comprises: a surface protection material supply step of supplying a surface protection material to adsorb the same to the substrate, before the thin film forming step; and a step of purging the inside of the chamber.

Description

표면 보호 물질을 이용한 박막 형성 방법{METHOD OF DEPOSITING THIN FILMS USING PROTECTIVE MATERIAL}A method of forming a thin film using a surface protection material {METHOD OF DEPOSITING THIN FILMS USING PROTECTIVE MATERIAL}

본 발명은 박막 형성 방법에 관한 것으로, 더욱 상세하게는 매우 얇은 두께의 박막을 형성함으로써 박막의 두께 및 스텝커버리지의 제어가 용이한 박막 형성 방법에 관한 것이다.The present invention relates to a method for forming a thin film, and more particularly, to a method for forming a thin film in which it is easy to control the thickness and step coverage of the thin film by forming a thin film having a very thin thickness.

기존 2차원의 NAND Flash 공정은 좁은 면적 안에 집적도가 높아지면서 셀과 셀 사이 간섭과 누설 현상이 심화되는 기술적 한계를 보였다. 이러한 단점을 극복하기 위해 셀을 수직으로 적층하는 3D NAND Flash 기술이 등장했다.The existing two-dimensional NAND flash process has technical limitations in that the degree of integration in a small area increases, causing cell-to-cell interference and leakage. To overcome these shortcomings, 3D NAND Flash technology that stacks cells vertically has emerged.

다층 스택(multilayer stack)을 포함하는 3D NAND Flash 의 장점은 셀 사이의 간섭을 대폭 줄여 특성을 향상시키고, Stack을 증가시켜 데이터 용량 확대 및 원가절감을 이룰 수 있다는 것이다. 이로 인해 기존 NAND 메모리 소자와 비교하여 2배 이상의 쓰기 속도, 10배 이상의 내구성 및 절반의 전력 소비를 가진다.The advantage of 3D NAND Flash including a multilayer stack is that it can significantly reduce interference between cells to improve characteristics, and increase the stack to achieve data capacity expansion and cost reduction. Due to this, compared to the conventional NAND memory device, it has more than twice the write speed, more than ten times the durability, and half the power consumption.

그러나, 90단 이상의 초고적층으로 높이가 증가됨에 따라, 측벽에 균일한 박막을 확보하는 것이 더욱 어려워지고 최상단과 최하단 셀의 특성 차이가 생기는 등의 한계가 발생하고 있다. 따라서 종횡비가 큰 3차원 구조상에 우수한 단차피복성으로 균일한 두께의 박막을 형성할 수 있는 제조 방법에 대한 요구가 높아지고 있다.However, as the height increases with the ultra-high stacking of more than 90 layers, it becomes more difficult to secure a uniform thin film on the sidewall, and there are limitations such as a difference in characteristics between the uppermost cell and the lowermost cell. Accordingly, there is a growing demand for a manufacturing method capable of forming a thin film of uniform thickness with excellent step coverage on a three-dimensional structure having a large aspect ratio.

한국공개특허공보 2007-0015958호(2007.02.06.)Korean Patent Publication No. 2007-0015958 (2007.02.06.)

본 발명의 목적은 스텝 커버리지가 양호한 박막을 형성할 수 있는 방법을 제공하는 데 있다.It is an object of the present invention to provide a method capable of forming a thin film having good step coverage.

본 발명의 다른 목적은 매우 얇은 두께의 박막을 형성할 수 있는 박막 형성 방법을 제공하는 데 있다.Another object of the present invention is to provide a thin film forming method capable of forming a very thin thin film.

본 발명의 또 다른 목적들은 다음의 상세한 설명으로부터 보다 명확해질 것이다.Further objects of the present invention will become more apparent from the following detailed description.

본 발명의 일 실시예에 의하면, 비대칭 에테르기를 가지는 표면 보호 물질을 이용한 박막 형성 방법은, 금속 전구체를 기판이 놓여진 챔버의 내부에 공급하여, 상기 금속 전구체를 상기 기판에 흡착하는 금속 전구체 공급 단계; 상기 챔버의 내부를 퍼지하는 단계; 그리고 상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 금속 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함하되, 상기 방법은 상기 박막 형성 단계 이전에, 상기 표면 보호 물질을 공급하여 상기 기판에 흡착하는 표면 보호 물질 공급 단계; 그리고 상기 챔버의 내부를 퍼지하는 단계를 더 포함한다.According to an embodiment of the present invention, a method for forming a thin film using a surface protection material having an asymmetric ether group includes: supplying a metal precursor into a chamber in which a substrate is placed, and adsorbing the metal precursor to the substrate; purging the interior of the chamber; and supplying a reactant to the inside of the chamber to react with the adsorbed metal precursor and forming a thin film to form a thin film, wherein the method includes, before the thin film forming step, supplying the surface protection material to the substrate adsorbing surface protection material supply step; and purging the inside of the chamber.

상기 표면 보호 물질은 하기 <화학식 1>로 표시될 수 있다.The surface protection material may be represented by the following <Formula 1>.

<화학식 1><Formula 1>

Figure pat00001
Figure pat00001

상기 <화학식 1>에서, n=0~10의 정수이고, R1은 각각 독립적으로 탄소수 1 내지 10의 알킬기 또는 수소 중에서 선택되며, R2는 탄소수 1 내지 10의 알킬기이다.In <Formula 1>, n = an integer of 0 to 10, R1 is each independently selected from an alkyl group having 1 to 10 carbon atoms or hydrogen, and R2 is an alkyl group having 1 to 10 carbon atoms.

상기 표면 보호 물질은 하기 <화학식 2>로 표시될 수 있다.The surface protection material may be represented by the following <Formula 2>.

<화학식 2><Formula 2>

Figure pat00002
Figure pat00002

상기 <화학식 2>에서, n=1~10의 정수이고, m=0~10의 정수이며, R1은 각각 독립적으로 탄소수 1 내지 10의 알킬기 또는 수소 중에서 선택되며, R2는 탄소수 1 내지 10의 알킬기이다.In <Formula 2>, n = an integer of 1 to 10, m = an integer of 0 to 10, R1 is each independently selected from an alkyl group having 1 to 10 carbon atoms or hydrogen, R2 is an alkyl group having 1 to 10 carbon atoms am.

상기 반응 물질은 O3, O2, H2O 중 어느 하나일 수 있다.The reactant may be any one of O3, O2, and H2O.

상기 금속 전구체는 Al을 포함하는 3가 금속일 수 있다.The metal precursor may be a trivalent metal including Al.

상기 금속 전구체는 하기 <화학식 3>으로 표시될 수 있다.The metal precursor may be represented by the following <Formula 3>.

<화학식 3><Formula 3>

Figure pat00003
Figure pat00003

상기 <화학식 3>에서, R1,R2 및 R3는 서로 상이하며, 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 디알킬아민 또는 탄소수 1 내지 6의 시클로 아민기 중에서 선택된다.In <Formula 3>, R1, R2 and R3 are different from each other, and are each independently selected from an alkyl group having 1 to 6 carbon atoms, a dialkylamine having 1 to 6 carbon atoms, or a cycloamine group having 1 to 6 carbon atoms.

본 발명의 일 실시예에 의하면, 스텝 커버리지가 양호한 박막을 형성할 수 있다. 표면보호물질은 공정진행 중 금속 전구체와 유사한 거동을 가져, 고종횡비 구조에서 상부(또는 입구측)에 높은 밀도로 흡착되고 하부(또는 내부측)에 낮은 밀도로 흡착되며, 후속 공정에서 금속 전구체가 흡착되는 것을 방해한다. 따라서, 금속 전구체는 구조물 내에 균일하게 흡착될 수 있다.According to an embodiment of the present invention, it is possible to form a thin film having good step coverage. The surface protection material has a similar behavior to the metal precursor during the process, so in a high aspect ratio structure, it is adsorbed at a high density on the upper side (or on the inlet side) and with a low density on the lower side (or on the inner side), and in the subsequent process, the metal precursor is prevent adsorption. Accordingly, the metal precursor can be uniformly adsorbed into the structure.

특히, 우수한 단차피복성으로 초고적층 구조에서도 최상단, 최하단 셀 특성차이를 줄이면서 불순물이 없는 순도 높은 박막을 형성할 수 있으며, 소자의 전기적 특성 및 신뢰도를 향상시킬 수 있다.In particular, it is possible to form a high-purity thin film without impurities while reducing the difference in characteristics of the uppermost and lowermost cells even in an ultra-high stacked structure with excellent step coverage, and to improve the electrical characteristics and reliability of the device.

도 1은 본 발명의 실시예에 따른 박막 형성 방법을 개략적으로 나타내는 흐름도이다.
도 2는 본 발명의 실시예에 따른 공급 주기를 개략적으로 나타내는 그래프이다.
도 3은 본 발명의 비교예 및 실시예1,2에 따른 알루미늄 산화막의 GPC를 공정온도에 따라 나타낸 그래프이다.
도 4는 본 발명의 비교예에 따른 알루미늄 산화막의 표면을 분석하기 위한 2차 이온질량분석(SIMS : Secondary Ion Mass Spectroscopy)을 나타내는 그래프이다.
도 5는 본 발명의 실시예1에 따른 알루미늄 산화막의 표면을 분석하기 위한 2차 이온질량분석(SIMS : Secondary Ion Mass Spectroscopy)을 나타내는 그래프이다.
1 is a flowchart schematically illustrating a method for forming a thin film according to an embodiment of the present invention.
2 is a graph schematically illustrating a supply cycle according to an embodiment of the present invention.
3 is a graph showing the GPC of the aluminum oxide film according to Comparative Examples and Examples 1 and 2 according to the process temperature of the present invention.
4 is a graph showing Secondary Ion Mass Spectroscopy (SIMS) for analyzing the surface of an aluminum oxide film according to a comparative example of the present invention.
5 is a graph showing Secondary Ion Mass Spectroscopy (SIMS) for analyzing the surface of an aluminum oxide film according to Example 1 of the present invention.

이하, 본 발명의 바람직한 실시예들을 첨부된 도 1 내지 도 5를 참고하여 더욱 상세히 설명한다. 본 발명의 실시예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 실시예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 상세하게 설명하기 위해서 제공되는 것이다. 따라서 도면에 나타난 각 요소의 형상은 보다 분명한 설명을 강조하기 위하여 과장될 수 있다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings 1 to 5. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. These examples are provided to explain the present invention in more detail to those of ordinary skill in the art to which the present invention pertains. Accordingly, the shape of each element shown in the drawings may be exaggerated to emphasize a clearer description.

종래의 전구체 단독공정은 고종횡비 구조에서 상부(또는 입구측)는 박막이 두꺼워지고 하부(또는 내부측)는 박막이 얇아지는 등 박막이 균일하지 못하여 스텝 커버리지가 불량한 문제가 있다.The conventional precursor alone process has a problem of poor step coverage because the thin film is not uniform, such as a thin film at the top (or the inlet side) and thin film at the bottom (or inside) in a high aspect ratio structure.

그러나, 이하에서 설명하는 표면 보호 물질은 금속 전구체와 동일하게 거동하며, 구조물의 하부보다 상부에 높은 밀도로 흡착된 상태에서 후속 공정인 금속 전구체가 흡착되는 것을 방해함으로써 구조물 내에 균일한 두께의 박막을 형성할 수 있도록 한다.However, the surface protection material described below behaves the same as the metal precursor, and prevents the metal precursor, which is a subsequent process, from being adsorbed in a state where it is adsorbed at a higher density on the upper part than the lower part of the structure, thereby forming a thin film with a uniform thickness in the structure. to be able to form

도 1은 본 발명의 실시예에 따른 박막 형성 방법을 개략적으로 나타내는 흐름도이며, 도 2는 본 발명의 실시예에 따른 공급 주기를 개략적으로 나타내는 그래프이다. 기판은 공정챔버의 내부로 로드되며, 이하의 ALD 공정 조건은 조정된다. ALD 공정 조건은 기판 또는 공정챔버의 온도, 챔버 압력, 가스 유동률을 포함할 수 있으며, 온도는 50 내지 500℃이다.1 is a flowchart schematically illustrating a method for forming a thin film according to an embodiment of the present invention, and FIG. 2 is a graph schematically illustrating a supply cycle according to an embodiment of the present invention. The substrate is loaded into the process chamber, and the following ALD process conditions are adjusted. The ALD process conditions may include a temperature of a substrate or a process chamber, a chamber pressure, and a gas flow rate, and the temperature is 50 to 500°C.

기판은 챔버의 내부에 공급된 표면 보호 물질에 노출되며, 표면 보호 물질은 기판의 표면에 흡착된다. 표면 보호 물질은 공정진행 중 금속 전구체와 유사한 거동을 가져, 고종횡비 구조에서 상부(또는 입구측)에 높은 밀도로 흡착되고 하부(또는 내부측)에 낮은 밀도로 흡착되며, 후속 공정에서 금속 전구체가 흡착되는 것을 방해한다.The substrate is exposed to the surface protection material supplied to the inside of the chamber, and the surface protection material is adsorbed to the surface of the substrate. The surface protection material has a similar behavior to the metal precursor during the process, so in a high aspect ratio structure, it is adsorbed at a high density on the upper side (or on the inlet side) and with a low density on the lower side (or on the inner side), and the metal precursor in the subsequent process prevent adsorption.

표면 보호 물질은 비대칭 에테르기를 가지며, 하기 <화학식 1>로 표시될 수 있다.The surface protection material has an asymmetric ether group, and may be represented by the following <Formula 1>.

<화학식 1><Formula 1>

Figure pat00004
Figure pat00004

상기 <화학식 1>에서, n=0~10의 정수이고, R1은 각각 독립적으로 탄소수 1 내지 10의 알킬기 또는 수소 중에서 선택되며, R2는 탄소수 1 내지 10의 알킬기이다.In <Formula 1>, n = an integer of 0 to 10, R1 is each independently selected from an alkyl group having 1 to 10 carbon atoms or hydrogen, and R2 is an alkyl group having 1 to 10 carbon atoms.

또한, 상기 표면 보호 물질은 하기 <화학식 2>로 표시될 수 있다.In addition, the surface protection material may be represented by the following <Formula 2>.

<화학식 2><Formula 2>

Figure pat00005
Figure pat00005

상기 <화학식 2>에서, n=1~10의 정수이고, m=0~10의 정수이며, R1은 각각 독립적으로 탄소수 1 내지 10의 알킬기 또는 수소 중에서 선택되며, R2는 탄소수 1 내지 10의 알킬기이다.In <Formula 2>, n = an integer of 1 to 10, m = an integer of 0 to 10, R1 is each independently selected from an alkyl group having 1 to 10 carbon atoms or hydrogen, R2 is an alkyl group having 1 to 10 carbon atoms am.

이후, 챔버의 내부에 퍼지가스(예를 들어, Ar과 같은 비활성가스)를 공급하여, 미흡착 표면 보호 물질 또는 부산물을 제거하거나 정화한다.Thereafter, a purge gas (eg, an inert gas such as Ar) is supplied to the inside of the chamber to remove or purify the non-adsorbed surface protection material or by-product.

이후, 기판은 챔버의 내부에 공급된 금속 전구체에 노출되며, 기판의 표면에 금속 전구체가 흡착된다. 금속 전구체는 Al과 같은 3족일 수 있다.Thereafter, the substrate is exposed to the metal precursor supplied to the inside of the chamber, and the metal precursor is adsorbed on the surface of the substrate. The metal precursor may be a group III such as Al.

또한, 상기 금속 전구체는 하기 <화학식 3>으로 표시될 수 있다.In addition, the metal precursor may be represented by the following <Formula 3>.

<화학식 3><Formula 3>

Figure pat00006
Figure pat00006

상기 <화학식 3>에서, R1,R2 및 R3는 서로 상이하며, 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 디알킬아민 또는 탄소수 1 내지 6의 시클로 아민기 중에서 선택된다.In <Formula 3>, R1, R2 and R3 are different from each other, and are each independently selected from an alkyl group having 1 to 6 carbon atoms, a dialkylamine having 1 to 6 carbon atoms, or a cycloamine group having 1 to 6 carbon atoms.

예를 들어 설명하면, 앞서 설명한 표면 보호 물질은 구조물의 상부에서 하부보다 조밀하게 흡착되며, 금속 전구체는 표면 보호 물질이 흡착된 위치에 흡착될 수 없다. 즉, 종래 금속 전구체는 구조물의 상부에서 하부보다 조밀하게 흡착되어 높은 밀도를 나타내었으나, 본 실시예와 같이, 표면 보호 물질이 구조물의 상부에서 조밀하게 흡착되어 금속 전구체의 흡착을 방해하므로, 금속 전구체는 구조물의 상부에 과흡착되지 않고 구조물의 상부/하부에 균일하게 흡착될 수 있으며, 후술하는 박막의 스텝 커버리지를 개선할 수 있다.For example, the above-described surface protection material is more densely adsorbed from the upper portion of the structure than the lower portion, and the metal precursor cannot be adsorbed at the position where the surface protection material is adsorbed. That is, the conventional metal precursor was densely adsorbed from the upper portion of the structure to the lower portion and exhibited a high density. may be uniformly adsorbed to the upper/lower portions of the structure without being over-adsorbed on the upper portion of the structure, and may improve the step coverage of the thin film, which will be described later.

이후, 챔버의 내부에 퍼지가스(예를 들어, Ar과 같은 비활성가스)를 공급하여, 미흡착 금속 전구체 또는 부산물을 제거하거나 정화한다.Thereafter, a purge gas (eg, an inert gas such as Ar) is supplied to the inside of the chamber to remove or purify the non-adsorbed metal precursor or by-product.

이후, 기판은 챔버의 내부에 공급된 반응 물질에 노출되며, 기판의 표면에 박막이 형성된다. 반응 물질은 금속 전구체층과 반응하여 박막을 형성하며, 반응 물질은 O3, O2, H2O 가스 일 수 있고 반응 물질을 통해 금속 산화막이 형성될 수 있다. 이때, 반응 물질은 흡착된 표면 보호 물질을 산화시키며, 기판의 표면으로부터 분리하여 제거한다.Thereafter, the substrate is exposed to the reactant supplied into the chamber, and a thin film is formed on the surface of the substrate. The reactant material reacts with the metal precursor layer to form a thin film, and the reactant material may be O3, O2, or H2O gas, and a metal oxide layer may be formed through the reactant material. In this case, the reactant oxidizes the adsorbed surface protection material, and is removed from the surface of the substrate.

이후, 챔버의 내부에 퍼지가스(예를 들어, Ar과 같은 비활성가스)를 공급하여, 미흡착 표면 보호 물질/미반응 물질 또는 부산물을 제거하거나 정화한다.Thereafter, a purge gas (eg, an inert gas such as Ar) is supplied to the inside of the chamber to remove or purify the non-adsorbed surface protection material/reacted material or by-product.

한편, 앞서 표면보호물질이 금속 전구체 보다 먼저 공급되는 것으로 설명하였으나, 이와 달리, 표면보호물질은 금속 전구체 이후에 공급되거나 금속 전구체 이전 및 이후에 모두 공급될 수 있다.On the other hand, although it has been described that the surface protection material is supplied before the metal precursor, otherwise, the surface protection material may be supplied after the metal precursor or both before and after the metal precursor.

- 비교예- Comparative Example

앞서 설명한 표면보호물질을 사용하지 않고 실리콘 기판 상에 알루미늄 산화막을 형성하였다. ALD 공정을 통해 알루미늄 산화막을 형성하였으며, ALD 공정 온도는 50 내지 500℃, 반응 물질은 O3 가스를 사용하였다.An aluminum oxide film was formed on the silicon substrate without using the surface protection material described above. An aluminum oxide film was formed through the ALD process, the ALD process temperature was 50 to 500 °C, and O3 gas was used as the reactant.

ALD 공정을 통한 알루미늄 산화막 형성 과정은 아래와 같으며, 아래 과정을 1사이클로 하여 진행하였다.The aluminum oxide film formation process through the ALD process is as follows, and the following process was performed as one cycle.

1) Ar을 캐리어 가스로 하여, 상온에서 알루미늄 전구체 TMA (Trimethylaluminium)를 반응 챔버에 공급하고 기판에 알루미늄 전구체를 흡착1) Using Ar as a carrier gas, the aluminum precursor TMA (Trimethylaluminium) is supplied to the reaction chamber at room temperature and the aluminum precursor is adsorbed on the substrate

2) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 알루미늄 전구체 또는 부산물을 제거2) Removal of unadsorbed aluminum precursors or by-products by supplying Ar gas into the reaction chamber

3) O3 가스를 반응 챔버에 공급하여 모노레이어를 형성3) Form a monolayer by supplying O3 gas to the reaction chamber

4) 반응 챔버 내에 Ar 가스를 공급하여 미반응물질 또는 부산물을 제거4) Removal of unreacted substances or by-products by supplying Ar gas into the reaction chamber

위와 같은 과정에 의해 얻어진 알루미늄 산화막의 두께를 엘립소미터를 이용하여 측정하였다.The thickness of the aluminum oxide film obtained by the above process was measured using an ellipsometer.

- 실시예 1- Example 1

표면보호물질로 CPME(Cyclopentyl methyl ether)을 사용하여 실리콘 기판 상에 알루미늄 산화막을 형성하였다. ALD 공정을 통해 알루미늄 산화막을 형성하였으며, ALD 공정 온도는 50 내지 500℃, 반응 물질은 O3를 사용하였다.An aluminum oxide film was formed on a silicon substrate using CPME (Cyclopentyl methyl ether) as a surface protection material. An aluminum oxide film was formed through an ALD process, and the ALD process temperature was 50 to 500° C., and O3 was used as a reaction material.

ALD 공정을 통한 알루미늄 산화막 형성 과정은 아래와 같으며, 아래 과정을 1사이클로 하여 진행하였다(도 1 및 2 참고).The aluminum oxide film formation process through the ALD process is as follows, and the following process was performed as one cycle (refer to FIGS. 1 and 2).

1) 반응 챔버 내에 표면보호물질을 공급하여 기판에 흡착1) Adsorbed to the substrate by supplying a surface protection material in the reaction chamber

2) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 표면보호물질 또는 부산물을 제거2) Removal of non-adsorbed surface protection materials or by-products by supplying Ar gas into the reaction chamber

3) Ar을 캐리어 가스로 하여, 상온에서 알루미늄 전구체 TMA (Trimethylaluminium)를 반응 챔버에 공급하고 기판에 알루미늄 전구체를 흡착3) Using Ar as a carrier gas, the aluminum precursor TMA (Trimethylaluminium) is supplied to the reaction chamber at room temperature and the aluminum precursor is adsorbed on the substrate

4) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 알루미늄 전구체 또는 부산물을 제거4) Removal of unadsorbed aluminum precursors or by-products by supplying Ar gas into the reaction chamber

5) O3 가스를 반응 챔버에 공급하여 모노레이어를 형성5) Form a monolayer by supplying O3 gas to the reaction chamber

6) 반응 챔버 내에 Ar 가스를 공급하여 미반응물질 또는 부산물을 제거6) Removal of unreacted substances or by-products by supplying Ar gas into the reaction chamber

위와 같은 과정에 의해 얻어진 알루미늄 산화막의 두께를 엘립소미터를 이용하여 측정하였다.The thickness of the aluminum oxide film obtained by the above process was measured using an ellipsometer.

- 실시예 2- Example 2

표면보호물질로 Anisole을 사용하여 실리콘 기판 상에 알루미늄 산화막을 형성하였다. ALD 공정을 통해 알루미늄 산화막을 형성하였으며, ALD 공정 온도는 50 내지 500℃, 반응 물질은 O3를 사용하였다.An aluminum oxide film was formed on a silicon substrate using Anisole as a surface protection material. An aluminum oxide film was formed through an ALD process, and the ALD process temperature was 50 to 500° C., and O3 was used as a reaction material.

ALD 공정을 통한 알루미늄 산화막 형성 과정은 아래와 같으며, 아래 과정을 1사이클로 하여 진행하였다(도 1 및 2 참고).The aluminum oxide film formation process through the ALD process is as follows, and the following process was performed as one cycle (refer to FIGS. 1 and 2).

1) 반응 챔버 내에 표면보호물질을 공급하여 기판에 흡착1) Adsorbed to the substrate by supplying a surface protection material in the reaction chamber

2) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 표면보호물질 또는 부산물을 제거2) Removal of non-adsorbed surface protection materials or by-products by supplying Ar gas into the reaction chamber

3) Ar을 캐리어 가스로 하여, 상온에서 알루미늄 전구체 TMA (Trimethylaluminium)를 반응 챔버에 공급하고 기판에 알루미늄 전구체를 흡착3) Using Ar as a carrier gas, the aluminum precursor TMA (Trimethylaluminium) is supplied to the reaction chamber at room temperature and the aluminum precursor is adsorbed on the substrate

4) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 알루미늄 전구체 또는 부산물을 제거4) Removal of unadsorbed aluminum precursors or by-products by supplying Ar gas into the reaction chamber

5) O3 가스를 반응 챔버에 공급하여 모노레이어를 형성5) Form a monolayer by supplying O3 gas to the reaction chamber

6) 반응 챔버 내에 Ar 가스를 공급하여 미반응물질 또는 부산물을 제거6) Removal of unreacted substances or by-products by supplying Ar gas into the reaction chamber

위와 같은 과정에 의해 얻어진 알루미늄 산화막의 두께를 엘립소미터를 이용하여 측정하였다.The thickness of the aluminum oxide film obtained by the above process was measured using an ellipsometer.

도 3은 본 발명의 비교예 및 실시예1,2에 따른 알루미늄 산화막의 GPC를 공정온도에 따라 나타낸 그래프이다. 도 3에 도시한 바와 같이, 기판의 온도 50 내지 500℃인 범위 내에서 기판의 온도 상승에 따른 GPC 변화가 거의 없는 이상적인 ALD 거동을 보였다.3 is a graph showing the GPC of the aluminum oxide film according to Comparative Examples and Examples 1 and 2 of the present invention according to the process temperature. As shown in FIG. 3 , an ideal ALD behavior was exhibited with little change in GPC according to an increase in the temperature of the substrate within a temperature range of 50 to 500° C. of the substrate.

또한, 비교예1과 비교할 때, 표면 보호 물질을 사용한 실시예1,2의 경우 GPC가 감소한 것을 확인할 수 있다. 이는 표면 보호 물질이 흡착되어 구조물의 하부보다 상부에 높은 밀도로 흡착된 상태에서 후속 공정인 금속 전구체가 흡착되는 것을 방해함으로써 구조물 상에 스텝 커버리지가 양호한 박막을 형성할 수 있도록 하는 것으로 생각된다.In addition, as compared with Comparative Example 1, it can be seen that the GPC is reduced in Examples 1 and 2 using the surface protection material. This is thought to allow the formation of a thin film with good step coverage on the structure by preventing the adsorption of the metal precursor, which is a subsequent process, in a state in which the surface protection material is adsorbed at a higher density than the lower portion of the structure.

도 4는 본 발명의 비교예에 따른 알루미늄 산화막의 표면을 분석하기 위한 2차 이온질량분석(SIMS : Secondary Ion Mass Spectroscopy)을 나타내는 그래프이며, 도 5는 본 발명의 실시예1에 따른 알루미늄 산화막의 표면을 분석하기 위한 2차 이온질량분석(SIMS : Secondary Ion Mass Spectroscopy)을 나타내는 그래프이다. 비교예 및 실시예 모두, 산화막 내에는 불순물(예를 들어, 탄소 원자 같은)이 잔류하지 않은 것을 확인하였다.4 is a graph showing Secondary Ion Mass Spectroscopy (SIMS) for analyzing the surface of an aluminum oxide film according to a comparative example of the present invention, and FIG. 5 is an aluminum oxide film according to Example 1 of the present invention. This is a graph showing the secondary ion mass spectrometry (SIMS: Secondary Ion Mass Spectroscopy) for surface analysis. In both Comparative Examples and Examples, it was confirmed that no impurities (eg, carbon atoms) remained in the oxide film.

결론적으로, 표면 보호 물질은 높은 흡착성능을 통해 높은 GPC 감소 효과를 보이며, 이를 통해 스텝커버리지 제어가 가능할 뿐만 아니라, 소자의 전기적 특성 및 신뢰도를 향상시킬 수 있다. 또한, 기존의 ALD 공정에 의해 얻어질 수 있는 하나의 모노레이어 두께보다 더 얇고 불순물 없이 순도 높은 박막을 형성할 수 있다.In conclusion, the surface protection material exhibits a high GPC reduction effect through its high adsorption performance, thereby enabling step coverage control as well as improving the electrical characteristics and reliability of the device. In addition, it is possible to form a thin film with high purity without impurities thinner than the thickness of one monolayer obtainable by the conventional ALD process.

이상에서 본 발명을 실시예를 통하여 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.Although the present invention has been described in detail through examples above, other types of embodiments are also possible. Therefore, the spirit and scope of the claims set forth below are not limited to the embodiments.

Claims (6)

비대칭 에테르기를 가지는 표면 보호 물질을 이용한 박막 형성 방법에 있어서,
금속 전구체를 기판이 놓여진 챔버의 내부에 공급하여, 상기 금속 전구체를 상기 기판에 흡착하는 금속 전구체 공급 단계;
상기 챔버의 내부를 퍼지하는 단계; 및
상기 챔버의 내부에 반응 물질을 공급하여 흡착된 상기 금속 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함하되,
상기 방법은 상기 박막 형성 단계 이전에,
상기 표면 보호 물질을 공급하여 상기 기판에 흡착하는 표면 보호 물질 공급 단계; 및
상기 챔버의 내부를 퍼지하는 단계를 더 포함하는, 표면보호물질을 이용한 박막 형성 방법.
In the method of forming a thin film using a surface protection material having an asymmetric ether group,
A metal precursor supply step of supplying a metal precursor to the inside of the chamber on which the substrate is placed, and adsorbing the metal precursor to the substrate;
purging the interior of the chamber; and
A thin film forming step of supplying a reactant to the inside of the chamber to react with the adsorbed metal precursor to form a thin film,
The method before the thin film forming step,
a surface protection material supplying step of supplying the surface protection material and adsorbing the surface protection material to the substrate; and
The method of forming a thin film using a surface protection material, further comprising purging the inside of the chamber.
제1항에 있어서,
상기 표면 보호 물질은 하기 <화학식 1>로 표시되는, 표면보호물질을 이용한 박막 형성 방법.
<화학식 1>
Figure pat00007

상기 <화학식 1>에서, n=0~10의 정수이고,
R1은 각각 독립적으로 탄소수 1 내지 10의 알킬기 또는 수소 중에서 선택되며,
R2는 탄소수 1 내지 10의 알킬기이다.
According to claim 1,
The surface protection material is represented by the following <Formula 1>, a method of forming a thin film using a surface protection material.
<Formula 1>
Figure pat00007

In the <Formula 1>, n = an integer of 0 to 10,
R1 is each independently selected from an alkyl group having 1 to 10 carbon atoms or hydrogen,
R2 is an alkyl group having 1 to 10 carbon atoms.
제1항에 있어서,
상기 표면 보호 물질은 하기 <화학식 2>로 표시되는, 표면보호물질을 이용한 박막 형성 방법.
<화학식 2>
Figure pat00008

상기 <화학식 2>에서, n=1~10의 정수이고, m=0~10의 정수이며,
R1은 각각 독립적으로 탄소수 1 내지 10의 알킬기 또는 수소 중에서 선택되며,
R2는 탄소수 1 내지 10의 알킬기이다.
According to claim 1,
The surface protection material is represented by the following <Formula 2>, a method of forming a thin film using a surface protection material.
<Formula 2>
Figure pat00008

In <Formula 2>, n = an integer of 1 to 10, m = an integer of 0 to 10,
R1 is each independently selected from an alkyl group having 1 to 10 carbon atoms or hydrogen,
R2 is an alkyl group having 1 to 10 carbon atoms.
제1항에 있어서,
상기 반응 물질은 O3, O2, H2O 중 어느 하나인, 표면보호물질을 이용한 박막 형성 방법.
According to claim 1,
The reaction material is any one of O3, O2, H2O, a method of forming a thin film using a surface protection material.
제1항에 있어서,
상기 금속 전구체는 Al을 포함하는 3가 금속인, 표면보호물질을 이용한 박막 형성 방법.
According to claim 1,
The metal precursor is a trivalent metal including Al, a thin film forming method using a surface protection material.
제1항에 있어서,
상기 금속 전구체는 하기 <화학식 3>으로 표시되는, 표면보호물질을 이용한 박막 형성 방법.
<화학식 3>
Figure pat00009

상기 <화학식 3>에서,
R1,R2 및 R3는 서로 상이하며, 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 디알킬아민 또는 탄소수 1 내지 6의 시클로 아민기 중에서 선택된다.
According to claim 1,
The metal precursor is represented by the following <Formula 3>, a method of forming a thin film using a surface protection material.
<Formula 3>
Figure pat00009

In the <Formula 3>,
R1, R2 and R3 are different from each other and are each independently selected from an alkyl group having 1 to 6 carbon atoms, a dialkylamine having 1 to 6 carbon atoms, or a cycloamine group having 1 to 6 carbon atoms.
KR1020200017824A 2020-02-13 2020-02-13 Method of depositing thin films using protective material KR20210103274A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200017824A KR20210103274A (en) 2020-02-13 2020-02-13 Method of depositing thin films using protective material
PCT/KR2020/019429 WO2021162240A1 (en) 2020-02-13 2020-12-30 Method for forming thin film by using surface protection material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200017824A KR20210103274A (en) 2020-02-13 2020-02-13 Method of depositing thin films using protective material

Publications (1)

Publication Number Publication Date
KR20210103274A true KR20210103274A (en) 2021-08-23

Family

ID=77291756

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200017824A KR20210103274A (en) 2020-02-13 2020-02-13 Method of depositing thin films using protective material

Country Status (2)

Country Link
KR (1) KR20210103274A (en)
WO (1) WO2021162240A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070015958A1 (en) 2002-11-15 2007-01-18 Lilip Lau Cardiac harness delivery device and method of use

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040100766A (en) * 2003-05-24 2004-12-02 삼성전자주식회사 Method of forming composite dielectric layer by atomic layer deposition and method of manufacturing capacitor using the same
KR20090013852A (en) * 2007-08-03 2009-02-06 한양대학교 산학협력단 Method of fabricating organic-inorganic complex thin films using surface-modified substrate
CN103646864A (en) * 2013-11-22 2014-03-19 上海华力微电子有限公司 Method for improving thickness uniformity of grid side wall spacing layer
US9646876B2 (en) * 2015-02-27 2017-05-09 Applied Materials, Inc. Aluminum nitride barrier layer
US10580645B2 (en) * 2018-04-30 2020-03-03 Asm Ip Holding B.V. Plasma enhanced atomic layer deposition (PEALD) of SiN using silicon-hydrohalide precursors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070015958A1 (en) 2002-11-15 2007-01-18 Lilip Lau Cardiac harness delivery device and method of use

Also Published As

Publication number Publication date
WO2021162240A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
KR102333599B1 (en) Method of depositing thin films using protective material
KR102310232B1 (en) Methods for Wordline Separation in 3D-NAND Devices
US9607827B2 (en) Method of manufacturing semiconductor device, and recording medium
US9520282B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
KR102095710B1 (en) Method of depositing thin films using protective material
TW201903190A (en) Method of plasma-assisted cyclic deposition using ramp-down flow of reactant gas
CN104471689A (en) Methods for depositing oxygen deficient metal films
JP2006310754A (en) Dielectric layer of nano-composite, capacitor having the same, and its manufacturing method
Yuan et al. A brief overview of atomic layer deposition and etching in the semiconductor processing
KR20210103274A (en) Method of depositing thin films using protective material
US20110014770A1 (en) Methods of forming a dielectric thin film of a semiconductor device and methods of manufacturing a capacitor having the same
JP2013143424A (en) Semiconductor device and method of manufacturing the same
KR102224067B1 (en) Method of depositing thin films using protective material
KR101230951B1 (en) Surface diffusion-induced atomic layer deposition
CN114551640A (en) Solar cell manufacturing method and solar cell
KR20230157854A (en) Method of depositing thin films and method of manufacturing memory device
KR101521800B1 (en) A preparation method of nickel sulfide film
KR20220109843A (en) Method of area-selective deposition and method of fabricating electronic device using the same
TW202348606A (en) Aluminum precursor, method of forming a thin layer using the same, method of manufacturing the same, and method of manufacturing memory device
CN117026207A (en) Aluminum precursor and method for manufacturing the same, thin layer and method for manufacturing memory device
CN112420731B (en) Method for forming thin film layer in deep hole and method for manufacturing semiconductor device
US20230307226A1 (en) Method of depositing thin film and method of manufacturing memory device including the same
KR101004545B1 (en) Method for fabricating capacitor
US20230393477A1 (en) High-temperature methods of forming photoresist underlayer and systems for forming same
KR20230059002A (en) Method for depositing hafnium oxide layer

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
N231 Notification of change of applicant
E601 Decision to refuse application
AMND Amendment
X601 Decision of rejection after re-examination
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2022101001377; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20220726

Effective date: 20230405