KR20230131539A - 바나나 껍질 또는 고구마 껍질로부터 추출된 프럭토올리고당 및 이의 용도 - Google Patents

바나나 껍질 또는 고구마 껍질로부터 추출된 프럭토올리고당 및 이의 용도 Download PDF

Info

Publication number
KR20230131539A
KR20230131539A KR1020220028540A KR20220028540A KR20230131539A KR 20230131539 A KR20230131539 A KR 20230131539A KR 1020220028540 A KR1020220028540 A KR 1020220028540A KR 20220028540 A KR20220028540 A KR 20220028540A KR 20230131539 A KR20230131539 A KR 20230131539A
Authority
KR
South Korea
Prior art keywords
peel
kestose
sweet potato
fructooligosaccharide
composition
Prior art date
Application number
KR1020220028540A
Other languages
English (en)
Inventor
오덕환
쎌리아 라마찬드란
박채린
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020220028540A priority Critical patent/KR20230131539A/ko
Publication of KR20230131539A publication Critical patent/KR20230131539A/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/702Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/39Convolvulaceae (Morning-glory family), e.g. bindweed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/322Foods, ingredients or supplements having a functional effect on health having an effect on the health of the nervous system or on mental function
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/28Oligosaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/14Extraction

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • Botany (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Molecular Biology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medical Informatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 프럭토올리고당 및 이의 용도에 관한 것으로, 구체적으로는 바나나 껍질 또는 고구마 껍질로부터 추출된 프럭토올리고당 및 이의 다양한 용도에 관한 것이다.
본 발명은 바나나 껍질 또는 고구마 껍질로부터 추출된 프럭토올리고당을 제공하며, 상기 프럭토올리고당을 포함하는 조성물을 식품 또는 약학용으로 제공할 수 있다. 본 발명에 따른 조성물은 스트레스의 예방 또는 개선 효과가 우수하다.

Description

바나나 껍질 또는 고구마 껍질로부터 추출된 프럭토올리고당 및 이의 용도{Fructooligosaccharide extracted from banana peel or sweet potato peel and uses thereof}
본 발명은 프럭토올리고당 및 이의 용도에 관한 것으로, 구체적으로는 바나나 껍질 또는 고구마 껍질로부터 추출된 프럭토올리고당 및 이의 다양한 용도에 관한 것이다.
프럭토올리고당(Fructooligosaccharide)은 bifidobacteria and lactobacilli등 유익한 균으로 알려진 프로바이오틱스로 광범위하게 사용되는 가용성 섬유이다. 프리바이오틱은 장과 면역체계에 관련하여 유익한 효과가 있는 것으로 알려져있다. 프리바이오틱 sialyllactose는 마우스의 면역 또는 내분비 기능에 관계없이 재앙의 점막과 관련된 미생물군집의 구조와 불안유사행동 및 미성숙한 신경세포수에서 스트레스 유발 변화를 감소할 수 있는 것으로 알려져 있다. 프리바이오틱스는 장내 미생물의 성장과 활동을 조절하며 프리바이오틱스 중 프락토올리고당은 마우스의 불안과 유사한 행동의 근본적인 원인인 스트레스를 감소시켰다. 또한 올리고당은 마우스의 뇌 신경영양인자 발현과 N-methyl-D-aspartate 수용체 신호전달 역시 증가시켰다. 임상 환경에서 프락토올리고당을 섭취한 사람은 신경내분비 스트레스 반응의 억제와 초기의 불안완화와 유사한 프로파일을 보였다.
바나나(Musa paradisiaca L., Musacceae)는 껍질이 전체 부피의 30%를 차지하고, 2차 가스를 생성하여 환경오염을 유발하기 때문에 새로운 활용방안이 필수적이다. 바나나껍질은 식이섬유(50%), 단백질(7%), 불포화지방산, 인산, 필수 아미노산 등으로 구성되어 있으며, 탄소가 풍부한 유기물로 클로로필, 셀룰로오스, 펙틴, 헤미셀룰로오스 등의 성분 등이 함유되어 있다.
고구마는 (Ipomoea batatas L.) 메꽃과에 속하는 식용작물로, 세계 3대 식량자원으로 이용되어 왔으며, 재배가 쉽고 단위면적당 수확량이 많아 경제성이 높은 작물이다. 경제가 성장함에 따라 식생활 또한 변화하여 고구마 수요 및 재배면적이 감소되었으나, 최근 β-카로틴, 폴리페놀, 식이섬유, 안토시아닌 등의 고구마 기능성분이 알려지면서 주식에서 건강기능성식품 및 기호식품의 소재로 새롭게 인식되었다.
최근 연구에 따르면 바나나와 고구마에는 프럭탄 유형의 프럭토올리고당과 이눌린 그리고 1-kestoese 등으로 구성되어 있으며 바나나껍질 추출물의 프럭토올리고당 함량은 약 30% 정도라고 보고하였다. 실제로 상용 프리바이오틱스 중 하나인 프럭토올리고당은 포도당의 말단에 연결된 β (2-1) 글리코시드 결합을 통해 연결된 2-6개의 프럭토스 단량체로 구성된 혼합물이다. 최근 몇년동안 프럭토올리고당은 가장 중요한 건강식품 성분 중 하나가 되었으며 많은 식품의 품질을 향상 시킬 수 있는 큰 잠재력을 가지고 있으며 유아 분유, 건강관리 제품, 의약품 및 화장품과 같은 광범위한 분야에 적용되고 있다. 따라서 프럭토올리고당이 점차 대중화됨에 따라 품질 관리 및 연구에 대한 요구를 충족시키기 위해 고품질의 프럭토올리고당이 시급히 필요한 상황이다.
공개특허공보 10-2011-0015431
상기와 같은 문제점을 해결하기 위해 본 발명은 식물에서 추출된 프럭토올리고당을 제공하고자 한다.
또한, 상기 프럭토올리고당을 포함하는 조성물을 제공하고자 한다.
또한, 상기 프럭토올리고당을 포함하는 조성물의 다양한 용도를 제공하고자 한다.
상기와 같은 목적을 달성하기 위해 본 발명은 식물 유래의 프럭토올리고당을 제공한다.
또한, 본 발명은 프럭토올리고당을 포함하는 조성물 및 이의 다양한 용도를 제공한다.
상기 프럭토올리고당은 제한되는 것은 아니지만, 바나나 껍질 또는 고구마 껍질로부터 추출된 것일 수 있다.
이때 추출에 사용된 용매는 극성 용매 또는유기 용매를 사용하여 추출할 수 있으며, 극성 용매는 탄소수 1 내지 4의 저급 알코올 중 선택되는 어느 하나 일 수 있고, 바람직하게는 에탄올을 용매로 하여 추출할 수 있다. 에탄올을 용매로 사용하여 추출하는 경우, 50 내지 99%(w/v) 에탄올을 사용할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 따른 프럭토올리고당 조성물은 제한된는 것은 아니지만, 바람직하게는 1-kestose를 유효성분으로 포함한다.
본 발명에 따른 프럭토올리고당을 포함하는 조성물은 식품 조성물 또는 약학 조성물로 제공된다.
상기 조성물은 스트레스의 예방 또는 개선용이다.
본 발명은 바나나 껍질 또는 고구마 껍질로부터 추출된 프럭토올리고당을 제공한다. 또한, 상기 프럭토올리고당을 포함하는 조성물을 식품 또는 약학용으로 제공할 수 있으며, 상기 조성물은 스트레스의 예방 또는 개선 효과가 우수하다.
도 1은 Pre-column derivatization Method를 기반으로 한 HPLC 크로마토그램은 바나나와 고구마 껍질에서 정제한 정제된 프락토올리고당(1-Kestose)을 표준 프락토올리고당과 비교하여 나타낸 결과이다.
도 2는 HSCCC를 사용한 올리고당 추출물에서 정제된 1-Kestose의 NMR 스펙트럼 및 화학적 이동(ppm으로 표시) 결과를 나타낸다.
도 3은 1의 2D NMR 이동 상관관계 및 1의 J-해상 스펙트럼을 나타낸다.
도 4는 다양한 프로바이오틱스에 대한 정제 프락토올리고당(1-Kestose)의 성장 촉진 결과를 나타내며, 값은 3개의 독립적인 판독값의 평균 ± 표준 편차(n = 3)로 표시되었다.
도 5는 마우스 그룹의 장내 미생물군의 분류학적 구성(문 수준)은 박테로이데스 과를 나타내고 클로스트리디아 및 페르미쿠테스 그룹을 감소시켰으며, G1, 대조군(PBS)과 비교할 때 장내 G3, PBS + LAB + 케스토오스를 초래함; G2, PBS + 유산균 결과를 나타낸다.
도 6은 정제 Kestose의 항불안 효과 평가 결과를 나타낸 것이다.
도 7은 불안, 스트레스 감소 평가 결과를 나타낸 것이다.
도 8은 스트레스 감소 평가 중 십자형 높은 미로 테스트 결과를 나타낸 것이다.
도 9는 스트레스 감소와 미생물 균총과의 관계를 나타낸 것이다.
이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.
[실험방법 및 재료]
1. 바나나 껍질 및 고구마 껍질의 올리고당 추출물 제조
바나나 껍질의 올리고당 추출물 제조를 위해 강원도 춘천의 롯데마트에서 신선한 바나나를 구입하여 껍질을 벗긴 뒤 그늘에서 말리고 드라이오븐을 이용해서 30℃에서 건조시켰다. 건조된 바나나껍질은 분쇄기(Daesung Artlon, DA280-S, Korea)을 이용하여 분말화하여 시료로 사용하였다.
고구마 껍질의 올리고당 추출물 제조를 위해 품종으로는 풍원미, 호감미를 사용하였다. 고구마는 2020년 2월 국립식량과학원 바이오에너지작물연구소에서 분양 받아 세척 후 껍질을 깍은 후 괴근과 껍질을 분리하였다. 괴근과 분리한 껍질은 냉풍건조 후 분쇄기(Daesung Artlon, DA280-S, Korea)로 분말화하여 시료로 사용하였다.
시료는 Soxhlet 방법으로 탈지하였다. 건조된 시료 g당 5배의 석유 에테르(Daejung, cas 8032-32-4)를 넣어 혼합 후 원심분리기(Hanil, SUPRA 22K, Korea)에 넣고 원심분리(15℃, 393 g-force, 20분) 하였다. 위 과정을 2번 반복하였으며, 유지 제거가 완료된 시료를 트레이에 넓게 펼친 후 후드 내에서 잔량의 석유에테르를 휘발하여 제거하였다. 탈지된 시료 50 g에 아세트산나트륨 완충액(0.1 M, pH 4.5) 100 mL, 1 mg의 α-amylase(Sigma A31765, 1000U)를 첨가한 후 95℃ 진탕항온수조(37L, BS-21, Korea)에서 12시간 가열한 후 실온에서 냉각하였다. 이후, 100 mg의 glucoamylase (Sigma, 9032-08-0, 6000U)를 혼합하여 55℃ 진탕항온수조에서 48시간 동안 가열한 후 실온에서 냉각하였다. 3차 효소처리로 xylanase(Sigma, 31278-89-0, 125U)를 100 mg 첨가한 후 50℃ 진탕항온수조에서 7시간 가열하였다. 시료는 원심분리기로 393(g-force)에서 20분 동안 원심 분리하여 전분이 제거된 상등액에, 1,000 mL의 distilled water(D.W)를 혼합하여 실온에서 2시간 동안 정치하였다. 정치한 용액을 393(g-force)에서 20분간 원심 분리하여 상등액을 수집하였다. 수집된 상등액에 99%(v/v) 에탄올을 3배로 넣어 혼합한 다음 8시간 동안 침전시킨 후 감압농축으로 에탄올을 증발시켜 조추출물을 얻었다. 조추출물은 5m Torr, -40℃ 조건의 동결건조기(PVFD 20RS, Ilshin, Korea)를 이용하여 동결건조 후 -20℃ 냉동고에서 보관하면서 실험에 사용하였다(도 1). 또한 대조군으로 사용한 표준물질은 치커리에서 유래한 프럭토올리고당(Sigma, F8052)를 사용하였다.
2. HPLC-RID에 의한 바나나껍질 올리고당 추출물 및 고구마껍질 올리고당 추출물의 분석
바나나껍질 올리고당 추출물 및 고구마껍질 올리고당 추출물과 동일한 물질이 존재하는지 확인하기 위해 표준품 프럭토올리고당 5종(1-kestose, 1,1-kestotetraose, 1,1,1-kestopentaose, levanbiose, levantriose), 이눌린(inulin) 1종 , 자일로올리고당 4종(xylobiose, xylotetraose, xylopentaose, xylohexaose)을 선정하여 Megazyme (Bray, Ireland)으로부터 구입하여 사용하였고, 시료에 사용한 증류수는 Samchun Pure Chemical Co.(Pyeongtaek, Korea)에서 acetonitrile(HPLC Grade)은 Fisher Scientific Co.(Fairlawn, seoul, Korea)에서 구매하여 사용하였다. 분석기기는 HPLC (Agilent 1260, Palo Alto, CA, USA)를 사용하였으며, 검출기는 RI(Refractive Index) detector(Agilent Technology, Germany)를 사용하였다. 분석용 column은 Carbohydrate(SUPELCOSIL LC-NH2, 25cm x 4.6mm)를 이용하였고, 이동상은 acetonitrile distilled water를 80:20(v:v)의 비율로 조제하였으며, column 온도는 35℃, 시료주입량은 10 μL, 유속은 1 mL/min으로 분석하였다
3. 고속 역류 크로마토그래피(High speed counter current chromatography; HSCCC)를 이용한 kestose의 분리
3.1 프리 컬럼 유도체화
프락토올리고당의 유도체화는 Hartmann et al.의 방법을 참고하며 수행하였다. 아세트산 무수물 (20.4 g)이 첨가된 치커리 유래 프락토올리고당과 바나나껍질 올리고당 추출물(5 g). 고구마껍질 올리고당(5 g)추출물을 피리딘 (50 mL)에 첨가하여 실온에서 보관하였다. 반응 혼합물을 하루동안 교반하여, 용액을 감압 농축한 후 생성물을 얻었으며 후에 추가 정제한 시료를 분석 시료로 사용하였다.
3.2 고속역류 크로마토그래피(HSCCC) 분리 장치
바나나 껍질 및 고구마껍질 총 올리고당 추출물에서 프락토 올리고당을 추출해 내기 위해 150m의 다층 코일과 내경 1.6mm, 총용량 300mL으로 구성된 고속 역류 크로마토그래피 Tauto Biotech TBE-300A, Shanghai, China)를 사용하였다. Preparative 컬럼의 β 값은 외부에서 0.8 - 내부에서 0.5 (β = r/R, 여기서 r은 회전 반경 또는 코일에서 홀더 샤프트까지의 거리, R (R = 8cm)) 범위로 진행하였으며 A Model HX-1050 정류 펌프를 사용하여 용매를 컬럼으로 이동시킨 후 시료를 컬럼에 주입하였다. 스팩트럼은 254 nm 파장을 이용하였고, pH값은 Model 320 pH meter (Thermo Fisher Scientific, Seoul, Korea)를 이용하여 확인하였다. 크로마토그래피 값은 이동용 캠코더를 이용하여 얻었다.
3.3 분할계수 측정
조성물의 선택은 표적 화합물의 분포상수 (KD) 값을 기반으로 진행하였다. KD 값을 결정하기 위한 분석은 Ito 법을 이용하였다. 아세틸화 추출물(1 g)과 치커리 유래 프락토올리고당을 시험관 20 mL에 별도로 용해하였으며, 각각에 5 mL씩 완전히 평평하게 2단계 용매시스템을 추가하였다. 상부와 하부 각각 1 mL씩을 별도로 증발시켜 질소 흐름을 통해 증발시켰다. 잔류물은 메탄올 (1 mL)로 희석하고 분석하여 표적 화합물을 KD를 결정하였다. KD = AU/AL (AU : 상부 페이즈 AL의 피크 면적 : 하부 페이즈)
3.4 샘플 용액 및 2단게 용매 준비
아세틸화된 추출물을 혼합된 2단계 용매 시스템(상부 페이스와 하부 페이스, 1:1, v/v)에 용해 시켜 시료 용액을 얻었다. 각 시료용액을 분취 깔때기에 첨가한 다음 실온에서 반복적으로 강하게 흔들어서 2단계 용매 시스템을 얻었다. 사용 직전에 2단계를 분리하여 상부 페이스를 고정상으로 이용하고, 하부 페이스를 이동상으로 사용하였다.
3.5 분리 절차
분리절차는 Ouyang의 방법을 이용하여 수행하였다. 장치의 회전속도를 800 rpm에서 상부 페이스(고정상)는 20 mL/min의 유속으로 완전히 채워질 때까지 다층 코일 컬럼으로 이동시켰으며, 하부 페이스(이동상)는 2 mL/min의 유속으로 이동시켰다. 유체역학적 평형에 도달한 뒤 컬럼 생성물은 254 nm에서 UV 검출기를 이용하여 지속적으로 모니터링 하였으며, 분획 수집기를 이용하여 3분 간격으로 분획 하였다. 컬럼의 잔류 용매를 밀어내고 상층의 상부 페이스의 잔존율을 측정하였다. 수집된 분획물은 HPLC-ELSD를 이용하여 분석하였으며 분석 후 고순도 분획물은 수집하여 별도로 건조하였다.
3.6 감소반응
정제시킨 아세틸화된 프락토올리고당은 다음의 방법으로 진행되었다. 타겟 화합물을 둥근 바닥 플라스크에 넣고 메탄올(MeOH)과 나트륨 메톡사이드(NaOMe) (2 g)에 녹인 후 상온에서 1시간 동안 교반하였다. 20분 뒤에 Dowex 50WX8 (H + form)으로 반응을 중화시킨 다음 여과하였다. 생성된 용액은 점성이 생길 때까지 감압하여 농축시켰다. Sephadex LH-20 column chromato graphy를 이용하여 메탄올로 분리한 후 타겟 화합물을 흰색의 분말로 얻었다.
4. 고성능 액체 크로마토그래피-증기화 광산란 검출기(HPLC-ELSD)를 이용한 Kestose 확인
HSCCC를 이용하여 분리 정제된 분획물을 최종적으로 프락토올리고당인지 확인하기 위하여 HPLC-ELSD를 사용하여 분석하였다. HPLC 장비는 Agilent 시스템을 이용하였고 (Agilent 1260 TCC, Seoul, South Korea), Agilent 1260 quat 펌프, Agilent 385-ELSD (Evaporative Light Scattering Detector) 및 Agilent 워크 스테이션 (Agilent, Palo Alto, CA, USA) 등을 이용하였다. 분석조건은 Acetonitrile : 물 (75:25 v/v)을 이동상으로 사용하였고 Xamide 100A column (250 x 4.6 mm, id)을 이용하여 25°C에서 1 mL/min 의 유속으로 상을 분리시켰으며 농도는 mg/g으로 표기하였다.
5 정제된 Kestose의 구조분석 및 특성규명
5.1 프로톤 핵자기 공명(1H-NMR)
Kestose의 식별을 위해 다음의 실험을 진행하였다. 600 MHz NMR 분광기 (Bruker Avance I I-600, Ettlingen, Germany)를 이용하여 1H-NMR의 화학적 이동을 보정 하기 위한 표준 용매로 D2O을 사용하였다. 샘플은 30 °C 에서 90° 의 펄스로 3.5 초 동안 분석하였다. 대조군으로 치커리 유래 표준품 Kestose(GF2, F8052-Sigma-Aldrich, South Korea)를 이용하였고 생물학적 자기공명 데이터뱅크를 참고하여 공명 측정을 하였다.
5.2 Two dimension (2D)-Homonuclear (H-H) J-resolved correlation spectrocopy (COSY)
Cozy 분석은 수소와 수소 결합을 좀 더 확실하게 확인하기 위해 2D 스팩트럼을 통해 실험을 진행하였다. 총 1시간 동안 진행하였으며, 기존 스팩트럼 실험은 2000개의 복잡한 데이터 포인트를 사용하였고 각 16개의 스캔에 대해 64개의 실험을 획득하여 기록하였는데 반면, 2D 스팩트럼 실험에서는 1000개의 복잡한 데이터 포인트와 각각 200회의 스캔과 80개의 실험을 사용 하였다. 실험은 각 연속 펄스의 길이를 가우스 방식으로 상승 및 하강하는 것으로 계산되었으며 총 펄스의 길이는 이전 실험에서 했던(66 ms) 방식과 동일하게 사용하였으며 기존의 연구된 기록을 참조해 진행하였다.
6. 바나나껍질 올리고당 추출물 및 고구마껍질 올리고당추출물의 생육증진 효능
6.1 프로바이오틱스의 균주 및 사용배지
바나나껍질 올리고당 추출물 및 고구마껍질 올리고당 추출물의 생육증진 효능을 보기위해 총 7개의 유산균(Lactobacillus rhamnosus KACC11953, Lactobacillus brevis ATCC8787, Lactobacillus plantarum ATCC8787, Pediococcus acidilactici KACC12307, Pediococcus pentosaceus OHF23, Enterococcus faecium KACC11953, Streptococcus thermophilus SCML300)과 1개의 효모(Saccharomyces boulardii KT000032)를 사용하였으며, 실험 전 3회 이상 계대 배양하여 활성화시킨 후 사용하였다. 균주의 생육배지로는 MRS broth(Difco Detroir, MI, USA)배지를 사용하였으며, 37℃에서 12 시간 동안 각 균주를 12 well plate에서 배양하였다.
6.2 프로바이오틱스 생육증진 효능
프로바이오틱스 생육증진 효능을 보기 위해 바나나껍질 올리고당 추출물을 1, 2.5, 5, 7.5, 10 mg/mL 농도로 희석한 후 사용하였으며 고구마껍질 올리고당 추출물은 10, 30, 50 mg/mL의 농도로 희석한 후 사용하였다. 12 well plate에 균주 배양액 1 mL, MRS 배지 1 mL, 각 추출물 용액 1 mL씩 넣었다. 또한 조추출물 처리 실험과 같이 양성대조군으로 프럭토올리고당(Sigma, St, Louis, MO, USA) 수용액(10 mg/mL)을 사용하였고, 음성대조군으로는 MRS 배지 2 mL와 균주 배양액 1 mL를 넣어 사용하였으며, blank로는 멸균 증류수(DW) 3 mL를 넣어 사용하였다. 흡광도 측정을 위해 분광 광도계(SpectraMax i3, Molecular Devices, Busan, South Korea)를 사용하여 600 nm에서의 초기 흡광도 값을 측정한 뒤 24시간 동안 37℃의 배양기에 보관하면서 3시간마다 균 증식도를 흡광도 측정하였다.
7. In vivo 모델에서의 프리바이오틱스 효능 평가
7.1 실험동물 및 실험설계
생후 5주령의 평균체중 30 g ± 2 g인 수컷 ICR mouse를 (주)오리엔트바이오 (Sung-nam, Gyeonggi-do, Korea)에서 구입하였으며, 강원대학교 BT특성화학부(대학)의 동물 사육실에서 5일의 순화 기간을 거친 후 21일 동안 실험을 진행하였고, 동물 사육실 실험조건은 온도 23 ± 1 ℃), 습도 60 ± 10 %로 유지시켰으며, 조명은 오전 7시에 자동 점등하고 오후 7시에 자동 소등하여 12시간 간격으로 조명을 조절하였다. 사료는 (주)삼양유지사료의 마우스용 배합사료 (조단백질 22.1%, 조지방 3.5%, 조섬유 5.0%, 회분 8.0%, 칼슘 0.6%, 인 0.4%)를 사용하였고, 사료와 물을 제한 없이 공급하였다. 강원대학교 동물윤리위원회의 승인(KW-201113-3)을 받아 진행되었고, 실험동물은 군당 10마리씩 4그룹으로 구분하였다. 대조군인 G1 = Control(PBS, Phosphate buffered saline), G2 = PBS + Lactic acid bacteria, 실험군인 G3 = PBS + LAB + PSPPOE, G4 = PBS + LAB + kestose으로 분류하였고 PBS는 300μL씩 각각 투여하였으며, Fig. 5와 같이 실험설계를 하였다. 식이조성은 유산균(P. pentosaceus OHF23) 의 균수를 1×108 CFU로 제조하여 G2, G3, G4 그룹에 7일간 경구 투여 하였고, 그 후 G3, G4 그룹은 14일간 각각 PSPPOE와 kestose(GF2)를 경구 투여 하였다. 사료 섭취량과 체중은 3일 간격으로 측정하였다.
7.2 분변수집 및 DNA 추출
마우스의 장내 미생물 균총 변화를 확인하기 위해여 21일 동안 사육한 마우스를 실험 종료일로부터 12시간을 절식후 ethyl ether마취하였다. 그 후 개복하여 분변을 채취하여 분석하였다. 분변 DNA 추출은 AllPrep® PowerFecal®DNA/RNA Kit (Qiagen, Valencia, CA, USA)를 이용하여 추출하였다. 분변 시료 200 mg 을 kit에서 제공하는 lysis tube에 담은 후 1 M DDT(dithiothreitol) 용액과 kit에서 제공되는 PM1 용액 650 μL를 첨가하여 볼텍싱 후 18,000 × g 로 1분 간 원심분리 하였다. 그리고 상층액은 새로운 1.5 ml 튜브에 옮겨서 IRS 용액 150 μL 첨가하여 볼텍싱 한 후 4℃에서 냉장고에서 5분간 보관한 다음, 13,000 × g에서 1분간 실온에서 원심분리 하였다. 그 후 2 mL tube에 AllPrep DNA MinElute Spin column을 넣고, 상층액 300 μL과 C4 용액 400 μL 첨가한 다음 실온에서 13,000 × g에서 30초간 실온에서 원심분리 하였다. 새로운 2mL tube에 AllPrep DNA MinElute Spin column을 옮긴 후 AW1 buffer 500 μl 를 넣은 다음 1분 동안 3,000 × g에서 원심분리를 하여 빠져나온 액상을 제거하고, AW2 buffer 500 μl를 첨가하여 2분 동안 18,000 × g에서 원심분리를 하였다. 빠져나온 액상은 제거하고 1분 동안 다시 원심분리 하여 column내의 액상을 모두 제거해 주었다. 새로운 1.5 ml tube에 AllPrep DNA MinElute Spin column를 아래에 끼운 상태에서 column membrane에 바로 EB buffer 300 μl를 첨가하였다. 이후 1분 동안 실온에 방치 후 8,000 × g에서 1분 동안 원심분리하여 DNA를 추출하고 NanoDrop 2000 UV-Vis Spectorophotometer (Thermo Fisher Scientific, Massachusetts, USA)를 사용하여 최종 농도를 설정하였다.
7.3 qPCR을 이용한 P. pentosaceus의 정량 분석
마우스의 대조군과 실험군간의 P. pentosaceus OHF 23의 증가량 차이를비교 분석하였다. 우선 Standard curve를 확보하기 위한 DNA는 P. pentosaceus OHF 23을 MRS 선택배지에 배양 후 추출하여 얻었다. Standard curve는 P. pentosaceus OHF 23의 16s rRNA gene을 이용하여 10 ng/μL에서 1 ng/μL로 순차적으로 10배 희석하여 사용하였다(도 6). qPCR 분석은 ABI StepOne™ Real-time PCR system (Applied Biosystems)로 분석하였다. PCR은 95℃(10분), 95℃(15초), 50℃(2분), 60℃(1분)조건으로 45 cycle 동안 반응시켰고, 반응액은 10 μL MeltDoctor™ HRM master mix, 7 μL의 멸균된 3차 증류수, forward primer 0.5 μL, revers primer 0.5 μL, 2 ul의 template DNA (박테리아 genomic DNA 또는 마우스 분변 DNA)로 혼합하여 total volume 20 μL가 되도록 하였다.
이와 같은 방법으로 분변에서 추출한 genomic DNA를 이용하여 real time PCR을 수행하여 각각의 대조군과 실험군에서의 P. pentosaceus의 양을 정량분석 하였다.
7.4 메타지놈 분석을 기반으로 한 장내 미생물 군집 분석
수집된 분변을 Bacterial Genomic DNA Isolation Kit (BioVision, Inc., Milpitas, CA, USA)를 이용하여 제조사의 프로토콜에 따라 분변 샘플의 총 박테리아 DNA를 추출하였다. 추출된 DNA는 메타지놈 분석을 위해 마크로젠(Geumcheon-gu, Seoul, South Korea)에서 Illumina MiSeq (San Diego, CA, USA) platform을 사용하였으며, 추출한 DNA 농도를 10 ng/ul로 희석하여 PCR의 template DNA로 사용하였다. 16S rRNA 유전자의 variable region 3-4를 표적으로 한 341F와 805R universal 프라이머에 바코딩을 위한 어댑터 서열이 연결된 프라이머를 사용하였다(Table 5). PCR 반응은 95℃, 3분간 initial denaturation 후에, 25 cycle 반복수행으로 95℃에서 3분 denaturation, 55℃에서 30초 annealing, 72℃에서 30초 extension 수행한 후 72℃에서 5분간 final extension하는 조건으로 실시하였다. 2차 PCR에서는 1차 PCR 결과물을 template DNA로 사용하였고, 1차 PCR 조건과 같으나 반복 횟수는 8회로 하였다.
메타지놈 시퀸싱 결과는 QIIME 2(version 2019.10) 및 Microbiome Analyst R 프로그램을 이용하였다. Amplicon sequence variant (앰플리콘 시퀸스 변이, ASV) 분석은 알고리즘 DADA2를 사용하여 PCR 및 시퀀싱 과정에서 생성된 error 서열을 제거하였으며, 유전자의 계통학적 분류 과정은 q2-feature-classifier 기반으로 naive Bayes 분류기를 사용하여 문 및 속 수준에서 수행되었다. 시료 간 유사성 기반의 다양성 분석은 MAFFT 프로그램을 이용하여 대표적인 서열의 계통수를 생성하였다.
8. In vivo 모델에서의 항스트레스 효능 평가
8.1 실험동물 및 실험설계
생후 5주령의 평균체중 30 g ± 2 g인 수컷 ICR mouse를 (주)오리엔트바이오 (Sung-nam, Gyeonggi-do, Korea)에서 구입하였으며, 강원대학교 BT특성화학부(대학)의 동물 사육실에서 7일의 순화 기간을 거친 후 22일 동안 실험을 진행하였고, 동물 사육실 실험조건은 온도 23 ± 1 ℃), 습도 60 ± 10 %로 유지시켰다. 사료와 물을 3일간격으로 수동칭량법을 적용하여 공급하였다. 강원대학교 동물윤리위원회의 승인(KW-201113-3)을 받아 진행되었다. 마우스는 2시간동안 고정한 후 전기발 충격에 노출시켜 물리적 스트레스를 유발하였다. 전기 발 충격 스트레스는 0.5mA, 1초, 10초 간격으로 2분 동안 쥐에게 주어졌다. 마우스는 2주 동안 하루에 한 번 동일한 스트레스 요인에 만성적으로 노출되었고 대조군은 스트레스를 받지 않은 상태로 유지되었다.
8.2 십자형 높은 미로(Elvated plus-maze) 테스트
본 발명에서 십자형 높은 미로(EPM)테스트는 불안등의 행동을 평가하였다.[ Savignac et al., 2014.]
8.3 사물 인식(Novel object recognition) 테스트
본 발명에서 검은색 플라스틱 직사각형 상자(40 x 40 x 40 cm)에서 마우스의 사물인식 능력을 평가하기 위해 사물인식(NOR) 테스트를 진행하였다[Park et al., 2015].
9. 메타지놈 분석을 통한 장내 미생물 군집 조성
9.1 Kestose의 장기적 효과
정제된 kestose를 3주동안 마우스에게 투여하였으며 분변샘플을 채취해 Bacterial Genomic DNA Isolation Kit(BioVision, Inc, Milpitas, CA, 미국)을 사용하여 DNA를 확인하였다.
9.2 차세대염기서열분석(NGS)
NGS는 마크로젠(Geuncheon-gu, Seoul, South Korea)에서 진행되었으며, 라이브러리 구축을 하여 추후 실험에 사용하였다.
9.3 NGS 분석
Microbiome Analyst (https://www.microbiomeanalyst.ca/) (https://biit.cs.ut.ee/clustvis/)는 16S rRNA Microbiome Analyse 데이터를 기반으로 한 결과로 사용하였다.
[실시예1] 바나나 껍질 및 고구마 껍질의 올리고당 추출물 제조
바나나껍질 및 2품종의 고구마 껍질을 냉풍건조 후 건조분말 시료를 얻었으며, 이 건조 분말 시료를 이용하여 올리고당 추출물을 얻었다. 바나나껍질 올리고당 추출물은 40%의 수율을 보였으며 고구마 껍질 올리고당 추출물을 22.3-23.5% 수준을 나타내 두 품종이 비슷한 수율을 보였다.
[실시예 2] 바나나껍질 올리고당 추출물 및 고구마 껍질 올리고당 추출물의 올리고당의 확인 및 함량 분석
바나나껍질 올리고당 추출물 및 고구마 껍질 올리고당 추출물의 올리고당을 분석하기 위해 프락토올리고당 표준품 5종, 이눌린 표준품 1종, 자일로올리고당 표준품 4종을 이용하여 추출물의 올리고당을 HPLC-RID로 분석하였다 (도 1).
[실험예 1] 고속역류 크로마토그래피(HSCCC)와 HPLC-ELSD를 통한 Kestose분리 및 정제
Kestose 분리시 HSCCC를 이용한 정제는 프락토올리고당의 Pre-column의 유도체화 후에 진행되었다. HSCCC를 통해 추출물 내 Kestose 추정물질을 분리 및 정제하였다. 수집된 HSCCC의 분획물을 최종적으로 HPLC-ELSD를 통해 확인하였다.
[실험예 2] 정제 Kestose의 특성규명
2-1. 1H-NMR
HSCCC로 분리 정제된 분획물과 1-kestose 1H-NMR 스펙트럼결과를 확인하였다. 본 결과를 통해 올리고당 정제 추출물에서 1-kestose가 적어도 16개의 잔기로 구성되어 있으며 포도당과 과당의 비율이 1-15 정도로 구성되어 있음을 알 수 있다(도 2).
2-2. Two dirnension (2D)-Homonuclear (H-H) J-resolved correlation spectrocopy (COSY)
1H-NMR로 얻어진 결과를 2차원으로 cosy 분석하였다. 본 실험은 F1 차원에서 결합 패턴을 분산시켜 다중성뿐만 아니라 중첩된 신호에 대해서도 결합 상수 및 정확한 화학적 이동을 확인할 수 있도록 한다. 따라서 앞선 실험에서 진행한 1H-NMR실험에서 모든 kestose(GF2) 당 잔기의 H-5 신호 분할패턴은 완전히 식별할 수 없었지만, J-resolved spectrum 방법을 통해서는 정확하게 일치하는 것을 확인할 수 있었다(도 3).
[실험예 3] 분리 정제된 분획물과 Kestose의 생육증진 효능
일반적으로 프락토올리고당은 혈청콜레스테롤의 감소, 마그네슘 및 칼슘 흡수증가, 비타민B 생산, 면역자극 등의 건강상 이점도 있고, 이외에도 프리바이오틱스로서 장내 미생물군에서 비피도박테리아 및 락토바실러스의 성장을 촉진한다고 보고되었다. 8종의 프로바이오틱스 균주에 대한 정제 kestose는 모든 균주에서 생육증진 효과를 나타내었다(도 4).
[실험예 4] In vivo 모델에서의 프리바이오틱스 효능 평가
4-1. 식이섭취량 및 체중변화
개시체중과 종료체중을 비교해본 결과 대조군에서는 체중의 증가가 나타나지 않았으며, 실험군에서는 체중의 증가가 일어났다. 실험에 사용한 마우스는 비만을 유도한 마우스가 아닌 일반 마우스를 대상으로 하였기 때문에 체중증가의 의미는 마우스의 위장 내 스트레스가 억제됨을 유추할 수 있었다.
4-2. 메타지놈 분석을 통한 장내 미생물 군집 조성
본 실험에서 대조군과 실험군으로 분류하여 급여한 마우스의 분변에서 검출된 장내 미생물 분포변화를 확인해보았다. Actinobacteria, Bacteroidetes, Cyanobacteria, Deferribacteres, Firmicutes, Proteobacteria, Tenericutes, Verrucomicrobia가 나타났으며 대조군에 비만과 관련있는 것으로 알려진 Firmicutes의 비율이 매우 높게 나타났다. 건강한 장내에서 많이 발견되는 Bacteroidetes가 차지하는 비율은 매우 낮았다. 반면 실험군에서 Bacteroidetes의 비율은 증가하였으며 Firmicutes의 비율은 감소하였다. 따라서 정제 kestose는 장내 미생물의 균총을 바람직한 방향으로 개선하는 것을 잠재적으로 확인하였다(도 5).
[실험예 5] 정제 Kestose의 항스트레스 효과 평가
5-1. 신체의 스트레스와 관련된 영향
5주 동안 진행된 실험에서 물리적으로 스트레스를 유발한 실험군과 대조군은 체중 및 사료의 섭취량이 감소한 것을 확인하였고, 정제 kestose를 투여한 실험군은 물리적 스트레스를 가한 뒤 2주 후부터 점차적으로 체중 증가 및 사료의 섭취량이 개선되었다(도 6). 또한 정제 ketose를 투여한 실험군에서 불안시 나타나는 혈액 및 뇌관련 반응에서도 효과를 보였다.
5-2. 십자형 높은 미로(Elvated plus-maze) 테스트
스트레스 유도 후 십자형 높은 미로 실험에서 정제 kestose를 투여한 실험군에서 불안 스트레스를 줄여주는 것을 확인하였다(도 7).
5-3. 사물 인식(Novel object recognition) 테스트
스트레스 유도한 실험군에서는 대조군에 비해 분화지수를 감소시켜 장기기억을 유의하게 감소시켰지만 정제 kestose를 투여한 실험군에서는 새로운 사물에 대한 기억 식별지수에 영향을 미치지 않았다(도 8).
[실험예 6] 메타지놈 분석을 통한 장내 미생물 군집 조성
6-1. Kestose의 장기적 효과
정제 kestose를 투여한 실험군은 장내 미생물군 조성에 영향을 주었으며, 스트레스를 받은 마우스 그룹은 문 수준에서 급격한 미생물군 변화를 나타내지만 케스토스-1 처리 마우스 그룹을 기반으로 한 미생물총 조절을 사용하여 역(불안 감소) 스트레스가 관찰되었다. 프리바이오틱스 미생물군은 스트레스를 줄이는데 추가적인 이점을 주는 것을 확인하였다(도 9).
6-2. 차세대염기서열분석(NGS)
생성된 MiSeq 시퀀싱에 기반하여 대조군과 물리적스트레스를 준 실험군에 비하여 정제 Kestose를 투여한 실험군에서 분변 미생물군의 변화가 있었다. 통계적 차이는 알파 다양성에서 보고되어 있으며, 정제 kestose를 투여한 실험군에서 스트레스를 받은 실험군에 비해 장내 프리바이오틱스가 증가함을 확인하였다.

Claims (7)

  1. 프럭토올리고당을 포함하는 조성물.
  2. 제1항에 있어서, 상기 프럭토올리고당은 바나나 껍질 또는 고구마 껍질로부터 추출된 것을 특징으로 하는 조성물.
  3. 제2항에 있어서, 상기 추출시 사용된 용매는 에탄올인 것을 특징으로 하는 조성물.
  4. 제1항에 있어서, 상기 프럭토올리고당은 1-kestose를 유효성분으로 포함하는 것을 특징으로 하는 조성물.
  5. 제1항에 있어서, 상기 조성물은 스트레스의 예방 또는 개선용인 것을 특징으로 하는 조성물.
  6. 제1항 내지 제5항 중 어느 한 항의 조성물을 포함하는 식품 조성물.
  7. 제1항 내지 제5항 중 어느 한 항의 조성물을 포함하는 약학 조성물.
KR1020220028540A 2022-03-07 2022-03-07 바나나 껍질 또는 고구마 껍질로부터 추출된 프럭토올리고당 및 이의 용도 KR20230131539A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220028540A KR20230131539A (ko) 2022-03-07 2022-03-07 바나나 껍질 또는 고구마 껍질로부터 추출된 프럭토올리고당 및 이의 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220028540A KR20230131539A (ko) 2022-03-07 2022-03-07 바나나 껍질 또는 고구마 껍질로부터 추출된 프럭토올리고당 및 이의 용도

Publications (1)

Publication Number Publication Date
KR20230131539A true KR20230131539A (ko) 2023-09-14

Family

ID=88014163

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220028540A KR20230131539A (ko) 2022-03-07 2022-03-07 바나나 껍질 또는 고구마 껍질로부터 추출된 프럭토올리고당 및 이의 용도

Country Status (1)

Country Link
KR (1) KR20230131539A (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110015431A (ko) 2008-06-12 2011-02-15 티엔세 수이케라피나데리예 엔.브이. 프럭토올리고당 조성물, 이것의 제조 방법 및 용도

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110015431A (ko) 2008-06-12 2011-02-15 티엔세 수이케라피나데리예 엔.브이. 프럭토올리고당 조성물, 이것의 제조 방법 및 용도

Similar Documents

Publication Publication Date Title
US11122830B2 (en) Antioxidant producing bacterium and uses thereof
Li et al. Fermentation of blueberry juices using autochthonous lactic acid bacteria isolated from fruit environment: Fermentation characteristics and evolution of phenolic profiles
Duarte et al. Potential prebiotic properties of cashew apple (Anacardium occidentale L.) agro‐industrial byproduct on Lactobacillus species
Di Cagno et al. Bioprocessing technology to exploit organic palm date (Phoenix dactylifera L. cultivar Siwi) fruit as a functional dietary supplement
Filannino et al. Lactic acid fermentation enriches the profile of biogenic fatty acid derivatives of avocado fruit (Persea americana Mill.)
Zhang et al. The immunoenhancement effects of sea buckthorn pulp oil in cyclophosphamide-induced immunosuppressed mice
Wang et al. Bilberry anthocyanin extracts enhance anti-PD-L1 efficiency by modulating gut microbiota
Shikano et al. Effects of Lactobacillus plantarum Uruma-SU4 fermented green loofah on plasma lipid levels and gut microbiome of high-fat diet fed mice
Yang et al. The beneficial effects of polysaccharide obtained from persimmon (Diospyros kaki L.) on the proliferation of Lactobacillus and gut microbiota
Cao et al. Ultrasonic enzyme-assisted extraction of comfrey (Symphytum officinale L.) polysaccharides and their digestion and fermentation behaviors in vitro
Vamanu et al. Antioxidative effects of phenolic compounds of mushroom mycelia in simulated regions of the human colon, in vitro study
Shibayama et al. Effect of rice bran fermented with Saccharomyces cerevisiae and Lactobacillus plantarum on gut microbiome of mice fed high-sucrose diet
KR101834383B1 (ko) 항비만 활성을 갖는 와이셀라 시바리아 WIKIM28(Weissella cibaria WIKIM28) 및 이를 포함하는 조성물
Xie et al. Fecal fermentation and high-fat diet-induced obesity mouse model confirmed exopolysaccharide from Weissella cibaria PFY06 can ameliorate obesity by regulating the gut microbiota
Sauceda et al. Impact of fruit dietary fibers and polyphenols on modulation of the human gut microbiota
Phoem et al. Eleutherine americana as a growth promotor for infant intestinal microbiota
WO2022085743A1 (ja) 発酵組成物
Yun et al. Regulation of wheat germ polysaccharides in the immune response of mice from newborn to adulthood associated with intestinal microbiota
Ruan et al. Staple food and health: a comparative study of physiology and gut microbiota of mice fed with potato and traditional staple foods (corn, wheat and rice)
Tamura et al. Effect of dietary l-arabinose on the intestinal microbiota and metabolism of dietary daidzein in adult mice
KR20230131539A (ko) 바나나 껍질 또는 고구마 껍질로부터 추출된 프럭토올리고당 및 이의 용도
Tamura et al. Effects of a high-γ-polyglutamic acid-containing natto diet on liver lipids and cecal microbiota of adult female mice
KR102461810B1 (ko) 새싹보리 추출물의 장내균총 개선에 따른 장건강 개선용 조성물
Budhisatria et al. In vitro and in vivo prebiotic activities of purified oligosaccharides derived from various local bananas (Musa sp.): Tanduk, Uli, Raja Sereh, and Cavendish
Abdelshafy et al. Morenga leaves for promotion the healthy benefits of oat fermented by probiotic bacteria: the first investigation

Legal Events

Date Code Title Description
E902 Notification of reason for refusal