KR20230112989A - 보강근 제조용 수지 조성물, 이를 이용한 유리섬유 강화 복합체 보강근 제조방법 및 이를 통해 제조된 유리섬유 강화 복합체 보강근 - Google Patents

보강근 제조용 수지 조성물, 이를 이용한 유리섬유 강화 복합체 보강근 제조방법 및 이를 통해 제조된 유리섬유 강화 복합체 보강근 Download PDF

Info

Publication number
KR20230112989A
KR20230112989A KR1020220009299A KR20220009299A KR20230112989A KR 20230112989 A KR20230112989 A KR 20230112989A KR 1020220009299 A KR1020220009299 A KR 1020220009299A KR 20220009299 A KR20220009299 A KR 20220009299A KR 20230112989 A KR20230112989 A KR 20230112989A
Authority
KR
South Korea
Prior art keywords
reinforcing bar
glass fiber
resin composition
rod
reinforced composite
Prior art date
Application number
KR1020220009299A
Other languages
English (en)
Other versions
KR102618709B1 (ko
Inventor
김완수
이현호
Original Assignee
주식회사 맥킨리소재기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 맥킨리소재기술 filed Critical 주식회사 맥킨리소재기술
Priority to KR1020220009299A priority Critical patent/KR102618709B1/ko
Publication of KR20230112989A publication Critical patent/KR20230112989A/ko
Application granted granted Critical
Publication of KR102618709B1 publication Critical patent/KR102618709B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

본 발명은 보강근 제조용 수지 조성물, 이를 이용한 유리섬유 강화 복합체 보강근 제조방법 및 이를 통해 제조된 유리섬유 강화 복합체 보강근에 관한 것으로서, 비닐 에스테르(Vinylester) 수지 90~96중량%와, 메틸 에틸 케톤 퍼옥사이드(Methyl ethyl ketone peroxide), 벤조일 퍼옥사이드(Benzoyl peroxide) 및 T-뷰틸퍼옥시벤조에트(tert-butyl peroxybenzoate)가 1:1:1로 혼합된 액상 경화제 3~8.6중량%와, 조색제 1.0~2.7중량%를 포함하는 것을 특징으로 하는 보강근 제조용 수지 조성물과, 유리섬유 다발을 보강근 제조용 수지 조성물에 함침하는 수지 함침단계 및 상기 보강근 제조용 수지 조성물에 함침된 유리섬유 다발을 몰드를 통과시켜 봉상의 보강근 로드로 성형하는 로드 성형단계 및 성형된 상기 보강근 로드의 외주면에 리브용 섬유를 나선형으로 와인딩하여 리브를 형성하는 리브 형성단계 및 리브가 형성된 상기 보강근 로드를 가열온도가 순차적으로 상승하는 다중 경화부을 통과시켜 가열 경화시키는 경화단계 및 가열 경화된 보강근 로드에 유체를 공급하여 냉각시키는 냉각단계 및 냉각이 완료된 상기 보강근 로드를 설정된 길이로 커팅하는 커팅단계를 포함하는 것을 특징으로 하는 유리섬유 강화 복합체 보강근 제조방법과, 상기 제조방법으로 제조되는 것을 특징으로 하는 유리섬유 강화 복합체 보강근에 관한 것이다.
상기와 같은 본 발명에 의하면, 저온, 중온 및 고온 경화제가 적정비율로 혼합된 액상경화제를 포함하는 수지조성물을 유리섬유 다발에 함침시켜 성형한 보강근 로드가 가열온도가 순차적으로 상승하는 다중 경화부을 통과하면서 3중의 경화반응에 의해 전체적으로 균일하게 경화됨에 따라 기존에 비해 인장강도가 현저하게 향상된 유리섬유 강화 복합체 보강근을 제공할 수 있다.

Description

보강근 제조용 수지 조성물, 이를 이용한 유리섬유 강화 복합체 보강근 제조방법 및 이를 통해 제조된 유리섬유 강화 복합체 보강근 {Reber manufacturing resin composition and glass fiber reinforced composite rebar manufacturing method and glass fiber reinforced composite rebar using the same}
본 발명은 보강근 제조용 수지 조성물, 이를 이용한 유리섬유 강화 복합체 보강근 제조방법 및 이릍 통해 제조된 유리섬유 강화 복합체 보강근에 관한 것으로서, 보다 상세하게는 저온, 중온 및 고온 경화제가 적정비율로 혼합된 액상경화제를 포함하는 수지조성물과, 이러한 수지조성물을 유리섬유 다발에 함침시켜 성형한 보강근 로드를 가열온도가 순차적으로 상승하는 다중 경화부을 통과시켜 유리섬유 강화 복합체 보강근을 제조하는 방법 및 이를 통해 제조되는 유리섬유 강화 복합체 보강근에 관한 것이다.
콘크리트는 압축력에 강한 반면, 인정력에 취약한 바, 인장력을 보강하기 위해 내부에 철근을 삽입하여 양생하는 철근 콘크리트 구조가 일반적으로 사용된다.
그러나 철근 콘리리트 속의 철근은 각종 환경적 요인에 의해 심각한 부식을 겪지 않을 수 없음은 이미 널리 알려진 사실이다.
또한, 제설재나 해수환경 등의 영향으로 인한 심각한 철근부식 문제를 겪고 있는데, 기존 철근 보강근의 경우 에폭시 코팅 등을 하더라도, 염화 콘크리트 환경하에서는 심각한 부식을 피할 수 없다는 것이 문제점으로 부각되고 있다.
이와 같이, 철근이 부식으로 인하여 녹이 발생하게 되면, 철근의 강도가 저하되어 건축물의 내구성이 저하되며, 내구성을 증대시켜 건물수명을 연장하기 위해서는 별도의 녹발생 방지시공을 해야 하므로 비용이 이중으로 소요된다.
또한, 고층건물 흔들림시 탄성력과 인장력의 저하로 건물벽에 균열과 누수가 발생할 뿐만 아니라, 작업시 무거운 중량으로 인하여 설치와 운반 및 보관이 불편한 등의 문제점이 있다.
따라서, 근래에는 근래에는 내식, 내열, 내부식성이 우수할 뿐만 아니라, 매우 큰 강도를 지니고 있어 전 산업분야에 걸쳐서 응용분야가 확대되고 있는 반영구적인 신소재인 섬유강화 복합체(FRP : Fiber Reinforced Plastic) 보강근이 활발히 개발되고 있다.
한편, 상기한 섬유강화 복합체 보강근은 열경화성 수지가 함침된 섬유 다발을 봉상으로 성형하고, 봉상으로 성형된 성형물을 가열 경화 및 냉각시킨 후, 설정된 길이로 커팅하여 완성품이 제조된다.
그런데 상기한 종래 섬유 강화 복합체 보강근은 열경화성 수지를 경화시키는 경화제 성분을 단일 성분으로 사용함에 따라 경화를 위한 가열과정에서 수지 조성물이 단일성분의 경화제에 의해 경화되는 단일의 경화반응을 통해 경화됨에 따라 열경화성 수지가 전체적으로 균일하게 경화되지 않는 문제가 있었다.
이에 따라 제조되는 섬유강화 복합체 보강근의 강도가 제대로 발현되지 않는 문제점이 발생하였으며, 이러한 섬유강화 복합체 보강근의 강도를 향상시키는 방안이 절실하게 요구되고 있는 실정이다.
한국등록특허 제10-0808938호
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 저온, 중온 및 고온 경화제가 적정비율로 혼합된 액상경화제를 포함하는 수지조성물과, 이러한 수지조성물을 유리섬유 다발에 함침시켜 성형한 보강근 로드를 가열온도가 순차적으로 상승하는 다중 경화부을 통과시켜 유리섬유 강화 복합체 보강근을 제조하는 방법 및 이를 통해 제조되는 유리섬유 강화 복합체 보강근을 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 일측면에 따르면, 비닐 에스테르(Vinylester) 수지 90~96중량%와, 메틸 에틸 케톤 퍼옥사이드(Methyl ethyl ketone peroxide), 벤조일 퍼옥사이드(Benzoyl peroxide) 및 T-뷰틸퍼옥시벤조에트(tert-butyl peroxybenzoate)가 1:1:1로 혼합된 액상 경화제 3~8.6중량%와, 조색제 1.0~2.7중량%를 포함하는 것을 특징으로 하는 보강근 제조용 수지 조성물이 제공된다.
여기서, 상기 메틸 에틸 케톤 퍼옥사이드(Methyl ethyl ketone peroxide)는 20~45℃에서 중화반응이 시작되는 저온경화제이고, 상기 벤조일 퍼옥사이드(Benzoyl peroxide)는 60~100℃에서 중화반응이 시작되는 중온경화제이며, 상기 T-뷰틸퍼옥시벤조에트(tert-butyl peroxybenzoate)는 120~200℃에서 중화반응이 시작되는 고온경화제인 것을 특징으로 한다.
그리고, 상기 조색제는 폴리올-디바산 불포화 폴리에스테르(Polyol-dibasic acids unsaturated polyester)인 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 다른 측면에 따르면, 유리섬유 다발을 보강근 제조용 수지 조성물에 함침하는 수지 함침단계 및 상기 보강근 제조용 수지 조성물에 함침된 유리섬유 다발을 몰드를 통과시켜 봉상의 보강근 로드로 성형하는 로드 성형단계 및 성형된 상기 보강근 로드의 외주면에 리브용 섬유를 나선형으로 와인딩하여 리브를 형성하는 리브 형성단계 및 리브가 형성된 상기 보강근 로드를 가열온도가 순차적으로 상승하는 다중 경화부을 통과시켜 가열 경화시키는 경화단계 및 가열 경화된 보강근 로드에 유체를 공급하여 냉각시키는 냉각단계 및 냉각이 완료된 상기 보강근 로드를 설정된 길이로 커팅하는 커팅단계를 포함하는 것을 특징으로 하는 유리섬유 강화 복합체 보강근 제조방법이 제공된다.
상기 목적을 달성하기 위한 본 발명의 또 다른 측면에 따르면, 상기 제조방법으로 제조되는 것을 특징으로 하는 유리섬유 강화 복합체 보강근이 제공된다.
상기와 같은 본 발명에 의하면, 저온, 중온 및 고온 경화제가 적정비율로 혼합된 액상경화제를 포함하는 수지조성물을 유리섬유 다발에 함침시켜 성형한 보강근 로드가 가열온도가 순차적으로 상승하는 다중 경화부을 통과하면서 3중의 경화반응에 의해 전체적으로 균일하게 경화됨에 따라 기존에 비해 인장강도가 현저하게 향상된 유리섬유 강화 복합체 보강근을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 보강근 제조용 수지 조성물을 이용하여 유리섬유 강화 복합체 보강근을 제조하는 공정을 도시한 것.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다. 도면들 중 동일한 구성요소들은 가능한 어느 곳에서든지 동일한 부호들로 나타내고 있음에 유의해야 한다. 또한 발명의 요지를 불필요하게 흐릴 수 있는 공지기능 및 구성에 대한 상세한 설명은 생략한다.
본 발명의 일 실시예에 따른 보강근 제조용 수지 조성물은 기존에 비해 인장강도가 현저하게 향상된 유리섬유 강화 복합체 보강근을 제조하기 위한 용도로 사용되는 것으로서, 비닐 에스테르(Vinylester) 수지 90~96중량%와, 메틸 에틸 케톤 퍼옥사이드(Methyl ethyl ketone peroxide), 벤조일 퍼옥사이드(Benzoyl peroxide) 및 T-뷰틸퍼옥시벤조에이트(tert-butyl peroxybenzoate)가 1:1:1로 혼합된 액상 경화제 3.8~6중량%와, 조색제 1.0~2.7중량%를 포함한다.
비닐 에스테르 수지는 유리섬유 다발에 함침되어 유리섬유 강화 복합체 보강근을 형성하는 주요물질이며, 탄성계수가 45GPa 이상인 것을 특징으로 한다.
메틸 에틸 케톤 퍼옥사이드(Methyl ethyl ketone peroxide)는 20~45℃에서 비닐 에스테르 수지의 경화를 위한 중화반응이 시작되는 저온경화제이다.
벤조일 퍼옥사이드(Benzoyl peroxide)는 60~100℃에서 비닐 에스테르 수지의 경화를 위한 중화반응이 시작되는 중온경화제이다.
T-뷰틸퍼옥시벤조에이트(tert-butyl peroxybenzoate)는 120~200℃에서 비닐 에스테르 수지의 경화를 위한 중화반응이 시작되는 고온경화제이다.
위와 같은 저온경화제, 중온경화제 및 고온경화제의 중화반응이 시작되면 그로부터 2~3분이 경과하면 비닐에스테르 수지의 경화가 완료된다.
조색제는 본 발명에 따른 보강근 제조용 수지 조성물을 통해 제조되는 보강근 로드에 색상을 부여하는 것으로서, 폴리올-디바산 불포화 폴리에스테르(Polyol-dibasic acids unsaturated polyester)가 사용된다.
상기와 같이, 본 발명에 따른 보강근 제조용 수지 조성물은 비닐 에스테르 수지를 경화시키는 액상 경화제로, 20~45℃의 저온에서 중화반응이 시작되는 메틸 에틸 케톤 퍼옥사이드(Methyl ethyl ketone peroxide), 60~100℃의 중온에서 중화반응이 시작되는 벤조일 퍼옥사이드(Benzoyl peroxide) 및 120~200℃의 고온에서 중화반응이 시작되는 T-뷰틸퍼옥시벤조에이트(tert-butyl peroxybenzoate)를 1:1:1로 적절하게 혼합하여 사용함에 따라 가열 경화과정에서 비닐 에스테르 수지가 3차례의 경화과정을 거쳐 경화된다.
이에 따라 제조되는 유리섬유 강화 복합체 보강근의 인장강도가 기존에 비해 현저하게 향상된다.
한편, 본 발명의 일 실시예에 따른 유리섬유 강화 복합체 보강근 제조방법은 도 1에서 보는 바와 같이, 수지 함침단계(S1), 로드 성형단계(S2), 리브 형성단계(S3), 경화단계(S4), 냉각단계(S5) 및 커팅단계(S6)를 포함한다.
수지 함침단계는 유리섬유 다발을 본 발명의 일 실시예에 따른 보강근 제조용 수지 조성물이 수용된 수조를 통과시켜 유리섬유 다발에 보강근 제조용 수지 조성물을 함침시키는 단계이다.(S1)
로드 성형단계는 본 발명에 일 실시예에 따른 보강근 제조용 수지 조성물이 함침된 유리섬유 다발을 몰드를 통과시켜 봉 상의 보강근 로드를 성형하는 단계이다.
여기서 몰드는 내부통로가 출구로 갈수록 좁아지는 나팔관 형상으로 형성되며, 이러한 구조를 통해 상대적으로 통로가 넓은 입구측에서 유리섬유 다발을 손상없이 모을 수 있고, 상대적으로 통로가 좁은 출구측에서는 유리섬유 다발과 함침된 보강근 제조용 수지 조성물을 중앙으로 모아 유리섬유 다발의 중심까지 보강근 제조용 수지 조성물이 충분하고 고르게 충진되도록 할 수 있다.(S2)
리브 형성단계에서는 몰드의 출구를 지나 봉상으로 성형된 보강근 로드의 외주면에 리브용 섬유를 나선형으로 와인딩하여 보강근 로드의 외주면에 리브를 형성하는 단계이다.
이러한 리브는 콘크리트와의 접촉면적을 넓히고, 그 사이에 콘크리트를 충진시켜 양생시킴으로써 유리섬유 강화 복합체 보강근과 콘크리트가 일체로 거동될 수 있도록 하는 역할을 한다.(S3)
경화단계는 외주면에 리브가 형성된 보강근 로드를 가열온도가 순차적으로 상승하는 다중 경화부을 통과시켜 가열 경화시키는 단계이다.
여기서, 다중 경화부은 20~45℃의 저온으로 가열하는 제1경화존, 60~100℃의 중온으로 가열하는 제2경화존, 120~200℃의 고온으로 가열하는 제2경화존이 순차적으로 형성되는 구조로 이루어진다.
이러한 경화단계에서는 유리섬유 다발에 함침된 보강근 제조용 수지 조성물이 저온 경화제인 메틸 에틸 케톤 퍼옥사이드(Methyl ethyl ketone peroxide)에 의해 20~45℃의 제1경화존을 통과하면서 중화반응이 시작되고, 중온 경화제인 벤조일 퍼옥사이드(Benzoyl peroxide)에 의해 60~100℃의 제2경화존을 통과하면서 중화반응이 시작되며, T-뷰틸퍼옥시벤조에이트(tert-butyl peroxybenzoate)에 의해 120~200℃의 제3경화존을 통과하면서 중화반응이 시작된다.
그리고, 제1경화존, 제2경화존 및 제3경화존이 순차적으로 형성된 다중 경화부를 통과한 보강근 제조용 수지 조성물은 2~3분후 경화가 완료된다.
이와 같이, 본 발명은 저온, 중온 및 고온 경화제가 1:1:1의 적정한 비율로 혼합된 액상 경화제에 의해 보강근 제조용 수지 조성물이 다중 경화부를 통과하면서 3중의 경화반응에 의해 전체적으로 균일하게 경화된다.(S4)
냉각단계는 경화부에서 가열 경화된 보강근 로드에 유체를 공급하여 보강근 로드를 냉각시킴으로써, 보강근 로드에 강성이 확보되도록 하는 단계이다.(S6)
커팅단계는 냉각이 완료된 보강근 로드를 설정된 길이로 커팅하여 유리섬유 강화 복합체 보강근을 제조하는 단계이다.(S7)
전술한 바와 같이, 본 발명은 저온, 중온 및 고온 경화제가 적정비율로 혼합된 액상경화제를 포함하는 수지조성물을 유리섬유 다발에 함침시켜 성형한 보강근 로드가 가열온도가 순차적으로 상승하는 다중 경화부을 통과하면서 3중의 경화반응에 의해 전체적으로 균일하게 경화됨에 따라 기존에 비해 인장강도가 현저하게 향상된 유리섬유 강화 복합체 보강근을 제공할 수 있다.
이하에서는 본 발명의 일 실시예에 따른 보강근 제조용 수지 조성물을 제조하고, 이를 이용하여 본 발명의 일 실시예에 따른 제조방법에 따라 유리섬유 강화 복합체 보강근을 제조하였다.
[실시예1]
배합통에 비닐 에스테르 수지 95.7중량%와, 메틸 에틸 케톤 퍼옥사이드(Methyl ethyl ketone peroxide), 벤조일 퍼옥사이드(Benzoyl peroxide) 및 T-뷰틸퍼옥시벤조에트(tert-butyl peroxybenzoate)가 1:1:1로 혼합된 액상 경화제 3.0중량%와, 조색제로 폴리올-디바산 불포화 폴리에스테르(Polyol-dibasic acids unsaturated polyester) 1.3중량%를 넣고 교반기로 혼합하여 보강근 제조용 수지 조성물을 제조하였다.
[실시예2]
배합통에 비닐 에스테르 수지 93.7중량%와, 메틸 에틸 케톤 퍼옥사이드(Methyl ethyl ketone peroxide), 벤조일 퍼옥사이드(Benzoyl peroxide) 및 T-뷰틸퍼옥시벤조에트(tert-butyl peroxybenzoate)가 1:1:1로 혼합된 액상 경화제 4.5중량%와, 조색제로 폴리올-디바산 불포화 폴리에스테르(Polyol-dibasic acids unsaturated polyester) 1.8중량%를 넣고 교반기로 혼합하여 보강근 제조용 수지 조성물을 제조하였다.
[실시예3]
배합통에 비닐 에스테르 수지 90.5중량%와, 메틸 에틸 케톤 퍼옥사이드(Methyl ethyl ketone peroxide), 벤조일 퍼옥사이드(Benzoyl peroxide) 및 T-뷰틸퍼옥시벤조에트(tert-butyl peroxybenzoate)가 1:1:1로 혼합된 액상 경화제 7.5중량%와, 조색제로 폴리올-디바산 불포화 폴리에스테르(Polyol-dibasic acids unsaturated polyester) 2.0중량%를 넣고 교반기로 혼합하여 보강근 제조용 수지 조성물을 제조하였다.
[실시예1-1]
유리섬유 다발을 실시예1에 따라 제조된 보강근 제조용 수지 조성물에 함침시킨 후, 몰드를 통과시켜 공칭지름 D10(9.53mm)을 갖는 봉 상의 보강근 로드를 성형하였다.
성형된 보강근 로드의 외주면에 리브용 섬유를 나선형으로 와인딩하여 로드의 외주면에 6.7mm의 간격을 갖는 리브를 형성하였다.
리브가 형성된 보강근 로드를 가열온도가 순차적으로 상승하는 다중 경화부를 통과시켜 가열 경화시킨 후, 가열 경화된 보강근 로드에 유체를 공급하여 냉각하였다.
냉각이 완료된 보강근 로드를 설정된 길이로 커팅하여 공칭지름 D10(9.53mm) 및 리브 간격 6.7mm를 갖는유리섬유 강화 복합체 보강근을 제조하였다.
[실시예1-2]
유리섬유 다발을 실시예1에 따라 제조된 보강근 제조용 수지 조성물에 함침시킨 후, 몰드를 통과시켜 공칭지름 D13(12.7mm)을 갖는 봉 상의 보강근 로드를 성형하였다.
성형된 보강근 로드의 외주면에 리브용 섬유를 나선형으로 와인딩하여 로드의 외주면에 8.9mm 간격을 갖는 리브를 형성하였다.
리브가 형성된 보강근 로드를 가열온도가 순차적으로 상승하는 경화부를 통과시켜 가열 경화시킨 후, 가열 경화된 보강근 로드에 유체를 공급하여 냉각하였다.
냉각이 완료된 보강근 로드를 설정된 길이로 커팅하여 공칭지름 D13(12.7mm) 및 리브 간격 8.9mm를 갖는 유리섬유강화 복합체 보강근을 제조하였다.
[실시예2-1]
유리섬유 다발을 실시예2에 따라 제조된 보강근 제조용 수지 조성물에 함침시킨 후, 몰드를 통과시켜 공칭지름 D10(9.53mm)을 갖는 봉 상의 보강근 로드를 성형하였다.
성형된 보강근 로드의 외주면에 리브용 섬유를 나선형으로 와인딩하여 로드의 외주면에 6.7mm의 간격을 갖는 리브를 형성하였다.
리브가 형성된 보강근 로드를 가열온도가 순차적으로 상승하는 다중 경화부를 통과시켜 가열 경화시킨 후, 가열 경화된 보강근 로드에 유체를 공급하여 냉각하였다.
냉각이 완료된 보강근 로드를 설정된 길이로 커팅하여 공칭지름 D10(9.53mm) 및 리브 간격 6.7mm를 갖는유리섬유 강화 복합체 보강근을 제조하였다.
[실시예2-2]
유리섬유 다발을 실시예2에 따라 제조된 보강근 제조용 수지 조성물에 함침시킨 후, 몰드를 통과시켜 공칭지름 D13(12.7mm)을 갖는 봉 상의 보강근 로드를 성형하였다.
성형된 보강근 로드의 외주면에 리브용 섬유를 나선형으로 와인딩하여 로드의 외주면에 8.9mm 간격을 갖는 리브를 형성하였다.
리브가 형성된 보강근 로드를 가열온도가 순차적으로 상승하는 경화부를 통과시켜 가열 경화시킨 후, 가열 경화된 보강근 로드에 유체를 공급하여 냉각하였다.
냉각이 완료된 보강근 로드를 설정된 길이로 커팅하여 공칭지름 D13(12.7mm) 및 리브 간격 8.9mm를 갖는 유리섬유강화 복합체 보강근을 제조하였다.
[실시예3-1]
유리섬유 다발을 실시예3에 따라 제조된 보강근 제조용 수지 조성물에 함침시킨 후, 몰드를 통과시켜 공칭지름 D10(9.53mm)을 갖는 봉 상의 보강근 로드를 성형하였다.
성형된 보강근 로드의 외주면에 리브용 섬유를 나선형으로 와인딩하여 로드의 외주면에 6.7mm의 간격을 갖는 리브를 형성하였다.
리브가 형성된 보강근 로드를 가열온도가 순차적으로 상승하는 다중 경화부를 통과시켜 가열 경화시킨 후, 가열 경화된 보강근 로드에 유체를 공급하여 냉각하였다.
냉각이 완료된 보강근 로드를 설정된 길이로 커팅하여 공칭지름 D10(9.53mm) 및 리브 간격 6.7mm를 갖는유리섬유 강화 복합체 보강근을 제조하였다.
[실시예3-2]
유리섬유 다발을 실시예3에 따라 제조된 보강근 제조용 수지 조성물에 함침시킨 후, 몰드를 통과시켜 공칭지름 D13(12.7mm)을 갖는 봉 상의 보강근 로드를 성형하였다.
성형된 보강근 로드의 외주면에 리브용 섬유를 나선형으로 와인딩하여 로드의 외주면에 8.9mm 간격을 갖는 리브를 형성하였다.
리브가 형성된 보강근 로드를 가열온도가 순차적으로 상승하는 경화부를 통과시켜 가열 경화시킨 후, 가열 경화된 보강근 로드에 유체를 공급하여 냉각하였다.
냉각이 완료된 보강근 로드를 설정된 길이로 커팅하여 공칭지름 D13(12.7mm) 및 리브 간격 8.9mm를 갖는 유리섬유강화 복합체 보강근을 제조하였다.
상기와 같이 제조된 실시예1-1 및 실시예1-2, 실시예2-1 및 실시예2-2, 실시예3-1 및 실시예3-2의 유리섬유 강화 복합체 보강근의 인장강도를 ASTM D638 방법을 이용하여 2회 측정하였으며, 측정된 2회의 측정값과 평균값을 하기 표1에 나타내었다.
<표1>
상기 표1에서 보는 바와 같이, 본 발명의 일 실시예에 따른 보강근 제조용 수지 조성물을 이용하여 제조된 유리섬유 강화 복합체 보강근은 각각의 인장강도의 평균값이 1306MPa, 1311MPa, 1302MPa, 1302MPa, 1309MPa, 1303MPa로 통상 1000~1200Ma의 인장강도를 갖는 기존 섬유 강화 복합체 보강근에 비해 인장강도가 1300MPa 이상으로 인장강도가 현저하게 향상됨을 확인할 수 있었다.
비록 본 발명이 상기 바람직한 실시 예들과 관련하여 설명되어졌지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서, 첨부된 특허 청구범위는 본 발명의 요지에 속하는 이러한 수정이나 변형을 포함할 것이다.
부호없음

Claims (5)

  1. 비닐 에스테르(Vinylester) 수지 90~96중량%와, 메틸 에틸 케톤 퍼옥사이드(Methyl ethyl ketone peroxide), 벤조일 퍼옥사이드(Benzoyl peroxide) 및 T-뷰틸퍼옥시벤조에트(tert-butyl peroxybenzoate)가 1:1:1로 혼합된 액상 경화제 3~8.6중량%와, 조색제 1.0~2.7중량%를 포함하는 것을 특징으로 하는 보강근 제조용 수지 조성물.
  2. 제1항에 있어서,
    상기 메틸 에틸 케톤 퍼옥사이드(Methyl ethyl ketone peroxide)는 20~45℃에서 중화반응이 시작되는 저온경화제이고, 상기 벤조일 퍼옥사이드(Benzoyl peroxide)는 60~100℃에서 중화반응이 시작되는 중온경화제이며, 상기 T-뷰틸퍼옥시벤조에트(tert-butyl peroxybenzoate)는 120~200℃에서 중화반응이 시작되는 고온경화제인 것을 특징으로 하는 보강근 제조용 수지 조성물.
  3. 제1항에 있어서,
    상기 조색제는 폴리올-디바산 불포화 폴리에스테르(Polyol-dibasic acids unsaturated polyester)인 것을 특징으로 하는 보강근 제조용 수지 조성물.
  4. 유리섬유 다발을 제1항 기재의 보강근 제조용 수지 조성물에 함침하는 수지 함침단계와;
    상기 보강근 제조용 수지 조성물에 함침된 유리섬유 다발을 몰드를 통과시켜 봉상의 보강근 로드로 성형하는 로드 성형단계와;
    성형된 상기 보강근 로드의 외주면에 리브용 섬유를 나선형으로 와인딩하여 리브를 형성하는 리브 형성단계와;
    리브가 형성된 상기 보강근 로드를 가열온도가 순차적으로 상승하는 다중 경화부을 통과시켜 가열 경화시키는 경화단계와;
    가열 경화된 보강근 로드에 유체를 공급하여 냉각시키는 냉각단계와;
    냉각이 완료된 상기 보강근 로드를 설정된 길이로 커팅하는 커팅단계를 포함하는 것을 특징으로 하는 유리섬유 강화 복합체 보강근 제조방법.
  5. 제4항의 제조방법으로 제조되는 것을 특징으로 하는 유리섬유 강화 복합체 보강근.
KR1020220009299A 2022-01-21 2022-01-21 유리섬유 강화 복합체 보강근 제조방법 및 이를 통해 제조된 유리섬유 강화 복합체 보강근 KR102618709B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220009299A KR102618709B1 (ko) 2022-01-21 2022-01-21 유리섬유 강화 복합체 보강근 제조방법 및 이를 통해 제조된 유리섬유 강화 복합체 보강근

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220009299A KR102618709B1 (ko) 2022-01-21 2022-01-21 유리섬유 강화 복합체 보강근 제조방법 및 이를 통해 제조된 유리섬유 강화 복합체 보강근

Publications (2)

Publication Number Publication Date
KR20230112989A true KR20230112989A (ko) 2023-07-28
KR102618709B1 KR102618709B1 (ko) 2023-12-28

Family

ID=87427395

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220009299A KR102618709B1 (ko) 2022-01-21 2022-01-21 유리섬유 강화 복합체 보강근 제조방법 및 이를 통해 제조된 유리섬유 강화 복합체 보강근

Country Status (1)

Country Link
KR (1) KR102618709B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100808938B1 (ko) 2006-06-09 2008-03-03 주식회사 스틸코리아 콘크리트용 섬유강화 복합체 보강근
KR20110065728A (ko) * 2009-12-10 2011-06-16 주식회사 한국화이어텍 난연 채광판 조성물 및 이를 사용하여 제조한 난연 채광판
KR101043809B1 (ko) * 2010-09-10 2011-06-22 동원건설주식회사 섬유강화 폴리머 보강재와 이의 제조 방법 및 이를 이용한 콘크리트 구조물의 보수보강 공법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100808938B1 (ko) 2006-06-09 2008-03-03 주식회사 스틸코리아 콘크리트용 섬유강화 복합체 보강근
KR20110065728A (ko) * 2009-12-10 2011-06-16 주식회사 한국화이어텍 난연 채광판 조성물 및 이를 사용하여 제조한 난연 채광판
KR101043809B1 (ko) * 2010-09-10 2011-06-22 동원건설주식회사 섬유강화 폴리머 보강재와 이의 제조 방법 및 이를 이용한 콘크리트 구조물의 보수보강 공법

Also Published As

Publication number Publication date
KR102618709B1 (ko) 2023-12-28

Similar Documents

Publication Publication Date Title
US5763042A (en) Reinforcing structural rebar and method of making the same
US9316244B2 (en) Fiber reinforced plastic bolt and method for producing the same
US6316074B1 (en) Reinforced composite product and apparatus and method for producing same
US4620401A (en) Structural rod for reinforcing concrete material
RU2405091C1 (ru) Композитная арматура &#34;астрофлекс&#34; (варианты)
JP4105754B1 (ja) 補強硬化体およびその製造方法
US6048598A (en) Composite reinforcing member
GB2081638A (en) Making segmented pultrusions
CN106243631A (zh) 一种拉挤成型的玄武岩纤维增强热固性树脂的复合材料及其制备方法
KR101043809B1 (ko) 섬유강화 폴리머 보강재와 이의 제조 방법 및 이를 이용한 콘크리트 구조물의 보수보강 공법
KR20230112989A (ko) 보강근 제조용 수지 조성물, 이를 이용한 유리섬유 강화 복합체 보강근 제조방법 및 이를 통해 제조된 유리섬유 강화 복합체 보강근
CN113039332A (zh) 复合钢筋
KR100605127B1 (ko) 콘크리트 보강용 에프알피봉 및 그 제조방법
JPS6359981B2 (ko)
JP3098113B2 (ja) 耐食性繊維強化樹脂管
KR200209551Y1 (ko) 섬유강화플라스틱 파이프
JP2005144896A (ja) 成形体及びその製造方法
JP4262358B2 (ja) 炭素繊維強化プラスチック複合材
JPH0473501B2 (ko)
JP2022126885A (ja) コンクリート補強用繊維強化複合材料、コンクリート構造物
Izzuddin et al. Effect of Flexural Static Load on the strength of GFRP gratings
CN116394548A (zh) 螺纹frp筋及其制备方法、应用
KR200241764Y1 (ko) 보수보강용 거푸집 패널
JP2001011199A (ja) 繊維強化樹脂製閉形補強材およびその製造方法
CN116290574A (zh) 高模量混杂纤维增强树脂筋及其制备方法、应用

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right