KR20230107152A - 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 - Google Patents
주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 Download PDFInfo
- Publication number
- KR20230107152A KR20230107152A KR1020230082374A KR20230082374A KR20230107152A KR 20230107152 A KR20230107152 A KR 20230107152A KR 1020230082374 A KR1020230082374 A KR 1020230082374A KR 20230082374 A KR20230082374 A KR 20230082374A KR 20230107152 A KR20230107152 A KR 20230107152A
- Authority
- KR
- South Korea
- Prior art keywords
- block
- intra
- prediction
- mode
- current block
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 claims abstract description 12
- 230000001131 transforming effect Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 abstract description 7
- 230000006835 compression Effects 0.000 abstract description 7
- 230000009466 transformation Effects 0.000 description 19
- 238000013139 quantization Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 6
- 238000005192 partition Methods 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000003796 beauty Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
- H04N19/159—Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/593—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/11—Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/146—Data rate or code amount at the encoder output
- H04N19/152—Data rate or code amount at the encoder output by measuring the fullness of the transmission buffer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/189—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
- H04N19/196—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
- H04N19/197—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters including determination of the initial value of an encoding parameter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/547—Motion estimation performed in a transform domain
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/184—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
본 발명은 방향적 인트라 예측에 있어서 압축 효율을 향상시키는 방법 및 장치에 관한 것이다. 인트라 모드 정보를 기록할 필요가 없는 비디오 인코딩 장치는, 현재 블록에 대하여 이미 복원된 적어도 하나의 주변 블록이 갖는 방향성을 기초로 복수의 인트라 모드 중에서 하나의 모드를 선택하는 모드 선택부와, 상기 선택된 모드가 갖는 방향성에 따라 상기 적어도 하나의 주변 블록으로부터 상기 현재 블록에 대한 예측 블록을 얻고, 상기 현재 블록과 상기 예측 블록을 차감함으로써 잔차 블록을 얻는 인트라 예측부와, 상기 얻어진 잔차 블록을 부호화하는 수단으로 이루어진다.
Description
본 발명은 비디오 압축 방법에 관한 것으로, 보다 상세하게는 방향적 인트라 예측에 있어서 압축 효율을 향상시키는 방법 및 장치에 관한 것이다.
인터넷을 포함한 정보통신 기술이 발달함에 따라 문자, 음성뿐만 아니라 화상통신이 증가하고 있다. 기존의 문자 위주의 통신 방식으로는 소비자의 다양한 욕구를 충족시키기에는 부족하며, 이에 따라 문자, 영상, 음악 등 다양한 형태의 정보를 수용할 수 있는 멀티미디어 서비스가 증가하고 있다. 멀티미디어 데이터는 그 양이 방대하여 대용량의 저장매체를 필요로 하며 전송시에 넓은 대역폭을 필요로 한다. 따라서 문자, 영상, 오디오를 포함한 멀티미디어 데이터를 전송하기 위해서는 압축코딩기법을 사용하는 것이 필수적이다.
데이터를 압축하는 기본적인 원리는 데이터의 중복(redundancy) 요소를 제거하는 과정이다. 이미지에서 동일한 색이나 객체(object)가 반복되는 것과 같은 공간적 중복(spatial redundancy)이나, 동영상 프레임에서 인접 프레임이 거의 변화가 없는 경우나 오디오에서 같은 음이 계속 반복되는 것과 같은 시간적 중복(temporal redundancy), 또는 인간의 시각 및 지각 능력이 높은 주파수에 둔감한 것을 고려한 심리시각 중복을 제거함으로써 데이터를 압축할 수 있다.
이러한 동영상 압축 방법으로서, 최근에 MPEG-4(Moving Picture Experts Group-4)에 비해 압축 효율을 한층 향상시킨 H.264 내지 AVC(Advanced Video Coding)에 대한 관심이 높아지고 있다. 압축 효율을 향상시키기 위한 스킴(scheme)의 하나로서, H.264는 한 프레임 내의 공간적인 유사성을 제거하기 위해 방향적 인트라 예측(directional intra-prediction)(이하, 단순히 인트라 예측이라고 함)을 사용한다.
인트라 예측은 하나의 서브 블록(sub-block)에 대해 상방향, 좌방향의 인접 화소들(neighboring pixels)을 이용하여 정해진 방향으로 복사함으로써 현재 서브 블록의 값들을 예측하고, 그 차분만을 부호화하는 방법이다. 이에 비하여, 인터 예측(Inter-prediction) 또는 시간적 예측(temporal prediction)은 도 1에 도시된 바와 같이, 시간적으로 다른 위치에 있는 프레임(20)의 영역(40)을 참조하여 예측하는 방식이다. 이와 같은 인트라 예측은 인터 예측(inter-prediction)과 상보적인 관계에 있다. 즉, 코딩할 영상을 대상으로 하여 이 두 가지 예측 중에서 유리한 예측 방법이 선택적으로 사용된다.
기존의 H.264 표준에 따른 인트라 예측 기법에 있어서, 현재 블록(current block)에 대한 예측 블록(prediction block)은 앞선 코딩 순서를 갖는 다른 블록을 기반으로 생성된다. 그리고, 상기 현재 블록과 상기 예측 블록을 뺀 값이 코딩된다. 휘도 성분(luminance component)에 대하여, 예측 블록은 각각의 4×4 블록 또는 16×16 매크로블록 단위로 생성된다. 각각의 4×4 블록에 대한 선택 가능한 예측 모드는 9가지가 존재하며, 각각의 16×16 블록에 대해서는 4가지가 존재한다. H.264에 따른 비디오 인코더는 각각의 블록에 대하여, 상기 예측 모드들 중에서 현재 블록과 예측 블록과의 차이가 최소가 되는 예측 모드를 선택한다.
상기 4×4 블록에 대한 예측 모드로서, H.264에서는 도 2에서 도시하는 바와 같이 총 8개의 방향성을 갖는 모드(0, 1, 3 내지 8)와, 인접 8개의 화소의 평균 값을 사용하는 DC 모드(2)를 포함한 9가지 예측 모드를 사용한다.
도 3은 상기 9가지 예측 모드를 설명하기 위한 라벨링의 예를 나타낸 것이다. 이 경우, 미리 디코딩 되는 샘플들(A 내지 M)을 이용하여 현재 블록에 대한 예측 블록(a 내지 p를 포함하는 영역)을 생성한다. 만약, 여기서 E, F, G, H가 미리 디코딩 될 수 없는 경우라면 그들의 위치에 D를 복사함으로써 E, F, G, H를 가상으로 생성할 수 있다.
도 4를 참조하여 9가지 예측 모드에 관하여 자세히 살펴 보면, 모드 0인 경우에는 예측 블록의 화소들은 상위 샘플들(upper samples; A, B, C, D)을 이용하여 수직방향으로 외삽추정(extrapolation)되고, 모드 1인 경우에는 좌측 샘플들(left samples; I, J, K, L)을 이용하여 수평 방향으로 외삽추정된다. 또한, 모드 2인 경우에는 예측 블록의 화소들은 상위 샘플들(A, B, C, D) 및 좌측 샘플들(I, J, K, L)의 평균으로 동일하게 대치된다.
한편, 모드 3인 경우에는 예측 블록의 화소들은 좌하(lower-left) 및 우상(upper-right) 사이에서 45°각도로 내삽추정(interpolation)되고, 모드 4인 경우에는 우하(lower-right) 방향으로 45°각도로 외삽추정된다. 또한, 모드 5인 경우에는 예측 블록의 화소들은 수직에서 오른쪽으로 약 26.6°각도(너비/높이 = 1/2)로 외삽추정된다.
한편, 모드 6인 경우에는 예측 블록의 화소들은 수평에서 약 26.6°아래쪽 방향으로 외삽추정되고, 모드 7인 경우에는 수직에서 좌측으로 약 26.6°방향으로 외삽추정된다. 마지막으로 모드 8인 경우에는 예측 블록의 화소들은 수평에서 약 26.6 °위쪽 방향으로 내삽추정된다.
도 4의 화살표들은 각 모드에서 예측 방향을 나타낸다. 모드 3 내지 모드 8에서 예측 블록의 샘플들은 미리 디코딩 되는 참조 샘플들 A 내지 M의 가중 평균으로부터 생성될 수 있다. 예를 들어, 모드 4의 경우, 예측 블록의 우상단(upper righ에 위치한 샘플(d)은 다음의 수학식 1과 같이 추정될 수 있다. 여기서, round() 함수는 정수 자리로 반올림하는 함수이다.
한편, 휘도 성분에 대한 16×16 예측 모델에는 0, 1, 2, 3의 네 가지 모드가 있다. 모드 0의 경우, 예측 블록의 화소들은 상위 샘플들로부터 외삽추정되고, 모드 1의 경우에는 좌측 샘플들로부터 외삽추정된다. 그리고, 모드 2의 경우에는, 예측 블록의 화소들은 상위 샘플들 및 좌측 샘플들의 평균으로 계산된다. 마지막으로, 모드 3의 경우에는, 상위 샘플들 및 좌측 샘플들에 맞는 선형 "plane" 함수를 이용한다. 이 모드는 휘도가 부드럽게 변하는 영역에 보다 적합하다.
이와 같이, H.264 표준에 따른 비디오 인코더는, 8개의 방향성을 갖는 모드(이하, 방향성 모드라고 함)와 1개의 DC 모드를 포함하여 총 9개의 모드를 통한 인트라 예측을 수행하며, 이와 같이 구한 9개의 모드 중 하나를 나타내는 인트라 모드 정보를 비디오 디코더 측에 전송한다. 비디오 디코더는 상기 인트라 모드 정보에 기초하여 비디오 인코더에서와 동일한 방식으로 현재 블록에 대한 예측 블록을 구하고, 그 예측 블록으로부터 현재 블록을 복원하게 된다.
그런데, 이와 같은 인트라 모드 정보는 4x4 블록마다 하나씩 부여되기 때문에, 코딩되는 비트스트림을 크기를 증가시키는 오버헤드로서 작용할 수 있다. 이는 16개의 화소마다 하나의 인트라 모드 정보가 필요하다는 것을 의미하므로 잔차(residual)를 인코딩한 결과에 비하여 결코 작은 양이라고 볼 수가 없다. 따라서, 인트라 예측 자체는 그대로 이용하면서도 인트라 모드 정보를 비디오 디코더에 제공하지 않음으로써 오버헤드를 감소시킬 수 있는 방법을 고안할 필요가 있는 것이다. 물론, 이를 위해서는, 비디오 인코더에서 비용 함수(cost function)를 이용하여 현재 블록에 대한 최적의 인트라 모드를 직접 계산하는 방식이 아니라, 비디오 인코더와 비디오 디코더에서 동일하게 예측이 가능한 새로운 방식을 개발하여야 할 것이다.
본 발명은 상기한 필요성을 고려하여 창안된 것으로, 비디오 코딩에서 인트라 예측의 효율을 높위기 위한 비디오 인코딩 방법 및 비디오 인코딩 장치, 비디오 디코딩 방법 및 비디오 디코딩 장치를 제공하는 것을 목적으로 한다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 달성하기 위한 본 발명의 일 실시예에 따른 인트라 모드 정보를 기록할 필요가 없는 비디오 인코딩 장치는, 현재 블록에 대하여 이미 복원된 적어도 하나의 주변 블록이 갖는 방향성을 기초로 복수의 인트라 모드 중에서 하나의 모드를 선택하는 모드 선택부; 상기 선택된 모드가 갖는 방향성에 따라 상기 적어도 하나의 주변 블록으로부터 상기 현재 블록에 대한 예측 블록을 얻고, 상기 현재 블록과 상기 예측 블록을 차감함으로써 잔차 블록을 얻는 인트라 예측부; 및 상기 얻어진 잔차 블록을 부호화하는 수단을 포함한다.
상기 기술적 과제를 달성하기 위한 본 발명의 다른 실시예에 따른 인트라 모드 정보를 수신할 필요가 없는 비디오 디코딩 장치는, 입력된 비트스트림으로부터 현재 블록에 대한 잔차 신호를 복원하는 수단; 상기 현재 블록에 대하여 이미 복원된 적어도 하나의 주변 블록이 갖는 방향성을 기초로 복수의 인트라 모드 중에서 하나의 모드를 선택하는 모드 선택부; 및 상기 선택된 모드가 갖는 방향성에 따라 상기 적어도 하나의 주변 블록으로부터 상기 현재 블록에 대한 예측 블록을 얻고, 상기 현재 블록에 관한 잔차 신호와 상기 예측 블록을 가산함으로써 상기 현재 블록을 복원하는 인트라 복원부를 포함한다.
상기 기술적 과제를 달성하기 위한 본 발명의 또 다른 실시예에 따른 비디오 디코딩 방법은 입력된 비트스트림으로부터 현재 블록에 대한 잔차 신호를 복원하는 단계와, 복수의 인트라 모드 중에서 하나의 모드를 선택하는 단계와, 상기 선택된 모드가 갖는 방향성에 따라 인트라 예측을 수행하여 상기 현재 블록을 복원하는 단계를 포함한다. 상기 복수의 인트라 모드는 8x8 블록의 경우 34개 모드를 사용할 수 있다. 상기 34개의 모드는 상기 현재 블록내 소정의 픽셀을 기준으로 수평 방향으로 dx, 수직방향으로 dy-여기서 dx 및 dy는 자연수임-의 기울기를 가지는 임의의 방향으로서 최대 34개의 방향을 가질 수 있다. 상기 복수의 인트라 모드는 블록 사이즈에 따라 서로 다른 개수의 인트라 모드를 사용할 수 있다. 상기 복수의 인트라 모드는 4x4 블록에 대해서는 9가지 인트라 모드, 8x8 블록에 대해서는 9가지 인트라 모드, 16x16 블록에 대해서는 34가지 인트라 모드, 32x32 블록에 대해서는 34가지 인트라 모드, 64x64 블록에 대해서는 5가지 인트라 모드, 및 128x128 블록에 대해서는 5가지 인트라 모드 중 적어도 하나를 사용할 수 있다. 상기 복수의 인트라 모드 중에서 하나의 모드를 선택하는 단계는 상기 현재 블록에 대하여 이미 복원된 적어도 하나의 주변 블록이 갖는 방향성을 기초로 복수의 인트라 모드 중에서 하나의 모드를 선택하는 단계를 포함할 수 있다. 상기 선택된 모드가 갖는 방향성에 따라 인트라 예측을 수행하여 상기 현재 블록을 복원하는 단계는 상기 선택된 모드가 갖는 방향성에 따라 상기 적어도 하나의 주변 블록으로부터 상기 현재 블록에 대한 예측 블록을 얻는 단계와, 상기 현재 블록에 관한 잔차 신호와 상기 예측 블록을 가산함으로써 상기 현재 블록을 복원하는 단계를 포함할 수 있다. 상기 적어도 하나의 주변 블록은 상기 현재 블록에 대하여 상측 블록, 좌측 블록, 좌상측 블록 및 우상측 블록 중에서 적어도 하나의 블록을 포함할 수 있다.
본 발명에 따르면 기존의 H.264 표준과 비교하여, 인트라 예측 코딩을 그대로 사용하면서도 인트라 모드 정보를 코딩하지 않기 때문에 인코더에서 디코더로 전송되는 비트스트림의 오버헤드를 크게 감소시킬 수 있다.
따라서, 코딩된 동일한 비트스트림의 크기를 기준으로 할 때, 비디오 디코더 단에서 복원되는 영상에 대하여 보다 높은 화질을 제공할 수가 있다.
도 1은 인트라 예측과 인터 예측을 비교하여 보여주는 도면.
도 2는 종래의 인트라 예측 모드의 방향성을 나타내는 도면.
도 3는 도 2의 인트라 예측 모드를 설명하기 위한 라벨링의 예를 나타낸 도면.
도 4은 도 2의 인트라 예측 모드의 각각을 보다 자세히 나타낸 도면.
도 5는 본 발명의 일 실시예에 따른 비디오 인코더의 구성을 도시한 블록도.
도 6은 본 발명의 일 실시예에 따른 비디오 디코더의 구성을 도시한 블록도.
도 7a 내지 7h는 본 발명의 인트라 예측의 예측 블록을 생성하는 구체적인 제1 실시예를 보여주는 도면들.
도 8은 본 발명의 인트라 예측의 예측 블록을 생성하는 구체적인 제2 실시예를 보여주는 도면들.
도 9는 본 발명의 일 실시예에 따른 비디오 인코더에서 생성되는 비트스트림의 구조를 도시한 도면.
도 2는 종래의 인트라 예측 모드의 방향성을 나타내는 도면.
도 3는 도 2의 인트라 예측 모드를 설명하기 위한 라벨링의 예를 나타낸 도면.
도 4은 도 2의 인트라 예측 모드의 각각을 보다 자세히 나타낸 도면.
도 5는 본 발명의 일 실시예에 따른 비디오 인코더의 구성을 도시한 블록도.
도 6은 본 발명의 일 실시예에 따른 비디오 디코더의 구성을 도시한 블록도.
도 7a 내지 7h는 본 발명의 인트라 예측의 예측 블록을 생성하는 구체적인 제1 실시예를 보여주는 도면들.
도 8은 본 발명의 인트라 예측의 예측 블록을 생성하는 구체적인 제2 실시예를 보여주는 도면들.
도 9는 본 발명의 일 실시예에 따른 비디오 인코더에서 생성되는 비트스트림의 구조를 도시한 도면.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
인트라 예측 결과 부호화 되어야 할 데이터는 두 가지가 있다. 하나는 주변 블록(neighboring block)으로부터 예측된 블록과 현재 블록의 차분에 의하여 생성되는 '잔차 블록(residual block)'의 텍스쳐 데이터이고, 다른 하나는 각 블록 별로 적용된 인트라 모드 정보이다. 본 발명에서 제시하고자 하는 인트라 예측 방법은 상기 인트라 모드 정보 없이도 인트라 예측을 수행하는 기술을 제공하고자 한다. 본 발명에서 "블록"은 매크로블록, 또는 그보다 작은 크기의 서브 블록(8×8, 또는 4×4등)을 포괄하는 개념으로 사용될 것이다.
도 5는 본 발명의 일 실시예에 따른 비디오 인코더(200)의 구성을 도시한 블록도이다.
비디오 인코더(200)는 블록 분할부(205), 모드 선택부(210), 인트라 예측부(215), 공간적 변환부(220), 양자화부(230), 엔트로피 부호화부(240) 및 폐루프 디코더(250)를 포함하여 구성될 수 있다.
블록 분할부(block divider; 205)는 입력 영상을 소정의 크기의 블록으로 분할한다. 상기 블록의 크기는 입력 영상이 색차(chrominance) 신호인지 휘도(luminance) 신호인지 또는 다른 조건에 따라 4x4, 8x8 또는 16x16 등이 될 수 있다. 이하, 본 발명에서는 코딩하고자 하는 현재 블록을 4x4 크기의 블록으로 가정하고, 총 9개의 인트라 모드(모드 0 내지 8)를 갖는 것으로 하여 설명하기로 한다. 또한, 분할 되는 블록의 모양도 4x4, 8x8 또는 16x16 등의 정사각형의 대칭적 파티션으로 분할 될 수도 있고, 4x16, 12x16, 24x32, 8x32, 16x64, 48x64등의 직사각형, 'ㄱ'자 모양, 삼각형 모양등과 같은 다양한 기하학적 모양을 가지는 비대칭적 파티션으로 분할될 수도 있다.
본 발명의 일실시예 따른 모드 선택부(210)는 이미 복원되어 있는 현재 블록의 주변 블록(neighboring block)의 "방향성"을 이용하여 복수의 인트라 모드 중에서 현재 블록에 적합한 모드를 선택한다. 이와 같은 모드의 선택은 종래의 H.264에서와 같이 율-왜곡 비용(rate-distortion cost)에 기초하여 현재 블록에 대하여 각각의 모드에 대한 비용(cost)을 계산하고, 이러한 비용을 최소로 하는 모드를 선택하는 방식과 상이하다.
즉, 비디오 인코더에서와는 달리 비디오 디코더에서는 복원하고자 하는 현재 블록에 관한 정보는 직접 이용할 수 없기 때문에, 비디오 인코더와 비디오 디코더 간에 공통적으로 이용할 수 있는 정보가 사용되어야 한다. 이는 본 발명의 일실시예에서는 종래의 H.264에서와는 달리 인트라 모드 정보를 코딩하지 않기 때문이다. 즉, 본 발명의 일실시예에서는 종래의 H.264에서와는 달리 인코더에서 인트라 모드 정보를 디코더로 전송하지 않고 디코더에서 현재 블록에 대해 이미 복원된 주변 블록이 가진 방향성을 기초로 비용함수가 최소가 되는 최적의 인트라 모드를 구하여 인트라 예측을 수행할 수 있다. 또는, 본 발명의 다른 실시예에서는 인코더에서 현재 블록에 대해 이미 복원된 주변 블록이 가진 방향성을 기초로 비용함수가 최소가 되는 최적의 인트라 모드를 구하여 상기 구한 인트라 모드 정보를 디코더로 전송할 수도 있다.
구체적으로, 본 발명의 일실시예에서는 이미 복원되어 있는 적어도 하나의 주변 블록의 방향성을 기초로 하여 현재 블록의 인트라 모드를 선택하는 방식을 채용한다. 여기서 주변 블록의 방향성이라고 함은, 예를 들어, H.264에서와 같이 9개의 방향 중에서, 주변 블록에서 추정된 최적의 방향(H.264와 달리 현재 블록의 비용을 직접 계산하는 방식이 아니라)을 의미할 수 있다. 즉, 본 발명의 일실시예에 따른 인트라 예측은 이미 복원된 주변 블록의 방향성을 기초로 하여 현재 블록의 인트라 모드를 선택하지만, 기존의 H.264에서는 본 발명과 같이 이미 복원된 주변 블록의 방향성을 기초로 하여 현재 블록의 인트라 모드를 선택하는 방식이 아니라 현재 블록에 대해 9가지 인트라 모드를 통한 인트라 예측을 수행하여 최소 비용을 가지는 인트라 모드를 선택하는 방식이라는 점에서 차이가 있다.
주변 블록들에 관한 영상은 비디오 인코더뿐만 아니라 비디오 디코더에서도 공통적으로 사용할 수 있는 정보이다. 다만, 비디오 디코더와의 완전한 일치를 위해서는 상기 주변 블록은 원래 입력 영상에서 얻는 것이 아니라, 폐루프 디코딩, 즉 인코딩 후 디코딩하여 복원된 영상에서 얻는 것이 바람직하다.
폐루프 디코더(250)는 이와 같은 주변 블록에 관하여 복원된 영상을 모드 선택부(210)에 제공하는 역할을 수행한다. 폐루프 디코더(250)는 양자화부(230)에서 양자화된 결과를 다시 역순으로 역 양자화, 역 공간적 변환을 수행하고, 역 공간적 변환된 결과에 원래의 코딩 방식(인터 코딩, 인트라 코딩 등)의 역의 방식으로 복원된 영상을 얻게 된다. 주의할 점은, 현재 블록이 인트라 코딩으로 예측된다고 해서, 그 주변 블록들이 모두 인트라 코딩된 후 복원된 영상일 필요는 없다는 것이다. 상기 주변 블록은 인터 코딩, 인트라 코딩 또는 다른 코딩 방식으로 인코딩된 후 복원된 영상으로부터 얻어져도 무방하다.
모드 선택부(210)가 주변 블록의 방향성을 이용하여 현재 블록에 적합한 모드를 선택하는 보다 구체적인 설명은 도 7를 참조하여 후술하기로 한다.
인트라 예측부(215)는 모드 선택부(210)에 의하여 선택된 인트라 모드에 따라, 현재 블록에 대한 예측 블록을 구하고, 현재 블록에서 상기 구한 예측 블록을 차감(subtraction)하여 잔차 블록(잔차 신호)을 얻는다. 일단 모드 선택부(210)에 의해 인트라 모드(예: 도 4의 9개의 모드 중의 하나)가 결정되면 결정된 인트라 모드에 따라 예측 블록은 도 4와 같은 종래의 H.264에서와 동일한 방식(휘도 신호의 경우 4x4 블록에 대해 9가지 인트라 모드사용, 16X16 블록에 대해 4가지 인트라 모드 사용, 색차 신호의 경우 8x8 블록에 대해 4가지 인트라 모드 사용)으로 구해질 수 있으나, 이에 한정되는 것은 아니며 H.264이외의 다른 코덱 방식으로도 구해질 수 있다.
여기서, H.264이외의 다른 코덱 방식의 예를 들면, 8x8 블록의 경우 34개 모드를 사용하여 인트라 예측을 사용할 수도 있다. 여기서, 34개의 모드는 현재 블록내 임의 픽셀에서 수평 방향으로 dx, 수직방향으로 dy(dx, dy는 자연수)의 기울기를 가지는 임의의 방향으로서 최대 34개의 방향을 나타낼 수 있다.
또는 H.264이외의 또 다른 코덱 방식의 예를 들면, 블록 사이즈에 따라 서로 다른 개수의 인트라 모드를 사용할 수도 있다. 예를 들어, 4x4 블록에 대해서는 9가지 인트라 모드, 8x8 블록에 대해서는 9가지 인트라 모드, 16x16 블록에 대해서는 34가지 인트라 모드, 32x32 블록에 대해서는 34가지 인트라 모드, 64x64 블록에 대해서는 5가지 인트라 모드, 128x128 블록에 대해서는 5가지 인트라 모드를 사용할 수 있다.
인트라 예측부(215)에서 구한 상기 잔차 블록은 DCT 등과 같은 공간적 변환을 수행하기 위하여 공간적 변환부(220)에 제공한다.
도 5에서는 도시하지 않았지만, 비디오 인코더(200)는 인터 예측부(미도시)를 더 포함할 수 있다. 인터 예측부는 제공된 블록 분할부(205)에 의해 분할된 블록에 대해 인터 예측을 수행한다. 즉, 분할된 블록에 대해 블록 단위로 움직임을 추정하여 모션 벡터(또는 움직임 벡터)를 생성할 수 있다. 여기서, 상기 움직임 추정에 사용되는 블록의 크기는 가변될 수 있으며, 분할 되는 블록의 모양도 4x4, 8x8 또는 16x16 등의 정사각형의 대칭적 파티션으로 분할 될 수도 있고, 4x16, 12x16, 24x32, 8x32, 16x64, 48x64등의 직사각형, 'ㄱ'자 모양, 삼각형 모양등과 같은 다양한 기하학적 모양을 가지는 비대칭적 파티션으로 분할될 수도 있다. 인터 예측부는 상기 생성된 움직임 벡터와 참조 픽처를 이용하여 움직임 보상을 수행하여 예측 블록을 생성할 수 있다.
도 5에서는 도시하지 않았지만, 비디오 인코더(200)는 인터 예측부에서 제공된 예측 블록과 현재 블록을 감산하여 잔여값을 생성하는 감산기를 더 포함할 수 있다. 상기 인터 예측 및 인트라 예측은 각각의 블록에 대해 선택적으로 사용될 수 있다.
공간적 변환부(220)는 인트라 예측부(215)로부터 제공된 잔차 블록에 대하여, 공간적 변환을 사용하여 공간적 중복성를 제거한다. 이러한 공간적 변환으로는 DCT(Discrete Cosine Transform)가 사용될수가 있다. 또는 웨이브렛 변환(wavelet transform)이 사용될 수도 있다. 공간적 변환 결과 구해지는 계수들을 변환 계수라고 한다. 특히, 공간적 변환으로 DCT를 사용하는 경우 DCT 계수라고 한다.
양자화부(230)는 공간적 변환부(220)에서 구한 변환 계수를 양자화한다. 양자화(quantization)란 임의의 실수 값으로 표현되는 상기 변환 계수를 일정 구간으로 나누어 불연속적인 값(discrete value)으로 나타내고, 이를 소정의 인덱스로 매칭(matching)시키는 작업을 의미한다. 특히, 공간적 변환 방법으로 웨이브렛 변환을 이용하는 경우에는 양자화 방법으로서 임베디드 양자화(embedded quantization) 방법을 이용하는 경우도 있다.
엔트로피 부호화부(240)는 양자화부(230)에 의하여 양자화된 변환 계수와, 인터 예측부에 의하여 제공되는 예측 블록과 현재 블로간의 차분값인 잔여값 또는 인트라 예측부(215)로부터 제공되는 방향 차분을 무손실 부호화하고 비트스트림을 생성한다. 이러한 무손실 부호화 방법으로는, 산술 부호화(arithmetic coding), 가변 길이 부호화(variable length coding), 허프만 부호화 등이 사용될 수 있다.
도 6은 본 발명의 일 실시예에 따른 비디오 디코더(500)의 구성을 도시한 블록도이다.
비디오 디코더(500)는 엔트로피 복호화부(510), 역 양자화부(520), 역 공간적 변환부(530), 모드 선택부(540), 인트라 복원부(550) 및 인터 복원부(560)를 포함하여 구성될 수 있다.
엔트로피 복호화부(510)는 엔트로피 부호화 방식의 역으로 무손실 복호화를 수행하여, 인터 예측에 있어서의 모션 데이터(모션 벡터 및 참조 프레임 정보 등에 관한 데이터)를 추출한다. 추출된 텍스쳐 데이터는 양자화 계수로서 역 양자화부(520)에 제공되고, 모션 데이터는 인터 복원부(560)에 제공된다.
역 양자화부(520)는 엔트로피 복호화부(510)로부터 전달된 양자화 계수를 역 양자화한다. 역 양자화 과정은 인코더(200) 단에서 소정의 인덱스로 표현하여 전달한 값으로부터 이와 매칭되는 변환 계수를 찾는 과정이다. 인덱스와 변환 계수 간의 매칭(matching) 관계를 나타내는 테이블은 인코더(200) 단으로부터 전달될 수도 있고, 미리 인코더와 디코더 간의 약속에 의한 것일 수도 있다.
역 공간적 변환부(530)는 공간적 변환을 역으로 수행하여, 상기 역 양자화 결과 제공되는 변환 계수들(주파수 영역)을 공간적 영역에서의 잔차 신호로 변환한다. 예를 들어, 비디오 인코더 단에서 웨이브렛 방식으로 공간적 변환된 경우에는 역 공간적 변환부(530)는 역 웨이브렛 변환을 수행할 것이고, 비디오 인코더 단에서 DCT 방식으로 공간적 변환된 경우에는 역 DCT 변환을 수행할 것이다.
모드 선택부(540)는 이미 복원되어 있는 현재 블록의 주변 블록의 방향성을 이용하여 상기 9개의 인트라 모드 중에서 현재 블록에 적합한 모드를 선택한다. 상기 주변 블록은 물론, 인트라 복원부(550)에 의하여 복원된 블록일 수도 있고, 인터 복원부(560)에 의하여 복원될 블록일 수도 있다. 이와 같이, 모드 선택부(540)에서 인트라 모드를 결정하는 방식은 비디오 인코더(100)에서의 모드 선택부(210)에서 인트라 모드를 선택하는 방식과 동일하다. 따라서, 본 발명의 일실시예에 따르면, 비디오 디코더(500)는 비디오 인코더(100)로부터 인트라 모드에 관한 아무런 정보도 제공받을 필요가 없다. 모드 선택부(540)가 주변 블록의 방향성을 이용하여 현재 블록에 적합한 모드를 선택하는 보다 구체적인 설명은 도 7를 참조하여 후술하기로 한다.
인트라 복원부(550)는 모드 선택부(540)에 의하여 선택된 인트라 모드에 따라, 현재 블록에 대한 예측 블록을 구하고, 상기 예측 블록과 역 공간적 변환부(530)로부터 제공되는 현재 블록의 잔차 신호를 가산하여 현재 블록을 복원한다. 일단 모드 선택부(540)에 의해 인트라 모드가 결정되면, 상기 예측 블록은 상기 결정된 인트라 모드에 따라(예: 도 4와 같은 종래의 H.264에서와 동일한 방식 또는 전술한 H.264와 다른 코덱 방식으로) 구해질 수 있다.
한편, 인터 예측으로부터의 복원을 위하여, 인터 복원부(560)가 이용된다. 왜냐하면, 현재 블록은 인트라 예측에 의하여 복원될 것이지만, 그 주변 블록은 어떠한 방식으로 디코딩되었더라도 무방하기 때문이다.
인터 복원부(560)는 엔트로피 복호화부(510)로부터 제공되는 모션 데이터를 이용하여, 기 복원된 프레임을 움직임 보상하여 움직임 보상 프레임을 생성한다. 물론, 이와 같은 움직임 보상 과정은 복원하고자 하는 현재 블록이 인코더 단에서 인터 예측 과정을 통하여 부호화된 경우에 한하여 적용된다. 또한, 인터 복원부(560)는 역 공간적 변환부(530)에서 복원되는 잔차 블록이 인터 예측에 의하여 생성된 것일 때에는, 상기 잔차 블록과 상기 움직임 보상된 프레임에서의 대응되는 영역을 가산하여 현재 블록을 복원한다.
이상에서와 같이, 인트라 복원부(550) 및 인터 복원부(560)에서 복원된 블록들을 조립하면 복원된 프레임을 최종적으로 완성할 수가 있다.
지금까지 도 5 및 6의 각 구성요소는 소프트웨어(software) 또는, FPGA(field-programmable gate array)나 ASIC(application-specific integrated circuit)과 같은 하드웨어(hardware)를 의미할 수 있다. 그렇지만 상기 구성요소들은 소프트웨어 또는 하드웨어에 한정되는 의미는 아니며, 어드레싱(addressing)할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 실행시키도록 구성될 수도 있다. 상기 구성요소들 안에서 제공되는 기능은 더 세분화된 구성요소에 의하여 구현될 수 있으며, 복수의 구성요소들을 합하여 특정한 기능을 수행하는 하나의 구성요소로 구현할 수도 있다.
도 7a 내지 7h는 본 발명의 일 실시예에 따라 모드 선택부(210, 540)가 이미 복원되어 있는 현재 블록의 주변 블록의 방향성을 이용하여 복수의 인트라 모드 중에서 현재 블록에 적합한 모드를 선택하는 구체적인 방법을 보여주는 도면이다. 주변 블록은 이미 복원되어 있는 블록을 포함할 수 있다. 예를 들어, H.264와 동일한 방식, 즉 현재 블록에 대하여 이미 복원되어 있는 상측 블록, 좌측 블록, 좌상측 블록 및 우상측 블록을 포함할 수 있다.
먼저, 모드 선택부(210, 540) 다음의 수학식 2에 따라 각각의 방향성에 따른 편차의 합(또는 평균)을 통하여 특정 방향성(i)에 대한 비용(Ci)를 계산한다.
수학식 2에서, n은 편차를 계산하기 위한 화소 쌍(k)의 수를 나타내고, i는 인트라 모드 번호, Dik는 특정 방향성(i)에 대하여 해당 화소 쌍(k) 사이의 편차를 의미한다. 상기 n은 실시예에 따라 얼마든지 다른 숫자로 선택할 수 있지만, 본 발명에서 n은 12로 하여 설명하기로 한다.
도 7a은 수직 방향의 비용을 계산하는 예를 보여주는 도면이다. 상기 수직(vertical) 방향의 비용(C0)은 현재 블록의 주변 블록에서 인접한 화소들 중에서 수직 방향으로 12개의 화소 쌍을 선택하고 수학식 2에 같이 각각의 화소 쌍에 대한 편차의 합을 계산함으로써 얻어진다. 물론, 이러한 화소 쌍을 구성하는 화소는 서로 다른 화소 쌍에 있어서 중복될 수도 있다. 예를 들어, 도 7a에서 화소(03_03)은 화소(02_03)와도 화소 쌍을 이루고 화소(04_03)와도 화소 쌍을 이룬다.
이와 같이, 특정 방향에 대한 비용을 계산하는 과정은 도 7b 내지 7h에 대해서도 마찬가지이다. 다만, 도 7a 내지 7d의 경우에는 인접한 화소 간에 화소 쌍을 이루지만, 도 7e 내지 7h의 경우와 같이 인접하지 않은 화소 간에도 화소 쌍을 이룰 수도 있다. 왜냐하면, 도 7e 내지 도 7h의 경우에는 기울기가 ±2 또는 ±1/2인 경우이기 때문이다. 물론, 이와 같이 이격된 화소를 이용하지 않고 인접한 화소를 보간하는 방식도 가능하다. 예를 들면, 도 7e의 경우 화소(03_04)는, 화소(01_03)과 화소 쌍을 이루는 것으로 도시되어 있지만, 화소(02_03)과 화소(02_04)로부터 보간된 화소(half pixel)와 화소 쌍을 이루는 것으로 하는 것도 가능하다.
한편, 9개의 인트라 모드 중에서 방향성을 갖는 8개의 모드에 관해서는 도 7a 내지 7h와 같이 화소 쌍을 형성하고 형성된 화소 쌍을 수학식 1에 대입함으로써 각각의 방향성에 대한 비용(Ci)을 계산할 수 있다. 그런데, 인트라 모드 중에서 모드 2의 미용(C2)는 방향성이 없이 평균에 의하여 계산되는 모드이므로 수학식 2에서의 Dik(i=2)는 다음의 수학식 3에 따라서 구해질 수 있다.
여기서, pk는 주변 블록들로부터 선택된 n개의 화소 중 k번째 화소의 값이고 μ는 이 화소 값들의 평균, 즉 1/n×Σpk를 의미한다. 이와 같이 계산되는 D2k를 수학식 2에 대입하여 계산하면 최종적으로 모드 2에 대한 비용(C2)를 계산할 수 있다.
*도 8은 모드 2의 비용을 계산하기 위하여 주변 블록들로부터 n개의 화소를 선택하는 예를 보여준다. 도 7a 내지 7h의 실시예에서 n을 12로 선택하였으므로 이와 대응되도록 도 8에서도 총 12개의 인접 화소가 선택된 것이다.
모드 선택부(210, 540)는 이상의 도 7a 내지 7h 및 도 8의 실시예에서 도시한 방식으로 총 9개의 인트라 모드에 대한 각각의 비용(Ci)을 각각 계산한 후, 이 중에서 최소의 비용을 갖는 인트라 모드를 선택할 수 있다. 이와 같이 선택된 인트라 모드는 현재 블록에 관한 정보를 이용하지 않고 얻어지기 때문에 비디오 인코더(200) 및 비디오 디코더(500)에서 공통적으로 이용할 수 있는 정보이다.
본 발명에서 현재 블록에 적합한 인트라 모드를 선택함에 있어서, 인접한 주변 블록의 방향성을 이용하는 것은, 예를 들어, 4x4와 같은 작은 인접한 블록들 간에는 그 방향성이 유사할 것이라는 가정에서 출발한다. 물론, 주변 블록과 현재 블록 간의 방향성이 다를 경우, 기존의 H.264에 비하여 잔차의 에너지가 커질 가능성이 있지만, 이는 어디까지나 인트라 모드 정보를 코딩하지 않음으로써 얻는 이익과 타협(trade-off)의 문제이다. 그런데, 상기 인트라 모드 정보는 4x4라는 작은 크기의 단위로 코딩되어야 하므로 이를 생략함으로써 얻는 비트의 절감량은 상당하므로 상기 주변 블록과 현재 블록의 방향성이 아주 크게 차이가 나지만 않는다면 본 발명에 따른 방식은 효율적일 수 있다. 또한, 하나의 주변 블록만을 참조하는 것이 아니라 복수(통상 4개)의 주변 블록을 참조하는 경우라면 주변 블록과 현재 블록 간의 방향성의 차이를 최소화할 수 있을 것이다.
도 9는 본 발명의 일 실시예에 따른 비트스트림(150)의 구조를 나타낸 것이다. H.264에서는 비트스트림은 슬라이스(slice) 단위로 부호화된다. 비트스트림(150)은 슬라이스 헤더(slice header; 160)와, 슬라이스 데이터(slice date; 170)를 포함하며, 슬라이스 데이터(170)는 복수의 매크로블록 데이터들(MB; 171 내지 174)로 구성된다. 또한 하나의 매크로블록 데이터(173)는 mb_type 필드(180)와, mb_pred 필드(185)와, 텍스쳐 데이터(texture data) 필드(189)로 구성될 수 있다.
여기서, mb_type 필드(180)에는 매크로블록의 종류를 나타내는 값이 기록된다. 즉, 현재 매크로블록이 인트라 매크로블록(intra macroblock)인지, 인터 매크로블록(inter macroblock)인지를 나타낸다.
그리고, mb_pred 필드(185)에는 상기 매크로블록의 종류에 따른 세부 예측 모드가 기록된다. 인터 매크로블록의 경우에는 매크로블록 파티션 별로 참조 프레임 번호 및 모션 벡터의 정보가 기록된다. 그러나, 본 발명에 따를 경우 종래의 H.264에서와는 달리 인트라 매크로블록의 경우에는 여기에 선택된 인트라 모드가 기록될 필요가 없다. 즉, 인트라 매크로블록의 경우 mb-pred 필드(185)가 생략될 수 있는 것이다.
종래의 H.264의 경우 상기 mb-pred 필드(185)는 각각의 블록(4x4 블록) 별로 인트라 모드를 기록하기 위한 블록 정보 필드(191 내지 194)를 포함하지만, 본 발명에 따른 인트라 매크로블록의 경우 이러한 블록 정보 필드가 생략되므로 비트스트림의 크기를 대폭 줄일 수 있다.
종래의 H.264와 마찬가지로, 텍스쳐 데이터 필드(189)에는 부호화된 잔차 신호, 즉 텍스쳐 데이터가 기록된다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.
200: 비디오 인코더
205: 블록 분할부
210, 540: 모드 선택부 215: 인트라 예측부
220: 공간적 변환부 230: 양자화부
240: 엔트로피 부호화부 250: 폐루프 디코더
500: 비디오 디코더 510: 엔트로피 복호화부
520: 역 양자화부 530: 역 공간적 변환부
550: 인트라 복원부 560: 인터 복원부
210, 540: 모드 선택부 215: 인트라 예측부
220: 공간적 변환부 230: 양자화부
240: 엔트로피 부호화부 250: 폐루프 디코더
500: 비디오 디코더 510: 엔트로피 복호화부
520: 역 양자화부 530: 역 공간적 변환부
550: 인트라 복원부 560: 인터 복원부
Claims (2)
- 비디오 부호화 장치에 의해 수행되는 비디오 부호화 방법에 있어서,
현재 블록에 대한 제2 인트라 모드를 결정하는 단계;
상기 현재 블록에 대한 제2 인트라 모드에 따라 상기 현재 블록의 복수의 이웃 픽셀로부터 상기 현재 블록에 대한 예측 블록의 복수의 픽셀을 결정하는 단계;
상기 현재 블록의 이웃 블록에 대한 제1 인트라 모드를 결정하는 단계;
상기 이웃 블록에 대한 제1 인트라 모드가 방향성인지 무방향성인지에 기초하여 상기 현재 블록에 대한 제2 인트라 모드를 부호화하는 단계;
상기 현재 블록으로부터 상기 예측 블록을 차감하여 상기 현재 블록에 대한 잔차 블록을 획득하는 단계;
상기 잔차 블록을 변환하여 변환 블록을 생성하는 단계; 및
상기 변환 블록을 부호화하여 비트 스트림을 생성하는 단계를 포함하고,
상기 이웃 블록에 대한 제1 인트라 모드가 무방향성이면, 상기 현재 블록에 대한 제2 인트라 모드는 제1 세트의 하나 이상의 수학식을 이용하여 부호화되고,
상기 이웃 블록에 대한 제1 인트라 모드가 방향성이면, 상기 현재 블록에 대한 제2 인트라 모드는 제2 세트의 하나 이상의 수학식을 이용하여 부호화되고,
상기 제2 세트의 하나 이상의 수학식은 상기 제1 세트의 하나 이상의 수학식과 다르고,
상기 이웃 블록은 상기 현재 블록에 인접한 상측 블록을 포함하는 비디오 부호화 방법.
- 제1항의 비디오 인코딩 방법에 의해 생성된 비트스트림을 저장한 컴퓨터 판독가능한 기록매체.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020240111452A KR20240128658A (ko) | 2009-12-30 | 2024-08-20 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090134017 | 2009-12-30 | ||
KR20090134017 | 2009-12-30 | ||
KR1020220119446A KR102549817B1 (ko) | 2009-12-30 | 2022-09-21 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220119446A Division KR102549817B1 (ko) | 2009-12-30 | 2022-09-21 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020240111452A Division KR20240128658A (ko) | 2009-12-30 | 2024-08-20 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230107152A true KR20230107152A (ko) | 2023-07-14 |
KR102698497B1 KR102698497B1 (ko) | 2024-08-23 |
Family
ID=44187553
Family Applications (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100138107A KR101531397B1 (ko) | 2009-12-30 | 2010-12-29 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020140091751A KR101713295B1 (ko) | 2009-12-30 | 2014-07-21 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020170026723A KR101825726B1 (ko) | 2009-12-30 | 2017-02-28 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020180011608A KR101934950B1 (ko) | 2009-12-30 | 2018-01-30 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020180170817A KR102051083B1 (ko) | 2009-12-30 | 2018-12-27 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020190153666A KR102118718B1 (ko) | 2009-12-30 | 2019-11-26 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020200064537A KR102233263B1 (ko) | 2009-12-30 | 2020-05-28 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020210037177A KR102343371B1 (ko) | 2009-12-30 | 2021-03-23 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020210184115A KR102447472B1 (ko) | 2009-12-30 | 2021-12-21 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020220119446A KR102549817B1 (ko) | 2009-12-30 | 2022-09-21 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020230082374A KR102698497B1 (ko) | 2009-12-30 | 2023-06-27 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020240111452A KR20240128658A (ko) | 2009-12-30 | 2024-08-20 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
Family Applications Before (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100138107A KR101531397B1 (ko) | 2009-12-30 | 2010-12-29 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020140091751A KR101713295B1 (ko) | 2009-12-30 | 2014-07-21 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020170026723A KR101825726B1 (ko) | 2009-12-30 | 2017-02-28 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020180011608A KR101934950B1 (ko) | 2009-12-30 | 2018-01-30 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020180170817A KR102051083B1 (ko) | 2009-12-30 | 2018-12-27 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020190153666A KR102118718B1 (ko) | 2009-12-30 | 2019-11-26 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020200064537A KR102233263B1 (ko) | 2009-12-30 | 2020-05-28 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020210037177A KR102343371B1 (ko) | 2009-12-30 | 2021-03-23 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020210184115A KR102447472B1 (ko) | 2009-12-30 | 2021-12-21 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
KR1020220119446A KR102549817B1 (ko) | 2009-12-30 | 2022-09-21 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020240111452A KR20240128658A (ko) | 2009-12-30 | 2024-08-20 | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 |
Country Status (2)
Country | Link |
---|---|
US (11) | US9467705B2 (ko) |
KR (12) | KR101531397B1 (ko) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080176790A1 (en) | 2004-10-29 | 2008-07-24 | Defrees Shawn | Remodeling and Glycopegylation of Fibroblast Growth Factor (Fgf) |
US9467705B2 (en) * | 2009-12-30 | 2016-10-11 | Ariscale Inc. | Video encoding apparatus, video decoding apparatus, and video decoding method for performing intra-prediction based on directionality of neighboring block |
US8855205B2 (en) | 2010-05-26 | 2014-10-07 | Newratek Inc. | Method of predicting motion vectors in video codec in which multiple references are allowed, and motion vector encoding/decoding apparatus using the same |
WO2012081895A1 (ko) | 2010-12-13 | 2012-06-21 | 한국전자통신연구원 | 인트라 예측 방법 및 그 장치 |
US9462272B2 (en) * | 2010-12-13 | 2016-10-04 | Electronics And Telecommunications Research Institute | Intra prediction method and apparatus |
JP2012151576A (ja) * | 2011-01-18 | 2012-08-09 | Hitachi Ltd | 画像符号化方法、画像符号化装置、画像復号方法及び画像復号装置 |
KR101373670B1 (ko) * | 2011-11-04 | 2014-03-14 | 연세대학교 산학협력단 | 인트라 예측 방법 및 장치 |
KR101596085B1 (ko) * | 2012-12-18 | 2016-02-19 | 한양대학교 산학협력단 | 적응적인 인트라 예측을 이용한 영상 부호화/복호화 장치 및 방법 |
KR101475286B1 (ko) * | 2013-01-18 | 2014-12-23 | 연세대학교 산학협력단 | 인트라 예측 방법 및 장치, 그리고 영상 처리 장치 |
US9426473B2 (en) | 2013-02-01 | 2016-08-23 | Qualcomm Incorporated | Mode decision simplification for intra prediction |
US9148667B2 (en) | 2013-02-06 | 2015-09-29 | Qualcomm Incorporated | Intra prediction mode decision with reduced storage |
CN104683801B (zh) * | 2013-11-29 | 2018-06-05 | 华为技术有限公司 | 图像压缩方法和装置 |
KR101911587B1 (ko) * | 2015-08-03 | 2018-10-24 | 한양대학교 산학협력단 | 적응적인 인트라 예측을 이용한 영상 부호화/복호화 장치 및 방법 |
WO2017090993A1 (ko) * | 2015-11-24 | 2017-06-01 | 삼성전자 주식회사 | 비디오 복호화 방법 및 그 장치 및 비디오 부호화 방법 및 그 장치 |
KR102345475B1 (ko) * | 2016-01-05 | 2022-01-03 | 한국전자통신연구원 | 잔차 신호에 대한 예측 방법 및 장치 |
EP3301917A1 (en) * | 2016-09-30 | 2018-04-04 | Thomson Licensing | Method and apparatus for spatial guided prediction |
WO2018101685A1 (ko) * | 2016-11-29 | 2018-06-07 | 한국전자통신연구원 | 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 |
WO2018143496A1 (ko) * | 2017-02-03 | 2018-08-09 | 엘지전자(주) | 예측 모드를 유도하여 비디오 신호를 인코딩, 디코딩하는 방법 및 장치 |
US11496747B2 (en) | 2017-03-22 | 2022-11-08 | Qualcomm Incorporated | Intra-prediction mode propagation |
US11284076B2 (en) | 2017-03-22 | 2022-03-22 | Electronics And Telecommunications Research Institute | Block form-based prediction method and device |
CN117354513A (zh) * | 2017-07-28 | 2024-01-05 | 韩国电子通信研究院 | 图像编码方法和图像解码方法以及计算机可读记录介质 |
WO2019098758A1 (ko) | 2017-11-16 | 2019-05-23 | 한국전자통신연구원 | 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 |
KR20240133755A (ko) * | 2018-03-29 | 2024-09-04 | 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. | 블록 단위의 화상 코딩을 위한 인트라 예측 모드 개념 |
EP3567860A1 (en) * | 2018-05-09 | 2019-11-13 | InterDigital VC Holdings, Inc. | Method and apparatus for blended intra prediction |
US11856184B2 (en) * | 2018-05-14 | 2023-12-26 | Interdigital Vc Holdings, Inc. | Block shape adaptive intra prediction directions for quadtree-binary tree |
US10284860B1 (en) * | 2018-07-02 | 2019-05-07 | Tencent America LLC | Method and apparatus for video coding |
CN111372079B (zh) * | 2020-03-11 | 2021-01-22 | 南华大学 | 一种vvc帧间cu深度快速划分方法 |
US20240236324A9 (en) * | 2022-10-24 | 2024-07-11 | Tencent America LLC | Flipping mode for chroma and intra template matching |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080025244A (ko) * | 2006-09-15 | 2008-03-20 | 엠텍비젼 주식회사 | 인트라 예측 모드를 선택하는 방법 및 장치 |
KR20090095316A (ko) * | 2008-03-05 | 2009-09-09 | 삼성전자주식회사 | 영상 인트라 예측 방법 및 장치 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI116819B (fi) * | 2000-01-21 | 2006-02-28 | Nokia Corp | Menetelmä kuvien lähettämiseksi ja kuvakooderi |
EP1445956A4 (en) * | 2001-11-16 | 2009-09-02 | Ntt Docomo Inc | IMAGE ENCODING METHOD, IMAGE DECODING METHOD, ENCODER AND IMAGE DECODER, PROGRAM, COMPUTER DATA SIGNAL, AND IMAGE TRANSMISSION SYSTEM |
CN1232126C (zh) * | 2002-09-30 | 2005-12-14 | 三星电子株式会社 | 图像编码方法和装置以及图像解码方法和装置 |
KR100750145B1 (ko) * | 2005-12-12 | 2007-08-21 | 삼성전자주식회사 | 영상의 인트라 예측 부호화, 복호화 방법 및 장치 |
KR100791299B1 (ko) * | 2006-04-11 | 2008-01-04 | 삼성전자주식회사 | 다 계층 기반의 비디오 인코딩 방법 및 장치 |
KR101539240B1 (ko) * | 2007-06-14 | 2015-07-30 | 삼성전자주식회사 | 영상 데이터의 엔트로피 부호화, 복호화 방법 및 장치 |
US9237357B2 (en) * | 2007-09-02 | 2016-01-12 | Lg Electronics Inc. | Method and an apparatus for processing a video signal |
EP2208350A2 (en) * | 2007-10-12 | 2010-07-21 | Thomson Licensing | Methods and apparatus for video encoding and decoding geometrically partitioned bi-predictive mode partitions |
KR101375664B1 (ko) * | 2007-10-29 | 2014-03-20 | 삼성전자주식회사 | 영상의 디퓨전 특성을 이용한 영상 부호화/복호화 방법 및장치 |
WO2009080133A1 (en) * | 2007-12-21 | 2009-07-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Adaptive intra mode selection |
EP2081386A1 (en) * | 2008-01-18 | 2009-07-22 | Panasonic Corporation | High precision edge prediction for intracoding |
KR101456491B1 (ko) * | 2008-05-08 | 2014-11-03 | 삼성전자주식회사 | 복수의 참조 픽처에 기초한 영상 부호화, 복호화 방법 및장치 |
KR100949917B1 (ko) * | 2008-05-28 | 2010-03-30 | 한국산업기술대학교산학협력단 | 적응적 인트라 예측을 통한 고속 부호화 방법 및 시스템 |
KR20090129926A (ko) * | 2008-06-13 | 2009-12-17 | 삼성전자주식회사 | 영상 부호화 방법 및 그 장치, 영상 복호화 방법 및 그 장치 |
US8831099B2 (en) * | 2008-12-17 | 2014-09-09 | Nvidia Corporation | Selecting a macroblock encoding mode by using raw data to compute intra cost |
CN105120265B (zh) * | 2009-08-12 | 2019-01-29 | 汤姆森特许公司 | 用于改进的帧内色度编码和解码的方法及装置 |
KR101510108B1 (ko) * | 2009-08-17 | 2015-04-10 | 삼성전자주식회사 | 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치 |
US9467705B2 (en) * | 2009-12-30 | 2016-10-11 | Ariscale Inc. | Video encoding apparatus, video decoding apparatus, and video decoding method for performing intra-prediction based on directionality of neighboring block |
US8619857B2 (en) * | 2010-04-09 | 2013-12-31 | Sharp Laboratories Of America, Inc. | Methods and systems for intra prediction |
US8855205B2 (en) | 2010-05-26 | 2014-10-07 | Newratek Inc. | Method of predicting motion vectors in video codec in which multiple references are allowed, and motion vector encoding/decoding apparatus using the same |
-
2010
- 2010-12-23 US US12/977,928 patent/US9467705B2/en active Active
- 2010-12-29 KR KR1020100138107A patent/KR101531397B1/ko active IP Right Grant
-
2014
- 2014-07-21 KR KR1020140091751A patent/KR101713295B1/ko active IP Right Grant
-
2016
- 2016-09-08 US US15/260,240 patent/US9641849B2/en active Active
-
2017
- 2017-02-28 KR KR1020170026723A patent/KR101825726B1/ko active IP Right Grant
- 2017-03-01 US US15/447,055 patent/US9918093B2/en active Active
-
2018
- 2018-01-25 US US15/880,402 patent/US10334252B2/en active Active
- 2018-01-30 KR KR1020180011608A patent/KR101934950B1/ko active IP Right Grant
- 2018-12-27 KR KR1020180170817A patent/KR102051083B1/ko active IP Right Grant
-
2019
- 2019-05-08 US US16/407,086 patent/US11122274B2/en active Active
- 2019-05-08 US US16/407,095 patent/US11122275B2/en active Active
- 2019-08-05 US US16/532,194 patent/US10623750B2/en active Active
- 2019-08-05 US US16/532,208 patent/US10623751B2/en active Active
- 2019-08-05 US US16/532,174 patent/US10623749B2/en active Active
- 2019-11-26 KR KR1020190153666A patent/KR102118718B1/ko active IP Right Grant
-
2020
- 2020-05-28 KR KR1020200064537A patent/KR102233263B1/ko active IP Right Grant
-
2021
- 2021-03-23 KR KR1020210037177A patent/KR102343371B1/ko active IP Right Grant
- 2021-08-20 US US17/407,865 patent/US11968373B2/en active Active
- 2021-12-21 KR KR1020210184115A patent/KR102447472B1/ko active IP Right Grant
-
2022
- 2022-09-21 KR KR1020220119446A patent/KR102549817B1/ko active IP Right Grant
-
2023
- 2023-06-27 KR KR1020230082374A patent/KR102698497B1/ko active IP Right Grant
-
2024
- 2024-03-08 US US18/600,047 patent/US20240214581A1/en active Pending
- 2024-08-20 KR KR1020240111452A patent/KR20240128658A/ko active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080025244A (ko) * | 2006-09-15 | 2008-03-20 | 엠텍비젼 주식회사 | 인트라 예측 모드를 선택하는 방법 및 장치 |
KR20090095316A (ko) * | 2008-03-05 | 2009-09-09 | 삼성전자주식회사 | 영상 인트라 예측 방법 및 장치 |
Non-Patent Citations (1)
Title |
---|
H.264 and MPEG-4 Video Compression, WILEY(2003.12.31.).* * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102549817B1 (ko) | 주변 블록이 갖는 방향성을 기초로 인트라 예측을 수행하는 비디오 인코딩 장치, 비디오 디코딩 장치 및 비디오 디코딩 방법 | |
JP7269257B2 (ja) | フレームレベル超解像ベースビデオ符号化 | |
US9473777B2 (en) | Video encoding device and encoding method thereof, video decoding device and decoding method thereof, and directional intra-prediction method to be used thereto | |
EP2008469B1 (en) | Multilayer-based video encoding method and apparatus thereof | |
KR101677480B1 (ko) | 효과적인 화면내 예측모드 집합 선택을 이용한 영상 부호화/복호화 방법 및 장치 | |
KR20070029450A (ko) | 영상의 부호화 및 복호화 장치와, 그 방법, 및 이를수행하기 위한 프로그램이 기록된 기록 매체 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
A107 | Divisional application of patent | ||
GRNT | Written decision to grant |