KR20230097735A - Method for manufacturing Shinorine - Google Patents

Method for manufacturing Shinorine Download PDF

Info

Publication number
KR20230097735A
KR20230097735A KR1020210187521A KR20210187521A KR20230097735A KR 20230097735 A KR20230097735 A KR 20230097735A KR 1020210187521 A KR1020210187521 A KR 1020210187521A KR 20210187521 A KR20210187521 A KR 20210187521A KR 20230097735 A KR20230097735 A KR 20230097735A
Authority
KR
South Korea
Prior art keywords
gene
strain
xylose
leu
ala
Prior art date
Application number
KR1020210187521A
Other languages
Korean (ko)
Inventor
김수정
조정용
김소림
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020210187521A priority Critical patent/KR20230097735A/en
Publication of KR20230097735A publication Critical patent/KR20230097735A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01307D-Xylose reductase (1.1.1.307)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01122Xylitol kinase (2.7.1.122)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/85Saccharomyces
    • C12R2001/865Saccharomyces cerevisiae

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 마이코스포린유사아미노산 생합성 유전자가 도입되어 있는 사카로미세스 세레비시아 균주 및 시노린의 생산방법에 관한 것으로서, 본 발명의 균주를 이용함으로써 다량의 시노린을 신속하게 생산할 수 있다.The present invention relates to a Saccharomyces cerevisiae strain into which a mycosporine-like amino acid biosynthetic gene has been introduced and a method for producing shinoline, and a large amount of shinorine can be rapidly produced by using the strain of the present invention.

Description

시노린의 생산 방법{Method for manufacturing Shinorine}Method for manufacturing Shinorine {Method for manufacturing Shinorine}

본 발명은 시노린의 생산방법에 관한 것이다. The present invention relates to a method for producing shinorine.

해조류는 자외선의 직접적인 영향을 받으며, 그로 인해 자외선 보호 관련 물질을 많이 함유하고 있다. 자외선 보호 관련 물질 중 하나인 마이코스포린유사아미노산 (mycosporine-like amino acis; MAAs)은 310-360 nm 영역의 파장을 효과적으로 흡수한다고 알려져 있어 화장품 소재로 활용되고 있다. 또한 삼투압 조절, 산화적 스트레스에 대한 방어 등 여러 생물학적 과정에 관여한다고 알려져 있으며, 이는 향후 항산화, 항염, 노화 방지 등의 기능성 식품소재로 활용될 가능성을 가진다. Seaweeds are directly affected by UV rays, and therefore contain a lot of substances related to UV protection. Mycosporine-like amino acids (MAAs), one of the substances related to UV protection, are known to effectively absorb wavelengths in the range of 310-360 nm, and are therefore used as cosmetic materials. In addition, it is known to be involved in various biological processes such as osmotic pressure regulation and defense against oxidative stress, and it has the potential to be used as a functional food material such as antioxidant, anti-inflammatory, and anti-aging in the future.

상업적으로 이용 가능한 MAAs는 자연계인 홍조류 Porphyra umbilicalis에서 추출하여 생산기도 하지만, 이 공정은 낮은 추출 수율과 복잡한 공정으로 인한 어려움이 있다. 반면에, 미생물을 이용한 MAAs의 생물학적 생산은 지속 가능하며 경제적인 MAAs 생산을 위한 대안이 될 수 있다는 점에서 각광받고 있다.Commercially available MAAs are also produced by extraction from the natural red algae Porphyra umbilicalis, but this process suffers from low extraction yields and complicated processes. On the other hand, biological production of MAAs using microorganisms is attracting attention as it can be an alternative for sustainable and economical production of MAAs.

그러나, 미세조류 배양 연구 및 분리 정제를 위한 연구가 수행되고 있지만, 이러한 공정은 추출 수율이 낮고, 분리 정제에 많은 비용 및 시간이 소요되고 있는 실정이다.However, although studies on microalgae culture and separation and purification are being conducted, these processes have a low extraction yield, and a lot of cost and time are required for separation and purification.

한국공개특허 제 10-2015-0137244호Korean Patent Publication No. 10-2015-0137244

본 발명은 다량의 시노린을 신속하게 생산할 수 있는 미생물을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a microorganism capable of rapidly producing a large amount of shinorine.

본 발명은 다량의 시노린을 신속하게 생산하는 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for rapidly producing a large amount of shinorine.

1. 악티노신네마 미룸 유래 마이코스포린유사아미노산 생합성 유전자가 도입되어 있는 사카로미세스 세레비시아 균주.1. A Saccharomyces cerevisiae strain into which a mycosporine-like amino acid biosynthetic gene derived from Actinocinema mirum has been introduced.

2. 위 1에 있어서, 상기 마이코스포린유사아미노산(mycosporine-like amino acids) 생합성 유전자는 서열번호 1 내지 4의 염기서열을 갖는 것인 사카로미세스 세레비시아 균주.2. The Saccharomyces cerevisiae strain according to 1 above, wherein the mycosporine-like amino acids biosynthetic gene has the nucleotide sequence of SEQ ID NOs: 1 to 4.

3. 위 1에 있어서, 상기 균주는 TAL1 유전자가 추가로 결손되어 있는 사카로미세스 세레비시아 균주.3. The Saccharomyces cerevisiae strain according to 1 above, wherein the strain is additionally deficient in the TAL1 gene.

4. 위 1에 있어서, 상기 균주는 자일로스 리덕타아제 유전자, 자일리톨 디하이드로지나아제 유전자 및 자일로 키나아제 유전자가 추가로 도입되어 있는 사카로미세스 세레비시아 균주.4. The Saccharomyces cerevisiae strain according to 1 above, wherein the strain is additionally introduced with a xylose reductase gene, a xylitol dehydrogenase gene, and a xylo kinase gene.

5. 위 4에 있어서, 상기 자일로스 리덕타아제 유전자는 NADPH 의존성 자일로스 리덕타아제 유전자 및 NADH 의존성 자일로스 리덕타아제 유전자를 포함하는 것인 사카로미세스 세레비시아 균주.5. The Saccharomyces cerevisiae strain according to 4 above, wherein the xylose reductase gene includes a NADPH-dependent xylose reductase gene and a NADH-dependent xylose reductase gene.

6. 위 1에 있어서, 상기 마이코스포린유사아미노산(mycosporine-like amino acids) 생합성 유전자는 상기 균주의 염색체 내에 도입되어 있는, 사카로미세스 세레비시아 균주.6. The strain of Saccharomyces cerevisiae according to 1 above, wherein the mycosporine-like amino acids biosynthetic gene is introduced into the chromosome of the strain.

7. 위 6에 있어서, 상기 마이코스포린유사아미노산(mycosporine-like amino acids) 생합성 유전자는 ATG33 유전자 상류(upstream)의 유전자 간 부위(int#6)와 ASF1 유전자 상류(upstream)의 유전자 간 부위(int#4)에 도입되어 있는, 사카로미세스 세레비시아 균주.7. In the above 6, the mycosporine-like amino acids biosynthetic gene is the ATG33 gene upstream intergenic region (int # 6) and the ASF1 gene upstream intergenic region (int Saccharomyces cerevisiae strain introduced into #4).

8. 위 2에 있어서, 상기 서열번호 1 및 4의 유전자는 TEF 프로모터와 GPM1 터미네이터에 작동 가능하게 연결되어 있고, 상기 서열번호 2 및 3의 유전자는 GPD 프로모터와 CYC1 터미네이터에 작동 가능하게 연결된, 사카로미세스 세레비시아 균주.8. The saccharide according to the above 2, wherein the genes of SEQ ID NOs: 1 and 4 are operably linked to the TEF promoter and the GPM1 terminator, and the genes of SEQ ID NOs: 2 and 3 are operably linked to the GPD promoter and the CYC1 terminator. Lomyces cerevisiae strains.

9. 위 1에 있어서, 기탁번호가 KCTC14827BP인 사카로미세스 세레비시아 균주.9. In the above 1, the accession number is KCTC14827BP Saccharomyces cerevisiae strain.

10. 위 1 내지 9 중 어느 한 항의 사카로미세스 세레비시아 균주를 배양하는 단계를 포함하는 시노린의 생산 방법.10. A method for producing shinorine comprising culturing the Saccharomyces cerevisiae strain of any one of 1 to 9 above.

11. 위 10에 있어서, 자일로스 및 글루코스를 탄소원으로 사용하는 시노린의 생산 방법.11. The method for producing shinoline according to 10 above, using xylose and glucose as carbon sources.

12. 위 11에 있어서, 상기 글루코스는 1 내지 5 g/L의 저농도로 유지시키면서 상기 자일로스를 공급하는 시노린의 생산 방법.12. The method for producing shinoline according to 11 above, wherein the xylose is supplied while the glucose is maintained at a low concentration of 1 to 5 g/L.

본 발명은 다량의 시노린을 신속하게 생산할 수 있는 미생물을 제공한다.The present invention provides a microorganism capable of rapidly producing a large amount of shinoline.

본 발명의 미생물은 시노린 생합성 효소 유전자와 자일로스 대사 유전자를 포함하고 TAL1 유전자를 포함하지 않음으로써, 다량의 시노린을 신속하게 생산할 수 있다.The microorganism of the present invention contains a shinoline biosynthetic enzyme gene and a xylose metabolism gene and does not contain a TAL1 gene, so that a large amount of shinorine can be rapidly produced.

본 발명의 마이코스포린유사아미노산 생산방법은 미생물의 대사경로를 조절하여 다량의 마이코스포린유사아미노산을 신속하게 생산할 수 있다.The method for producing mycosporine-like amino acids of the present invention can rapidly produce a large amount of mycosporine-like amino acids by controlling the metabolic pathway of microorganisms.

도 1은 시노린을 포함하는 여러 마이코스포린유사아미노산의 구조식을 나타낸다. A는 Mycosporine-Glycine, B는 Shinorine, C는 Porphyra-334, D는 Palythine, E는 Asterina-330.
도 2는 홍조류 Porphyra umbilicalis 유래의 전통적 시노린 추출 방법과 재조합 S. cerevisiae로부터 시노린의 생산방법을 간략하게 나타낸 것이다.
도 3은 재조합 S. cerevisiae의 마이코스포린 유사 아미노산 생합성 경로 및 Actinosynnema mirum 유래 시노린 생합성 효소 유전자를 나타낸다.
도 4는 Actinosynnema mirum 유래 시노린 생합성 효소 유전자인 Amir4256 및 Amir4257의 발현 카세트 제작 과정을 나타낸다.
도 5는 Actinosynnema mirum 유래 시노린 생합성 효소 유전자인 Amir4256, Amir4257, Amir4258 및 Amir4259 유전자가 S. cerevisiae의 INT#4 and INT#6 유전자간 부위에 삽입됨을 보여준다.
도 6은 CRISPR-Cas9 유전자 가위를 이용한 게놈 편집을 통해 TAL1 유전자를 제거하는 과정을 나타낸다.
도 7은 본 발명의 재조합 S. cerevisiae(D-M균주)의 시노린 생산여부 확인을 위한 HPLC결과를 나타낸다. D452-2 균주는 대조군이다. A는 세포 내 시노린 생산여부를 확인한 것이고, B는 배지 내 시노린 생산여부를 확인한 것이다.
도 8은 D-M 균주에 의해 생성된 시노린의 LC-MS/MS 분광분석을 나타낸다. 정통 시노린 표준의 LC-MS/MS 스펙트럼과 D-M 균주의 세포 추출물의 LC-MS/MS 스펙트럼이다. 조건: ESI(양성), 2.5kV, m/z 50-800, 40V, 800L/h, 500℃, 150℃, 0.5mM 포름산나트륨, 류신-엔케팔린(m/z 556.2771)
도 9는 재조합 S. cerevisiae(D-M균주)에 의한 회분식 발효에서의 시노린 생산을 나타낸다. (A) 회분식 발효 프로필. 회분식 발효는 30℃ 및 250rpm에서 20g/L의 글루코스를 포함하는 YP 배지에서 수행되었다. 균주 초기 접종 농도는 OD600 1로 접종되었고; (B) D452-2 및 D-M 균주에 의해 생성된 세포 분획 및 배지에서 시노린의 농도; (C) D452-2 및 D-M 균주에 의해 생성된 시노린의 함량; (D) D452-2 및 D-M 균주에 의해 생산된 시노린의 생산성.
도 10은 재조합 S. cerevisiae(DX-M균주)에 의한 회분식 발효에서의 시노린 생산을 나타낸다. (A) 글루코스를 사용한 회분식 발효 프로필; (B) 글루코스와 자일로스의 혼합물을 사용한 회분식 발효 프로필. 회분식 발효는 30℃ 및 250rpm에서 20g/L의 글루코스가 포함된 YP 배지 또는 10g/L의 글루코스와 10g/L의 자일로스의 혼합물이 포함된 YP 배지에서 수행되었다. 균주 초기 접종 농도는 OD600 1로 접종되었다. (C) 글루코스를 사용한 회분식 발효와 글루코스 및 자일로스의 혼합물을 사용한 회분식 발효에서 DX-M 균주에 의해 생성된 세포 분획 및 배지 내의 시노린 농도; (D) 글루코스를 사용한 회분식 발효와 글루코스 및 자일로스의 혼합물을 사용한 회분식 발효에서 DX-M 균주에 의해 생성된 시노린 함량; (E) 글루코스를 사용한 회분식 발효와 글루코스 및 자일로스의 혼합물을 사용한 회분식 발효 DX-M 균주에 의해 생성된 시노린의 생산성.
도 11은 단일 탄소 공급원에서 재조합 S. cerevisiae(DXdT-M)에 의한 회분식 발효에서의 시노린 생산을 나타낸다. 글루코스(A) 또는 자일로스(B) 공급 시 회분식 발효 시 시노린의 발효 프로파일, 농도 및 함량. 발효는 30℃ 및 250rpm에서 20g/L의 글루코스 또는 자일로스를 포함하는 YP 배지에서 수행하였다. DXdT-M 균주의 세포는 초기 OD600이 1일 때 접종되었다. 시노린 농도는 DXdT-M 균주에 의해 생성된 세포 분획 및 배지에서 시노린의 양을 포함한다.
도 12는 글루코스와 자일로스의 혼합물 하에서 재조합 S. cerevisiae(DXdT-M균주)에 의한 회분식 발효에서의 시노린 생산을 나타낸다. 10g/L 글루코스와 10g/L 자일로스(A) 또는 50g/L 글루코스와 50g/L 자일로스(B)의 혼합물이 공급되었을 때 회분식 발효 시 시노린의 발효 프로파일, 농도 및 함량. 글루코스와 자일로스가 혼합된 YP 배지에서 30℃ 및 250rpm에서 발효를 수행하였다. DXdT-M 균주의 초기 접종 농도는 OD600 1로 접종되었다. 시노린 농도는 DXdT-M 균주에 의해 생성된 세포 분획 및 배지에서 시노린의 양을 포함한다.
도 13은 단일 탄소 공급원 하에 재조합 S. cerevisiae(DXdP-M균주)에 의한 회분식 발효에서의 시노린 생산을 나타낸다. 글루코스(A) 또는 자일로스(B) 공급 하에 회분식 발효 시 시노린의 발효 프로파일, 농도 및 함량. 발효는 30℃ 및 250rpm에서 20g/L의 글루코스 또는 자일로스를 포함하는 YP 배지에서 수행하였다. DXdP-M 균주의 세포는 1의 초기 OD600에서 접종되었다. 시노린 농도는 DXdP-M 균주에 의해 생성된 세포 분획 및 배지에서 시노린의 양을 포함한다.
도 14는 글루코스와 자일로스의 혼합물 하에서 재조합 S. cerevisiae(DXdP-M균주)에 의한 회분식 발효에서의 시노린 생산을 나타낸다. 10g/L 글루코스와 10g/L 자일로스(A) 또는 50g/L 글루코스와 50g/L 자일로스(B)의 혼합물이 공급되었을 때 회분식 발효 시 시노린의 발효 프로파일, 농도 및 함량. 글루코스와 자일로스가 혼합된 YP 배지에서 30℃ 및 250rpm에서 발효를 수행하였다. DXdP-M 균주 초기 접종 농도는 OD600 1로 접종되었다. 시노린 농도는 DXdP-M 균주에 의해 생성된 세포 분획 및 배지에서 시노린의 양을 포함한다.
도 15는 단일 탄소 공급원에서 재조합 S. cerevisiae(DXdTdP-M)에 의한 회분식 발효에서의 시노린 생산을 나타낸다. 글루코스(A) 또는 자일로스(B) 공급 하에 회분식 발효 시 시노린의 발효 프로파일, 농도 및 함량. 발효는 30℃ 및 250rpm에서 20g/L의 글루코스 또는 자일로스를 포함하는 YP 배지에서 수행하였다. DXdTdP-M 균주 초기 접종 농도는 OD600 1로 접종되었다. 시노린 농도는 DXdTdP-M 균주에 의해 생성된 세포 분획 및 배지에서 시노린의 양을 포함한다.
도 16은 글루코스와 자일로스의 혼합물 하에 재조합 S. cerevisiae(DXdTdP-M균주)에 의한 회분식 발효에서의 시노린 생산을 나타낸다. 10g/L 글루코스와 10g/L 자일로스(A) 또는 50g/L 글루코스와 50g/L 자일로스(B)의 혼합물이 공급되었을 때 회분식 발효 시 시노린의 발효 프로파일, 농도 및 함량. 글루코스와 자일로스가 혼합된 YP 배지에서 30℃ 및 250rpm에서 발효를 수행하였다. DXdTdP-M 균주의 초기 접종 농도는 OD600 1로 접종되었다. 시노린 농도는 DXdTdP-M 균주에 의해 생성된 세포 분획 및 배지에서 시노린의 양을 포함한다.
도 17은 글루코스와 자일로스를 공급하면서 재조합 S. cerevisiae(DXdT-M)에 의한 유가식(fed-batch) 발효에서의 시노린 생산을 나타낸다. 글루코스(A) 또는 자일로스(B)를 간헐적으로 공급한 fed-batch 발효 시 시노린의 발효, 농도, 함량 및 생산성 프로파일. 자일로스를 첨가한 유가식 발효에서는 처음 첨가한 글루코스가 고갈된 후 글루코스를 계속 공급하여 2g/L 농도를 유지하였다(B). C-E에서 Glc와 Glc & Xyl은 각각 글루코스(A)와 자일로스(B)를 공급하는 유가식 발효에서 시노린의 농도, 함량 및 생산성에 해당하는 값을 의미한다.
도 18은 자일로스를 공급하는 유가식 발효 동안 DXdT-M 균주에 의해 생성된 시노린의 농도 및 함량에 대한 시간 경과 프로파일링을 나타낸다. 지속적으로 글루코스를 공급하면서 자일로스를 간헐적으로 첨가하는 유가식 발효 동안 값을 얻었다(도 17의 B 관련).
도 19는 DXdT-M 균주를 사용하여 쌀에서 추출한 가수분해물을 이용한 시노린 생산을 나타낸다. 쌀 원료에서 추출한 가수분해물을 포함하는 회분식 발효 시 시노린의 발효 프로파일(A), 농도(B), 함량(C) 및 생산성(D) 그래프이다. 발효는 30°C 및 250rpm에서 가수분해물이 포함된 YP 배지에서 수행되었다. DXdT-M 균주의 초기 접종 농도는 OD600 1로 접종되었다. 시노린 농도는 DXdT-M 균주에 의해 생성된 세포 분획 및 배지에서 시노린의 양을 포함한다.
도 20a 내지 20d는 본 발명에서 사용한 악티노신네마 미룸 유래 Amir4256, Amir4257, Amir4258 및 Amir4259 유전자들의 코돈 최적화한 유전자 염기서열을 나타낸다. 도 19a는 서열번호 1의 염기서열, 도 19b는 서열번호 2의 염기서열, 도 19c는 서열번호 3의 염기서열, 도 19d는 서열번호 4의 염기서열을 나타낸다.
도 21a 내지 21d는 CRISPR-Cas9 유전자 가위를 이용한 게놈 편집에서 사용한 Donor DNA의 염기서열을 나타낸다. 도 21a는 사카로미세스 세레비시아 균주 염색체의 intergenic#4 유전자간 부위를 표적으로 하는 GPDP-Amir4258-CYC1T-TEFP-Amir4259-GPM1T Donor DNA의 염기서열을 나타낸다(서열번호 73). 도 21b는 사카로미세스 세레비시아 균주 염색체의 intergenic#6 유전자간 부위를 표적으로 하는 GPDP-Amir4257-CYC1T-TEFP-Amir4256-GPM1T Donor DNA의 염기서열을 나타낸다(서열번호 74). 도 21c는 TAL1 유전자를 표적으로 하는 TAL1 유전자 결손을 위한 Donor DNA의 염기서열을 나타낸다(서열번호 75). 도 21d는 PHO13 유전자를 표적으로 하는 PHO13 유전자 결손을 위한 Donor DNA의 염기서열을 나타낸다(서열번호 76). 도 21a 및 21b에서 GPD 프로모터의 염기서열은 초록색 소문자, TEF 프로모터 염기서열은 검은색 소문자, CYC1 터미네이터는 보라색 대문자, GPM1 터미네이터는 적갈색 대문자로 표시하였다. Amir4256, Amir4257, Amir4258 및 Amir4259 서열은 파란색으로 표시했다. 도 21c 및 21d의 upstream 서열은 파란색 형광표시, downstream 서열은 노란색 형광 표시하였다.
1 shows the structural formulas of several mycosporine-like amino acids including shinorine. A is Mycosporine-Glycine, B is Shinorine, C is Porphyra-334, D is Palythine, and E is Asterina-330.
Figure 2 is a traditional shinoline extraction method derived from red algae Porphyra umbilicalis and from recombinant S. cerevisiae This is a brief description of the production method of Shinorin.
Figure 3 shows the mycosporine-like amino acid biosynthetic pathway of recombinant S. cerevisiae and the shinoline biosynthesis enzyme gene derived from Actinosynnema mirum .
4 shows a process for preparing expression cassettes of Amir4256 and Amir4257, which are genes for synoline biosynthesis enzymes derived from Actinosynnema mirum .
5 shows that the Amir4256, Amir4257, Amir4258, and Amir4259 genes, which are genes for synoline biosynthesis enzymes derived from Actinosynnema mirum, are inserted into the intergenic regions of INT#4 and INT#6 of S. cerevisiae .
Figure 6 shows the process of removing the TAL1 gene through genome editing using CRISPR-Cas9 gene scissors.
Figure 7 shows the HPLC results for confirming the production of shinorine in the recombinant S. cerevisiae (DM strain) of the present invention. The D452-2 strain is a control. A is to confirm the production of shinorine in the cell, and B is to confirm the production of shinorine in the medium.
8 shows LC-MS/MS spectroscopic analysis of shinorine produced by the DM strain. LC-MS/MS spectra of authentic Shinorin standards and LC-MS/MS spectra of cell extracts of strain DM. Conditions: ESI (positive), 2.5 kV, m/z 50-800, 40 V, 800 L/h, 500 °C, 150 °C, 0.5 mM sodium formate, leucine-enkephalin (m/z 556.2771)
Figure 9 shows shinorine production in batch fermentation by recombinant S. cerevisiae (DM strain). (A) Batch fermentation profile. Batch fermentation was performed in YP medium containing 20 g/L glucose at 30° C. and 250 rpm. The strain initial inoculum was inoculated at OD 600 1; (B) Concentration of shinorine in cell fractions and media produced by D452-2 and DM strains; (C) the content of shinorine produced by strains D452-2 and DM; (D) Productivity of shinoline produced by D452-2 and DM strains.
Figure 10 shows shinorine production in batch fermentation by recombinant S. cerevisiae (strain DX-M). (A) Batch fermentation profile using glucose; (B) Batch fermentation profile using a mixture of glucose and xylose. Batch fermentation was carried out at 30° C. and 250 rpm in YP medium containing 20 g/L glucose or a mixture of 10 g/L glucose and 10 g/L xylose. The strain was inoculated at an initial inoculation concentration of OD 600 1 . (C) cell fraction and shinoline concentration in the medium produced by strain DX-M in batch fermentation using glucose and batch fermentation using a mixture of glucose and xylose; (D) shinoline content produced by strain DX-M in batch fermentation using glucose and batch fermentation using a mixture of glucose and xylose; (E) Productivity of shinorine produced by batch fermentation using glucose and batch fermentation DX-M strain using a mixture of glucose and xylose.
11 shows shinoline production in batch fermentation by recombinant S. cerevisiae (DXdT-M) on a single carbon source. Fermentation profile, concentration and content of shinorine in batch fermentation when fed with glucose (A) or xylose (B). Fermentation was performed in YP medium containing 20 g/L of glucose or xylose at 30°C and 250 rpm. Cells of the DXdT-M strain were inoculated at an initial OD600 of 1. Shinorine concentration includes the amount of shinorine in the medium and the cell fraction produced by the DXdT-M strain.
Figure 12 shows shinoline production in batch fermentation by recombinant S. cerevisiae (strain DXdT-M) under a mixture of glucose and xylose. Fermentation profile, concentration and content of shinorine in batch fermentation when mixtures of 10 g/L glucose and 10 g/L xylose (A) or 50 g/L glucose and 50 g/L xylose (B) were fed. Fermentation was performed at 30° C. and 250 rpm in YP medium in which glucose and xylose were mixed. The initial inoculation concentration of the DXdT-M strain was inoculated at OD 600 1 . Shinorine concentration includes the amount of shinorine in the medium and the cell fraction produced by the DXdT-M strain.
13 shows shinoline production in batch fermentation by recombinant S. cerevisiae (strain DXdP-M) under a single carbon source. Fermentation profile, concentration and content of shinorine in batch fermentation under glucose (A) or xylose (B) feeding. Fermentation was performed in YP medium containing 20 g/L of glucose or xylose at 30°C and 250 rpm. Cells of the DXdP-M strain were inoculated at an initial OD 600 of 1. Shinorine concentration includes the amount of shinorine in the cell fraction and medium produced by the DXdP-M strain.
Figure 14 shows shinoline production in batch fermentation by recombinant S. cerevisiae (strain DXdP-M) under a mixture of glucose and xylose. Fermentation profile, concentration and content of shinorine in batch fermentation when mixtures of 10 g/L glucose and 10 g/L xylose (A) or 50 g/L glucose and 50 g/L xylose (B) were fed. Fermentation was performed at 30° C. and 250 rpm in YP medium in which glucose and xylose were mixed. DXdP-M strain was inoculated at an initial inoculation concentration of OD 600 1. Shinorine concentration includes the amount of shinorine in the cell fraction and medium produced by the DXdP-M strain.
15 shows shinoline production in batch fermentation by recombinant S. cerevisiae (DXdTdP-M) on a single carbon source. Fermentation profile, concentration and content of shinorine in batch fermentation under glucose (A) or xylose (B) feeding. Fermentation was performed in YP medium containing 20 g/L of glucose or xylose at 30°C and 250 rpm. DXdTdP-M strain was inoculated at an initial inoculation concentration of OD 600 1 . Shinorine concentration includes the amount of shinorine in the medium and the cell fraction produced by the DXdTdP-M strain.
16 shows shinorine production in batch fermentation by recombinant S. cerevisiae (strain DXdTdP-M) under a mixture of glucose and xylose. Fermentation profile, concentration and content of shinorine in batch fermentation when mixtures of 10 g/L glucose and 10 g/L xylose (A) or 50 g/L glucose and 50 g/L xylose (B) were fed. Fermentation was performed at 30° C. and 250 rpm in YP medium in which glucose and xylose were mixed. The initial inoculation concentration of strain DXdTdP-M was inoculated at OD 600 1. Shinorine concentration includes the amount of shinorine in the medium and the cell fraction produced by the DXdTdP-M strain.
17 shows shinoline production in fed-batch fermentation by recombinant S. cerevisiae (DXdT-M) while feeding glucose and xylose. Fermentation, concentration, content and productivity profiles of shinoline in fed-batch fermentation fed intermittently with glucose (A) or xylose (B). In fed-batch fermentation with xylose added, glucose was continuously supplied after the glucose initially added was exhausted to maintain a concentration of 2 g/L (B). In CE, Glc and Glc & Xyl mean values corresponding to the concentration, content, and productivity of shinorine in fed-batch fermentation that supplies glucose (A) and xylose (B), respectively.
18 shows time course profiling of the concentration and content of shinorine produced by strain DXdT-M during fed-batch fermentation fed xylose. Values were obtained during fed-batch fermentation in which xylose was intermittently added while continuously supplying glucose (related to B in FIG. 17 ).
19 shows the production of shinorine using hydrolysates extracted from rice using the DXdT-M strain. It is a graph of fermentation profile (A), concentration (B), content (C) and productivity (D) of shinorine during batch fermentation including hydrolyzate extracted from rice raw material. Fermentation was performed in YP medium containing hydrolysate at 30 °C and 250 rpm. The initial inoculation concentration of the DXdT-M strain was inoculated at OD 600 1 . Shinorine concentration includes the amount of shinorine in the medium and the cell fraction produced by the DXdT-M strain.
20a to 20d show the codon-optimized gene sequences of Amir4256, Amir4257, Amir4258 and Amir4259 genes derived from Actinocinema mirum used in the present invention. FIG. 19a shows the base sequence of SEQ ID NO: 1, FIG. 19b shows the base sequence of SEQ ID NO: 2, FIG. 19c shows the base sequence of SEQ ID NO: 3, and FIG. 19d shows the base sequence of SEQ ID NO: 4.
21a to 21d show the nucleotide sequence of Donor DNA used in genome editing using CRISPR-Cas9 gene scissors. Figure 21a shows the nucleotide sequence of GPD P -Amir4258-CYC1 T -TEF P -Amir4259-GPM1 T Donor DNA targeting the intergenic #4 intergenic region of the chromosome of Saccharomyces cerevisiae strain (SEQ ID NO: 73). Figure 21b shows the nucleotide sequence of GPD P -Amir4257-CYC1 T -TEF P -Amir4256-GPM1 T Donor DNA targeting the intergenic #6 intergenic region of the chromosome of Saccharomyces cerevisiae strain (SEQ ID NO: 74). 21c shows the nucleotide sequence of Donor DNA for TAL1 gene deletion targeting TAL1 gene (SEQ ID NO: 75). 21D shows the nucleotide sequence of Donor DNA for PHO13 gene deletion targeting PHO13 gene (SEQ ID NO: 76). 21a and 21b, the nucleotide sequence of the GPD promoter is shown in green small letters, the TEF promoter nucleotide sequence is shown in black small letters, the CYC1 terminator is shown in purple capital letters, and the GPM1 terminator is shown in maroon capital letters. Amir4256, Amir4257, Amir4258 and Amir4259 sequences are shown in blue. The upstream sequences of FIGS. 21c and 21d are blue fluorescence, and the downstream sequences are yellow fluorescence.

본 발명은 다량의 시노린을 신속하게 생산할 수 있는 사카로미세스 세레비시아(Saccharomyces cerevisiae) 균주 및 상기 균주를 이용해 시노린을 생산하는 방법에 관한 것이다.The present invention relates to a Saccharomyces cerevisiae strain capable of rapidly producing a large amount of shinorine and a method for producing shinorine using the strain.

본 발명에서 D452-2는 대조군 균주, D-M은 마이코스포린 생합성 유전자가 도입된 균주, DXS는 자일로스 대사 유전자가 도입된 균주, DX-M은 마이코스포린 생합성 유전자 및 자일로스 대사 유전자가 도입된 균주, DXdP는 자일로스 대사 유전자가 도입되어 있고 PHO13 유전자가 결손 되어있는 균주, DXdP-M은 마이코스포린 생합성 유전자 및 자일로스 대사 유전자가 도입되어 있고, PHO13 유전자가 결손 되어있는 균주, DXdT는 자일로스 대사 유전자가 도입되어 있고 TAL1 유전자가 결손 되어있는 균주, DXdT-M은 마이코스포린 생합성 유전자 및 자일로스 대사 유전자가 도입되어 있고, TAL1 유전자가 결손 되어있는 균주, DXdPdT는 자일로스 대사 유전자가 도입되어 있고 PHO13TAL1 유전자가 결손 되어있는 균주, DXdPdT-M은 마이코스포린 생합성 유전자 및 자일로스 대사 유전자가 도입되어 있고, PHO13TAL1 유전자가 결손 되어있는 균주이다(표 1).In the present invention, D452-2 is a control strain, DM is a strain into which a mycosporine biosynthetic gene is introduced, DXS is a strain into which a xylose metabolism gene is introduced, and DX-M is a strain into which a mycosporine biosynthetic gene and a xylose metabolism gene are introduced, DXdP is a strain in which the xylose metabolism gene is introduced and the PHO13 gene is deficient, DXdP-M is a strain in which the mycosporine biosynthesis gene and xylose metabolism gene are introduced and the PHO13 gene is deficient, and DXdT is the xylose metabolism gene is introduced and the TAL1 gene is deleted, DXdT-M is a strain in which the mycosporine biosynthesis gene and xylose metabolism gene are introduced, and the TAL1 gene is deleted, DXdPdT is a xylose metabolism gene is introduced and PHO13 and DXdPdT-M, a strain in which the TAL1 gene is deleted, is a strain in which the mycosporine biosynthesis gene and the xylose metabolism gene are introduced, and the PHO13 and TAL1 genes are deleted (Table 1).

본 발명은 악티노신네마 미룸(Actinosynnema mirum) 유래 마이코스포린유사아미노산(mycosporine-like amino acids) 생합성 유전자가 도입되어 있는 사카로미세스 세레비시아(Saccharomyces cerevisiae) 균주를 제공한다.The present invention provides a Saccharomyces cerevisiae strain into which a mycosporine-like amino acids biosynthetic gene derived from Actinosynnema mirum has been introduced.

악티노신네마 미룸(Actinosynnema mirum) 유래 마이코스포린유사아미노산 생합성 유전자는 예컨대 DHQS(3-dehydroquinate synthase), O-MT(O-methyltransferase), ATP-grasp ligase 및 D-ala-D-ala ligase를 코딩하는 유전자일 수 있고, 상기 악티노신네마 미룸유래 마이코스포린유사아미노산 생합성 유전자는 코돈최적화(codon optimization)된 유전자일 수 있으며, 예컨대 서열번호 1 내지 4의 염기서열을 갖는 유전자일 수 있다. 서열번호 1의 염기서열을 갖는 유전자는 D-ala-D-ala ligase를 코딩하는 유전자(Amir4256), 서열번호 2의 염기서열을 갖는 유전자는 ATP-grasp ligase를 코딩하는 유전자(Amir4257), 서열번호 3의 염기서열을 갖는 유전자는 O-MT(O-methyltransferase)를 코딩하는 유전자(Amir4258), 서열번호 4의 염기서열을 갖는 유전자는 DHQS(3-dehydroquinate synthase)를 코딩하는 유전자(Amir4259)이다.Mycosporine-like amino acid biosynthetic genes derived from Actinosynnema mirum encode, for example, DHQS (3-dehydroquinate synthase), O-MT (O-methyltransferase), ATP-grasp ligase and D-ala-D-ala ligase The gene for the biosynthesis of mycosporine-like amino acid derived from Actinocinema mirum may be a codon-optimized gene, for example, a gene having a nucleotide sequence of SEQ ID NOs: 1 to 4. The gene having the nucleotide sequence of SEQ ID NO: 1 is a gene encoding D-ala-D-ala ligase (Amir4256), the gene having the nucleotide sequence of SEQ ID NO: 2 is a gene encoding ATP-grasp ligase (Amir4257), SEQ ID NO: The gene having the nucleotide sequence of 3 is the gene encoding O-MT (O-methyltransferase) (Amir4258), and the gene having the nucleotide sequence of SEQ ID NO: 4 is the gene (Amir4259) encoding DHQS (3-dehydroquinate synthase).

본 발명의 사카로미세스 세레비시아 균주는 서열번호 1 내지 4의 염기서열을 갖는 마이코스포린유사아미노산 생합성 유전자들이 도입된 것일 수 있다.The Saccharomyces cerevisiae strain of the present invention may be one into which mycosporine-like amino acid biosynthetic genes having the nucleotide sequences of SEQ ID NOs: 1 to 4 have been introduced.

상기 마이코스포린유사아미노산 생합성 유전자는 상기 사카로미세스 세레비시아 염색체 내에 도입된 것일 수 있다. 예컨대 마이코스포린유사아미노산 생합성 효소 유전자는 사카로미세스 세레비시아 균주의 ATG33 유전자 상류(upstream)의 유전자 간 영역(int#6)과 ASF1 유전자 상류(upstream)의 유전자 간 영역(int#4)에 도입되어 있는 것일 수 있다.The mycosporine-like amino acid biosynthetic gene may be introduced into the Saccharomyces cerevisiae chromosome. For example, the mycosporine-like amino acid biosynthetic enzyme gene was introduced into the ATG33 gene upstream intergenic region (int#6) and the ASF1 gene upstream intergenic region (int#4) of the Saccharomyces cerevisiae strain. it may have been

마이코스포린유사아미노산 생합성 유전자는 상기 사카로미세스 세레비시아 염색체 내 도입은 CRISPER/Cas9 유전자 가위를 이용한 것일 수 있다.The mycosporine-like amino acid biosynthetic gene may be introduced into the Saccharomyces cerevisiae chromosome using CRISPER/Cas9 genetic scissors.

본 발명의 일 실시예에서 CRISPER/Cas9 유전자 가위를 이용해 Amir4256 및 Amir4257 유전자는 사카로미세스 세레비시아 균주의 int#6 유전자 간 영역에 도입되었고, Amir4258 및 Amir4259 유전자는 사카로미세스 세레비시아 균주의 int#4 유전자 간 영역에 도입되었다.In one embodiment of the present invention, the Amir4256 and Amir4257 genes were introduced into the int # 6 intergenic region of the Saccharomyces cerevisiae strain using CRISPER / Cas9 genetic scissors, and the Amir4258 and Amir4259 genes were introduced into the Saccharomyces cerevisiae strain. int#4 was introduced into the intergenic region.

상기 마이코스포린유사아미노산 생합성 유전자와 작동 가능하게 연결되는 프로모터 및 터미네이터의 종류는 제한되지 않는다.The types of promoters and terminators operably linked to the mycosporine-like amino acid biosynthetic gene are not limited.

본 발명의 일 실시예에서 Amir4256 및 Amir4259 유전자는 TEF 프로모터와 GPM1 터미네이터에 작동 가능하게 연결시켰으며, Amir4257 및 Amir4258 유전자는 GPD 프로모터와 CYC1 터미네이터에 작동 가능하게 연결시켰다.In one embodiment of the present invention, the Amir4256 and Amir4259 genes are operably linked to the TEF promoter and the GPM1 terminator, and the Amir4257 and Amir4258 genes are operably linked to the GPD promoter and the CYC1 terminator.

마이코스포린유사아미노산 생합성 유전자가 도입된 사카로미세스 세레비시아 균주는 시노린(Shinorine)을 생산할 수 있다.A strain of Saccharomyces cerevisiae into which a mycosporine-like amino acid biosynthesis gene has been introduced can produce Shinorine.

본 발명의 악티노신네마 미룸(Actinosynnema mirum) 유래 마이코스포린유사아미노산 생합성 유전자가 도입되어 있는 사카로미세스 세레비시아(Saccharomyces cerevisiae) 균주는 TAL1 유전자가 결손되어 있는 것일 수 있다.The Saccharomyces cerevisiae strain into which the mycosporine-like amino acid biosynthesis gene derived from Actinosynnema mirum of the present invention has been introduced may have a TAL1 gene deletion.

TAL1 유전자는 셔얼번호 5의 염기서열로 이루어진 것일 수 있다. The TAL1 gene may be composed of the nucleotide sequence of Cheryl No. 5.

본 발명의 일 실시예에서 CRISPER/Cas9 유전자 가위를 이용해 사카로미세스 세레비시아(Saccharomyces cerevisiae) 균주에서 TAL1 유전자를 결손시켰으며, 이를 위해 서열번호 75의 염기서열로 이루어진 donor DNA를 이용했다.In one embodiment of the present invention, the TAL1 gene was deleted in the Saccharomyces cerevisiae strain using CRISPER/Cas9 genetic scissors, and for this purpose, donor DNA consisting of the nucleotide sequence of SEQ ID NO: 75 was used.

TAL1 유전자가 결손됨으로써 마이코스포린유사아미노산의 중간체인 S7P(sedoheptulose 7-phosphate)가 해당 과정에 이용되는 것을 막아 S7P의 축적량을 증가시킬 수 있으며, 이로 인해 마이코스포린유사아미노산(특히 시노린)의 생산량 및 생산효율이 증가될 수 있다.Deletion of the TAL1 gene prevents S7P (sedoheptulose 7-phosphate), an intermediate of mycosporine-like amino acids, from being used in glycolysis, which can increase the accumulation of S7P, thereby increasing the production and production of mycosporine-like amino acids (especially shinoline). Production efficiency can be increased.

본 발명의 악티노신네마 미룸(Actinosynnema mirum) 유래 마이코스포린유사아미노산 생합성 유전자가 도입되어 있는 사카로미세스 세레비시아(Saccharomyces cerevisiae) 균주는 자일로스 대사 유전자가 추가로 도입된 것일 수 있고, 자일로스 대사 유전자는 예컨대 자일로스 리덕타아제 유전자, 자일리톨 디하이드로지나아제 유전자 및 자일로 키나아제 유전자일 수 있다.The Saccharomyces cerevisiae strain into which the actinosynnema mirum-derived mycosporine-like amino acid biosynthetic gene of the present invention has been introduced may have a xylose metabolism gene additionally introduced, and the xylose The metabolic gene can be, for example, a xylose reductase gene, a xylitol dehydrogenase gene and a xylokinase gene.

자일로스 대사 유전자는 Scheffersomyces stipitis(=Pichia stipitis) 유래 자일로스 리덕타아제 유전자(XYL1, mutant XYL1), 자일리톨 디하이드로지나아제 유전자(XYL2) 및 자일로 키나아제 유전자(XYL3)일 수 있다.The xylose metabolism gene may be a xylose reductase gene (XYL1, mutant XYL1) derived from Scheffersomyces stipitis (=Pichia stipitis) , a xylitol dehydrogenase gene (XYL2), and a xylokinase gene (XYL3).

XYL1 유전자는 서열번호 6의 아미노산 서열을 갖는 단백질을 코딩하는 유전자일 수 있고, 예컨대 서열번호 7의 염기서열을 갖는 유전자일 수 있다. mutant XYL1 유전자는 서열번호 8의 아미노산 서열을 갖는 단백질을 코딩하는 유전자일 수 있고, 예컨대 서열번호 9의 염기서열을 갖는 유전자일 수 있다. XYL2 유전자는 서열번호 10의 아미노산 서열을 갖는 단백질을 코딩하는 유전자일 수 있고, 예컨대 서열번호 11의 염기서열을 갖는 유전자일 수 있다. XYL3 유전자는 서열번호 12의 아미노산 서열을 갖는 단백질을 코딩하는 유전자일 수 있고, 예컨대 서열번호 13의 염기서열을 갖는 유전자일 수 있다. The XYL1 gene may be a gene encoding a protein having the amino acid sequence of SEQ ID NO: 6, for example, a gene having the nucleotide sequence of SEQ ID NO: 7. The mutant XYL1 gene may be a gene encoding a protein having the amino acid sequence of SEQ ID NO: 8, for example, a gene having the nucleotide sequence of SEQ ID NO: 9. The XYL2 gene may be a gene encoding a protein having the amino acid sequence of SEQ ID NO: 10, for example, a gene having the nucleotide sequence of SEQ ID NO: 11. The XYL3 gene may be a gene encoding a protein having the amino acid sequence of SEQ ID NO: 12, for example, a gene having the nucleotide sequence of SEQ ID NO: 13.

상기 자일로스 리덕타아제 유전자는 NADPH 의존성 자일로스 리덕타아제 유전자(XYL1) 및 NADH 의존성 자일로스 리덕타아제 유전자(mutant XYL1)를 모두 포함하는 것일 수 있으며, 예컨대 서열번호 6 및 8의 아미노산 서열을 갖는 단백질을 코딩하는 유전자를 모두 포함하는 것일 수 있다.The xylose reductase gene may include both the NADPH-dependent xylose reductase gene (XYL1) and the NADH-dependent xylose reductase gene (mutant XYL1), for example, the amino acid sequences of SEQ ID NOs: 6 and 8 It may include all genes encoding proteins having.

본 발명의 일 실시예에서 사카로미세스 세레비시아(Saccharomyces cerevisiae) 균주에 도입되는 자일로스 대사 유전자는 서열번호 7, 9, 11 및 13의 염기서열로 이루어진 유전자이다.In one embodiment of the present invention, Saccharomyces cerevisiae ( Saccharomyces cerevisiae ) The xylose metabolism gene introduced into the strain is a gene consisting of the nucleotide sequences of SEQ ID NOs: 7, 9, 11 and 13.

상기 자일로스 대사 유전자가 도입된 사카로미세스 세레비시아 균주는 NADPH 의존성 자일로스 리덕타아제 유전자 및 NADH 의존성 자일로스 리덕타아제 유전자를 모두 포함함으로써, 자일로스(Xylose)를 자일리톨(Xylitol)로 전환시키는데 NADPH 및 NADH이 효율적으로 이용된다. 이로 인해 자일로스 대사 효율이 좋아지므로, 마이코스포린(특히 시노린) 생산량 및 생산 효율이 증가될 수 있다.The Saccharomyces cerevisiae strain into which the xylose metabolism gene was introduced contains both the NADPH-dependent xylose reductase gene and the NADH-dependent xylose reductase gene, thereby converting xylose into xylitol NADPH and NADH are efficiently used to As a result, xylose metabolism efficiency is improved, and thus mycosporine (particularly shinorine) production and production efficiency may be increased.

상기 자일로스 대사 유전자는 상기 사카로미세스 세레비시아 염색체 내에 도입된 것일 수 있다.The xylose metabolism gene may be introduced into the Saccharomyces cerevisiae chromosome.

마이코스포린유사아미노산 생합성 유전자가 염색체 내 도입된 균주는 재조합 벡터가 직접 삽입된 균주에 비해 배양이 용이하고, 목적하는 마이코스포린유사아미노산(시노린)의 대량 생산시 비용 및 시간을 절감할 수 있다.A strain into which a mycosporine-like amino acid biosynthetic gene has been introduced into the chromosome is easier to culture than a strain into which a recombinant vector has been directly inserted, and cost and time can be reduced in mass production of the desired mycosporine-like amino acid (shinoline).

본 발명의 악티노신네마 미룸(Actinosynnema mirum) 유래 마이코스포린유사아미노산 생합성 유전자가 도입되어 있는 사카로미세스 세레비시아(Saccharomyces cerevisiae) 균주는 TAL1 유전자가 결손되어 있으면서, 자일로스 대사 유전자(자일로스 리덕타아제 유전자, 자일리톨 디하이드로지나아제 유전자 및 자일로 키나아제)가 추가로 도입되어 있는 것일 수 있다.The Saccharomyces cerevisiae strain into which the actinosynnema mirum-derived mycosporine-like amino acid biosynthetic gene of the present invention has been introduced has a TAL1 gene deletion and a xylose metabolism gene (xylose lysate) ductase gene, xylitol dehydrogenase gene, and xylokinase) may be additionally introduced.

본 발명의 일 실시예에서 악티노신네마 미룸(Actinosynnema mirum) 유래 마이코스포린유사아미노산 생합성 유전자가 도입되어 있고, TAL1 유전자가 결손되어 있으면서, 자일로스 대사 유전자(자일로스 리덕타아제 유전자, 자일리톨 디하이드로지나아제 유전자 및 자일로 키나아제)가 추가로 도입되어 있는 사카로미세스 세레비시아(Saccharomyces cerevisiae) 균주 DXdT-M을 제조했다. DXdT-M의 시노린 생산량(도 12)은 마이코스포린유사아미노산 생합성 유전자만을 도입한 균주(D-M, 도 9), 마이코스포린유사아미노산 생합성 유전자 및 자일로스 대사 유전자를 도입한 균주(DX-M, 도 10), 마이코스포린유사아미노산 생합성 유전자 및 자일로스 대사 유전자를 도입하고 PHO13 유전자를 결손시킨 균주(DXdP-M, 도 14)및 마이코스포린유사아미노산 생합성 유전자와 자일로스 대사 유전자를 도입하고 TAL1 유전자와 PHO13 유전자를 결손시킨 균주(DXdTdP-M, 도 16)보다 생산량이 월등히 뛰어났다.In one embodiment of the present invention, a mycosporine-like amino acid biosynthetic gene derived from Actinosynnema mirum is introduced, the TAL1 gene is deleted, and the xylose metabolism gene (xylose reductase gene, xylitol dehydrogenase gene) is introduced. A Saccharomyces cerevisiae strain DXdT-M into which a gynase gene and xylokinase) were additionally introduced was prepared. DXdT-M's production of shinoline (Fig. 12) was measured in the strain introduced with only mycosporine-like amino acid biosynthetic gene (DM, Fig. 9) and the strain introduced with mycosporine-like amino acid biosynthetic gene and xylose metabolism gene (DX-M, Fig. 9). 10), a strain in which the mycosporine-like amino acid biosynthetic gene and the xylose metabolism gene were introduced and the PHO13 gene was deleted (DXdP-M, FIG. 14), and the mycosporine-like amino acid biosynthetic gene and the xylose metabolism gene were introduced and the TAL1 gene and PHO13 gene were introduced. The yield was far superior to that of the gene-defective strain (DXdTdP-M, FIG. 16).

본 발명의 악티노신네마 미룸(Actinosynnema mirum) 유래 마이코스포린유사아미노산 생합성 유전자, 자일로스 대사 유전자(자일로스 리덕타아제 유전자, 자일리톨 디하이드로지나아제 유전자 및 자일로 키나아제)가 도입되어 있고 TAL1 유전자가 결손되어 있는 사카로미세스 세레비시아(Saccharomyces cerevisiae) 균주는 탄소원으로 리그노셀룰로오스를 이용할 수 있으며, 리그노셀룰로오스를 이용한 경우에도 시노린 생산성이 뛰어나다.The mycosporine-like amino acid biosynthesis gene and xylose metabolism gene (xylose reductase gene, xylitol dehydrogenase gene and xylokinase) derived from Actinosynnema mirum of the present invention are introduced, and the TAL1 gene Defective Saccharomyces cerevisiae ( Saccharomyces cerevisiae ) strain can use lignocellulose as a carbon source, and even when lignocellulose is used, the productivity of shinorine is excellent.

본 발명의 일 실시예에서 DXdT-M 균주는 리그노셀룰로오스 가수분해물로부터 54 mg/L의 시노린을 생산할 수 있음을 확인하였다.In one embodiment of the present invention, it was confirmed that the DXdT-M strain can produce 54 mg/L of shinorine from lignocellulosic hydrolysate.

본 발명은 기탁번호 KCTC14827BP인 사카로미세스 세레비시아 균주를 제공한다. 상기 기탁번호 KCTC 14827BP 균주는 본 발명의 DXdT-M 균주이다. 악티노신네마 미룸(Actinosynnema mirum) 유래 마이코스포린유사아미노산 생합성 유전자(Amir4256, Amir4257, Amir4258 및 Amir4259) 및 Scheffersomyces stipitis(=Pichia stipitis) 유래 자일로스 대사 유전자(전술한 XYL1, mutantXYL1, XYL2 및 XYL3)가 도입되어 있고 TAL1 유전자가 결손 되어있는 신규한 균주로 시노린 생산성이 뛰어나다. 또한, 상기 균주는 리그노셀룰로오스 가수분해물로부터 다량의 시노린을 생산할 수 있어 시노린의 친환경적이고 경제적인 생산에 이용될 수 있다.The present invention provides a strain of Saccharomyces cerevisiae, accession number KCTC14827BP. The accession number KCTC 14827BP strain is the DXdT-M strain of the present invention. Mycosporin-like amino acid biosynthetic genes (Amir4256, Amir4257, Amir4258 and Amir4259) derived from Actinosynnema mirum and xylose metabolism genes (XYL1, mutantXYL1, XYL2 and XYL3 described above) derived from Scheffersomyces stipitis (=Pichia stipitis ) It is a novel strain introduced and lacking the TAL1 gene, and has excellent shinoline productivity. In addition, the strain can produce a large amount of shinoline from lignocellulosic hydrolysates, and thus can be used for eco-friendly and economical production of shinoline.

본 발명은 전술한 어느 한 사카로미세스 세레비시아 균주를 배양하는 단계를 포함하는 시노린의 생산 방법을 제공한다.The present invention provides a method for producing shinorine comprising the step of culturing any one of the above-described Saccharomyces cerevisiae strains.

균주의 배양방법은 제한되지 않으며, 예컨대 회분식 배양방법 또는 유가식 배양방법으로 배양될 수 있다.The culturing method of the strain is not limited, and may be cultured by, for example, a batch culture method or a fed-batch culture method.

본 발명은 자일로스 및 글루코스를 탄소원으로 사용하는 시노린의 생산 방법을 제공한다.The present invention provides a method for producing shinorine using xylose and glucose as carbon sources.

자일로스 및 글루코스를 동시에 탄소원으로 사용함으로써 사카로미세스 세레비시아 균주의 시노린 생산량 및 생산효율을 증가시킬 수 있다.By using xylose and glucose as carbon sources at the same time, it is possible to increase the production and production efficiency of shinoline in Saccharomyces cerevisiae strains.

자일로스 및 글루코스를 동시에 탄소원으로 사용할 때, 배양물의 글루코스 농도는 저농도로 유지시키면서 자일로스를 공급하는 경우 시노린 생산량 및 생산효율을 증가시킬 수 있다(도 17 B). 예컨대 배양물의 글루코스 농도를 1 내지 5g/L의 저농도로 유지시키면서 자일로스를 공급하는 것일 수 있다.When xylose and glucose are used as carbon sources at the same time, the production of shinoline and production efficiency can be increased when xylose is supplied while maintaining the glucose concentration of the culture at a low concentration (FIG. 17 B). For example, xylose may be supplied while maintaining the glucose concentration of the culture at a low concentration of 1 to 5 g/L.

본 발명의 일실시예에서 DXdT-M 균주를 이용한 유가식(fed-batch) 발효에서 글루코스의 농도를 2g/L의 저농도로 유지시키고 자일로스를 간헐적으로 공급하여 71시간동안 751 mg/L의 시노린을 얻었다. 즉 시간당 11 mg/L의 생산성을 보여주었다.In one embodiment of the present invention, in fed-batch fermentation using the DXdT-M strain, the concentration of glucose was maintained at a low concentration of 2 g / L and xylose was supplied intermittently to obtain 751 mg / L of cyano for 71 hours. got a lyn That is, it showed a productivity of 11 mg/L per hour.

이하, 본 발명을 실시예로 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with examples.

실시예Example

1. 재료 및 방법1. Materials and Methods

1.1. 기본 균주1.1. base strain

본 발명에는 표 1에 기재된 균주를 사용하였다. E. coli DH5α는 유전자 조작 및 복제에 사용되었고, S. cerevisiae D452-2는 대조군 및 재조합 균주 제작을 위한 기본 균주로 사용되었다. The strains listed in Table 1 were used in the present invention. E. coli DH5α was used for genetic manipulation and cloning, and S. cerevisiae D452-2 was used as a control and basic strain for recombinant strain construction.

자일로스로부터 MAA를 생산하고 TAL1 및/또는 PHO13 유전자의 결실을 갖는 재조합 균주를 제작하기 위한 숙주로서 DXS균주를 활용하였다. S. cerevisiae DXS 균주는 "Jo JH, Park YC, Jin YS, Seo JH. Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipites"에 기재된 방법에 따라 제작하였다.The DXS strain was utilized as a host for constructing a recombinant strain producing MAA from xylose and having deletion of TAL1 and/or PHO13 genes. The S. cerevisiae DXS strain was prepared according to the method described in "Jo JH, Park YC, Jin YS, Seo JH. Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipites".

1.2. 플라스미드 제작1.2. Plasmid construction

본 발명에서 사용한 플라스미드를 표 2에 기재하였다. 플라스미드 및 균주를 제작하기 위한 프라이머와 콜로니 PCR을 위한 프라이머는 표 3과 4에 각각 기재하였다. Amir4256, Amir4257, Amir4258 및 Amir4259의 S. cerevisiae codon-optimized 유전자는 표 5와 같으며, 이들 서열의 제작은 Macrogen(Seoul, Korea)에서 수행되었다.Plasmids used in the present invention are listed in Table 2. Primers for constructing plasmids and strains and primers for colony PCR are listed in Tables 3 and 4, respectively. The S. cerevisiae codon-optimized genes of Amir4256, Amir4257, Amir4258 and Amir4259 are shown in Table 5, and these sequences were prepared by Macrogen (Seoul, Korea).

Amir4256, Amir4257, Amir4258 및 Amir4259 유전자를 증폭하기 위해 Phusion high-fidelity DNA polymerase (New England Biolabs, Ipswich, MA)를 사용하여 중합효소 연쇄 반응(PCR)을 수행하였고, 증폭된 DNA는 Gibson Assembly kit(New England Biolabs, Ipswich, MA)로 조립되었다. p425GPDP-Amir4257-CYC1T 및 p426TEFP-Amir4259-GPM1T를 생성하기 위해 각각 증폭된 Amir4257 및 Amir4259를 BamHI 및 XhoI 처리된 p425GPDP-CYC1T에 조립하였다. p426TEFP-CYC1T를 구성하기 위해, D452-2 게놈 DNA로부터 TEF 프로모터를 증폭시킨 다음, 단편을 SacI 및 SpeI의 제한 효소로 절단된 p426GPDP-CYC1T로 조립하였다. Amir4259의 codon-optimized nucleotides에서 증폭된 Amir4259와 D452-2 genomic DNA에서 GPM1 terminator를 PCR로 얻었다. p426TEFP-CYC1T는 BamHI 및 KpnI로 절단되었다. 3개의 단편을 Gibson 조립 키트로 조립하여 p426TEFP-Amir4259-GPM1T를 구성했다. Amir4256 및 p426TEFP-GPM1T는 합성된 Amir4256 및 p426TEFP-Amir4259-GPM1T로부터 해당 프라이머로 PCR을 수행하여 제조하고 라이게이션하여 p426TEFP-Amir4256-GPM1T를 제조했다. p426TEFP-Amir4256-GPM1T-GPDP-Amir4257-CYC1T를 제조하기 위해 TEFP-Amir4256-GPM1T의 발현 카세트를 p426TEFP-Amir4256-GPM1T에서 증폭했다. 순차적으로, 단편들은 SacI에 의해 선형화된 p425GPDP-Amir4257-CYC1T로 조립되었다. 유사하게, TEFP-Amir4259-GPM1T는 p426TEFP-Amir4259-GPM1T에서 얻은 다음 SacI에 의해 절단된 선형화된 p424GPDP-Amir4258-CYC1T와 연결되어 p424GPDP-Amir4258-CYC1T-TEFP-Amir4259-GPM1T가 되었다. Promega(Madison, WI)의 키트를 사용하여 플라스미드 제조 및 젤 추출을 수행했다(도 4).Polymerase chain reaction (PCR) was performed using Phusion high-fidelity DNA polymerase (New England Biolabs, Ipswich, MA) to amplify the Amir4256, Amir4257, Amir4258 and Amir4259 genes, and the amplified DNA was prepared using the Gibson Assembly kit (New England Biolabs, Ipswich, MA). The amplified Amir4257 and Amir4259, respectively, were assembled into BamHI and XhoI treated p425GPDP-CYC1T to generate p425GPDP-Amir4257-CYC1T and p426TEFP-Amir4259-GPM1T. To construct p426TEFP-CYC1T, the TEF promoter was amplified from D452-2 genomic DNA, and then the fragment was assembled into p426GPDP-CYC1T digested with SacI and SpeI restriction enzymes. The GPM1 terminator was obtained by PCR from Amir4259 and D452-2 genomic DNA amplified from codon-optimized nucleotides of Amir4259. p426TEFP-CYC1T was digested with BamHI and KpnI. The three fragments were assembled with a Gibson assembly kit to construct p426TEFP-Amir4259-GPM1T. Amir4256 and p426TEFP-GPM1T were prepared from the synthesized Amir4256 and p426TEFP-Amir4259-GPM1T by PCR with the corresponding primers and ligated to prepare p426TEFP-Amir4256-GPM1T. To construct p426TEFP-Amir4256-GPM1T-GPDP-Amir4257-CYC1T, the expression cassette of TEFP-Amir4256-GPM1T was amplified from p426TEFP-Amir4256-GPM1T. Sequentially, the fragments were assembled into p425GPDP-Amir4257-CYC1T linearized by SacI. Similarly, TEFP-Amir4259-GPM1T was obtained from p426TEFP-Amir4259-GPM1T and then ligated with the linearized p424GPDP-Amir4258-CYC1T cleaved by SacI, resulting in p424GPDP-Amir4258-CYC1T-TEFP-Amir4259-GPM1T. Plasmid preparation and gel extraction were performed using a kit from Promega (Madison, WI) (FIG. 4).

1.3. CRISPR-Cas9를 사용한 게놈 편집1.3. Genome editing using CRISPR-Cas9

시노린 생합성 경로와 관련된 발현 카세트의 도입 및 TAL1PHO13 유전자의 제거는 이전에 보고된 방법에 따라 Cas9 매개 게놈 편집을 사용하여 수행되었다(Lee, Y.-G., Jin, Y.-S., Cha, Y.-L., Seo, J.-H. 2017. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Bioresource technology, 228, 355-361). Amir4256 및 Amir4257 유전자의 발현 카세트를 도입하기 위해, 표 2의 P21 및 P22 프라이머를 사용하여 PCR을 통해 donor DNA 단편을 제조하였다. TEFP-Amir4256-GPM1T-GPDP-Amir4257-CYC1T의 증폭된 donor DNA는 INT#4의 유전자간 부위에 삽입하기 위해 50 bp 상동성을 갖도록 설계하였다(도 5). pRS42H-INT#4를 가이드 RNA 발현에 사용하였다. 증폭된 donor DNA와 pRS42H-INT#4는 변형된 리튬 아세테이트 형질전환 방법을 사용하여 pAUR_Cas9 균주를 보유하는 D452-2로 형질전환시켰다. pAUR_Cas9를 보유하는 D452-2를 30℃ 및 250rpm에서 20g/L의 글루코스를 함유하는 5mL의 YP 배지에서 배양하고, 세포를 초기 OD600 1의 농도로 접종하여 20g/L의 글루코스를 함유하는 새로운 2X YP 배지에서 형질전환시켰다. OD600이 2.0에 도달한 후, 세포를 수확하고 이중 증류수(DDW)로 철저히 2회 세척했다.Introduction of expression cassettes related to the shinoline biosynthetic pathway and removal of TAL1 and PHO13 genes were performed using Cas9-mediated genome editing according to previously reported methods (Lee, Y.-G., Jin, Y.-S. , Cha, Y.-L., Seo, J.-H. 2017. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Bioresource technology, 228, 355-361). To introduce the expression cassettes of the Amir4256 and Amir4257 genes, donor DNA fragments were prepared by PCR using the P21 and P22 primers in Table 2. The amplified donor DNA of TEFP-Amir4256-GPM1T-GPDP-Amir4257-CYC1T was designed to have 50 bp homology to be inserted into the intergenic region of INT#4 (FIG. 5). pRS42H-INT#4 was used for guide RNA expression. The amplified donor DNA and pRS42H-INT#4 were transformed into D452-2 harboring the pAUR_Cas9 strain using a modified lithium acetate transformation method. D452-2 carrying pAUR_Cas9 was cultured in 5 mL of YP medium containing 20 g/L glucose at 30°C and 250 rpm, and cells were inoculated at an initial OD 600 1 concentration to obtain fresh 2X containing 20 g/L glucose. Transformed in YP medium. After the OD 600 reached 2.0, the cells were harvested and washed thoroughly twice with double distilled water (DDW).

세척된 세포를 50%(w/v)의 PEG 3350, 1.0M의 리튬 아세테이트, 변성된 운반체 DNA 및 gRNA 플라스미드 및 증폭된 donor DNA 단편과 혼합하였다. 혼합물을 42℃에서 45분 동안 가열 충격을 가하고 4시간 동안 30℃에서 20g/L 글루코스를 포함하는 1mL의 YP 배지와 함께 배양했다. 형질전환체는 20g/L 글루코스, 0.5㎍/mL 아우레오바시딘 A(Takara, Japan) 및 300㎍/mL 하이그로마이신 B(Sigma-Aldrich, St Louis, MO)를 함유하는 YP 배지에서 선택되었다. pAUR_Cas9 및 pRS42H-INT#4의 plasmid curing을 위해 형질전환체를 아우레오바시딘 A 및 하이그로마이신 없이 20g/L 글루코스를 함유하는 YP 배지에서 2-3일 동안 연속적으로 농축시켰다. 이어서, GPDP-Amir4258-CYC1T-TEFP-Amir4259-GPM1T의 카세트를 INT#6의 유전자간 부위에 삽입하도록 설계하고(도 5), 표 3에 기재된 P23 및 P24 프라이머로 PCR로부터 수득하였다. Donor DNA 및 pRS42H-INT#6은 TEFP-Amir4256-GPM1T-GPDP-Amir4257-CYC1T가 삽입되고 pAUR_Cas9가 숨겨져 있는 D452-2로 변환되었다. 표적 균주의 형질전환 및 선택은 전술한 바와 같이 수행하였다. 생성된 균주를 Amir4256, Amir4257, Amir4258 및 Amir4259의 유전자를 발현하는 D-M 균주로 명명하였다. D452-2 대신 DXS 균주에 동일한 방법을 적용하여 DX-M 균주를 제조했다.Washed cells were mixed with 50% (w/v) PEG 3350, 1.0 M lithium acetate, denatured carrier DNA and gRNA plasmids and amplified donor DNA fragments. The mixture was subjected to heat shock at 42°C for 45 minutes and incubated with 1 mL of YP medium containing 20 g/L glucose at 30°C for 4 hours. Transformants were selected in YP medium containing 20 g/L glucose, 0.5 μg/mL Aureobacidin A (Takara, Japan) and 300 μg/mL hygromycin B (Sigma-Aldrich, St Louis, MO) . For plasmid curing of pAUR_Cas9 and pRS42H-INT#4, transformants were continuously concentrated for 2-3 days in YP medium containing 20 g/L glucose without aureobacidin A and hygromycin. Subsequently, a cassette of GPDP-Amir4258-CYC1T-TEFP-Amir4259-GPM1T was designed to be inserted into the intergenic region of INT#6 (FIG. 5) and obtained from PCR with the P23 and P24 primers listed in Table 3. Donor DNA and pRS42H-INT#6 were converted to D452-2 with TEFP-Amir4256-GPM1T-GPDP-Amir4257-CYC1T inserted and pAUR_Cas9 hidden. Transformation and selection of target strains were performed as described above. The resulting strains were named D-M strains expressing the genes of Amir4256, Amir4257, Amir4258 and Amir4259. Instead of D452-2, strain DX-M was prepared by applying the same method to strain DXS.

또한, TAL1PHO13의 유전자를 결실시키기 위해 Cas9-매개 게놈 편집을 이용하였다. 도 6에 도시된 바와 같이, TAL1 유전자의 제거를 위한 공여자 단편은 게놈에 삽입될 때 표적 유전자의 완전한 결실을 달성하도록 설계되었다. 표적 유전자의 결실을 위한 donor fragment를 생성하기 위해, 표적 유전자의 상류 서열과 500 bp 상동성을 갖는 DNA 단편을 P27 및 P28의 프라이머로 증폭시켰다. 표적 유전자의 다운스트림 서열에 대한 500 bp 상동성의 단편도 P29 및 P30의 프라이머로 증폭시켰다. 2개의 증폭된 단편을 P27 및 P30의 프라이머와 중첩 PCR을 사용하여 연결하여 TAL1-표적화 donor fragment를 생성했다. TAL1 유전자의 가이드 RNA 표적화 서열을 포함하는 pRNA-TAL1은 pRS42H-INT#4를 주형으로 하고 P25 및 P26의 프라이머를 사용하여 역 PCR을 사용하여 제작하였다. TAL1 표적 donor fragment와 pRNA-TAL1을 DXS 균주에 삽입하여 DXdT 균주로 형질전환시켰다. PHO13 유전자의 제거 역시 위에서 설명한 것과 동일한 방법으로 수행되었다. 유전자의 삽입 및 제거를 위한 donor DNA 서열은 도 21a 내지 21d에 상세히 기재되어 있다.In addition, Cas9-mediated genome editing was used to delete the genes of TAL1 and PHO13 . As shown in Figure 6, the donor fragment for deletion of the TAL1 gene was designed to achieve complete deletion of the target gene when inserted into the genome. To generate a donor fragment for deletion of the target gene, a DNA fragment having 500 bp homology to the upstream sequence of the target gene was amplified with primers of P27 and P28. A fragment of 500 bp homology to the sequence downstream of the target gene was also amplified with the P29 and P30 primers. The two amplified fragments were ligated using overlapping PCR with primers of P27 and P30 to generate a TAL1 -targeting donor fragment. pRNA- TAL1 containing the guide RNA targeting sequence of the TAL1 gene was prepared by inverse PCR using pRS42H-INT#4 as a template and primers of P25 and P26. The TAL1 target donor fragment and pRNA- TAL1 were inserted into the DXS strain to transform the DXdT strain. Removal of the PHO13 gene was also performed in the same manner as described above. Donor DNA sequences for insertion and deletion of genes are detailed in Figures 21A to 21D.

1.4. 배양 조건1.4. culture conditions

E. coli는 필요한 경우 50μg/mL의 암피실린이 포함된 Lysogeny Broth(트립톤 10g/L, 효모 추출물 5g/L, 염화나트륨 10g/L, LB) 배지에서 배양되었다. S. cerevisiae 균주를 30℃ 및 250rpm에서 글루코스 및/또는 자일로스와 함께 YP 배지(10g/L 효모 추출물 및 20g/L 펩톤)에서 배양하였다. 회분식 배양의 경우, 30℃ 및 250rpm에서 20g/L의 글루코스와 함께 5mL의 YP 배지에서 배양하여 종균을 제조했다. 밤새 배양된 균들을 채취하여 초기 OD600이 1.0으로 신선한 YP 배지에 접종했다. 주요 배양은 30℃ 및 250rpm에서 250mL 플라스크에서 글루코스 및/또는 자일로스가 포함된 50mL의 YP에서 수행되었다. 유가식 발효는 5M NaOH 및 5M HCl로 pH 5.5를 유지하면서 30℃의 5L 발효기(Kobiotech, Korea)에서 2L의 작업 부피를 갖는 20g/L의 글루코스를 함유하는 YP 배지에서 수행하였다. 배양 동안 교반 속도와 공기 유속은 각각 500rpm과 1vvm으로 유지되었다. DO 수준은 O2 센서(InPro6800/12/220 METTLER TOLEDO)로 모니터링되었다. 초기에 첨가한 글루코스가 고갈되었을 때 800g/L 글루코스 공급 용액을 사용하여 20g/L 글루코스를 간헐적으로 공급하였다. 글루코스-자일로스 유가 발효를 위해 25g/L의 글루코스 및 자일로스를 공급하였다. 초기 첨가된 글루코스의 고갈 후, 800g/L 글루코스 용액을 2g/L의 공급 속도로 연속적으로 공급하였다. 배지의 잔류 자일로스 농도가 5g/L 이하로 감소하였을 때 자일로스 800g/L의 공급액을 이용하여 간헐적으로 자일로스 25g/L를 공급하였다.E. coli was cultured in Lysogeny Broth (tryptone 10 g/L, yeast extract 5 g/L, sodium chloride 10 g/L, LB) medium containing 50 µg/mL ampicillin when necessary. S. cerevisiae strains were cultured in YP medium (10 g/L yeast extract and 20 g/L peptone) with glucose and/or xylose at 30° C. and 250 rpm. In the case of batch culture, seed cultures were prepared by culturing in 5 mL of YP medium with 20 g/L glucose at 30° C. and 250 rpm. Bacteria cultured overnight were collected and inoculated into fresh YP medium with an initial OD 600 of 1.0. The main culture was performed in 50 mL of YP with glucose and/or xylose in a 250 mL flask at 30 °C and 250 rpm. Fed-batch fermentation was carried out in YP medium containing 20 g/L glucose with a working volume of 2 L in a 5 L fermentor (Kobiotech, Korea) at 30 °C while maintaining pH 5.5 with 5 M NaOH and 5 M HCl. During incubation, the agitation speed and air flow rate were maintained at 500 rpm and 1 vvm, respectively. DO levels were monitored with an O2 sensor (InPro6800/12/220 METTLER TOLEDO). When the initially added glucose was exhausted, 20 g/L glucose was fed intermittently using the 800 g/L glucose feed solution. 25 g/L of glucose and xylose were supplied for the glucose-xylose fed fermentation. After depletion of the initially added glucose, the 800 g/L glucose solution was fed continuously at a feed rate of 2 g/L. When the concentration of residual xylose in the medium decreased to 5 g/L or less, 25 g/L of xylose was intermittently supplied using a supply solution of 800 g/L of xylose.

1.5. 세포 성장 모니터링 및 대사 산물 측정1.5. Cell growth monitoring and metabolite measurement

세포 성장은 분광 광도계(UV-1900i, Shimadzu, Kyoto, Japan)를 사용하여 600nm(OD600)에서 광학 밀도(OD)로 모니터링했다. DCW(Dry Cell Weight)에 대한 OD600의 변환 계수를 얻기 위해 실험을 수행했다. 마지막으로 DCW는 변환 계수(0.35)에 OD를 곱하여 계산했다. 글루코스, 자일로스, 글리세롤 및 아세테이트의 농도는 굴절률(RI) 검출기가 장착된 고성능 액체 크로마토그래피(HPLC, SCL-40, Shimadzu, Kyoto, Japan)에 의해 측정되었다. Rezex ROA-Organic Acid H+ 컬럼(Phenomenex, Torrance, CA)은 60℃에서 0.6mL/min의 유속으로 5mM 황산으로 용리되었다. 배양액을 수거하고 13,000rpm에서 5분간 원심분리한 후 상층액을 수집하고 대사산물 농도 분석을 위해 0.22μm 시린지 필터를 이용해 여과했다.Cell growth was monitored by optical density (OD) at 600 nm (OD 600 ) using a spectrophotometer (UV-1900i, Shimadzu, Kyoto, Japan). An experiment was conducted to obtain the conversion factor of OD 600 to DCW (Dry Cell Weight). Finally, the DCW was calculated by multiplying the conversion factor (0.35) by the OD. Concentrations of glucose, xylose, glycerol and acetate were measured by high-performance liquid chromatography (HPLC, SCL-40, Shimadzu, Kyoto, Japan) equipped with a refractive index (RI) detector. A Rezex ROA-Organic Acid H + column (Phenomenex, Torrance, CA) was eluted with 5 mM sulfuric acid at 60 °C and a flow rate of 0.6 mL/min. The culture was harvested and centrifuged at 13,000 rpm for 5 minutes, and the supernatant was collected and filtered using a 0.22 μm syringe filter for metabolite concentration analysis.

1.6. MAAs 동정 및 정량화1.6. MAAs identification and quantification

배양 중에 4mL의 배양액을 채취했다. 채취한 배양액을 4,000 rpm에서 10분 동안 원심분리한 후 상층액을 배지 내 MAA 농도 분석에 사용했다. 상층액이 제거된 세포를 1mL의 DDW에 재현탁시켰다. 1.5 mL의 클로로포름을 재현탁된 세포에 첨가한 후, 혼합물을 세포 제거를 위해 3분 동안 볼텍싱하였다. 혼합물을 4,000 rpm에서 10분 동안 원심분리한 후 water layer를 수집하고 0.22 μm 시린지 필터를 통해 여과하여 세포 내 MAA 농도를 분석하였다. 시노린 및 포르피라-334의 농도는 334 nm에서 가변 파장 검출기(VWD)가 장착된 고성능 액체 크로마토그래피(HPLC, SCL-40, Shimadzu, Kyoto, Japan)를 사용하여 측정하였다. 용매 조건은 3분 동안 100% 용매 A(용매 A; 물에 0.1M 트리에틸암모늄 아세테이트, pH 7.0), 30분에 걸쳐 용매 A 중 50% 용매 B(용매 B; 아세토니트릴)로 증가, 100% 용매 B로 증가 2분에 걸쳐 1mL/min의 유속으로 5분 동안 100% 용매 B.During the culture, 4 mL of the culture solution was sampled. The collected culture medium was centrifuged at 4,000 rpm for 10 minutes, and the supernatant was used for analysis of MAA concentration in the medium. Cells from which the supernatant was removed were resuspended in 1 mL of DDW. After adding 1.5 mL of chloroform to the resuspended cells, the mixture was vortexed for 3 minutes to remove the cells. After the mixture was centrifuged at 4,000 rpm for 10 minutes, the water layer was collected and filtered through a 0.22 μm syringe filter to analyze intracellular MAA concentration. The concentrations of shinoline and porphyra-334 were measured using high-performance liquid chromatography (HPLC, SCL-40, Shimadzu, Kyoto, Japan) equipped with a variable wavelength detector (VWD) at 334 nm. Solvent conditions were 100% solvent A (solvent A; 0.1M triethylammonium acetate in water, pH 7.0) for 3 minutes, increasing to 50% solvent B in solvent A (solvent B; acetonitrile) over 30 minutes, 100% 100% solvent B for 5 minutes at a flow rate of 1 mL/min over 2 minutes.

Capcell Pak UG120 C18 컬럼(5 μm 입자 크기, 250 × 4.6 mm ID, Shiseido, Japan)은 35℃에서 유지되었다. LC-MS/MS 실험은 다음과 같이 수행되었다. 용매 조건은 2분 동안 100% A(용매 A; 0.1% 포름산을 함유하는 H2O)였고, 5분에 걸쳐 용매 A에서 0.35 mL/min의 유속의 10% 용매 B(용매 B, 0.1% 포름산을 함유하는 아세토니트릴)로 증가했다. ACQUITY UPLC HSS T3 컬럼(1.7 Am, 2.1 mm × 100 mm)은 40℃로 유지되었다. MS 조건은 다음과 같았다: 이온화 모드; ESI(positive), 모세관 전압; 2.5kV, 스캔 범위; m/z 50~800, 콘 전압; 40V, 탈용매화 N2 가스 유량 800L/h, 탈용매화 온도; 50℃, 이온 소스 온도; 150℃, 교정기; 0.5mM 포름산나트륨, Lock mass; 류신-엔케팔린(m/z 556.2771). MRM 분석을 위한 조건은 다음과 같았다: 화합물; Shinorine, 체류 시간; 1.03분, 수량자 전환; m/z 333.13-> 255.10, 186.10, CV; 40, CE; 20, 45.A Capcell Pak UG120 C18 column (5 μm particle size, 250 × 4.6 mm ID, Shiseido, Japan) was maintained at 35 °C. LC-MS/MS experiments were performed as follows. Solvent conditions were 100% A (solvent A; H 2 O containing 0.1% formic acid) for 2 minutes, 10% solvent B (solvent B, 0.1% formic acid at a flow rate of 0.35 mL/min in solvent A over 5 minutes). acetonitrile). An ACQUITY UPLC HSS T3 column (1.7 Am, 2.1 mm x 100 mm) was maintained at 40°C. MS conditions were as follows: ionization mode; ESI (positive), capillary voltage; 2.5 kV, scan range; m/z 50~800, cone voltage; 40V, desolvation N 2 gas flow rate 800 L/h, desolvation temperature; 50° C., ion source temperature; 150° C., calibrator; 0.5 mM sodium formate, lock mass; Leucine-enkephalin (m/z 556.2771). Conditions for MRM analysis were as follows: compound; Shinorine, retention time; 1.03 min, switch quantifier; m/z 333.13 -> 255.10, 186.10, CV; 40, CE; 20, 45.

2. 결과2. Results

2.1.2.1. S. cerevisiae에 A. mirum 유래 MAA 생합성 경로 관련 유전자 도입Introduction of genes related to MAA biosynthetic pathway from A. mirum into S. cerevisiae

MAA 생합성 경로가 없는 S. cerevisiae에서 MAA 생산을 구현하기 위해 DHQS, O-MT, ATP-grasp ligase 및 D-Ala-D-Ala ligase를 인코딩하는 Amir4259, Amir4258, Amir4257 및 Amir 4256의 4개의 S. cerevisiae 코돈 최적화 유전자를 합성했다(도 3 및 표 4). MAA를 생산하는 S. cerevisiae 균주를 제조하기 위해 항시성 프로모터, 표적 유전자 및 터미네이터로 구성된 발현 카세트를 제작하였고 S. cerevisiae D452-2의 게놈에 통합하였다. GPDP-Amir4258-CYCT-TEFP-Amir4259-GPM1T의 발현 카세트는 Cas9 매개 게놈 편집을 사용하여 D452-2 게놈의 유전자간 부위(int#4)에 통합되었다(도 5). GPDP-Amir4257-CYCT-TEFP-Amir4256-GPM1T 카세트는 유전자간 부위(int#6)에 게놈 통합되었다.To implement MAA production in S. cerevisiae lacking the MAA biosynthetic pathway, four S. cerevisiae codon optimization gene was synthesized (Fig. 3 and Table 4). To construct an MAA-producing S. cerevisiae strain, an expression cassette consisting of a constitutive promoter, target gene and terminator was constructed and integrated into the genome of S. cerevisiae D452-2. The expression cassette of GPDP-Amir4258-CYCT-TEFP-Amir4259-GPM1T was integrated into the intergenic region (int#4) of the D452-2 genome using Cas9-mediated genome editing (FIG. 5). The GPDP-Amir4257-CYCT-TEFP-Amir4256-GPM1T cassette was genomicly integrated at the intergenic site (int#6).

생성된 균주(D-M)가 시노린을 생산할 수 있는지 여부를 확인하기 위해 20g/L의 포도당이 포함된 YP 배지에서 회분식 발효를 수행했다(도 7). 재조합 S. cerevisiae에 의한 시노린 생산을 확인하고 정량화하기 위해 배양 물을 채취하고 상층액과 세포로 분리했다. 상층액은 HPLC를 이용하여 배지 내 시노린을 직접 검출하는데 사용하였고, 세포 내 시노린은 세포를 제거한 후 검출하였다. DM 균주의 세포 분획과 배지 모두에서 3.5분에 피크가 있었던 반면, 마이코스포린유사아미노산(MAA) 생합성 경로를 포함하지 않는 D452-대조 균주에서는 피크가 나타나지 않았다.Batch fermentation was performed in YP medium containing 20 g/L of glucose to confirm whether the resulting strains (D-M) could produce shinoline (FIG. 7). To confirm and quantify shinorine production by recombinant S. cerevisiae, cultures were harvested and separated into supernatants and cells. The supernatant was used to directly detect shinoline in the medium using HPLC, and intracellular shinoline was detected after removing the cells. There was a peak at 3.5 minutes in both the cell fraction and medium of the DM strain, whereas the peak did not appear in the D452-control strain, which does not contain the mycosporine-like amino acid (MAA) biosynthetic pathway.

D-M 균주에 의한 시노린 생산을 추가로 확인하기 위해 세포 분획의 LC-MS/MS 분석을 수행했다. LC-MS/MS 스펙트럼에서 DM 균주의 시료에서 시노린 표준물질과 동일한 약 1분의 머무름 시간(retention time)에서 피크가 검출되었다. 또한, D-M 균주의 질량 단편화 프로파일은 시노린 표준의 프로파일과 동일했다(도 8). A. mirum 유래 MAA 생합성 경로의 도입이 S. cerevisiae에서 이종 MAA 생산에 기여함을 확인하였다. 최종적으로, DM 균주는 7시간 내에 20g/L의 포도당으로부터 소량의 포르피라-334(<0.2mg/L)와 함께 2.5mg/L의 시노린을 생산한 반면, 대조군 균주(D452-2)는 어떠한 MAA도 축적하지 못했다. MAA 생산을 제외하고는 포도당 소비와 에탄올, 글리세롤 및 아세테이트 생산뿐만 아니라 두 균주 사이의 세포 성장에서 유의한 차이가 발견되지 않았다.LC-MS/MS analysis of cell fractions was performed to further confirm shinoline production by the D-M strain. In the LC-MS/MS spectrum, a peak was detected at a retention time of about 1 minute, the same as that of the shinorine standard in the sample of the DM strain. In addition, the mass fragmentation profile of the D-M strain was identical to that of the shinorine standard (FIG. 8). It was confirmed that introduction of the A. mirum-derived MAA biosynthetic pathway contributes to heterologous MAA production in S. cerevisiae. Finally, the DM strain produced 2.5 mg/L of shinoline with a small amount of Porphyra-334 (<0.2 mg/L) from 20 g/L of glucose within 7 hours, whereas the control strain (D452-2) No MAA accumulated. Except for MAA production, no significant differences were found in cell growth between the two strains, as well as glucose consumption and ethanol, glycerol and acetate production.

2.2. MAA 개선을 위한 탄소원으로서의 자일로스로부터 MAA 생산2.2. Production of MAA from xylose as a carbon source for MAA improvement

S7P(sedoheptulose 7-phosphate)는 MAA 생산을 위한 시작 전구체이며 주로 5탄당 인산 경로를 통해 합성된다(도 1). 따라서, 세포에서 상승된 S7P 수준은 MAA 생산을 개선하는 데 기여할 수 있다. 본 발명에서는 자일로스로부터 MAA를 생산하기 위해 MAA 생산을 위한 발현 유전자 카세트가 DXS 균주의 게놈에 통합되었다. 생성된 균주를 DX-M 균주로 명명하였다.Sedoheptulose 7-phosphate (S7P) is the starting precursor for MAA production and is mainly synthesized via the pentose phosphate pathway (Fig. 1). Thus, elevated S7P levels in cells may contribute to improving MAA production. In the present invention, to produce MAA from xylose, an expression gene cassette for MAA production was integrated into the genome of the DXS strain. The resulting strain was named DX-M strain.

DXS 균주에 의한 MAA의 측정을 위해, 글루코스, 자일로스 및 글루코스 및 자일로스의 혼합물이 포함된 배지에서 회분식 발효를 수행하였다. YP 배지에서 포도당만 공급되는 회분식 발효에서(도 10)는 D-M 균주와 DX-M 균주는 유사한 양의 MAA(2.5 mg/L vs. 1.0 mg/L) 생산을 보였다. 그러나 자일로스만을 유일한 탄소원으로 발효시키는 경우, DX-M 균주는 자일로스 동화 유전자의 발현에도 불구하고 자일로스를 거의 소비하지 않았다. 10g/L 포도당과 10g/L 자일로스의 혼합물을 사용한 회분식 발효에서(도 10), DX-M은 6시간 만에 포도당이 고갈된 후 점차적으로 자일로스를 소비하기 시작했다. 포도당 소비 단계(0-6시간)에서 세포가 성장하여 에탄올을 생성한 반면, 세포는 자일로스 소비 단계(6-17시간)에서 에탄올 축적 없이 성장했다. 포도당과 자일로스의 혼합물을 사용한 회분식 발효에서 DX-M 균주는 2g/L-h 생산성으로 34mg/L의 시노린을 생산했는데, 이는 포도당만 제공했을 때보다 34배 및 14.3배 더 높았다. 흥미롭게도 시노린 함량(mg 시노린/g DCW)은 22.7배 증가했다.For the determination of MAA by the DXS strain, batch fermentation was performed in a medium containing glucose, xylose and a mixture of glucose and xylose. In batch fermentation in which only glucose was supplied in YP medium (FIG. 10), the D-M strain and the DX-M strain showed similar amounts of MAA (2.5 mg/L vs. 1.0 mg/L) production. However, when fermented with xylose as the sole carbon source, the DX-M strain consumed almost no xylose despite the expression of xylose assimilation genes. In batch fermentation using a mixture of 10 g/L glucose and 10 g/L xylose (FIG. 10), DX-M started consuming xylose gradually after depleting glucose in 6 hours. Cells grew and produced ethanol during the glucose consumption phase (0–6 h), whereas cells grew without ethanol accumulation during the xylose consumption phase (6–17 h). In batch fermentation using a mixture of glucose and xylose, the DX-M strain produced 34 mg/L of shinorine at a productivity of 2 g/L-h, which was 34- and 14.3-fold higher than glucose alone. Interestingly, the shinoline content (mg shinoline/g DCW) increased 22.7-fold.

2.3. 2.3. TAL1TAL1 유전자 제거를 통한 sedoheptulose 7-phosphate (S7P) 축적 및 시노린 생산 증가. Increased sedoheptulose 7-phosphate (S7P) accumulation and shinoline production through genetic ablation.

트랜스알돌라제는 5탄당 인산 경로에서 S7P와 G3P(glyceraldehyde 3-phosphate) 간의 트랜스알돌라제 반응에 관여한다. S7P가 MAA 생산에 이용되지 않고 해당과정을 위한 중간체로 전환되는 것을 방지하기 위해 Cas9-매개 게놈 편집을 사용하여 트랜스알돌라제를 코딩하는 TAL1 유전자를 제거했다.Transaldolase is involved in the transaldolase reaction between S7P and G3P (glyceraldehyde 3-phosphate) in the pentose phosphate pathway. To prevent S7P from being used for MAA production and being converted to an intermediate for glycolysis, Cas9-mediated genome editing was used to remove the TAL1 gene encoding transaldolase.

포도당이 YP 배지에서만 공급되는 회분식 발효에서(도 11A), TAL1 유전자를 제거한 재조합 균주(DXdT-M)는 36 mg/L의 시노린을 생산했으며, 이는 그렇지 않은 DX-M 균주에 비해 생산이 36배 증가했다. In batch fermentation in which glucose was supplied only from YP medium (Fig. 11A), the recombinant strain (DXdT-M) from which the TAL1 gene was removed produced 36 mg/L of shinoline, which was 36 doubled.

10g/L 포도당과 10g/L 자일로스의 혼합물을 사용한 회분식 발효에서 DXdT-M은 DX-M 균주에 비해 3.1배 증가한 73mg/L의 시노린(14.8mg/g DCW)을 생성했다(도 10B, 12A). 또한, DXdT-M 균주를 이용하여 50g/L의 포도당과 50g/L의 혼합물에서 회분식 발효를 수행하였으며, 33시간동안 DXdT-M 균주는 총 93mg/L의 시노린을 생산하여 2.8mg/L-h의 생산성을 보였다. In batch fermentation using a mixture of 10 g/L glucose and 10 g/L xylose, DXdT-M produced 73 mg/L of shinoline (14.8 mg/g DCW), a 3.1-fold increase compared to strain DX-M (Fig. 10B, 12A). In addition, batch fermentation was performed in a mixture of 50 g/L glucose and 50 g/L using the DXdT-M strain, and for 33 hours, the DXdT-M strain produced a total of 93 mg/L shinorine, resulting in a total of 2.8 mg/L-h showed productivity.

2.4. 자일로스 동화 경로 촉진을 통한 시노린 생산 증가2.4. Increased production of shinoline by promoting the xylose assimilation pathway

자일로스 발효를 촉진하기 위해 PHO13 유전자를 제거하여 시노린 생산 증가를 확인했다. Cas9 매개 게놈 편집을 사용하여 DX-M 균주의 PHO13 유전자를 제거하여 DXdP-M 균주를 제작했다. YP 배지에서 포도당만 공급되는 회분식 발효에서 DXdP-M은 0.1g/L-h의 생산성으로 0.4mg/L의 시노린을 생산하여(도 13A) 낮은 시노린 생산능을 보였다. DX-M 및 DXdT 균주와 대조적으로, DXdP-M 균주는 단독 탄소원으로 자일로스만을 발효할 때 자일로스를 효율적으로 소비하였다(도 11B, 13B). DXdP-M 균주는 개선된 자일로스 동화 특성을 나타내었지만, DXdT-M 균주는 DX-M에 자일로스만 제공했을 때보다 1.2배 더 낮은 11 mg/L의 시노린을 생산했다(도 13B). 증가된 세포 성장 및 에탄올 생산을 고려할 때 소비된 자일로스는 S7P를 통한 MAA 생합성 경로 대신 해당 경로를 향할 수 있다. 글루코스와 자일로스의 혼합물을 공급한 발효의 경우 DXdP-M 균주도 자일로스 소비율이 빠르지만 DX-M 균주 및 DXdT-M 균주에 비해 시노린 생산량이 여전히 낮았다. 이러한 결과는 PHO13 유전자의 제거는 MAA 생산의 개선이 아니라 세포 성장과 에탄올 생산에 기여하였음을 시사한다.An increase in shinoline production was confirmed by deleting the PHO13 gene to promote xylose fermentation. The DXdP-M strain was constructed by removing the PHO13 gene from the DX-M strain using Cas9-mediated genome editing. In batch fermentation in which only glucose was supplied in YP medium, DXdP-M produced 0.4 mg/L of shinoline with a productivity of 0.1 g/Lh (FIG. 13A), showing low ability to produce shinorine. In contrast to the DX-M and DXdT strains, the DXdP-M strain efficiently consumed xylose when only xylose was fermented as the sole carbon source (Figs. 11B and 13B). Although the DXdP-M strain showed improved xylose assimilation properties, the DXdT-M strain produced 11 mg/L of shinorine, 1.2-fold lower than when DX-M was given xylose alone (FIG. 13B). Given the increased cell growth and ethanol production, the consumed xylose may be directed towards the glycolytic pathway instead of the MAA biosynthetic pathway through S7P. In the case of fermentation supplied with a mixture of glucose and xylose, the DXdP-M strain also showed a fast xylose consumption rate, but the production of shinorine was still lower than that of the DX-M strain and the DXdT-M strain. These results suggest that ablation of the PHO13 gene contributed to cell growth and ethanol production, but not to the improvement of MAA production.

2.5. MAA 생산에 대한 2.5. for MAA production PHO13PHO13 and TAL1TAL1 유전자 제거의 시너지 효과 Synergistic effects of gene deletion

시노린 생산에 대한 PHO13TAL1 유전자 결실의 상승 효과를 확인하기 위해, TAL1 유전자가 모두 제거된 DXdT-M 균주의 PHO13 유전자를 추가적으로 제거하여 DXdTdP-M 균주를 제작하였다. YP 배지에서 포도당만 공급되는 회분식 발효에서 DXdTdP-M 균주는 DXdT-M 균주에 의해 생산된 것과 비교하여 시노린 생산에서 46% 감소를 나타내는 19.2 mg/L의 시노린을 생산했다(도 15A). 단독 탄소원으로 자일로스만을 발효시킬 때, DXdTdP-M 균주는 DX-M 및 DXdT-M 균주와 유사한 특성인 열악한 자일로스 발효 동화작용(<1 g/L)으로 10 mg/L의 시노린을 생성했다.In order to confirm the synergistic effect of deletion of the PHO13 and TAL1 genes on shinoline production, the DXdTdP-M strain was prepared by additionally deleting the PHO13 gene of the DXdT-M strain in which all of the TAL1 genes were deleted. In batch fermentation fed only glucose in YP medium, the DXdTdP-M strain produced 19.2 mg/L of shinorine, representing a 46% reduction in shinorine production compared to that produced by the DXdT-M strain (FIG. 15A). When only xylose is fermented as the sole carbon source, the DXdTdP-M strain produces 10 mg/L shinoline with poor xylose fermentation assimilation (<1 g/L), a characteristic similar to that of the DX-M and DXdT-M strains. did.

DXdP-M. 20g/L 포도당과 20g/L 자일로스 혼합물이 회분식 발효에서 탄소원으로 공급되었을 때 DXdTdP-M 균주는 DXdT-M보다 낮은 시노린 생산을 보였다(68.7mg/L 대 73.1mg/L). 이러한 현상은 더 높은 농도의 포도당과 자일로스(50g/L)를 사용한 회분식 발효에서도 관찰되었다(도 16). 결과적으로, TAL1-disrupted S. cerevisiae(DXdT-M)에서 PHO13 유전자가 추가로 제거되었을 때 시노린 생산의 의미 있는 개선은 없었다. 최종적으로 DXdT-M 균주가 시노린 대량 생산을 위해 적합한 균주임을 확인하였다.DXdP-M. When a mixture of 20 g/L glucose and 20 g/L xylose was supplied as carbon source in batch fermentation, strain DXdTdP-M showed lower shinoline production than DXdT-M (68.7 mg/L vs. 73.1 mg/L). This phenomenon was also observed in batch fermentation using higher concentrations of glucose and xylose (50 g/L) (FIG. 16). As a result, there was no significant improvement in shinoline production when the PHO13 gene was further deleted in TAL1 -disrupted S. cerevisiae (DXdT-M). Finally, it was confirmed that the DXdT-M strain is suitable for mass production of shinorine.

2.6. 산업 응용을 위한 S. cerevisiae에 의한 MAA 생산 평가2.6. Evaluation of MAA production by S. cerevisiae for industrial applications

재조합 S. cerevisiae에 의한 시노린 생산을 증가시키기 위해 조절된 pH 및 산소 조건에서 탄소원을 간헐적으로 추가하여 DXdT-M 균주를 사용하여 유가식 발효를 구현했다. 먼저 유가식 발효는 초기 첨가된 포도당이 30시간 동안 고갈되었을 때 간헐적으로 포도당을 공급하여 수행하였다(도 17A). 예상대로 포도당이 빨리 소모되었고 배양하는 동안 많은 양의 에탄올(> 100g/L)이 축적되었다. DXdT-M 균주의 세포는 13시간 만에 15g/L까지 성장했지만, 13시간 후에 세포 성장이 멈추고 배양하는 동안 유지되었다. 30시간에 160.7 mg/L의 시노린이 세포 및 배양 배지에서 8.8 mg/g DCW(Dry cell weight) 함량과 5.4 mg/L-h 생산성으로 생산되었다(도 17C-E). 그 후 자일로스를 간헐적으로 첨가하여 2차 유가 발효를 수행하였다(도 17B). 효율적인 세포 성장을 위해 20g/L의 포도당이 초기에 자일로스와 함께 공급되었다. 초기에 첨가된 글루코스가 고갈된 후, 자일로스가 동화되는 것을 방지하기 위해 배양 동안 2g/L 미만의 농도로 글루코스를 지속적으로 공급하였다. 자일로스가 5g/L 미만의 농도로 남아 있을 때 자일로스를 간헐적으로 공급하였다. 이 경우, 세포는 19시간 내에 14.3g/L의 DCW에 도달하였고 배양 동안 유지되었다. 최종적으로 751 mg/L의 시노린(45 mg/gDCW)이 11 g/L-h의 생산성으로 71시간 내에 생산되었으며(도 17 C-E), 이는 이전에 "Park, S.-H., Lee, K., Jang, J.W., Hahn, J.-S. 2018. Metabolic engineering of Saccharomyces cerevisiae for production of shinorine, a sunscreen material, from xylose. ACS synthetic biology, 8(2), 346-357." 에서 보고된 수치(시노린 농도 31mg/L, 시노린 함량 9.6mg/gDCW 및 생산성 0.25mg/L-h)에 비해 24, 4.7, 44배 향상된 수치였다. 자일로스를 공급하는 유가식 발효에서 시간 경과에 따른 시노린 생산을 모니터링한 결과, 세포 배양 초기에 시노린이 배지로 분비되지 않고 세포에 축적되는 것을 확인하였으며(도 18A), 최종적으로 시노린의 약 60%가 세포에 축적되었고 나머지는 배지로 분비되었음을 확인했다.In order to increase shinoline production by recombinant S. cerevisiae, fed-batch fermentation was implemented using the DXdT-M strain by intermittently adding a carbon source under controlled pH and oxygen conditions. First, fed-batch fermentation was performed by supplying glucose intermittently when the initially added glucose was depleted for 30 hours (FIG. 17A). As expected, glucose was consumed quickly and large amounts of ethanol (>100 g/L) accumulated during incubation. Cells of the DXdT-M strain grew to 15 g/L in 13 hours, but cell growth stopped after 13 hours and was maintained during culture. At 30 hours, 160.7 mg/L of shinorine was produced in cells and culture medium with 8.8 mg/g dry cell weight (DCW) content and 5.4 mg/L-h productivity (FIG. 17C-E). Thereafter, a second fed-batch fermentation was performed by intermittently adding xylose (FIG. 17B). For efficient cell growth, 20 g/L of glucose was initially supplied along with xylose. After the initially added glucose was exhausted, glucose was continuously supplied at a concentration of less than 2 g/L during cultivation to prevent assimilation of xylose. Xylose was fed intermittently when the xylose remained at a concentration of less than 5 g/L. In this case, the cells reached a DCW of 14.3 g/L within 19 hours and were maintained during culture. Finally, 751 mg/L of shinoline (45 mg/gDCW) was produced in 71 hours with a productivity of 11 g/L-h (Fig. 17 C-E), which was previously described in “Park, S.-H., Lee, K. , Jang, J.W., Hahn, J.-S. 2018. Metabolic engineering of Saccharomyces cerevisiae for production of shinorine, a sunscreen material, from xylose. ACS synthetic biology, 8(2), 346-357." (Shinorine concentration 31mg/L, Shinorine content 9.6mg/gDCW, and productivity 0.25mg/L-h), which were 24, 4.7, and 44 times improved. As a result of monitoring the production of shinoline over time in fed-batch fermentation that supplied xylose, it was confirmed that shinorine was not secreted into the medium but accumulated in the cells at the beginning of cell culture (FIG. 18A), and finally, about It was confirmed that 60% was accumulated in the cells and the rest was secreted into the medium.

2.7. 재조합 S. cerevisiae(DXdT-M)에 의한 리그노셀룰로오스 가수분해물로부터 시노린 생산2.7. Production of shinorine from lignocellulosic hydrolysates by recombinant S. cerevisiae (DXdT-M)

시노린의 산업적 생산에 적용하기 위해 DXdT-M 균주의 회분식 발효에서 탄소원으로 친환경적이고 경제적인 탄소원인 볏짚 유래 리그노셀룰로오스 가수분해물을 사용하였다. 목질계 바이오매스는 주로 식물 세포벽의 리그닌이 효소 공격에 대한 장벽을 형성하기 때문에 전처리 없이 효소에 의해 높은 수율로 당화될 수 없다(Sewalt et al., 1997). 따라서 본 연구에서는 볏짚 전처리 제품과 가수분해효소 처리 제품을 대상으로 실험을 수행하였다. 배치 발효용 배지는 YP 배지에 전처리 및 후처리 성분을 동일한 부피로 혼합하여 제조하였다. 23.0g/L의 글루코스와 6g/L의 자일로스가 배지에 존재하는 것으로 측정되었다(도 19A). 예상대로, DXdT-M 균주는 글루코스와 자일로스를 소비하고 54mg/L의 시노린(12.6mg 시노린/g DCW)을 생산했다(도 19의 B-C). 이러한 결과는 재조합 S. cerevisiae가 목질계 바이오매스를 탄소원으로 활용해 시노린을 대량 생산할 수 있으며, 친환경적이고 경제적인 시노린 생산에 활용될 수 있음을 보여준다.To apply to the industrial production of shinoline, rice straw-derived lignocellulosic hydrolyzate, which is an eco-friendly and economical carbon source, was used as a carbon source in the batch fermentation of the DXdT-M strain. Lignocellulosic biomass cannot be saccharified by enzymes in high yield without pretreatment, mainly because lignin in plant cell walls forms a barrier to enzyme attack (Sewalt et al., 1997). Therefore, in this study, experiments were conducted on rice straw pre-treated products and hydrolase-treated products. Medium for batch fermentation was prepared by mixing equal volumes of pre- and post-treatment components in YP medium. 23.0 g/L of glucose and 6 g/L of xylose were measured to be present in the medium (FIG. 19A). As expected, strain DXdT-M consumed glucose and xylose and produced 54 mg/L of shinoline (12.6 mg shinoline/g DCW) (FIG. 19 B-C). These results show that recombinant S. cerevisiae can mass-produce shinorine using lignocellulosic biomass as a carbon source and can be used for eco-friendly and economical production of shinoline.

표 1은 본 발명에서 사용된 균주에 관한 정보이다.Table 1 is information on strains used in the present invention.

NameName DescriptionDescription D452-2D452-2 S. cerevisiae, MATα, leu2, his3, ura3, and can1 S. cerevisiae , MATα , leu2 , his3 , ura3 , and can1 D-MD-M D452-2int#4::GPD P -Amir4258-CYC1 T -TEF P -Amir4259-GPM1 T,
int#6::GPD P -Amir4257-CYC1 T -TEF P -Amir4256-GPM1 T
D452-2int#4:: GPD P -Amir4258-CYC1 T -TEF P -Amir4259-GPM1 T ,
int#6:: GPD P -Amir4257-CYC1 T -TEF P -Amir4256-GPM1 T
DX123DX123 D452-2
URA3::TDH3p-XYL1-TDH3t, PGK1p-XYL2-PGK1t, TDH3p-XYL3-TDH3t
D452-2
URA3::TDH3p-XYL1-TDH3t, PGK1p-XYL2-PGK1t, TDH3p-XYL3-TDH3t
DXSDXS DX123HIS3:: TDH3p- mutant XYL1-TDH3t DX123 HIS3:: TDH3p-mutant XYL1-TDH3t DX-MDX-M DXSint#4::GPD P -Amir4258-CYC T -TEF P -Amir4259-GPM1 T,
int#6::TEF P -Amir4256-GPM1 T -GPD P -Amir4257-CYC T
DXSint#4:: GPD P -Amir4258-CYC T -TEF P -Amir4259-GPM1 T ,
int#6:: TEF P -Amir4256-GPM1 T -GPD P -Amir4257-CYC T
DXdTDXdT DXS tal1ΔDXS tal1 Δ DXdT-MDXdT-M DXS tal1Δ int#4::GPD P -Amir4258-CYC1 T -TEF P -Amir4259-GPM1 T,
int#6::GPD P -Amir4257-CYC1 T -TEF P -Amir4256-GPM1 T
DXS tal1Δ int#4:: GPD P -Amir4258-CYC1 T -TEF P -Amir4259-GPM1 T ,
int#6:: GPD P -Amir4257-CYC1 T -TEF P -Amir4256-GPM1 T
DXdPDXdP DXS pho13Δ DXS pho13Δ DXdP-MDXdP-M DXS pho13Δ int#4::GPD P -Amir4258-CYC1 T -TEF P -Amir4259-GPM1 T,
int#6::GPD P -Amir4257-CYC1 T -TEF P -Amir4256-GPM1 T
DXS pho13Δ int#4:: GPD P -Amir4258-CYC1 T -TEF P -Amir4259-GPM1 T ,
int#6:: GPD P -Amir4257-CYC1 T -TEF P -Amir4256-GPM1 T
DXdTdPDXdTdP DXS tal1Δ pho13Δ DXS tal1Δ pho13Δ DXdTdP-MDXdTdP-M DXS tal1Δ pho13Δ
int#4::GPD P -Amir4258-CYC1 T -TEF P -Amir4259-GPM1 T,
int#6::GPD P -Amir4257-CYC1 T -TEF P -Amir4256-GPM1 T
DXS tal1Δ pho13Δ
int#4:: GPD P -Amir4258-CYC1 T -TEF P -Amir4259-GPM1 T ,
int#6:: GPD P -Amir4257-CYC1 T -TEF P -Amir4256-GPM1 T

표 2는 본 발명에서 사용된 플라스미드에 관한 정보이다.Table 2 is information on the plasmids used in the present invention.

NameName DescriptionDescription p426GPDP-CYC1T p426GPD P -CYC1 T URA3, 2 μ origin, Ampr, GPD promoter, CYC1 terminator URA3 , 2μ origin, Amp r , GPD promoter, CYC1 terminator p426TEFP-CYC1T p426TEF P -CYC1 T URA3, 2 μ origin, Ampr, TEF promoter, CYC1 terminator URA3 , 2μ origin, Amp r , TEF promoter, CYC1 terminator p426TEFP-GPM1T p426TEF P -GPM1 T URA3, 2 μ origin, Ampr, TEF promoter, GPM1 terminator URA3 , 2μ origin, Amp r , TEF promoter, GPM1 terminator p426TEFP-Amir4256-GPM1T p426TEF P -Amir4256-GPM1 T URA3, 2 μ origin, Ampr, TEF P -Amir4256-GPM1 T URA3 , 2μ origin, Amp r , TEF P -Amir4256-GPM1 T p426GPDP-Amir4257-CYC1T p426GPD P -Amir4257-CYC1 T URA3, 2 μ origin, Ampr, GPD P -Amir4257-CYC1 T URA3, 2 μ origin, Amp r , GPD P -Amir4257-CYC1 T p426GPDP-Amir4258-CYC1T p426GPD P -Amir4258-CYC1 T URA3, 2 μ origin, Ampr, GPD P -Amir4258-CYC1 T URA3, 2 μ origin, Amp r , GPD P -Amir4258-CYC1 T p426TEFP-Amir4259-GPM1T p426TEF P -Amir4259-GPM1 T URA3, 2 μ origin, Ampr, TEF P -Amir4259-GPM1 T URA3 , 2μ origin, Amp r , TEF P -Amir4259-GPM1 T p426GPDP-Amir4257-CYC1T-TEFP-Amir4256- GPM1T p426GPD P -Amir4257-CYC1 T -TEF P -Amir4256- GPM1 T URA3, 2 μ origin, Ampr, GPD P -Amir4257-CYC1 T-TEF P -Amir4256-GPM1 T URA3 , 2 μ origin, Amp r , GPD P -Amir4257-CYC1 T - TEF P -Amir4256-GPM1 T p426GPDP-Amir4258-CYC1T-TEFP-Amir4259-GPM1T p426GPD P -Amir4258-CYC1 T -TEF P -Amir4259-GPM1 T URA3, 2 μ origin, Ampr, GPD P -Amir4258-CYC1 T-TEF P -Amir4259-GPM1 T URA3 , 2 μ origin, Amp r , GPD P -Amir4258-CYC1 T - TEF P -Amir4259-GPM1 T pAUR_Cas9pAUR_Cas9 AUR1-C, CEN6, ARS4, TEF1 P -Cas9-CYC1 T AUR1-C , CEN6 , ARS4 , TEF1 P -Cas9-CYC1 T pRS42H-INT#4pRS42H-INT#4 HygR, gBlock for intergenic region upstream ASF1 Hyg R , gBlock for intergenic region upstream ASF1 pRS42H-INT#6pRS42H-INT#6 HygR, gBlock for intergenic region upstream ATG33 Hyg R , gBlock for intergenic region upstream ATG33

pAUR_Cas9의 제작은 "Lee, Y.-G., Jin, Y.-S., Cha, Y.-L., Seo, J.-H. 2017. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Bioresource technology, 228, 355-361"에 기재된 방법을 활용했으며, pRS42H-INT#4 및 pRS42H-INT#6 제작은 "Jeong, D., Ye, S., Park, H., Kim, S.R. 2020. Simultaneous fermentation of galacturonic acid and five-carbon sugars by engineered Saccharomyces cerevisiae. Bioresour Technol, 295, 122259"에 기재된 방법을 활용했다.The production of pAUR_Cas9 was described in "Lee, Y.-G., Jin, Y.-S., Cha, Y.-L., Seo, J.-H. 2017. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Bioresource technology, 228, 355-361", and the production of pRS42H-INT#4 and pRS42H-INT#6 was described in "Jeong, D., Ye, S., Park, H., Kim, SR 2020. Simultaneous The method described in "fermentation of galacturonic acid and five-carbon sugars by engineered Saccharomyces cerevisiae. Bioresour Technol , 295 , 122259" was utilized.

표 3은 본 발명에서 사용한 균주 및 플라스미드 제작에 사용한 프라이머 서열이다. * Gibson 어셈블리에 대한 상동 시퀀스는 소문자로 표시되었다. ** 게놈과 상동 재조합을 위한 서열은 밑줄이 그어져 있다. *** 가이드 RNA 표적 서열은 이태릭체로 기재하였다(서열번호 38, 39, 44 및 45).Table 3 shows the primer sequences used in the construction of strains and plasmids used in the present invention. * Homologous sequences to Gibson assemblies are shown in lower case. **Sequences for homologous recombination with the genome are underlined. *** Guide RNA target sequences are written in italics (SEQ ID NOs: 38, 39, 44 and 45).

Constructed plasmidConstructed plasmids Target DNATarget DNA Templatetemplate NameName SequenceSequence p426TEFP-CYC1T p426TEF P -CYC1 T TEF promoter TEF promoter D452-2 genomic DNAD452-2 genomic DNA P01P01 gaacaaaagctggagctCATAGCTTCAAAATGTTTCTACTC
(서열번호14)
gaacaaaagctggagctCATAGCTTCAAAATGTTTCTACTC
(SEQ ID NO: 14)
P02P02 agcccgggggatccaCTTAGATTAGATTGCTATGCTTTCTTTC
(서열번호15)
agcccgggggatccaCTTAGATTAGATTGCTATGCTTTCTTTC
(SEQ ID NO: 15)
p426GPDP-Amir4256-CYC1T p426GPD P -Amir4256-CYC1 T Amir4256Amir4256 Codon-optimized Amir4256 geneCodon-optimized Amir4256 gene P03P03 acggattctagaactagtgATGCTTCGTGTTCTGCACCTGACCGGTTCG (서열번호16)acggattctagaactagtgATGCTTCGTGTTCTGCACCTGACCGGTTCG (SEQ ID NO: 16) P04P04 gacataactaattacatgacTCACCCCCTGCGCGCGGCGG
(서열번호17)
gacataactaattacatgacTCACCCCCTGCGCGCGGCGG
(SEQ ID NO: 17)
p426GPDP-Amir4257-CYC1T p426GPD P -Amir4257-CYC1 T Amir4257Amir4257 Codon-optimized Amir4257 geneCodon-optimized Amir4257 gene P05P05 gacggattctagaactagtgATGTCTGACGCTGTCGCC
(서열번호18)
gacggattctagaactagtgATGTCTGACGCTGTCGCC
(SEQ ID NO: 18)
P06P06 gacataactaattacatgacTTAGTCTCCTGAAGGCGC
(서열번호19)
gacataactaattacatgacTTAGTCTCCTGAAGGCGC
(SEQ ID NO: 19)
p426GPDP-Amir4258-CYC1T p426GPD P -Amir4258-CYC1 T Amir4258Amir4258 Codon-optimized Amir4258 geneCodon-optimized Amir4258 gene P07P07 gacggattctagaactagtgATGTCTGCGCCAGGCGCTC
(서열번호20)
gacggattctagaactagtgATGTCTGCGCCAGGCGCTC
(SEQ ID NO: 20)
P08P08 gacataactaattacatgacTTACGGCTCTCCCGTGCC
(서열번호21)
gacataactaattacatgacTTACGGCTCTCCCGTGCC
(SEQ ID NO: 21)
p426TEFP-Amir4259-GPM1T p426TEF P -Amir4259-GPM1 T Amir4259Amir4259 Codon-optimized Amir4259 geneCodon-optimized Amir4259 gene P09P09 taagttttctagaactagtgATGACCACGAATCTTACAGCTAC
(서열번호22)
taagttttctagaactagtgATGACCACGAATCTTACAGCTAC
(SEQ ID NO: 22)
P10P10 cttatttcttTTACGCCGCTCCGCTTCTG
(서열번호23)
cttatttcttTTACGCCGCTCCGCTTCTG
(SEQ ID NO: 23)
GPM1 terminator GPM1 terminator D452-2 genomic DNAD452-2 genomic DNA P11P11 agcggcgtaaAAGAAATAAGTCTGAAGAATGAATG
(서열번호24)
agcggcgtaaAAGAAATAAGTCTGAAGAATGAATG
(SEQ ID NO: 24)
P12P12 ctatagggcgaattgggtacTATTGCTATAACATGTCATGTCAC
(서열번호25)
ctatagggcgaattgggtacTATTGCTATAACATGTCATGTCAC
(SEQ ID NO: 25)
p426TEFP-Amir4256-GPM1T p426TEF P -Amir4256-GPM1 T Amir4256Amir4256 Codon-optimized Amir4256 geneCodon-optimized Amir4256 gene P13P13 agaactagtgATGTTGAGGGTTTTGCATCTGACC
(서열번호26)
agaactagtgATGTTGAGGGTTTTGCATCTGACC
(SEQ ID NO: 26)
P14P14 cttatttcttTTAACCCCTACGTGCCGCCG
(서열번호27)
cttatttcttTTAACCCCTACGTGCCGCCG
(SEQ ID NO: 27)
p426TEFP-GPM1T p426TEF P -GPM1 T p426TEFP- Amir4259-GPM1T p426TEF P - Amir4259-GPM1 T P15P15 taggggttaaAAGAAATAAGTCTGAAGAATGAATG
(서열번호28)
taggggttaaAAGAAATAAGTCTGAAGAATGAATG
(SEQ ID NO: 28)
P16P16 ccctcaacatCACTAGTTCTAGAAAACTTAGATTAGATTG
(서열번호29)
ccctcaacatCACTAGTTCTAGAAAACTTAGATTAGATTG
(SEQ ID NO: 29)
p426GPDP-Amir4257-CYC1T-TEFP-Amir4256-GPM1T p426GPD P -Amir4257-CYC1 T -TEF P -Amir4256-GPM1 T TEF P-Amir4256-GPM1 T TEF P - Amir4256 - GPM1 T p426TEFP-Amir4256-GPM1T p426TEF P -Amir4256-GPM1 T P17P17 agggaacaaaagctggagctTATTGCTATAACATGTCATGTCAC
(서열번호30)
agggaacaaaagctggagctTATTGCTATAACATGTCATGTCAC
(SEQ ID NO: 30)
P18P18 tgataatgataaactgagctATAGCTTCAAAATGTTTCTACTCC
(서열번호31)
tgataatgataaactgagctATAGCTTCAAAATGTTTCTACTCC
(SEQ ID NO: 31)
p426GPDP-Amir4258-CYC1T-TEFP-Amir4259-GPM1T p426GPD P -Amir4258-CYC1 T -TEF P -Amir4259-GPM1 T TEF P-Amir4259-GPM1 T TEF P - Amir4259 - GPM1 T p426TEFP-Amir4259-GPM1T p426TEF P -Amir4259-GPM1 T P19P19 agggaacaaaagctggagctTATTGCTATAACATGTCATGTCAC
(서열번호32)
agggaacaaaagctggagctTATTGCTATAACATGTCATGTCAC
(SEQ ID NO: 32)
P20P20 tgataatgataaactgagctATAGCTTCAAAATGTTTCTACTCC
(서열번호33)
tgataatgataaactgagctATAGCTTCAAAATGTTTCTACTCC
(SEQ ID NO: 33)
Donor DNA targeting INT#4Donor DNA targeting INT#4 GPD P-Amir4258-CYC1 T-TEF P-Amir4259-GPM1 T GPD P - Amir4258 - CYC1 T - TEF P - Amir4259 - GPM1 T p426GPDP-Amir4258-CYC1T-TEFP-Amir4259-GPM1T p426GPD P -Amir4258-CYC1 T -TEF P -Amir4259-GPM1 T P21P21 GATGGCGCATCTATTTGCCGTCAAAAGATCCTCTCATACCATATTAAGTATATTGCTATAACATGTCATGTCACCATTAATTAC
(서열번호34)
GATGGCGCATCTATTTGCCGTCAAAAGATCCTCTCATACCATATTAAGTA TATTGCTATAACATGTCATGTCACCATTAATTAC
(SEQ ID NO: 34)
P22P22 CCTCACTGAAAAAAGAAACGAGCGGAGGAATAGTATGATAAATCTTCAGCGCAAATTAAAGCCTTCGAGCGTCC
(서열번호35)
CCTCACTGAAAAAAGAAACGAGCGGAGGAATAGTATGATAAATCTTCAGCGCAAATTAAAGCCTTCGAGCGTCC
(SEQ ID NO: 35)
Donor DNA targeting INT#6Donor DNA targeting INT#6 GPD P-Amir4257-CYC1 T -TEF P-Amir4256-GPM1 T GPD P - Amir4257 - CYC1 T - TEF P - Amir4256 - GPM1 T p426GPDP-Amir4257-CYC1T-TEFP-Amir4256-GPM1T p426GPD P -Amir4257-CYC1 T -TEF P -Amir4256-GPM1 T P23P23 AGTCACTGACAGCCACCGCAGAGGTTCTGACTCCTACTGAGCTCTATTGGTATTGCTATAACATGTCATGTCACCATTAATTAC
(서열번호36)
AGTCACTGACAGCCACCGCAGAGGTTCTGACTCCTACTGAGCTCTATTGG TATTGCTATAACATGTCATGTCACCATTAATTAC
(SEQ ID NO: 36)
P24P24 TGAGAAATAAAGCATCGAGTACGGCAGTTCGCTGTCACTGAACTAAAACAGCAAATTAAAGCCTTCGAGCGTCC
(서열번호37)
TGAGAAATAAAGCATCGAGTACGGCAGTTCGCTGTCACTGAACTAAAACA GCAAATTAAAGCCTTCGAGCGTCC
(SEQ ID NO: 37)
pRNA-TAL1 pRNA- TAL1 Guide RNAs targeting TAL1 Guide RNAs targeting TAL1 pRNA-his-HYBpRNA-his-HYB P25P25 GCCTGTGCCGgttttagagctagaaatagcaagtt
(서열번호38)
GCCTGTGCCG gttttagagctagaaatagcaagtt
(SEQ ID NO: 38)
P26P26 AACTGCTTGAcgatcatttatctttcactgcggag
(서열번호39)
AACTGCTTGA cgatcatttatctttcactgcggag
(SEQ ID NO: 39)
Donor DNA targeting TAL1 Donor DNA targeting TAL1 Upstream region of TAL1 Upstream region of TAL1 D452-2 genomic DNAD452-2 genomic DNA P27P27 AATTAAATCGAAAACAAGAACCGAAACG
(서열번호40)
AATTAAATCGAAAACAAGAACCGAAACG
(SEQ ID NO: 40)
P28P28 ccgagatacttccTATGTACACGTATATGTGACGAGTTCGAG
(서열번호41)
ccgagatacttcc TATGTACACGTATATGTGACGAGTTCGAG
(SEQ ID NO: 41)
Downstream region of TAL1 Downstream region of TAL1 D452-2 genomic DNAD452-2 genomic DNA P29P29 atacgtgtacataGGAAGTATCTCGGAAATATTAATTTAGGCC
(서열번호42)
atacgtgtacata GGAAGTATCTCGGAAATATTAATTTAGGCC
(SEQ ID NO: 42)
P30P30 TTGATTCAGGTCAAAATGGATTCAGG
(서열번호43)
TTGATTCAGGTCAAAATGGATTCAGG
(SEQ ID NO: 43)
pRNA-PHO13 pRNA- PHO13 Guide RNAs targeting PHO13 Guide RNAs targeting PHO13 pRNA-his-HYBpRNA-his-HYB P31P31 GAGCCTGCACgttttagagctagaaatagcaagtt
(서열번호44)
GAGCCTGCAC gttttagagctagaaatagcaagtt
(SEQ ID NO: 44)
P32P32 CATGATTGAAcgatcatttatctttcactgcggag
(서열번호45)
CATGATTGAA cgatcatttatctttcactgcggag
(SEQ ID NO: 45)
Donor DNA targeting PHO13 Donor DNA targeting PHO13 Upstream region of PHO13 Upstream region of PHO13 D452-2 genomic DNAD452-2 genomic DNA P33P33 GGACAATTTATTCATGGCATCGTCATTG
(서열번호46)
GGACAATTTATTCATGGCATCGTCATTG
(SEQ ID NO: 46)
P34P34 ttgcattgctcctTTTCCCGAGTTGTATATTCTTTGTCAGG
(서열번호47)
ttgcattgctcctTTTCCCGAGTTGTATATTCTTTGTCAGG
(SEQ ID NO: 47)
Downstream region of PHO13 Downstream region of PHO13 D452-2 genomic DNAD452-2 genomic DNA P35P35 acaactcgggaaaAGGAGCAATGCAAAATCTAGGGGTAG
(서열번호48)
acaactcgggaaaAGGAGCAATGCAAAATCTAGGGGTAG
(SEQ ID NO: 48)
P36P36 TGGGCCATTTTTTAAAGGGTTCTTCTG
(서열번호49)
TGGGCCATTTTTTAAAGGTTCTTCTG
(SEQ ID NO: 49)

표 4는 colony PCR을 위해 사용한 프라이머 목록이다.Table 4 is a list of primers used for colony PCR.

Target DNATarget DNA Templatetemplate NameName SequenceSequence TEFTEF PP p426TEFP-CYC1T p426TEF P -CYC1 T CP01CP01 CTATGACCATGATTACGCCAAGC
(서열번호50)
CTATGACCATGATTACGCCAAGC
(SEQ ID NO: 50)
CP02CP02 GAGGTCGACGGTATCGATAAGC
(서열번호51)
GAGGTCGACGGTATCGATAAGC
(SEQ ID NO: 51)
GPD P-Amir4257-CYC1 T GPD P - Amir4257 - CYC1 T p426GPDP-Amir4257-CYC1T p426GPD P -Amir4257-CYC1 T CP03CP03 CTTGACTAATAAGTATATAAAGACGG
(서열번호52)
CTTGACTAATAAGTATATAAAGACGG
(SEQ ID NO: 52)
CP04CP04 GAAATATAAATAACGTTCTTAATACTAACATAAC
(서열번호53)
GAAATATAAATAACGTTCTTAATACTAACATAAC
(SEQ ID NO: 53)
GPD P-Amir4258-CYC1 T GPD P - Amir4258 - CYC1 T p426GPDP-Amir4258-CYC1T p426GPD P -Amir4258-CYC1 T CP03CP03 CTTGACTAATAAGTATATAAAGACGG
(서열번호54)
CTTGACTAATAAGTATATAAAGACGG
(SEQ ID NO: 54)
CP04CP04 GAAATATAAATAACGTTCTTAATACTAACATAAC
(서열번호55)
GAAATATAAATAACGTTCTTAATACTAACATAAC
(SEQ ID NO: 55)
TEF P-Amir4256-GPM1 T TEF P - Amir4256 - GPM1 T p426TEFP-Amir4256-GPM1T p426TEF P -Amir4256-GPM1 T CP05CP05 GTTAATAAACGGTCTTCAATTTCTC
(서열번호56)
GTTAATAAACGGTCTTCAATTTTCTC
(SEQ ID NO: 56)
CP06CP06 CTCCTCAAATTGCTACCACGAC
(서열번호57)
CTCCTCAAATTGCTACCACGAC
(SEQ ID NO: 57)
TEF P-Amir4259-GPM1 T TEF P - Amir4259 - GPM1 T p426TEFP-Amir4259-GPM1T p426TEF P -Amir4259-GPM1 T CP05CP05 GTTAATAAACGGTCTTCAATTTCTC
(서열번호58)
GTTAATAAACGGTCTTCAATTTTCTC
(SEQ ID NO: 58)
CP06CP06 CTCCTCAAATTGCTACCACGAC
(서열번호59)
CTCCTCAAATTGCTACCACGAC
(SEQ ID NO: 59)
GPD P-Amir4258-CYC1 T-TEF P-Amir4259-GPM1 T GPD P - Amir4258 - CYC1 T - TEF P - Amir4259 - GPM1 T p426GPDP-Amir4258-CYC1T-TEFP-Amir4259-GPM1T p426GPD P -Amir4258-CYC1 T -TEF P -Amir4259-GPM1 T CP01CP01 CTATGACCATGATTACGCCAAGC
(서열번호60)
CTATGACCATGATTACGCCAAGC
(SEQ ID NO: 60)
CP07CP07 CAGTCACGACGTTGTAAAACGACG
(서열번호61)
CAGTCACGACGTTGTAAAACGACG
(SEQ ID NO: 61)
GPD P-Amir4257-CYC1 T-TEF P-Amir4256-GPM1 T GPD P - Amir4257 - CYC1 T - TEF P - Amir4256 - GPM1 T p426GPDP-Amir4257-CYC1T-TEFP-Amir4256-GPM1T p426GPD P -Amir4257-CYC1 T -TEF P -Amir4256-GPM1 T CP01CP01 CTATGACCATGATTACGCCAAGC
(서열번호62)
CTATGACCATGATTACGCCAAGC
(SEQ ID NO: 62)
CP07CP07 CAGTCACGACGTTGTAAAACGACG
(서열번호63)
CAGTCACGACGTTGTAAAACGACG
(SEQ ID NO: 63)
INT#4INT#4 Engineered D452-2 genomic DNAEngineered D452-2 genomic DNA CP08CP08 GCTCGATCTTCTATCCTCTTTAGGT
(서열번호64)
GCTCGATCTTCTATCCTCTTTAGGT
(SEQ ID NO: 64)
CP09CP09 CGAAGAAGTGACCTTAGCCTTCG
(서열번호65)
CGAAGAAGTGACCTTAGCCTTCG
(SEQ ID NO: 65)
INT#6INT#6 Engineered D452-2 genomic DNAEngineered D452-2 genomic DNA CP10CP10 GCCATTGAGTCAAGTTAGGTCATCC
(서열번호66)
GCCATTGAGTCAAGTTAGGTGCATCC
(SEQ ID NO: 66)
CP11CP11 CGTGAACACCTTATATAACTTAGCCCG
(서열번호67)
CGTGAACACTTATATAACTTAGCCCG
(SEQ ID NO: 67)
TAL1TAL1 Engineered D452-2 genomic DNAEngineered D452-2 genomic DNA CP12CP12 GCAACATCAAGTCATAGTCAATTGAATTG
(서열번호68)
GCAACATCAAGTCATAGTCAATTGAATTG
(SEQ ID NO: 68)
CP13CP13 GATAATAGGAAAGAAGACAGGCACG
(서열번호69)
GATAATAGGAAAGAAGACAGGCACG
(SEQ ID NO: 69)
PHO13PHO13 Engineered D452-2 genomic DNA
Engineered D452-2 genomic DNA
CP14CP14 CCTGTTACTGTGATACTAACGGGCAAC
(서열번호70)
CCTGTTACTGTGATACTAACGGGCAAC
(SEQ ID NO: 70)
CP15CP15 CCCTCAGAAATCATCAATTGGACCATC
(서열번호71)
CCCTCAGAAATCATCAATTGGACCATC
(SEQ ID NO: 71)
Sequencing primer for guide RNA sequencesSequencing primers for guide RNA sequences pRNA-TAL1, pRNA-PHO13pRNA-TAL1, pRNA-PHO13 CP16CP16 CAATGTTCTGTTCAAAAGATTTTG
(서열번호72)
CAATGTTCTGTTCAAAAGATTTTG
(SEQ ID NO: 72)

한국생명공학연구원Korea Research Institute of Bioscience and Biotechnology KCTC14827BPKCTC14827BP 2021121520211215

<110> INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY <120> Method for manufacturing Shinorine <130> 21P10050 <160> 76 <170> KoPatentIn 3.0 <210> 1 <211> 1020 <212> DNA <213> Artificial Sequence <220> <223> Amir4256 <400> 1 atgttgaggg ttttgcatct gaccggaagc cctgtgagcc cgtttttcgc ggagttgagc 60 actgtgtacg gtcgtggatg ccttggggcg gcagcagacc cggcgaggta tgagttctta 120 gtagctcatg tcactcccga cggaaggtgg agattccctg cagatttgac accagaagcc 180 ctggctgcgg cacccagatt aggtctgcct gaagctttag ggttaatcga atccagatct 240 gtagatgttg ctgtgcctca gttattttgc cctccaggca tgacaacata tagagccttg 300 ttagacgcat tgggcgtgcc ctacccagga aacccgccag atgttatggc tctgggagct 360 gataaagcca tgactagagc cgttgtcgcg gcagcagggg ttccggtgcc ggagggacgt 420 gtagtcacta gcgctgatcc gtgtccgcta cctcctccct tcgtggttaa accagttgac 480 gcagacaatt cagacggctt gactttagtt cacgataggg cagattacca tgccgctctt 540 gatgctgcat tcgcatgtag tccaagacgt cgtgccctgg tggagagata tgtaccgcct 600 ggacgtgaag tgcgttgtgg tgttttggtt agatcaggtg tccccacacc attaccgctg 660 gaggagtacc ccttaccatc aggcgtgaga cctagggcgg acaaattagc ggacgatgga 720 gggggcagct tgagtctagt agcaaaagct gatggtcgta gctggatagt ggaccacgac 780 gaccctgtta cggccgccgt acaagaacaa gcacttagat gccatgaagc gctggggtgc 840 agggactata gtttatttga cttcagaatc gatccagagg gcaggccctg gtttctagag 900 gcgggattgt actgctcatt cgctccgaca tccgtgatca cgacgatggc tggagccgca 960 ggtatcggac tagcggaact tttcgctgag gctgtgacaa cggcggcacg taggggttaa 1020 1020 <210> 2 <211> 1356 <212> DNA <213> Artificial Sequence <220> <223> Amir4257 <400> 2 atgtctgacg ctgtcgcccc tcagagagtc ccaggcaggg tgccaggaag atcaggctct 60 ggcagagtga gtaggacgtt aggtgcctta gcattactac tggcggcatt accgttttca 120 gcggcgctta ccgctgtagc tgcacttaga gctgccgtca gaccttcccc agctagggca 180 acacctagac gtccgcgtac ggtattgctg acgggtggta aaatgacgaa agcactacac 240 cttgcgaggg catttcacag agccggacat agagttgtcc tggtggaaac cgcgcgttat 300 cgtctaacag cgcatcgttt ctctcgtgcc gttgacgcct tccacgtagt tccggattct 360 gccgatcctc gttacccgca ggctttactg gcaatagtag aaagagaagg agtagatgtc 420 tttgtgcccg tatgttcccc tgcgtcatca gtccacgatg ccgcggcagc tccgttgtta 480 gctacacgtt gcgaagtgtt acacgcagga ttagaagtgg ttgagcttct tgacgacaaa 540 catcgtttcg ctgagctgag cgcggaactg ggtctacctg taccacgttc tcacaggatt 600 actgcgcctg agcaggtgct agatcttggg cttgacggtc cgcacgttct aaagtccata 660 ccgtatgatc ccgtcaaccg tttagactta accccgttgc caagacccac cccagaagcc 720 actctagaat ttttgagggg aaaggacgtt agagatggac atccttgggt actacaagaa 780 ttcgtcgcag gaaaagagta ttgtacgcat tccacagtcc gtaatggaag agtggtagtg 840 tatggatgct gcgaatcttc cgctttccaa gtgaattacg aaatggtgga taagccggaa 900 attgaaaggt gggtacgtgc tttcgcggaa gccaccggtg tcaccggaca ggtatcattt 960 gattttattg agtccgctga cggacgtgct ttagcaatcg aatgcaatcc gagaactcat 1020 tctgcgatta cgatgtttca tgatcatcct gatttagcac gtgcgtactt ggacccggat 1080 gctccccaga taaggcctct tccctccagt aggcccacct attggctatt tcatgaattg 1140 tggagggctc taagcgaacc gggtacagca agagagagac ttagagtcgt tgccagagga 1200 aaggaagccg tattcgactg gtctgaccct ctaccgttcc ttttacttca ccatgtacac 1260 gtccccttat tactacttag ggcgttagta aggggacaag actgggtacg tgtcgacttt 1320 aatatcggaa aacttgttgc gccttcagga gactaa 1356 <210> 3 <211> 816 <212> DNA <213> Artificial Sequence <220> <223> Amir4258 <400> 3 atgtctgcgc caggcgctcc aaggccagtt accccggtcg cactgcttgc agacaccttg 60 gcaagattag ccggcaggag tgatttgccc cctgacgtcg tcgcagaatt atctgccgcg 120 gcagagttgg catctggagt cgacggttac gctggtcgtt gtacgactcc cgaatcccct 180 gcactgagag aactggcggc cagaactgcc gaacatgact ggcgtggcag agggggcgga 240 gttgcgttgg aacaggaaat gctgtccggt cacgtggagg gacagctatt aaagaccttg 300 cttagagccc taagggcgag aagggtattg gaaatcggca tgtttacagg gtatagcgcg 360 ttagccatgg cggaagaact acccgatgat ggagtcgtcg tagcctgtga actagacccc 420 gacgttgcag cttttgccag agagagattt agtgctagcc cgcacggtag gaaggtagat 480 gtacgtgtcg gcccggcctt agatacattg gctggattag tcggtggtga acccttcgat 540 ttggtatttg ttgatgctga caaggcggga tacaccgagt acttggcggt ggtactagat 600 ggaggtctat tagcgcctca cggacttgta tgcgtggata atacgctgat gcaaggtaag 660 acttacttgc cgggagccag ggacgctgtt ggtgccgctg ttgacagatt taatagacat 720 gtcgctcaga ggcccgacgt cgcccaggtt ctagtacctg tgagggacgg gcttacgtta 780 atcagaagag taacacctgg cacgggagag ccgtaa 816 <210> 4 <211> 1221 <212> DNA <213> Artificial Sequence <220> <223> Amir4259 <400> 4 atgaccacga atcttacagc taccgttact gccacggaaa atgatttcag agtccgtgct 60 gtcgaggaga gagattactt gctaacttat gtagatggag ctttcagtcc agaatccagc 120 cgtatagcgg atcatcacag agcacatggg aggtgcttaa tgatcgtaga cgccaatgtt 180 cataggctac acggcgatag gatcagggca tacttcgagc accatgggat cgcactgaca 240 gctcttcctt tagccatcga tgaaacacaa aagtccttaa gaacggtcga acgtatcgtt 300 gacgcattcg gcgaattcgg cctaatcaga aaggagcccg tgttggtagt tggtggaggc 360 ttgttgaccg atgtagcggg cttcgcgtgc gccgttttcc gtcgtagcac cgactacgtt 420 agagtaccca ctagtttaat cggattgatt gatgcttccg ttgcgataaa ggtagctgtc 480 aaccacggcc gtacaaaaaa ccgtttgggt gcgtttcatg cttcaaagga agtcgtatta 540 gatttttcct tcctaggcac cttaccgact gaacaagtaa ggaatggaat ggccgagttg 600 gtcaaaattg cggtcgtggc gaatgcggaa gtttttcgtc tgttagagaa atacggagag 660 gaccttcttc acactgcctt cggcactgtt gacgggaccc cccagctgcg tgagacagcc 720 cgtaaagtca cccatgaggc aatcggaaca atgctggctc tggaagcccc taatctgcgt 780 gaattagatc tggacagggc cattgcgttt gggcacacat ggagccccgc tttggagtta 840 gcaccggaaa cgccatacct acacggacat gccataagtg tagatatggc tctttcttgc 900 actattgctg aaaggagagg atatctggcc acctccgaga gggataggat cttttggctt 960 ctgagcaagg tcgggttatc tctggactca cctcacctga ctccagaact tttgagagct 1020 gcaactgaga gtatcgttca gactagagac ggccttcaga gggcggctat gcccagacca 1080 atcggcacgt gctgtttcgt caacgatttg acggagtctg agctacttga tggacttgcc 1140 gcccacaggg agcttgtagc caggtatcca agaggtgggg ctggtgagga tgttagggtg 1200 accagaagcg gagcggcgta a 1221 <210> 5 <211> 1008 <212> DNA <213> Saccharomyces cerevisiae <400> 5 atgtctgaac cagctcaaaa gaaacaaaag gttgctaaca actctctaga acaattgaaa 60 gcctccggca ctgtcgttgt tgccgacact ggtgatttcg gctctattgc caagtttcaa 120 cctcaagact ccacaactaa cccatcattg atcttggctg ctgccaagca accaacttac 180 gccaagttga tcgatgttgc cgtggaatac ggtaagaagc atggtaagac caccgaagaa 240 caagtcgaaa atgctgtgga cagattgtta gtcgaattcg gtaaggagat cttaaagatt 300 gttccaggca gagtctccac cgaagttgat gctagattgt cttttgacac tcaagctacc 360 attgaaaagg ctagacatat cattaaattg tttgaacaag aaggtgtctc caaggaaaga 420 gtccttatta aaattgcttc cacttgggaa ggtattcaag ctgccaaaga attggaagaa 480 aaggacggta tccactgtaa tttgactcta ttattctcct tcgttcaagc agttgcctgt 540 gccgaggccc aagttacttt gatttcccca tttgttggta gaattctaga ctggtacaaa 600 tccagcactg gtaaagatta caagggtgaa gccgacccag gtgttatttc cgtcaagaaa 660 atctacaact actacaagaa gtacggttac aagactattg ttatgggtgc ttctttcaga 720 agcactgacg aaatcaaaaa cttggctggt gttgactatc taacaatttc tccagcttta 780 ttggacaagt tgatgaacag tactgaacct ttcccaagag ttttggaccc tgtctccgct 840 aagaaggaag ccggcgacaa gatttcttac atcagcgacg aatctaaatt cagattcgac 900 ttgaatgaag acgctatggc cactgaaaaa ttgtccgaag gtatcagaaa attctctgcc 960 gatattgtta ctctattcga cttgattgaa aagaaagtta ccgcttaa 1008 <210> 6 <211> 318 <212> PRT <213> Pichia stipitis <400> 6 Met Pro Ser Ile Lys Leu Asn Ser Gly Tyr Asp Met Pro Ala Val Gly 1 5 10 15 Phe Gly Cys Trp Lys Val Asp Val Asp Thr Cys Ser Glu Gln Ile Tyr 20 25 30 Arg Ala Ile Lys Thr Gly Tyr Arg Leu Phe Asp Gly Ala Glu Asp Tyr 35 40 45 Ala Asn Glu Lys Leu Val Gly Ala Gly Val Lys Lys Ala Ile Asp Glu 50 55 60 Gly Ile Val Lys Arg Glu Asp Leu Phe Leu Thr Ser Lys Leu Trp Asn 65 70 75 80 Asn Tyr His His Pro Asp Asn Val Glu Lys Ala Leu Asn Arg Thr Leu 85 90 95 Ser Asp Leu Gln Val Asp Tyr Val Asp Leu Phe Leu Ile His Phe Pro 100 105 110 Val Thr Phe Lys Phe Val Pro Leu Glu Glu Lys Tyr Pro Pro Gly Phe 115 120 125 Tyr Cys Gly Lys Gly Asp Asn Phe Asp Tyr Glu Asp Val Pro Ile Leu 130 135 140 Glu Thr Trp Lys Ala Leu Glu Lys Leu Val Lys Ala Gly Lys Ile Arg 145 150 155 160 Ser Ile Gly Val Ser Asn Phe Pro Gly Ala Leu Leu Leu Asp Leu Leu 165 170 175 Arg Gly Ala Thr Ile Lys Pro Ser Val Leu Gln Val Glu His His Pro 180 185 190 Tyr Leu Gln Gln Pro Arg Leu Ile Glu Phe Ala Gln Ser Arg Gly Ile 195 200 205 Ala Val Thr Ala Tyr Ser Ser Phe Gly Pro Gln Ser Phe Val Glu Leu 210 215 220 Asn Gln Gly Arg Ala Leu Asn Thr Ser Pro Leu Phe Glu Asn Glu Thr 225 230 235 240 Ile Lys Ala Ile Ala Ala Lys His Gly Lys Ser Pro Ala Gln Val Leu 245 250 255 Leu Arg Trp Ser Ser Gln Arg Gly Ile Ala Ile Ile Pro Lys Ser Asn 260 265 270 Thr Val Pro Arg Leu Leu Glu Asn Lys Asp Val Asn Ser Phe Asp Leu 275 280 285 Asp Glu Gln Asp Phe Ala Asp Ile Ala Lys Leu Asp Ile Asn Leu Arg 290 295 300 Phe Asn Asp Pro Trp Asp Trp Asp Lys Ile Pro Ile Phe Val 305 310 315 <210> 7 <211> 1026 <212> DNA <213> Pichia stipitis <400> 7 tacaactata ctacaatgcc ttctattaag ttgaactctg gttacgacat gccagccgtc 60 ggtttcggct gttggaaagt cgacgtcgac acctgttctg aacagatcta ccgtgctatc 120 aagaccggtt acagattgtt cgacggtgcc gaagattacg ccaacgaaaa gttagttggt 180 gccggtgtca agaaggccat tgacgaaggt atcgtcaagc gtgaagactt gttccttacc 240 tccaagttgt ggaacaacta ccaccaccca gacaacgtcg aaaaggcctt gaacagaacc 300 ctttctgact tgcaagttga ctacgttgac ttgttcttga tccacttccc agtcaccttc 360 aagttcgttc cattagaaga aaagtaccca ccaggattct actgtggtaa gggtgacaac 420 ttcgactacg aagatgttcc aattttagag acctggaagg ctcttgaaaa gttggtcaag 480 gccggtaaga tcagatctat cggtgtttct aacttcccag gtgctttgct cttggacttg 540 ttgagaggtg ctaccatcaa gccatctgtc ttgcaagttg aacaccaccc atacttgcaa 600 caaccaagat tgatcgaatt cgctcaatcc cgtggtattg ctgtcaccgc ttactcttcg 660 ttcggtcctc aatctttcgt tgaattgaac caaggtagag ctttgaacac ttctccattg 720 ttcgagaacg aaactatcaa ggctatcgct gctaagcacg gtaagtctcc agctcaagtc 780 ttgttgagat ggtcttccca aagaggcatt gccatcattc caaagtccaa cactgtccca 840 agattgttgg aaaacaagga cgtcaacagc ttcgacttgg acgaacaaga tttcgctgac 900 attgccaagt tggacatcaa cttgagattc aacgacccat gggactggga caagattcct 960 atcttcgtct aagaaggttg ctttatagag aggaaataaa acctaatata cattgattgt 1020 acattt 1026 <210> 8 <211> 318 <212> PRT <213> Artificial Sequence <220> <223> mutant XYL1 (R276H) <400> 8 Met Pro Ser Ile Lys Leu Asn Ser Gly Tyr Asp Met Pro Ala Val Gly 1 5 10 15 Phe Gly Cys Trp Lys Val Asp Val Asp Thr Cys Ser Glu Gln Ile Tyr 20 25 30 Arg Ala Ile Lys Thr Gly Tyr Arg Leu Phe Asp Gly Ala Glu Asp Tyr 35 40 45 Ala Asn Glu Lys Leu Val Gly Ala Gly Val Lys Lys Ala Ile Asp Glu 50 55 60 Gly Ile Val Lys Arg Glu Asp Leu Phe Leu Thr Ser Lys Leu Trp Asn 65 70 75 80 Asn Tyr His His Pro Asp Asn Val Glu Lys Ala Leu Asn Arg Thr Leu 85 90 95 Ser Asp Leu Gln Val Asp Tyr Val Asp Leu Phe Leu Ile His Phe Pro 100 105 110 Val Thr Phe Lys Phe Val Pro Leu Glu Glu Lys Tyr Pro Pro Gly Phe 115 120 125 Tyr Cys Gly Lys Gly Asp Asn Phe Asp Tyr Glu Asp Val Pro Ile Leu 130 135 140 Glu Thr Trp Lys Ala Leu Glu Lys Leu Val Lys Ala Gly Lys Ile Arg 145 150 155 160 Ser Ile Gly Val Ser Asn Phe Pro Gly Ala Leu Leu Leu Asp Leu Leu 165 170 175 Arg Gly Ala Thr Ile Lys Pro Ser Val Leu Gln Val Glu His His Pro 180 185 190 Tyr Leu Gln Gln Pro Arg Leu Ile Glu Phe Ala Gln Ser Arg Gly Ile 195 200 205 Ala Val Thr Ala Tyr Ser Ser Phe Gly Pro Gln Ser Phe Val Glu Leu 210 215 220 Asn Gln Gly Arg Ala Leu Asn Thr Ser Pro Leu Phe Glu Asn Glu Thr 225 230 235 240 Ile Lys Ala Ile Ala Ala Lys His Gly Lys Ser Pro Ala Gln Val Leu 245 250 255 Leu Arg Trp Ser Ser Gln Arg Gly Ile Ala Ile Ile Pro Lys Ser Asn 260 265 270 Thr Val Pro His Leu Leu Glu Asn Lys Asp Val Asn Ser Phe Asp Leu 275 280 285 Asp Glu Gln Asp Phe Ala Asp Ile Ala Lys Leu Asp Ile Asn Leu Arg 290 295 300 Phe Asn Asp Pro Trp Asp Trp Asp Lys Ile Pro Ile Phe Val 305 310 315 <210> 9 <211> 1026 <212> DNA <213> Artificial Sequence <220> <223> mutant XYL1 (R276H) <400> 9 tacaactata ctacaatgcc ttctattaag ttgaactctg gttacgacat gccagccgtc 60 ggtttcggct gttggaaagt cgacgtcgac acctgttctg aacagatcta ccgtgctatc 120 aagaccggtt acagattgtt cgacggtgcc gaagattacg ccaacgaaaa gttagttggt 180 gccggtgtca agaaggccat tgacgaaggt atcgtcaagc gtgaagactt gttccttacc 240 tccaagttgt ggaacaacta ccaccaccca gacaacgtcg aaaaggcctt gaacagaacc 300 ctttctgact tgcaagttga ctacgttgac ttgttcttga tccacttccc agtcaccttc 360 aagttcgttc cattagaaga aaagtaccca ccaggattct actgtggtaa gggtgacaac 420 ttcgactacg aagatgttcc aattttagag acctggaagg ctcttgaaaa gttggtcaag 480 gccggtaaga tcagatctat cggtgtttct aacttcccag gtgctttgct cttggacttg 540 ttgagaggtg ctaccatcaa gccatctgtc ttgcaagttg aacaccaccc atacttgcaa 600 caaccaagat tgatcgaatt cgctcaatcc cgtggtattg ctgtcaccgc ttactcttcg 660 ttcggtcctc aatctttcgt tgaattgaac caaggtagag ctttgaacac ttctccattg 720 ttcgagaacg aaactatcaa ggctatcgct gctaagcacg gtaagtctcc agctcaagtc 780 ttgttgagat ggtcttccca aagaggcatt gccatcattc caaagtccaa cactgtccca 840 cacttgttgg aaaacaagga cgtcaacagc ttcgacttgg acgaacaaga tttcgctgac 900 attgccaagt tggacatcaa cttgagattc aacgacccat gggactggga caagattcct 960 atcttcgtct aagaaggttg ctttatagag aggaaataaa acctaatata cattgattgt 1020 acattt 1026 <210> 10 <211> 363 <212> PRT <213> Pichia stipitis <400> 10 Met Thr Ala Asn Pro Ser Leu Val Leu Asn Lys Ile Asp Asp Ile Ser 1 5 10 15 Phe Glu Thr Tyr Asp Ala Pro Glu Ile Ser Glu Pro Thr Asp Val Leu 20 25 30 Val Gln Val Lys Lys Thr Gly Ile Cys Gly Ser Asp Ile His Phe Tyr 35 40 45 Ala His Gly Arg Ile Gly Asn Phe Val Leu Thr Lys Pro Met Val Leu 50 55 60 Gly His Glu Ser Ala Gly Thr Val Val Gln Val Gly Lys Gly Val Thr 65 70 75 80 Ser Leu Lys Val Gly Asp Asn Val Ala Ile Glu Pro Gly Ile Pro Ser 85 90 95 Arg Phe Ser Asp Glu Tyr Lys Ser Gly His Tyr Asn Leu Cys Pro His 100 105 110 Met Ala Phe Ala Ala Thr Pro Asn Ser Lys Glu Gly Glu Pro Asn Pro 115 120 125 Pro Gly Thr Leu Cys Lys Tyr Phe Lys Ser Pro Glu Asp Phe Leu Val 130 135 140 Lys Leu Pro Asp His Val Ser Leu Glu Leu Gly Ala Leu Val Glu Pro 145 150 155 160 Leu Ser Val Gly Val His Ala Ser Lys Leu Gly Ser Val Ala Phe Gly 165 170 175 Asp Tyr Val Ala Val Phe Gly Ala Gly Pro Val Gly Leu Leu Ala Ala 180 185 190 Ala Val Ala Lys Thr Phe Gly Ala Lys Gly Val Ile Val Val Asp Ile 195 200 205 Phe Asp Asn Lys Leu Lys Met Ala Lys Asp Ile Gly Ala Ala Thr His 210 215 220 Thr Phe Asn Ser Lys Thr Gly Gly Ser Glu Glu Leu Ile Lys Ala Phe 225 230 235 240 Gly Gly Asn Val Pro Asn Val Val Leu Glu Cys Thr Gly Ala Glu Pro 245 250 255 Cys Ile Lys Leu Gly Val Asp Ala Ile Ala Pro Gly Gly Arg Phe Val 260 265 270 Gln Val Gly Asn Ala Ala Gly Pro Val Ser Phe Pro Ile Thr Val Phe 275 280 285 Ala Met Lys Glu Leu Thr Leu Phe Gly Ser Phe Arg Tyr Gly Phe Asn 290 295 300 Asp Tyr Lys Thr Ala Val Gly Ile Phe Asp Thr Asn Tyr Gln Asn Gly 305 310 315 320 Arg Glu Asn Ala Pro Ile Asp Phe Glu Gln Leu Ile Thr His Arg Tyr 325 330 335 Lys Phe Lys Asp Ala Ile Glu Ala Tyr Asp Leu Val Arg Ala Gly Lys 340 345 350 Gly Ala Val Lys Cys Leu Ile Asp Gly Pro Glu 355 360 <210> 11 <211> 1235 <212> DNA <213> Pichia stipitis <400> 11 cctcacttta gtttgtttca atcaccccta atactcttca cacaattaaa atgactgcta 60 acccttcctt ggtgttgaac aagatcgacg acatttcgtt cgaaacttac gatgccccag 120 aaatctctga acctaccgat gtcctcgtcc aggtcaagaa aaccggtatc tgtggttccg 180 acatccactt ctacgcccat ggtagaatcg gtaacttcgt tttgaccaag ccaatggtct 240 tgggtcacga atccgccggt actgttgtcc aggttggtaa gggtgtcacc tctcttaagg 300 ttggtgacaa cgtcgctatc gaaccaggta ttccatccag attctccgac gaatacaaga 360 gcggtcacta caacttgtgt cctcacatgg ccttcgccgc tactcctaac tccaaggaag 420 gcgaaccaaa cccaccaggt accttatgta agtacttcaa gtcgccagaa gacttcttgg 480 tcaagttgcc agaccacgtc agcttggaac tcggtgctct tgttgagcca ttgtctgttg 540 gtgtccacgc ctctaagttg ggttccgttg ctttcggcga ctacgttgcc gtctttggtg 600 ctggtcctgt tggtcttttg gctgctgctg tcgccaagac cttcggtgct aagggtgtca 660 tcgtcgttga cattttcgac aacaagttga agatggccaa ggacattggt gctgctactc 720 acaccttcaa ctccaagacc ggtggttctg aagaattgat caaggctttc ggtggtaacg 780 tgccaaacgt cgttttggaa tgtactggtg ctgaaccttg tatcaagttg ggtgttgacg 840 ccattgcccc aggtggtcgt ttcgttcaag tcggtaacgc tgctggtcca gtcagcttcc 900 caatcaccgt tttcgccatg aaggaattga ctttgttcgg ttctttcaga tacggattca 960 acgactacaa gactgctgtt ggaatctttg acactaacta ccaaaacggt agagaaaatg 1020 ctccaattga ctttgaacaa ttgatcaccc acagatacaa gttcaaggac gctattgaag 1080 cctacgactt ggtcagagcc ggtaagggtg ctgtcaagtg tctcattgac ggccctgagt 1140 aagtcaaccg cttggctggc ccaaagtgaa ccagaaacga aaatgattat caaatagctt 1200 tatagacctt tatccaaatt tatgtaaact aatag 1235 <210> 12 <211> 623 <212> PRT <213> Pichia stipitis <400> 12 Met Thr Thr Thr Pro Phe Asp Ala Pro Asp Lys Leu Phe Leu Gly Phe 1 5 10 15 Asp Leu Ser Thr Gln Gln Leu Lys Ile Ile Val Thr Asp Glu Asn Leu 20 25 30 Ala Ala Leu Lys Thr Tyr Asn Val Glu Phe Asp Ser Ile Asn Ser Ser 35 40 45 Val Gln Lys Gly Val Ile Ala Ile Asn Asp Glu Ile Ser Lys Gly Ala 50 55 60 Ile Ile Ser Pro Val Tyr Met Trp Leu Asp Ala Leu Asp His Val Phe 65 70 75 80 Glu Asp Met Lys Lys Asp Gly Phe Pro Phe Asn Lys Val Val Gly Ile 85 90 95 Ser Gly Ser Cys Gln Gln His Gly Ser Val Tyr Trp Ser Arg Thr Ala 100 105 110 Glu Lys Val Leu Ser Glu Leu Asp Ala Glu Ser Ser Leu Ser Ser Gln 115 120 125 Met Arg Ser Ala Phe Thr Phe Lys His Ala Pro Asn Trp Gln Asp His 130 135 140 Ser Thr Gly Lys Glu Leu Glu Glu Phe Glu Arg Val Ile Gly Ala Asp 145 150 155 160 Ala Leu Ala Asp Ile Ser Gly Ser Arg Ala His Tyr Arg Phe Thr Gly 165 170 175 Leu Gln Ile Arg Lys Leu Ser Thr Arg Phe Lys Pro Glu Lys Tyr Asn 180 185 190 Arg Thr Ala Arg Ile Ser Leu Val Ser Ser Phe Val Ala Ser Val Leu 195 200 205 Leu Gly Arg Ile Thr Ser Ile Glu Glu Ala Asp Ala Cys Gly Met Asn 210 215 220 Leu Tyr Asp Ile Glu Lys Arg Glu Phe Asn Glu Glu Leu Leu Ala Ile 225 230 235 240 Ala Ala Gly Val His Pro Glu Leu Asp Gly Val Glu Gln Asp Gly Glu 245 250 255 Ile Tyr Arg Ala Gly Ile Asn Glu Leu Lys Arg Lys Leu Gly Pro Val 260 265 270 Lys Pro Ile Thr Tyr Glu Ser Glu Gly Asp Ile Ala Ser Tyr Phe Val 275 280 285 Thr Arg Tyr Gly Phe Asn Pro Asp Cys Lys Ile Tyr Ser Phe Thr Gly 290 295 300 Asp Asn Leu Ala Thr Ile Ile Ser Leu Pro Leu Ala Pro Asn Asp Ala 305 310 315 320 Leu Ile Ser Leu Gly Thr Ser Thr Thr Val Leu Ile Ile Thr Lys Asn 325 330 335 Tyr Ala Pro Ser Ser Gln Tyr His Leu Phe Lys His Pro Thr Met Pro 340 345 350 Asp His Tyr Met Gly Met Ile Cys Tyr Cys Asn Gly Ser Leu Ala Arg 355 360 365 Glu Lys Val Arg Asp Glu Val Asn Glu Lys Phe Asn Val Glu Asp Lys 370 375 380 Lys Ser Trp Asp Lys Phe Asn Glu Ile Leu Asp Lys Ser Thr Asp Phe 385 390 395 400 Asn Asn Lys Leu Gly Ile Tyr Phe Pro Leu Gly Glu Ile Val Pro Asn 405 410 415 Ala Ala Ala Gln Ile Lys Arg Ser Val Leu Asn Ser Lys Asn Glu Ile 420 425 430 Val Asp Val Glu Leu Gly Asp Lys Asn Trp Gln Pro Glu Asp Asp Val 435 440 445 Ser Ser Ile Val Glu Ser Gln Thr Leu Ser Cys Arg Leu Arg Thr Gly 450 455 460 Pro Met Leu Ser Lys Ser Gly Asp Ser Ser Ala Ser Ser Ser Ala Ser 465 470 475 480 Pro Gln Pro Glu Gly Asp Gly Thr Asp Leu His Lys Val Tyr Gln Asp 485 490 495 Leu Val Lys Lys Phe Gly Asp Leu Tyr Thr Asp Gly Lys Lys Gln Thr 500 505 510 Phe Glu Ser Leu Thr Ala Arg Pro Asn Arg Cys Tyr Tyr Val Gly Gly 515 520 525 Ala Ser Asn Asn Gly Ser Ile Ile Arg Lys Met Gly Ser Ile Leu Ala 530 535 540 Pro Val Asn Gly Asn Tyr Lys Val Asp Ile Pro Asn Ala Cys Ala Leu 545 550 555 560 Gly Gly Ala Tyr Lys Ala Ser Trp Ser Tyr Glu Cys Glu Ala Lys Lys 565 570 575 Glu Trp Ile Gly Tyr Asp Gln Tyr Ile Asn Arg Leu Phe Glu Val Ser 580 585 590 Asp Glu Met Asn Ser Phe Glu Val Lys Asp Lys Trp Leu Glu Tyr Ala 595 600 605 Asn Gly Val Gly Met Leu Ala Lys Met Glu Ser Glu Leu Lys His 610 615 620 <210> 13 <211> 2202 <212> DNA <213> Pichia stipitis <400> 13 atagatccct ggaggatacc cacagacatt actgctacta attcatacca tacttgacgt 60 atatctgcgc atacatatct accccaactt tcatataaaa ttcctagatt tattgcatct 120 tctaatagag tcatttttca gatttttcaa tttccataga aagcatacat tttcatacag 180 cttctatttg ttaatcgacc tgataatttt actagccata tttctttttt tgatttttca 240 cttaatcgac atataaatac tcacgtagtt gacactcaca atgaccacta ccccatttga 300 tgctccagat aagctcttcc tcgggttcga tctttcgact cagcagttga agatcatcgt 360 caccgatgaa aacctcgctg ctctcaaaac ctacaatgtc gagttcgata gcatcaacag 420 ctctgtccag aagggtgtca ttgctatcaa cgacgaaatc agcaagggtg ccattatttc 480 ccccgtttac atgtggttgg atgcccttga ccatgttttt gaagacatga agaaggacgg 540 attccccttc aacaaggttg ttggtatttc cggttcttgt caacagcacg gttcggtata 600 ctggtctaga acggccgaga aggtcttgtc cgaattggac gctgaatctt cgttatcgag 660 ccagatgaga tctgctttca ccttcaagca cgctccaaac tggcaggatc actctaccgg 720 taaagagctt gaagagttcg aaagagtgat tggtgctgat gccttggctg atatctctgg 780 ttccagagcc cattacagat tcacagggct ccagattaga aagttgtcta ccagattcaa 840 gcccgaaaag tacaacagaa ctgctcgtat ctctttagtt tcgtcatttg ttgccagtgt 900 gttgcttggt agaatcacct ccattgaaga ggccgatgct tgtggaatga acttgtacga 960 tatcgaaaag cgcgagttca acgaagagct cttggccatc gctgctggtg tccaccctga 1020 gttggatggt gtagaacaag acggtgaaat ttacagagct ggtatcaatg agttgaagag 1080 aaagttgggt cctgtcaaac ctataacata cgaaagcgaa ggtgacattg cctcttactt 1140 tgtcaccaga tacggcttca accccgactg taaaatctac tcgttcaccg gagacaattt 1200 ggccacgatt atctcgttgc ctttggctcc aaatgatgct ttgatctcat tgggtacttc 1260 tactacagtt ttaattatca ccaagaacta cgctccttct tctcaatacc atttgtttaa 1320 acatccaacc atgcctgacc actacatggg catgatctgc tactgtaacg gttccttggc 1380 cagagaaaag gttagagacg aagtcaacga aaagttcaat gtagaagaca agaagtcgtg 1440 ggacaagttc aatgaaatct tggacaaatc cacagacttc aacaacaagt tgggtattta 1500 cttcccactt ggcgaaattg tccctaatgc cgctgctcag atcaagagat cggtgttgaa 1560 cagcaagaac gaaattgtag acgttgagtt gggcgacaag aactggcaac ctgaagatga 1620 tgtttcttca attgtagaat cacagacttt gtcttgtaga ttgagaactg gtccaatgtt 1680 gagcaagagt ggagattctt ctgcttccag ctctgcctca cctcaaccag aaggtgatgg 1740 tacagatttg cacaaggtct accaagactt ggttaaaaag tttggtgact tgtacactga 1800 tggaaagaag caaacctttg agtctttgac cgccagacct aaccgttgtt actacgtcgg 1860 tggtgcttcc aacaacggca gcattatccg caagatgggt tccatcttgg ctcccgtcaa 1920 cggaaactac aaggttgaca ttcctaacgc ctgtgcattg ggtggtgctt acaaggccag 1980 ttggagttac gagtgtgaag ccaagaagga atggatcgga tacgatcagt atatcaacag 2040 attgtttgaa gtaagtgacg agatgaatct gttcgaagtc aaggataaat ggctcgaata 2100 tgccaacggg gttggaatgt tggccaagat ggaaagtgaa ttgaaacact aaaatccata 2160 atagcttgta tagaggtata gaaaaagaga acgttataga gt 2202 <210> 14 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 gaacaaaagc tggagctcat agcttcaaaa tgtttctact c 41 <210> 15 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 agcccggggg atccacttag attagattgc tatgctttct ttc 43 <210> 16 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 acggattcta gaactagtga tgcttcgtgt tctgcacctg accggttcg 49 <210> 17 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 gacataacta attacatgac tcaccccctg cgcgcggcgg 40 <210> 18 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gacggattct agaactagtg atgtctgacg ctgtcgcc 38 <210> 19 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 gacataacta attacatgac ttagtctcct gaaggcgc 38 <210> 20 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 gacggattct agaactagtg atgtctgcgc caggcgctc 39 <210> 21 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 gacataacta attacatgac ttacggctct cccgtgcc 38 <210> 22 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 taagttttct agaactagtg atgaccacga atcttacagc tac 43 <210> 23 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 cttatttctt ttacgccgct ccgcttctg 29 <210> 24 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 agcggcgtaa aagaaataag tctgaagaat gaatg 35 <210> 25 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 ctatagggcg aattgggtac tattgctata acatgtcatg tcac 44 <210> 26 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 agaactagtg atgttgaggg ttttgcatct gacc 34 <210> 27 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 cttatttctt ttaaccccta cgtgccgccg 30 <210> 28 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 taggggttaa aagaaataag tctgaagaat gaatg 35 <210> 29 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 ccctcaacat cactagttct agaaaactta gattagattg 40 <210> 30 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 agggaacaaa agctggagct tattgctata acatgtcatg tcac 44 <210> 31 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 tgataatgat aaactgagct atagcttcaa aatgtttcta ctcc 44 <210> 32 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 agggaacaaa agctggagct tattgctata acatgtcatg tcac 44 <210> 33 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 tgataatgat aaactgagct atagcttcaa aatgtttcta ctcc 44 <210> 34 <211> 84 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 gatggcgcat ctatttgccg tcaaaagatc ctctcatacc atattaagta tattgctata 60 acatgtcatg tcaccattaa ttac 84 <210> 35 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 cctcactgaa aaaagaaacg agcggaggaa tagtatgata aatcttcagc gcaaattaaa 60 gccttcgagc gtcc 74 <210> 36 <211> 84 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 agtcactgac agccaccgca gaggttctga ctcctactga gctctattgg tattgctata 60 acatgtcatg tcaccattaa ttac 84 <210> 37 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 tgagaaataa agcatcgagt acggcagttc gctgtcactg aactaaaaca gcaaattaaa 60 gccttcgagc gtcc 74 <210> 38 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 gcctgtgccg gttttagagc tagaaatagc aagtt 35 <210> 39 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 aactgcttga cgatcattta tctttcactg cggag 35 <210> 40 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 aattaaatcg aaaacaagaa ccgaaacg 28 <210> 41 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 ccgagatact tcctatgtac acgtatatgt gacgagttcg ag 42 <210> 42 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 atacgtgtac ataggaagta tctcggaaat attaatttag gcc 43 <210> 43 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 ttgattcagg tcaaaatgga ttcagg 26 <210> 44 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 gagcctgcac gttttagagc tagaaatagc aagtt 35 <210> 45 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 catgattgaa cgatcattta tctttcactg cggag 35 <210> 46 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 ggacaattta ttcatggcat cgtcattg 28 <210> 47 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 ttgcattgct ccttttcccg agttgtatat tctttgtcag g 41 <210> 48 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 acaactcggg aaaaggagca atgcaaaatc taggggtag 39 <210> 49 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 49 tgggccattt tttaaagggt tcttctg 27 <210> 50 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 50 ctatgaccat gattacgcca agc 23 <210> 51 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 51 gaggtcgacg gtatcgataa gc 22 <210> 52 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 52 cttgactaat aagtatataa agacgg 26 <210> 53 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 53 gaaatataaa taacgttctt aatactaaca taac 34 <210> 54 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 54 cttgactaat aagtatataa agacgg 26 <210> 55 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 55 gaaatataaa taacgttctt aatactaaca taac 34 <210> 56 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 56 gttaataaac ggtcttcaat ttctc 25 <210> 57 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 57 ctcctcaaat tgctaccacg ac 22 <210> 58 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 58 gttaataaac ggtcttcaat ttctc 25 <210> 59 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 59 ctcctcaaat tgctaccacg ac 22 <210> 60 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 60 ctatgaccat gattacgcca agc 23 <210> 61 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 61 cagtcacgac gttgtaaaac gacg 24 <210> 62 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 62 ctatgaccat gattacgcca agc 23 <210> 63 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 63 cagtcacgac gttgtaaaac gacg 24 <210> 64 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 64 gctcgatctt ctatcctctt taggt 25 <210> 65 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 65 cgaagaagtg accttagcct tcg 23 <210> 66 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 66 gccattgagt caagttaggt catcc 25 <210> 67 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 67 cgtgaacacc ttatataact tagcccg 27 <210> 68 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 68 gcaacatcaa gtcatagtca attgaattg 29 <210> 69 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 69 gataatagga aagaagacag gcacg 25 <210> 70 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 70 cctgttactg tgatactaac gggcaac 27 <210> 71 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 71 ccctcagaaa tcatcaattg gaccatc 27 <210> 72 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 72 caatgttctg ttcaaaagat tttg 24 <210> 73 <211> 3682 <212> DNA <213> Artificial Sequence <220> <223> donorDNA_GPD-Amir4258-CYC1-TEF-Amir4259-GPM1 <400> 73 tattgctata acatgtcatg tcaccattaa ttaccactca ttccaacata ctgtccctga 60 cgaaaactgt ttatgcgagc gcaaaatgaa cctattcaat taataatact cctcaaattg 120 ctaccacgac aggctgaaaa aagatgtcga cgaataatgt aatcgtgtca aacaaacgtt 180 atcttgacta tatatagcta cttaatttga aataataaac tatacaagtc tatatcattg 240 atatattcag taagaaaaat ggagggaaaa agaaatcatc aaatcattca ttcttcagac 300 ttatttcttt tacgccgctc cgcttctggt caccctaaca tcctcaccag ccccacctct 360 tggatacctg gctacaagct ccctgtgggc ggcaagtcca tcaagtagct cagactccgt 420 caaatcgttg acgaaacagc acgtgccgat tggtctgggc atagccgccc tctgaaggcc 480 gtctctagtc tgaacgatac tctcagttgc agctctcaaa agttctggag tcaggtgagg 540 tgagtccaga gataacccga ccttgctcag aagccaaaag atcctatccc tctcggaggt 600 ggccagatat cctctccttt cagcaatagt gcaagaaaga gccatatcta cacttatggc 660 atgtccgtgt aggtatggcg tttccggtgc taactccaaa gcggggctcc atgtgtgccc 720 aaacgcaatg gccctgtcca gatctaattc acgcagatta ggggcttcca gagccagcat 780 tgttccgatt gcctcatggg tgactttacg ggctgtctca cgcagctggg gggtcccgtc 840 aacagtgccg aaggcagtgt gaagaaggtc ctctccgtat ttctctaaca gacgaaaaac 900 ttccgcattc gccacgaccg caattttgac caactcggcc attccattcc ttacttgttc 960 agtcggtaag gtgcctagga aggaaaaatc taatacgact tcctttgaag catgaaacgc 1020 acccaaacgg ttttttgtac ggccgtggtt gacagctacc tttatcgcaa cggaagcatc 1080 aatcaatccg attaaactag tgggtactct aacgtagtcg gtgctacgac ggaaaacggc 1140 gcacgcgaag cccgctacat cggtcaacaa gcctccacca actaccaaca cgggctcctt 1200 tctgattagg ccgaattcgc cgaatgcgtc aacgatacgt tcgaccgttc ttaaggactt 1260 ttgtgtttca tcgatggcta aaggaagagc tgtcagtgcg atcccatggt gctcgaagta 1320 tgccctgatc ctatcgccgt gtagcctatg aacattggcg tctacgatca ttaagcacct 1380 cccatgtgct ctgtgatgat ccgctatacg gctggattct ggactgaaag ctccatctac 1440 ataagttagc aagtaatctc tctcctcgac agcacggact ctgaaatcat tttccgtggc 1500 agtaacggta gctgtaagat tcgtggtcat cactagttct agaaaactta gattagattg 1560 ctatgctttc tttctaatga gcaagaagta aaaaaagttg taatagaaca agaaaaatga 1620 aactgaaact tgagaaattg aagaccgttt attaacttaa atatcaatgg gaggtcatcg 1680 aaagagaaaa aaatcaaaaa aaaaattttc aagaaaaaga aacgtgataa aaatttttat 1740 tgcctttttc gacgaagaaa aagaaacgag gcggtctctt ttttcttttc caaaccttta 1800 gtacgggtaa ttaacgacac cctagaggaa gaaagagggg aaatttagta tgctgtgctt 1860 gggtgttttg aagtggtacg gcgatgcgcg gagtccgaga aaatctggaa gagtaaaaaa 1920 ggagtagaaa cattttgaag ctatagctca gtttatcatt atcaatactc gccatttcaa 1980 agaatacgta aataattaat agtagtgatt ttcctaactt tatttagtca aaaaattagc 2040 cttttaattc tgctgtaacc cgtacatgcc caaaataggg ggcgggttac acagaatata 2100 taacatcgta ggtgtctggg tgaacagttt attcctggca tccactaaat ataatggagc 2160 ccgcttttta agctggcatc cagaaaaaaa aagaatccca gcaccaaaat attgttttct 2220 tcaccaacca tcagttcata ggtccattct cttagcgcaa ctacagagaa caggggcaca 2280 aacaggcaaa aaacgggcac aacctcaatg gagtgatgca acctgcctgg agtaaatgat 2340 gacacaaggc aattgaccca cgcatgtatc tatctcattt tcttacacct tctattacct 2400 tctgctctct ctgatttgga aaaagctgaa aaaaaaggtt gaaaccagtt ccctgaaatt 2460 attcccctac ttgactaata agtatataaa gacggtaggt attgattgta attctgtaaa 2520 tctatttctt aaacttctta aattctactt ttatagttag tctttttttt agttttaaaa 2580 caccagaact tagtttcgac ggattctaga actagtgatg tctgcgccag gcgctccaag 2640 gccagttacc ccggtcgcac tgcttgcaga caccttggca agattagccg gcaggagtga 2700 tttgccccct gacgtcgtcg cagaattatc tgccgcggca gagttggcat ctggagtcga 2760 cggttacgct ggtcgttgta cgactcccga atcccctgca ctgagagaac tggcggccag 2820 aactgccgaa catgactggc gtggcagagg gggcggagtt gcgttggaac aggaaatgct 2880 gtccggtcac gtggagggac agctattaaa gaccttgctt agagccctaa gggcgagaag 2940 ggtattggaa atcggcatgt ttacagggta tagcgcgtta gccatggcgg aagaactacc 3000 cgatgatgga gtcgtcgtag cctgtgaact agaccccgac gttgcagctt ttgccagaga 3060 gagatttagt gctagcccgc acggtaggaa ggtagatgta cgtgtcggcc cggccttaga 3120 tacattggct ggattagtcg gtggtgaacc cttcgatttg gtatttgttg atgctgacaa 3180 ggcgggatac accgagtact tggcggtggt actagatgga ggtctattag cgcctcacgg 3240 acttgtatgc gtggataata cgctgatgca aggtaagact tacttgccgg gagccaggga 3300 cgctgttggt gccgctgttg acagatttaa tagacatgtc gctcagaggc ccgacgtcgc 3360 ccaggttcta gtacctgtga gggacgggct tacgttaatc agaagagtaa cacctggcac 3420 gggagagccg taagtcatgt aattagttat gtcacgctta cattcacgcc ctccccccac 3480 atccgctcta accgaaaagg aaggagttag acaacctgaa gtctaggtcc ctatttattt 3540 ttttatagtt atgttagtat taagaacgtt atttatattt caaatttttc ttttttttct 3600 gtacagacgc gtgtacgcat gtaacattat actgaaaacc ttgcttgaga aggttttggg 3660 acgctcgaag gctttaattt gc 3682 <210> 74 <211> 4021 <212> DNA <213> Artificial Sequence <220> <223> donorDNA_GPD-Amir4257-CYC1-TEF-Amir4256-GPM1 <400> 74 tattgctata acatgtcatg tcaccattaa ttaccactca ttccaacata ctgtccctga 60 cgaaaactgt ttatgcgagc gcaaaatgaa cctattcaat taataatact cctcaaattg 120 ctaccacgac aggctgaaaa aagatgtcga cgaataatgt aatcgtgtca aacaaacgtt 180 atcttgacta tatatagcta cttaatttga aataataaac tatacaagtc tatatcattg 240 atatattcag taagaaaaat ggagggaaaa agaaatcatc aaatcattca ttcttcagac 300 ttatttcttt taacccctac gtgccgccgt tgtcacagcc tcagcgaaaa gttccgctag 360 tccgatacct gcggctccag ccatcgtcgt gatcacggat gtcggagcga atgagcagta 420 caatcccgcc tctagaaacc agggcctgcc ctctggatcg attctgaagt caaataaact 480 atagtccctg caccccagcg cttcatggca tctaagtgct tgttcttgta cggcggccgt 540 aacagggtcg tcgtggtcca ctatccagct acgaccatca gcttttgcta ctagactcaa 600 gctgccccct ccatcgtccg ctaatttgtc cgccctaggt ctcacgcctg atggtaaggg 660 gtactcctcc agcggtaatg gtgtggggac acctgatcta accaaaacac cacaacgcac 720 ttcacgtcca ggcggtacat atctctccac cagggcacga cgtcttggac tacatgcgaa 780 tgcagcatca agagcggcat ggtaatctgc cctatcgtga actaaagtca agccgtctga 840 attgtctgcg tcaactggtt taaccacgaa gggaggaggt agcggacacg gatcagcgct 900 agtgactaca cgtccctccg gcaccggaac ccctgctgcc gcgacaacgg ctctagtcat 960 ggctttatca gctcccagag ccataacatc tggcgggttt cctgggtagg gcacgcccaa 1020 tgcgtctaac aaggctctat atgttgtcat gcctggaggg caaaataact gaggcacagc 1080 aacatctaca gatctggatt cgattaaccc taaagcttca ggcagaccta atctgggtgc 1140 cgcagccagg gcttctggtg tcaaatctgc agggaatctc caccttccgt cgggagtgac 1200 atgagctact aagaactcat acctcgccgg gtctgctgcc gccccaaggc atccacgacc 1260 gtacacagtg ctcaactccg cgaaaaacgg gctcacaggg cttccggtca gatgcaaaac 1320 cctcaacatc actagttcta gaaaacttag attagattgc tatgctttct ttctaatgag 1380 caagaagtaa aaaaagttgt aatagaacaa gaaaaatgaa actgaaactt gagaaattga 1440 agaccgttta ttaacttaaa tatcaatggg aggtcatcga aagagaaaaa aatcaaaaaa 1500 aaaattttca agaaaaagaa acgtgataaa aatttttatt gcctttttcg acgaagaaaa 1560 agaaacgagg cggtctcttt tttcttttcc aaacctttag tacgggtaat taacgacacc 1620 ctagaggaag aaagagggga aatttagtat gctgtgcttg ggtgttttga agtggtacgg 1680 cgatgcgcgg agtccgagaa aatctggaag agtaaaaaag gagtagaaac attttgaagc 1740 tatagctcag tttatcatta tcaatactcg ccatttcaaa gaatacgtaa ataattaata 1800 gtagtgattt tcctaacttt atttagtcaa aaaattagcc ttttaattct gctgtaaccc 1860 gtacatgccc aaaatagggg gcgggttaca cagaatatat aacatcgtag gtgtctgggt 1920 gaacagttta ttcctggcat ccactaaata taatggagcc cgctttttaa gctggcatcc 1980 agaaaaaaaa agaatcccag caccaaaata ttgttttctt caccaaccat cagttcatag 2040 gtccattctc ttagcgcaac tacagagaac aggggcacaa acaggcaaaa aacgggcaca 2100 acctcaatgg agtgatgcaa cctgcctgga gtaaatgatg acacaaggca attgacccac 2160 gcatgtatct atctcatttt cttacacctt ctattacctt ctgctctctc tgatttggaa 2220 aaagctgaaa aaaaaggttg aaaccagttc cctgaaatta ttcccctact tgactaataa 2280 gtatataaag acggtaggta ttgattgtaa ttctgtaaat ctatttctta aacttcttaa 2340 attctacttt tatagttagt ctttttttta gttttaaaac accagaactt agtttcgacg 2400 gattctagaa ctagtgatgt ctgacgctgt cgcccctcag agagtcccag gcagggtgcc 2460 aggaagatca ggctctggca gagtgagtag gacgttaggt gccttagcat tactactggc 2520 ggcattaccg ttttcagcgg cgcttaccgc tgtagctgca cttagagctg ccgtcagacc 2580 ttccccagct agggcaacac ctagacgtcc gcgtacggta ttgctgacgg gtggtaaaat 2640 gacgaaagca ctacaccttg cgagggcatt tcacagagcc ggacatagag ttgtcctggt 2700 ggaaaccgcg cgttatcgtc taacagcgca tcgtttctct cgtgccgttg acgccttcca 2760 cgtagttccg gattctgccg atcctcgtta cccgcaggct ttactggcaa tagtagaaag 2820 agaaggagta gatgtctttg tgcccgtatg ttcccctgcg tcatcagtcc acgatgccgc 2880 ggcagctccg ttgttagcta cacgttgcga agtgttacac gcaggattag aagtggttga 2940 gcttcttgac gacaaacatc gtttcgctga gctgagcgcg gaactgggtc tacctgtacc 3000 acgttctcac aggattactg cgcctgagca ggtgctagat cttgggcttg acggtccgca 3060 cgttctaaag tccataccgt atgatcccgt caaccgttta gacttaaccc cgttgccaag 3120 acccacccca gaagccactc tagaattttt gaggggaaag gacgttagag atggacatcc 3180 ttgggtacta caagaattcg tcgcaggaaa agagtattgt acgcattcca cagtccgtaa 3240 tggaagagtg gtagtgtatg gatgctgcga atcttccgct ttccaagtga attacgaaat 3300 ggtggataag ccggaaattg aaaggtgggt acgtgctttc gcggaagcca ccggtgtcac 3360 cggacaggta tcatttgatt ttattgagtc cgctgacgga cgtgctttag caatcgaatg 3420 caatccgaga actcattctg cgattacgat gtttcatgat catcctgatt tagcacgtgc 3480 gtacttggac ccggatgctc cccagataag gcctcttccc tccagtaggc ccacctattg 3540 gctatttcat gaattgtgga gggctctaag cgaaccgggt acagcaagag agagacttag 3600 agtcgttgcc agaggaaagg aagccgtatt cgactggtct gaccctctac cgttcctttt 3660 acttcaccat gtacacgtcc ccttattact acttagggcg ttagtaaggg gacaagactg 3720 ggtacgtgtc gactttaata tcggaaaact tgttgcgcct tcaggagact aagtcatgta 3780 attagttatg tcacgcttac attcacgccc tccccccaca tccgctctaa ccgaaaagga 3840 aggagttaga caacctgaag tctaggtccc tatttatttt tttatagtta tgttagtatt 3900 aagaacgtta tttatatttc aaatttttct tttttttctg tacagacgcg tgtacgcatg 3960 taacattata ctgaaaacct tgcttgagaa ggttttggga cgctcgaagg ctttaatttg 4020 c 4021 <210> 75 <211> 1000 <212> DNA <213> Artificial Sequence <220> <223> donorDNA_Disrupt of TAL1 <400> 75 aattaaatcg aaaacaagaa ccgaaacgcg aataaataat ttatttagat ggtgacaagt 60 gtataagtcc tcatcgggac agctacgatt tctctttcgg ttttggctga gctactggtt 120 gctgtgacgc agcggcatta gcgcggcgtt atgagctacc ctcgtggcct gaaagatggc 180 gggaataaag cggaactaaa aattactgac tgagccatat tgaggtcaat ttgtcaactc 240 gtcaagtcac gtttggtgga cggccccttt ccaacgaatc gtatatacta acatgcgcgc 300 gcttcctata tacacatata catatatata tatatatata tgtgtgcgtg tatgtgtaca 360 cctgtattta atttccttac tcgcgggttt ttcttttttc tcaattcttg gcttcctctt 420 tctcgagtat ataatttttc aggtaaaatt tagtacgata gtaaaatact tctcgaactc 480 gtcacatata cgtgtacata ggaagtatct cggaaatatt aatttaggcc atgtccttat 540 gcacgtttct tttgatactt acgggtacat gtacacaagt atatctatat atataaatta 600 atgaaaatcc cctatttata tatatgactt taacgagaca gaacagtttt ttatttttta 660 tcctatttga tgaatgatac agtttcttat tcacgtgtta tacccacacc aaatccaata 720 gcaataccgg ccatcacaat cactgtttcg gcagccccta agatcagaca aaacatccgg 780 aaccacctta aatcaacgtc ccatatgaat ccttgcagca aagccgctcg gtgttcttta 840 ttcataagca acctcattaa tctatagtct gaaactaatt tccttcttga gctgcagcca 900 ataataaaaa ataatggcgg cactatacta caacatagga ggatcacaat gatgttttcg 960 atgctgtaaa cgtccctgaa tccattttga cctgaatcaa 1000 <210> 76 <211> 1000 <212> DNA <213> Artificial Sequence <220> <223> donorDNA_Disrupt of PHO13 <400> 76 ggacaattta ttcatggcat cgtcattgat ataagtggct tgagctgtgg ataagaaaag 60 ccatatattt atataaacat ttagatatga ataggaagta gattgttcga cgcaactacc 120 cgttcaagaa gtataatggg gaatggtctc atcttccctc acaggatata gttctctgaa 180 gagatacata cgtttgtgta tactatgctt ctttatcaac tcaagttttg tagaggaaga 240 cgttgaagat ggtgatgtga catctttact attctccagc acgttttcag tatttactta 300 atcgtatatt aatgacgtcc cttatctatt aactttccgg tttttctttt tttcggtgaa 360 tgttctttcc gttttagtga atttttcaat tgtaattgac gcaatcggtt tataacaagc 420 agacataaat atcaagctcg agccaaatca caaaaaaagc cttatagctt gccctgacaa 480 agaatataca actcgggaaa aggagcaatg caaaatctag gggtagaatt actttttgaa 540 aaggaaaaat attcaggttt gttgttttta tgtaagttgt atgatttgat atacatatat 600 atatatatat aatatatatt gtacatgtgt ttttccgggg aagaatggat tatccggagg 660 tgtgaataaa atgatgacga ttataggttt gtgttgtaat atttagataa ctcaattctc 720 gccagtttga actccaacct agactggttc aaagcttttg ctatcaagat gagatatatg 780 gaattttcgt ctttatcgtc cacttgtatc tttatttcct cgtcatcttc atcaatattg 840 attccattaa taatcgattt atcgctcaga gtgttgacca attcggtctt gttggggaag 900 aaatgttcca tttttcttcc caagttttga attctttcac aaacccaggc aattctttgt 960 aagcctaatg cagcagaaga accctttaaa aaatggccca 1000 <110> INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY <120> Method for manufacturing Shinorine <130> 21P10050 <160> 76 <170> KoPatentIn 3.0 <210> 1 <211> 1020 <212> DNA <213> Artificial Sequence <220> < 223> Amir4256 <400> 1 atgttgaggg ttttgcatct gaccggaagc cctgtgagcc cgtttttcgc ggagttgagc 60 actgtgtacg gtcgtggatg ccttggggcg gcagcagacc cggcgaggta tgagttctta 120 gtagctcatg tcactcccga cggaag gtgg agattccctg cagatttgac accagaagcc 180 ctggctgcgg cacccagatt aggtctgcct gaagctttag ggttaatcga atccagatct 240 gtagatgttg ctgtgcctca gttattttgc cctccaggca tgacaacata tagagccttg 300 ttagacgcat tgggcgtgcc ctaccc agga aacccgccag atgttatggc tctgggagct 360 gataaagcca tgactagagc cgttgtcgcg gcagcagggg ttccggtgcc ggagggacgt 420 gtagtcacta gcgctgatcc gtgtccgcta cctcctccct tcgtggttaa accagttgac 480 gcagacaatt cagacggctt gactttagtt cacgataggg cagattacca tgccgctctt 540 gat gctgcat tcgcatgtag tccaagacgt cgtgccctgg tggagagata tgtaccgcct 600 ggacgtgaag tgcgttgtgg tgttttggtt agatcaggtg tccccacacc attaccgctg 660 gaggagtacc ccttaccatc aggcgtgaga cctagggcgg acaaattagc ggacgat gga 720 gggggcagct tgagtctagt agcaaaagct gatggtcgta gctggatagt ggaccacgac 780 gaccctgtta cggccgccgt acaagaacaa gcacttagat gccatgaagc gctggggtgc 840 agggactata gtttatttga cttcagaatc gatccagagg gcaggccctg gtttctagag 900 gcgggattgt actgctcatt cgctccgaca tccgtgatca cgacgatggc tggagccgca 960 ggtatcggac tagcggaact tttcgctgag gctgtgacaa cggcggcacg taggggttaa 1020 1020 <210> 2 <211> 1356 <212> DNA <213> Artificial Sequence <220> <223> Amir4257 <400> 2 atgtctgacg ctgtcgcccc tcagagagtc ccaggcaggg tgccaggaag atcaggctct 60 ggcagagtga gtaggacgtt aggtgcctta gcattactac tggcggcatt accgttttca 120 gcggcgctta ccgctgtagc tgcacttaga gctgccgtca g accttcccc agctagggca 180 acacctagac gtccgcgtac ggtattgctg acgggtggta aaatgacgaa agcactacac 240 cttgcgaggg catttcacag agccggacat agagttgtcc tggtggaaac cgcgcgttat 300 cgtctaacag cgcatcgttt ctctcgtgcc gttgacgcct tccacgtagt tccggattct 360 gccgatcctc gttacccgca ggctttactg gcaatagtag aaagagaagg agtagatgtc 420 tttgtgcccg tatgttcccc tgcgtcatca gtccacgatg ccgcggcagc tccgttgtta 480 gctacacgtt gcgaagtgtt acacgcagga ttagaagtgg ttgagcttct tgacgacaaa 540 catcgtttcg ctgagctgag cgcggaactg ggtctacctg taccacgttc tcacaggatt 600 actgcgcctg agcaggtgct agatcttggg cttgacggtc cgcacgttct aaagtccata 660 ccgtatgatc ccgtcaaccg tttagactta accccgttgc caagacccac cccagaagcc 720 actctagaat ttttgagggg aaaggacgtt agagatggac atccttgggt actacaagaa 780 ttcgtcgcag gaaaagagta ttgtacgcat tccacagtcc cggac gtgct ttagcaatcg aatgcaatcc gagaactcat 1020 tctgcgatta cgatgtttca tgatcatcct gatttagcac gtgcgtactt ggacccggat 1080 gctccccaga taaggcctct tccctccagt aggcccacct attggctatt tcatgaattg 1140 tggagggctc taagcgaacc gggtacagca agagagagac ttagagtcgt tgccagagga 1200 aaggaagccg tattcgactg gtctgaccct ctaccgttcc ttttacttca A mir4258 <400> 3 atgtctgcgc caggcgctcc aaggccagtt accccggtcg cactgcttgc agacaccttg 60 gcaagattag ccggcaggag tgatttgccc cctgacgtcg tcgcagaatt atctgccgcg 120 gcagagttgg catctggagt cgacggttac gctggtcgtt gtacgactcc cgaatcccct 180 gcactgagag aactggcggc cagaactgcc gaacatgact ggcgtggcag agggggcgga 240 gt tgcgttgg aacaggaaat gctgtccggt cacgtggagg gacagctatt aaagaccttg 300 cttagagccc taagggcgag aagggtattg gaaatcggca tgtttacagg gtatagcgcg 360 ttagccatgg cggaagaact acccgatgat ggagtcgtcg tagcctgtga actagacccc 420 gacgtt gcag cttttgccag agagagattt agtgctagcc cgcacggtag gaaggtagat 480 gtacgtgtcg gcccggcctt cgg gagccag ggacgctgtt ggtgccgctg ttgacagatt taatagacat 720 gtcgctcaga ggcccgacgt cgcccaggtt ctagtacctg tgagggacgg gcttacgtta 780 atcagaagag taacacctgg cacggagag ccgtaa 816 <210> 4 <211> 1221 <21 2> DNA <213> Artificial Sequence <220> <223> Amir4259 <400> 4 atgaccacga atcttacagc taccgttact gccacggaaa atgatttcag agtccgtgct 60 gtcgaggaga gagattactt gctaacttat gtagatggag ctttcagtcc agaatccagc 120 cgtatagcgg atcatcacag ag cacatggg aggtgcttaa tgatcgtaga cgccaatgtt 180 cataggctac acggcgatag gatcagggca tacttcgagc accatgggat cgcactgaca 240 gctcttcctt tagccatcga tgaaacacaa aagtccttaa gaacggtcga acgtatcgtt 300 gacgcattcg gcgaattcgg cctaatcaga aaggagcccg tgttggtagt tggtggaggc 360 ttgttgaccg atgtagcggg cttcgcgtgc gccgttttcc gtcgtagcac cgactacgtt 420 agagtaccca ctagtttaat cggattgatt gatgcttccg tt gcgataaa ggtagctgtc 480 aaccacggcc gtacaaaaaa ccgtttgggt gcgtttcatg cttcaaagga agtcgtatta 540 gatttttcct tcctaggcac cttaccgact gaacaagtaa ggaatggaat ggccgagttg 600 gtcaaaattg cggtcgtggc gaatgcg gaa gtttttcgtc tgttagagaa atacggagag 660 gaccttcttc acactgcctt cggcactgtt gacgggaccc cccagctgcg tgagacagcc 720 cgtaaagtca cccatgaggc aatcggaaca atgctggctc tggaagcccc taatctgcgt 780 gaattagatc tggacagggc cattgcgttt gggcacacat ggagccccgc tttggagtta 840 gcaccggaaa cgccatacct aacggacat gccataagtg tagatatggc tctttcttg c 900 actattgctg aaaggagagg atatctggcc acctccgaga gggataggat cttttggctt 960 ctgagcaagg tcgggttatc tctggactca cctcacctga ctccagaact tttgagagct 1020 gcaactgaga gtatcgttca gactagagac ggccttcaga gggcggctat gcccagac ca 1080 atcggcacgt gctgtttcgt caacgatttg acggagtctg agctacttga tggacttgcc 1140 gcccacaggg agcttgtagc caggtatcca agaggtgggg ctggtgagga tgttagggtg 1200 accagaagcg gagcggcgta a 1221 <210> 5 <211> 1008 <212> DNA <213> Saccharomyces cerevisiae <400> 5 atgtctgaac cagctcaaaa gaaacaaaag gttgctaaca actctctaga acaattgaaa 60 gcctccggca ctgtcgttgt tgccgacact ggtgatttcg gctctattgc caagtttcaa 120 cctcaagact ccacaactaa cccatcattg atcttggctg ctgccaagca accaacttac 180 gccaagttga tcgatgttgc cgtggaatac ggtaagaagc atggtaagac caccgaagaa 240 caagtcgaaa atgctgtgga cagattgtta gtcgaattcg gtaaggagat cttaaagatt 300 gttccaggca gagtctccac cgaagttgat gctagattgt cttt tgacac tcaagctacc 360 attgaaaagg ctagacatat cattaaattg tttgaacaag aaggtgtctc caaggaaaga 420 gtccttatta aaattgcttc cacttgggaa ggtattcaag ctgccaaaga attggaagaa 480 aaggacggta tccactgtaa tttgactcta ttatattctcc t tcgttcaagc agttgcctgt 540 gccgaggccc aagttacttt gatttcccca tttgttggta gaattctaga ctggtacaaa 600 tccagcactg gtaaagatta caagggtgaa gccgacccag gtgttatttc cgtcaagaaa 660 atctacaact actacaagaa gtacggttac aagactattg ttatgggtgc ttctttcaga 720 agcactgacg aaatcaaaaa cctggctggt gttgactatc taacaatttc tccag cttta 780 ttggacaagt tgatgaacag tactgaacct ttcccaagag ttttggaccc tgtctccgct 840 aagaaggaag ccggcgacaa gatttcttac atcagcgacg aatctaaatt cagattcgac 900 ttgaatgaag acgctatggc cactgaaaaa ttgtccgaag gtat cagaaa attctctgcc 960 gatattgtta ctctattcga cttgattgaa aagaaagtta ccgcttaa 1008 < 210> 6 <211> 318 <212> PRT <213> Pichia stipitis <400> 6 Met Pro Ser Ile Lys Leu Asn Ser Gly Tyr Asp Met Pro Ala Val Gly 1 5 10 15 Phe Gly Cys Trp Lys Val Asp Val Asp Thr Cys Ser Glu Gln Ile Tyr 20 25 30 Arg Ala Ile Lys Thr Gly Tyr Arg Leu Phe Asp Gly Ala Glu Asp Tyr 35 40 45 Ala Asn Glu Lys Leu Val Gly Ala Gly Val Lys Lys Ala Ile Asp Glu 50 55 60 Gly Ile Val Lys Arg Glu Asp Leu Phe Leu Thr Ser Lys Leu Trp Asn 65 70 75 80 Asn Tyr His His Pro Asp Asn Val Glu Lys Ala Leu Asn Arg Thr Leu 85 90 95 Ser Asp Leu Gln Val Asp Tyr Val Asp Leu Phe Leu Ile His Phe Pro 100 105 110 Val Thr Phe Lys Phe Val Pro Leu Glu Glu Lys Tyr Pro Pro Gly Phe 115 120 125 Tyr Cys Gly Lys Gly Asp Asn Phe Asp Tyr Glu Asp Val Pro Ile Leu 130 135 140 Glu Thr Trp Lys Ala Leu Glu Lys Leu Val Lys Ala Gly Lys Ile Arg 145 150 155 160 Ser Ile Gly Val Ser Asn Phe Pro Gly Ala Leu Leu Leu Asp Leu Leu 165 170 175 Arg Gly Ala Thr Ile Lys Pro Ser Val Leu Gln Val Glu His Pro 180 185 190 Tyr Leu Gln Gln Pro Arg Leu Ile Glu Phe Ala Gln Ser Arg Gly Ile 195 200 205 Ala Val Thr Ala Tyr Ser Ser Phe Gly Pro Gln Ser Phe Val Glu Leu 210 215 220 Asn Gln Gly Arg Ala Leu Asn Thr Ser Pro Leu Phe Glu Asn Glu Thr 225 230 235 240 Ile Lys Ala Ile Ala Ala Lys His Gly Lys Ser Pro Ala Gln Val Leu 245 250 255 Leu Arg Trp Ser Ser Gln Arg Gly Ile Ala Ile Ile Pro Lys Ser Asn 260 265 270 Thr Val Pro Arg Leu Leu Glu Asn Lys Asp Val Asn Ser Phe Asp Leu 275 280 285 Asp Glu Gln Asp Phe Ala Asp Ile Ala Lys Leu Asp Ile Asn Leu Arg 290 295 300 Phe Asn Asp Pro Trp Asp Trp Asp Lys Ile Pro Ile Phe Val 305 310 315 <210> 7 <211> 1026 <212> DNA <213> Pichia stipitis <400> 7 tacaactata ctacaatgcc ttctattaag ttgaactctg gttacgacat gccagccgtc 60 ggtttcggct gttggaaagt cgacgtcgac acctgttctg aacagatcta ccgtgctatc 120 aagaccggtt acagattgtt cgacggtgcc gaagattacg ccaacgaaaa gttagttggt 180 gccggtgtca agaaggccat tgacgaaggt atcgtcaagc gtgaagactt gttccttacc 240 tccaagttgt ggaacaacta ccaccaccca gacaacgtcg aaaaggcctt gaacagaacc 300 ctttctgact tgcaagttga ctacgttgac ttgttcttga tccacttccc agtcaccttc 360 aagttcgttc cattagaaga aaagtaccca ccaggattct actgtgta a gggtgacaac 420 ttcgactacg aagatgttcc aattttagag acctggaagg ctcttgaaaa gttggtcaag 480 gccggtaaga tcagatctat cggtgtttct aacttcccag gtgctttgct cttggacttg 540 ttgagaggtg ctaccatcaa gccatctgtc ttg caagttg aacaccaccc atacttgcaa 600 caaccaagat tgatcgaatt cgctcaatcc cgtggtattg ctgtcaccgc ttactcttcg 660 ttcggtcctc aatctttcgt tgaattgaac caaggtagag ctttgaacac ttctccattg 720 ttcgagaacg aaactatcaa ggctatcgct gctaagcacg gtaagtctcc agctcaagtc 780 ttgttgagat ggtcttccca aagaggcatt gccatcattc caaagt ccaa cactgtccca 840 agattgttgg aaaacaagga cgtcaacagc ttcgacttgg acgaacaaga tttcgctgac 900 attgccaagt tggacatcaa cttgagattc aacgacccat gggactggga caagattcct 960 atcttcgtct aagaaggttg ctttatagag aggaaataaa acctaata ta cattgattgt 1020 acattt 1026 <210> 8 <211 > 318 <212> PRT <213> Artificial Sequence <220> <223> mutant XYL1 (R276H) <400> 8 Met Pro Ser Ile Lys Leu Asn Ser Gly Tyr Asp Met Pro Ala Val Gly 1 5 10 15 Phe Gly Cys Trp Lys Val Asp Val Asp Thr Cys Ser Glu Gln Ile Tyr 20 25 30 Arg Ala Ile Lys Thr Gly Tyr Arg Leu Phe Asp Gly Ala Glu Asp Tyr 35 40 45 Ala Asn Glu Lys Leu Val Gly Ala Gly Val Lys Lys Ala Ile Asp Glu 50 55 60 Gly Ile Val Lys Arg Glu Asp Leu Phe Leu Thr Ser Lys Leu Trp Asn 65 70 75 80 Asn Tyr His His Pro Asp Asn Val Glu Lys Ala Leu Asn Arg Thr Leu 85 90 95 Ser Asp Leu Gln Val Asp Tyr Val Asp Leu Phe Leu Ile His Phe Pro 100 105 110 Val Thr Phe Lys Phe Val Pro Leu Glu Glu Lys Tyr Pro Pro Gly Phe 115 120 125 Tyr Cys Gly Lys Gly Asp Asn Phe Asp Tyr Glu Asp Val Pro Ile Leu 130 135 140 Glu Thr Trp Lys Ala Leu Glu Lys Leu Val Lys Ala Gly Lys Ile Arg 145 150 155 160 Ser Ile Gly Val Ser Asn Phe Pro Gly Ala Leu Leu Leu Leu Asp Leu Leu 165 170 175 Arg Gly Ala Thr Ile Lys Pro Ser Val Leu Gln Val Glu His His Pro 180 185 190 Tyr Leu Gln Gln Pro Arg Leu Ile Glu Phe Ala Gln Ser Arg Gly Ile 195 200 205 Ala Val Thr Ala Tyr Ser Ser Ser Phe Gly Pro Gln Ser Phe Val Glu Leu 210 215 220 Asn Gln Gly Arg Ala Leu Asn Thr Ser Pro Leu Phe Glu Asn Glu Thr 225 230 235 240 Ile Lys Ala Ile Ala Ala Lys His Gly Lys Ser Pro Ala Gln Val Leu 245 250 255 Leu Arg Trp Ser Ser Gln Arg Gly Ile Ala Ile Ile Pro Lys Ser Asn 260 265 270 Thr Val Pro His Leu Leu Glu Asn Lys Asp Val Asn Ser Phe Asp Leu 275 280 285 Asp Glu Gln Asp Phe Ala Asp Ile Ala Lys Leu Asp Ile Asn Leu Arg 290 295 300 Phe Asn Asp Pro Trp Asp Trp Asp Lys Ile Pro Ile Phe Val 305 310 315 <210> 9 <211> 1026 <212> DNA <213> Artificial Sequence <220> <223> mutant XYL1 (R276H) <400> 9 tacaactata ctacaatgcc ttctattaag ttgaactctg gttacgacat gccagccgtc 60 ggt ttcggct gttggaaagt cgacgtcgac acctgttctg aacagatcta ccgtgctatc 120 aagaccggtt acagattgtt cgacggtgcc gaagattacg ccaacgaaaa gttagttggt 180 gccggtgtca agaaggccat tgacgaaggt atcgtcaagc gtgaagactt gttccttacc 240 tccaagttgt ggaacaacta ccacca ccca gacaacgtcg aaaaggcctt gaacagaacc 300 ctttctgact tgcaagttga ctacgttgac ttgttcttga tccacttccc agtcaccttc 360 aagttcgttc cattagaaga aaagtaccca ccaggattct actgtggtaa gggtgacaac 420 ttcgactacg aagat gttcc aattttagag acctggaagg ctcttgaaaa gttggtcaag 480 gccggtaaga tcagatctat cggtgtttct aacttcccag gtgctttgct cttggacttg 540 ttgagaggtg ctaccatcaa gccatctgtc ttgcaagttg aacaccaccc atacttgcaa 600 caaccaagat tgatcgaatt cgctcaatcc cgtggtattg ctgtcaccgc ttactcttcg 660 ttcggtcctc aatctttcgt tgaattgaac caaggtagag ctttgaacac ttctccattg 720 ttcgagaacg aaactatcaa ggctatcgct gctaagcacg gtaagtctcc agctcaagtc 780 ttgttgagat ggtcttccca aagaggcatt gccatcattc caaagtccaa cactgtccca 840 cacttgtt gg aaaacaagga cgtcaacagc ttcgacttgg acgaacaaga tttcgctgac 900 attgccaagt tggacatcaa cttgagattc aacgacccat gggactggga caagattcct 960 atcttcgtct aagaaggttg ctttatagag aggaaataaa acctaatata cattgattgt 1020 acattt 1026 <210> 10 <211> 363 <212> PRT <213> Pichia stipitis <400> 10 Met Thr Ala Asn Pro Ser Leu Val Leu Asn Lys Ile Asp Asp Ile Ser 1 5 10 15 Phe Glu Thr Tyr Asp Ala Pro Glu Ile Ser Glu Pro Thr Asp Val Leu 20 25 30 Val Gln Val Lys Lys Thr Gly Ile Cys Gly Ser Asp Ile His Phe Tyr 35 40 45 Ala His Gly Arg Ile Gly Asn Phe Val Leu Thr Lys Pro Met Val Leu 50 55 60 Gly His Glu Ser Ala Gly Thr Val Val Gln Val Gly Lys Gly Val Thr 65 70 75 80 Ser Leu Lys Val Gly Asp Asn Val Ala Ile Glu Pro Gly Ile Pro Ser 85 90 95 Arg Phe Ser Asp Glu Tyr Lys Ser Gly His Tyr Asn Leu Cys Pro His 100 105 110 Met Ala Phe Ala Ala Thr Pro Asn Ser Lys Glu Gly Glu Pro Asn Pro 115 120 125 Pro Gly Thr Leu Cys Lys Tyr Phe Lys Ser Pro Glu Asp Phe Leu Val 130 135 140 Lys Leu Pro Asp His Val Ser Leu Glu Leu Gly Ala Leu Val Glu Pro 145 150 155 160 Leu Ser Val Gly Val His Ala Ser Lys Leu Gly Ser Val Ala Phe Gly 165 170 175 Asp Tyr Val Ala Val Phe Gly Ala Gly Pro Val Gly Leu Leu Ala Ala 180 185 190 Ala Val Ala Lys Thr Phe Gly Ala Lys Gly Val Ile Val Val Asp Ile 195 200 205 Phe Asp Asn Lys Leu Lys Met Ala Lys Asp Ile Gly Ala Ala Thr His 210 215 220 Thr Phe Asn Ser Lys Thr Gly Gly Ser Glu Glu Leu Ile Lys Ala Phe 225 230 235 240 Gly Gly Asn Val Pro Asn Val Val Leu Glu Cys Thr Gly Ala Glu Pro 245 250 255 Cys Ile Lys Leu Gly Val Asp Ala Ile Ala Pro Gly Gly Arg Phe Val 260 265 270 Gln Val Gly Asn Ala Ala Gly Pro Val Ser Phe Pro Ile Thr Val Phe 275 280 285 Ala Met Lys Glu Leu Thr Leu Phe Gly Ser Phe Arg Tyr Gly Phe Asn 290 295 300 Asp Tyr Lys Thr Ala Val Gly Ile Phe Asp Thr Asn Tyr Gln Asn Gly 305 310 315 320 Arg Glu Asn Ala Pro Ile Asp Phe Glu Gln Leu Ile Thr His Arg Tyr 325 330 335 Lys Phe Lys Asp Ala Ile Glu Ala Tyr Asp Leu Val Arg Ala Gly Lys 340 345 350 Gly Ala Val Lys Cys Leu Ile Asp Gly Pro Glu 355 360 <210> 11 <211> 1235 <212> DNA <213> Pichia stipitis <400> 11 cctcacttta gtttgtttca atcaccccta atactcttca cacaattaaa atgactgcta 6 0 acccttcctt ggtgttgaac aagatcgacg acatttcgtt cgaaacttac gatgccccag 120 aaatctctga acctaccgat gtcctcgtcc aggtcaagaa aaccggtatc tgtggttccg 180 acatccactt ctacgcccat ggtagaatcg gtaacttcgt tttgaccaag ccaatggtct 240 tgggtcacga atccgccggt actgttgtcc aggttggtaa gggtgtcacc tctcttaagg 300 ttggtgacaa cgtcgctatc gaaccaggta ttccatccag attctccgac gaataca aga 360 gcggtcacta caacttgtgt cctcacatgg ccttcgccgc tactcctaac tccaaggaag 420 gcgaaccaaa cccaccaggt accttatgta agtacttcaa gtcgccagaa gacttcttgg 480 tcaagttgcc agaccacgtc agcttggaac tcggtgctct tgttga gcca ttgtctgttg 540 gtgtccacgc ctctaagttg ggttccgttg ctttcggcga ctacgttgcc gtctttggtg 600 ctggtcctgt tggtcttttg gctgctgctg tcgccaagac cttcggtgct aagggtgtca 660 tcgtcgttga cattttcgac aacaagttga agatggccaa ggacattggt gctgctactc 720 acaccttcaa ctccaagacc ggtggttctg aagaattgat caaggctttc gg tggtaacg 780 tgccaaacgt cgttttggaa tgtactggtg ctgaaccttg tatcaagttg ggtgttgacg 840 ccattgcccc aggtggtcgt ttcgttcaag tcggtaacgc tgctggtcca gtcagcttcc 900 caatcaccgt tttcgccatg aag gaattga ctttgttcgg ttctttcaga tacggattca 960 acgactacaa gactgctgtt ggaatctttg acactaacta ccaaaacggt agagaaaatg 1020 ctccaattga ctttgaacaa ttgatcaccc acagatacaa gttcaaggac gctattgaag 1080 cctacgactt ggtcagagcc ggtaagggtg ctgtcaagtg tctcattgac ggccctgagt 1140 aagtcaaccg cttggctggc ccaaagtgaa ccagaaacga aaatgattat caaatagctt 1200 tatag acctt tatccaaatt tatgtaaact aatag 1235 <210> 12 <211> 623 <212> PRT <213> Pichia stipitis <400> 12 Met Thr Thr Thr Pro Phe Asp Ala Pro Asp Lys Leu Phe Leu Gly Phe 1 5 10 15 Asp Leu Ser Thr Gln Gln Leu Lys Ile Ile Val Thr Asp Glu Asn Leu 20 25 30 Ala Ala Leu Lys Thr Tyr Asn Val Glu Phe Asp Ser Ile Asn Ser Ser 35 40 45 Val Gln Lys Gly Val Ile Ala Ile Asn Asp Glu Ile Ser Lys Gly Ala 50 55 60 Ile Ile Ser Pro Val Tyr Met Trp Leu Asp Ala Leu Asp His Val Phe 65 70 75 80 Glu Asp Met Lys Lys Asp Gly Phe Pro Phe Asn Lys Val Val Gly Ile 85 90 95 Ser Gly Ser Cys Gln Gln His Gly Ser Val Tyr Trp Ser Arg Thr Ala 100 105 110 Glu Lys Val Leu Ser Glu Leu Asp Ala Glu Ser Ser Leu Ser Ser Gln 115 120 125 Met Arg Ser Ala Phe Thr Phe Lys His Ala Pro Asn Trp Gln Asp His 130 135 140 Ser Thr Gly Lys Glu Leu Glu Glu Phe Glu Arg Val Ile Gly Ala Asp 145 150 155 160 Ala Leu Ala Asp Ile Ser Gly Ser Arg Ala His Tyr Arg Phe Thr Gly 165 170 175 Leu Gln Ile Arg Lys Leu Ser Thr Arg Phe Lys Pro Glu Lys Tyr Asn 180 185 190 Arg Thr Ala Arg Ile Ser Leu Val Ser Ser Phe Val Ala Ser Val Leu 195 200 205 Leu Gly Arg Ile Thr Ser Ile Glu Glu Ala Asp Ala Cys Gly Met Asn 210 215 220 Leu Tyr Asp Ile Glu Lys Arg Glu Phe Asn Glu Glu Leu Leu Ala Ile 225 230 235 240 Ala Ala Gly Val His Pro Glu Leu Asp Gly Val Glu Gln Asp Gly Glu 245 250 255 Ile Tyr Arg Ala Gly Ile Asn Glu Leu Lys Arg Lys Leu Gly Pro Val 260 265 270 Lys Pro Ile Thr Tyr Glu Ser Glu Gly Asp Ile Ala Ser Tyr Phe Val 275 280 285 Thr Arg Tyr Gly Phe Asn Pro Asp Cys Lys Ile Tyr Ser Phe Thr Gly 290 295 300 Asp Asn Leu Ala Thr Ile Ile Ser Leu Pro Leu Ala Pro Asn Asp Ala 305 310 315 320 Leu Ile Ser Leu Gly Thr Ser Thr Thr Thr Val Leu Ile Ile Thr Lys Asn 325 330 335 Tyr Ala Pro Ser Ser Gln Tyr His Leu Phe Lys His Pro Thr Met Pro 340 345 350 Asp His Tyr Met Gly Met Ile Cys Tyr Cys Asn Gly Ser Leu Ala Arg 355 360 365 Glu Lys Val Arg Asp Glu Val Asn Glu Lys Phe Asn Val Glu Asp Lys 370 375 380 Lys Ser Trp Asp Lys Phe Asn Glu Ile Leu Asp Lys Ser Thr Asp Phe 385 390 395 400 Asn Asn Lys Leu Gly Ile Tyr Phe Pro Leu Gly Glu Ile Val Pro Asn 405 410 415 Ala Ala Ala Gln Ile Lys Arg Ser Val Leu Asn Ser Lys Asn Glu Ile 420 425 430 Val Asp Val Glu Leu Gly Asp Lys Asn Trp Gln Pro Glu Asp Asp Val 435 440 445 Ser Ser Ile Val Glu Ser Gln Thr Leu Ser Cys Arg Leu Arg Thr Gly 450 455 460 Pro Met Leu Ser Lys Ser Gly Asp Ser Ser Ser Ala Ser Ser Ser Ser Ala Ser 465 470 475 480 Pro Gln Pro Glu Gly Asp Gly Thr Asp Leu His Lys Val Tyr Gln Asp 485 490 495 Leu Val Lys Lys Phe Gly Asp Leu Tyr Thr Asp Gly Lys Lys Gln Thr 500 505 510 Phe Glu Ser Leu Thr Ala Arg Pro Asn Arg Cys Tyr Tyr Val Gly Gly 515 520 525 Ala Ser Asn Asn Gly Ser Ile Ile Arg Lys Met Gly Ser Ile Leu Ala 530 535 540 Pro Val Asn Gly Asn Tyr Lys Val Asp Ile Pro Asn Ala Cys Ala Leu 545 550 555 560 Gly Gly Ala Tyr Lys Ala Ser Trp Ser Tyr Glu Cys Glu Ala Lys Lys 565 570 575 Glu Trp Ile Gly Tyr Asp Gln Tyr Ile Asn Arg Leu Phe Glu Val Ser 580 585 590 Asp Glu Met Asn Ser Phe Glu Val Lys Asp Lys Trp Leu Glu Tyr Ala 595 600 605 Asn Gly Val Gly Met Leu Ala Lys Met Glu Ser Glu Leu Lys His 610 615 620 <210> 13 <211> 2202 <212> DNA <213> Pichia stipitis <400> 13 atagatccct ggaggatacc cacagacatt actgctacta attcatacca tacttgacgt 60 atatctgcgc atacatatct accccaactt tcatataaaa ttcctagatt tattgcatct 120 tctaatagag tcatttttca gattt ttcaa tttccataga aagcatacat tttcatacag 180 cttctatttg ttaatcgacc tgataatttt actagccata tttctttttt tgatttttca 240 cttaatcgac atataaatac tcacgtagtt gacactcaca atgaccacta ccccatttga 300 tgctccagat aagctcttcc tcgggttcga tctttcgact cagcagttga agatcatcgt 360 caccgatgaa aacctcgctg ctctcaaaac ctacaatgtc gagttcgata gcatcaacag 420 ctctgtccag aagggtgtca ttgctatcaa cgacgaaatc agcaagggtg ccattatttc 480 ccccgtttac atgtggttgg atgcccttga ccatgttttt gaagacatga agaaggacgg 540 attccccttc aacaaggttg ttggtatttc cggttcttgt caacagcacg gttcggtata 600 ctggtctaga acggccgaga aggtcttgtc cgaattggac gctgaatctt cgttatc gag 660 ccagatgaga tctgctttca ccttcaagca cgctccaaac tggcaggatc actctaccgg 720 taaagagctt gaagagttcg aaagagtgat tggtgctgat gccttggctg atatctctgg 780 ttccagagcc cattacagat tcacagggct ccagattaga aagttgtcta ccagattcaa 840 gcccgaaaag tacaacagaa ctgctcgtat ctctttagtt tcgtcatttg ttgccagtgt 900 gttgctt ggt agaatcacct ccattgaaga ggccgatgct tgtggaatga acttgtacga 960 tatcgaaaag cgcgagttca acgaagagct cttggccatc gctgctggtg tccaccctga 1020 gttggatggt gtagaacaag acggtgaaat ttacagagct ggtatcaatg agttgaagag 1080 aaagttgggt cctgtcaaac ctataacata cgaaagcgaa ggtgacattg cctcttactt 1140 tgtcaccaga tacggcttca accccgactg taaaatctac tcgttcaccg gagacaattt 1200 ggccacgatt atctcgttgc ctttggctcc aaatgatgct ttgatctcat tgggtacttc 1260 tactacagtt ttaattatca ccaagaacta cgctccttct tctcaatacc atttgtttaa 1320 acatccaacc atgcctgacc actacatggg catgatctgc tactgtaacg gttccttggc 1380 cagagaaaag gttagagacg aagtcaacga aaagttcaat gtagaagaca agaagtcgtg 1440 ggacaagttc aatgaaatct tggacaaatc cacagacttc aacaacaagt tgggtattta 1500 cttcccactt ggcgaaattg tccctaatgc cgctgctcag atcaagagat cggtgttgaa 1560 cagcaagaac gaaattgtag acgttgagtt gggcgacaag aactggcaac ctgaagatga 1620 tgtttcttca attgtagaat cacagacttt gtcttgtaga ttgagaactg gtccaatgtt 1680 gagcaagagt ggagattctt ctgcttccag ctctgcctca cctcaaccag aaggtgatgg 1740 tacagatttg cacaaggtct accaagactt ggttaa aaag tttggtgact tgtacactga 1800 tggaaagaag caaacctttg agtctttgac cgccagacct aaccgttgtt actacgtcgg 1860 tggtgcttcc aacaacggca gcattatccg caagatgggt tccatcttgg ctcccgtcaa 1920 cggaaactac aaggttgaca ttcctaacgc ctgtgcattg ggtggtgctt acaaggccag 1980 ttggagttac gagtgtgaag ccaagaagga atggatcgga tacgatcagt atatcaacag 2040 attgtttgaa gtaagtgacg agatgaatct gttcgaagtc aaggataaat ggctcgaata 2100 tgccaacggg gttggaatgt tggccaagat ggaaagtgaa ttgaaacact aaaatccata 2160 atagcttgta tagaggtata gaaaaagaga acgtta taga gt 2202 <210> 14 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 gaacaaaagc tggagctcat agcttcaaaa tgtttctact c 41 <210> 15 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 agcccggggg atccacttag attagattgc tatgctttct ttc 43 <210> 16 <2 11> 49 < 212 > DNA <213> Artificial Sequence <220> <223> primer <400> 16 acggattcta gaactagtga tgcttcgtgt tctgcacctg accggttcg 49 <210> 17 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400 > 17 gacataacta attacatgac tcaccccctg cgcgcggcgg 40 <210> 18 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gacggattct agaactagtg atgtctgacg ctgtcgcc 38 <210> 19 <211> 38 < 212 > DNA <213> Artificial Sequence <220> <223> primer <400> 19 gacataacta attacatgac ttagtctcct gaaggcgc 38 <210> 20 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 gacggattct agaactagtg atgtctgcgc caggcgctc 39 <210> 21 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 gacataacta attacatgac ttacggctct cccgtgcc 38 <210> 22 <211> 43 < 212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 taagttttct agaactagtg atgaccacga atcttacagc tac 43 <210> 23 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 cttatttctt ttacgccgct ccgcttctg 29 <210> 24 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 agcggcgtaa aagaaataag tctgaagaat gaatg 35 <210> 25 <211> 44 <21 2> DNA <213> Artificial Sequence <220> <223> primer <400> 25 ctatagggcg aattgggtac tattgctata acatgtcatg tcac 44 <210> 26 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 AGACTAGTG ATGTGAGGGGGTTTGCAT GACC 34 <210> 27 <211> 30 <212> DNA <213> Artificial Sequence CG 30 <210> 28 <211> 35 <212> DNA < 213> Artificial Sequence <220> <223> primer <400> 28 taggggttaa aagaaataag tctgaagaat gaatg 35 <210> 29 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 ccctcaacat cactagttct agaaaactta gattagattg 40 <210> 30 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 agggaacaaa agctggagct tattgctata acatgtcatg tcac 44 <210> 31 <211> 44 <212> DNA < 213> Artificial Sequence <220> <223> primer <400> 31 tgataatgat aaactgagct atagcttcaa aatgtttcta ctcc 44 <210> 32 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 agggaacaaa agctggagct tattgctata acatgtcatg tcac 44 <210> 33 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 gatggcgcat ctatttgccg tcaaaagatc ctctcatacc atattaagta tattgctata 60 acatgtcatg tcaccattaa ttac 84 <210> 35 <211> 74 <212> DNA <213> Artificial Sequence <220 ><223 > primer <400> 35 cctcactgaa aaaagaaacg agcggaggaa tagtatgata aatcttcagc gcaaattaaa 60 gccttcgagc gtcc 74 <210> 36 <211> 84 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 agtcactgac agccaccgca gaggttctga ctcctactga gctctattgg tattgctata 60 acatgtcatg tcaccattaa ttac 84 <210> 37 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 tgagaaataa agcatcgagt acggcagttc gctgtcactg aactaaaaca gcaaattaaa 60 gccttcgagc gt cc 74 <210> 38 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 gcctgtgccg gttttagagc tagaaatagc aagtt 35 <210> 39 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 AACTGCTGA CGATCATTTA TCTTTTACTG CGGAG 35 <210> 40 <211> 28 <212> DNA <213> Artificial sequence GAAACG 28 <210> 41 <211> 42 < 212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 ccgagatact tcctatgtac acgtatatgt gacgagttcg ag 42 <210> 42 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer < 400> 42 atacgtgtac ataggaagta tctcggaaat attaatttag gcc 43 <210> 43 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 ttgattcagg tcaaaatgga ttcagg 26 <210> 44 <211> 35 < 212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 gagcctgcac gttttagagc tagaaatagc aagtt 35 <210> 45 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400 > 45 catgattgaa cgatcattta tctttcactg cggag 35 <210> 46 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 ggacaattta ttcatggcat cgtcattg 28 <210> 47 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 ttgcattgct ccttttcccg agttgtat tctttgtcag g 41 <210> 48 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 acaactcggg aaaaggagca atgcaaaatc taggggtag 39 <210> 49 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 49 tgggccattt tttaaagggt tcttctg 27 <210> 50 <211> 23 <21 2> DNA <213> Artificial Sequence <220> <223> primer <400> 50 ctatgaccat gattacgcca agc 23 <210> 51 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 51 gaggtcgacg gtatcgataa gc 22 <210> 52 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 52 cttgactaat aagtatataa agacgg 26 <210> 53 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 53 gaaatataaa taacgttctt aatactaaca taac 34 <210> 54 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 54 cttgactaat aagtatataa agacgg 26 < 210> 55 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 55 gaaatataaa taacgttctt aatactaaca taac 34 <210> 56 <211> 25 <212> DNA <213> Artificial Sequence < 220> <223> primer <400> 56 gttaataaac ggtcttcaat ttctc 25 <210> 57 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 57 ctcctcaaat tgctaccacg ac 22 <210> 58 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 58 gttaataaac ggtcttcaat ttctc 25 <210> 59 <211> 22 <212> DNA <213> Artificial Sequence <220> <223 > primer <400> 59 ctcctcaaat tgctaccacg ac 22 <210> 60 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 60 ctatgaccat gattacgcca agc 23 <210> 61 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 61 cagtcacgac gttgtaaaac gacg 24 <210> 62 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400 > 62 ctatgaccat gattacgcca agc 23 <210> 63 <211> 24 <212> DNA <213> Artificial sequence <220> <223> primer <400> 63 cagtcacgac gttgtaaaac gacg 24 <210> 64 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 64 gctcgatctt ctatcctctt taggt 25 <210> 65 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 65 cgaagaagtg accttagcct tcg 23 <210> 66 <211> 25 <212> DNA <213 > Artificial Sequence <220> <223> primer <400> 66 gccattgagt caagttaggt catcc 25 <210> 67 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 67 cgtgaacacc ttatataact tagcccg 27 <210> 68 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 68 gcaacatcaa gtcatagtca attgaattg 29 <210> 69 <211> 25 <212> DNA <213> Artificial Sequence < 220> <223> primer <400> 69 gataatagga aagaagacag gcacg 25 <210> 70 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 70 cctgttactg tgatactaac gggcaac 27 <210> 71 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 71 ccctcagaaa tcatcaattg gaccatc 27 <210> 72 <211> 24 <212> DNA <213> Artificial Sequence <220> <223 > primer <400> 72 caatgttctg ttcaaaagat tttg 24 <210> 73 <211> 3682 <212> DNA <213> Artificial Sequence <220> <223> donorDNA_GPD-Amir4258-CYC1-TEF-Amir4259-GPM1 <400> 73 tattgctata a catgtcatg tcaccattaa ttaccactca ttccaacata ctgtccctga 60 cgaaaactgt ttatgcgagc gcaaaatgaa cctattcaat taataatact cctcaaattg 120 ctaccacgac aggctgaaaa aagatgtcga cgaataatgt aatcgtgtca aacaaacgtt 180 atcttgacta tatatagcta cttaatt tga aataataaac tatacaagtc tatatcattg 240 atatattcag taagaaaaat ggaggggaaaa agaaatcatc aaatcattca ttcttcagac 300 ttatttcttt tacgccgctc cgcttctggt caccctaaca tcctcaccag ccccacctct 360 tggatacctg gctacaagct cc ctgtgggc ggcaagtcca tcaagtagct cagactccgt 420 caaatcgttg acgaaacagc acgtgccgat tggtctgggc atagccgccc tctgaaggcc 480 gtctctagtc tgaacgatac tctcagttgc agctctcaaa agttctggag tcaggtgagg 540 tgagtccaga gataacccga ccttgctcag aagccaaaag atcctatccc tctcggaggt 600 ggccagatat cctctccttt cagcaatagt gcaagaaaga gccatatcta cacttatggc 660 atgtccgtgt aggtatggcg tttccggtgc taactccaaa gcggggctcc atgtgtgccc 720 aaacgcaatg gccctgtcca gatctaattc acgcagatta ggggcttcca gagccagcat 780 tgttccgatt gcctcatggg tgactttacg ggctgtctca cgcagctggg gggtcccgtc 840 aacagtgccg aaggcagtgt gaagaaggtc ctctccgtat ttctctaaca gacgaaaaac 900 ttccgcattc gccacgaccg caattttgac caactcggcc attccattcc ttacttgt tc 960 agtcggtaag gtgcctagga aggaaaaatc taatacgact tcctttgaag catgaaacgc 1020 acccaaacgg ttttttgtac ggccgtggtt gacagctacc tttatcgcaa cggaagcatc 1080 aatcaatccg attaaactag tgggtactct aacgtagtcg gtgctacgac ggaaaacggc 1140 gcacgcgaag cccgctacat cggtcaacaa gcctccacca actaccaaca cgggctcctt 1 T ctacgatca ttaagcacct 1380 cccatgtgct ctgtgatgat ccgctatacg gctggattct ggactgaaag ctccatctac 1440 ataagttagc aagtaatctc tctcctcgac agcacggact ctgaaatcat tttccgtggc 1500 agtaacggta gctgtaagat tcgtggtcat cactagttct agaaaactta gattagattg 1560 ctatgctttc tttctaatga gcaagaagta aaaaaagttg taatagaaca agaaaaatga 1620 aact gaaact tgagaaattg aagaccgttt attaacttaa atatcaatgg gaggtcatcg 1680 aaagagaaaa aaatcaaaaa aaaaattttc aagaaaaaga aacgtgataa aaatttttat 1740 tgcctttttc gacgaagaaa aagaaacgag gcggtctctt ttttcttttc caaaccttta 1800 gtacgggtaa ttaacgacac cctagaggaa gaaagagggg aaatttagta tgctgtgctt 1860 gggtgttttg aagtggtacg gcgatgcgcg gagtccgaga aaatctggaa gagtaaaaaa 1920 ggaggtagaaa cattttgaag ctatagctca gtttatcatt atcaatactc gccatttcaa 1980 agaatacgta aataattaat agtagtgatt ttcctaactt tatttagtca aaaaattagc 2040 cttttaattc tgctgtaacc c gtacatgcc caaaataggg ggcgggttac acagaatata 2100 taacatcgta ggtgtctggg tgaacagttt attcctggca tccactaaat ataatggagc 2160 ccgcttttta agctggcatc cagaaaaaaa aagaatccca gcaccaaaat attgttttct 2220 tcaccaac ca tcagttcata ggtccattct cttagcgcaa ctacagagaa caggggcaca 2280 aacaggcaaa aaacgggcac aacctcaatg gagtgatgca acctgcctgg agtaaatgat 2340 gacacaaggc aattgaccca cgcatgtatc tatctcattt tcttacacct tctattacct 2400 tctgctctct ctgatttgga aaaagctgaa aaaaaaggtt gaaaccagtt ccctgaaatt 2460 attcccctac ttgactaata agtata taaa gacggtaggt attgattgta attctgtaaa 2520 tctatttctt aaacttctta aattctactt ttatagttag tctttttttt agttttaaaa 2580 caccagaact tagtttcgac ggattctaga actagtgatg tctgcgccag gcgctccaag 2640 gccagttacc ccggt cgcac tgcttgcaga caccttggca agattagccg gcaggagtga 2700 tttgccccct gacgtcgtcg cagaattatc tgccgcggca gagttggcat ctggagtcga 2760 cggttacgct ggtcgttgta cgactcccga atcccctgca ctgagagaac tggcggccag 2820 aactgccgaa catgactggc gtggcagagg gggcggagtt gcgttggaac aggaaatgct 2880 gtccggtcac gtggagggac agctattaaa gacct tgctt agagccctaa gggcgagaag 2940 ggtattggaa atcggcatgt ttacagggta tagcgcgtta gccatggcgg aagaactacc 3000 cgatgatgga gtcgtcgtag cctgtgaact agaccccgac gttgcagctt ttgccagaga 3060 gagatttagt gctagcccgc actagggga a ggtagatgta cgtgtcggcc cggccttaga 3120 tacattggct ggattagtcg gtggtgaacc cttcgatttg gtatttgttg atgctgacaa 3180 ggcgggatac accgagtact tggcggtggt actagatgga ggtctattag cgcctcacgg 3240 acttgtatgc gtggataata cgctgatgca aggtaagact tacttgccgg gagccaggga 3300 cgctgttggt gccgctgttg acagatttaa tagacatgtc gctcagaggc ccgac ctatt tattt 3540 ttttatagtt atgttagtat taagaacgtt atttatattt caaatttttc tttttttct 3600 gtacagacgc gtgtacgcat gtaacattat actgaaaacc ttgcttgaga aggttttggg 3660 acgctcgaag gctttaattt gc 3682 <210> 74 <211> 4021 <212> DNA <213> Artificial Sequence <220> <223> donorDNA_GPD-Amir4257-CYC 1-TEF-Amir4256-GPM1 <400> 74 tattgctata acatgtcatg tcaccattaa ttaccactca ttccaacata ctgtccctga 60 cgaaaactgt ttatgcgagc gcaaaatgaa cctattcaat taataatact cctcaaattg 120 ctaccacgac aggctgaaaa aagatgtcga cgaataatgt aatcgtgtca aacaaacgtt 180 atcttgacta tatatag cta cttaatttga aataataaac tatacaagtc tatatcattg 240 atatattcag taagaaaaat ggaggggaaaa agaaatcatc aaatcattca ttcttcagac 300 ttatttcttt taacccctac gtgccgccgt tgtcacagcc tcagcgaaaa gttccgctag 360 tccgatacc t gcggctccag ccatcgtcgt gatcacggat gtcggagcga atgagcagta 420 caatcccgcc tctagaaacc agggcctgcc ctctggatcg attctgaagt caaataaact 480 atagtccctg caccccagcg cttcatggca tctaagtgct tgttcttgta cggcggccgt 540 aacagggtcg tcgtggtcca ctatccagct acgaccatca gcttttgcta ctagactcaa 600 gctgcccc ct ccatcgtccg ctaatttgtc cgccctaggt ctcacgcctg atggtaaggg 660 gtactcctcc agcggtaatg gtgtggggac acctgatcta accaaaacac cacaacgcac 720 ttcacgtcca ggcggtacat atctctccac cagggcacga cgtcttggac tacatgcgaa 780 tgcag catca agagcggcat ggtaatctgc cctatcgtga actaaagtca agccgtctga 840 attgtctgcg tcaactggtt taaccacgaa gggaggaggt agcggacacg gatcagcgct 900 agtgactaca cgtccctccg gcaccggaac ccctgctgcc gcgacaacgg ctctagtcat 960 ggctttatca gctcccagag ccataacatc tggcgggttt cctgggtagg gcacgcccaa 1020 tgcgtctaac aaggctctat at gttgtcat gcctggaggg caaaataact gaggcacagc 1080 aacatctaca gatctggatt cgattaaccc taaagcttca ggcagaccta atctgggtgc 1140 cgcagccagg gcttctggtg tcaaatctgc agggaatctc caccttccgt cgggagtgac 1200 atgagctact aagaactcat acctc gccgg gtctgctgcc gccccaaggc atccacgacc 1260 gtacacagtg ctcaactccg cgaaaaacgg gctcacaggg a ggtcatcga aagagaaaaa aatcaaaaaa 1500 aaaattttca agaaaaagaa acgtgataaa aatttttatt gcctttttcg acgaagaaaa 1560 agaaacgagg cggtctcttt tttcttttcc aaacctttag tacgggtaat taacgacacc 1620 ctagaggaag aaaga gggga aatttagtat gctgtgcttg ggtgttttga agtggtacgg 1680 cgatgcgcgg agtccgagaa aatctggaag agtaaaaaag gagtagaaac attttgaagc 1740 tatagctcag tttatcatta tcaatactcg ccatttcaaa gaatacgtaa ataattaata 1800 gtagtgattt tcctaacttt atttagtcaa aaaattagcc ttttaattct gctgtaaccc 1860 gtacatgccc aaaatagggg gcgggttaca cagaatatat aacatc gtag gtgtctgggt 1920 gaacagttta ttcctggcat ccactaaata taatggagcc cgctttttaa gctggcatcc 1980 agaaaaaaaa agaatcccag caccaaaata ttgttttctt caccaaccat cagttcatag 2040 gtccattctc ttagcgcaac tacagagaac aggggcacaa acaggcaaaa aacgggcaca 2100 acctcaatgg agtgatgcaa cctgcctgga gtaaatgatg acacaaggca attgacccac 2160 gcatgtatct atctcatttt cttacacctt ctattacctt ctgctctctc tgatttgggaa 2220 aaagctgaaa aaaaaggttg aaaccagttc cctgaaatta ttcccctact tgactaataa 2280 gtatataaag acggtaggta ttgattgtaa ttctgtaaat ctatttctta aacttcttaa 2340 attctacttt tatagttagt ctttttttta gttttaaaac accagaactt agtttcgacg 2400 gattctagaa ctagtgatgt ctgacgctgt cgcccctcag agagtcccag gcagggtgcc 2460 aggaagatca ggctctggca ggtgagtag gacgtag gt gccttagcat tactactggc 2520 ggcattaccg ttttcagcgg cgcttaccgc tgtagctgca cttagagctg ccgtcagacc 2580 ttccccagct agggcaacac ctagacgtcc gcgtacggta ttgctgacgg gtggtaaaat 2640 gacgaaagca ctacaccttg cgagggcatt tcacagagcc ggacatagag ttgtcctggt 2700 gggaaaccgcg cgttatcgtc taacagcgca tcgtttctct cgtgccgt tg acgccttcca 2760 cgtagttccg gattctgccg atcctcgtta cccgcaggct ttactggcaa tagtagaaag 2820 agaaggagta gatgtctttg tgcccgtatg ttcccctgcg tcatcagtcc acgatgccgc 2880 ggcagctccg ttgttagcta cacgttgc ga agtgttacac gcaggattag aagtggttga 2940 gcttcttgac gacaaacatc gtttcgctga gctgagcgcg gaactgggtc tacctgtacc 3000 acgttctcac aggattactg cgcctgagca ggtgctagat cttgggcttg acggtccgca 3060 cgttctaaag tccataccgt atgatcccgt caaccgttta gacttaaccc cgttgccaag 3120 acccacccca gaagccactc tagaattttt gaggggaaag gacgttagag atggacatcc 3180 ttgg gtacta caagaattcg tcgcaggaaa agagtattgt acgcattcca cagtccgtaa 3240 tggaagagtg gtagtgtatg gatgctgcga atcttccgct ttccaagtga attacgaaat 3300 ggtggataag ccggaaattg aaaggtgggt acgtgctttc gcggaagcca ccggt gtcac 3360 cggacaggta tcatttgatt ttattgagtc cgctgacgga cgtgctttag caatcgaatg 3420 caatccgaga actcattctg cgattacgat gtttcatgat catcctgatt tagcacgtgc 3480 gtacttggac ccggatgctc cccagataag gcctcttccc tccagtaggc ccacctattg 3540 gctatttcat gaattgtgga gggctctaag cgaaccgggt acagcaagag agagacttag 3600 agtcgttgcc agaggaa agg aagccgtatt cgactggtct gaccctctac cgttcctttt 3660 acttcaccat gtacacgtcc ccttattact acttagggcg ttagtaaggg gacaagactg 3720 ggtacgtgtc gactttaata tcggaaaact tgttgcgcct tcaggagact aagtcatgta 3780 attagttatg tcac gcttac attcacgccc tccccccaca tccgctctaa ccgaaaagga 3840 aggagttaga caacctgaag tctaggtccc tatttatttt tttatagtta tgttagtatt 3900 aagaacgtta tttatatttc aaatttttct tttttttctg tacagacgcg tgtacgcatg 3960 taacattata ctgaaaacct tgcttgagaa ggttttggga cgctcgaagg ctttaatttg 4020 c 4021 <210> 75 <211> 1000 <212> DNA <213> Artificial Sequence <220> <223> donorDNA_Disrupt of TAL1 <400> 75 aattaaatcg aaaacaagaa ccgaaacgcg aataaataat ttatttagat ggtgacaagt 60 gtataagtcc tcatcgggac agctacgatt tctctttcgg ttttggctga gctactggtt 120 gctgtgacgc agcggcatta gcgcggcgtt atgagctacc ctcgtggcct gaaagatggc 180 gggaataaag cggaactaaa aattactgac tgagccatat tgaggtcaat ttgtcaactc 240 gtcaagtcac gtttggtgga cggccccttt ccaacgaatc gtatatacta acatgcgcgc 300 gcttcctata tacacatata catatatata tatatatata tgtgg cgtg tatgtgtaca 360 cctgtattta atttccttac tcgcgggttt ttcttttttc tcaattcttg gcttcctctt 420 tctcgagtat ataatttttc aggtaaaatt tagtacgata gtaaaatact tctcgaactc 480 gtcacatata cgtgtacata ggaagtatct cggaaatatt aatttaggcc atgtccttat 540 gcacgtttct tttgatactt acgggtacat gtacacaagt atatctatat atataaatta 600 atgaaaatcc cctattata tatatgactt taacgagaca gaacagtttt ttatttttta 660 tcctatttga tgaatgatac agtttcttat tcacgtgtta tacccacacc aaatccaata 720 gcaataccgg ccatcacaat cactgtttcg gcagccccta agatcagaca aaacatccgg 780 aaccacctta aatcaacgtc c catatgaat ccttgcagca aagccgctcg gtgttcttta 840 ttcataagca acctcattaa tctatagtct gaaactaatt tccttcttga gctgcagcca 900 ataataaaaa ataatggcgg cactatacta caacatagga ggatcacaat gatgttttcg 960 atgctgtaaa cgtccctgaa tccattttga cctgaatcaa 1000 <210> 76 <211> 1000 < 212> DNA <213> Artificial Sequence <220> <223> donorDNA_Disrupt of PHO13 <400> 76 ggacaattta ttcatggcat cgtcattgat ataagtggct tgagctgtgg ataagaaaag 60 ccatatattt atataaacat ttagatatga ataggaagta gattgttcga cgcaactacc 120 cgttcaagaa gtataatggg gaatggtctc atcttccctc acaggatata gttctctgaa 180 gagatacata cgtttgtgta tactatgctt ctttat caac tcaagttttg tagaggaaga 240 cgttgaagat ggtgatgtga catcttact attctccagc acgttttcag tatttactta 300 atcgtatatt aatgacgtcc cttatctatt aactttccgg ttttctttt tttcggtgaa 360 tgttctttcc gttttagtga attttt caat tgtaattgac gcaatcggtt tataacaagc 420 agacataaat atcaagctcg agccaaatca caaaaaaagc cttatagctt gccctgacaa 480 agaatataca actcgggaaa aggagcaatg caaaatctag gggtagaatt actttttgaa 540 aaggaaaaat attcaggttt gttgttttta tgtaagttgt atgatttgat atacatatat 600 atatatatat aatatatatt gtacatgtgt ttttccgggg aagaatggat tatccggagg 660 tgtgaataaa atgatgacga ttataggttt gtgttgtaat atttagataa ctcaattctc 720 gccagtttga actccaacct agactggttc aaagcttttg ctatcaagat gagatatatg 780 gaattttcgt ctttatcgtc cacttgtatc ttt atttcct cgtcatcttc atcaatattg 840 attccattaa taatcgattt atcgctcaga gtgttgacca attcggtctt gttggggaag 900 aaatgttcca tttttcttcc caagttttga attctttcac aaacccaggc aattctttgt 960aagcctaatg cagcagaaga accctttaaa aaatggccca 1000

Claims (12)

악티노신네마 미룸 유래 마이코스포린유사아미노산 생합성 유전자가 도입되어 있는 사카로미세스 세레비시아 균주.
A Saccharomyces cerevisiae strain into which a mycosporine-like amino acid biosynthetic gene derived from Actinocinema mirum has been introduced.
청구항 1에 있어서, 상기 마이코스포린유사아미노산 생합성 유전자는 서열번호 1 내지 4의 염기서열을 갖는 것인 사카로미세스 세레비시아 균주.
The Saccharomyces cerevisiae strain according to claim 1, wherein the mycosporine-like amino acid biosynthetic gene has the nucleotide sequence of SEQ ID NOs: 1 to 4.
청구항 1에 있어서, 상기 균주는 TAL1 유전자가 추가로 결손되어 있는 사카로미세스 세레비시아 균주.
The Saccharomyces cerevisiae strain according to claim 1, wherein the strain is additionally deficient in the TAL1 gene.
청구항 1에 있어서, 상기 균주는 자일로스 리덕타아제 유전자, 자일리톨 디하이드로지나아제 유전자 및 자일로 키나아제 유전자가 추가로 도입되어 있는 사카로미세스 세레비시아 균주.
The Saccharomyces cerevisiae strain according to claim 1, wherein the strain is additionally introduced with a xylose reductase gene, a xylitol dehydrogenase gene, and a xylokinase gene.
청구항 4에 있어서, 상기 자일로스 리덕타아제 유전자는 NADPH 의존성 자일로스 리덕타아제 유전자 및 NADH 의존성 자일로스 리덕타아제 유전자를 포함하는 것인 사카로미세스 세레비시아 균주.
The Saccharomyces cerevisiae strain according to claim 4, wherein the xylose reductase gene includes a NADPH-dependent xylose reductase gene and a NADH-dependent xylose reductase gene.
청구항 1에 있어서, 상기 마이코스포린유사아미노산 생합성 유전자는 상기 균주의 염색체 내에 도입되어 있는, 사카로미세스 세레비시아 균주.
The Saccharomyces cerevisiae strain according to claim 1, wherein the mycosporine-like amino acid biosynthetic gene is introduced into the chromosome of the strain.
청구항 6에 있어서, 상기 마이코스포린유사아미노산 생합성 유전자는 ATG33 유전자 상류(upstream)의 유전자 간 부위(int#6)와 ASF1 유전자 상류(upstream)의 유전자 간 부위(int#4)에 도입되어 있는, 사카로미세스 세레비시아 균주.
The method according to claim 6, wherein the mycosporine-like amino acid biosynthetic gene is introduced into the intergenic region (int#6) upstream of the ATG33 gene and the intergenic region (int#4) upstream of the ASF1 gene, saccharide Lomyces cerevisiae strains.
청구항 2에 있어서, 상기 서열번호 1 및 4의 유전자는 TEF 프로모터와 GPM1 터미네이터에 작동 가능하게 연결되어 있고, 상기 서열번호 2 및 3의 유전자는 GPD 프로모터와 CYC1 터미네이터에 작동 가능하게 연결된, 사카로미세스 세레비시아 균주.
The method according to claim 2, wherein the genes of SEQ ID NOs: 1 and 4 are operably linked to the TEF promoter and the GPM1 terminator, and the genes of SEQ ID NOs: 2 and 3 are operably linked to the GPD promoter and the CYC1 terminator, Saccharomyces cerevisiae strains.
청구항 1에 있어서, 기탁번호가 KCTC14827BP인 사카로미세스 세레비시아 균주.
The method according to claim 1, Accession number is KCTC14827BP Saccharomyces cerevisiae strain.
청구항 1 내지 9 중 어느 한 항의 사카로미세스 세레비시아 균주를 배양하는 단계를 포함하는 시노린의 생산 방법.
A method for producing shinorine comprising culturing the Saccharomyces cerevisiae strain of any one of claims 1 to 9.
청구항 10에 있어서, 자일로스 및 글루코스를 탄소원으로 사용하는 시노린의 생산 방법.
The method according to claim 10, wherein xylose and glucose are used as carbon sources.
청구항 11에 있어서, 상기 글루코스는 1 내지 5 g/L의 저농도로 유지시키면서 상기 자일로스를 공급하는 시노린의 생산 방법.The method according to claim 11, wherein the xylose is supplied while maintaining the glucose at a low concentration of 1 to 5 g/L.
KR1020210187521A 2021-12-24 2021-12-24 Method for manufacturing Shinorine KR20230097735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210187521A KR20230097735A (en) 2021-12-24 2021-12-24 Method for manufacturing Shinorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210187521A KR20230097735A (en) 2021-12-24 2021-12-24 Method for manufacturing Shinorine

Publications (1)

Publication Number Publication Date
KR20230097735A true KR20230097735A (en) 2023-07-03

Family

ID=87157161

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210187521A KR20230097735A (en) 2021-12-24 2021-12-24 Method for manufacturing Shinorine

Country Status (1)

Country Link
KR (1) KR20230097735A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150137244A (en) 2014-05-28 2015-12-09 주식회사 바이오에프디엔씨 Mass Production Method of Mycosporine-like amino acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150137244A (en) 2014-05-28 2015-12-09 주식회사 바이오에프디엔씨 Mass Production Method of Mycosporine-like amino acid

Similar Documents

Publication Publication Date Title
EP2179036B1 (en) Polypeptide having nadh dependent hmf reductase activity
US8993301B2 (en) Vector with codon-optimised genes for an arabinose metabolic pathway for arabinose conversion in yeast for ethanol production
US20090053784A1 (en) Expression of an active carrier from xylose in genetically modified saccharomyces cerevisae
KR102351059B1 (en) Microorganism for Producing Mycosporine-like Amino Acid and Method for Preparing Mycosporine-like Amino Acid Using the Same
US20210062230A1 (en) Methods for ethanol production using engineered yeast
CN108034667B (en) Monascus ruber alpha-amylase gene, and preparation method and application thereof
CN109337932B (en) Method for increasing yield of monascus pigment
US8652815B2 (en) Transformant comprising gene coding for ws/dgat and method of producing fatty acid ethyl esters using the same
KR101262999B1 (en) Recombinant yeast by overexpression of pyruvate decarboxylase and alcohol dehydrogenase for improving productivity of bioethanol and Method for producing ethanol using the same
CN114262702A (en) Application of ergothioneine synthesis gene in reconstruction of ergothioneine metabolic pathway in corynebacterium glutamicum and method thereof
JP5796138B2 (en) Yeast producing ethanol from xylose
KR20230097735A (en) Method for manufacturing Shinorine
KR102306725B1 (en) Genetically engineered yeast having acetoin producing ability and method for producing acetoin using the same
US8748152B1 (en) Prevotella ruminicola xylose isomerase and co-expression with xylulokinase in yeast for xylose fermentation
US8772000B2 (en) Transformant for enhancing bioethanol production, and method for producing ethanol by using said strain
CN109371053B (en) Construction method of monascus pigment producing strain
CN113493785A (en) High-strength promoter suitable for corynebacterium glutamicum and application
KR102637622B1 (en) Composition and method for producing shinorine
KR102603304B1 (en) Composition and method for producing porphyra-334
KR20110106145A (en) Isolated polynucleotides increasing tolerance for alcohol fermentation inhibitive compound, recombinant vector and alcohol producing transformed cell containing the same, and method of producing alcohol using the same
JP6812097B2 (en) Yeast that produces ethanol from xylose
WO2023079049A1 (en) Variant polypeptide and recombinant yeast cell
TWI526536B (en) Recombinant yeast cell, and the preparation process and uses thereof
KR20240072319A (en) Microorganisms with excellent ability to produce shinorine and method for producing shinorine using the same
KR101392968B1 (en) Novel autonomously replicating sequence and uses thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal