KR20230095253A - Euv 포토 마스크 검사 장치 - Google Patents

Euv 포토 마스크 검사 장치 Download PDF

Info

Publication number
KR20230095253A
KR20230095253A KR1020210184544A KR20210184544A KR20230095253A KR 20230095253 A KR20230095253 A KR 20230095253A KR 1020210184544 A KR1020210184544 A KR 1020210184544A KR 20210184544 A KR20210184544 A KR 20210184544A KR 20230095253 A KR20230095253 A KR 20230095253A
Authority
KR
South Korea
Prior art keywords
light
mask structure
euv
reflected
euv photomask
Prior art date
Application number
KR1020210184544A
Other languages
English (en)
Inventor
최가람
김태중
나지훈
최창훈
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020210184544A priority Critical patent/KR20230095253A/ko
Priority to US18/056,984 priority patent/US20230194845A1/en
Priority to CN202211655943.9A priority patent/CN116430669A/zh
Publication of KR20230095253A publication Critical patent/KR20230095253A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0016Technical microscopes, e.g. for inspection or measuring in industrial production processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/28Base structure with cooling device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95676Masks, reticles, shadow masks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

본 발명의 실시예에 따른 EUV 포토 마스크 검사 장치는, EUV 포토 마스크 및 상기 EUV 포토 마스크 상의 펠리클을 포함하는 마스크 구조물에 서로 다른 공초점을 각각 형성시키는 복수의 광학 시스템들을 포함하고, 상기 복수의 광학 시스템들 중 제1 광학 시스템은, 가시광 범위의 파장을 갖는 제1 광을 출사하는 제1 광원, 상기 제1 광을 투과하거나 반사하는 광 분할기, 상기 제1 광이 상기 마스크 구조물의 적어도 일부를 투과하여 상기 마스크 구조물에 제1 초점을 형성하게 하는 대물 렌즈, 입사된 상기 제1 광이 상기 마스크 구조물로부터 반사된 제1 반사광을 검출하는 제1 광 검출기, 및 상기 제1 광원 앞에 배치되고, 상기 제1 광 중 일부를 제거하도록 배치되는 핀홀 판을 포함하고, 상기 제1 광 검출기는, 광전 증배관(PMT) 및 애벌런치 포토다이오드(APD)를 포함하는 검출 모듈, 및 상기 검출 모듈의 열 노이즈를 감소시키기 위한 열전 냉각 모듈을 포함한다.

Description

EUV 포토 마스크 검사 장치{EUV PHOTO MASK INSPECTION APPARATUS}
본 발명은 EUV 포토 마스크 검사 장치에 관한 것이다.
반도체 소자의 회로 패턴의 선폭이 급격히 미세화 됨에 따라, 기존의 노광 장치로 회로 패턴을 형성하는 데 어려움이 있다. 이를 해결하기 위해, 13.5 nm 파장의 극자외선을 광원으로 사용하는 극자외선(extreme ultraviolet, EUV) 리소그래피 기술을 적용한 노광 장치가 개발되고 있다. EUV 리소그래피 기술에서 사용하는 13.5 nm 파장의 광은 거의 모든 물질에서 흡수되기 때문에, 기존의 투과형 포토 마스크가 아닌 반사형 포토 마스크가 사용된다. 또한, 포토 마스크의 표면에 불순물이 부착하는 것을 방지하기 위하여 EUV에 대한 높은 투과도를 갖는 펠리클(pellicle)을 장착할 수 있다.
본 발명이 이루고자 하는 기술적 과제 중 하나는, 검출력 및 양산성이 향상된, 펠리클이 장착된 EUV 포토 마스크 검사 장치를 제공하는 것이다.
예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치는, EUV 포토 마스크 및 상기 EUV 포토 마스크 상의 펠리클을 포함하는 마스크 구조물에 서로 다른 공초점(confocal)을 각각 형성시키는 복수의 광학 시스템들을 포함하고, 상기 복수의 광학 시스템들 중 제1 광학 시스템은, 가시광 범위의 파장을 갖는 제1 광을 출사하는 제1 광원, 상기 제1 광을 투과하거나 반사하는 광 분할기(beam splitter), 상기 제1 광이 상기 마스크 구조물의 적어도 일부를 투과하여 상기 마스크 구조물에 제1 초점을 형성하게 하는 대물 렌즈(objective lens), 입사된 상기 제1 광이 상기 마스크 구조물로부터 반사된 제1 반사광을 검출하는 제1 광 검출기(light detector), 및 상기 제1 광원 앞에 배치되고, 상기 제1 광 중 일부를 제거하도록 배치되는 핀홀 판(pinhole plate)을 포함하고, 상기 제1 광 검출기는, 광전 증배관(Photo Multiplier Tube, PMT) 및 애벌런치 포토다이오드(Avalanche Photodiode, APD)를 포함하는 검출 모듈, 및 상기 검출 모듈의 열 노이즈를 감소시키기 위한 열전 냉각(thermoelectric cooling) 모듈을 포함할 수 있다.
예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치는, 가시광 범위의 파장을 갖는 제1 광을 출사하는 광원, 상기 제1 광을 투과하거나 반사하는 광 분할기, 상기 제1 광이, EUV 포토 마스크 및 상기 EUV 포토 마스크 상의 펠리클을 포함하는 마스크 구조물의 적어도 일부를 투과하여 상기 마스크 구조물에 제1 초점을 형성하게 하는 대물 렌즈, 입사된 상기 제1 광이 상기 마스크 구조물로부터 반사된 제1 반사광을 검출하는 광 검출기, 및 상기 광원 및 상기 광 검출기 중 적어도 하나의 앞에 배치되고, 상기 제1 광 및 상기 제1 반사광 중 중 적어도 하나의 일부를 제거하도록 배치되는 핀홀 판을 포함하고, 상기 광 검출기는, 검출 모듈 및 상기 검출 모듈의 열 노이즈를 감소시키기 위한 열전 냉각 모듈을 포함하고, 상기 제1 초점은, 상기 핀홀 판에서의 초점 및 상기 광 검출기에 형성되는 초점과 서로 공액관계(conjugate)인 공초점(confocal)일 수 있다.
예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치는, 검사 대상물에 서로 다른 공초점을 각각 형성시키는 복수의 광학 시스템들을 포함하고, 상기 복수의 광학 시스템들 중 제1 광학 시스템은, 제1 광을 출사하는 광원, 상기 제1 광을 투과하거나 반사하는 광 분할기, 상기 제1 광이 상기 검사 대상물의 적어도 일부를 투과하여 상기 검사 대상물에 제1 초점을 형성하게 하는 대물 렌즈, 입사된 상기 제1 광이 상기 검사 대상물로부터 반사된 제1 반사광을 검출하고, 광전 증배관(PMT) 및 애벌런치 포토다이오드(APD)를 포함하는 광 검출기, 상기 광원과 상기 광 분할기의 사이에 배치되는 집광 렌즈들, 및 상기 집광 렌즈들의 사이에 배치되고, 상기 제1 광 중 일부를 제거하도록 배치되는 핀홀 판을 포함할 수 있다.
EUV 포토 마스크 및 상기 EUV 포토 마스크 상의 펠리클을 포함하는 EUV 포토 마스크 구조물에 대하여, 펠리클을 투과하여 공초점 방식으로 검사가 가능하여, 검출력 및 양산성이 향상된 EUV 포토 마스크 검사 장치가 제공될 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시예를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치를 도시하는 개략도이다.
도 2a 및 도 2b는 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치에 의한 검사 방법을 설명하기 위한 도면들이다.
도 3은 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치를 도시하는 개략도이다.
도 4는 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치의 광 검출기를 설명하는 블럭도이다.
도 5는 광의 파장에 따른 펠리클 투과율을 나타내는 그래프이다.
도 6a 및 도 6b는 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치의 특성을 설명하기 위한 도면들이다.
도 7a 내지 도 7c는 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치에 의한 이미지 분석 방법을 설명하기 위한 도면들이다.
도 8a 및 도 8b는 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치를 도시하는 개략도들이다.
도 9a 및 도 9b는 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치를 도시하는 개략도들이다.
도 10은 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치를 이용한 EUV 포토 마스크 검사 방법을 설명하기 위한 흐름도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 다음과 같이 설명한다.
도 1은 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치를 도시하는 개략도이다.
도 1을 참조하면, EUV 포토 마스크 검사 장치(1000)는 검사 대상물인 마스크 구조물(MS)의 결함 유무를 검사하는 광학 검사 장치이다. EUV 포토 마스크 검사 장치(1000)는, 편광 방향이 서로 다른 제1 및 제2 광들(L1, L2)을 출사하는 광원(light source)들(110), 제1 및 제2 광들(L1, L2)을 투과하거나 평행광을 분리하거나, 마스크 구조물(MS)로부터 반사되는 제1 및 제2 반사광들(Lr1, Lr2)의 경로를 변경하는 광 분할기(beam splitter)(120), 제1 및 제2 광들(L1, L2)의 사이즈를 조절하는 릴레이 광학계(188a, 188b), 마스크 구조물(MS)로 제1 및 제2 광들(L1, L2)을 입사시키고 마스크 구조물(MS)에 초점을 형성하는 대물 렌즈(objective lens)(130), 제1 및 제2 반사광들(Lr1, Lr2)을 검출하는 광 검출기(light detector)들(140), 및 광원들(110) 앞에서 노이즈를 제거하는 핀홀 판(pinhole plate)(150)을 포함할 수 있다.
EUV 포토 마스크 검사 장치(1000)는, 제1 및 제2 광들(L1, L2)을 투과하거나, 편광 방향에 따라 반사시키거나, 평행광을 분리하는 제1 편광 광 분할기(polarized beam splitter)(122), 제1 광(L1)이 제1 편광 광 분할기(122)에 입사되도록 경로를 변경하는 제1 회전 미러(162), 핀홀 판(150)의 앞뒤에 각각 배치되는 제1 및 제2 집광 렌즈(condensing lens)들(182, 184), 제2 회전 미러(164)과 광 분할기(120)의 사이에 위치하는 다이크로익 필터(dichroic filter)(172), 다이크로익 필터(172)에 연결된 오토 포커싱(auto focusing) 모듈(170), 제1 및 제2 광들(L1, L2)의 경로를 변경하는 제2 회전 미러(resonant mirror)(164), 및 릴레이 광학계(188a, 188b)와 대물 렌즈(130) 사이의 쿼터 웨이브 플레이트(quarter wave plate)(176)를 더 포함할 수 있다.
EUV 포토 마스크 검사 장치(1000)는, 광 분할기(120)에 의해 반사된 제1 및 제2 반사광들(Lr1, Lr2)을 편광 방향에 따라 반사시키거나 평행광을 분리하는 제2 편광 광 분할기(124), 광 분할기(120)와 제2 편광 광 분할기(124)의 사이에 배치되어 노이즈를 제거하는 저역 필터(low pass filter)(174), 제2 편광 광 분할기(124)로부터의 제2 반사광(Lr2)을 제2 광 검출기(140b)로 반사하는 미러(166), 각각 제2 편광 광 분할기(124) 및 미러(166)로부터의 제1 및 제2 반사광들(Lr1, Lr2)의 편광 방향을 조정하는 편광판들(126a, 126b), 및 광 검출기들(140)로 입사되는 제1 및 제2 반사광들(Lr1, Lr2)을 집속시키는 제3 및 제4 집광 렌즈들(186a, 186b)을 더 포함할 수 있다.
EUV 포토 마스크 검사 장치(1000)는, 검사 대상물인 마스크 구조물(MS)이 로딩되는 수평 스테이지(310) 및 대물 렌즈(130)가 장착되는 수직 스테이지(320)를 더 포함할 수 있다. 마스크 구조물(MS)은 EUV 포토 마스크(410), EUV 포토 마스크(410) 상의 펠리클 프레임(420), 및 펠리클(430)을 포함할 수 있다. 마스크 구조물(MS)은 EUV 포토 마스크(410) 상에 펠리클(430)이 장착된 상태로 결함 유무의 검사 대상이 될 수 있다.
EUV 포토 마스크 검사 장치(1000)는, 미러 얼라인 유닛(200), 데이터 수집(Data Acqusition, DAQ) 시스템(190), 및 이미지 프로세싱 유닛(195)을 더 포함할 수 있다.
광원들(110)은 제1 및 제2 광원들(110a, 110b)을 포함할 수 있다. 제1 및 제2 광원들(110a, 110b)은 각각 편광 방향이 서로 다른 제1 및 제2 광들(L1, L2)을 출사할 수 있다. 제1 및 제2 광들(L1, L2)은, 예를 들어, 각각 S파 및 P파이거나, 그 반대일 수 있다. 제1 및 제2 광들(L1, L2)은 마스크 구조물(MS) 내의 동일한 초점면 상에 위치가 다른 2개의 초점들을 형성할 있으며, 이에 의해 검사가 고속으로 진행될 수 있다.
제1 및 제2 광원들(110a, 110b) 각각은 점광원을 포함할 수 있으며, 상기 점광원으로부터 출사된 제1 및 제2 광들(L1, L2)은 시준 렌즈(collimating lens)를 통해 평행광으로 변환되어 진행될 수 있다. 일부 실시예들에서, 제1 및 제2 광들(L1, L2)은 레이저에 의해 발생한 평행광일 수 있다.
제1 및 제2 광들(L1, L2)은 각각 단일 파장일 수 있으나, 이에 한정되지는 않는다. 제1 및 제2 광들(L1, L2)은 서로 동일하거나 다른 파장일 수 있다. 예를 들어, 제1 및 제2 광들(L1, L2)은 가시광 범위의 파장을 포함할 수 있다. 예를 들어, 제1 및 제2 광원들(110a, 110b) 각각은 약 400 nm 내지 약 800 nm의 범위의 파장을 갖는 제1 및 제2 광들(L1, L2)을 출사할 수 있다. 가시광 파장 범위를 갖는 제1 및 제2 광들(L1, L2)은 펠리클(430)에 대한 투과율이 높아서 보다 선명한 화상을 얻을 수 있다. 이에 대해서는 하기에 도 5를 참조하여 상세히 설명한다. 다만, 일부 실시예들에서, 제1 및 제2 광들(L1, L2)은 가시광 및 적외선 범위의 파장을 포함할 수 있다. 이 경우, 제1 및 제2 광원들(110a, 110b) 각각은 약 400 nm 내지 약 1 mm의 범위, 예를 들어, 약 400 nm 내지 약 1000 nm의 범위의 가시광 및/또는 적외선 파장을 갖는 제1 및 제2 광들(L1, L2)을 출사할 수 있다.
제1 광(L1)은 제1 회전 미러(162)을 통해 제1 편광 광 분할기(122)로 입사될 수 있다. 제1 회전 미러(162)는, 예를 들어, 팁-틸트(tip-tilt) 미러일 수 있다. 제1 회전 미러(162)의 각도는, 제1 편광 광 분할기(122)에서 반사되어 광 분할기(120)로 입사되는 제1 광(L1)의 경로가 제2 광(L2)의 경로와 일치하지 않도록 결정될 수 있다. 이에 의해, 제1 및 제2 광들(L1, L2)은 마스크 구조물(MS)에서 서로 다른 위치에 초점들을 형성할 수 있다.
제1 편광 광 분할기(122)에 의해 반사된 제1 광(L1) 및 제1 편광 광 분할기(122)를 투과한 제2 광(L2)은, 제1 집광 렌즈(182), 핀홀 판(150), 및 제2 집광 렌즈(184)를 통과하여, 광 분할기(120)로 입사될 수 있다. 제1 및 제2 광들(L1, L2)은 제1 집광 렌즈(182)에 의해 집광되고, 핀홀 판(150)에 의해 노이즈가 차단된 후, 제2 집광 렌즈(184)에 의해 다시 확산되어, 광 분할기(120)로 입사될 수 있다.
광 분할기(120)는 제1 및 제2 광원들(110a, 110b)로부터 출사된 제1 및 제2 광들(L1, L2) 중 평행광을 투과시킬 수 있다. 광 분할기(120)를 투과한 제1 및 제2 광들(L1, L2)은 다이크로익 필터(172)를 거쳐 제1 및 제2 광들(L1, L2)의 각도를 조절하는 제2 회전 미러(164)로 입사될 수 있다. 다이크로익 필터(172) 및 오토 포커싱 모듈(170)은 제1 및 제2 광들(L1, L2)을 샤프하게 하고 초점의 정확도 향상을 위해 구비될 수 있다. 다만, 일부 실시예들에서, 다이크로익 필터(172) 및 오토 포커싱 모듈(170)은 생략될 수도 있다.
제2 회전 미러(164)은 미러를 회전시켜 제1 및 제2 광들(L1, L2)의 경로를 변경할 수 있다. 이에 따라, 마스크 구조물(MS)에 형성되는 제1 및 제2 광들(L1, L2)의 초점 위치를 XY 평면 상에서 이동시킬 수 있다. 제2 회전 미러(164)은 연속적으로 회전할 수 있으며, 이에 의해 마스크 구조물(MS)의 전면적의 이미지를 얻을 수 있으며, 이를 이용하여 마스크 구조물(MS)의 결함 유무를 확인할 수 있다. 다만, 제2 회전 미러(164)은 마스크 구조물(MS)의 전면적의 이미지를 얻기 위한 2차원 스캔용 장치를 예시한 것으로, 2차원 스캔용 장치의 종류는 이에 한정되지는 않는다. 일부 실시예들에서, 상기 2차원 스캔용 장치는, 마스크 구조물(MS)의 위치를 변경하여 제1 및 제2 광들(L1, L2)의 초점 위치를 이동시킬 수 있는 수평 스테이지(310)일 수 있다. 도 1에서는 2차원 스캔용 장치로서 제2 회전 미러(164) 및 수평 스테이지(310)를 모두 도시하였으나, 실시예들에 따라 어느 하나는 생략될 수 있다.
미러 얼라인 유닛(200)은 얼라인용 광원(210), 제1 및 제2 얼라인용 집광 렌즈들(292, 294), 격자 플레이트(250), 및 얼라인용 광 검출기(240)를 포함할 수 있다. 미러 얼라인 유닛(200)은 제2 회전 미러(164)의 얼라인 상태를 확인하기 위한 유닛일 수 있다. 다만, 일부 실시예들에서, 미러 얼라인 유닛(200)은 생략될 수도 있다. 얼라인용 광원(210)으로부터 출사된 광은 제2 회전 미러(164)에 의해 반사되어, 제1 얼라인용 집광 렌즈(292), 격자 플레이트(250), 및 제2 얼라인용 집광 렌즈(294)를 통과하여 얼라인용 광 검출기(240)로 입사될 수 있다. 얼라인용 광 검출기(240)에 의해 출력된 신호를 분석하여 제2 회전 미러(164)의 얼라인 상태를 분석하고 조정할 수 있다.
제1 및 제2 광들(L1, L2)은 제2 회전 미러(164)을 거쳐 릴레이 광학계(188a, 188b)로 입사될 수 있다. 릴레이 광학계(188a, 188b)는 제1 릴레이 렌즈(188a) 및 제2 릴레이 렌즈(188b)를 포함할 수 있으며, 마스크 구조물(MS)의 크기에 맞춰 제1 및 제2 광들(L1, L2)의 사이즈를 조절할 수 있다. 도 1에서는 릴레이 광학계(188a, 188b)를 구성하는 제1 및 제2 릴레이 렌즈들(188a, 188b)이 2개인 것으로 도시되었으나, 이에 한정되지는 않는다. 일부 실시예들에서, 릴레이 광학계(188a, 188b)는 1개 또는 3개 이상의 릴레이 렌즈를 포함할 수 있다.
제1 및 제2 광들(L1, L2)은 릴레이 광학계(188a, 188b)로부터 쿼터 웨이브 플레이트(176)를 거쳐 대물 렌즈(130)로 입사될 수 있다. 쿼터 웨이브 플레이트(176)는 제1 및 제2 광들(L1, L2)의 위상을 지연시켜 제1 및 제2 광들(L1, L2)이 서로 명확히 구분되게 할 수 있다. 다만, 일부 실시예들에서, 쿼터 웨이브 플레이트(176)는 생략될 수도 있다.
대물 렌즈(130)는 릴레이 광학계(188a, 188b)와 마스크 구조물(MS)의 사이에 배치될 수 있다. 대물 렌즈(130)는 마스크 구조물(MS)의 펠리클(430)로 입사하여, 펠리클(430)을 투과한 제1 및 제2 광들(L1, L2)은 마스크 구조물(MS) 내의 초점면(focal plane)에 초점을 형성시킬 수 있다. 대물 렌즈(130)는 예를 들어, EUV 포토 마스크(410)의 상면, EUV 포토 마스크(410)의 하면, 펠리클(430)의 상면, 또는 펠리클(430)의 하면 중 적어도 하나의 초점면에 초점을 형성시킬 수 있다. 예를 들어, EUV 포토 마스크(410)의 상면에 초점면이 형성되는 경우, 펠리클(430)의 부착 시에 발생하는 EUV 포토 마스크(410) 상의 이물질을 용이하게 검출할 수 있다. 예를 들어, 펠리클(430)의 상면 또는 하면에 초점면이 형성되는 경우, 펠리클(430) 자체의 결함 또는 이물질을 용이하게 검출할 수 있다. 상기 초점면의 Z 방향을 따른 위치는 다양하게 변경될 수 있으며, 검사 수행 중에 다양하게 변경하여 수행될 수도 있다. 상기 초점은 대물 렌즈(130)의 특성 및 광원들(110)의 파장에 의해 결정될 수 있다. 예를 들어, 펠리클(430)의 하면에 상기 초점이 형성되면, 상기 초점으로부터 반사되어 되돌아오는 반사광의 이동 경로가 결정된다. 또한, 제1 및 제2 광들(L1, L2)은 초점면에 2개의 초점들을 형성할 수 있다. 이 경우, 광원들(110) 앞의 핀홀 판(150)에서의 초점, EUV 포토 마스크(410) 내의 초점면의 상기 초점들, 및 광 검출기들(140)에 맺어지는 초점은 서로 공액 관계(conjugate)에 있으며, 이러한 공액 관계에 의해 EUV 포토 마스크 검사 장치(1000)는 공초점(confocal) 광학계에 해당할 수 있다.
수평 스테이지(310) 상에는 검사 대상이 되는 마스크 구조물(MS)이 배치된다. 수평 스테이지(310)는 수평 방향, 예컨대, X 방향 및 Y 방향으로 이동될 수 있다. 상술한 것과 같이, 수평 스테이지(310)의 이동에 의해 마스크 구조물(MS)의 전면적을 스캐닝하여 2차원 이미지를 얻을 수 있다.
수직 스테이지(320)는 대물 렌즈(130)와 연결되어 대물 렌즈(130)를 수직 방향, 예컨대 Z 방향으로 이동시킬 수 있다. 이에 의해 마스크 구조물(MS) 내의 일 면의 3차원 화상을 측정할 수 있다. 수직 스테이지(320)를 구동하여 대물 렌즈(130)의 높이를 조절하고, 이에 따라 광 검출기들(140)에서 검출되는 신호가 최대가 되는 위치를 찾아 마스크 구조물(MS)의 상기 일 면에 존재하는 이물질 등의 결함의 형상을 측정할 수 있다. 다만, 일부 실시예들에서, 수직 스테이지(320)에 의하지 않고 EUV 포토 마스크 검사 장치(1000) 자체를 수직 방향으로 이동시킬 수 있으며, 이 경우, 수직 스테이지(320)는 생략될 수 있다.
마스크 구조물(MS)은 EUV 포토 마스크(410) 상에 펠리클(430)이 장착된 상태로 검사 대상이 될 수 있다. EUV 포토 마스크(410)는 EUV 리소그래피 장치에서 노광 시에 사용되는 마스크 또는 레티클(reticle)일 수 있다. EUV 포토 마스크(410)는 실리콘(Si) 층을 포함할 수 있으며, 몰리브덴(Mo), 루테늄(Ru) 등과 같은 금속층을 더 포함하여 다층 구조를 가질 수 있다. EUV 포토 마스크(410)는 펠리클(430)을 마주하는 상면 상에 패턴층을 포함할 수 있다. 예를 들어, 상기 패턴층은 탄탈륨 보론 질화물(TaBN) 및 로렌슘(Lr) 중 적어도 하나를 포함할 수 있으나, 이에 한정되지는 않는다. 펠리클(430)은 EUV 포토 마스크(410)의 오염을 방지하기 위하여 EUV 포토 마스크(410) 상에 장착될 수 있다. 펠리클(430)은 EUV 파장의 광에 대하여 높은 투과율을 갖는 물질로 이루어질 수 있다. 예를 들어, 펠리클(430)은 실리콘(Si), 몰리브덴(Mo), 카본나노튜브(CNT), 그라파이트(graphite), 및 루테늄(Ru) 중 적어도 하나를 포함할 수 있으나, 이에 한정되지는 않는다.
마스크 구조물(MS)로부터 반사되는 제1 및 제2 반사광들(Lr1, Lr2)은 마스크 구조물(MS)로 입사할 때의 경로와 반대로 진행할 수 있다. 제1 및 제2 반사광들(Lr1, Lr2)은 쿼터 웨이브 플레이트(176)를 거치고, 대물 렌즈(130)를 통과하면서 평행광으로 조정되고, 릴레이 광학계(188a, 188b)를 통과하면서 사이즈가 조정되며, 제2 회전 미러(164)에 의해 반사되어, 다이크로익 필터(172)를 거쳐 광 분할기(120)에 입사될 수 있다. 광 분할기(120)는 제1 및 제2 반사광들(Lr1, Lr2)을 제2 편광 광 분할기(124)를 향해 반사시킬 수 있다.
제1 및 제2 반사광들(Lr1, Lr2)은 먼저 저역 필터(174)를 거쳐 노이즈가 제거된 후, 제2 편광 광 분할기(124)로 입사될 수 있다. 다만, 일부 실시예들에서, 저역 필터(174)는 생략될 수 있다. 제2 편광 광 분할기(124)에 의해 반사된 제1 반사광(Lr1)은 제1 편광판(126a)을 거쳐 제3 집광 렌즈(186a)로 입사될 수 있다. 제2 편광 광 분할기(124)를 투과한 제2 반사 광(Lr2)은, 미러(166)에 의해 반사된 후, 제2 편광판(126b)을 거쳐 제4 집광 렌즈(186b)로 입사될 수 있다. 일부 실시예들에서, 편광판들(126a, 126b) 및 미러(166) 중 적어도 하나는 생략될 수 있다.
제3 및 제4 집광 렌즈들(186a, 186b)은 제1 및 제2 반사광들(Lr1, Lr2)이 광 검출기들(140)에서 초점을 형성하도록 제1 및 제2 반사광들(Lr1, Lr2)을 조정할 수 있다. 광 검출기들(140)은 각각 제1 및 제2 반사광들(Lr1, Lr2)을 검출하는 제1 및 제2 광 검출기들(140a, 140b)을 포함할 수 있다. 광 검출기들(140)은 광 검출을 위한 포토 다이오드들을 포함할 수 있다. 예시적인 실시예들에서, 광 검출기들(140)은 광전 증배관(Photo Multiplier Tube, PMT) 및 애벌런치 포토다이오드(Avalanche Photodiode, APD)을 포함할 수 있으며, 열전 냉각(thermoelectric cooling) 모듈을 더 포함할 수 있다. 이에 대해서는, 하기에 도 4를 참조하여 더욱 상세히 설명한다.
데이터 수집 시스템(190)은 광 검출기들(140)을 통해 출력된 이미지 신호를 수집할 수 있다. 이미지 프로세싱 유닛(195)은 데이터 수집 시스템(190)으로부터 전달받은 신호를 종합하여 마스크 구조물(MS)의 이미지를 획득할 수 있다. 상기 이미지는 마스크 구조물(MS)의 이미지일 수 있으며, 이로부터 마스크 구조물(MS)의 결함 유무 및 결함의 크기 등을 분석할 수 있다. 이미지 프로세싱 유닛(195)은 예를 들어, 워크 스테이션을 포함하는 컴퓨팅 시스템일 수 있다.
실시예들의 EUV 포토 마스크 검사 장치(1000)에 의하면, 광원들(110)로부터의 가시광을 이용하여 펠리클(430)을 투과시켜 검사함으로써, 검사를 복수회 수행하지 않고도 마스크 구조물(MS) 표면뿐 아니라 내부의 이물질의 검사가 가능할 수 있다. 또한, EUV 광을 이용하여 검사하는 경우에 비하여, 가격 측면에서 유리하여 양산성이 향상될 수 있다. 또한, 가시광을 이용하면서도 공초점 방식을 적용하여, 펠리클(430)에 의한 광의 산란 현상을 억제하여 검출력을 확보할 수 있다.
도 2a 및 도 2b는 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치에 의한 검사 방법을 설명하기 위한 도면들이다.
도 2a를 참조하면, 도 1과 같은 EUV 포토 마스크 검사 장치(1000)에서, 복수의 광원들(110)을 이용하여 제1 및 제2 광들(L1, L2)을 출사하므로, 마스크 구조물(MS)에 제1 및 제2 광들(L1, L2)에 의한 초점이 각각 형성될 수 있다. 도 2a에서 초점면은 펠리클(430)의 하면인 것으로 도시되었으나, 초점면의 위치는 이에 한정되지 않는다.
도 2b를 참조하면, EUV 포토 마스크 검사 장치(1000)에서 2차원 스캐닝 경로를 나타낸다. 제1 및 제2 광들(L1, L2)이 입사되는 제2 회전 미러(164)의 회전각을 조절하여 마스크 구조물(MS)의 전면적을 스캐닝할 수 있다. 이 경우, 예를 들어, 래스터 스캔(raster scan) 방법이 이용될 수 있다. 특히, 마스크 구조물(MS) 상에 2개의 제1 및 제2 광들(L1, L2)에 의한 2개의 초점들이 형성되므로, 동시의 두 행에 걸쳐 검사가 진행될 수 있다. 구체적으로, 제1 광(L1)에 의해 제1 및 제2 지점들(S1, S2)을 포함하는 제1 행(R1)의 스캐닝이 진행되면서, 동시에, 제2 광(L2)에 의해 제7 및 제8 지점들(S7, S8)을 포함하는 제2 행(R2)의 스캐닝이 진행될 수 있다. 제1 광(L1)에 의한 제1 행(R1)의 스캐닝과, 제2 광(L2)에 의한 제2 행(R2)의 스캐닝이 완료되면, 제1 및 제2 광들(L1, L2)의 초점들은 다음 행으로 넘어갈 수 있다. 이 경우, 제1 및 제2 광들(L1, L2)에 의해 동시에 2개의 행들이 스캐닝되었으므로, 제1 행(R1)을 스캐닝한 제1 광(L1)은 제3 행(R3)으로 넘어가고, 제2 행(R2)을 스캐닝한 제2 광(L2)은 제4 행(R4)으로 넘어갈 수 있다.
도 1의 제2 회전 미러(164)은 제1 및 제2 광들(L1, L2)의 초점이 X 방향으로 이동하도록 조정될 수 있고, X 방향으로의 스캐닝이 완료되면 제1 및 제2 광들(L1, L2)의 초점이 다음 열로 넘어가도록 수직 방향, 예컨대, Y 방향으로 이동하도록 조정될 수 있다. 이 때 X 방향으로의 스캐닝을 위한 제1 회전 속도는 Y 방향으로의 스캐닝을 위한 제2 회전 속도보다 빠를 수 있다. 상기 제1 회전 속도 및 상기 제2 회전 속도에 의해 각각 수평 스캐닝 속도 및 수직 스캐닝 속도가 결정될 수 있다.
도 3은 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치를 도시하는 개략도이다.
도 3을 참조하면, EUV 포토 마스크 검사 장치(2000)는 복수의 광학 시스템들(1000-1, 1000-2, 1000-3, 1000-4) 및 이미지 프로세싱 유닛(195)을 포함할 수 있다. 복수의 광학 시스템들(1000-1, 1000-2, 1000-3, 1000-4) 각각은, 도 1을 참조하여 상술한 EUV 포토 마스크 검사 장치(1000)에서, 수평 스테이지(310) 및 이미지 프로세싱 유닛(195)을 제외한 구성들을 포함할 수 있다. 다만, 복수의 광학 시스템들(1000-1, 1000-2, 1000-3, 1000-4) 각각은 도 1뿐 아니라, 도 8a 내지 도 9b의 실시예들 중 어느 하나를 기반으로 할 수 있으며, 복수의 광학 시스템들(1000-1, 1000-2, 1000-3, 1000-4) 각각에서 광원(110)의 개수 및 광 검출기(140)의 개수는 다양하게 변경될 수 있다.
EUV 포토 마스크 검사 장치(2000)는 도 1을 참조하여 상술한 수평 스테이지(310)를 공유할 수 있으며, 이에 따라 수평 스테이지(310) 상의 하나의 마스크 구조물(MS)을 검사하기 위한 장치일 수 있다. 복수의 광학 시스템들(1000-1, 1000-2, 1000-3, 1000-4)의 광원들(110)은 서로 파장 또는 편광 방향이 동일하거나 다른 광들을 출사할 수 있으며, 상기 광들은 각각의 대물 렌즈(130)를 통과하여, 동일하거나 서로 다른 초점면들 상에 각각 공초점들을 형성할 수 있다. 본 실시예에서, 복수의 광학 시스템들(1000-1, 1000-2, 1000-3, 1000-4)은 4개로 도시되었으나, 광학 시스템들의 개수는 이에 한정되지 않으며, 2개 이상일 수 있다.
본 실시예에서는 이와 같이 서로 다른 공초점들을 형성하는 복수의 광학 시스템들을 이용하여 동시에 검사를 수행함으로써, 검사 속도가 향상될 수 있다. 또한, 본 실시예에서는 Z 방향을 따른 마스크 구조물(MS)의 다양한 위치에서의 검사가 동시에 수행될 수도 있다.
도 4는 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치의 광 검출기를 설명하는 블럭도이다.
도 4를 참조하면, 광 검출기(140)는 반사광(Lr)이 입사되는 검출 모듈(142), 검출 모듈(142)에 결합된 열전 냉각 모듈(144), 검출 모듈(142)에 파워를 공급하는 파워 공급 모듈(146), 및 검출 모듈(142)로부터의 신호를 증폭하는 증폭 모듈(148)을 포함할 수 있다.
검출 모듈(142)은 광전 증배관(PMT) 및 애벌런치 포토다이오드(APD)를 포함하는 하이브리드 검출기일 수 있다. 광전 증배관(PMT)은 진공관 내부에, 광전면(photocathode), 집속전극(focusing electrode), 전자증배부(dinode), 및 전자를 모아주는 역할을 하는 양극(anode)을 포함할 수 있다. 상기 광전면에 광이 입사하면, 광전효과에 의해 진공 중으로 광전자가 방출될 수 있다. 방출된 광전자는 상기 집속전극에 인가된 전압에 의해 상기 전자증배부로 유도되며, 상기 전자증배부에서 2차 전자 방출에 의해 증배되고, 상기 양극에 의해 전류 신호로 만들어질 수 있다. 광전 증배관(PMT)에 의하면 외부 장치를 거치지 않고 바로 신호가 증폭되기 때문에, 검출 모듈(142)의 감도를 향상시킬 수 있다.
애벌런치 포토다이오드(APD)는 반도체 PN 접합에 높은 역방향 바이어스(bias) 전압을 인가할 때 생기는 항복현상에 의하여, 광전류 증폭이 가능한 포토다이오드일 수 있다. 구체적으로, 애벌런치 포토다이오드(APD)는 애벌랜치 영역 및 공핍층인 드리프트 영역을 포함하고, 입사된 광은 상기 드리프트 영역에서 흡수되어 전자 및 정공을 생성할 수 있다. 생성된 전자는 상기 애벌랜치 영역에 주입되어 상기 애벌랜치 영역의 전계에 의해 가속되어 새로운 전자-정공 쌍을 발생시키며, 이러한 애벌랜치 증배(avalanche multiplication)에 의해 상기 애벌랜치 영역에서의 캐리어의 수가 급격히 증배될 수 있다.
본 실시예의 검출 모듈(142)에 의하면, 광전 증배관(PMT)에 의해 증폭된 신호가 다시 애벌런치 포토다이오드(APD)에 의해 증배되어 민감도가 향상될 수 있다. 테스트 결과, 검출 모듈(142)이 광전 증배관(PMT)만을 포함하는 비교예에 비하여, 실시예의 검출 모듈(142)에 의하면, 검출 민감도가 약 19.4 배 증가하는 것이 확인되었다.
열전 냉각 모듈(144)은 검출 모듈(142)에서 발생하는 열 노이즈를 감소시키기 위하여 검출 모듈(142)에 결합될 수 있다. 예를 들어, 열전 냉각 모듈(144)은 검출 모듈(142)의 적어도 일 면 상에 부착될 수 있으며, 열전 냉각 모듈(144)이 검출 모듈(142)에 결합되는 방식은 실시예들에서 다양하게 선택될 수 있다. 열전 냉각 모듈(144)은 펠티어 효과(Peltier effect)에 의해 냉각 작용할 수 있는 적어도 한 쌍의 N형 및 P형 반도체층을 포함할 수 있다. 펠티어 효과는 서로 다른 고체 또는 반도체를 횡단하여 전류를 인가할 때, 주울 열(Joule heat)과는 다른 발열 또는 흡열이 발생하는 현상을 지칭한다. 열전 냉각 모듈(144)은 공랭 방식 또는 수냉 방식을 이용할 수 있다. 시뮬레이션 결과, 열전 냉각 모듈(144)을 적용함으로써, 암전류 노이즈(dark current noise)가 약 7배 감소되고, 신호 대 잡음비(Signal To noise Ratio, SNR)가 약 21 % 개선됨을 확인하였다.
파워 공급 모듈(146)은 검출 모듈(142)의 동작에 필요한 파워를 공급할 수 있다. 증폭 모듈(148)은 검출 모듈(142)로부터의 신호를 증폭하여 신호 수집 시스템(190)에 전송할 수 있다. 다만, 일부 실시예들에서, 증폭 모듈(148)은 생략될 수도 있다.
도 5는 광의 파장에 따른 펠리클 투과율을 나타내는 그래프이다.
도 5를 참조하면, 도 1의 마스크 구조물(MS)의 펠리클(430)의 실시예들에 대하여, 광의 파장에 따른 투과율이 도시된다. 펠리클 1은 22 nm의 몰리브덴 실리콘(MoSi)으로 이루어진 펠리클이고, 펠리클 2는 55 nm의 실리콘 멤브레인으로 이루어진 펠리클, 펠리클 3은 75 nm의 실리콘 멤브레인으로 이루어진 펠리클, 펠리클 4는 15 nm의 그래핀으로 이루어진 펠리클을 나타낸다. 도 5에 도시된 것과 같이, 상기 펠리클 1-4들은, 200 nm 이하의 파장에 대한 투과율이 낮아서, 예를 들어, ArF 레이저를 이용하여 193 nm의 광을 사용하는 검사 설비로는 투과 검사가 어려운 것을 알 수 있다. 상기 펠리클 1-4들은 약 400 nm 내지 약 1000 nm의 범위의 가시광 및 적외선 파장을 투과할 수 있다. 특히, 상기 펠리클들은 약 400 nm 내지 약 800 nm의 범위의 가시광에 대한 투과율이, 펠리클에 따라 약 20 % 내지 약 90 %로 나타나므로, 도 1을 참조하여 상술한 것과 같이, 가시광을 이용하여 펠리클(430)을 투과시켜 마스크 구조물(MS)의 검사가 가능할 수 있다.
도 6a 및 도 6b는 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치의 특성을 설명하기 위한 도면들이다.
도 6a를 참조하면, 도 1과 같은 EUV 포토 마스크 검사 장치의 유효 분해능(effective resolution)을 시뮬레이션한 결과가, 비교예의 경우와 비교하여 도시된다. 비교예는, 도 1과 같은 공초점 광학계 및 도 2와 같은 하이브리드 광 검출기를 사용하지 않은 경우의 유효 분해능을 나타낸다. 도 6a에 도시된 것과 같이, 비교예는 약 1 ㎛의 분해능을 갖는데 비하여, 실시예의 EUV 포토 마스크 검사 장치는 약 50 nm의 분해능을 나타낸다. 따라서, 분해능이 약 20 배 개선된 결과가 도출된다.
도 6b를 참조하면, 도 1과 같은 EUV 포토 마스크 검사 장치의 실시예(b)에 의해 획득한 이미지가, 비교예(a)에서 획득한 이미지와 비교하여 도시된다. 비교예(a)의 경우 명시야(bright field) 방식으로 검사한 이미지에 해당한다. 도 6b에 도시된 것과 같이, 비교예(a)에서와 달리, 실시예(b)의 경우, 선명한 검사 이미지를 얻을 수 있으며, 좌측 하단의 결함(DF)을 용이하게 검출할 수 있다.
이와 같이, 실시예의 EUV 포토 마스크 검사 장치에 의하면, 공초점 방식을 적용하여 펠리클에 의한 산란 효과를 최소화하고, 광 검출기의 감도를 향상시킴으로써, 검사 민감도가 확보될 수 있다.
도 7a 내지 도 7c는 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치에 의한 이미지 분석 방법을 설명하기 위한 도면들이다.
도 7a 내지 도 7c는 도 1의 EUV 포토 마스크 검사 장치(1000)의 이미지 프로세싱 유닛(195)에서 수행되는 이미지 비교에 의한 검사 방식의 일 실시예를 설명하기 위한 이미지들을 도시한다. 도 7a는 결함 분석을 위한 레퍼런스 이미지를 예시하고, 도 7b는 분석에 의해 획득된 분석 이미지를 예시하며, 도 7c는 상기 레버런스 이미지와 상기 분석 이미지의 차이에 대응하는 차동 이미지(differential image)를 예시한다.
상기 레퍼런스 이미지는, 예를 들어, 펠리클(430)을 부착하기 전의 EUV 포토 마스크(410)의 이미지에 해당할 수 있다. 상기 분석 이미지는 EUV 포토 마스크 검사 장치(1000)의 검사에 의해 획득된 검사 대상물인 마스크 구조물(MS)의 이미지일 수 있다. 상기 차동 이미지는 상기 레버런스 이미지와 상기 분석 이미지의 차이를 분석하여 추출될 수 있으며, 이에 의해, 예를 들어, 펠리클(430)의 부착에 따른 이물질 발생 등의 결함을 용이하게 분석할 수 있다.
도 8a 및 도 8b는 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치를 도시하는 개략도들이다.
도 8a를 참조하면, EUV 포토 마스크 검사 장치(1000a)는 도 1의 EUV 포토 마스크 검사 장치(1000)에서와 핀홀 판(150a)의 배치 위치가 다를 수 있으며, 이에 따라, 제1 및 제2 집광 렌즈들(182a, 184a)의 배치 위치도 다를 수 있다.
구체적으로, 핀홀 판(150a) 및 제1 및 제2 집광 렌즈들(182a, 184a)은, 광 검출기들(140)과 광 분할기(120)의 사이에 위치할 수 있으며, 특히, 저역 필터(174)와 제2 편광 광 분할기(124)의 사이에 위치할 수 있다. 핀홀 판(150a)은 제1 집광 렌즈(182a)와 제2 집광 렌즈(184a)의 사이에 위치할 수 있다.
광 분할기(120)에 의해 반사된 제1 및 제2 반사광들(Lr1, Lr2)은 저역 필터(174)를 거쳐 제1 집광 렌즈(182a)로 입사될 수 있다. 제1 및 제2 반사광들(Lr1, Lr2)은 제1 집광 렌즈(182a)에 의해 집광된 후, 핀홀 판(150a)을 통과하면서 초점면 이외의 노이즈들이 차단된 후, 제2 집광 렌즈(184a)에 의해 확산되어 제2 편광 광 분할기(124)로 입사될 수 있다. 이에 의해, EUV 포토 마스크 검사 장치(1000a)는 공초점 광학계를 이루어, 선명도가 확보된 이미지를 획득할 수 있다. 일부 실시예들에서, 핀홀 판(150a)은 도 1의 실시예에서와 같이 광원들(110) 앞에 배치된 상태에서, 본 실시예에서와 같이 광 분할기(120) 앞에 더 배치될 수도 있다.
도 8b를 참조하면, EUV 포토 마스크 검사 장치(1000b)는 도 1의 EUV 포토 마스크 검사 장치(1000)에서와 핀홀 판들(150b)의 배치 위치가 다를 수 있다.
구체적으로, 핀홀 판들(150b)은 광 검출기들(140)과 광 분할기(120)의 사이에 위치할 수 있으며, 특히, 광 검출기들(140)과 제3 및 제4 집광 렌즈들(186a, 186b) 각각의 사이에 위치할 수 있다. 본 실시예의 경우, 도 1의 제1 및 제2 집광 렌즈들(182a, 184a)은 생략될 수 있다.
편광판들(126a, 126b) 및 제3 및 제4 집광 렌즈들(186a, 186b)을 통과한 제1 및 제2 반사광들(Lr1, Lr2)은 핀홀 판들(150b)을 통과하면서 초점면 이외의 노이즈들이 차단된 후, 광 검출기들(140)로 입사될 수 있다. 이에 의해, EUV 포토 마스크 검사 장치(1000b)는 공초점 광학계를 이루어, 선명도가 확보된 이미지를 획득할 수 있다. 일부 실시예들에서핀홀 판들(150b)은 도 1의 실시예에서와 같이 광원들(110) 앞에 배치된 상태에서, 본 실시예에서와 같이 광 분할기(120) 앞에 더 배치될 수도 있다.
도 9a 및 도 9b는 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치를 도시하는 개략도들이다.
도 9a를 참조하면, EUV 포토 마스크 검사 장치(1000c)는 도 1의 EUV 포토 마스크 검사 장치(1000)에서와 광원(110) 및 광 검출기(140)의 개수가 다를 수 있으며, 이에 따라 제1 회전 미러(162), 제1 편광 광 분할기(122), 제2 편광 광 분할기(124) 등 일부 구성들이 생략될 수 있다. 본 실시예에서, 광원(110) 및 광 검출기(140)는 각각 하나씩 배치될 수 있다. 광원(110)으로부터 출사되는 광(L)은 마스크 구조물(MS)로부터 반사되며, 반사광(Lr)은 편광판(126) 및 제3 집광 렌즈(186)를 통과하여 광 검출기(140)로 입사될 수 있다. 일부 실시예들에서, EUV 포토 마스크 검사 장치(1000c)에서, 미러(166) 및 다이크로익 필터(172) 중 적어도 하나가 더 생략될 수도 있다.
도 9b를 참조하면, EUV 포토 마스크 검사 장치(1000d)는 도 1의 EUV 포토 마스크 검사 장치(1000)에서와 광원(110) 및 광 검출기(140)의 개수가 다를 수 있다. 본 실시예에서, 광원(110) 및 광 검출기(140)는 각각 4개씩 배치될 수 있다.
광원(110)은 제1 내지 제4 광원들(110a, 110b, 110c, 110d)을 포함할 수 있으며, 제1 내지 제4 광원들(110a, 110b, 110c, 110d)은 편광 방향 또는 파장 중 적어도 하나가 서로 다를 수 있다. 이에 따라, EUV 포토 마스크 검사 장치(1000d)는 검사 대상물인 마스크 구조물(MS)에 서로 다른 위치를 갖는 4개의 초점들을 형성할 수 있어, 검사를 보다 고속으로 진행할 수 있다.
예를 들어, 제1 광원(110a)은 제1 편광 방향 및 제1 파장을 갖는 제1 광(L1)을 출사하고, 제2 광원(110b)은 상기 제1 편광 방향 및 상기 제1 파장과 다른 제2 파장을 갖는 제2 광(L2)을 출사하고, 제3 광원(110c)은 제2 편광 방향 및 제3 파장을 갖는 제3 광(L3)을 출사하고, 제4 광원(110d)은 상기 제2 편광 방향 및 상기 제3 파장과 다른 제4 파장을 갖는 제4 광(L4)을 출사하고할 수 있다.
마스크 구조물(MS)로부터 반사된 4개의 제1 내지 제4 반사광들(Lr1, Lr2, Lr3, Lr4)은 대물 렌즈(130), 릴레이 광학계(188a, 188b), 제2 회전 미러(164), 광 분할기(120) 등을 거쳐 제2 편광 광 분할기(124)로 입사될 수 있다. 제2 편광 광 분할기(124)는 제1 내지 제4 반사광들(Lr1, Lr2, Lr3, Lr4) 중 상기 제1 편광 방향을 갖는 제1 및 제2 반사광들(Lr1, Lr2)과 상기 제2 편광 방향을 갖는 제3 및 제4 반사광(Lr3, Lr4)을 각각 분할할 수 있다.
또한, EUV 포토 마스크 검사 장치(1000d)는, 제1 및 제2 미러들(166a, 166b) 및 제1 및 제2 다이크로익 미러들(178a, 178b)을 더 포함할 수 있다. 이에 따라, 제1 다이크로익 미러(178a)는 상기 제1 파장을 갖는 제1 반사광(Lr1)과 상기 제2 파장을 갖는 제2 반사광(Lr2)을 분할하고, 제2 다이크로익 미러(178b)는 상기 제3 파장을 갖는 제3 반사광(Lr3)과 상기 제4 파장을 갖는 제4 반사광(Lr4)을 분할할 수 있다. 제1 내지 제4 반사광들(Lr1, Lr2, Lr3, Lr4)은 각각 편광판들(126a, 126b, 126c, 126d) 및 제3 내지 제6 집광 렌즈들(186a, 186b, 186c, 186d)을 거쳐 제1 내지 제4 광 검출기들(140a, 140b, 140c, 140d)에 입사될 수 있다. 제2 반사광(Lr2) 및 제4 반사광(Lr4)은 각각 제1 및 제2 미러들(166a, 166b)을 더 거쳐 제2 및 제4 광 검출기들(140b, 140d)에 입사될 수 있다.
도 9a 및 도 9b에서와 같이, EUV 포토 마스크 검사 장치들에서, 광원들 및 광 검출기들의 개수는 다양하게 변경될 수 있다.
도 10은 예시적인 실시예들에 따른 EUV 포토 마스크 검사 장치를 이용한 EUV 포토 마스크 검사 방법을 설명하기 위한 흐름도이다.
도 10을 참조하면, EUV 포토 마스크 검사 방법은, 광원 앞에 핀홀 판을 갖는 EUV 포토 마스크 검사 장치를 준비하는 단계(S110), EUV 포토 마스크 및 EUV 포토 마스크 상의 펠리클을 포함하는 EUV 포토 마스크 구조물을 수평 스테이지에 로딩하는 단계(S120), 광원으로부터 가시광인 제1 광을 출사하는 단계(S130), EUV 포토 마스크 구조물로부터 반사된 반사광을 광 검출기로 검출하는 단계(S140), 광 검출기로부터의 신호를 처리하여 이미지를 획득하는 단계(S150), 및 이미지를 분석하여 EUV 포토 마스크 구조물의 결함을 검출하는 단계(S160)를 포함할 수 있다. 이하에서, 도 1을 함께 참조하여 각 단계들을 설명한다.
광원(110) 앞에 핀홀 판(150)을 갖는 EUV 포토 마스크 검사 장치(1000)를 준비하는 단계(S110)는, 도 1, 도 2, 및 도 8a 내지 도 9b의 장치를 준비하는 단계일 수 있다.
EUV 포토 마스크(410) 및 EUV 포토 마스크(410) 상의 펠리클(430)을 포함하는 마스크 구조물(MS)을 수평 스테이지(310)에 로딩하는 단계(S120)는, 검사 대상물인 마스크 구조물(MS)을 EUV 포토 마스크 검사 장치(1000)에 로딩하는 단계일 수 있다. 특히, 본 실시예의 EUV 포토 마스크 검사 방법에서는, 펠리클(430)이 부착된 상태의 EUV 포토 마스크(410)를 검사 대상물로 하여 검사가 수행될 수 있다.
광원(110)으로부터 가시광인 제1 광(L1)을 출사하는 단계(S130)는, 마스크 구조물(MS)을 향하여 적어도 하나의 광을 출사하는 단계일 수 있다. 출사되는 제1 광(L1)은 펠리클(430)을 투과할 수 있으며, 마스크 구조물(MS) 내의 임의의 위치에서 초점면을 형성할 수 있다. 제1 광(L1)은 핀홀 판(150)을 통과함으로써, 공초점 방식으로 초점을 형성할 수 있다. 본 단계에서, 광원들(110)의 개수는 도 1, 도 9a, 및 도 9b의 실시예들에서와 같이 다양하게 변경될 수 있으며, 이에 따라, 출사되는 광의 종류도 변경될 수 있다. 예를 들어, 도 3과 같이 복수의 광학 시스템들(1000-1, 1000-2, 1000-3, 1000-4)을 포함하는 장치에서는, 초점면이 Z 방향을 따라 다양한 위치에 형성될 수 있다.
마스크 구조물(MS)로부터 반사된 반사광(Lr1)을 광 검출기(140)로 검출하는 단계(S140)는, 광 검출기(140)에 의해 적어도 하나의 반사광(Lr1)을 검출하는 단계일 수 있다. 광 검출기(140)는 도 4를 참조하여 상술한 광 검출기(140)일 수 있다.
광 검출기(140)로부터의 신호를 처리하여 이미지를 획득하는 단계(S150)는, 데이터 수집 시스템(190) 및 이미지 프로세싱 유닛(195)에 의해 수행될 수 있다.
이미지를 분석하여 마스크 구조물(MS)의 결함을 검출하는 단계(S160)는, 획득한 이미지로부터 마스크 구조물(MS)의 결함을 확인하는 단계일 수 있다. 이미지를 이용한 검사 방법은, 예를 들어, 도 7a 내지 도 7c를 참조하여 상술한 방식으로 수행될 수 있으나, 이에 한정되지는 않는다.
본 발명은 상술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니며 첨부된 청구범위에 의해 한정하고자 한다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다.
1000: EUV 포토 마스크 검사 장치 110: 광원
120: 광 분할기 122: 제1 편광 광 분할기
124: 제2 편광 광 분할기 126a, 126b: 편광판
130: 대물 렌즈 140: 광 검출기
150: 핀홀 판 162: 제1 회전 미러
164: 제2 회전 미러 166: 미러
170: 오토 포커싱 모듈 172: 다이크로익 필터
174: 저역 필터 176: 쿼터 웨이프 플레이트
182, 184, 186a, 186b: 집광 렌즈 188a, 188b: 릴레이 광학계
190: 데이터 수집 시스템 195: 이미지 프로세싱 유닛
200: 미러 얼라인 유닛 310: 수평 스테이지
320: 수직 스테이지 410: EUV 포토 마스크
420: 펠리클 프레임 430: 펠리클
MS: 마스크 구조물

Claims (20)

  1. EUV 포토 마스크 및 상기 EUV 포토 마스크 상의 펠리클을 포함하는 마스크 구조물에 서로 다른 공초점(confocal)을 각각 형성시키는 복수의 광학 시스템들을 포함하고,
    상기 복수의 광학 시스템들 중 제1 광학 시스템은,
    가시광 범위의 파장을 갖는 제1 광을 출사하는 제1 광원;
    상기 제1 광을 투과하거나 반사하는 광 분할기(beam splitter);
    상기 제1 광이 상기 마스크 구조물의 적어도 일부를 투과하여 상기 마스크 구조물에 제1 초점을 형성하게 하는 대물 렌즈(objective lens);
    입사된 상기 제1 광이 상기 마스크 구조물로부터 반사된 제1 반사광을 검출하는 제1 광 검출기(light detector); 및
    상기 제1 광원 앞에 배치되고, 상기 제1 광 중 일부를 제거하도록 배치되는 핀홀 판(pinhole plate)을 포함하고,
    상기 제1 광 검출기는, 광전 증배관(Photo Multiplier Tube, PMT) 및 애벌런치 포토다이오드(Avalanche Photodiode, APD)를 포함하는 검출 모듈, 및 상기 검출 모듈의 열 노이즈를 감소시키기 위한 열전 냉각(thermoelectric cooling) 모듈을 포함하는 EUV 포토 마스크 검사 장치.
  2. 제1 항에 있어서,
    상기 제1 광은 상기 마스크 구조물 내에서 상기 펠리클을 투과하는 EUV 포토 마스크 검사 장치.
  3. 제1 항에 있어서,
    상기 제1 광학 시스템은, 상기 핀홀 판의 앞뒤에 각각 배치되는 집광(condensing) 렌즈들을 더 포함하는 EUV 포토 마스크 검사 장치.
  4. 제1 항에 있어서,
    상기 제1 광은 400 nm 내지 800 nm의 범위의 파장을 갖는 EUV 포토 마스크 검사 장치.
  5. 제1 항에 있어서,
    상기 복수의 광학 시스템들은 상기 마스크 구조물에서 서로 다른 초점면(focal plane)들을 형성하는 EUV 포토 마스크 검사 장치.
  6. 제1 항에 있어서,
    상기 제1 광학 시스템은,
    상기 제1 광과 편광 방향이 다른 제2 광을 출사하는 제2 광원;
    상기 제2 광이 입사되어 상기 마스크 구조물로부터 반사된 제2 반사광을 검출하는 제2 광 검출기;
    상기 제1 및 제2 광원들과 상기 핀홀 판의 사이에 배치되며, 상기 제1 및 제2 광들을 편광 방향에 따라 편광 방향에 따라 반사시키거나 평행광을 분리하는 편광 광 분할기(polarized beam splitter); 및
    상기 편광 광 분할기와 상기 제2 광원의 사이에 배치되어, 상기 제2 광이 상기 편광 광 분할기에 입사하도록 상기 제2 광의 경로를 변경하는 회전 미러를 더 포함하는 EUV 포토 마스크 검사 장치.
  7. 제1 항에 있어서,
    상기 제1 광학 시스템은,
    상기 광 분할기로부터의 상기 제1 광의 경로를 변경하는 회전 미러; 및
    상기 회전 미러로부터 입사하는 상기 제1 광의 크기를 조절하여, 상기 대물 렌즈로 전송하는 릴레이 렌즈들을 더 포함하는 EUV 포토 마스크 검사 장치.
  8. 제7 항에 있어서,
    상기 제1 광학 시스템은, 상기 광 분할기와 상기 회전 미러의 사이에 배치되는 다이크로익 필터(dichroic filter)를 더 포함하는 EUV 포토 마스크 검사 장치.
  9. 제7 항에 있어서,
    상기 제1 광학 시스템은,
    상기 회전 미러로 제3 광을 출사하는 제3 광원; 및
    상기 회전 미러에 의해 반사된 제3 광을 검출하여 상기 회전 미러의 얼라인 상태를 확인하는 제3 광 검출기를 포함하는 미러 얼라인 유닛을 더 포함하는 EUV 포토 마스크 검사 장치.
  10. 제1 항에 있어서,
    상기 EUV 포토 마스크는 반도체층 및 금속층을 포함하는 다층 구조를 갖는 EUV 포토 마스크 검사 장치.
  11. 제1 항에 있어서,
    상기 제1 광학 시스템은, 상기 제1 광 검출기로부터 출력된 신호를 수집하는 데이터 수집 시스템을 더 포함하는 EUV 포토 마스크 검사 장치.
  12. 제1 항에 있어서,
    상기 복수의 광학 시스템들 각각은 데이터 수집 시스템을 포함하고,
    각각의 상기 데이터 수집 시스템으로부터의 신호를 종합하여 이미지를 획득하는 이미지 프로세싱 유닛을 더 포함하는 EUV 포토 마스크 검사 장치.
  13. 제12 항에 있어서,
    상기 이미지 프로세싱 유닛은, 상기 마스크 구조물로부터 획득한 이미지를, 상기 EUV 포토 마스크에 대한 레퍼런스 이미지와 비교하여, 상기 마스크 구조물의 결함을 검출하는 EUV 포토 마스크 검사 장치.
  14. 가시광 범위의 파장을 갖는 제1 광을 출사하는 광원;
    상기 제1 광을 투과하거나 반사하는 광 분할기;
    상기 제1 광이, EUV 포토 마스크 및 상기 EUV 포토 마스크 상의 펠리클을 포함하는 마스크 구조물의 적어도 일부를 투과하여 상기 마스크 구조물에 제1 초점을 형성하게 하는 대물 렌즈;
    입사된 상기 제1 광이 상기 마스크 구조물로부터 반사된 제1 반사광을 검출하는 광 검출기; 및
    상기 광원 및 상기 광 검출기 중 적어도 하나의 앞에 배치되고, 상기 제1 광 및 상기 제1 반사광 중 중 적어도 하나의 일부를 제거하도록 배치되는 핀홀 판을 포함하고,
    상기 광 검출기는, 검출 모듈 및 상기 검출 모듈의 열 노이즈를 감소시키기 위한 열전 냉각 모듈을 포함하고,
    상기 제1 초점은, 상기 핀홀 판에서의 초점 및 상기 광 검출기에 형성되는 초점과 서로 공액관계(conjugate)인 공초점(confocal)인 EUV 포토 마스크 검사 장치.
  15. 제14 항에 있어서,
    상기 핀홀 판은 상기 광원과 상기 광 분할기의 사이에 배치되는 EUV 포토 마스크 검사 장치.
  16. 제14 항에 있어서,
    상기 제1 초점의 수직 방향에서의 위치는 상기 마스크 구조물 내에서 다양하게 조절되는 EUV 포토 마스크 검사 장치.
  17. 제14 항에 있어서,
    상기 제1 초점은 상기 펠리클의 하면에 형성되는 EUV 포토 마스크 검사 장치.
  18. 제14 항에 있어서,
    상기 광 검출기의 상기 검출 모듈은 광전 증배관(PMT) 및 애벌런치 포토다이오드(APD)를 포함하는 EUV 포토 마스크 검사 장치.
  19. 검사 대상물에 서로 다른 공초점을 각각 형성시키는 복수의 광학 시스템들을 포함하고,
    상기 복수의 광학 시스템들 중 제1 광학 시스템은,
    제1 광을 출사하는 광원;
    상기 제1 광을 투과하거나 반사하는 광 분할기;
    상기 제1 광이 상기 검사 대상물의 적어도 일부를 투과하여 상기 검사 대상물에 제1 초점을 형성하게 하는 대물 렌즈;
    입사된 상기 제1 광이 상기 검사 대상물로부터 반사된 제1 반사광을 검출하고, 광전 증배관(PMT) 및 애벌런치 포토다이오드(APD)를 포함하는 광 검출기;
    상기 광원과 상기 광 분할기의 사이에 배치되는 집광 렌즈들; 및
    상기 집광 렌즈들의 사이에 배치되고, 상기 제1 광 중 일부를 제거하도록 배치되는 핀홀 판을 포함하는 EUV 포토 마스크 검사 장치.
  20. 제19 항에 있어서,
    상기 제1 광은 가시광 내지 적외선 범위의 파장을 갖는 EUV 포토 마스크 검사 장치.
KR1020210184544A 2021-12-22 2021-12-22 Euv 포토 마스크 검사 장치 KR20230095253A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020210184544A KR20230095253A (ko) 2021-12-22 2021-12-22 Euv 포토 마스크 검사 장치
US18/056,984 US20230194845A1 (en) 2021-12-22 2022-11-18 Euv photomask inspection apparatus
CN202211655943.9A CN116430669A (zh) 2021-12-22 2022-12-22 Euv光掩模检查设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210184544A KR20230095253A (ko) 2021-12-22 2021-12-22 Euv 포토 마스크 검사 장치

Publications (1)

Publication Number Publication Date
KR20230095253A true KR20230095253A (ko) 2023-06-29

Family

ID=86767906

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210184544A KR20230095253A (ko) 2021-12-22 2021-12-22 Euv 포토 마스크 검사 장치

Country Status (3)

Country Link
US (1) US20230194845A1 (ko)
KR (1) KR20230095253A (ko)
CN (1) CN116430669A (ko)

Also Published As

Publication number Publication date
CN116430669A (zh) 2023-07-14
US20230194845A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
US9086389B2 (en) Sample inspection system detector
KR102302641B1 (ko) 암시야 시스템의 tdi 센서
US7525649B1 (en) Surface inspection system using laser line illumination with two dimensional imaging
US7990530B2 (en) Optical inspection method and optical inspection apparatus
US20080054166A1 (en) Detachably coupled image intensifier and image sensor
US20130321798A1 (en) Defect inspection method, low light detecting method and low light detector
KR102516040B1 (ko) 검출 장치 및 검출 방법
US10642164B2 (en) Defect detection device and defect observation device
US20150116702A1 (en) Defect inspection method and defect inspection device
KR20200128602A (ko) 웨이퍼 검사
US11138722B2 (en) Differential imaging for single-path optical wafer inspection
JP5419293B2 (ja) 検査装置
JP2004354088A (ja) 検査装置及びマスク製造方法
US9568437B2 (en) Inspection device
JP2007115669A (ja) 着脱可能に結合されたイメージインテンシファイアおよびイメージセンサ
KR20230095253A (ko) Euv 포토 마스크 검사 장치
US20230060883A1 (en) Defect inspection apparatus and defect inspection method
JP3282790B2 (ja) 位相シフトマスクの欠陥検査装置
US8891732B2 (en) Apparatus and method for detecting marks and semiconductor device processing system
JPH03189545A (ja) 欠陥検査装置
US12025569B2 (en) Defect inspection device and inspection method, and optical module
US20230306579A1 (en) Registration metrology tool using darkfield and phase contrast imaging
CN117805132A (zh) 光学检测装置和光学检测系统
JPH06180293A (ja) 異物検査装置

Legal Events

Date Code Title Description
A201 Request for examination