KR20230071462A - Genome-edited Brassica rapa plant with high temperature resistance, and method for manufacturing the same - Google Patents

Genome-edited Brassica rapa plant with high temperature resistance, and method for manufacturing the same Download PDF

Info

Publication number
KR20230071462A
KR20230071462A KR1020210157688A KR20210157688A KR20230071462A KR 20230071462 A KR20230071462 A KR 20230071462A KR 1020210157688 A KR1020210157688 A KR 1020210157688A KR 20210157688 A KR20210157688 A KR 20210157688A KR 20230071462 A KR20230071462 A KR 20230071462A
Authority
KR
South Korea
Prior art keywords
gene
gigantea
cabbage
brassica rapa
brgi
Prior art date
Application number
KR1020210157688A
Other languages
Korean (ko)
Inventor
김진아
김란선
이기종
박소영
이수인
이은영
김향숙
최효선
Original Assignee
대한민국(농촌진흥청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(농촌진흥청장) filed Critical 대한민국(농촌진흥청장)
Priority to KR1020210157688A priority Critical patent/KR20230071462A/en
Publication of KR20230071462A publication Critical patent/KR20230071462A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/20Brassicaceae, e.g. canola, broccoli or rucola
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/12Processes for modifying agronomic input traits, e.g. crop yield
    • A01H1/122Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Physiology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The present invention relates to a GIGANTEA gene-corrected cabbage with an improved high-temperature resistance, wherein a Brassica rapa GIGANTEA (BrGI) gene-corrected cabbage of the present invention increases a growth and development rate and thus increasing productivity of the cabbage, and is very useful due to enabling to improve a resistance to high-temperature stress and being enabled to prepare for climate change.

Description

고온 저항성이 증진된 형질전환 배추 및 이의 제조방법{Genome-edited Brassica rapa plant with high temperature resistance, and method for manufacturing the same}Transgenic cabbage with improved high temperature resistance and method for manufacturing the same {Genome-edited Brassica rapa plant with high temperature resistance, and method for manufacturing the same}

본 발명은 고온 저항성이 증진된 GIGANTEA 유전자 교정 배추에 관한 것이다.The present invention relates to GIGANTEA genetically corrected Chinese cabbage with enhanced high-temperature resistance.

배추(Brassica rapa L.)는 우리나라의 4대 채소작물 중의 하나이고, 김치의 형태로 가공되어 겨울철에 부족하기 쉬운 비타민의 공급원으로 한국에서 전통적으로 이용되는 채소이다. 최근의 급격한 기후변화로 인해 배추 등 배추과 작물의 생산성이 감소하고 재배 비용이 증가하여 배추과 작물의 생산성 저하를 극복할 수 있는 기술개발이 필요하다. Chinese cabbage (Brassica rapa L.) is one of the four major vegetable crops in Korea, and is a vegetable traditionally used in Korea as a source of vitamins that are processed in the form of kimchi and tend to be insufficient in winter. Due to the recent rapid climate change, the productivity of Chinese cabbage crops such as Chinese cabbage decreases and the cultivation cost increases.

배추의 유전자를 연구하여 배추의 기능성을 향상시킬 수 있는 유전자의 발현 조절하여 새로운 기능을 동시에 가지는 연구가 다양하게 진행되고 있다. 최근에는 유전자 편집 기술을 이용하여 배추의 유전자를 교정하여 형질전환 배추 품종을 제조하고 있다. Various studies are being conducted to obtain new functions by studying the genes of Chinese cabbage and regulating the expression of genes that can improve the functionality of Chinese cabbage. Recently, transgenic cabbage varieties are produced by correcting the Chinese cabbage gene using gene editing technology.

CRISPR/Cas9 시스템은 크리스퍼(Clustered regularly interspaced short palindromic repeat, CRISPR) 유전자가위라 불리는 게놈(유전체) 편집 방법으로, 특정 염기서열에 특이적으로 결합하는 가이드 RNA(guide RNA)와 특정한 염기서열을 자르는 가위 역할인 Cas9(CRISPR associated protein 9) 엔도뉴클레아제 효소로 구성된다. 이러한 CRISPR/Cas9 시스템을 이용하면 세포나 동물에 플라스미드 DNA를 도입하여 특정 유전자의 기능을 억제할 있는 녹-아웃(knock-out)이 가능하다.The CRISPR/Cas9 system is a genome (genome) editing method called CRISPR (Clustered regularly interspaced short palindromic repeat, CRISPR) gene scissors, which cuts a guide RNA that specifically binds to a specific base sequence and a specific base sequence. It is composed of Cas9 (CRISPR associated protein 9) endonuclease enzyme, which serves as a scissor. Using this CRISPR/Cas9 system, it is possible to introduce plasmid DNA into cells or animals to knock-out the function of a specific gene.

이에 본 발명자들은 특정 유전자를 gRNA를 이용하여 배추의 생육을 촉진시켜 생산성을 높이고, 당함량은 증가하고, 글루코시놀레이트 함량을 감소시킴을 확인함으로써 본 발명을 완성하였다. Accordingly, the inventors of the present invention completed the present invention by confirming that a specific gene promotes the growth of Chinese cabbage using gRNA to increase productivity, increase sugar content, and decrease glucosinolate content.

(001) 대한민국 등록특허 KR 10-2113500(001) Korean registered patent KR 10-2113500 (002) 대한민국 등록특허 KR 10-2193277(002) Korean Registered Patent KR 10-2193277

본 발명의 해결하고자 하는 과제는 BrGI(Brassica rapa GIGANTEA) 유전자가 교정된 형질전환 배추를 제공하는 것이다. The problem to be solved by the present invention is to provide a transgenic cabbage in which the BrGI (Brassica rapa GIGANTEA) gene is corrected.

본 발명의 또 다른 과제는 1) 서열번호 1의 염기서열로 이루어진 가이드 RNA를 제작하는 단계; 2) 상기 단계 1)에서 제작한 가이드 RNA를 포함하는 유전자 교정용 벡터를 제작하는 단계; 및 3) 상기 유전자 교정용 벡터를 포함하는 조성물로 BrGI(Brassica rapa GIGANTEA) 유전자를 교정하는 단계를 포함하는 기능성이 증진된 형질전환 배추의 제조방법을 제공하는 것이다.Another object of the present invention is 1) preparing a guide RNA consisting of the nucleotide sequence of SEQ ID NO: 1; 2) preparing a gene correction vector containing the guide RNA prepared in step 1); and 3) to provide a method for producing a transgenic cabbage with improved functionality, comprising the step of correcting the BrGI (Brassica rapa GIGANTEA) gene with a composition containing the vector for gene correction.

상기 과제를 해결하기 위하여 본 발명은 BrGI(Brassica rapa GIGANTEA) 유전자가 교정된 형질전환 배추를 제공한다.In order to solve the above problems, the present invention provides a transgenic cabbage in which the BrGI (Brassica rapa GIGANTEA) gene is corrected.

본 발명의 "가이드 RNA(guide RNA, gRNA)"란 RNA(ribonucleic acid)의 한 종류로, 인간이나 동식물의 특정 유전자를 교정하는 유전자 교정(genome editing)에서 교정하려는 DNA를 인식하여 찾아내는 RNA를 의미한다. The term "guide RNA (gRNA)" of the present invention is a type of RNA (ribonucleic acid), and refers to an RNA that recognizes and finds the DNA to be edited in genome editing that corrects a specific gene of a human or animal or plant. do.

유전자 교정 기술로는 유전자 가위(engineered nuclease)가 있으며, 유전자 가위의 종류로 CRISPR-Cas9이 있다.Gene editing technology includes engineered nuclease, and CRISPR-Cas9 is a type of gene editing.

본 발명에서 "CRISPR-Cas9"이란 미생물의 면역체계로 알려진 CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats) 시스템을 이용해 원하는 유전자 염기서열을 절단하도록 고안된 것으로서, 고정적 구성요소로서 Cas9 단백질을 포함하고, 가변적 구성요소로서 타겟 유전자에 특이적인 가이드 RNA를 포함한다. 이때 타겟 유전자의 조건은 23 bp 길이이고 두 개의 구아닌 염기(GG)로 끝나기만 하면 된다. 가이드 RNA가 타겟 유전자를 인식하면 가이드 RNA에 Cas9 단백질이 결합하여 뉴클레아제로 작용하여 타겟 유전자의 하류 약 3 bp에 위치한 두 개의 구아닌 염기(GG)를 인식하여 절단함으로써 DNA 이중가닥 손상(DNA double strand break, DSB)을 유발한다. 상기 CRISPR-Cas9 시스템에는 tracr RNA를 더 포 함할 수 있으며, 상기 tracr RNA는 gRNA와 복합체를 형성하여 Cas9이 인식할 수 있는 구조를 형성하는 역할을 할 수 있다.In the present invention, "CRISPR-Cas9" is designed to cleave a desired gene sequence using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system, known as the immune system of microorganisms, and includes the Cas9 protein as a fixed component and a variable component. As such, it contains a guide RNA specific to the target gene. At this time, the condition of the target gene is 23 bp in length and only needs to end with two guanine bases (GG). When the guide RNA recognizes the target gene, the Cas9 protein binds to the guide RNA and acts as a nuclease to recognize and cut two guanine bases (GG) located about 3 bp downstream of the target gene, resulting in DNA double-strand damage. break, DSB). The CRISPR-Cas9 system may further include tracrRNA, and the tracrRNA may form a complex with gRNA to form a structure recognized by Cas9.

상기 가이드 RNA는 BrGI(Brassica rapa GIGANTEA) 유전자의 특정서열(서열번호 1)을 표적으로 하며 상기 BrGI(Brassica rapa GIGANTEA)는 서열번호 2의 염기서열로 이루어진 것일 수 있다.The guide RNA targets a specific sequence (SEQ ID NO: 1) of the BrGI (Brassica rapa GIGANTEA) gene, and the BrGI (Brassica rapa GIGANTEA) may be composed of the nucleotide sequence of SEQ ID NO: 2.

상기 BrGI(Brassica rapa GIGANTEA) 유전자는 생체 리듬 유전자이며, 염 또는 건조 스트레스와 같은 환경 스트레스에 대한 저항성 기작에 관여한다. 따라서 식물체에서 BrGI(Brassica rapa GIGANTEA)의 유전자 교정하여 BrGI(Brassica rapa GIGANTEA)의 발현을 조절하면 배추의 생육량이 증가하고, 유리당 함량 증진, 글루코시놀레이트 함량 감소 및 고온 내성이 증진될 수 있으며, 구체적으로 BrGI(Brassica rapa GIGANTEA) 유전자가 교정된 형질전환 배추의 결구가 형성되어 구폭의 증가로 생육이 왕성하고, 생체중, 구폭, 총엽수, 결구 긴도가 향상되었고, 유리당 중에서도 글루코스(glucose) 또는 프룩토오스(fructose)의 함량이 증가하였고, 배추의 쓴맛을 나타내는 글루코시놀레이트의 함량을 감소시켜 배추의 품질을 향상시켰다. 또한, 고온 노출에도 저항성이 뛰어났다.The BrGI (Brassica rapa GIGANTEA) gene is a circadian rhythm gene, and is involved in a mechanism of resistance to environmental stress such as salt or dry stress. Therefore, controlling the expression of BrGI (Brassica rapa GIGANTEA) by gene editing of BrGI (Brassica rapa GIGANTEA) in plants can increase the growth of Chinese cabbage, increase the free sugar content, decrease the glucosinolate content, and improve high temperature tolerance, Specifically, stems of transgenic cabbages in which the BrGI (Brassica rapa GIGANTEA) gene was corrected were formed, resulting in vigorous growth due to an increase in bulb width, improved live weight, bulb width, total number of leaves, and knot length, and among free sugars, glucose or The content of fructose was increased, and the quality of cabbage was improved by reducing the content of glucosinolate, which represents the bitter taste of cabbage. In addition, the resistance to high temperature exposure was excellent.

본 발명에서 “형질전환”은, 유전물질인 DNA를 다른 계통의 살아있는 세포에 주입했을 때, DNA가 그 세포에 들어가 유전형질을 변화시키는 현상으로, 형질변환, 형전환, 또는 형변환 이라고도 한다.In the present invention, "transformation" is a phenomenon in which DNA, which is a genetic material, is injected into living cells of a different lineage, and DNA enters the cell and changes hereditary character, and is also referred to as transformation, transformation, or transformation.

본 발명은 1) 서열번호 1의 염기서열로 이루어진 가이드 RNA를 제작하는 단계; 2) 상기 단계 1)에서 제작한 가이드 RNA를 포함하는 유전자 교정용 벡터를 제작하는 단계; 및 3) 상기 유전자 교정용 벡터를 포함하는 조성물로 BrGI(Brassica rapa GIGANTEA) 유전자를 교정하는 단계를 포함하는 기능성이 증진된 형질전환 배추의 제조방법을 제공한다.The present invention comprises the steps of 1) preparing a guide RNA consisting of the nucleotide sequence of SEQ ID NO: 1; 2) preparing a gene correction vector containing the guide RNA prepared in step 1); and 3) correcting the BrGI (Brassica rapa GIGANTEA) gene with a composition containing the vector for gene correction.

본 발명의 유전자 교정용 벡터는 상기 식물체 내 BrGI(Brassica rapa GIGANTEA) 유전자를 교정하기 위해 특이적으로 인식하는 가이드 RNA가 도입된 식물형질 전환용 벡터를 의미한다.The vector for gene correction of the present invention refers to a vector for plant transformation into which a guide RNA specifically recognizing is introduced to correct the BrGI (Brassica rapa GIGANTEA) gene in the plant.

본 발명에 따른 벡터는 cas9 단백질을 암호화하는 염기서열을 더 포함할 수 있다.The vector according to the present invention may further include a nucleotide sequence encoding the cas9 protein.

상기 벡터는 목적하는 유전자의 발현 억제 또는 유전자의 발현이 증진될 수 있도록, 발현조절 서열과 기능적으로 연결될 수 있다. 예를 들어, 벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널, 인핸서 같은 발현 조절 요소 외에도 막 표적화 또는 분비를 위한 신호 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 또한, 벡터는 선택성 마커를 포함할수 있으며, 벡터는 자가 복제하거나 숙주 DNA에 통합될 수 있다.The vector may be functionally linked to an expression control sequence so that the expression of a desired gene can be suppressed or the expression of a gene can be enhanced. For example, vectors include expression control elements such as promoters, operators, initiation codons, stop codons, polyadenylation signals, and enhancers, as well as signal sequences or leader sequences for membrane targeting or secretion, and can be prepared in various ways depending on the purpose. . In addition, vectors can include selectable markers, and vectors can replicate autonomously or integrate into host DNA.

본 발명의 벡터는 당해 기술 분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용할 수 있다.The vector of the present invention can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cutting and linking can be performed using enzymes generally known in the art.

본 발명에서 상기 벡터로 식물체를 "형질전환"하는 것은 당업자에게 공지된 형질전환기술에 의해 수행될 수 있다. 구체적으로는, 아그로박테리움을 이용한 형질전환방법, 미세사출법(microprojectile bombardment), 일렉트로포레이션(electroporation), PEG-매개 융합법(PEG-mediated fusion), 미세주입법(microinjection), 리포좀 매개법(liposome-mediated method), 인-플란타 형질전환법(In planta transformation), 진공 침윤법(Vacuum infiltration method), 화아침지법(floral meristem dipping method), 및 아그로박테리아 분사법(Agrobacteriaspraying method)을 이용할 수 있다.In the present invention, "transformation" of a plant with the vector may be performed by a transformation technique known to those skilled in the art. Specifically, transformation method using Agrobacterium, microprojectile bombardment, electroporation, PEG-mediated fusion, microinjection, liposome mediation method ( liposome-mediated method), in-planta transformation, vacuum infiltration method, floral meristem dipping method, and Agrobacteriaspraying method can be used. there is.

본 발명에서 BrGI(Brassica rapa GIGANTEA) 유전자를 교정은 식물체에 형질도입된 가이드 RNA에 의해 BrGI(Brassica rapa GIGANTEA) 유전자를 특정영역에 삽입 또는 결손을 유도하는 것을 의미한다. 구체적으로, 유전자 가위 시스템의 cas9 단백질을 이용하여 유전자를 교정하는 것일 수 있다.In the present invention, correction of the BrGI (Brassica rapa GIGANTEA) gene means inducing the insertion or deletion of the BrGI (Brassica rapa GIGANTEA) gene in a specific region by the guide RNA transduced into the plant. Specifically, the gene may be corrected using the cas9 protein of the gene editing system.

따라서 본 발명의 방법은 식물체에 cas9 단백질을 추가적으로 처리되거나 또는 cas9 단백질을 발현하는 벡터를 형질도입하는 단계를 포함할 수 있다.Therefore, the method of the present invention may include transducing a vector expressing the cas9 protein or additionally processing the cas9 protein into the plant.

또한, 본 발명의 유전자 교정용 벡터는 cas9 단백질를 암호화하는 유전자를 더 포함하여 가이드 RNA와 cas9 단백질를 동시에 형질도입 하는 것일 수 있다.In addition, the vector for gene correction of the present invention may further include a gene encoding the cas9 protein to simultaneously transduce the guide RNA and the cas9 protein.

상기 기능성은 고온 내성으로 이루어진 것일 수 있다.The functionality may consist of high temperature resistance.

본 발명의 제조방법에 의해 제조된 배추는 고온 내성이 증진되는 효과를 동시에 나타낼 수 있다. Chinese cabbage prepared by the manufacturing method of the present invention can simultaneously exhibit the effect of enhancing high temperature resistance.

본 발명의 BrGI(Brassica rapa GIGANTEA) 유전자 교정 배추는 고온 스트레스 저항성이 증진되어 기후변화에 대비할 수 있으므로 매우 유용하다.The BrGI (Brassica rapa GIGANTEA) genetically corrected cabbage of the present invention is very useful because it can prepare for climate change by improving high-temperature stress resistance.

도 1은 GIGANTEA 유전자 교정 배추의 생육량을 확인한 사진이다.
도 2는 GIGANTEA 유전자 교정 배추의 생육 조사한 결과를 나타낸 그래프이다.
도 3은 GIGANTEA 유전자 교정 배추(T2)의 고온 저항성을 검정하기 위한 방법 및 결과를 나타낸 그래프이다.
도 4는 GIGANTEA 유전자 교정 배추(T3)의 고온 저항성을 검증한 결과를 나타낸 그래프이다.
도 5는 GIGANTEA 유전자 교정 배추의 고온기 노출 후 생존 여부를 확인한 결과를 나타낸 사진이다.
도 6은 고온 내성 확인된 g1-21-3의 교정 유전자의 서열을 확인한 사진이다.
도 7은 고온 내성 확인된 g1-21-4의 교정 유전자의 서열을 확인한 사진이다.
도 8은 GIGANTEA 유전자 교정 배추의 당 대사 변화를 분석한 결과를 나타낸 그래프이다(생육 1개월 및 3개월(수확기)).
도 9는 GIGANTEA 유전자 교정 배추의 글루코시놀레이트 함량 변화를 나타낸 그래프이다(생육 1개월 및 3개월(수확기)).
Figure 1 is a photograph confirming the growth of GIGANTEA gene correction cabbage.
Figure 2 is a graph showing the results of investigating the growth of GIGANTEA gene correction cabbage.
Figure 3 is a graph showing the method and results for assaying the high temperature resistance of GIGANTEA genetically corrected Chinese cabbage (T2).
Figure 4 is a graph showing the results of verifying the high temperature resistance of GIGANTEA genetically corrected cabbage (T3).
5 is a photograph showing the result of confirming survival after exposure to high temperature of GIGANTEA gene correction cabbage.
Figure 6 is a photograph confirming the sequence of the correction gene of g1-21-3 confirmed high temperature resistance.
Figure 7 is a photograph confirming the sequence of the correction gene of g1-21-4 confirmed high temperature resistance.
8 is a graph showing the results of analyzing sugar metabolism changes in GIGANTEA gene-edited cabbage (1 month and 3 months of growth (harvest period)).
Figure 9 is a graph showing the change in glucosinolate content of GIGANTEA genetically corrected Chinese cabbage (1 month and 3 months of growth (harvest)).

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

<실시예 1> BrGI(Brassica rapa GIGANTEA) 유전자 교정 배추 <Example 1> BrGI (Brassica rapa GIGANTEA) genetically corrected Chinese cabbage

배추(Brassica rapa) 유래 지잔티아(GIGANTEA) 유전자(서열번호 2; GenBank HQ6159401)의 염기서열을 분석하였으며, 배추 지잔티아(GIGANTEA) 유전자만 특이적으로 인식하고 나머지 유전자는 인식하지 않도록 가이드 RNA 영역을 제한하여, g1 영역에 특이적인 gRNA(가이드 RNA)의 제조하였다(표 1).The base sequence of the GIGANTEA gene (SEQ ID NO: 2; GenBank HQ6159401) derived from Brassica rapa was analyzed, and the guide RNA region was selected to specifically recognize only the GIGANTEA gene and not recognize the rest of the genes. As a restriction, a gRNA (guide RNA) specific to the g1 region was prepared (Table 1).

g1의 gRNA를 처리한 배추 원형질체에서 지잔티아 유전자(서열번호 2)의 32번째와 33번째 염기서열 사이에 T 또는 A가 삽입되어 배추 유래 지잔티아 유전자의 삽입 또는 결손을 효율적으로 유도하여 유전자를 교정하였다.In the Chinese cabbage protoplast treated with the gRNA of g1, T or A is inserted between the 32nd and 33rd nucleotide sequences of the Zizantia gene (SEQ ID NO: 2) to efficiently induce insertion or deletion of the Chinese cabbage-derived Zizantia gene to correct the gene. did

이름name 서열번호sequence number 서열order GI-g1GI-g1 1One 5'-TCATCTGAGAGGTGGACCGATGG-3'5′-TCATCTGAGAGGTGGACCGATGG-3′

g1에 특이적인 gRNA 유전자(서열번호 1)를 pHAtC 벡터에 삽입하여 지잔티아 유전자 교정용 구조체(construction)를 제조하였다. pHAtC는 하이그로마이신 저항성 유전자(HygR) 및 Cas9 유전자를 포함한다. 제조된 유전자 교정용 구조체(construction)를 배추(Brassica rapa, pekinensis, spp Chiifu)에 형질전환하여 형질전환 배추 식물체를 제조하였다. 하이그로마이신을 이용하여 유전자 구조체가 삽입된 형질전환 개체를 선별하였다. 또한, 형질전환하지 않은 배추를 대조군을 사용하였다.A gRNA gene (SEQ ID NO: 1) specific for g1 was inserted into the pHAtC vector to prepare a Zizantia gene editing construct. pHAtC contains a hygromycin resistance gene (HygR) and a Cas9 gene. The prepared construct for gene correction was transformed into Chinese cabbage (Brassica rapa, pekinensis, spp Chiifu) to prepare a transgenic Chinese cabbage plant. Transgenic individuals into which the gene construct was inserted were selected using hygromycin. In addition, untransformed Chinese cabbage was used as a control.

형질전환 배추 식물체(T0)의 DNA를 추출하고 딥 시퀸싱을 통해 형질전환 여부를 확인하였다. 형질전환이 확인된 식물체를 자가교배한 종자(T1)를 하이그로마이신 배지에 파종하여 살아남은 개체를 선별하고, g1 구조체로 형질도입한 형질전환 식물체의 GI 유전자 서열변이 유도율이다. g1 구조체의 경우 삽입-결손(indel) 유도율이 99.48%로 나타났으며, g1 구조체의 형질도입이 배추의 지잔티아(GIGANTEA) 유전자의 서열변이(유전자 교정)을 효율적으로 유도함을 확인하였다(표 2).The DNA of the transgenic Chinese cabbage plants (T0) was extracted, and transformation was confirmed through deep sequencing. It is the GI gene sequence mutation induction rate of the transgenic plants transduced with the g1 construct after sowing seeds (T1) of self-crossing of the transformed plants in a hygromycin medium and selecting surviving individuals. In the case of the g1 construct, the insertion-deletion (indel) induction rate was 99.48%, and it was confirmed that transduction of the g1 construct efficiently induced sequence mutation (genetic correction) of the GIGANTEA gene of Chinese cabbage (Table 2).

namename target seqtarget sequence total
count
total
count
insertioninsertion deletiondeletion indelindel indel frequencyindel frequency genotypegenotype mutation patternmutation pattern
GI-g1_21GI-g1_21 TCATCTGAGAGGTGGACCGATGG
(서열번호 1)
TCATCTGAGAGGTGGACCGATGG
(SEQ ID NO: 1)
47824782 21252125 26322632 47574757 99.48%99.48% mutant
(bi-allelic)
mutant
(bi-allelic)
2 del 2 del 1 ins1 inch

<실시예 2> BrGI 유전자 교정 배추의 생육량 증가 분석<Example 2> Growth analysis of BrGI gene correction cabbage

BrGI(Brassica rapa GIGANTEA) 유전자 교정 벡터 형질전환체의 생육량 증가를 확인하기 위하여, 항생제(하이그로마이신) 선발과 유전자 교정 여부 확인된 g1-21-3과 g1-21-4라인 배추 유묘를 결구 가능한 사이즈의 화분에 이식하여 3개월간 생육 후 결구 형성 여부를 관찰한 결과 정상적으로 결구가 형성되었으며 구폭의 증가로 생육이 왕성함을 확하였다. GI 유전자 교정 배추의 정상 결구 형성 및 생육량 증가하였다(도 1).In order to confirm the increase in growth of BrGI (Brassica rapa GIGANTEA) gene editing vector transformants, antibiotic (hygromycin) selection and gene editing confirmed g1-21-3 and g1-21-4 line cabbage seedlings can be assembled It was transplanted into pots of the same size and grown for 3 months, and then observed to see whether or not a block was formed. As a result, it was confirmed that a block was formed normally and growth was vigorous due to an increase in mouth width. GI gene-corrected cabbages showed normal formation and increased growth (FIG. 1).

<실시예 3> BrGI 유전자 교정 배추의 생육 분석<Example 3> Growth analysis of BrGI gene correction cabbage

BrGI(Brassica rapa GIGANTEA) 유전자 교정 배추의 생체중, 길이(구폭, 구중), 총엽수, 결구 긴도를 조사하였다. Fresh weight, length (neck width, bulb weight), number of total leaves, and stem length of BrGI (Brassica rapa GIGANTEA) genetically corrected Chinese cabbage were investigated.

그 결과, g1-21-3과 g1-21-4 라인의 생체중과 구폭, 총엽수, 결구 긴도가 향상되었으므로 생육량 정량화를 통한 생육 향상 확인하였다(도 2).As a result, the live weight, mouth width, total leaf number, and stem length of the g1-21-3 and g1-21-4 lines were improved, so the growth improvement was confirmed through the quantification of the growth amount (FIG. 2).

<실시예 4> BrGI 유전자 교정 배추의 고온 저항성 검정<Example 4> High temperature resistance test of BrGI gene correction cabbage

BrGI(Brassica rapa GIGANTEA) 유전자 교정 벡터 형질전환체의 고온 내성 검정하기 위하여, 3주된 배추 유묘의 잎 disc를 잘라 45℃ 물에 넣고 30분, 1시간, 2시간, 3시간 후 꺼내어 전자 용출(EC; Electron leakage) 측정하였다. In order to test the high temperature tolerance of BrGI (Brassica rapa GIGANTEA) gene correction vector transformants, cut leaf discs of 3-week-old Chinese cabbage seedlings, put them in 45 ° C water, take them out after 30 minutes, 1 hour, 2 hours, and 3 hours and elute (EC) ; Electron leakage) was measured.

그 결과, BrGI 유전자 교정 배추(g1-21-3과 g1-21-4)의 EC가 서서히 증가하는 것으로 보아 고온 노출에 식물체가 상해를 덜 입는 것으로 판단하여 고온 저항성 증가하였다(도 3 및 도 4). 교정된 배추의 T2(도 3)와 T3(도 4) 후대에서 모두 고온 저항성이 증가하였음을 확인하였다.As a result, as the EC of the BrGI genetically corrected cabbages (g1-21-3 and g1-21-4) gradually increased, it was judged that the plants were less injured by high temperature exposure, and the high temperature resistance increased (Figs. 3 and 4 ). It was confirmed that high-temperature resistance increased in both T2 (FIG. 3) and T3 (FIG. 4) posteriors of the corrected Chinese cabbage.

또한, BrGI 유전자 교정 배추의 고온기 노출 후 내성을 확인하기 위하여, 3주된 배추 유묘를 40℃(낮과 밤 동일)에 1주일간 노출하고 23℃(정상 생육 적온)으로 옮겨 생육 회복 여부를 확인하였다. In addition, in order to confirm the tolerance of BrGI gene corrected cabbage after exposure to high temperatures, 3-week-old Chinese cabbage seedlings were exposed to 40 ° C (same day and night) for 1 week and transferred to 23 ° C (normal growth optimum temperature) to confirm growth recovery.

그 결과, BrGI 유전자 교정 배추의(g1-21-3과 g1-21-4), 특히 g1-21-3 개체 4개체의 생육이 회복된 반면 대조구인 지부의 경우는 1개체만 다시 자라기 시작했으나 생육이 많이 위축되었고, g1-21-4 의 경우 1개체만 회복되었으나 생육이 매우 왕성하였다(도 5).As a result, the growth of 4 individuals of the BrGI genetically corrected Chinese cabbage (g1-21-3 and g1-21-4), especially g1-21-3, was restored, whereas only one of the branches of the control group started to grow again. Growth was greatly atrophied, and in the case of g1-21-4, only one individual was recovered, but growth was very vigorous (FIG. 5).

또한, 고온 저항성 배추의 유전자 교정 여부를 확인하기 위하여, 40℃(낮과 밤 동일) 고온 노출 후 생존 및 생육 회복된 배추(g1-21-3과 g1-21-4)의 유전자 교정 여부를 확인하였다. In addition, in order to check whether the high-temperature-resistant Chinese cabbage has been gene-corrected, the gene-correction of the cabbages (g1-21-3 and g1-21-4) that survived and recovered after exposure to high temperature at 40 ° C (same day and night) was checked. did

그 결과, g1-21-3 4개체의 유전자 교정을 확인하였고 교정 서열도 두 종류로 homo 또는 hetero로 확인되오 고온기 노출 후 생존 배추의 유전자 교정 및 교정 서열임을 확인하였다(도 6). 고온 후 생육이 정상으로 회복된 g1-21-4 1개체의 유전자 교정을 확인하였다(도 7).As a result, the gene correction of the four individuals g1-21-3 was confirmed, and the correction sequence was also confirmed as homo or hetero in two types, confirming that it was the gene correction and correction sequence of the surviving Chinese cabbage after exposure to high temperature (FIG. 6). Genetic correction of one g1-21-4 individual whose growth was restored to normal after high temperature was confirmed (FIG. 7).

<실시예 5> BrGI 유전자 교정 배추의 당 대사 증가 분석<Example 5> Analysis of sugar metabolism increase in BrGI gene-correction cabbage

BrGI(Brassica rapa GIGANTEA) 유전자 교정 벡터 형질전환체 1-21-3과 g1-21-4 라인의 생육 1개월과 3개월(수확기)의 수크로즈, 글루코즈 및 프룩토오스의 함량을 측정하였다.The contents of sucrose, glucose, and fructose in BrGI (Brassica rapa GIGANTEA) gene correction vector transformants 1-21-3 and g1-21-4 at 1 month and 3 months (harvest period) were measured.

그 결과, 생육 1개월째의 글루코즈와 프룩토오스 함량이 현저히 증가하였고, 수확기의 프룩토오스 함량이 증가하였으므로 생육 초기의 유리당 함량의 증가가 수확기의 생육량 증가로 이어짐을 확인하였다(도 8).As a result, the glucose and fructose content significantly increased at the first month of growth, and the fructose content increased at the harvest period, so it was confirmed that the increase in the free sugar content at the beginning of the growth period led to an increase in the growth rate at the harvest period (FIG. 8).

<실시예 6> BrGI 유전자 교정 배추의 글루코시놀레이트 함량 변화 분석<Example 6> Analysis of changes in glucosinolate content of BrGI genetically corrected Chinese cabbage

BrGI(Brassica rapa GIGANTEA) 유전자 교정 벡터 형질전환체 g1-21-3과 g1-21-4 라인의 생육 1개월과 3개월(수확기)의 글루코시놀레이트 함량을 분석하였다. BrGI (Brassica rapa GIGANTEA) gene correction vector transformant The glucosinolate content of the g1-21-3 and g1-21-4 lines at 1 month and 3 months (harvest) was analyzed.

그 결과, 생육 초기부터 총 글루코시놀레이트의 함량 감소하였고 특히 수확기의 총 글루코시놀레이트의 함량이 현저히 감소하였고, 성분별로 보면, 쓴맛을 내는 알리패틱 타입의 경우 감소하였으나(도 4 화살표), 항암 성분으로 알려진 인돌 타입과 아로마틱 타입은 오히려 증가하여 배추의 기능성 품질을 향상 시켰으며, GI 유전자 교정 배추의 유리당 함량 증가하였다(도 9).As a result, the content of total glucosinolates decreased from the beginning of growth, and in particular, the content of total glucosinolates at the harvesting period significantly decreased. Looking at each component, it decreased in the case of aliphatic types that give off a bitter taste (arrows in FIG. 4), The indole type and aromatic type, known as anticancer components, rather increased, improving the functional quality of Chinese cabbage, and the free sugar content of GI genetically corrected cabbage increased (FIG. 9).

<110> RURAL DEVELOPMENT ADMINISTRATION <120> Genome-edited Brassica rapa plant with improved productivity, increased metabolite content and high temperature resistance, and method for manufacturing the same <130> DHP21-377 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> GI-g1 <400> 1 tcatctgaga ggtggaccga tgg 23 <210> 2 <211> 3552 <212> DNA <213> Brassica rapa <400> 2 atgacatcgc ctacttcatc tgagaggtgg accgatggtc ttcagttctc ttccttgtta 60 tggtctcccc cacgtgaccc tcaacaacat aaggatcaag tcgttgctta tgtcgaatac 120 tttggtcagt tcacatcaga gcaattccct gatgatattg ctgagttggt ccgtaatcag 180 tatccctcaa ctgagaagcg acttttggat gatgtgttgg ctatgtttgt actccatcat 240 cctgagcatg gtcatgctgt catccttccg attatctcat gtctcatcga tggcactcta 300 gtgtacagca aggaagctca tcccttcgcc tctttcattt ctttagtttc cccaaatagt 360 gagaatgact attcagagca atgggctttg gcgtgcggag aaatcctacg catcttgact 420 cattacaacc gtcccattta caagacggag cagcaaaatg gagaaacgga gagcaaagct 480 tctactagtg ggtctcctac gctttcagag gctaaggctg tatcaccagg acagcatgaa 540 aggaaaccgc taaggccttt gtctccatgg atcagtgata tactactcgc tgctcccctt 600 ggtattagaa gtgactactt tcgttggtgt agtggtgtta tgggtaaata tgctgctgga 660 gagctcaagc cacctaccat tggtgagtgt ccatcacctc tggctactac aatgggttct 720 actcgaggat ctggtaaaca tcctcaatat atgccttcga caccaagatg ggcggttgct 780 aatggagctg gtgtcatact gagtgtttgt gatgatgaag tcgctcggta tgagactgct 840 acgttaacag cggttgctgt ccctgcactt ctgcttcctc ccccaacgac atccttagat 900 gagcatttag ttgctggcct tccagctctt gagccttatg cacgtttgtt tcacagatat 960 tatgcgattg caactccaag tgctactcag agacttcttc ttggactctt ggaagcacca 1020 ccgtcgtggg ctccagatgc acttgatgct gccgtacagc ttgtggagct tctccgagct 1080 gctgaagatt atgcatctgg tgtaaggcta ccaaggaact ggatgcattt gcacttcttg 1140 cgtgcaatag gaatcgccat gtctatgagg gcaggcgttg ctgctgacgc tgcagctgct 1200 ttacttttcc gcatactgtc gcagccggca ctgctttttc ctccgctaag ccaagctgag 1260 ggagtagaaa tcaaacacgc tcctattggt ggctacggtt caaattacag aaagcagata 1320 gaagttcctg cagcagaagc aaccattgaa gccactgcac aaggaatagc ctcaatgctt 1380 tgtgctcacg gacctgaagt ggagtggagg atctgcacta tatgggaagc tgcctatgga 1440 ttgatccctt taaactcctc agccgttgat ctccctgaga tcattgtcgc caccccactg 1500 cagcctccca tcttgtcatg gaacctatac atcccactcc tcaaagtact cgagtatctt 1560 ccacgtggga gtccttccga agcatgcttg atgaagatat tcgtcgccac ggtggaaaca 1620 atcctcagca ggactttccc gccagagact tctatcagga aagctagagc gagtttagcc 1680 acgagatcat cagcgaccaa aaacctagct atggctgagc ttcgtgctat ggtccatgct 1740 ctcttcttgg aatcatgcgc tggcgtggag atagcgtcgc gcctgctttt cgttgtgttg 1800 actgtgtgtg ttagccatga agcgcagtct agtgggagca agagacggag aagcgaagaa 1860 gatgctactg cagaggagaa tcaagacaat caaactagta accgtaaaag taggaacgtc 1920 aagggacaag gacctgtggc ggcgtttgat tcgtacgttc tcgctgctgt ctgtgctctc 1980 gcctgtgagg ttcagctgta tcctatgatc tccggaggag ggaacttctc caactctgca 2040 gtggctgcaa ccattacaaa gtctgtgaag ataaacggtt catctaacga gtacggagct 2100 gggattgact ctgcaatcaa gcacacacgc cgcatcttag cgattctcga ggcgctcttt 2160 tcgttgaagc catcttctgt ggggactccg tggagttaca gctctagcga gatagttgct 2220 gcggccatgg tcgcagctca catctccgaa ctgttcagac gctcaaaggc cttgacgcat 2280 gccttgtctg gtttgatgag atgcaaatgg gacaaggaga ttcataagag agcgtcgtct 2340 ttgtataacc tcatcgatgt tcatagcaaa gttgtagcat ccatcgtcga caaagctgaa 2400 cccttagaag cgtaccttaa gaacgccccg gtccagaagg attcgctggc ttgtgttaac 2460 tggaaacaac agaacaacac atcatcagca gcagggtttg gtacagcggc ggtgacgtcc 2520 acgtcacgta atgaaatggc tccgagagga ggtaaccata agtatgctag gcattcagat 2580 gaaggctcag ggagtagatc gtcatcagat aagggcatca aagatctgct gttggatgct 2640 tctgatctag cgaatttcct cacggctgat aggctagcag ggttttaccg tggtacgcaa 2700 gttcttttga ggtcgatact tgctgagaaa ccggagcttt ctttctccgt tgtttcgctg 2760 ttgtggcaca aactgatcgc ttctcctgag atccagccca cagccgaaag cacctctgct 2820 cagcaaggat ggagacaggt agttgatgca ctatgcaatg tggtatctgc aacgccagca 2880 aaagcagctg cagccgttgt tcttcaggct gagagagagt tgcagccttg gatagccaaa 2940 gatgatgaag aaggtcagaa aatgtggaaa ataaaccaaa ggatagtgaa agtgatggtg 3000 gaactcatga ggaatcatga caggcctgag tcactggtga ttctggcaag tgcatctgat 3060 ctccttctga gagcaactga tggaatgctt gttgatggag aagcttgtac attacctcaa 3120 cttgagctac ttgaagctac agcaagagca atacagccag tgttagcttg gggaccatct 3180 ggactagcag tagttgacgg cttatcaaat ctattgaagt gtcgtctgcc ggcaacaata 3240 cggtgcctct cacacccaag tgcacacgta cgtgccttga gcacatcagt actacgagac 3300 atcatgaacc aaagcggcat aaccaccacc aaggcaactc caaaaccgcc gccaacaata 3360 acaaccgaga agaacggaac ggacagcccg tcgtacaggt tcttcaacgc ggcggcaata 3420 gactggaaag cagacataca aaagtgtttg aactgggaag cgcacagctt gctgtcgacg 3480 acaatgccga cacagtttct tgacacggcg gctcgggaat taggatgtac catatcaatg 3540 tcgtcccaat aa 3552 <110> RURAL DEVELOPMENT ADMINISTRATION <120> Genome-edited Brassica rapa plant with improved productivity, increased metabolite content and high temperature resistance, and method for manufacturing the same <130> DHP21-377 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 23 <212> DNA <213> artificial sequence <220> <223> GI-g1 <400> 1 tcatctgaga ggtggaccga tgg 23 <210> 2 <211> 3552 <212> DNA 213 <br> <400> 2 atgacatcgc ctacttcatc tgagaggtgg accgatggtc ttcagttctc ttccttgtta 60 tggtctcccc cacgtgaccc tcaacaacat aaggatcaag tcgttgctta tgtcgaatac 120 tttggtcagt tcacatcaga gcaattccct gatgatattg ctgagttggt ccgtaatcag 180 tatccctcaa ctgagaagcg acttttggat gatgtgttgg ctatgtttgt actccatcat 240 cctgagcatg gtcatgctgt catccttccg attatctcat gtctcatcga tggcactcta 300 gtgtacagca aggaagctca tcccttcgcc tctttcattt ctttagtttc cccaaatagt 360 gagaatgact attcagagca atgggctttg gcgtgcggag aaatcctacg catcttgact 420 cattacaacc gtcccattta caagacggag cagcaaaatg gagaaacgga gagcaaagct 480 tctactagtg ggtctcctac gctttcagag gctaaggctg tatcaccagg acagcatgaa 540 aggaaaccgc taaggccttt gtctccatgg atcagtgata tactactcgc tgctcccctt 600 ggtattagaa gtgactactt tcgttggtgt agtggtgtta tgggtaaata tgctgctgga 660 gagctcaagc cacctaccat tggtgagtgt ccatcacctc tggctactac aatgggttct 720 actcgaggat ctggtaaaca tcctcaatat atgccttcga caccaagatg ggcggttgct 780 aatggagctg gtgtcatact gagtgtttgt gatgatgaag tcgctcggta tgagactgct 840 acgttaacag cggttgctgt ccctgcactt ctgcttcctc ccccaacgac atccttagat 900 gagcatttag ttgctggcct tccagctctt gagccttatg cacgtttgtt tcacagatat 960 tatgcgattg caactccaag tgctactcag agacttcttc ttggactctt ggaagcacca 1020 ccgtcgtggg ctccagatgc acttgatgct gccgtacagc ttgtggagct tctccgagct 1080 gctgaagatt atgcatctgg tgtaaggcta ccaaggaact ggatgcattt gcacttcttg 1140 cgtgcaatag gaatcgccat gtctatgagg gcaggcgttg ctgctgacgc tgcagctgct 1200 ttacttttcc gcatactgtc gcagccggca ctgctttttc ctccgctaag ccaagctgag 1260 ggaggtagaaa tcaaacacgc tcctattggt ggctacggtt caaattacag aaagcagata 1320 gaagttcctg cagcagaagc aaccattgaa gccactgcac aaggaatagc ctcaatgctt 1380 tgtgctcacg gacctgaagt ggagtggagg atctgcacta tatgggaagc tgcctatgga 1440 ttgatccctt taaactcctc agccgttgat ctccctgaga tcattgtcgc caccccactg 1500 cagcctccca tcttgtcatg gaacctatac atcccactcc tcaaagtact cgagtatctt 1560 ccacgtggga gtccttccga agcatgcttg atgaagatat tcgtcgccac ggtggaaaca 1620 atcctcagca ggactttccc gccagagact tctatcagga aagctagagc gagtttagcc 1680 acgagatcat cagcgaccaa aaacctagct atggctgagc ttcgtgctat ggtccatgct 1740 ctcttcttgg aatcatgcgc tggcgtggag atagcgtcgc gcctgctttt cgttgtgttg 1800 actgtgtgtg ttagccatga agcgcagtct agtgggagca agagacggag aagcgaagaa 1860 gatgctactg cagaggagaa tcaagacaat caaactagta accgtaaaag taggaacgtc 1920 aagggacaag gacctgtggc ggcgtttgat tcgtacgttc tcgctgctgt ctgtgctctc 1980 gcctgtgagg ttcagctgta tcctatgatc tccggaggag ggaacttctc caactctgca 2040 gtggctgcaa ccattacaaa gtctgtgaag ataaacggtt catctaacga gtacggagct 2100 gggattgact ctgcaatcaa gcacacacgc cgcatcttag cgattctcga ggcgctcttt 2160 tcgttgaagc catcttctgt ggggactccg tggagttaca gctctagcga gatagttgct 2220 gcggccatgg tcgcagctca catctccgaa ctgttcagac gctcaaaggc cttgacgcat 2280 gccttgtctg gtttgatgag atgcaaatgg gacaaggaga ttcataagag agcgtcgtct 2340 ttgtataacc tcatcgatgt tcatagcaaa gttgtagcat ccatcgtcga caaagctgaa 2400 cccttagaag cgtaccttaa gaacgccccg gtccagaagg attcgctggc ttggtttaac 2460 tggaaacaac agaacaacac atcatcagca gcagggtttg gtacagcggc ggtgacgtcc 2520 acgtcacgta atgaaatggc tccgagagga ggtaaccata agtatgctag gcattcagat 2580 gaaggctcag ggagtagatc gtcatcagat aagggcatca aagatctgct gttggatgct 2640 tctgatctag cgaatttcct cacggctgat aggctagcag ggttttaccg tggtacgcaa 2700 gttcttttga ggtcgatact tgctgagaaa ccggagcttt ctttctccgt tgtttcgctg 2760 ttgtggcaca aactgatcgc ttctcctgag atccagccca cagccgaaag cacctctgct 2820 cagcaaggat ggagacaggt agttgatgca ctatgcaatg tggtatctgc aacgccagca 2880 aaagcagctg cagccgttgt tcttcaggct gagagagagt tgcagccttg gatagccaaa 2940 gatgatgaag aaggtcagaa aatgtggaaa ataaaccaaa ggatagtgaa agtgatggtg 3000 gaactcatga ggaatcatga caggcctgag tcactggtga ttctggcaag tgcatctgat 3060 ctccttctga gagcaactga tggaatgctt gttgatggag aagcttgtac attacctcaa 3120 cttgagctac ttgaagctac agcaagagca atacagccag tgttagcttg gggaccatct 3180 ggactagcag tagttgacgg cttatcaaat ctattgaagt gtcgtctgcc ggcaacaata 3240 cggtgcctct cacacccaag tgcacacgta cgtgccttga gcacatcagt actacgagac 3300 atcatgaacc aaagcggcat aaccaccacc aaggcaactc caaaaccgcc gccaacaata 3360 acaaccgaga agaacggaac ggacagcccg tcgtacaggt tcttcaacgc ggcggcaata 3420 gactggaaag cagacataca aaagtgtttg aactgggaag cgcacagctt gctgtcgacg 3480 acaatgccga cacagtttct tgacacggcg gctcgggaat taggatgtac catatcaatg 3540 tcgtcccaat aa 3552

Claims (6)

BrGI(Brassica rapa GIGANTEA) 유전자가 교정되어 고온 저항성이 증진된 형질전환 배추. Transgenic cabbage whose BrGI (Brassica rapa GIGANTEA) gene has been corrected to improve high-temperature resistance. 제 1항에 있어서, 상기 유리당은 글루코스(glucose) 또는 프룩토오스(fructose)인 것인 형질전환 배추.The transformed cabbage according to claim 1, wherein the free sugar is glucose or fructose. 1) 서열번호 1의 염기서열로 이루어진 가이드 RNA를 제작하는 단계;
2) 상기 단계 1)에서 제작한 가이드 RNA를 포함하는 유전자 교정용 벡터를 제작하는 단계; 및
3) 상기 유전자 교정용 벡터를 포함하는 조성물로 BrGI(Brassica rapa GIGANTEA) 유전자를 교정하는 단계를 포함하는 고온 저항성이 증진된 형질전환 배추의 제조방법.
1) preparing a guide RNA consisting of the nucleotide sequence of SEQ ID NO: 1;
2) preparing a gene correction vector containing the guide RNA prepared in step 1); and
3) A method for producing a transgenic cabbage with enhanced high temperature resistance comprising the step of correcting the BrGI (Brassica rapa GIGANTEA) gene with a composition containing the vector for gene correction.
제 3항에 있어서, 상기 유전자 교정용 벡터는 cas9 단백질을 암호화하는 염기서열을 더 포함하는 것인 기능성이 증진된 형질전환 배추의 제조방법.The method of claim 3, wherein the gene correction vector further comprises a base sequence encoding the cas9 protein. 제 4항에 있어서, 상기 조성물은 cas9 단백질 또는 cas9 단백질을 암호화하는 염기서열을 포함하는 발현 벡터를 더 포함하는 것인 기능성이 증진된 형질전환 배추의 제조방법.The method of claim 4, wherein the composition further comprises a cas9 protein or an expression vector containing a nucleotide sequence encoding the cas9 protein. 제 3항에 있어서, 상기 기능성은 고온 내성으로 이루어진 형질전환 배추의 제조방법.The method of claim 3, wherein the functionality is made of high temperature resistance.
KR1020210157688A 2021-11-16 2021-11-16 Genome-edited Brassica rapa plant with high temperature resistance, and method for manufacturing the same KR20230071462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210157688A KR20230071462A (en) 2021-11-16 2021-11-16 Genome-edited Brassica rapa plant with high temperature resistance, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210157688A KR20230071462A (en) 2021-11-16 2021-11-16 Genome-edited Brassica rapa plant with high temperature resistance, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
KR20230071462A true KR20230071462A (en) 2023-05-23

Family

ID=86544980

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210157688A KR20230071462A (en) 2021-11-16 2021-11-16 Genome-edited Brassica rapa plant with high temperature resistance, and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR20230071462A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240087567A (en) 2022-12-01 2024-06-19 건국대학교 산학협력단 microRNA with ambient higher temperature responsiveness derived from medicinal plants and their uses

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102113500B1 (en) 2018-12-03 2020-05-21 농업회사법인 주식회사 농우바이오 Method for producing genome-edited Brassica rapa plant having late flowering trait by SOC1 gene editing and the plant thereof
KR102193277B1 (en) 2019-02-28 2020-12-22 경상대학교산학협력단 GIGANTEA gene from Arabidopsis thaliana for regulating herbicide resistance of plant and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102113500B1 (en) 2018-12-03 2020-05-21 농업회사법인 주식회사 농우바이오 Method for producing genome-edited Brassica rapa plant having late flowering trait by SOC1 gene editing and the plant thereof
KR102193277B1 (en) 2019-02-28 2020-12-22 경상대학교산학협력단 GIGANTEA gene from Arabidopsis thaliana for regulating herbicide resistance of plant and uses thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240087567A (en) 2022-12-01 2024-06-19 건국대학교 산학협력단 microRNA with ambient higher temperature responsiveness derived from medicinal plants and their uses

Similar Documents

Publication Publication Date Title
KR102113500B1 (en) Method for producing genome-edited Brassica rapa plant having late flowering trait by SOC1 gene editing and the plant thereof
CN109715810A (en) For producing the composition and method of tobacco plant and product that cigarette wooden fork reduces or eliminates
KR102511146B1 (en) Guide RNA for editing gigantea gene and use thereof
KR20230071462A (en) Genome-edited Brassica rapa plant with high temperature resistance, and method for manufacturing the same
KR20230071416A (en) Genome-edited Brassica rapa plant with improved productivity, increased metabolite content and method for manufacturing the same
CN113293167B (en) Gene for controlling early and late flowering of tomato and application thereof
KR102675191B1 (en) New variety of Chinese cabbage and its seeds
KR102412890B1 (en) Guide RNA for editing ms1-like gene and use thereof
KR20210052771A (en) OsPHS5 Gene enhancing pre-harvest sprouting tolerance derived from Oryza sativa and uses thereof
KR102618072B1 (en) Guide RNA for editing vernalization gene and use thereof
KR102675192B1 (en) New variety of Chinese cabbage and its seeds
KR102675196B1 (en) New variety of Chinese cabbage and its seeds
CN114807072B (en) Tomato SlDAO gene and application thereof
CN116536349B (en) Application of soybean GmMLP34 gene in regulation and control of high temperature resistance of plants
KR102496764B1 (en) Guide RNA for editing AMS-like gene and use thereof
CN117603993B (en) Application of tobacco NtDUF868-E5 gene in drought resistance of tobacco
CN115010796B (en) Laiyte auxin output vector, and coding gene and application thereof
KR102266930B1 (en) OsPHS4 Gene enhancing pre-harvest sprouting tolerance derived from Oryza sativa and uses thereof
KR20240072338A (en) OsHDSTART3 gene inducing leaf rolling and use thereof
Magdalita et al. Cloning and characterization of partial 1-aminocyclopropane-1-carboxylate oxidase gene and antisense transformation into yellow'solo'papaya via Agrobacterium tumefaciens.
WO2024102277A2 (en) Genes altering soy plant flowering time and/or maturation and uses thereof
Sedeek et al. Multitrait engineering of Hassawi red rice for sustainable cultivation
KR20230062281A (en) Dwarfism chrysanthemum overexpressing DgGA20 oxidase 1 gene and manufacturing method thereof
KR20230086123A (en) OsHDSTART1 gene regulating plant ideotype and use thereof
KR20230109899A (en) OsMYB1 gene regulating seed germination and use thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right