KR20230086123A - OsHDSTART1 gene regulating plant ideotype and use thereof - Google Patents

OsHDSTART1 gene regulating plant ideotype and use thereof Download PDF

Info

Publication number
KR20230086123A
KR20230086123A KR1020210174453A KR20210174453A KR20230086123A KR 20230086123 A KR20230086123 A KR 20230086123A KR 1020210174453 A KR1020210174453 A KR 1020210174453A KR 20210174453 A KR20210174453 A KR 20210174453A KR 20230086123 A KR20230086123 A KR 20230086123A
Authority
KR
South Korea
Prior art keywords
oshdstart1
gene
protein
ala
leu
Prior art date
Application number
KR1020210174453A
Other languages
Korean (ko)
Inventor
윤인선
박성임
조미현
송지선
김경환
박상렬
서은정
Original Assignee
대한민국(농촌진흥청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(농촌진흥청장) filed Critical 대한민국(농촌진흥청장)
Priority to KR1020210174453A priority Critical patent/KR20230086123A/en
Publication of KR20230086123A publication Critical patent/KR20230086123A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/12Processes for modifying agronomic input traits, e.g. crop yield
    • A01H1/122Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • A01H1/1225Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold or salt resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/46Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
    • A01H6/4636Oryza sp. [rice]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Physiology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 개시는 벼 유래 OsHDSTART1 유전자의 편집을 통한 작물 잎의 초형변이 조절에 관한 것이다.
본 개시에 따른, OsHDSTART1 유전자 편집용 가이드 RNA는 OsHDSTART1 유전자의 표적 서열에 변이를 유도하여 유익한 잎의 초형변이를 유발할 수 있다. 본 개시에 따른 편집된 OsHDSTART1 유전자에 의해 발현되는 변형된 단백질을 포함하는 형질전환 벼는 바깥쪽으로 잎이 말리는 초형변이가 증대되어 잎의 물 이용효율이 증가하고, 토양 수분사용량을 낮춰 물이 부족한 환경에서 생존력이 높아질 수 있다. 따라서 본 개시에 따른 OsHDSTART1 유전자 편집용 가이드 RNA, 이 가이드 RNA와 엔도뉴클레아제를 포함하는 벡터를 이용하여 내건성이 증진된 식물체를 생산하는데 기여할 수 있다.
The present disclosure relates to the control of supermorphism in crop leaves through editing of the rice-derived OsHDSTART1 gene.
According to the present disclosure, the guide RNA for editing the OsHDSTART1 gene can induce mutations in the target sequence of the OsHDSTART1 gene to induce beneficial hypermorphic changes in leaves. In the transgenic rice containing the modified protein expressed by the edited OsHDSTART1 gene according to the present disclosure, the supermorphic variation in which the leaves are rolled outward is increased, so the water use efficiency of the leaves is increased and the soil water consumption is reduced, resulting in a water-poor environment. can increase survivability. Therefore, using the guide RNA for editing the OsHDSTART1 gene according to the present disclosure and the vector including the guide RNA and an endonuclease can contribute to the production of plants with improved drought tolerance.

Description

작물의 초형을 조절하는 OsHDSTART1 유전자 및 이의 용도{OsHDSTART1 gene regulating plant ideotype and use thereof}OsHDSTART1 gene regulating plant ideotype and use thereof {OsHDSTART1 gene regulating plant ideotype and use thereof}

본 개시는 벼 유래 OsHDSTART1 유전자 교정을 통한 작물 잎의 초형변이 조절에 관한 것이다. The present disclosure relates to the control of supermorphism in crop leaves through rice-derived OsHDSTART1 gene correction.

벼는 전세계적으로 수많은 사람들이 주식으로 먹고 있는 쌀을 생산하는 중요한 작물이다. 기온 상승, 가뭄, 토양 염도 증가, 살충제 내성 해충 및 병원균 증가 등으로 인해 벼의 재배 환경은 해가 갈수록 악화되고 있고, 그에 따라 재배 환경 변화를 예측하기가 점점 더 어려워지고 있다.Rice is an important crop that produces rice, which is eaten as a staple food by millions of people worldwide. Due to rising temperatures, drought, increased soil salinity, and increased pesticide-resistant pests and pathogens, the growing environment for rice is deteriorating year by year, making it increasingly difficult to predict changes in the growing environment.

이러한 환경 변화에 대응하기 위한 우수한 특질을 갖는 벼 품종을 개발하고 육종할 필요성이 지속적으로 대두되고 있으며, 이를 해결할 수단 중 하나로서 유전체/유전자 편집에 관심이 모아지고 있다.The need to develop and breed rice varieties with excellent characteristics to cope with these environmental changes is continuously emerging, and as one of the means to solve this problem, genome/gene editing is attracting attention.

유전체/유전자 편집(genome/gene editing)은 원하는 염기서열을 인식하여 절단하는 천연 또는 인공 제한효소로 동물 또는 식물 세포내에서 원하는 유전체 또는 유전자의 염기서열을 정확히 절단하여 기존 기술들에 비해 높은 효율로 유전체상의 유전정보를 교정하는 분자도구이다. 실제로 유전자 교정 방법은 2002년 초파리에서 유전자 녹-아웃(knock-out)을 위해 사용된 이래 기존 기술로는 정확한 유전자 녹아웃이 매우 비효율적이거나 불가능하였던 다양한 동물뿐만 아니라, 애기장대, 담배, 벼, 옥수수 등의 식물에서도 성공적인 유전정보 조작을 유도할 수 있음이 밝혀졌다.Genome/gene editing is a natural or artificial restriction enzyme that recognizes and cuts the desired nucleotide sequence and precisely cuts the nucleotide sequence of the desired genome or gene in animal or plant cells with higher efficiency than existing technologies. It is a molecular tool that corrects the genetic information on the genome. In fact, since the gene editing method was used for gene knock-out in Drosophila in 2002, it has been used in Arabidopsis, tobacco, rice, corn, etc. It has been shown that successful genetic manipulation can be induced in plants of

최근 들어 관심이 집중되고 있는 CRISPR/Cas9 시스템은 크리스퍼(Clustered regularly interspaced short palindromic repeat, CRISPR) 유전자 가위라 불리는 효소를 이용한 게놈(유전체) 편집 수단으로, 특정 염기서열에 특이적으로 결합하는 가이드 RNA(guide RNA)와 특정 염기서열을 자르는 가위로 역할하는 Cas9(CRISPR associated protein 9) 엔도뉴클레아제 효소로 구성된다. 이러한 CRISPR/Cas9 시스템을 이용하면 식물이나 동물의 유전체에 특정 유전자 또는 돌연변이를 도입하거나 특정 유전자 또는 돌연변이를 녹-아웃시키는 것이 가능하다.The CRISPR/Cas9 system, which has recently been attracting attention, is a genome (genome) editing tool using an enzyme called CRISPR (Clustered regularly interspaced short palindromic repeat, CRISPR) gene scissors, and a guide RNA that specifically binds to a specific base sequence. (guide RNA) and the Cas9 (CRISPR associated protein 9) endonuclease enzyme that acts as scissors to cut specific base sequences. Using this CRISPR/Cas9 system, it is possible to introduce a specific gene or mutation into the genome of a plant or animal, or to knock-out a specific gene or mutation.

그러나 표적-이탈 효과(off-target effect) 등의 문제로 인해, 최근에는 원하는 유전자 교정의 성공률을 높이기 위해 교정하고자 하는 유전자의 타겟 위치에 대한정확도 및 교정 효율이 높으면서, 비특이적인 위치에 대한 변화를 초래하지 않는 CRISPR/Cas9 시스템에 대한 요구가 증가하고 있다.However, due to problems such as the off-target effect, recently, in order to increase the success rate of the desired gene editing, the accuracy and correction efficiency of the target position of the gene to be corrected are high while changing the non-specific position. There is a growing demand for CRISPR/Cas9 systems that do not result in

한편, 식물체 지상부의 구조를 일컫는 식물의 초형(ideotype)은 작물의 생산성에 영향을 미친다. 식물의 초형을 결정하는 인자에는 간장(예컨대, 벼의 키, 지표면에서 이삭목마디까지의 길이), 수장(예컨대, 이삭목부터 이삭 끝까지의 길이), 개체당 이삭수(예컨대, 이삭이 달린 유효수), 분얼(分蘖; tiller)의 정도, 엽신의 열 개 정도, 엽각 등이 있다(Guo, J., E.S. Seong, Y.H. Kim, H.J. Jo, J.H. Cho and M.H. Wang. 2007. Transformation of 'Ilmibyeo, using pCAMBIA 1300 and microstructural investigation of leaves. Korean J. Plant Res. 20(5):437-441.; Jin, J., W. Huang, J.P. Gao, J. Yang, M. Shi, M.Z. Zhu, D. Luo and H.X. Lin. 2008. Genetic control of rice plant architecture under domestication. Nature Genet. 40:1365-1369; Peng, S., G.S. Khush, P. Virk, Q. Tang and Z. Yingbin. 2008. Progress in ideotype breeding to increase rice yield potential. Field Crops Research 108(1):32-38.).On the other hand, the plant's ideotype, which refers to the structure of the above-ground part of the plant, affects the productivity of crops. Factors that determine plant sheath type include liver length (e.g. height of rice, length from ground surface to head of ear), length of head (e.g. length from ear neck to end of ear), number of ears per individual (e.g. effective number of ears) ), degree of tiller, about ten leaf blades, leaf angle, etc. (Guo, J., E.S. Seong, Y.H. Kim, H.J. Jo, J.H. Cho and M.H. Wang. 2007. Transformation of 'Ilmibyeo, using pCAMBIA 1300 and microstructural investigation of leaves.Korean J. Plant Res. 20(5):437-441.;Jin, J., W. Huang, J.P. Gao, J. Yang, M. Shi, M.Z. Zhu, D. Luo and H. X. Lin. 2008. Genetic control of rice plant architecture under domestication. Nature Genet. 40:1365-1369; Peng, S., G. S. Khush, P. Virk, Q. Tang and Z. Yingbin. to increase rice yield potential.Field Crops Research 108(1):32-38.).

벼의 초형에 영향을 미치는 인자 중 하나인 잎은 광합성, 호흡, 증발 등 작물이 생육하는 데에 필요한 여러가지 역할을 한다. 잎의 넓이, 길이, 직립성 및 말림에 의해 광합성, 호흡 및 증발의 효율성이 달라질 수 있고, 이는 벼 자체의 생육, 이삭의 생산량 등과 밀접하게 연관되어 있으므로 잎의 형태는 중요한 농업형질 중 하나이다.Leaves, which are one of the factors that affect the sheath shape of rice, play various roles necessary for the growth of crops, such as photosynthesis, respiration, and evaporation. The efficiency of photosynthesis, respiration, and evaporation can vary depending on the width, length, erectness, and curl of the leaf, which is closely related to the growth of rice itself and the yield of ears, so the shape of the leaf is one of the important agricultural traits.

한편, 앱시스산(abscisic acid)은 식물의 성장 중에 일어나는 여러 과정을 억제하는 식물호르몬으로 흔히 ABA라고 약칭한다. 세스키테르펜의 일종으로 휴면 중의 종자, 나무눈, 구근 등에 많이 존재하며, 보통 발아되면서 함량이 감소한다. 식물의 수분결핍시 ABA가 많이 합성되면서 기공이 닫혀 증산을 억제하여 건조로부터 식물을 보호한다.On the other hand, abscisic acid is a plant hormone that inhibits various processes occurring during plant growth, and is commonly abbreviated as ABA. As a type of sesquiterpene, it is abundantly present in dormant seeds, tree buds, and bulbs, and the content usually decreases during germination. When a plant lacks water, ABA is synthesized in large quantities, and the stomata are closed to suppress transpiration and protect plants from drying out.

또한, 휴면을 유도하기도 하고, 식물이 스트레스를 받을 때 ABA의 함량이 증가하여 각종 스트레스로부터 식물이 견딜 수 있도록 한다. 또한, 앱시스산의 합성 저하는 식물의 조숙한 발아 및 시들음(wilting)의 원인이 되는 것으로 추측되고 있다. 또한 ABA는 호분층에서 지베렐린에 의한 알파-아밀라아제 mRNA의 증가를 방해한다. 식물에서 앱시스산 합성을 제어할 수 있다면, 조기 발아의 억제, 종자의 휴면성 조절 등과 같은 식물 발현의 조절을 비롯한 건조내성 등과 같은 유익한 특성의 부여도 가능해질 것으로 기대되어 왔다.In addition, it induces dormancy, and when plants are stressed, the content of ABA increases so that plants can withstand various stresses. In addition, it is speculated that the decrease in the synthesis of abscisic acid causes premature germination and wilting of plants. ABA also inhibits the increase of alpha-amylase mRNA by gibberellin in the aleurone layer. If abscisic acid synthesis can be controlled in plants, it has been expected that beneficial properties such as drying tolerance as well as control of plant expression such as suppression of early germination and regulation of seed dormancy will be possible.

벼의 초형을 개선하고자 하는 시도가 있어 왔으나, 식물체에서 ABA 신호전달을 조절하는 인산화효소 관련 유전자와 벼 잎의 초형변이에 관한 연관성을 규명하고 이를 통해 벼의 특성을 개량한 사례는 전무하다.Attempts have been made to improve the sheath shape of rice, but there is no case in which the relationship between the kinase-related gene that regulates ABA signaling in plants and the sheath variation of rice leaves has been identified and the characteristics of rice have been improved through this.

이러한 상황에서, 정확도가 높고 효율적인 유전체 내지 유전자 조작 기법을 통해 벼 잎의 초형변이를 유도하여 기후 환경 변화에 대응하여 우수한 생육특성을 나타내는 개량된 벼 품종을 개발할 필요성은 여전히 있다. In this situation, there is still a need to develop improved rice varieties that exhibit excellent growth characteristics in response to climate environmental changes by inducing supermorphic changes in rice leaves through highly accurate and efficient genome or genetic manipulation techniques.

대한민국등록특허 제10-2113500호(공고일: 2020.05.21)Republic of Korea Patent No. 10-2113500 (Announcement date: 2020.05.21)

본 개시는 전술한 당업계에서 요구되어 온 개량된 특성을 갖는 벼 품종을 개발하기 위해 안출된 것으로서, 잎, 더 구체적으로 잎말림에 관한 유익한 초형변이를 유도하여 물 이용효율을 증가시키는 변이를 도입하기 위한 유전자 편집 도구, 더 구체적으로 벼의 잎말림 초형변이에 관여하는 유전자를 편집하기 위한 가이드 RNA, 상기 가이드 RNA를 코딩하는 핵산 서열 및 엔도뉴클레아제를 코딩하는 핵산 서열을 포함하는 벼의 잎말림 초형변이에 관여하는 유전자 편집용 벡터, 상기 벡터를 유효성분으로 포함하는 벼의 잎말림 초형변이에 관여하는 유전자 편집용 조성물을 제공하는 것을 목적으로 한다.The present disclosure was made to develop rice varieties having improved characteristics that have been required in the art as described above, and introduces mutations that increase water utilization efficiency by inducing beneficial supermorphic mutations related to leaves, more specifically leaf curling A gene editing tool for, more specifically, a guide RNA for editing a gene involved in leaf curl supermorphism in rice, a nucleic acid sequence encoding the guide RNA, and a nucleic acid sequence encoding an endonuclease. Rice leaves containing It is an object of the present invention to provide a vector for editing genes involved in supermorphism in curling, and a composition for editing genes involved in supermorphism in leaf curling in rice containing the vector as an active ingredient.

또한, 본 개시는 전술한 벡터 또는 조성물을 형질도입하여, 야생형 또는 비변형된 식물체 대비 물 이용효율이 증가하고/하거나 물 손실율이 감소된 형질전환 식물체를 제공하는 것을 목적으로 한다.In addition, an object of the present disclosure is to provide transgenic plants with increased water utilization efficiency and/or reduced water loss rate compared to wild-type or unmodified plants by transducing the above-described vector or composition.

본 발명자들은 벼의 잎과 관련한 유익한 초형변이를 유발하는 유전자를 지속적으로 탐색하여 OsHDSTART1 단백질의 호메오도메인(Homeodomain)을 코딩하는 OsHDSTART1 유전자에 변이를 도입하였을 때, 바깥쪽으로 잎말림이 발생하는 초형변이가 유발되고 그에 따라 물 이용효율이 개선됨을 규명하여 본 발명을 완성했다.The present inventors continuously searched for genes that induce beneficial hypermorphic mutations related to rice leaves, and introduced mutations into the OsHDSTART1 gene encoding the OsHDSTART1 protein homeodomain. was induced and the water utilization efficiency was improved accordingly to complete the present invention.

본 개시는 벼 유래의 OsHDSTART1 단백질의 호메오도메인을 코딩하는 OsHDSTART1 유전자(또는 특정 유전자 영역)을 특이적으로 인식하는, 가이드 RNA를 코딩하는 핵산 서열을 제공한다.The present disclosure provides a nucleic acid sequence encoding a guide RNA that specifically recognizes the OsHDSTART1 gene (or a specific gene region) encoding the homeodomain of the rice-derived OsHDSTART1 protein.

상기 가이드 RNA는 벼 유래의 OsHDSTART1 유전자의 표적서열에 엔도뉴클레아제를 특이적으로 가이드하여 원하는 유전자 변이, 더 구체적으로 삽입/결실(IN/DEL) 변이를 유도하는 것일 수 있다.The guide RNA may induce a desired gene mutation, more specifically, an insertion/deletion (IN/DEL) mutation by specifically guiding an endonuclease to a target sequence of the rice-derived OsHDSTART1 gene.

본 개시는 상기 가이드 RNA를 코딩하는 핵산 서열 및 엔도뉴클레아제를 코딩하는 핵산 서열을 포함하는 OsHDSTART1 단백질의 호메오도메인을 코딩하는 OsHDSTART1 유전자의 유전자 편집용 벡터를 제공한다.The present disclosure provides a vector for gene editing of the OsHDSTART1 gene encoding the homeodomain of the OsHDSTART1 protein, including a nucleic acid sequence encoding the guide RNA and a nucleic acid sequence encoding the endonuclease.

본 개시는 상기 가이드 RNA를 코딩하는 핵산 또는 상기 벡터를 유효성분으로 포함하는 OsHDSTART1 유전자 편집용 조성물을 제공한다.The present disclosure provides an OsHDSTART1 gene editing composition comprising a nucleic acid encoding the guide RNA or the vector as an active ingredient.

본 개시는 상기 벡터 또는 상기 조성물에 의해 변형된 OsHDSTART1 유전자 또는 변형된 OsHDSTART1 단백질을 발현하고/하거나 변형된 OsHDSTART1 단백질 활성을 나타내는 형질전환 식물체를 제공한다.The present disclosure provides a transgenic plant that expresses the modified OsHDSTART1 gene or modified OsHDSTART1 protein and/or exhibits the modified OsHDSTART1 protein activity by the vector or the composition.

본 개시에 따른 상기 형질전환 식물체는 바깥쪽으로 잎말림이 발생하고, 잎의 물 이용효율이 증가하고/하거나 물 손실율이 감소된 식물체일 수 있다.The transgenic plant according to the present disclosure may be a plant in which leaf curling occurs outward, water utilization efficiency of the leaf is increased, and/or water loss rate is reduced.

상기 식물체는 벼(Orizaya stavia)일 수 있다. The plant may be rice ( Orizaya stavia ).

본 개시는 변형된 OsHDSTART1 유전자 또는 변형된 OsHDSTART1 단백질 활성을 갖는 형질전환 식물체로부터 수득한 종자를 제공한다.The present disclosure provides seeds obtained from transgenic plants having a modified OsHDSTART1 gene or a modified OsHDSTART1 protein activity.

본 개시는 OsHDSTART1 유전자 편집용 가이드 RNA를 코딩하는 서열번호 3의 염기서열과 동일하거나 이 염기서열과 적어도 90% 이상의 서열 동일성을 갖는 염기서열 및 엔도뉴클레아제를 코딩하는 핵산 서열을 포함하는 벡터를 준비하는 단계; 및 상기 벡터를 식물체에 형질도입하여 OsHDSTART1 유전자의 표적서열에 변이를 유도하는 단계를 포함하는, 형질전환 식물체의 제조방법을 제공한다.The present disclosure provides a vector comprising a nucleotide sequence identical to the nucleotide sequence of SEQ ID NO: 3 encoding guide RNA for editing the OsHDSTART1 gene or having at least 90% sequence identity with this nucleotide sequence and a nucleic acid sequence encoding an endonuclease. preparing; and inducing a mutation in a target sequence of the OsHDSTART1 gene by transducing the vector into the plant.

본 개시는 상기 제조방법에 의해 제조된 바깥쪽으로 잎이 말리는 초형변이를 나타내고 물 이용효율이 증가된 형질전환 식물체 및 이의 종자를 제공한다.The present disclosure provides transgenic plants and seeds thereof, which exhibit a supermorphic transformation in which leaves are rolled outward and have increased water utilization efficiency, prepared by the above production method.

본 개시에 따른 벼 유래의 OsHDSTART1 유전자에 특이적인 가이드 RNA는 OsHDSTART1 유전자의 표적서열에 대해 DNA 염기서열 변형을 유도하여 잎의 초형변이를 조절할 수 있다. 구체적으로 본 개시에 따른 잎의 초형변이를 나타내는 형질전환 식물체는 바깥쪽으로 잎이 말리는 초형변이를 나타내고 잎의 물 이용효율이 증가하고, 토양 수분 사용량을 낮춰 물이 부족한 환경에서 생존력이 높아질 수 있다. 본 개시에 따른 가이드 RNA, 가이드 RNA 및 엔도뉴클레아제를 포함하는 벡터, 상기 벡터의 도입에 따라 대상 식물체를 형질전환시키는 방법, 및 상기 방법으로 제조한 식물체 및 이의 종자는 기후 변화에 따른 내건성이 향상되어, 생산성 증대를 기대할 수 있다.The guide RNA specific to the rice-derived OsHDSTART1 gene according to the present disclosure can induce a DNA sequence modification of the target sequence of the OsHDSTART1 gene to control leaf supermorphism. Specifically, a transgenic plant exhibiting a sheath variation of leaves according to the present disclosure exhibits a sheath variation in which leaves are rolled outward, increases the water use efficiency of the leaf, and can increase viability in an environment where water is scarce by reducing soil moisture consumption. Guide RNA according to the present disclosure, a vector containing a guide RNA and an endonuclease, a method for transforming a target plant according to the introduction of the vector, and a plant and its seed prepared by the method are resistant to climate change. improved, productivity can be expected to increase.

도 1은 전사인자 유전자 2,839종의 아미노산 서열에서 발견되는 SnRK2 인산화 모티브의 분포를 나타낸 것이다.
도 2는 OsHDSTART1 단백질의 주요 기능영역 및 인산화 모티브의 위치를 나타낸 것이다.
도 3은 OsHDSTART1 유전자 편집 벡터 OsHDSTART1-pRGEB32의 모식도를 나타낸 것이다.
도 4는 OsHDSTART1-pRGEB32 벡터가 도입된 아그로박테리아(LBA4404)의 콜로니 PCR 분석을 나타낸 것이다.
도 5는 OsHDSTART1-pRGEB32 벡터를 도입하여 형질전환시킨 벼의 PCR 검정을 나타낸 것이다.
도 6은 OsHDSTART1-pRGEB32 벡터가 도입된 형질전환 벼의 표적 유전자 염기서열 변이(A) 및 아미노산 변이(B)를 나타낸 것이다.
도 7은 OsHDSTART1 유전자가 편집된 형질전환 벼 호모계통에서 Os08g08820의 상동성 유전자인 Os04g53540의 염기서열 분석결과를 나타낸 것이다.
도 8은 OsHDSTART1 유전자가 편집된 형질전환 벼 호모계통의 잎 형태 분석을 나타낸 것이다.
도 9는 OsHDSTART1 유전자 편집 형질전환 벼 잎의 횡단면 PI 염색을 통한 세포형태학적 분석을 나타낸 것이다.
도 10는 OsHDSTART1 유전자 편집 형질전환 벼와 야생형(삼광벼)의 물 이용 형질 분석을 나타낸 것이다.
Figure 1 shows the distribution of SnRK2 phosphorylation motifs found in the amino acid sequences of 2,839 transcription factor genes.
Figure 2 shows the locations of major functional regions and phosphorylation motifs of OsHDSTART1 protein.
Figure 3 shows a schematic diagram of the OsHDSTART1 gene editing vector OsHDSTART1-pRGEB32.
Figure 4 shows colony PCR analysis of Agrobacteria (LBA4404) into which the OsHDSTART1-pRGEB32 vector was introduced.
Figure 5 shows the PCR assay of rice transformed by introducing the OsHDSTART1-pRGEB32 vector.
Figure 6 shows the nucleotide sequence mutation (A) and amino acid mutation (B) of the target gene of transgenic rice into which the OsHDSTART1-pRGEB32 vector was introduced.
7 shows the results of nucleotide sequence analysis of Os04g53540, a homologous gene of Os08g08820, in the transgenic rice homoline in which the OsHDSTART1 gene was edited.
Figure 8 shows the analysis of leaf morphology of transgenic rice homo lines in which the OsHDSTART1 gene was edited.
9 shows cytomorphological analysis through cross-sectional PI staining of OsHDSTART1 gene-edited transgenic rice leaves.
10 shows analysis of water utilization traits of OsHDSTART1 gene-edited transgenic rice and wild-type rice (Samkwang rice).

달리 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 개시가 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법 및 이하에 기술하는 실험 방법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. In general, the nomenclature used herein and the experimental methods described below are those well known and commonly used in the art.

본 명세서 사용된, 용어 “OsHDSTART1(Oryza sativa Homeo Domain StAR-related lipid Transfer 1)”은 벼(Oryza sativa)의 염색체 8번에 위치한 Os08g08820 유전자로부터 유래한 폴리펩티드 또는 단백질로서, 서열번호 2로 표시되는 아미노산 서열을 가질 수 있다. OsHDSTART1을 코딩하는 핵산 서열은 oshdstart1으로 표기되며, 서열번호 1로 표시되는 염기 서열을 가질 수 있다. 서열번호 1의 염기 서열 또는 서열번호 2의 아미노산 서열을 가지면서 실질적으로 동일한 기능을 나타내는 상동체, 유사체 등은 본 개시의 범위에 포함된다.As used herein, the term "OsHDSTART1 (Oryza sativa Homeo Domain StAR-related lipid Transfer 1)" is a polypeptide or protein derived from the Os08g08820 gene located on chromosome 8 of rice ( Oryza sativa ), and is an amino acid represented by SEQ ID NO: 2 can have a sequence. The nucleic acid sequence encoding OsHDSTART1 is represented by oshdstart1 and may have the nucleotide sequence represented by SEQ ID NO: 1. Homologues, analogs, etc., which have the nucleotide sequence of SEQ ID NO: 1 or the amino acid sequence of SEQ ID NO: 2 and exhibit substantially the same function, are included in the scope of the present disclosure.

본 개시에 따른 Os08g08820 유전자는 식물의 스트레스 내성을 유도하는 호르몬인 ABA 신호전달에 관여하는 SnRK2 단백질 키나제(SnRK2 kinase) 단백질과의 연관성에 기초하여 후보로 선발되었다. 구체적으로, 본 발명자들은 SnRK2 단백질 키나제가 인식하는 인산화모티브(RXXS/T)를 다수, 예를 들어, 적어도 3개, 적어도 4개, 적어도 5개 또는 그 이상 포함하는 벼의 전사인자들 중에서 호메오도메인을 갖는 유전자를 탐색하여 Os08g08820 유전자를 선발하고, 이 유전자에 의해 코딩되는 호메오도메인 내의 특정 위치에 돌연변이를 유발한 결과 변형된 유전자 및 이 유전자에 의해 코딩되는 변형된 단백질이 발현되어 바깥쪽으로 잎이 말리는 초형변이가 유도되고, 그에 따라 물 이용 효율이 증가하는 것을 확인하였다. 본 발명자들은 Os08g08820 유전자의 잎말림 초형변이와 관련된 구조적 특징을 강조하기 위해 “OsHDSTART1”로 명명하였다.The Os08g08820 gene according to the present disclosure was selected as a candidate based on its association with the SnRK2 kinase protein involved in ABA signaling, which is a hormone that induces stress tolerance in plants. Specifically, the present inventors found that among rice transcription factors containing a plurality of phosphorylation motifs (RXXS/T) recognized by SnRK2 protein kinase, for example, at least 3, at least 4, at least 5 or more, the homeopathic Os08g08820 gene was selected by searching for a gene having a domain, and as a result of inducing mutation at a specific position in the homeodomain encoded by this gene, the modified gene and the modified protein encoded by this gene were expressed, leading to the outer leaf It was confirmed that this drying induces supermorphic transformation, thereby increasing the water utilization efficiency. The present inventors named the Os08g08820 gene “OsHDSTART1” to highlight the structural features related to leaf curl supermorphism.

일 양태에서, 본 개시는 OsHDSTART1 단백질의 호메오도메인을 코딩하는 유전자를 특이적으로 인식하는, 가이드 RNA를 코딩하는 핵산 서열에 관한 것이다.In one aspect, the present disclosure relates to a nucleic acid sequence encoding a guide RNA that specifically recognizes a gene encoding the homeodomain of OsHDSTART1 protein.

본 명세서에서 사용된, 용어 "가이드 RNA(guide RNA; gRNA)"는 동물 또는 식물 대상체에서 특정 유전자를 코딩하는 핵산 서열을 인식하여 찾아내는 특이적인 RNA를 말하며, 타겟 DNA 서열 전부 또는 일부와 상보적으로 결합하여 해당 타겟 DNA 서열로 엔도뉴클레아제(endonuclease) 단백질을 이끄는 역할을 하는 리보핵산(ribonucleic acid)을 의미한다. 상기 가이드 RNA는 두 개의 RNA, 즉, crRNA(CRISPR RNA) 및 tracrRNA(trans-activating crRNA)를 구성 요소로 포함하는 이중 RNA(dual RNA); 또는 타겟 DNA 내 서열과 전부 또는 일부 상보적인 서열을 포함하는 제1 부위 및 RNA-가이드 뉴클레아제와 상호작용하는 서열을 포함하는 제2 부위를 포함하는 단일 사슬 가이드 RNA(sgRNA) 형태를 지칭하나, RNA-가이드 뉴클레아제가 타겟 서열에서 활성을 가질 수 있는 형태라면 제한 없이 본 개시의 범위에 포함될 수 있다. As used herein, the term "guide RNA (gRNA)" refers to a specific RNA that recognizes and finds a nucleic acid sequence encoding a specific gene in an animal or plant subject, complementary to all or part of a target DNA sequence. It refers to ribonucleic acid that binds and plays a role in guiding an endonuclease protein to a corresponding target DNA sequence. The guide RNA is a dual RNA comprising two RNAs, that is, crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA) as components; Or refers to a single chain guide RNA (sgRNA) form comprising a first region comprising a sequence complementary to a sequence in whole or in part with a sequence in the target DNA and a second region comprising a sequence interacting with an RNA-guided nuclease, , RNA-guided nucleases can be included in the scope of the present disclosure without limitation as long as they can have activity in the target sequence.

본 개시에 따른 가이드 RNA는 바람직하게는, 단일 가닥 가이드 RNA 형태일 수 있으나, 이에 제한되지 않으며, 사용된 엔도뉴클레아제의 종류 또는 그 유래 미생물 등에 따라서 적절히 선택할 수 있다. 또한, 상기 가이드 RNA는 플라스미드 주형으로부터 또는 시험관내(in vitro) 또는 생체외(ex vivo)에서 전사된 것, 예컨대, 단일가닥 올리고뉴클레오티드일 수 있으나, 이에 제한되지 않는다. The guide RNA according to the present disclosure may preferably be in the form of a single-stranded guide RNA, but is not limited thereto, and may be appropriately selected depending on the type of endonuclease used or a microorganism derived therefrom. In addition, the guide RNA may be, for example, a single-stranded oligonucleotide transcribed from a plasmid template or in vitro or ex vivo , but is not limited thereto.

본 개시에 따른 가이드 RNA를 코딩하는 핵산 서열은 OsHDSTART1 단백질의 호메오도메인을 포함하는 OsHDSTART1 단백질을 코딩하는 유전자(oshdstart1), 더 구체적으로 서열번호 2로 표시되는 아미노산 서열을 갖는 OsHDSTART1 단백질을 코딩하는 유전자를 특이적으로 인식할 수 있는 것이라면, 특별한 제한 없이 사용가능하다. The nucleic acid sequence encoding the guide RNA according to the present disclosure is a gene (oshdstart1) encoding the OsHDSTART1 protein including the homeodomain of the OsHDSTART1 protein, more specifically, a gene encoding the OsHDSTART1 protein having the amino acid sequence represented by SEQ ID NO: 2 As long as it can be specifically recognized, it can be used without particular limitation.

일 실시형태에서, 본 개시에 따른 가이드 RNA는, 이로만 제한되는 것은 아니지만, 서열번호 3의 염기서열에 대해 적어도 90%, 적어도 91%, 적어도 92%, 적어도 93%, 적어도 94%, 적어도 95%, 적어도 96%, 적어도 97%, 적어도 98%, 바람직하게는 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 또는 99.9%, 가장 바람직하게는 100%의 동일성을 나타내는 것일 수 있다.In one embodiment, the guide RNA according to the present disclosure is, but is not limited to, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95 % of the nucleotide sequence of SEQ ID NO: 3 %, at least 96%, at least 97%, at least 98%, preferably 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%, most preferably It may represent 100% identity.

상기 OsHDSTART1 단백질은 서열번호 2로 표시되는 아미노산 서열과 적어도 90%, 적어도 91%, 적어도 92%, 적어도 93%, 적어도 94%, 적어도 95%, 적어도 96%, 적어도 97%, 적어도 98%, 바람직하게는 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 또는 99.9%, 가장 바람직하게는 100%의 동일성을 나타내는 것일 수 있다.The OsHDSTART1 protein is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 98%, preferably at least 90% of the amino acid sequence represented by SEQ ID NO: 2 Preferably it may represent 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%, most preferably 100% identity.

상기 OsHDSTART1 단백질을 코딩하는 유전자는 서열번호 1로 표시되는 아미노산 서열과 적어도 90%, 적어도 91%, 적어도 92%, 적어도 93%, 적어도 94%, 적어도 95%, 적어도 96%, 적어도 97%, 적어도 98%, 바람직하게는 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 또는 99.9%, 가장 바람직하게는 100%의 동일성을 나타내는 것일 수 있다. 또한, 상기 OsHDSTART1 단백질을 코딩하는 유전자는 코돈 축퇴성에 따라 서열번호 1의 축퇴된 염기서열을 갖는 것일 수 있다.The gene encoding the OsHDSTART1 protein has at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, preferably 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9%, most preferably 100% identity. . In addition, the gene encoding the OsHDSTART1 protein may have a degenerate nucleotide sequence of SEQ ID NO: 1 according to codon degeneracy.

본 개시에 따른 상기 가이드 RNA를 코딩하는 핵산 서열은 표적 유전자, 구체적으로 OsHDSTART1 단백질의 호메오도메인을 코딩하는 유전자를 특이적으로 인식하여 엔도뉴클레아제, 예컨대 Cas9을 이 유전자로 가이드하여 목적하는 유전자 편집을 유도할 수 있다.The nucleic acid sequence encoding the guide RNA according to the present disclosure specifically recognizes a target gene, specifically, a gene encoding the homeodomain of the OsHDSTART1 protein, and guides an endonuclease, such as Cas9, to the gene to generate the desired gene. Editing can be encouraged.

본 개시에 따른 상기 가이드 RNA는 벼 유래의 OsHDSTART1 단백질을 코딩하는 유전자의 표적 위치에서 특정 염기의 삽입 및/또는 결실을 유도하는 것일 수 있다.The guide RNA according to the present disclosure may induce insertion and/or deletion of a specific base at a target position of a gene encoding rice-derived OsHDSTART1 protein.

본 개시에 따른 상기 가이드 RNA를 코딩하는 핵산 서열은 OsHDSTART1 단백질의 호메오도메인, 구체적으로 서열번호 2로 나타내는 아미노산 서열 중의 호메오도메인 영역, 구체적으로 아미노산 위치 107번에서 162번까지의 영역을 특이적으로 인식하여 엔도뉴클레아제와 연계하여 변이, 구체적으로 바깥쪽으로 잎이 말리는 초형변이를 유발하는 변이를 유발할 수 있는 것이라면, 제한됨이 없이 사용될 수 있다.The nucleic acid sequence encoding the guide RNA according to the present disclosure is specific to the homeodomain of the OsHDSTART1 protein, specifically the homeodomain region in the amino acid sequence represented by SEQ ID NO: 2, specifically the region from amino acid positions 107 to 162 If it is recognized as an endonuclease and can induce a mutation, specifically a mutation that causes a supermorphic mutation in which the leaf is rolled outward, it can be used without limitation.

이러한 특성을 갖는 가이드 RNA의 서열을 특정하고 선별하는 것은 본 개시에 비추어 당업자에게 자명할 것이다.It will be apparent to those skilled in the art in light of the present disclosure to specify and select sequences of guide RNAs having these properties.

본 개시에 따른 상기 가이드 RNA를 코딩하는 핵산 서열은 Os08g08820 유전자와 상동성이 높은 다른 유전자, 구체적으로 Os04g53540 유전자는 특이적으로 인식하지 않고, 상동성 영역에 비특이적인 유전자 변이를 유도하지 않는 것을 특징으로 할 수 있다.The nucleic acid sequence encoding the guide RNA according to the present disclosure does not specifically recognize other genes highly homologous to the Os08g08820 gene, specifically the Os04g53540 gene, and does not induce non-specific gene mutation in the homology region. can do.

또 다른 일 양태에서, 본 개시는 전술한 가이드 RNA를 코딩하는 핵산 서열, 특히 서열번호 3으로 표시되는 핵산 서열 및 엔도뉴클레아제, 특히 Cas9을 코딩하는 핵산 서열을 포함하는, OsHDSTART1 단백질의 호메오도메인을 코딩하는 유전자(oshdstart1)의 편집을 유도하기 위한 벡터에 관한 것이다.In another aspect, the present disclosure provides a nucleic acid sequence encoding the above-described guide RNA, particularly a nucleic acid sequence represented by SEQ ID NO: 3, and an endonuclease, particularly a OsHDSTART1 protein comprising a nucleic acid sequence encoding Cas9. It relates to a vector for inducing editing of a gene (oshdstart1) encoding a domain.

본 명세서에서 사용된, 용어 "유전체/유전자 편집(genome/gene editing)"은 인간 세포를 비롯한 동·식물 세포의 유전체 염기서열에 타겟 지향형 변이를 도입할 수 있는 기술로서, DNA 절단에 의한 하나 이상의 핵산 분자의 결실, 삽입, 치환 등에 의하여 특정 유전체 내지 유전자를 녹-아웃(knock-out) 또는 녹-인(knock-in)하거나, 단백질을 생성하지 않는 비-코딩 DNA 서열에도 변이를 도입할 수 있는 기술을 말한다. 본 개시의 목적상 상기 유전자 편집은 특히 Cas 단백질과 같은 엔도뉴클레아제 및 가이드 RNA를 이용하여 식물체에 원하는 변이를 도입하는 것일 수 있다.As used herein, the term "genome/gene editing" refers to a technology capable of introducing target-directed mutations into genomic sequences of animal and plant cells, including human cells, and includes one or more by cutting DNA. A specific genome or gene can be knocked out or knocked in by deletion, insertion, substitution, etc. of nucleic acid molecules, or mutations can be introduced into non-coding DNA sequences that do not produce proteins. refers to the skills For the purpose of the present disclosure, the gene editing may be to introduce a desired mutation into a plant by using an endonuclease such as a Cas protein and a guide RNA.

본 명세서에서 사용된, 용어 “엔도뉴클레아제” 또는 “엔도뉴클레아제 단백질”은 Cas9(CRISPR associated protein 9), Cpf1(CRISPR from Prevotella and Francisella 1), TALEN(Transcription activator-like effector nuclease), ZFN(Zinc Finger Nuclease) 또는 이의 기능적 유사체로 이루어진 군으로부터 선택되는 것일 수 있고, 바람직하게는 Cas9 단백질일 수 있으나, 이에 제한되지 않는다. Cas9 단백질 또는 이의 유전자 정보는 NCBI(National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터베이스에서 얻을 수 있다. 예컨대, 상기 Cas9 단백질은 스트렙토코커스 피요제네스(Streptococcus pyogenes) 유래의 Cas9 단백질, 캠필로박터 제주니(Campylobacter jejuni) 유래의 Cas9 단백질, 스트렙토코커스 써모필러스(Streptococcus thermophilus) 또는 스트렙토코커스 아우레우스(Streptocuccus aureus) 유래의 Cas9 단백질, 네이쎄리아 메닝기티디스(Neisseria meningitidis) 유래의 Cas9 단백질, 파스투렐라 물토시다(Pasteurella multocida) 유래의 Cas9 단백질, 프란시셀라 노비시다(Francisella novicida) 유래의 Cas9 단백질 등으로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되는 것은 아니다. As used herein, the term “endonuclease” or “endonuclease protein” refers to Cas9 (CRISPR associated protein 9), Cpf1 (CRISPR from Prevotella and Francisella 1), TALEN (Transcription activator-like effector nuclease), It may be selected from the group consisting of zinc finger nuclease (ZFN) or a functional analogue thereof, and may preferably be a Cas9 protein, but is not limited thereto. Cas9 protein or genetic information thereof can be obtained from known databases such as GenBank of National Center for Biotechnology Information (NCBI). For example, the Cas9 protein is Streptococcus pyogenes derived Cas9 protein, Campylobacter jejuni derived Cas9 protein, Streptococcus thermophilus or Streptococcus aureus Cas9 protein derived from Neisseria meningitidis ( Neisseria meningitidis ) derived Cas9 protein, Pasteurella multocida ( Pasteurella multocida ) derived Cas9 protein, Francisella novicida ( Francisella novicida ) derived Cas9 protein, etc. It may be selected from the group, but is not limited thereto.

Cas9 단백질은 RNA-가이드 DNA 엔도뉴클레아제 효소로, 이중 가닥 DNA 절단(double stranded DNA break)을 유도한다. Cas9 단백질이 정확하게 타겟 DNA의 염기서열에 결합하여 DNA 가닥을 잘라내기 위해서는 PAM(Protospacer Adjacent Motif)이라 알려진 3개의 염기로 이루어진 짧은 염기서열이 타겟 DNA의 염기서열 근처에 존재해야 하며, Cas9 단백질은 PAM 서열(NGG)로부터 3번째와 4번째 염기 쌍 사이를 추정하여 절단한다. 본 개시의 가이드 RNA와 엔도뉴클레아제 단백질은 리보핵산-단백질 복합체를 형성하여 식물체 내에서 RNA 유전자 가위(RNA-Guided Engineered Nuclease, RGEN)로 작동한다. The Cas9 protein is an RNA-guided DNA endonuclease enzyme that induces double stranded DNA breaks. In order for the Cas9 protein to accurately bind to the nucleotide sequence of the target DNA and cut the DNA strand, a short nucleotide sequence consisting of three bases known as PAM (Protospacer Adjacent Motif) must exist near the nucleotide sequence of the target DNA, and the Cas9 protein must be present near the nucleotide sequence of the target DNA. Cut between the third and fourth base pairs from the sequence (NGG). The guide RNA and endonuclease protein of the present disclosure form a ribonucleic acid-protein complex and operate as RNA-Guided Engineered Nuclease (RGEN) in plants.

본 명세서에서 사용된, 용어 "CRISPR/Cas9" 또는 "CRISPR/Cas9 시스템"은 미생물의 면역체계로 알려진 CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats) 시스템을 이용하여 원하는 유전자 염기서열을 절단하는 유전자 편집 도구로서, 유전자의 특정 타겟 위치에 이중나선 절단을 도입하여 DNA 수선 과정에서 불완전 수선에 의한 삽입-결실(insertion-deletion, InDel) 돌연변이를 유도하는 NHEJ(non-homologous end joining) 기작에 의해 유전자를 편집한다. 이것은 구성적 구성요소로서 Cas9 단백질을 포함하고, 가변적 구성요소로서 타겟 유전자에 특이적인 가이드 RNA를 포함한다.As used herein, the term "CRISPR/Cas9" or "CRISPR/Cas9 system" is a gene editing tool that cuts a desired gene sequence using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system known as the microbial immune system. , Edits genes by non-homologous end joining (NHEJ) mechanism that induces insertion-deletion (InDel) mutations due to incomplete repair in the DNA repair process by introducing double helix breaks at specific target positions in genes . It contains the Cas9 protein as a constitutive component and a guide RNA specific to the target gene as a variable component.

본 명세서에서 사용된, 용어 "타겟 유전자"는 식물체의 유전체 또는 유전자 내에 있는 편집하고자 하는 특정 핵산, 예컨대 DNA를 의미한다.As used herein, the term "target gene" refers to a specific nucleic acid, such as DNA, to be edited within the genome or gene of a plant.

본 개시의 일 양태에서, 상기 타겟 유전자는 OsHDSTART1 단백질의 호메오도메인을 코딩하는 유전자(oshdstart1), 더 구체적으로 서열번호 2로 표시되는 아미노산 서열을 갖는 OsHDSTART1 단백질을 코딩하는 유전자 또는 이 유전자와 실질적으로 동일한 기능을 나타내는 상동체, 유사체 등일 수 있으나, 이로만 제한되는 것은 아니다.In one aspect of the present disclosure, the target gene is a gene encoding the homeodomain of the OsHDSTART1 protein (oshdstart1), more specifically, a gene encoding the OsHDSTART1 protein having the amino acid sequence represented by SEQ ID NO: 2, or substantially It may be a homologue or analog showing the same function, but is not limited thereto.

본 개시에 따른 벡터는 타겟 유전자에 특이적인 가이드 RNA를 코딩하는 핵산서열(DNA) 및 엔도뉴클레아제 단백질을 코딩하는 핵산 서열을 삽입하고 이를 숙주세포 내에서 발현시킬 수 있는 발현 시스템(발현 카세트)을 포함하는, 플라스미드와 같은 벡터일 수 있다. 상기 플라스미드는 목적 유전자 발현을 위한 요소(elements)를 포함하는 것으로, 복제기점(replication origin), 프로모터, 작동유전자(operator), 전사 종결 서열(terminator) 등을 포함할 수 있고, 식물체의 게놈 내로의 도입을 위한 적절한 효소 부위(예컨대, 제한 효소 부위) 및/또는 임의로 식물체의 세포 내로의 성공적인 도입을 확인하기 위한 선별 마커 및/또는 단백질로의 번역을 위한 리보좀 결합 부위(ribosome binding site; RBS) 및/또는 전사 조절 인자 등을 추가로 포함할 수 있다.A vector according to the present disclosure is an expression system (expression cassette) capable of inserting a nucleic acid sequence (DNA) encoding a guide RNA specific to a target gene and a nucleic acid sequence encoding an endonuclease protein and expressing them in a host cell. It may be a vector such as a plasmid, including The plasmid contains elements for expression of the gene of interest, and may include a replication origin, a promoter, an operator, a transcription termination sequence, and the like, and into the genome of a plant. A suitable enzyme site (e.g., restriction enzyme site) for introduction and/or optionally a selectable marker to confirm successful introduction into plant cells and/or a ribosome binding site (RBS) for translation into a protein and / or transcription regulators and the like may be further included.

일예로, 본 개시에 따른 벡터는 OsHDSTART1 단백질의 호메오도메인을 코딩하는 OsHDSTART1 유전자를 특이적으로 인식하는 가이드 RNA를 코딩하는 서열번호 3의 핵산 서열 및 상기 가이드 RNA와 작동가능하게 연결된 Cas9을 코딩하는 핵산 서열을 포함하는 재조합 벡터, 특히 아그로박테리움(Agrobacterium tumefaciens)에 도입가능한 식물형질전환용 재조합 바이너리 벡터일 수 있다(도 3 참조). For example, the vector according to the present disclosure includes a nucleic acid sequence of SEQ ID NO: 3 encoding a guide RNA that specifically recognizes the OsHDSTART1 gene encoding the homeodomain of the OsHDSTART1 protein and Cas9 operably linked to the guide RNA. It may be a recombinant vector containing a nucleic acid sequence, particularly a recombinant binary vector for plant transformation that can be introduced into Agrobacterium tumefaciens (see FIG. 3).

일 실시형태에서 본 개시에 따른 벡터는 타겟 유전자의 편집용 벡터는 벼 유래의 OsHDSTART1 단백질의 호메오도메인을 코딩하는 OsHDSTART1 유전자를 특이적으로 인식하여 유전자 편집을 유도하는 가이드 RNA가 도입된 식물형질 전환용 재조합 벡터를 지칭할 수 있다.In one embodiment, the vector for editing the target gene according to the present disclosure specifically recognizes the OsHDSTART1 gene encoding the homeodomain of the rice-derived OsHDSTART1 protein and introduces a guide RNA for inducing gene editing Plant transformation It may refer to a recombinant vector for

본 개시에 따른 벡터는 OsHDSTART1 단백질의 호메오도메인을 코딩하는 OsHDSTART1 유전자에 돌연변이를 도입하는 유전자 편집 효소, 바람직하게는 Cas9 단백질을 코딩하는 염기서열을 포함할 수 있다.The vector according to the present disclosure may include a gene editing enzyme that introduces a mutation into the OsHDSTART1 gene encoding the homeodomain of the OsHDSTART1 protein, preferably a nucleotide sequence encoding the Cas9 protein.

본 개시에 따른 벡터는 당해 기술 분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있다.Vectors according to the present disclosure can be prepared using genetic recombination techniques well known in the art.

또 다른 실시형태에서, 본 개시는 전술한 벡터를 유효성분으로 포함하는 OsHDSTART1을 코딩하는 유전자 편집용 조성물에 관한 것이다. 여기서, “OsHDSTART1 유전자”, “가이드 RNA”, 및 “벡터”는 앞서 설명한 바와 같다.In another embodiment, the present disclosure relates to a gene editing composition encoding OsHDSTART1 comprising the above-described vector as an active ingredient. Here, "OsHDSTART1 gene", "guide RNA", and "vector" are as described above.

본 개시에 따른 OsHDSTART1을 코딩하는 유전자 편집용 조성물은 OsHDSTART1을 코딩하는 유전자, 더 구체적으로 서열번호 1로 표시되는 염기 서열을 갖는 유전자의 특정 위치에 벼잎의 바깥쪽 잎말림 초형변이를 초래하는 돌연변이를 도입할 수 있다. 상기 돌연변이는 결과적으로 벼의 물 이용효율을 향상시킬 수 있다.The composition for editing the gene encoding OsHDSTART1 according to the present disclosure is a mutation that causes the outer leaf curl supermorphism of rice leaves at a specific position of the gene encoding OsHDSTART1, more specifically, the gene having the nucleotide sequence represented by SEQ ID NO: 1 can be introduced As a result, the mutation can improve the water utilization efficiency of rice.

또 다른 일 실시형태에서, 본 개시는 상기 벡터 또는 상기 조성물에 의해 도입된 돌연변이를 포함하는 변형된 OsHDSTART1을 코딩하는 유전자를 발현하는 형질전환 식물체에 관한 것이다. 본 개시에 따른 형질전환 식물체는 바깥쪽으로 잎이 말리는 초형변이를 나타낼 수 있다.In another embodiment, the present disclosure relates to a transgenic plant expressing a gene encoding a modified OsHDSTART1 comprising a mutation introduced by the vector or the composition. A transgenic plant according to the present disclosure may exhibit a supermorphism in which leaves are rolled outward.

본 명세서에서 사용된, 용어 “형질전환”은 유전물질인 DNA를 다른 계통의 살아 있는 식물세포에 주입했을 때, DNA가 그 세포에 들어가 유전형질을 변화시키는 현상으로, 형질변환, 형전환, 또는 형변환이라고도 한다. 식물의 형질전환에 이용되는 식물 세포는 어떤 식물세포든 가능하다. 상기 식물세포는 배양세포, 배양조직, 배양기관 또는 전체 식물조직이다. 상기 식물조직은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 종자, 암 조직 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 따라서, 식물조직은 인 플란타(in planta)이거나 기관배양, 조직배양 또는 세포배양 상태일 수 있다. As used herein, the term “transformation” refers to a phenomenon in which DNA, which is a genetic material, is injected into a living plant cell of a different lineage, and DNA enters the cell and changes hereditary character, transformation, transformation, or Also called transformation. Plant cells used for plant transformation may be any plant cells. The plant cell is a cultured cell, cultured tissue, cultured organ or whole plant tissue. The plant tissue is a differentiated or undifferentiated plant tissue, such as, but not limited to, roots, stems, leaves, pollen, seeds, cancer tissues, and various types of cells used for culture, that is, single cells, protoplasts ( protoplast), bud and callus tissue. Thus, the plant tissue may be in planta or may be in organ culture, tissue culture or cell culture.

상기 식물세포를 형질전환하는 것은 당업자에게 공지된 형질전환기술에 의해 수행될 수 있다. 구체적으로는, 아그로박테리움을 이용한 형질전환방법, 미세사출법(microprojectile bombardment), 일렉트로포레이션(electroporation), PEG-매개 융합법(PEG-mediated fusion), 미세주입법(microinjection), 리포좀 매개법(liposome-mediated method), 인-플란타 형질전환법(In planta transformation), 진공 침윤법(Vacuum infiltration method), 화아침지법(floral meristem dipping method), 및 아그로박테리아 분사법(Agrobacteria spraying method)을 이용할 수 있다.Transformation of the plant cell may be performed by a transformation technique known to those skilled in the art. Specifically, transformation method using Agrobacterium, microprojectile bombardment, electroporation, PEG-mediated fusion, microinjection, liposome mediation method ( liposome-mediated method), in-planta transformation, vacuum infiltration method, floral meristem dipping method, and Agrobacteria spraying method. can

본 명세서에서 사용된, 용어 "식물체"는 성숙한 식물체뿐만 아니라 성숙한 식물로 발육할 있는 식물 세포, 식물 조직 및 식물의 종자 등을 모두 포함하는 의미로서 이해된다.As used herein, the term “plant” is understood to include not only mature plants but also plant cells, plant tissues, and seeds of plants that can develop into mature plants.

본 개시에 따른 상기 식물체는 배추, 애기장대, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파 또는 당근을 포함하는 채소 작물류; 벼, 밀, 보리, 옥수수, 콩, 감자, 밀, 팥, 귀리 또는 수수를 포함하는 식량 작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩 또는 유채를 포함하는 특용작물류; 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구 또는 바나나를 포함하는 과수류; 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합 또는 튤립을 포함하는 화훼류; 및 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐 또는 페레니얼라이그라스를 포함하는 사료작물류로 이루어진 군으로부터 선택된 어느 하나이며, 구체적으로는 벼, 밀, 보리, 옥수수, 콩, 감자, 밀, 팥, 귀리 또는 수수를 포함하는 식량 작물류이며, 더욱 구체적으로는 벼(Orizaya stavia)일 수 있다.Vegetable crops including cabbage, Arabidopsis, radish, red pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, pumpkin, green onion, onion or carrot according to the present disclosure; food crops including rice, wheat, barley, maize, soybean, potato, wheat, red beans, oats or sorghum; Special crops including ginseng, tobacco, cotton, sesame, sugar cane, sugar beet, perilla, peanut or rapeseed; fruit trees including apple trees, pear trees, jujube trees, peaches, kiwi trees, grapes, tangerines, persimmons, plums, apricots or bananas; flowers including roses, gladiolus, gerberas, carnations, chrysanthemums, lilies or tulips; And any one selected from the group consisting of feed crops including ryegrass, red clover, orchard grass, alpha alpha, tall fescue or perennial ryegrass, specifically rice, wheat, barley, corn, soybean, potato, wheat, A food crop including red beans, oats or sorghum, more specifically rice ( Orizaya stavia ).

본 개시에 따른 형질전환 식물체는 바깥쪽으로 잎이 말리는 초형변이가 발생하고, 잎의 물 이용효율이 증가된 식물체일 수 있다.The transgenic plant according to the present disclosure may be a plant in which supermorphic transformation occurs in which leaves are rolled outward and water utilization efficiency of the leaves is increased.

본 개시의 일 실시형태에서, 본 개시에 따른 벡터 또는 유전자 편집용 조성물에 의해 OsHDSTART1을 코딩하는 유전자가 편집된 형질전환 벼는 대조구인 야생형(삼광벼)에 비해 잎이 바깥쪽으로 말리는 초형변이를 나타낼 수 있다. 본 개시에 따른 형질전환 벼는 야생형 OsHDSTART1 단백질을 코딩하는 유전자의 445 bp 위치에 A 또는 T 삽입 돌연변이가 도입되어 결과적으로 조기 종결코돈이 생성됨으로써 변형된 OsHDSTART1 단백질을 발현할 수 있다(도 6 및 도 7 참조). 상기 OsHDSTART1 단백질은 야생형 단백질 대비 바깥쪽으로 잎말림을 촉진하는 활성을 나타낼 수 있다.In one embodiment of the present disclosure, transgenic rice in which the gene encoding OsHDSTART1 has been edited by the vector or gene editing composition according to the present disclosure shows a supermorphic variation in which leaves are rolled outward compared to wild type (Samkwang rice), which is a control. can The transgenic rice according to the present disclosure can express the modified OsHDSTART1 protein by introducing an A or T insertion mutation into the 445 bp position of the gene encoding the wild-type OsHDSTART1 protein and consequently generating a premature stop codon (FIG. 6 and FIG. 7). The OsHDSTART1 protein may exhibit an activity that promotes leaf curl outward compared to the wild-type protein.

달리 말해서, 본 개시에 따른 형질전환된 벼는 바깥쪽으로 잎이 말리는 초형변이를 증대시키는 활성을 나타내는 변형된 OsHDSTART1 단백질을 발현하는 것일 수 있다.In other words, the transformed rice according to the present disclosure may express a modified OsHDSTART1 protein that exhibits an activity to increase supermorphism in which leaves are rolled outward.

본 개시에 따른 변형된 OsHDSTART1 단백질은 야생형 OsHDSTART1 단백질, 더 구체적으로 이 단백질의 호메오도메인에 변이가 도입되어 바깥쪽으로 잎이 말리는 초형변이를 증대시키고/거나 물 이용효율을 증가시킬 수 있는 것이라면, 제한됨이 없이 본 개시의 범위 내에 포함되어야 한다.The modified OsHDSTART1 protein according to the present disclosure is limited as long as mutations are introduced into the wild-type OsHDSTART1 protein, more specifically, the homeodomain of the protein to increase supermorphism in which leaves are rolled outward and/or increase water utilization efficiency. without which it should be included within the scope of this disclosure.

본 개시에 따른 변형된 OsHDSTART1 단백질은 야생형 OsHDSTART1 단백질의 호메오도메인 영역을 코딩하는 염기 서열에 단일 염기 삽입 변이가 도입되어, 야생형 단백질에 비해 비정상적인 인산화모티브를 갖거나 이를 불포함하거나 적게 포함하는 것일 수 있다. 이러한 특징을 나타내는 변이형 OsHDSTART1 단백질을 발현하는 형질전환 벼는, 제한됨이 없이, 본 개시의 범위 내에 포함되어야 한다The modified OsHDSTART1 protein according to the present disclosure has a single nucleotide insertion mutation introduced into the nucleotide sequence encoding the homeodomain region of the wild-type OsHDSTART1 protein, and has an abnormal phosphorylation motif compared to the wild-type protein. . Transgenic rice expressing a variant OsHDSTART1 protein exhibiting these characteristics should, without limitation, be included within the scope of the present disclosure.

일 실시형태에서, 본 개시에 따른 변형된 OsHDSTART1 단백질은 서열번호 14, 16, 18, 20 중에서 선택되는 어느 하나의 염기 서열을 갖는 유전자로부터 발현된 것일 수 있으나, 이로만 제한되는 것은 아니다.In one embodiment, the modified OsHDSTART1 protein according to the present disclosure may be expressed from a gene having any one nucleotide sequence selected from SEQ ID NOs: 14, 16, 18, and 20, but is not limited thereto.

본 개시에 따른 형질전환 벼는 잎말림지수(leaf rolling index; LRI)가 야생형 벼에 비해 40% 이상의 잎 말림 현상이 더 증가한 것일 수 있다. 또한, 본 개시에 따른 형질전환 벼는 3일간 물을 주지 않은 조건(None mode)에서 야생형(대조구)에 비해 토양의 수분 사용량이 낮은 특징을 보유할 수 있다. 본 개시에 따른 형질전환 벼는 바깥쪽으로 잎이 말리는 초형변이를 나타내면서 낮은 물 손실율과 높은 물 이용효율을 나타내는 특징을 보유할 수 있다.The transgenic rice according to the present disclosure may have an increased leaf rolling index (LRI) of 40% or more compared to wild-type rice. In addition, the transgenic rice according to the present disclosure may have a low soil water consumption compared to the wild type (control) in the condition of not watering for 3 days (None mode). The transgenic rice according to the present disclosure may have the characteristics of showing a low water loss rate and high water utilization efficiency while exhibiting a sheath variation in which the leaves are rolled outward.

또 다른 일 실시형태에서, 본 개시는 상기 형질전환 식물체 또는 상기 유전자가 편집된 식물체의 종자에 관한 것이다.In another embodiment, the present disclosure relates to the seed of the transgenic plant or the plant in which the gene has been edited.

본 개시에 따른 종자는 잎 말림이 발생한 OsHDSTART1 유전자 편집 형질전환 벼를 교배모본으로 하여 도입하고자 하는 벼와 교배하여 얻은 자손 벼로부터 수득한 잡종 종자일 수 있다.The seed according to the present disclosure may be a hybrid seed obtained from offspring rice obtained by crossing OsHDSTART1 gene-edited transgenic rice with leaf curling as a mating pattern with rice to be introduced.

또 다른 일 실시형태에서, 본 개시는 서열번호 3의 염기서열과 동일하거나 적어도 90%의 서열 동일성을 나타내는 염기서열로 이루어진 OsHDSTART1 유전자 편집용 가이드 RNA를 포함하는 벡터를 준비하는 단계; 및 상기 벡터를 식물체에 형질도입하여 OsHDSTART1 유전자의 표적위치에 변이를 유도하는 단계를 포함하는, 바깥쪽으로 잎말림이 발생하고 잎의 물 이용효율이 증가된 형질전환 식물체의 제조방법에 관한 것이다.In another embodiment, the present disclosure provides a vector comprising a guide RNA for editing the OsHDSTART1 gene consisting of a nucleotide sequence identical to or at least 90% identical to the nucleotide sequence of SEQ ID NO: 3; and transducing the vector into the plant to induce a mutation at the target site of the OsHDSTART1 gene.

이하, 실시예를 통하여 본 개시를 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 개시를 예시하기 위한 것으로, 본 개시의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present disclosure will be described in more detail through examples. These examples are only for exemplifying the present disclosure, and it will be apparent to those skilled in the art that the scope of the present disclosure is not to be construed as being limited by these examples.

실시예 1: OsHDSTART1Example 1: OsHDSTART1 유전자 선발gene selection

SnRK2 단백질 키나제(SnRK2 kinase)는 ABA 신호전달을 매개하는 주요 양성 조절자(key positive regulator)로 식물의 스트레스 반응에서 중요한 역할을 하는 것으로 주목되고 있으나 작용 하위에 있는 표적 전사인자 유전자는 많이 알려져 있지 않다. SnRK2 단백질 키나제는 RXXS/T 아미노산 모티브의 세린/트레오닌 잔기를 인산화시키는 것으로 보고되어 있다. SnRK2 protein kinase (SnRK2 kinase) is a key positive regulator that mediates ABA signal transduction. It is noted to play an important role in plant stress response, but the target transcription factor gene under the action is not known much. . SnRK2 protein kinase has been reported to phosphorylate serine/threonine residues of the RXXS/T amino acid motif.

먼저 공개 DB를 통해 벼 전사인자 유전자 2,839종의 아미노산 서열을 추출하고 SnRK2 단백질 키나제 인산화모티브(RXXS/T)를 포함하는 후보 전사인자군을 탐색하였고(도 1), 그 중 OsHDSTART1(Os08g08820) 유전자가 선발되었다(도 2). OsHDSTART1 유전자의 염기서열과 아미노산 서열을 표 1에 표시하였다.First, the amino acid sequences of 2,839 rice transcription factor genes were extracted through an open DB, and a candidate transcription factor group including the SnRK2 protein kinase phosphorylation motif (RXXS/T) was searched (FIG. 1), among which the OsHDSTART1 (Os08g08820) gene was found. were selected (Fig. 2). Table 1 shows the nucleotide sequence and amino acid sequence of the OsHDSTART1 gene.

구분division 서열order OsHDSTART1
염기서열
(서열번호 1)
OsHDSTART1
base sequence
(SEQ ID NO: 1)
atgacgccgg cgaggcgcat gccgccggtg atcggccgga acggcgtggc gtacgaatcg 60
ccgtcggcgc agctgcccct cacccaggct gatatgctgg acagccatca tctgcagcaa 120
gcactccagc agcaatactt cgatcagatc ccggtgacga cgacggcggc ggcggacagc 180
ggcgacaaca tgctgcacgg ccgcgccgac gccggcgggc tggttgacga gttcgagagc 240
aagtcgtgca gcgagaacgt cgacggcgcc ggcgacggcc tctccggcga cgaccaggac 300
cccaaccagc ggccgcgcaa gaagcgttac caccgccata cccagcacca gatccaagag 360
atggaagctt tcttcaagga gtgcccgcac ccagacgaca agcagcgcaa ggagctgagc 420
agggagctgg gtcttgaacc tctgcaggtt aaattctggt ttcagaacaa gcgcacacag 480
atgaagaacc agcacgagag gcacgagaac gcgcagctgc gggcggagaa cgacaagctg 540
cgcgcggaga acatgcgata caaggaggcc ctgagcagcg cgtcgtgccc caactgcggc 600
ggccccgccg ccctcggcga gatgtccttc gacgagcacc acctccgcgt cgagaacgcc 660
cgcctccgcg acgagatcga ccgcatctcc ggcatcgccg ccaagcacgt cggcaagccc 720
cccatcgtct ccttccccgt cctctcctcc ccgctcgccg tcgccgccgc ccgctcccct 780
ctcgacctcg ccggcgccta cggcgtcgtc acccccggcc tcgacatgtt cggcggcgcc 840
ggcgacctcc tccgcggcgt gcacccgctc gacgccgaca agcccatgat cgtggagctc 900
gccgtcgccg ccatggacga gctcgtccag atggcccagc tcgacgagcc gctctggtcg 960
tcgtcgtcgg agccggcggc ggcgttgctc gatgaggagg agtacgcgcg catgttcccg 1020
cgcggcctcg gccccaagca gtacggcctc aagtcggagg cgtcccgcca tggcgccgtc 1080
gtcatcatga cgcacagcaa cctcgtcgag atcctcatgg atgtgaatca attcgcgacg 1140
gtgttctcga gcatcgtgtc gagagcgtcc acgcacgagg tgttgtccac aggcgtggca 1200
ggcaactaca atggtgcact gcaagtgatg tcaatggagt ttcaagtgcc gtcgccgctg 1260
gtgccgacga gggagagcta tttcgtcagg tactgcaaga acaactccga cgggacatgg 1320
gccgtcgtcg atgtctctct cgacagcctc cgccccagcc ctgtccagaa atgccggcgc 1380
aggccgtctg gctgcctcat ccaagaaatg cccaatggct actccaaggt gacatgggtg 1440
gagcatgtgg aggtggacga cagctcggtg cacaacatct acaagccatt ggtgaactcc 1500
ggcctcgcat tcggcgcgaa acggtgggtc ggcacgctgg accggcaatg cgagcgcctc 1560
gccagcgcca tggccagcaa catccccaat ggcgaccttg gagtgattac aagcgtggag 1620
gggaggaaga gcatgttgaa gctggcggag aggatggtgg cgagcttctg cggcggcgtg 1680
acggcgtcgg tggcgcacca gtggacgacg ctgtcgggca gcggggcgga ggacgtgcgc 1740
gtcatgacga ggaagagcgt cgacgacccc ggcaggccac cgggcatcgt gctcaacgcc 1800
gccacctcct tctggctccc cgtccctccc gccgccgtct tcgacttcct ccgcgacgag 1860
acctctcgca gcgagtggga cattctgtcc aacggcggcg ccgtccaaga aatggctcac 1920
attgccaacg gccgtgacca tggcaactct gtctcgcttc ttcgtgtcaa tagtgcaaat 1980
tcaaaccaga gcaacatgct gatcctgcaa gagagctgca cggacgcgtc gggctcctac 2040
gtggtgtacg cgccggtgga catcgtggcg atgaacgtgg tgctcaacgg cggcgacccg 2100
gactacgtgg cgctgctgcc gtcggggttc gccatccttc ccgacgggcc gtcggggaac 2160
gcgcaggccg ccgtcgggga gaacggctcc ggctccggcg gggggtccct cctgacggtg 2220
gcgttccaga tcctcgtcga ctccgtgccg acggcgaagc tctcgctggg ctccgtcgcg 2280
acggtgaaca gcctcatcgc ctgcacggtg gagcgcatca aggccgccgt ctgcagggac 2340
agcaaccctc agtag
atgacgccgg cgaggcgcat gccgccggtg atcggccgga acggcgtggc gtacgaatcg 60
ccgtcggcgc agctgcccct cacccaggct gatatgctgg acagccatca tctgcagcaa 120
gcactccagc agcaatactt cgatcagatc ccggtgacga cgacggcggc ggcggacagc 180
ggcgacaaca tgctgcacgg ccgcgccgac gccggcgggc tggttgacga gttcgagagc 240
aagtcgtgca gcgagaacgt cgacggcgcc ggcgacggcc tctccggcga cgaccaggac 300
cccaaccagc ggccgcgcaa gaagcgttac caccgccata cccagcacca gatccaagag 360
atggaagctt tcttcaagga gtgcccgcac ccagacgaca agcagcgcaa ggagctgagc 420
agggagctgg gtcttgaacc tctgcaggtt aaattctggt ttcagaacaa gcgcacacag 480
atgaagaacc agcacgagag gcacgagaac gcgcagctgc gggcggagaa cgacaagctg 540
cgcgcggaga acatgcgata caaggaggcc ctgagcagcg cgtcgtgccc caactgcggc 600
ggccccgccg ccctcggcga gatgtccttc gacgagcacc acctccgcgt cgagaacgcc 660
cgcctccgcg acgagatcga ccgcatctcc ggcatcgccg ccaagcacgt cggcaagccc 720
cccatcgtct ccttccccgt cctctcctcc ccgctcgccg tcgccgccgc ccgctcccct 780
ctcgacctcg ccggcgccta cggcgtcgtc acccccggcc tcgacatgtt cggcggcgcc 840
ggcgacctcc tccgcggcgt gcacccgctc gacgccgaca agcccatgat cgtggagctc 900
gccgtcgccg ccatggacga gctcgtccag atggcccagc tcgacgagcc gctctggtcg 960
tcgtcgtcgg agccggcggc ggcgttgctc gatgaggagg agtacgcgcg catgttcccg 1020
cgcggcctcg gccccaagca gtacggcctc aagtcggagg cgtcccgcca tggcgccgtc 1080
gtcatcatga cgcacagcaa cctcgtcgag atcctcatgg atgtgaatca attcgcgacg 1140
gtgttctcga gcatcgtgtc gagagcgtcc acgcacgagg tgttgtccac aggcgtggca 1200
ggcaactaca atggtgcact gcaagtgatg tcaatggagt ttcaagtgcc gtcgccgctg 1260
gtgccgacga gggagagcta tttcgtcagg tactgcaaga acaactccga cgggacatgg 1320
gccgtcgtcg atgtctctct cgacagcctc cgccccagcc ctgtccagaa atgccggcgc 1380
aggccgtctg gctgcctcat ccaagaaatg cccaatggct actccaaggt gacatgggtg 1440
gagcatgtgg aggtggacga cagctcggtg cacaacatct acaagccatt ggtgaactcc 1500
ggcctcgcat tcggcgcgaa acggtgggtc ggcacgctgg accggcaatg cgagcgcctc 1560
gccagcgcca tggccagcaa catccccaat ggcgaccttg gagtgattac aagcgtggag 1620
gggaggaaga gcatgttgaa gctggcggag aggatggtgg cgagcttctg cggcggcgtg 1680
acggcgtcgg tggcgcacca gtggacgacg ctgtcgggca gcggggcgga ggacgtgcgc 1740
gtcatgacga ggaagagcgt cgacgacccc ggcaggccac cgggcatcgt gctcaacgcc 1800
gccacctcct tctggctccc cgtccctccc gccgccgtct tcgacttcct ccgcgacgag 1860
acctctcgca gcgagtggga cattctgtcc aacggcggcg ccgtccaaga aatggctcac 1920
attgccaacg gccgtgacca tggcaactct gtctcgcttc ttcgtgtcaa tagtgcaaat 1980
tcaaaccaga gcaacatgct gatcctgcaa gagagctgca cggacgcgtc gggctcctac 2040
gtggtgtacg cgccggtgga catcgtggcg atgaacgtgg tgctcaacgg cggcgacccg 2100
gactacgtgg cgctgctgcc gtcggggttc gccatccttc ccgacgggcc gtcggggaac 2160
gcgcaggccg ccgtcgggga gaacggctcc ggctccggcg gggggtccct cctgacggtg 2220
gcgttccaga tcctcgtcga ctccgtgccg acggcgaagc tctcgctggg ctccgtcgcg 2280
acggtgaaca gcctcatcgc ctgcacggtg gagcgcatca aggccgccgt ctgcagggac 2340
agcaaccctc agtag
OsHDSTART1
아미노산서열
(서열번호 2)
OsHDSTART1
amino acid sequence
(SEQ ID NO: 2)
MTPARRMPPV IGRNGVAYES PSAQLPLTQA DMLDSHHLQQ ALQQQYFDQI PVTTTAAADS 60
GDNMLHGRAD AGGLVDEFES KSCSENVDGA GDGLSGDDQD PNQRPRKKRY HRHTQHQIQE 120
MEAFFKECPH PDDKQRKELS RELGLEPLQV KFWFQNKRTQ MKNQHERHEN AQLRAENDKL 180
RAENMRYKEA LSSASCPNCG GPAALGEMSF DEHHLRVENA RLRDEIDRIS GIAAKHVGKP 240
PIVSFPVLSS PLAVAAARSP LDLAGAYGVV TPGLDMFGGA GDLLRGVHPL DADKPMIVEL 300
AVAAMDELVQ MAQLDEPLWS SSSEPAAALL DEEEYARMFP RGLGPKQYGL KSEASRHGAV 360
VIMTHSNLVE ILMDVNQFAT VFSSIVSRAS THEVLSTGVA GNYNGALQVM SMEFQVPSPL 420
VPTRESYFVR YCKNNSDGTW AVVDVSLDSL RPSPVQKCRR RPSGCLIQEM PNGYSKVTWV 480
EHVEVDDSSV HNIYKPLVNS GLAFGAKRWV GTLDRQCERL ASAMASNIPN GDLGVITSVE 540
GRKSMLKLAE RMVASFCGGV TASVAHQWTT LSGSGAEDVR VMTRKSVDDP GRPPGIVLNA 600
ATSFWLPVPP AAVFDFLRDE TSRSEWDILS NGGAVQEMAH IANGRDHGNS VSLLRVNSAN 660
SNQSNMLILQ ESCTDASGSY VVYAPVDIVA MNVVLNGGDP DYVALLPSGF AILPDGPSGN 720
AQAAVGENGS GSGGGSLLTV AFQILVDSVP TAKLSLGSVA TVNSLIACTV ERIKAAVCRD 780
SNPQ*
MTPARRMPPV IGRNGVAYES PSAQLPLTQA DMLDSHHLQQ ALQQQYFDQI PVTTTAAADS 60
GDNMLHGRAD AGGLVDEFES KSCSENVDGA GDGLSGDDQD PNQRPRKKRY HRHTQHQIQE 120
MEAFFKECPH PDDKQRKELS RELGLEPLQV KFWFQNKRTQ MKNQHERHEN AQLRAENDKL 180
RAENMRYKEA LSSASCPNCG GPAALGEMSF DEHHLRVENA RLRDEIDRIS GIAAKHVGKP 240
PIVSFPVLSS PLAVAAARSP LDLAGAYGVV TPLDMFGGA GDLLRGVHPL DADKPMIVEL 300
AVAAMDELVQ MAQLDEPLWS SSSEPAAALL DEEEYARMFP RGLGPKQYGL KSEASRHGAV 360
VIMTHSNLVE ILMDVNQFAT VFSSIVSRAS THEVLSTGVA GNYNGALQVM SMEFQVPSPL 420
VPTRESYFVR YCKNNSDGTW AVVDVSLDSL RPSPVQKCRR RPSGCLIQEM PNGYSKVTWV 480
EHVEVDDSSV HNIYKPLVNS GLAFGAKRWV GTLDRQCERL ASAMASNIPN GDLGVITSVE 540
GRKSMLKLAE RMVASFCGGV TASVAHQWTT LSGSGAEDVR VMTRKSVDDP GRPPGIVLNA 600
ATSFWLPVPP AAVFDFLRDE TSRSEWDILS NGGAVQEMAH IANGRDHGNS VSLLRVNSAN 660
SNQSNMLILQ ESCTDASGSY VVYAPVDIVA MNVVLNGGDP DYVALLPSGF AILPDGPSGN 720
AQAAVGENGS GSGGGSLLTV AFQILVDSVP TAKLSLGSVA TVNSLIACTV ERIKAAVCRD 780
SNPQ*

실시예 2: OsHDSTART1Example 2: OsHDSTART1 sgRNA 서열결정 및 유전자 편집 벡터 제작sgRNA sequencing and gene editing vector construction

2-1. OsHDSTART1 유전자를 교정하는 유효 가이드 RNA 결정 2-1. Determination of an effective guide RNA correcting the OsHDSTART1 gene

CRISPR/Cas9 유전자 편집기술을 이용하여 OsHDSTART1 유전자의 기능을 조사하고 벼의 내재해성 형질을 개량하기 위한 목적으로 활용할 수 있는지를 확인하기 위하여 먼저 OsHDSTART1 유전자에 대한 단일 guide RNA 서열(gRNA-OsHDSTART1)을 결정하였다. 이를 위하여 OsHDSTART1 단백질의 주요 기능성 영역인 Homoeodomain (도2 참조)을 인코딩하는 염기서열을 기준으로 공개데이터베이스 CRISPR RGEN Tools (http://www.rgenome.net)의 Cas-Designer를 이용하여 NGG 타입의 PAM 서열을 가지며 off-target 지수가 0이고 out-of-frame 점수가 60% 이상인 하기 gRNA 서열 (20 mer)을 결정하였다.Determine the single guide RNA sequence (gRNA-OsHDSTART1) for the OsHDSTART1 gene in order to investigate the function of the OsHDSTART1 gene using CRISPR/Cas9 gene editing technology and to determine whether it can be used for the purpose of improving the disaster resistance traits of rice. did To this end, based on the nucleotide sequence encoding Homoeodomain (see Fig. 2), which is the main functional region of OsHDSTART1 protein, NGG type PAM was created using Cas-Designer of CRISPR RGEN Tools ( http://www.rgenome.net ), an open database. The following gRNA sequence (20 mer) having an off-target index of 0 and an out-of-frame score of 60% or more was determined.

서열번호 3 : gRNA-OsHDSTART1: 5'-AACCAGAATTTAACCTGCAG-3'SEQ ID NO: 3: gRNA-OsHDSTART1: 5'-AACCAGAATTTAACCTGCAG-3'

2-2. 가이드 RNA가 도입된 식물형질전환용 바이너리 벡터 제작2-2. Production of binary vector for plant transformation with guide RNA introduced

단일 guide RNA를 pRGEB32 벡터에 클로닝하기 위하여 먼저 하기 한쌍의 OsU3 프라이머(서열번호 4:OsU3-F, 서열번호 5:OsU3-R)를 사용하여 381bp의 1차 PCR 산물을 증폭하였다.To clone a single guide RNA into the pRGEB32 vector, a 381 bp primary PCR product was first amplified using the following pair of OsU3 primers (SEQ ID NO: 4: OsU3-F, SEQ ID NO: 5: OsU3-R).

HindIII 제한효소 서열을 포함하는 하기 pRGEB32-HdIII 프라이머(서열번호 6)와 OsHDSTART1 유전자의 단일 guide RNA서열(서열번호 3)이 포함된 하기 합성 프라이머(서열번호 7:gRNA-OsHDSTART1-R1)가 포함된 가이드 RNA 카세트를 구축하였다. 상기 카세트를 이용하여 2차 PCR을 진행하였다. 2차 PCR 산물을 제한효소 BsaI과 HindIII를 절단한 후 pRGEB32 벡터의 BsaI과 HindIII 위치에 infusion 방법으로 클로닝하여 OsHDSTART1 유전자 편집벡터(OsHDSTART1-pRGEB32 벡터)를 제작하였다. Contains the following pRGEB32-HdIII primer (SEQ ID NO: 6) containing the Hind III restriction enzyme sequence and the following synthetic primer (SEQ ID NO: 7: gRNA-OsHDSTART1-R1) containing a single guide RNA sequence (SEQ ID NO: 3) of the OsHDSTART1 gene A guide RNA cassette was constructed. A second PCR was performed using the cassette. The second PCR product was digested with restriction enzymes Bsa I and Hind III, and then cloned into the Bsa I and Hind III sites of the pRGEB32 vector by infusion to construct an OsHDSTART1 gene editing vector (OsHDSTART1-pRGEB32 vector).

서열번호 4: OsU3-F: 5'-aag gaa tct tta aac ata cga aca gat cac tta aag-3' SEQ ID NO: 4: OsU3-F: 5'-aag gaa tct tta aac ata cga aca gat cac tta aag-3'

서열번호 5: OsU3-R: 5'-tgc cac gga tca tct gca caa ctc-3'SEQ ID NO: 5: OsU3-R: 5'-tgc cac gga tca tct gca caa ctc-3'

서열번호 6: pRGEB32-HdIII : 5'-gac atg att acg cca ag ctt aag gaa tct tta aac ata c-3'SEQ ID NO: 6: pRGEB32-HdIII: 5'-gac atg att acg cc a ag ctt aag gaa tct tta aac ata c-3'

서열번호 7: gRNA-OsHDSTART1-R1: 5'-att tct agc tct aaa acc tgc agg tta aat tct ggt ttg cca cgg atc atc tgc-3'SEQ ID NO: 7: gRNA-OsHDSTART1-R1: 5'-att tct agc tct aaa ac c tgc agg tta aat tct ggt t tg cca cgg atc atc tgc-3'

도 3은 OsHDSTART1 유전자 편집 벡터 OsHDSTART1-pRGEB32의 모식도를 나타낸 것이다. 도 3을 참고하면, 목적한 가이드 RNA 및 OsHDSTART1 유전자의 염기서열을 가진 합성된 DNA 단편을 최종 식물형질전환용 벡터에 도입하기 위한 전략을 나타낸다.Figure 3 shows a schematic diagram of the OsHDSTART1 gene editing vector OsHDSTART1-pRGEB32. Referring to FIG. 3, a strategy for introducing the synthesized DNA fragment having the nucleotide sequence of the target guide RNA and OsHDSTART1 gene into the final plant transformation vector is shown.

실시예 3: OsHDSTART1 유전자 편집벡터가 삽입된Example 3: Insertion of OsHDSTART1 gene editing vector 형질전환 벼의 제작 및 도입 벡터 확인Construction of transgenic rice and confirmation of introduction vector

3-1. 형질전환 벼의 제작3-1. Production of transgenic rice

실시예 2의 완성된 OsHDSTART1 유전자 편집벡터를 아그로박테리아(Agrobacteria) LBA4404에 도입하여 형질전환 후, 하기 한쌍의 프라이머(서열번호 8:OsHDSTART1-R2, 서열번호 9:M13R)를 이용하여 colony PCR 방법으로 벡터가 도입된 아그로박테리아를 선발하였다. The OsHDSTART1 gene editing vector completed in Example 2 was introduced into Agrobacteria LBA4404 and transformed, followed by colony PCR using the following pair of primers (SEQ ID NO: 8: OsHDSTART1-R2, SEQ ID NO: 9: M13R). Agrobacteria into which the vector was introduced were selected.

서열번호 8: OsHDSTART1-R2: 5'-ctg cag gtt aaa ttc tgg tt-3'SEQ ID NO: 8: OsHDSTART1-R2: 5'-ctg cag gtt aaa ttc tgg tt-3'

서열번호 9: M13R: 5'-gcg gat aac aat ttc aca cag-3'SEQ ID NO: 9: M13R: 5'-gcg gat aac aat ttc aca cag - 3'

정확한 벡터의 도입을 검증하기 위해 OsHDSTART1-pRGEB32 벡터를 선발한 아그로박테리아 각 플라스미드를 분리 후 전기영동으로 분석하였다. In order to verify the introduction of the correct vector, the OsHDSTART1-pRGEB32 vector was selected, and each plasmid of the Agrobacterium was isolated and analyzed by electrophoresis.

도 4는 OsHDSTART1-pRGEB32 벡터가 도입된 아그로박테리아(LBA4404)의 콜로니 PCR 분석을 나타낸 것이다. 도 4를 참고하면, 완성된 OsHDSTART1-pRGEB32 벡터에 도입된 가이드 RNA 카세트에 존재하는 인식서열이 확인되어 정확한 벡터가 아그로박테리아에 형질전환 되었음을 확인하였다. Figure 4 shows colony PCR analysis of Agrobacteria (LBA4404) into which the OsHDSTART1-pRGEB32 vector was introduced. Referring to FIG. 4 , the recognition sequence present in the guide RNA cassette introduced into the completed OsHDSTART1-pRGEB32 vector was confirmed to confirm that the correct vector was transformed into Agrobacteria.

상기 형질전환된 아그로박테리아를 삼광벼의 종자로부터 유도한 캘루스에 접종하고, 하이그로마이신 30 μg/ml을 포함하는 배지에서 형질전환 캘러스를 선발한 후 줄기와 뿌리를 유도하여 형질전환 벼를 생산하였다.The transformed agrobacteria were inoculated into callus derived from the seeds of Samgwang rice, and the transformed callus was selected in a medium containing 30 μg/ml of hygromycin, and then stems and roots were induced to produce transformed rice. did

3-2. 형질전환 벼의 OsHDSTART1 유전자 편집벡터 삽입유무 검정3-2. OsHDSTART1 gene editing vector insertion test for transgenic rice

OsHDSTART1 형질전환 벼의 잎에서 genomic DNA를 분리한 후 OsHDSTART1 유전자, 벡터에 특이적인 상기 서열번호 8 및 9의 염기서열로 이루어진 프라이머(OsHDSTART1-R2, M13R) 및 Cas9에 특이적인 하기 프라이머 (서열번호 10:Cas9F, 서열번호 11:Cas9R)를 이용하여 각각 PCR을 수행하였다.After isolating genomic DNA from the leaves of OsHDSTART1 transgenic rice, OsHDSTART1 gene, vector-specific primers consisting of the nucleotide sequences of SEQ ID NOs: 8 and 9 (OsHDSTART1-R2, M13R) and Cas9-specific primers (SEQ ID NO: 10 :Cas9F, SEQ ID NO: 11: PCR was performed using Cas9R).

서열번호 10: Cas9F: 5'-gag aac atc gtg atc gaa at-3'SEQ ID NO: 10: Cas9F: 5'-gag aac atc gtg atc gaa at-3'

서열번호 11: Cas9R: 5'-tct cgg cct tgg tcagat tg-3'SEQ ID NO: 11: Cas9R: 5'-tct cgg cct tgg tcagat tg-3'

도 5는 OsHDSTART1-pRGEB32 벡터 도입 형질전환 벼 T0 독립 계통 11종의 PCR 검정을 나타낸 것이다. 도 5를 참고하면, Cas9 프라이머(Cas9F/R)에 의해 증폭된 영역을 전기영동한 사진에서 형질전환벼 9 계통에서 목적한 Cas9 유전자에 해당하는 494bp PCR 산물을 확인하였다(도 5 상단이미지). 또한 OsHDSTART1-pRGEB32 벡터와 OsHDSTART1 gRNA 서열 특이적인 프라이머(OsHDSTART1-R2/M13R)에 의해 증폭된 영역을 전기영동한 사진에서 형질전환벼 10 계통에서 목적한 453bp PCR 산물을 확인하였다(도 5 하단이미지). 따라서, 형질전환벼 중 약 81%에서 유전자 편집 벡터가 성공적으로 도입되었음을 확인하였다. Figure 5 shows the PCR assay of 11 strains of OsHDSTART1-pRGEB32 vector-introduced transgenic rice T0 independent lines. Referring to FIG. 5 , a 494bp PCR product corresponding to the Cas9 gene of interest in 9 lines of transgenic rice was confirmed in a photograph obtained by electrophoresis of the region amplified by the Cas9 primer (Cas9F/R) (upper image of FIG. 5). In addition, the target 453 bp PCR product was confirmed in 10 lines of transgenic rice from the electrophoresis of the region amplified by the OsHDSTART1-pRGEB32 vector and OsHDSTART1 gRNA sequence-specific primers (OsHDSTART1-R2 / M13R) (bottom image in FIG. 5). . Therefore, it was confirmed that the gene editing vector was successfully introduced in about 81% of the transgenic rice.

실시예 4: OsHDSTART1유전자 편집벡터가 삽입된Example 4: Insertion of OsHDSTART1 gene editing vector 형질전환벼의 편집 염기서열 확인Identification of edited nucleotide sequence of transgenic rice

OsHDSTART1 유전자 편집벡터 도입이 PCR로 확인된 형질전환 벼 독립 계통 21종을 대상으로 유전자 편집위치의 염기서열 변이를 분석한 결과, 모두 표적 유전자 위치에서 동형접합(homozygous) 또는 이형접합(heterozygous)의 염기서열변이가 일어난 것을 확인하였다. 따라서 상기 서열번호 3으로 표시된 gRNA가 포함된 CRISPR/Cas9 편집벡터를 이용하였을 때 표적 유전자인 OsHDSTART1의 편집 효율이 100%에 달하는 것을 확인하였다.As a result of analyzing the nucleotide sequence variation at the gene editing site for 21 independent transgenic rice lines in which introduction of the OsHDSTART1 gene editing vector was confirmed by PCR, all homozygous or heterozygous bases at the target gene location It was confirmed that sequence mutation occurred. Therefore, when using the CRISPR/Cas9 editing vector containing the gRNA represented by SEQ ID NO: 3, it was confirmed that the editing efficiency of the target gene, OsHDSTART1, reached 100%.

도 6은 OsHDSTART1-pRGEB32 벡터가 도입된 형질전환 벼 4계통의 표적 유전자 염기서열 변이(A) 및 아미노산 변이(B)를 나타낸 것이다. Figure 6 shows the nucleotide sequence mutation (A) and amino acid mutation (B) of the target gene in 4 lines of transgenic rice into which the OsHDSTART1-pRGEB32 vector was introduced.

도 6A를 참고하면, OsHDSTART1 유전자의 sgRNA 위치에서 단일염기 삽입이 일어난 독립적인 동형접합체(homozygous) 형질전환 벼 4계통 (oshdstart1-m11, m25, m26, m27)의 염기서열 변이를 확인할 수 있다. Referring to FIG. 6A, it can be confirmed that nucleotide sequence mutations of 4 independent homozygous transgenic rice lines (oshdstart1-m11, m25, m26, m27) in which a single nucleotide insertion occurred at the sgRNA position of the OsHDSTART1 gene occurred.

또한, 삽입변이가 일어난 유전자가 인코딩하는 아미노산을 분석한 결과 도 6B에서 보는 바와 같이, 야생형 OsHDSTART1 단백질이 784 아미노산으로 구성된 반면, 삽입변이가 일어난 OsHDSTART1 유전자 편집 형질전환 벼는 조기 종결코돈이 생성되어 150 아미노산으로 이루어진 단백질 단편만이 생성된다는 것을 확인하였다.In addition, as a result of analyzing the amino acids encoded by the inserted mutation gene, as shown in FIG. 6B, the wild-type OsHDSTART1 protein was composed of 784 amino acids, whereas the OsHDSTART1 gene-edited transgenic rice with the insertion mutation generated a premature stop codon of 150 It was confirmed that only protein fragments composed of amino acids were produced.

실시예 5: 가이드 RNA 염기서열 인식 특이성 검정 Example 5: Guide RNA sequence recognition specificity assay

OsHDSTART1 유전자의 가이드 RNA의 정확한 염기서열 특이성을 검증하기 위해 OsHDSTART1 유전자의 아미노산 서열을 기준으로 Blast 검색을 수행한 결과 Os08g08820과 가장 상동성이 높은 (85%) Os04g53540이 확인되었다. Os04g53540 유전자는 Os08g08820과 유사한 위치에 Homeodomain과 START domain을 가지고 있다 (도7A). gRNA 서열(20mer)을 기준으로 Os04g53540은 Os08g08820과 4개의 염기서열의 차이를 보였으며, 아미노산 서열은 100% 일치하는 것을 확인하였다(도 7B). In order to verify the precise nucleotide sequence specificity of the guide RNA of the OsHDSTART1 gene, a blast search was performed based on the amino acid sequence of the OsHDSTART1 gene, and Os04g53540, which had the highest homology (85%) with Os08g08820, was identified. The Os04g53540 gene has a Homeodomain and a START domain at positions similar to those of Os08g08820 (Fig. 7A). Based on the gRNA sequence (20mer), Os04g53540 showed a difference of 4 nucleotide sequences from Os08g08820, and it was confirmed that the amino acid sequence was 100% identical (FIG. 7B).

목적하는 OsHDSTART1 가이드 RNA의 정확한 염기서열 특이성을 검증하기 위해 OsHDSTART1 유전자 편집이 확인된 동형접합체(homozygous) 3계통 (oshdstart1-m25, m26, m27)의 잎에서 genomic DNA를 분리하고, Os04g53540 유전자 특이적인 하기 프라이머 한 쌍을 이용하여 gRNA 상동성 부위를 PCR로 증폭한 후 Sanger sequencing으로 염기서열을 분석하였다. In order to verify the exact nucleotide sequence specificity of the OsHDSTART1 guide RNA of interest, genomic DNA was isolated from the leaves of three homozygous lines (oshdstart1-m25, m26, m27) in which OsHDSTART1 gene editing was confirmed, and Os04g53540 gene-specific After amplifying the gRNA homology region by PCR using a pair of primers, the base sequence was analyzed by Sanger sequencing.

서열번호 12: Os04g53540G-2453F: 5'-CGTTCACACGTTCAACCGAAC-3'SEQ ID NO: 12: Os04g53540G-2453F: 5'-CGTTCACACGTTCAACCGAAC-3'

서열번호 13: Os04g53540G-2872R: 5'-GCACTCGCTTGCAGGTTGC-3'SEQ ID NO: 13: Os04g53540G-2872R: 5'-GCACTCGCTTGCAGGTTGC-3'

그 결과, 도 7C에서 보는 바와 같이 Os04g53540 유전자 서열은 WT과 동일하였으며, 따라서 OsHDSTART1 유전자편집용 gRNA가 상동성이 높은 Os04g53540 유전자 위치를 비특이적으로 인식하지 않는 것으로 확인하였다. 이는, 상동성 영역에서 비특이적인 유전자 편집이 일어나지 않았다는 것을 나타낸 것이다.As a result, as shown in FIG. 7C, the Os04g53540 gene sequence was identical to that of WT, and thus, it was confirmed that the OsHDSTART1 gRNA for gene editing did not non-specifically recognize the location of the highly homologous Os04g53540 gene. This indicates that non-specific gene editing did not occur in the homology region.

실시예 6: OsHDSTART1 유전자가 편집된 형질전환 벼 표현형 분석Example 6: OsHDSTART1 Gene Edited Transgenic Rice Phenotype Analysis

6-1. 형질전환 벼의 잎 형태 분석6-1. Analysis of leaf morphology of transgenic rice

도 8은 OsHDSTART1 유전자가 편집된 형질전환 벼 호모계통의 잎 형태 분석을 나타낸 것이다. 도 8A를 참고하면, OsHDSTART1 유전자가 편집된 형질전환 벼의 잎이 대조구인 야생형 삼광벼에 비해 바깥쪽으로 말리는 초형변이가 일어난 것을 확인하였다. Figure 8 shows the analysis of leaf morphology of transgenic rice homo lines in which the OsHDSTART1 gene was edited. Referring to FIG. 8A, it was confirmed that the leaves of the transgenic rice in which the OsHDSTART1 gene was edited were outwardly curled compared to wild-type Samgwang rice as a control.

또한, 출수 후 10일된 OsHDSTART1 유전자 편집 형질전환 벼의 독립적 호모 계통 4종 (oshdstart1-m11, m25, m26, m27)의 flag leaf을 채취하여 잎 단편의 말림 형태 비교 분석을 수행하였다. 도 8B를 참고하면, 대조구인 야생형 삼광벼와 비교하여 4계통에서 잎 말림 특성이 동일하게 관찰되었다. In addition, flag leaves of 4 independent homo lines ( oshdstart1 -m11, m25, m26, m27) of OsHDSTART1 gene-edited transgenic rice 10 days after planting were collected and comparative analysis of leaf fragments was performed. Referring to FIG. 8B, the same leaf curling characteristics were observed in 4 lines compared to wild-type Samgwang rice as a control.

또한, flag leaf의 잎말림지수(leaf rolling index; LRI)를 측정한 결과, 도8C에서 보는 바와 같이, 대조구인 야생형 삼광벼의 LRI가 10% 미만인데 비하여 OsHDSTART1 유전자 편집 형질전환 벼의 호모 계통 4종의 LRI는 40% 이상으로 잎 말림이 일어난 것을 확인하였다.In addition, as a result of measuring the leaf rolling index (LRI) of the flag leaf, as shown in FIG. 8C, the LRI of the wild-type Samgwang rice as a control was less than 10%, whereas the OsHDSTART1 gene-edited transgenic rice homo strain 4 The LRI of the species was more than 40%, confirming that leaf curling occurred.

6-2. 형질전환 벼 잎의 세포형태학적 분석6-2. Cytomorphological analysis of transgenic rice leaves

OsHDSTART1 유전자 편집 형질전환 벼의 잎 말림 초형과 연관된 세포 형태학적 원인을 조사하였다. 도 9는 OsHDSTART1 유전자 편집 형질전환 벼 잎의 횡단면 PI 염색을 통한 세포형태학적 분석을 나타낸 것이다. Cell morphological causes associated with leaf curl sheath shape of OsHDSTART1 gene-edited transgenic rice were investigated. 9 shows cytomorphological analysis through cross-sectional PI staining of OsHDSTART1 gene-edited transgenic rice leaves.

먼저, flag leaf의 횡축 절편에 요오드화 프로피듐(propidium iodide;PI) 형광 염색을 한 후 컨포컬 현미경으로 관찰하였다(도 9A).First, transverse sections of the flag leaf were stained with propidium iodide (PI) fluorescence and observed under a confocal microscope (FIG. 9A).

그 다음, 잎의 말림 현상에 중요한 역할을 하는 것으로 알려진 bulliform 세포(motor cell)의 크기와 수를 분석하기 위하여 컨포칼 형광 이미지를 획득한 후 Image J 프로그램을 이용하여 면적을 측정하였다. 도 9B를 참고하면, 주요 관다발조직(MV, main vascular bundle)에서 가장 가까운 큰 관다발(LV,large vascular bundle) 1번과 2번 양쪽 bulliform 세포의 면적은 대조구에 비해 OsHDSTART1 유전자 편집 형질전환 벼에서 약 1.2배 큰 것을 확인할 수 있다. Then, in order to analyze the size and number of motor cells known to play an important role in leaf curling, confocal fluorescence images were acquired and the area was measured using the Image J program. Referring to FIG. 9B, the area of bulliform cells on both sides of the large vascular bundle (LV) No. 1 and No. 2, which are closest to the main vascular bundle (MV), was about approx. It can be seen that it is 1.2 times larger.

따라서, OsHDSTART1 유전자 편집 형질전환 벼에서 나타나는 바깥쪽으로의 잎 말림 특성은 bulliform 세포의 면적 증가와 연관된 것임을 확인하였다.Therefore, it was confirmed that the outward curling characteristic of OsHDSTART1 gene-edited transgenic rice was associated with an increase in the area of bulliform cells.

6-3. 형질전환 벼 잎의 물 소모율 분석6-3. Water consumption rate analysis of transgenic rice leaves

OsHDSTART1 유전자 편집 형질전환 벼가 내건성 내지 물 이용효율을 높이는 목적으로 활용될 수 있는지를 조사하기 위하여 온도와 습도가 조절되는 정밀 환경 조절실에서 실시간 자동 무게 측정 장치(DroughtSpotter)를 이용하여 물 이용 형질을 분석하였다. 구체적으로, 3일간 물을 주지 않은 조건(None mode)에서 시간에 따른 화분의 무게 변화를 측정하고 낮 기간 동안의 물 손실율을 비교하였다.In order to investigate whether the OsHDSTART1 gene-edited transgenic rice can be used for the purpose of increasing drought tolerance or water utilization efficiency, water utilization traits were measured using a real-time automatic weighing device (DroughtSpotter) in a precise environmental control room where temperature and humidity are controlled. analyzed. Specifically, the change in the weight of the flowerpot over time was measured under the condition of not watering for 3 days (None mode), and the water loss rate during the day was compared.

도 9는 OsHDSTART1 유전자 편집 형질전환 벼와 야생 삼광벼의 물 이용 형질 분석을 나타낸 것이다. 도 10A를 참고하면, 먼저 물을 주지 않는(None mode) 스트레스를 처리하기 전의 유전자 편집 형질전환 벼와 야생 삼광벼의 표현형을 비교하였다. 9 shows analysis of water utilization traits of OsHDSTART1 gene-edited transgenic rice and wild Samkwang rice. Referring to FIG. 10A, first, the phenotypes of gene-edited transgenic rice and wild Samgwang rice were compared before treatment with no watering (None mode) stress.

그 다음, 물을 주지 않는 스트레스 조건에서 3가지 온도별로 실시간 물을 이용하는 변화를 관찰하여 평균 곡선으로 나타냈다. 도 10B를 참고하면, 30℃와 38℃ 조건에서 OsHDSTART1 유전자 편집 형질전환 벼가 대조구에 비해 토양의 수분 사용량이 낮은 것을 확인하였다. 따라서, 초형변이(잎말림)가 일어난 형질전환 벼의 잎이 낮은 물 손실율과 높은 물 이용효율을 나타냄을 확인하였다.Then, in the stress condition without watering, the change in real-time water use for each of the three temperatures was observed and presented as an average curve. Referring to FIG. 10B, it was confirmed that soil water consumption of the OsHDSTART1 gene-edited transgenic rice was lower than that of the control at 30°C and 38°C. Therefore, it was confirmed that the leaves of the transgenic rice plants in which supermorphism (leaf curling) occurred showed a low water loss rate and high water utilization efficiency.

따라서, 본 개시에 따른 잎말림 초형변이을 갖는 형질전환 벼는 특히 밀식 재배시 단위면적당 광합성에 참여하는 잎의 수 및 잎의 유효면적을 높일 수 있으며, 육종 과정에서 벼의물 이용효율을 현저히 향상시킬 수 있으므로, 가뭄 등과 같은 기후 변화에 적응력이 높을 것으로 기대된다. Therefore, the transgenic rice having the leaf curl supermorph according to the present disclosure can increase the number of leaves participating in photosynthesis and the effective area of leaves per unit area, especially during dense cultivation, and significantly improve the water utilization efficiency of rice during the breeding process. Therefore, it is expected to have high adaptability to climate change such as drought.

<110> REPUBLIC OF KOREA(MANAGEMENT : RURAL DEVELOPMENT ADMINISTRATION) <120> OsHDSTART1 gene regulating plant ideotype and use thereof <130> DP20210293 <160> 21 <170> KoPatentIn 3.0 <210> 1 <211> 2355 <212> DNA <213> Artificial Sequence <220> <223> OsHDSTART1 <400> 1 atgacgccgg cgaggcgcat gccgccggtg atcggccgga acggcgtggc gtacgaatcg 60 ccgtcggcgc agctgcccct cacccaggct gatatgctgg acagccatca tctgcagcaa 120 gcactccagc agcaatactt cgatcagatc ccggtgacga cgacggcggc ggcggacagc 180 ggcgacaaca tgctgcacgg ccgcgccgac gccggcgggc tggttgacga gttcgagagc 240 aagtcgtgca gcgagaacgt cgacggcgcc ggcgacggcc tctccggcga cgaccaggac 300 cccaaccagc ggccgcgcaa gaagcgttac caccgccata cccagcacca gatccaagag 360 atggaagctt tcttcaagga gtgcccgcac ccagacgaca agcagcgcaa ggagctgagc 420 agggagctgg gtcttgaacc tctgcaggtt aaattctggt ttcagaacaa gcgcacacag 480 atgaagaacc agcacgagag gcacgagaac gcgcagctgc gggcggagaa cgacaagctg 540 cgcgcggaga acatgcgata caaggaggcc ctgagcagcg cgtcgtgccc caactgcggc 600 ggccccgccg ccctcggcga gatgtccttc gacgagcacc acctccgcgt cgagaacgcc 660 cgcctccgcg acgagatcga ccgcatctcc ggcatcgccg ccaagcacgt cggcaagccc 720 cccatcgtct ccttccccgt cctctcctcc ccgctcgccg tcgccgccgc ccgctcccct 780 ctcgacctcg ccggcgccta cggcgtcgtc acccccggcc tcgacatgtt cggcggcgcc 840 ggcgacctcc tccgcggcgt gcacccgctc gacgccgaca agcccatgat cgtggagctc 900 gccgtcgccg ccatggacga gctcgtccag atggcccagc tcgacgagcc gctctggtcg 960 tcgtcgtcgg agccggcggc ggcgttgctc gatgaggagg agtacgcgcg catgttcccg 1020 cgcggcctcg gccccaagca gtacggcctc aagtcggagg cgtcccgcca tggcgccgtc 1080 gtcatcatga cgcacagcaa cctcgtcgag atcctcatgg atgtgaatca attcgcgacg 1140 gtgttctcga gcatcgtgtc gagagcgtcc acgcacgagg tgttgtccac aggcgtggca 1200 ggcaactaca atggtgcact gcaagtgatg tcaatggagt ttcaagtgcc gtcgccgctg 1260 gtgccgacga gggagagcta tttcgtcagg tactgcaaga acaactccga cgggacatgg 1320 gccgtcgtcg atgtctctct cgacagcctc cgccccagcc ctgtccagaa atgccggcgc 1380 aggccgtctg gctgcctcat ccaagaaatg cccaatggct actccaaggt gacatgggtg 1440 gagcatgtgg aggtggacga cagctcggtg cacaacatct acaagccatt ggtgaactcc 1500 ggcctcgcat tcggcgcgaa acggtgggtc ggcacgctgg accggcaatg cgagcgcctc 1560 gccagcgcca tggccagcaa catccccaat ggcgaccttg gagtgattac aagcgtggag 1620 gggaggaaga gcatgttgaa gctggcggag aggatggtgg cgagcttctg cggcggcgtg 1680 acggcgtcgg tggcgcacca gtggacgacg ctgtcgggca gcggggcgga ggacgtgcgc 1740 gtcatgacga ggaagagcgt cgacgacccc ggcaggccac cgggcatcgt gctcaacgcc 1800 gccacctcct tctggctccc cgtccctccc gccgccgtct tcgacttcct ccgcgacgag 1860 acctctcgca gcgagtggga cattctgtcc aacggcggcg ccgtccaaga aatggctcac 1920 attgccaacg gccgtgacca tggcaactct gtctcgcttc ttcgtgtcaa tagtgcaaat 1980 tcaaaccaga gcaacatgct gatcctgcaa gagagctgca cggacgcgtc gggctcctac 2040 gtggtgtacg cgccggtgga catcgtggcg atgaacgtgg tgctcaacgg cggcgacccg 2100 gactacgtgg cgctgctgcc gtcggggttc gccatccttc ccgacgggcc gtcggggaac 2160 gcgcaggccg ccgtcgggga gaacggctcc ggctccggcg gggggtccct cctgacggtg 2220 gcgttccaga tcctcgtcga ctccgtgccg acggcgaagc tctcgctggg ctccgtcgcg 2280 acggtgaaca gcctcatcgc ctgcacggtg gagcgcatca aggccgccgt ctgcagggac 2340 agcaaccctc agtag 2355 <210> 2 <211> 785 <212> PRT <213> Artificial Sequence <220> <223> OsHDSTART1 <400> 2 Met Thr Pro Ala Arg Arg Met Pro Pro Val Ile Gly Arg Asn Gly Val 1 5 10 15 Ala Tyr Glu Ser Pro Ser Ala Gln Leu Pro Leu Thr Gln Ala Asp Met 20 25 30 Leu Asp Ser His His Leu Gln Gln Ala Leu Gln Gln Gln Tyr Phe Asp 35 40 45 Gln Ile Pro Val Thr Thr Thr Ala Ala Ala Asp Ser Gly Asp Asn Met 50 55 60 Leu His Gly Arg Ala Asp Ala Gly Gly Leu Val Asp Glu Phe Glu Ser 65 70 75 80 Lys Ser Cys Ser Glu Asn Val Asp Gly Ala Gly Asp Gly Leu Ser Gly 85 90 95 Asp Asp Gln Asp Pro Asn Gln Arg Pro Arg Lys Lys Arg Tyr His Arg 100 105 110 His Thr Gln His Gln Ile Gln Glu Met Glu Ala Phe Phe Lys Glu Cys 115 120 125 Pro His Pro Asp Asp Lys Gln Arg Lys Glu Leu Ser Arg Glu Leu Gly 130 135 140 Leu Glu Pro Leu Gln Val Lys Phe Trp Phe Gln Asn Lys Arg Thr Gln 145 150 155 160 Met Lys Asn Gln His Glu Arg His Glu Asn Ala Gln Leu Arg Ala Glu 165 170 175 Asn Asp Lys Leu Arg Ala Glu Asn Met Arg Tyr Lys Glu Ala Leu Ser 180 185 190 Ser Ala Ser Cys Pro Asn Cys Gly Gly Pro Ala Ala Leu Gly Glu Met 195 200 205 Ser Phe Asp Glu His His Leu Arg Val Glu Asn Ala Arg Leu Arg Asp 210 215 220 Glu Ile Asp Arg Ile Ser Gly Ile Ala Ala Lys His Val Gly Lys Pro 225 230 235 240 Pro Ile Val Ser Phe Pro Val Leu Ser Ser Pro Leu Ala Val Ala Ala 245 250 255 Ala Arg Ser Pro Leu Asp Leu Ala Gly Ala Tyr Gly Val Val Thr Pro 260 265 270 Gly Leu Asp Met Phe Gly Gly Ala Gly Asp Leu Leu Arg Gly Val His 275 280 285 Pro Leu Asp Ala Asp Lys Pro Met Ile Val Glu Leu Ala Val Ala Ala 290 295 300 Met Asp Glu Leu Val Gln Met Ala Gln Leu Asp Glu Pro Leu Trp Ser 305 310 315 320 Ser Ser Ser Glu Pro Ala Ala Ala Leu Leu Asp Glu Glu Glu Tyr Ala 325 330 335 Arg Met Phe Pro Arg Gly Leu Gly Pro Lys Gln Tyr Gly Leu Lys Ser 340 345 350 Glu Ala Ser Arg His Gly Ala Val Val Ile Met Thr His Ser Asn Leu 355 360 365 Val Glu Ile Leu Met Asp Val Asn Gln Phe Ala Thr Val Phe Ser Ser 370 375 380 Ile Val Ser Arg Ala Ser Thr His Glu Val Leu Ser Thr Gly Val Ala 385 390 395 400 Gly Asn Tyr Asn Gly Ala Leu Gln Val Met Ser Met Glu Phe Gln Val 405 410 415 Pro Ser Pro Leu Val Pro Thr Arg Glu Ser Tyr Phe Val Arg Tyr Cys 420 425 430 Lys Asn Asn Ser Asp Gly Thr Trp Ala Val Val Asp Val Ser Leu Asp 435 440 445 Ser Leu Arg Pro Ser Pro Val Gln Lys Cys Arg Arg Arg Pro Ser Gly 450 455 460 Cys Leu Ile Gln Glu Met Pro Asn Gly Tyr Ser Lys Val Thr Trp Val 465 470 475 480 Glu His Val Glu Val Asp Asp Ser Ser Val His Asn Ile Tyr Lys Pro 485 490 495 Leu Val Asn Ser Gly Leu Ala Phe Gly Ala Lys Arg Trp Val Gly Thr 500 505 510 Leu Asp Arg Gln Cys Glu Arg Leu Ala Ser Ala Met Ala Ser Asn Ile 515 520 525 Pro Asn Gly Asp Leu Gly Val Ile Thr Ser Val Glu Gly Arg Lys Ser 530 535 540 Met Leu Lys Leu Ala Glu Arg Met Val Ala Ser Phe Cys Gly Gly Val 545 550 555 560 Thr Ala Ser Val Ala His Gln Trp Thr Thr Leu Ser Gly Ser Gly Ala 565 570 575 Glu Asp Val Arg Val Met Thr Arg Lys Ser Val Asp Asp Pro Gly Arg 580 585 590 Pro Pro Gly Ile Val Leu Asn Ala Ala Thr Ser Phe Trp Leu Pro Val 595 600 605 Pro Pro Ala Ala Val Phe Asp Phe Leu Arg Asp Glu Thr Ser Arg Ser 610 615 620 Glu Trp Asp Ile Leu Ser Asn Gly Gly Ala Val Gln Glu Met Ala His 625 630 635 640 Ile Ala Asn Gly Arg Asp His Gly Asn Ser Val Ser Leu Leu Arg Val 645 650 655 Asn Ser Ala Asn Ser Asn Gln Ser Asn Met Leu Ile Leu Gln Glu Ser 660 665 670 Cys Thr Asp Ala Ser Gly Ser Tyr Val Val Tyr Ala Pro Val Asp Ile 675 680 685 Val Ala Met Asn Val Val Leu Asn Gly Gly Asp Pro Asp Tyr Val Ala 690 695 700 Leu Leu Pro Ser Gly Phe Ala Ile Leu Pro Asp Gly Pro Ser Gly Asn 705 710 715 720 Ala Gln Ala Ala Val Gly Glu Asn Gly Ser Gly Ser Gly Gly Gly Ser 725 730 735 Leu Leu Thr Val Ala Phe Gln Ile Leu Val Asp Ser Val Pro Thr Ala 740 745 750 Lys Leu Ser Leu Gly Ser Val Ala Thr Val Asn Ser Leu Ile Ala Cys 755 760 765 Thr Val Glu Arg Ile Lys Ala Ala Val Cys Arg Asp Ser Asn Pro Gln 770 775 780 *** 785 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gRNA-OsHDSTART1 <400> 3 aaccagaatt taacctgcag 20 <210> 4 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> OsU3-F <400> 4 aaggaatctt taaacatacg aacagatcac ttaaag 36 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> pRGEB32-HdIII <400> 5 tgccacggat catctgcaca actc 24 <210> 6 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> pRGEB32-HdIII <400> 6 gacatgatta cgccaagctt aaggaatctt taaacatac 39 <210> 7 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> gRNA-OsHDSTART1-R1 <400> 7 atttctagct ctaaaacctg caggttaaat tctggtttgc cacggatcat ctgc 54 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OsHDSTART1-R2 <400> 8 ctgcaggtta aattctggtt 20 <210> 9 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> M13R <400> 9 gcggataaca atttcacaca g 21 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Cas9F <400> 10 gagaacatcg tgatcgaaat 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Cas9R <400> 11 tctcggcctt ggtcagattg 20 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Os04g53540G-2453F <400> 12 cgttcacacg ttcaaccgaa c 21 <210> 13 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Os04g53540G-2872R <400> 13 gcactcgctt gcaggttgc 19 <210> 14 <211> 2356 <212> DNA <213> Artificial Sequence <220> <223> oshdstart1-m11 <400> 14 atgacgccgg cgaggcgcat gccgccggtg atcggccgga acggcgtggc gtacgaatcg 60 ccgtcggcgc agctgcccct cacccaggct gatatgctgg acagccatca tctgcagcaa 120 gcactccagc agcaatactt cgatcagatc ccggtgacga cgacggcggc ggcggacagc 180 ggcgacaaca tgctgcacgg ccgcgccgac gccggcgggc tggttgacga gttcgagagc 240 aagtcgtgca gcgagaacgt cgacggcgcc ggcgacggcc tctccggcga cgaccaggac 300 cccaaccagc ggccgcgcaa gaagcgttac caccgccata cccagcacca gatccaagag 360 atggaagctt tcttcaagga gtgcccgcac ccagacgaca agcagcgcaa ggagctgagc 420 agggagctgg gtcttgaacc tctgacaggt taaattctgg tttcagaaca agcgcacaca 480 gatgaagaac cagcacgaga ggcacgagaa cgcgcagctg cgggcggaga acgacaagct 540 gcgcgcggag aacatgcgat acaaggaggc cctgagcagc gcgtcgtgcc ccaactgcgg 600 cggccccgcc gccctcggcg agatgtcctt cgacgagcac cacctccgcg tcgagaacgc 660 ccgcctccgc gacgagatcg accgcatctc cggcatcgcc gccaagcacg tcggcaagcc 720 ccccatcgtc tccttccccg tcctctcctc cccgctcgcc gtcgccgccg cccgctcccc 780 tctcgacctc gccggcgcct acggcgtcgt cacccccggc ctcgacatgt tcggcggcgc 840 cggcgacctc ctccgcggcg tgcacccgct cgacgccgac aagcccatga tcgtggagct 900 cgccgtcgcc gccatggacg agctcgtcca gatggcccag ctcgacgagc cgctctggtc 960 gtcgtcgtcg gagccggcgg cggcgttgct cgatgaggag gagtacgcgc gcatgttccc 1020 gcgcggcctc ggccccaagc agtacggcct caagtcggag gcgtcccgcc atggcgccgt 1080 cgtcatcatg acgcacagca acctcgtcga gatcctcatg gatgtgaatc aattcgcgac 1140 ggtgttctcg agcatcgtgt cgagagcgtc cacgcacgag gtgttgtcca caggcgtggc 1200 aggcaactac aatggtgcac tgcaagtgat gtcaatggag tttcaagtgc cgtcgccgct 1260 ggtgccgacg agggagagct atttcgtcag gtactgcaag aacaactccg acgggacatg 1320 ggccgtcgtc gatgtctctc tcgacagcct ccgccccagc cctgtccaga aatgccggcg 1380 caggccgtct ggctgcctca tccaagaaat gcccaatggc tactccaagg tgacatgggt 1440 ggagcatgtg gaggtggacg acagctcggt gcacaacatc tacaagccat tggtgaactc 1500 cggcctcgca ttcggcgcga aacggtgggt cggcacgctg gaccggcaat gcgagcgcct 1560 cgccagcgcc atggccagca acatccccaa tggcgacctt ggagtgatta caagcgtgga 1620 ggggaggaag agcatgttga agctggcgga gaggatggtg gcgagcttct gcggcggcgt 1680 gacggcgtcg gtggcgcacc agtggacgac gctgtcgggc agcggggcgg aggacgtgcg 1740 cgtcatgacg aggaagagcg tcgacgaccc cggcaggcca ccgggcatcg tgctcaacgc 1800 cgccacctcc ttctggctcc ccgtccctcc cgccgccgtc ttcgacttcc tccgcgacga 1860 gacctctcgc agcgagtggg acattctgtc caacggcggc gccgtccaag aaatggctca 1920 cattgccaac ggccgtgacc atggcaactc tgtctcgctt cttcgtgtca atagtgcaaa 1980 ttcaaaccag agcaacatgc tgatcctgca agagagctgc acggacgcgt cgggctccta 2040 cgtggtgtac gcgccggtgg acatcgtggc gatgaacgtg gtgctcaacg gcggcgaccc 2100 ggactacgtg gcgctgctgc cgtcggggtt cgccatcctt cccgacgggc cgtcggggaa 2160 cgcgcaggcc gccgtcgggg agaacggctc cggctccggc ggggggtccc tcctgacggt 2220 ggcgttccag atcctcgtcg actccgtgcc gacggcgaag ctctcgctgg gctccgtcgc 2280 gacggtgaac agcctcatcg cctgcacggt ggagcgcatc aaggccgccg tctgcaggga 2340 cagcaaccct cagtag 2356 <210> 15 <211> 151 <212> PRT <213> Artificial Sequence <220> <223> oshdstart1-m11 <400> 15 Met Thr Pro Ala Arg Arg Met Pro Pro Val Ile Gly Arg Asn Gly Val 1 5 10 15 Ala Tyr Glu Ser Pro Ser Ala Gln Leu Pro Leu Thr Gln Ala Asp Met 20 25 30 Leu Asp Ser His His Leu Gln Gln Ala Leu Gln Gln Gln Tyr Phe Asp 35 40 45 Gln Ile Pro Val Thr Thr Thr Ala Ala Ala Asp Ser Gly Asp Asn Met 50 55 60 Leu His Gly Arg Ala Asp Ala Gly Gly Leu Val Asp Glu Phe Glu Ser 65 70 75 80 Lys Ser Cys Ser Glu Asn Val Asp Gly Ala Gly Asp Gly Leu Ser Gly 85 90 95 Asp Asp Gln Asp Pro Asn Gln Arg Pro Arg Lys Lys Arg Tyr His Arg 100 105 110 His Thr Gln His Gln Ile Gln Glu Met Glu Ala Phe Phe Lys Glu Cys 115 120 125 Pro His Pro Asp Asp Lys Gln Arg Lys Glu Leu Ser Arg Glu Leu Gly 130 135 140 Leu Glu Pro Leu Thr Gly *** 145 150 <210> 16 <211> 2356 <212> DNA <213> Artificial Sequence <220> <223> oshdstart1-m25 <400> 16 atgacgccgg cgaggcgcat gccgccggtg atcggccgga acggcgtggc gtacgaatcg 60 ccgtcggcgc agctgcccct cacccaggct gatatgctgg acagccatca tctgcagcaa 120 gcactccagc agcaatactt cgatcagatc ccggtgacga cgacggcggc ggcggacagc 180 ggcgacaaca tgctgcacgg ccgcgccgac gccggcgggc tggttgacga gttcgagagc 240 aagtcgtgca gcgagaacgt cgacggcgcc ggcgacggcc tctccggcga cgaccaggac 300 cccaaccagc ggccgcgcaa gaagcgttac caccgccata cccagcacca gatccaagag 360 atggaagctt tcttcaagga gtgcccgcac ccagacgaca agcagcgcaa ggagctgagc 420 agggagctgg gtcttgaacc tctgacaggt taaattctgg tttcagaaca agcgcacaca 480 gatgaagaac cagcacgaga ggcacgagaa cgcgcagctg cgggcggaga acgacaagct 540 gcgcgcggag aacatgcgat acaaggaggc cctgagcagc gcgtcgtgcc ccaactgcgg 600 cggccccgcc gccctcggcg agatgtcctt cgacgagcac cacctccgcg tcgagaacgc 660 ccgcctccgc gacgagatcg accgcatctc cggcatcgcc gccaagcacg tcggcaagcc 720 ccccatcgtc tccttccccg tcctctcctc cccgctcgcc gtcgccgccg cccgctcccc 780 tctcgacctc gccggcgcct acggcgtcgt cacccccggc ctcgacatgt tcggcggcgc 840 cggcgacctc ctccgcggcg tgcacccgct cgacgccgac aagcccatga tcgtggagct 900 cgccgtcgcc gccatggacg agctcgtcca gatggcccag ctcgacgagc cgctctggtc 960 gtcgtcgtcg gagccggcgg cggcgttgct cgatgaggag gagtacgcgc gcatgttccc 1020 gcgcggcctc ggccccaagc agtacggcct caagtcggag gcgtcccgcc atggcgccgt 1080 cgtcatcatg acgcacagca acctcgtcga gatcctcatg gatgtgaatc aattcgcgac 1140 ggtgttctcg agcatcgtgt cgagagcgtc cacgcacgag gtgttgtcca caggcgtggc 1200 aggcaactac aatggtgcac tgcaagtgat gtcaatggag tttcaagtgc cgtcgccgct 1260 ggtgccgacg agggagagct atttcgtcag gtactgcaag aacaactccg acgggacatg 1320 ggccgtcgtc gatgtctctc tcgacagcct ccgccccagc cctgtccaga aatgccggcg 1380 caggccgtct ggctgcctca tccaagaaat gcccaatggc tactccaagg tgacatgggt 1440 ggagcatgtg gaggtggacg acagctcggt gcacaacatc tacaagccat tggtgaactc 1500 cggcctcgca ttcggcgcga aacggtgggt cggcacgctg gaccggcaat gcgagcgcct 1560 cgccagcgcc atggccagca acatccccaa tggcgacctt ggagtgatta caagcgtgga 1620 ggggaggaag agcatgttga agctggcgga gaggatggtg gcgagcttct gcggcggcgt 1680 gacggcgtcg gtggcgcacc agtggacgac gctgtcgggc agcggggcgg aggacgtgcg 1740 cgtcatgacg aggaagagcg tcgacgaccc cggcaggcca ccgggcatcg tgctcaacgc 1800 cgccacctcc ttctggctcc ccgtccctcc cgccgccgtc ttcgacttcc tccgcgacga 1860 gacctctcgc agcgagtggg acattctgtc caacggcggc gccgtccaag aaatggctca 1920 cattgccaac ggccgtgacc atggcaactc tgtctcgctt cttcgtgtca atagtgcaaa 1980 ttcaaaccag agcaacatgc tgatcctgca agagagctgc acggacgcgt cgggctccta 2040 cgtggtgtac gcgccggtgg acatcgtggc gatgaacgtg gtgctcaacg gcggcgaccc 2100 ggactacgtg gcgctgctgc cgtcggggtt cgccatcctt cccgacgggc cgtcggggaa 2160 cgcgcaggcc gccgtcgggg agaacggctc cggctccggc ggggggtccc tcctgacggt 2220 ggcgttccag atcctcgtcg actccgtgcc gacggcgaag ctctcgctgg gctccgtcgc 2280 gacggtgaac agcctcatcg cctgcacggt ggagcgcatc aaggccgccg tctgcaggga 2340 cagcaaccct cagtag 2356 <210> 17 <211> 151 <212> PRT <213> Artificial Sequence <220> <223> oshdstart1-m25 <400> 17 Met Thr Pro Ala Arg Arg Met Pro Pro Val Ile Gly Arg Asn Gly Val 1 5 10 15 Ala Tyr Glu Ser Pro Ser Ala Gln Leu Pro Leu Thr Gln Ala Asp Met 20 25 30 Leu Asp Ser His His Leu Gln Gln Ala Leu Gln Gln Gln Tyr Phe Asp 35 40 45 Gln Ile Pro Val Thr Thr Thr Ala Ala Ala Asp Ser Gly Asp Asn Met 50 55 60 Leu His Gly Arg Ala Asp Ala Gly Gly Leu Val Asp Glu Phe Glu Ser 65 70 75 80 Lys Ser Cys Ser Glu Asn Val Asp Gly Ala Gly Asp Gly Leu Ser Gly 85 90 95 Asp Asp Gln Asp Pro Asn Gln Arg Pro Arg Lys Lys Arg Tyr His Arg 100 105 110 His Thr Gln His Gln Ile Gln Glu Met Glu Ala Phe Phe Lys Glu Cys 115 120 125 Pro His Pro Asp Asp Lys Gln Arg Lys Glu Leu Ser Arg Glu Leu Gly 130 135 140 Leu Glu Pro Leu Thr Gly *** 145 150 <210> 18 <211> 2356 <212> DNA <213> Artificial Sequence <220> <223> oshdstart1-m26 <400> 18 atgacgccgg cgaggcgcat gccgccggtg atcggccgga acggcgtggc gtacgaatcg 60 ccgtcggcgc agctgcccct cacccaggct gatatgctgg acagccatca tctgcagcaa 120 gcactccagc agcaatactt cgatcagatc ccggtgacga cgacggcggc ggcggacagc 180 ggcgacaaca tgctgcacgg ccgcgccgac gccggcgggc tggttgacga gttcgagagc 240 aagtcgtgca gcgagaacgt cgacggcgcc ggcgacggcc tctccggcga cgaccaggac 300 cccaaccagc ggccgcgcaa gaagcgttac caccgccata cccagcacca gatccaagag 360 atggaagctt tcttcaagga gtgcccgcac ccagacgaca agcagcgcaa ggagctgagc 420 agggagctgg gtcttgaacc tctgtcaggt taaattctgg tttcagaaca agcgcacaca 480 gatgaagaac cagcacgaga ggcacgagaa cgcgcagctg cgggcggaga acgacaagct 540 gcgcgcggag aacatgcgat acaaggaggc cctgagcagc gcgtcgtgcc ccaactgcgg 600 cggccccgcc gccctcggcg agatgtcctt cgacgagcac cacctccgcg tcgagaacgc 660 ccgcctccgc gacgagatcg accgcatctc cggcatcgcc gccaagcacg tcggcaagcc 720 ccccatcgtc tccttccccg tcctctcctc cccgctcgcc gtcgccgccg cccgctcccc 780 tctcgacctc gccggcgcct acggcgtcgt cacccccggc ctcgacatgt tcggcggcgc 840 cggcgacctc ctccgcggcg tgcacccgct cgacgccgac aagcccatga tcgtggagct 900 cgccgtcgcc gccatggacg agctcgtcca gatggcccag ctcgacgagc cgctctggtc 960 gtcgtcgtcg gagccggcgg cggcgttgct cgatgaggag gagtacgcgc gcatgttccc 1020 gcgcggcctc ggccccaagc agtacggcct caagtcggag gcgtcccgcc atggcgccgt 1080 cgtcatcatg acgcacagca acctcgtcga gatcctcatg gatgtgaatc aattcgcgac 1140 ggtgttctcg agcatcgtgt cgagagcgtc cacgcacgag gtgttgtcca caggcgtggc 1200 aggcaactac aatggtgcac tgcaagtgat gtcaatggag tttcaagtgc cgtcgccgct 1260 ggtgccgacg agggagagct atttcgtcag gtactgcaag aacaactccg acgggacatg 1320 ggccgtcgtc gatgtctctc tcgacagcct ccgccccagc cctgtccaga aatgccggcg 1380 caggccgtct ggctgcctca tccaagaaat gcccaatggc tactccaagg tgacatgggt 1440 ggagcatgtg gaggtggacg acagctcggt gcacaacatc tacaagccat tggtgaactc 1500 cggcctcgca ttcggcgcga aacggtgggt cggcacgctg gaccggcaat gcgagcgcct 1560 cgccagcgcc atggccagca acatccccaa tggcgacctt ggagtgatta caagcgtgga 1620 ggggaggaag agcatgttga agctggcgga gaggatggtg gcgagcttct gcggcggcgt 1680 gacggcgtcg gtggcgcacc agtggacgac gctgtcgggc agcggggcgg aggacgtgcg 1740 cgtcatgacg aggaagagcg tcgacgaccc cggcaggcca ccgggcatcg tgctcaacgc 1800 cgccacctcc ttctggctcc ccgtccctcc cgccgccgtc ttcgacttcc tccgcgacga 1860 gacctctcgc agcgagtggg acattctgtc caacggcggc gccgtccaag aaatggctca 1920 cattgccaac ggccgtgacc atggcaactc tgtctcgctt cttcgtgtca atagtgcaaa 1980 ttcaaaccag agcaacatgc tgatcctgca agagagctgc acggacgcgt cgggctccta 2040 cgtggtgtac gcgccggtgg acatcgtggc gatgaacgtg gtgctcaacg gcggcgaccc 2100 ggactacgtg gcgctgctgc cgtcggggtt cgccatcctt cccgacgggc cgtcggggaa 2160 cgcgcaggcc gccgtcgggg agaacggctc cggctccggc ggggggtccc tcctgacggt 2220 ggcgttccag atcctcgtcg actccgtgcc gacggcgaag ctctcgctgg gctccgtcgc 2280 gacggtgaac agcctcatcg cctgcacggt ggagcgcatc aaggccgccg tctgcaggga 2340 cagcaaccct cagtag 2356 <210> 19 <211> 151 <212> PRT <213> Artificial Sequence <220> <223> oshdstart1-m26 <400> 19 Met Thr Pro Ala Arg Arg Met Pro Pro Val Ile Gly Arg Asn Gly Val 1 5 10 15 Ala Tyr Glu Ser Pro Ser Ala Gln Leu Pro Leu Thr Gln Ala Asp Met 20 25 30 Leu Asp Ser His His Leu Gln Gln Ala Leu Gln Gln Gln Tyr Phe Asp 35 40 45 Gln Ile Pro Val Thr Thr Thr Ala Ala Ala Asp Ser Gly Asp Asn Met 50 55 60 Leu His Gly Arg Ala Asp Ala Gly Gly Leu Val Asp Glu Phe Glu Ser 65 70 75 80 Lys Ser Cys Ser Glu Asn Val Asp Gly Ala Gly Asp Gly Leu Ser Gly 85 90 95 Asp Asp Gln Asp Pro Asn Gln Arg Pro Arg Lys Lys Arg Tyr His Arg 100 105 110 His Thr Gln His Gln Ile Gln Glu Met Glu Ala Phe Phe Lys Glu Cys 115 120 125 Pro His Pro Asp Asp Lys Gln Arg Lys Glu Leu Ser Arg Glu Leu Gly 130 135 140 Leu Glu Pro Leu Ser Gly *** 145 150 <210> 20 <211> 2356 <212> DNA <213> Artificial Sequence <220> <223> oshdstart1-m27 <400> 20 atgacgccgg cgaggcgcat gccgccggtg atcggccgga acggcgtggc gtacgaatcg 60 ccgtcggcgc agctgcccct cacccaggct gatatgctgg acagccatca tctgcagcaa 120 gcactccagc agcaatactt cgatcagatc ccggtgacga cgacggcggc ggcggacagc 180 ggcgacaaca tgctgcacgg ccgcgccgac gccggcgggc tggttgacga gttcgagagc 240 aagtcgtgca gcgagaacgt cgacggcgcc ggcgacggcc tctccggcga cgaccaggac 300 cccaaccagc ggccgcgcaa gaagcgttac caccgccata cccagcacca gatccaagag 360 atggaagctt tcttcaagga gtgcccgcac ccagacgaca agcagcgcaa ggagctgagc 420 agggagctgg gtcttgaacc tctgacaggt taaattctgg tttcagaaca agcgcacaca 480 gatgaagaac cagcacgaga ggcacgagaa cgcgcagctg cgggcggaga acgacaagct 540 gcgcgcggag aacatgcgat acaaggaggc cctgagcagc gcgtcgtgcc ccaactgcgg 600 cggccccgcc gccctcggcg agatgtcctt cgacgagcac cacctccgcg tcgagaacgc 660 ccgcctccgc gacgagatcg accgcatctc cggcatcgcc gccaagcacg tcggcaagcc 720 ccccatcgtc tccttccccg tcctctcctc cccgctcgcc gtcgccgccg cccgctcccc 780 tctcgacctc gccggcgcct acggcgtcgt cacccccggc ctcgacatgt tcggcggcgc 840 cggcgacctc ctccgcggcg tgcacccgct cgacgccgac aagcccatga tcgtggagct 900 cgccgtcgcc gccatggacg agctcgtcca gatggcccag ctcgacgagc cgctctggtc 960 gtcgtcgtcg gagccggcgg cggcgttgct cgatgaggag gagtacgcgc gcatgttccc 1020 gcgcggcctc ggccccaagc agtacggcct caagtcggag gcgtcccgcc atggcgccgt 1080 cgtcatcatg acgcacagca acctcgtcga gatcctcatg gatgtgaatc aattcgcgac 1140 ggtgttctcg agcatcgtgt cgagagcgtc cacgcacgag gtgttgtcca caggcgtggc 1200 aggcaactac aatggtgcac tgcaagtgat gtcaatggag tttcaagtgc cgtcgccgct 1260 ggtgccgacg agggagagct atttcgtcag gtactgcaag aacaactccg acgggacatg 1320 ggccgtcgtc gatgtctctc tcgacagcct ccgccccagc cctgtccaga aatgccggcg 1380 caggccgtct ggctgcctca tccaagaaat gcccaatggc tactccaagg tgacatgggt 1440 ggagcatgtg gaggtggacg acagctcggt gcacaacatc tacaagccat tggtgaactc 1500 cggcctcgca ttcggcgcga aacggtgggt cggcacgctg gaccggcaat gcgagcgcct 1560 cgccagcgcc atggccagca acatccccaa tggcgacctt ggagtgatta caagcgtgga 1620 ggggaggaag agcatgttga agctggcgga gaggatggtg gcgagcttct gcggcggcgt 1680 gacggcgtcg gtggcgcacc agtggacgac gctgtcgggc agcggggcgg aggacgtgcg 1740 cgtcatgacg aggaagagcg tcgacgaccc cggcaggcca ccgggcatcg tgctcaacgc 1800 cgccacctcc ttctggctcc ccgtccctcc cgccgccgtc ttcgacttcc tccgcgacga 1860 gacctctcgc agcgagtggg acattctgtc caacggcggc gccgtccaag aaatggctca 1920 cattgccaac ggccgtgacc atggcaactc tgtctcgctt cttcgtgtca atagtgcaaa 1980 ttcaaaccag agcaacatgc tgatcctgca agagagctgc acggacgcgt cgggctccta 2040 cgtggtgtac gcgccggtgg acatcgtggc gatgaacgtg gtgctcaacg gcggcgaccc 2100 ggactacgtg gcgctgctgc cgtcggggtt cgccatcctt cccgacgggc cgtcggggaa 2160 cgcgcaggcc gccgtcgggg agaacggctc cggctccggc ggggggtccc tcctgacggt 2220 ggcgttccag atcctcgtcg actccgtgcc gacggcgaag ctctcgctgg gctccgtcgc 2280 gacggtgaac agcctcatcg cctgcacggt ggagcgcatc aaggccgccg tctgcaggga 2340 cagcaaccct cagtag 2356 <210> 21 <211> 151 <212> PRT <213> Artificial Sequence <220> <223> oshdstart1-m27 <400> 21 Met Thr Pro Ala Arg Arg Met Pro Pro Val Ile Gly Arg Asn Gly Val 1 5 10 15 Ala Tyr Glu Ser Pro Ser Ala Gln Leu Pro Leu Thr Gln Ala Asp Met 20 25 30 Leu Asp Ser His His Leu Gln Gln Ala Leu Gln Gln Gln Tyr Phe Asp 35 40 45 Gln Ile Pro Val Thr Thr Thr Ala Ala Ala Asp Ser Gly Asp Asn Met 50 55 60 Leu His Gly Arg Ala Asp Ala Gly Gly Leu Val Asp Glu Phe Glu Ser 65 70 75 80 Lys Ser Cys Ser Glu Asn Val Asp Gly Ala Gly Asp Gly Leu Ser Gly 85 90 95 Asp Asp Gln Asp Pro Asn Gln Arg Pro Arg Lys Lys Arg Tyr His Arg 100 105 110 His Thr Gln His Gln Ile Gln Glu Met Glu Ala Phe Phe Lys Glu Cys 115 120 125 Pro His Pro Asp Asp Lys Gln Arg Lys Glu Leu Ser Arg Glu Leu Gly 130 135 140 Leu Glu Pro Leu Thr Gly *** 145 150 <110> REPUBLIC OF KOREA(MANAGEMENT : RURAL DEVELOPMENT ADMINISTRATION) <120> OsHDSTART1 gene regulating plant ideotype and use thereof <130> DP20210293 <160> 21 <170> KoPatentIn 3.0 <210> 1 <211> 2355 <212> DNA < 213> Artificial Sequence <220> <223> OsHDSTART1 <400> 1 atgacgccgg cgaggcgcat gccgccggtg atcggccgga acggcgtggc gtacgaatcg 60 ccgtcggcgc agctgcccct cacccaggct gatatgctgg acagccatca tctgcagcaa 120 gcactccagc agcaatactt cgatcagatc ccggtgacga cgacggcggc ggcggacagc 180 ggcgacaaca tgctgcacgg ccgcgccgac gccggcgggc tggttgacga gttcgagagc 240 aagtcgtgca gcgagaacgt cgacggcgcc ggcgacggcc tctccggcga cg accagac 300 cccaaccagc ggccgcgcaa gaagcgttac caccgccata cccagcacca gatccaagag 360 atggaagctt tcttcaagga gtgcccgcac ccagacgaca agcagcgcaa ggagctgagc 420 agggagctgg gtcttgaacc tctgcaggtt aaattctggt ttcaga acaa gcgcacacag 480 atgaagaacc agcacgagag gcacgagaac gcgcagctgc gggcggagaa cgacaagctg 540 cgcgcggaga acatgcgata caaggaggcc ctgagcagcg cgtcgtgccc caactgcggc 600 ggccccgccg ccctcggcga gatgtccttc gac gagcacc acctccgcgt cgagaacgcc 660 cgcctccgcg acgagatcga ccgcatctcc ggcatcgccg ccaagcacgt cggcaagccc 720 cccatcgtct ccttccccgt cctctcctcc ccgctcgccg tcgccgccgc ccgctcccct 780 ctcgacctcg ccggcgccta cggcgtcgtc acccccggcc tcgacatgtt cggcggcgcc 840 ggcgacctcc tccgcggcgt gcacccgctc gacgccgaca agcccatgat cgtgg agctc 900 gccgtcgccg ccatggacga gctcgtccag atggcccagc tcgacgagcc gctctggtcg 960 tcgtcgtcgg agccggcggc ggcgttgctc gatgaggagg agtacgcgcg catgttcccg 1020 cgcggcctcg gccccaagca gtacggcctc aagtc ggagg cgtcccgcca tggcgccgtc 1080 gtcatcatga cgcacagcaa cctcgtcgag atcctcatgg atgtgaatca attcgcgacg 1140 gtgttctcga gcatcgtgtc gagagcgtcc acgcacgagg tgttgtccac aggcgtggca 1200 ggcaactaca atggtgcact gcaagtgatg tcaatggagt ttcaagtgcc gtcgccgctg 1260 gtgccgacga gggagagcta tttcgtcagg tactgcaaga acaactccga cgggacatgg 1320 gccgtc gtcg atgtctctct cgacagcctc cgccccagcc ctgtccagaa atgccggcgc 1380 aggccgtctg gctgcctcat ccaagaaatg cccaatggct actccaaggt gacatgggtg 1440 gagcatgtgg aggtggacga cagctcggtg cacaacatct acaagccatt ggtgaactcc 1500 ggcctc gcat tcggcgcgaa acggtgggtc ggcacgctgg accggcaatg cgagcgcctc 1560 gccagcgcca tggccagcaa catccccaat ggcgaccttg gagtgattac aagcgtggag 1620 gggaggaaga gcatgttgaa gctggcggag aggatggtgg cgagcttctg cggcggcgtg 1680 acggcgtcgg tggcgcacca gtggacgacg ctgtcgggca gcggggcgga ggacgtgcgc 1740 gtcatgacga g gaagagcgt cgacgacccc ggcaggccac cgggcatcgt gctcaacgcc 1800 gccacctcct tctggctccc cgtccctccc gccgccgtct tcgacttcct ccgcgacgag 1860 acctctcgca gcgagtggga cattctgtcc aacggcggcg ccgtccaaga aatggctcac 1920 att gccaacg gccgtgacca tggcaactct gtctcgcttc ttcgtgtcaa tagtgcaaat 1980 tcaaaccaga gcaacatgct gatcctgcaa gagagctgca cggacgcgtc gggctcctac 2040 gtggtgtacg cgccggtgga catcgtggcg atgaacgtgg tgctcaacgg cggcgacccg 2100 gactacgtgg cgctgctgcc gtcggggttc gccatccttc ccgacgggcc gtcggggaac 2160 gcgcaggccg ccgtcgggga gaacggctcc ggctccggcg gggggtccct cctgacggtg 2220 gcgttccaga tcctcgtcga ctccgtgccg acggcgaagc tctcgctggg ctccgtcgcg 2280 acggtgaaca gcctcatcgc ctgcacggtg gagcgcatca aggccgccgt ctgcagggac 2340 agcaaccctc agtag 2355 <210> 2 <211> 785 < 212> PRT <213> Artificial Sequence <220> <223> OsHDSTART1 <400> 2 Met Thr Pro Ala Arg Arg Met Pro Pro Val Ile Gly Arg Asn Gly Val 1 5 10 15 Ala Tyr Glu Ser Pro Ser Ala Gln Leu Pro Leu Thr Gln Ala Asp Met 20 25 30 Leu Asp Ser His His Leu Gln Gln Ala Leu Gln Gln Gln Tyr Phe Asp 35 40 45 Gln Ile Pro Val Thr Thr Thr Ala Ala Ala Asp Ser Gly Asp Asn Met 50 55 60 Leu His Gly Arg Ala Asp Ala Gly Gly Leu Val Asp Glu Phe Glu Ser 65 70 75 80 Lys Ser Cys Ser Glu Asn Val Asp Gly Ala Gly Asp Gly Leu Ser Gly 85 90 95 Asp Asp Gln Asp Pro Asn Gln Arg Pro Arg Lys Lys Arg Tyr His Arg 100 105 110 His Thr Gln His Gln Ile Gln Glu Met Glu Ala Phe Phe Lys Glu Cys 115 120 125 Pro His Pro Asp Asp Lys Gln Arg Lys Glu Leu Ser Arg Glu Leu Gly 130 135 140 Leu Glu Pro Leu Gln Val Lys Phe Trp Phe Gln Asn Lys Arg Thr Gln 145 150 155 160 Met Lys Asn Gln His Glu Arg His Glu Asn Ala Gln Leu Arg Ala Glu 165 170 175 Asn Asp Lys Leu Arg Ala Glu Asn Met Arg Tyr Lys Glu Ala Leu Ser 180 185 190 Ser Ala Ser Cys Pro Asn Cys Gly Gly Pro Ala Ala Leu Gly Glu Met 195 200 205 Ser Phe Asp Glu His His Leu Arg Val Glu Asn Ala Arg Leu Arg Asp 210 215 220 Glu Ile Asp Arg Ile Ser Gly Ile Ala Ala Lys His Val Gly Lys Pro 225 230 235 240 Pro Ile Val Ser Phe Pro Val Leu Ser Ser Pro Leu Ala Val Ala Ala 245 250 255 Ala Arg Ser Pro Leu Asp Leu Ala Gly Ala Tyr Gly Val Val Thr Pro 260 265 270 Gly Leu Asp Met Phe Gly Gly Ala Gly Asp Leu Leu Arg Gly Val His 275 280 285 Pro Leu Asp Ala Asp Lys Pro Met Ile Val Glu Leu Ala Val Ala Ala 290 295 300 Met Asp Glu Leu Val Gln Met Ala Gln Leu Asp Glu Pro Leu Trp Ser 305 310 315 320 Ser Ser Ser Glu Pro Ala Ala Ala Leu Leu Asp Glu Glu Glu Tyr Ala 325 330 335 Arg Met Phe Pro Arg Gly Leu Gly Pro Lys Gln Tyr Gly Leu Lys Ser 340 345 350 Glu Ala Ser Arg His Gly Ala Val Val Ile Met Thr His Ser Asn Leu 355 360 365 Val Glu Ile Leu Met Asp Val Asn Gln Phe Ala Thr Val Phe Ser Ser 370 375 380 Ile Val Ser Arg Ala Ser Thr His Glu Val Leu Ser Thr Gly Val Ala 385 390 395 400 Gly Asn Tyr Asn Gly Ala Leu Gln Val Met Ser Met Glu Phe Gln Val 405 410 415 Pro Ser Pro Leu Val Pro Thr Arg Glu Ser Tyr Phe Val Arg Tyr Cys 420 425 430 Lys Asn Asn Ser Asp Gly Thr Trp Ala Val Val Asp Val Ser Leu Asp 435 440 445 Ser Leu Arg Pro Ser Pro Val Gln Lys Cys Arg Arg Arg Pro Ser Gly 450 455 460 Cys Leu Ile Gln Glu Met Pro Asn Gly Tyr Ser Lys Val Thr Trp Val 465 470 475 480 Glu His Val Glu Val Asp Asp Ser Ser Val His Asn Ile Tyr Lys Pro 485 490 495 Leu Val Asn Ser Gly Leu Ala Phe Gly Ala Lys Arg Trp Val Gly Thr 500 505 510 Leu Asp Arg Gln Cys Glu Arg Leu Ala Ser Ala Met Ala Ser Asn Ile 515 520 525 Pro Asn Gly Asp Leu Gly Val Ile Thr Ser Val Glu Gly Arg Lys Ser 530 535 540 Met Leu Lys Leu Ala Glu Arg Met Val Ala Ser Phe Cys Gly Gly Val 545 550 555 560 Thr Ala Ser Val Ala His Gln Trp Thr Thr Leu Ser Gly Ser Gly Ala 565 570 575 Glu Asp Val Arg Val Met Thr Arg Lys Ser Val Asp Asp Pro Gly Arg 580 585 590 Pro Pro Gly Ile Val Leu Asn Ala Ala Thr Ser Phe Trp Leu Pro Val 595 600 605 Pro Pro Ala Ala Val Phe Asp Phe Leu Arg Asp Glu Thr Ser Arg Ser 610 615 620 Glu Trp Asp Ile Leu Ser Asn Gly Gly Ala Val Gln Glu Met Ala His 625 630 635 640 Ile Ala Asn Gly Arg Asp His Gly Asn Ser Val Ser Leu Leu Arg Val 645 650 655 Asn Ser Ala Asn Ser Asn Gln Ser Asn Met Leu Ile Leu Gln Glu Ser 660 665 670 Cys Thr Asp Ala Ser Gly Ser Tyr Val Val Val Tyr Ala Pro Val Asp Ile 675 680 685 Val Ala Met Asn Val Val Leu Asn Gly Gly Asp Pro Asp Tyr Val Ala 690 695 700 Leu Leu Pro Ser Gly Phe Ala Ile Leu Pro Asp Gly Pro Ser Gly Asn 705 710 715 720 Ala Gln Ala Ala Val Gly Glu Asn Gly Ser Gly Ser Gly Gly Gly Ser 725 730 735 Leu Leu Thr Val Ala Phe Gln Ile Leu Val Asp Ser Val Pro Thr Ala 740 745 750 Lys Leu Ser Leu Gly Ser Val Ala Thr Val Asn Ser Leu Ile Ala Cys 755 760 765 Thr Val Glu Arg Ile Lys Ala Ala Val Cys Arg Asp Ser Asn Pro Gln 770 775 780 *** 785 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gRNA-OsHDSTART1 <400> 3 aaccagaatt taacctgcag 20 <210> 4 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> OsU3-F <400> 4 aaggaatctt taaacatacg aacagatcac ttaaag 36 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence < 220> <223> PRGEB32-HDIII <400> 5 TGCCACGACGACGACTGACA ACTC 24 <210> 6 <211> 39 <212> DNA <213> Artificial sequence <220> gatta CGCAAGCTT AaggaatctT TAAACATAC 39 <210> 7 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> gRNA-OsHDSTART1-R1 <400> 7 atttctagct ctaaaacctg caggttaaat tctggtttgc cacggatcat ctgc 54 <210> 8 <211> 20 <212 > DNA <213> Artificial Sequence <220> <223> OsHDSTART1-R2 <400> 8 ctgcaggtta aattctggtt 20 <210> 9 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> M13R <400> 9 gcggataaca atttcacaca g 21 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Cas9F <400> 10 gagaacatcg tgatcgaaat 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Cas9R <400> 11 tctcggcctt ggtcagattg 20 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Os04g53540G-2453F <400> 12 cgttcacacg ttcaaccga a c 21 <210> 13 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Os04g53540G-2872R <400> 13 gcactcgctt gcaggttgc 19 <210> 14 <211> 2356 <212> DNA <213> Artificial Sequence <220> <223> oshdstart1-m11 <400> 14 atgacgccgg cgaggcgcat gccgccggtg atcggccgga acggcgtggc gtacgaatcg 60 ccgtcggcgc agctgcccct cacccaggct gatatgctgg acagccatca tctgcagcaa 120 gcactccagc agcaat actt cgatcagatc ccggtgacga cgacggcggc ggcggacagc 180 ggcgacaaca tgctgcacgg ccgcgccgac gccggcgggc tggttgacga gttcgagagc 240 aagtcgtgca gcgagaacgt cgacggcgcc ggcgacggcc tctccggcga cgaccaggac 300 cccaaccagc ggccgcgcaa gaagcgttac caccgccata cccagcacca gatccaagag 360 atggaagctt tcttcaagga gtgcccgcac ccagacgaca agcagcgcaa ggagctgagc 420 agggagctgg gtcttgaacc tctgacaggt taaattctgg tttcagaaca agcgcacaca 480 gatgaaga ac cagcacgaga ggcacgagaa cgcgcagctg cgggcggaga acgacaagct 540 gcgcgcggag aacatgcgat acaaggaggc cctgagcagc gcgtcgtgcc ccaactgcgg 600 cggccccgcc gccctcggcg agatgtcctt cgacgagcac cacctccgcg tcgagaacg c 660 ccgcctccgc gacgagatcg accgcatctc cggcatcgcc gccaagcacg tcggcaagcc 720 ccccatcgtc tccttccccg tcctctcctc cccgctcgcc gtcgccgccg cccgctcccc 780 tctcgacctc gccggcgcct acggcgtcgt cacccccggc ctcgacatgt tcggcggcgc 840 cggcgacctc ctccgcggcg tgcacccgct cgacgccgac aagcccatga tcgtggagct 900 cgccgtc gcc gccatggacg agctcgtcca gatggcccag ctcgacgagc cgctctggtc 960 gtcgtcgtcg gagccggcgg cggcgttgct cgatgaggag gagtacgcgc gcatgttccc 1020 gcgcggcctc ggccccaagc agtacggcct caagtcggag gcgtcccgcc atgg cgccgt 1080 cgtcatcatg acgcacagca acctcgtcga gatcctcatg gatgtgaatc aattcgcgac 1140 ggtgttctcg agcatcgtgt cgagagcgtc cacgcacgag gtgttgtcca caggcgtggc 1200 aggcaactac aatggtgcac tgcaagtgat gtcaatggag tttcaagtgc cgtcgccgct 1260 ggtgccgacg agggagct atttcgtcag gtactgcaag aacaactccg acgggacatg 1320 ggccgtcgtc gatgtctctc tcgacagcct ccgccccagc cctgtccaga aatgccggcg 1380 caggccgtct ggctgcctca tccaagaaat gcccaatggc tactccaagg tgacatgggt 1440 ggagcatgtg gaggtggacg acagctcggt gcacaacatc tacaagccat tggtgaactc 1500 cggcctcg ca ttcggcgcga aacggtgggt cggcacgctg gaccggcaat gcgagcgcct 1560 cgccagcgcc atggccagca acatccccaa tggcgacctt ggagtgatta caagcgtgga 1620 ggggaggaag agcatgttga agctggcgga gaggatggtg gcgagcttct gcggcggcgt 1680 gacggcgtcg gtggcgcacc agtggacgac gctgtcgggc agcggggcgg aggacgtgcg 1740 cgtcatgacg aggaagagcg tcgacg accc cggcaggcca ccgggcatcg tgctcaacgc 1800 cgccacctcc ttctggctcc ccgtccctcc cgccgccgtc ttcgacttcc tccgcgacga 1860 gacctctcgc agcgagtggg acattctgtc caacggcggc gccgtccaag aaatggctca 1920 cattgcca ac ggccgtgacc atggcaactc tgtctcgctt cttcgtgtca atagtgcaaa 1980 ttcaaaccag agcaacatgc tgatcctgca agagagctgc acggacgcgt cgggctccta 2040 cgtggtgtac gcgccggtgg acatcgtggc gatgaacgtg gtgctcaacg gcggcgaccc 2100 ggactacgtg gcgctgctgc cgtcggggtt cgccatcctt cccgacgggc cgtcggggaa 2160 cgcgcaggcc gccgtcgggg agaacggctc cggctccggc ggggggtccc tcctgacggt 2220 ggcgttccag atcctcgtcg actccgtgcc gacggcgaag ctctcgctgg gctccgtcgc 2280 gacggtgaac agcctcatcg cctgcacggt ggagcgcatc aaggccgccg tctgcaggga 2340 cagcaaccct cagtag 2356 <210> 15 <211> 151 <212> PRT <213> Artificial Sequence <220> <223> oshdstart1-m11 <400> 15 Met Thr Pro Ala Arg Arg Met Pro Pro Val Ile Gly Arg Asn Gly Val 1 5 10 15 Ala Tyr Glu Ser Pro Ser Ala Gln Leu Pro Leu Thr Gln Ala Asp Met 20 25 30 Leu Asp Ser His His Leu Gln Gln Ala Leu Gln Gln Gln Tyr Phe Asp 35 40 45 Gln Ile Pro Val Thr Thr Thr Ala Ala Ala Asp Ser Gly Asp Asn Met 50 55 60 Leu His Gly Arg Ala Asp Ala Gly Gly Leu Val Asp Glu Phe Glu Ser 65 70 75 80 Lys Ser Cys Ser Glu Asn Val Asp Gly Ala Gly Asp Gly Leu Ser Gly 85 90 95 Asp Asp Gln Asp Pro Asn Gln Arg Pro Arg Lys Lys Arg Tyr His Arg 100 105 110 His Thr Gln His Gln Ile Gln Glu Met Glu Ala Phe Phe Lys Glu Cys 115 120 125 Pro His Pro Asp Asp Lys Gln Arg Lys Glu Leu Ser Arg Glu Leu Gly 130 135 140 Leu Glu Pro Leu Thr Gly ** * 145 150 <210> 16 <211> 2356 <212> DNA <213> Artificial Sequence <220> <223> oshdstart1-m25 <400> 16 atgacgccgg cgaggcgcat gccgccggtg atcggccgga acggcgtggc gtacgaatcg 60 ccgtcggcgc agctg cccct cacccaggct gatatgctgg acagccatca tctgcagcaa 120 gcactccagc agcaatactt cgatcagatc ccggtgacga cgacggcggc ggcggacagc 180 ggcgacaaca tgctgcacgg ccgcgccgac gccggcgggc tggttgacga gttcgagagc 240 aagtcgtgca gcgagaacgt cgacggcgcc ggcgacggcc tctccggcga cgaccaggac 300 cccaac cagc ggccgcgcaa gaagcgttac caccgccata cccagcacca gatccaagag 360 atggaagctt tcttcaagga gtgcccgcac ccagacgaca agcagcgcaa ggagctgagc 420 agggagctgg gtcttgaacc tctgacaggt taaattctgg tttcagaaca agcgca caca 480 gatgaagaac cagcacgaga ggcacgagaa cgcgcagctg cgggcggaga acgacaagct 540 gcgcgcggag aacatgcgat acaaggaggc cctgagcagc gcgtcgtgcc ccaactgcgg 600 cggccccgcc gccctcggcg agatgtcctt cgacgagcac cacctccgcg tcgagaacgc 660 ccgcctccgc gacgagatcg accgcatctc cggcatcgcc gccaagcacg tcggcaagcc 720 ccccatcgtc tccttccccg tcctctcctc cccgctcgcc gtcgccgccg cccgctcccc 780 tctcgacctc gccggcgcct acggcgtcgt cacccccggc ctcgacatgt tcggcggcgc 840 cggcgacctc ctccgcggcg tgcacccgct cgacgccgac aagcccatga tcgtggagct 90 0 cgccgtcgcc gccatggacg agctcgtcca gatggcccag ctcgacgagc cgctctggtc 960 gtcgtcgtcg gagccggcgg cggcgttgct cgatgaggag gagtacgcgc gcatgttccc 1020 gcgcggcctc ggccccaagc agtacggcct caagtcggag gcgtcccgcc atggcgccgt 1080 cgtcatcatg acgcacagca acctcgtcga gatcctcatg gatgtgaatc aattcgcgac 1140 ggtgttctcg agcatcgtgt cgagagcgtc cacg cacgag gtgttgtcca caggcgtggc 1200 aggcaactac aatggtgcac tgcaagtgat gtcaatggag tttcaagtgc cgtcgccgct 1260 ggtgccgacg agggagagct atttcgtcag gtactgcaag aacaactccg acgggacatg 1320 ggccgtcgtc gatgtct ctc tcgacagcct ccgccccagc cctgtccaga aatgccggcg 1380 caggccgtct ggctgcctca tccaagaaat gcccaatggc tactccaagg tgacatgggt 1440 ggagcatgtg gaggtggacg acagctcggt gcacaacatc tacaagccat tggtgaactc 1500 cggcctcgca ttcggcgcga aacggtgggt cggcacgctg gaccggcaat gcgagcgcct 1560 cgccagcgcc atggccagca acatccccaa tggcgacctt g gagtgatta caagcgtgga 1620 ggggaggaag agcatgttga agctggcgga gaggatggtg gcgagcttct gcggcggcgt 1680 gacggcgtcg gtggcgcacc agtggacgac gctgtcgggc agcggggcgg aggacgtgcg 1740 cgtcatgacg aggaagagcg tc gacgaccc cggcaggcca ccgggcatcg tgctcaacgc 1800 cgccacctcc ttctggctcc ccgtccctcc cgccgccgtc ttcgacttcc tccgcgacga 1860 gacctctcgc agcgagtggg acattctgtc caacggcggc gccgtccaag aaatggctca 1920 cattgccaac ggccgtgacc atggcaactc tgtctcgctt cttcgtgtca atagtgcaaa 1980 ttcaaaccag agcaacatgc tgatcctgca agagagctgc acggacgc gt cgggctccta 2040 cgtggtgtac gcgccggtgg acatcgtggc gatgaacgtg gtgctcaacg gcggcgaccc 2100 ggactacgtg gcgctgctgc cgtcggggtt cgccatcctt cccgacgggc cgtcggggaa 2160 cgcgcaggcc gccgtcgggg agaacggctc c ggctccggc ggggggtccc tcctgacggt 2220 ggcgttccag atcctcgtcg actccgtgcc gacggcgaag ctctcgctgg gctccgtcgc 2280 gacggtgaac agcctcatcg cctgcacggt ggagcgcatc aaggccgccg tctgcaggga 2340 cagcaaccct cagtag 2356 <210> 17 <211> 151 <212> PRT <213> Artificial Sequence <220> <223> oshdstart1-m25 <400> 17 Met Thr Pro Ala Arg Arg Met Pro Pro Val Ile Gly Arg Asn Gly Val 1 5 10 15 Ala Tyr Glu Ser Pro Ser Ala Gln Leu Pro Leu Thr Gln Ala Asp Met 20 25 30 Leu Asp Ser His His Leu Gln Gln Ala Leu Gln Gln Gln Tyr Phe Asp 35 40 45 Gln Ile Pro Val Thr Thr Thr Ala Ala Ala Asp Ser Gly Asp Asn Met 50 55 60 Leu His Gly Arg Ala Asp Ala Gly Gly Leu Val Asp Glu Phe Glu Ser 65 70 75 80 Lys Ser Cys Ser Glu Asn Val Asp Gly Ala Gly Asp Gly Leu Ser Gly 85 90 95 Asp Asp Gln Asp Pro Asn Gln Arg Pro Arg Lys Lys Arg Tyr His Arg 100 105 110 His Thr Gln His Gln Ile Gln Glu Met Glu Ala Phe Phe Lys Glu Cys 115 120 125 Pro His Pro Asp Asp Lys Gln Arg Lys Glu Leu Ser Arg Glu Leu Gly 130 135 140 Leu Glu Pro Leu Thr Gly *** 145 150 <210> 18 <211> 2356 <212> DNA <213> Artificial Sequence <220> <223> oshdstart1-m26 <400> 18 atgacgccgg cgaggcgcat gccgccggtg atcggccgga acggcgtggc gtacgaatcg 60 ccgtcggcgc agctgcccct cacccaggct gatatgctgg acagccatca tctgcagcaa 120 gcactccagc agcaatactt cgatcagatc ccggtgacga cgac ggcggc ggcggacagc 180 ggcgacaaca tgctgcacgg ccgcgccgac gccggcgggc tggttgacga gttcgagagc 240 aagtcgtgca gcgagaacgt cgacggcgcc ggcgacggcc tctccggcga cgaccaggac 300 cccaaccagc ggccgcgcaa gaagcgttac caccgccata cccagcacca gatccaagag 360 atggaagctt tcttcaagga gtgcccgcac ccagacgaca agcagcgcaa ggagctgagc 420 agggagctgg gtcttgaacc tctgtcaggt taaattctgg tttcagaaca agcgcacaca 480 gatgaagaac cagcacgaga ggcacgagaa cgcgcagctg cgggcggaga acgacaagct 540 gcgcgcggag aacatgcgat acaagga ggc cctgagcagc gcgtcgtgcc ccaactgcgg 600 cggccccgcc gccctcggcg agatgtcctt cgacgagcac cacctccgcg tcgagaacgc 660 ccgcctccgc gacgagatcg accgcatctc cggcatcgcc gccaagcacg tcggcaagcc 720 ccccatcgtc tccttccccg tcctctcctc cccgctcgcc gtcgccgccg cccgctcccc 780 tctcgacctc gccggcgcct acggcgtcgt cacccccggc ctcgacatgt tcggcggcgc 840 cggcgacctc ctccgcggcg tgcacccgct cgacgccgac aagcccatga tcgtggagct 900 cgccgtcgcc gccatggacg agctcgtcca gatggcccag ctcgacgagc cgctctggtc 960 gtcgtcgtcg gagccggcgg cggcgt tgct cgatgaggag gagtacgcgc gcatgttccc 1020 gcgcggcctc ggccccaagc agtacggcct caagtcggag gcgtcccgcc atggcgccgt 1080 cgtcatcatg acgcacagca acctcgtcga gatcctcatg gatgtgaatc aattcgcgac 1140 ggtgttctcg agcatcgtgt cgagagcgtc cacgcacgag gtgttgtcca caggcgtggc 1200 aggcaactac aatggtgcac tgcaagtgat gtcaatggag tttcaagtgc cgtcgccgct 1260 ggtgccgacg agggaggct atttcgtcag gtactgcaag aacaactccg acgggacatg 1320 ggccgtcgtc gatgtctctc tcgacagcct ccgccccagc cctgtccaga aatgccggcg 1380 caggccgtct ggctgcctca tccaagaaat gcccaatggc tactcc aagg tgacatgggt 1440 ggagcatgtg gaggtggacg acagctcggt gcacaacatc tacaagccat tggtgaactc 1500 cggcctcgca ttcggcgcga aacggtgggt cggcacgctg gaccggcaat gcgagcgcct 1560 cgccagcgcc atggccagca acatccccaa tggcgacctt ggagtgatta caagcgtgga 1620 ggggaggaag agcatgttga agctggcgga gaggatggtg gcgagcttct gcggcggcgt 1680 gacggcgtcg gtggcgcacc agtggacgac gctgtcgggc agcggggcgg aggacgtgcg 1740 cgtcatgacg aggaagagcg tcgacgaccc cggcaggcca ccgggcatcg tgctcaacgc 1800 cgccacctcc ttctggctcc ccgtccctcc cgccgccgtc tt tga tcctgca agagagctgc acggacgcgt cgggctccta 2040 cgtggtgtac gcgccggtgg acatcgtggc gatgaacgtg gtgctcaacg gcggcgaccc 2100 ggactacgtg gcgctgctgc cgtcggggtt cgccatcctt cccgacgggc cgtcggggaa 2160 cgcgcaggcc gccgtcgggg agaacggctc cggctccggc ggggggtccc tcctgacggt 2220 ggcgttccag atcctcgtcg actccgtgcc gacggcgaag ctctcgctgg gctccgt cgc 2280 gacggtgaac agcctcatcg cctgcacggt ggagcgcatc aaggccgccg tctgcaggga 2340 cagcaaccct cagtag 2356 <210> 19 <211> 151 <212> PRT <213> Artificial Sequence <220> <223> oshdstart1-m26 <400> 19 Met Thr Pro Ala Arg Arg Met Pro Pro Val Ile Gly Arg Asn Gly Val 1 5 10 15 Ala Tyr Glu Ser Pro Ser Ala Gln Leu Pro Leu Thr Gln Ala Asp Met 20 25 30 Leu Asp Ser His His Leu Gln Gln Ala Leu Gln Gln Gln Tyr Phe Asp 35 40 45 Gln Ile Pro Val Thr Thr Thr Ala Ala Ala Asp Ser Gly Asp Asn Met 50 55 60 Leu His Gly Arg Ala Asp Ala Gly Gly Leu Val Asp Glu Phe Glu Ser 65 70 75 80 Lys Ser Cys Ser Glu Asn Val Asp Gly Ala Gly Asp Gly Leu Ser Gly 85 90 95 Asp Asp Gln Asp Pro Asn Gln Arg Pro Arg Lys Lys Arg Tyr His Arg 100 105 110 His Thr Gln His Gln Ile Gln Glu Met Glu Ala Phe Phe Lys Glu Cys 115 120 125 Pro His Pro Asp Asp Lys Gln Arg Lys Glu Leu Ser Arg Glu Leu Gly 130 135 140 Leu Glu Pro Leu Ser Gly *** 145 150 <210> 20 <211 > 2356 <212> DNA <213> Artificial Sequence <220> <223> oshdstart1-m27 <400> 20 atgacgccgg cgaggcgcat gccgccggtg atcggccgga acggcgtggc gtacgaatcg 60 ccgtcggcgc agctgcccct cacccaggct gatatgctgg acagccatca tctgcagcaa 120 gcactccagc agcaatactt cgatcagatc ccggtgacga cgacggcggc ggcggacagc 180 ggcgacaaca tgctgcacgg ccgcgccgac gccggcgggc tggttgacga gttcgagagc 240 aagtcgtgca gcgagaacgt cgacggcgcc ggcgacggcc tctccggcga cgaccaggac 300 cccaaccagc ggccgcgcaa gaagcgttac caccgccata cccagcacca gatccaagag 360 atggaagctt tcttcaagga gtgcccgcac ccagacgaca agcagcgcaa ggagctgagc 420 agggagctgg gtcttgaacc tctgacaggt taaattctgg tttcagaaca agcgcacaca 480 gatgaagaac cagcacgaga ggcacgagaa cgcgcagctg cgggcggaga acgacaagct 540 gcgcgcggag aacatgcgat acaaggaggc cctgagcagc gcgtcgtgcc ccaactgcgg 600 cggccccgcc gccctcggcg agatgtcctt cgacgagcac cacctccgcg tcgagaacgc 660 ccgcctccgc gacgagatcg accgcatctc cggcatcgcc gccaagcacg tcggcaagcc 720 ccccatcgtc tccttccccg tcctctcctc cccgctcgcc gtcgccgccg cccgctcccc 780 tctcgacctc gccggcgcct acggcgtcgt cacccccggc ctcgacatgt tcggcggcgc 840 cggcgacctc ctccgcggcg tgcacccgct cgacgccgac aagcccatga tcgtggagct 900 cgccgtcgcc gccatggacg agctcgtcca gatggcccag ctcgacgagc cgctctggtc 960 gtcgtcgtcg gagccggc gg cggcgttgct cgatgaggag gagtacgcgc gcatgttccc 1020 gcgcggcctc ggccccaagc agtacggcct caagtcggag gcgtcccgcc atggcgccgt 1080 cgtcatcatg acgcacagca acctcgtcga gatcctcatg gatgtgaatc aattcgcgac 1140 ggtgttctcg agcatcgtgt cgagagcgtc cacgcacgag gtgttgtcca caggcgtggc 1200 aggcaactac aatggtgcac tgcaagtgat gtcaatggag tttcaagtg c cgtcgccgct 1260 ggtgccgacg agggaggct atttcgtcag gtactgcaag aacaactccg acgggacatg 1320 ggccgtcgtc gatgtctctc tcgacagcct ccgccccagc cctgtccaga aatgccggcg 1380 caggccgtct ggctgcctca tccaagaaat gccca atggc tactccaagg tgacatgggt 1440 ggagcatgtg gaggtggacg acagctcggt gcacaacatc tacaagccat tggtgaactc 1500 cggcctcgca ttcggcgcga aacggtgggt cggcacgctg gaccggcaat gcgagcgcct 1560 cgccagcgcc atggccagca acatccccaa tggcgacctt ggaggtgatta caagcgtgga 1620 ggggaggaag agcatgttga agctggcgga gaggatggtg gcgagcttct gcggcgg cgt 1680 gacggcgtcg gtggcgcacc agtggacgac gctgtcgggc agcggggcgg aggacgtgcg 1740 cgtcatgacg aggaagagcg tcgacgaccc cggcaggcca ccgggcatcg tgctcaacgc 1800 cgccacctcc ttctggctcc ccgtccctcc cgccg ccgtc ttcgacttcc tccgcgacga 1860 gacctctcgc agcgagtggg acattctgtc caacggcggc gccgtccaag aaatggctca 1920 cattgccaac ggccgtgacc atggcaactc tgtctcgctt cttcgtgtca atagtgcaaa 1980 ttcaaaccag agcaacatgc tgatcctgca agagagctgc acggacgcgt cgggctccta 2040 cgtggtgtac gcgccggtgg acatcgtggc gatgaacgtg gtgctcaacg gcggcgaccc 210 0 ggactacgtg gcgctgctgc cgtcggggtt cgccatcctt cccgacgggc cgtcgggggaa 2160 cgcgcaggcc gccgtcgggg agaacggctc cggctccggc ggggggtccc tcctgacggt 2220 ggcgttccag atcctcgtcg actccgtgcc gacggcgaag ctctcg ctgg gctccgtcgc 2280 gacggtgaac agcctcatcg cctgcacggt ggagcgcatc aaggccgccg tctgcaggga 2340 cagcaaccct cagtag 2356 <210> 21 <211> 151 <212> PRT <213> Artificial Sequence <220> <223> oshdstart1-m27 <400> 21 Met Thr Pro Ala Arg Arg Met Pro Val Ile Gly Arg Asn Gly Val 1 5 10 15 Ala Tyr Glu Ser Pro Ser Ala Gln Leu Pro Leu Thr Gln Ala Asp Met 20 25 30 Leu Asp Ser His Leu Gln Gln Ala Leu Gln Gln Gln Tyr Phe Asp 35 40 45 Gln Ile Pro Val Thr Thr Thr Thr Ala Ala Ala Asp Ser Gly Asp Asn Met 50 55 60 Leu His Gly Arg Ala Asp Ala Gly Gly Leu Val Asp Glu Phe Glu Ser 65 70 75 80 Lys Ser Cys Ser Glu Asn Val Asp Gly Ala Gly Asp Gly Leu Ser Gly 85 90 95 Asp Asp Gln Asp Pro Asn Gln Arg Pro Arg Lys Lys Arg Tyr His Arg 100 105 110 His Thr Gln His Gln Ile Gln Glu Met Glu Ala Phe Phe Lys Glu Cys 115 120 125 Pro His Pro Asp Asp Lys Gln Arg Lys Glu Leu Ser Arg Glu Leu Gly 130 135 140Leu Glu Pro Leu Thr Gly*** 145 150

Claims (13)

OsHDSTART1 단백질의 호메오도메인을 코딩하는 OsHDSTART1 유전자를 특이적으로 인식하는, 서열번호 3의 염기서열로 이루어진 식물체 유전자 편집 유도용 가이드 RNA.A guide RNA comprising the nucleotide sequence of SEQ ID NO: 3 for inducing plant gene editing that specifically recognizes the OsHDSTART1 gene encoding the homeodomain of the OsHDSTART1 protein. 제 1항에 있어서,
가이드 RNA는 엔도뉴클레아제를 OsHDSTART1 유전자의 표적 위치에 가이드하여 단일 염기의 삽입 변이를 유도하는 것인, 가이드 RNA.
According to claim 1,
The guide RNA guides the endonuclease to the target site of the OsHDSTART1 gene to induce insertion mutation of a single base.
제1항에 있어서,
OsHDSTART1 단백질은 서열번호 2로 표시되는 아미노산 서열 또는 서열번호 2의 아미노산 서열에 대해 적어도 90%의 동일성을 갖는 아미노산 서열로 이루어진 것인, 가이드 RNA.
According to claim 1,
The OsHDSTART1 protein consists of the amino acid sequence represented by SEQ ID NO: 2 or an amino acid sequence having at least 90% identity to the amino acid sequence of SEQ ID NO: 2, guide RNA.
OsHDSTART1 단백질의 호메오도메인을 코딩하는 OsHDSTART1 유전자를 특이적으로 인식하는 가이드 RNA를 코딩하는 서열번호 3의 염기서열로 이루어진 핵산 서열 및 엔도뉴클레아제를 코딩하는 핵산 서열을 포함하는 OsHDSTART1 단백질의 호메오도메인을 코딩하는 OsHDSTART1 유전자의 유전자 편집용 벡터.Homeo of OsHDSTART1 protein comprising a nucleic acid sequence consisting of the nucleotide sequence of SEQ ID NO: 3 encoding guide RNA specifically recognizing OsHDSTART1 gene encoding the homeodomain of OsHDSTART1 protein and a nucleic acid sequence encoding endonuclease A vector for gene editing of the OsHDSTART1 gene encoding the domain. 제1항의 가이드 RNA 또는 제4항의 벡터를 유효성분으로 포함하는 OsHDSTART1 유전자 편집용 조성물.An OsHDSTART1 gene editing composition comprising the guide RNA of claim 1 or the vector of claim 4 as an active ingredient. 제4항의 벡터 또는 제5항의 조성물로 형질전환된 형질전환 식물체.A transgenic plant transformed with the vector of claim 4 or the composition of claim 5. 제 6항에 있어서,
야생형과 비교하여 바깥쪽으로 잎이 말리는 초형변이가 증대되고 잎의 물 이용효율이 증가된 것인, 형질전환 식물체.
According to claim 6,
Compared to the wild type, a transgenic plant in which the supermorphic variation in which the leaves are rolled outward is increased and the water utilization efficiency of the leaves is increased.
바깥쪽으로 잎이 말리는 초형변이를 증대시키는 활성을 나타내는 변형된 OsHDSTART1 단백질을 발현하는, 형질전환된 벼.Transformed rice expressing a modified OsHDSTART1 protein that exhibits activity to enhance outward leaf curl supermorphism. 제8항에 있어서,
상기 변형된 OsHDSTART1 단백질은 서열번호 14, 16, 18 및 20 중에서 선택되는 어느 하나의 염기 서열을 갖는 유전자로부터 발현되는 것인, 형질전환된 벼.
According to claim 8,
The modified OsHDSTART1 protein is expressed from a gene having any one nucleotide sequence selected from SEQ ID NOs: 14, 16, 18 and 20, transformed rice.
제6항에 있어서,
벼(Orizaya stavia)인 것인, 형질전환 식물체.
According to claim 6,
Rice ( Orizaya stavia ), transgenic plants.
제6항에 따른 형질전환 식물체 또는 그 자손 식물로부터 수득한 형질전환된 종자.A transformed seed obtained from a transgenic plant according to claim 6 or a plant progeny thereof. OsHDSTART1 단백질의 호메오도메인을 코딩하는 OsHDSTART1 유전자를 특이적으로 인식하는 가이드 RNA를 코딩하는 서열번호 3의 염기서열로 이루어진 핵산 서열 및 엔도뉴클레아제를 코딩하는 핵산 서열을 포함하는 OsHDSTART1 단백질의 호메오도메인을 코딩하는 OsHDSTART1 유전자의 유전자 편집용 벡터를 준비하는 단계; 및
상기 벡터를 식물체에 형질도입하여 OsHDSTART1 유전자에변이를 유도하는 단계를 포함하는, 형질전환 식물체의 제조방법.
Homeo of OsHDSTART1 protein comprising a nucleic acid sequence consisting of the nucleotide sequence of SEQ ID NO: 3 encoding guide RNA specifically recognizing OsHDSTART1 gene encoding the homeodomain of OsHDSTART1 protein and a nucleic acid sequence encoding endonuclease Preparing a vector for gene editing of the OsHDSTART1 gene encoding the domain; and
A method for producing a transgenic plant comprising the step of inducing a mutation in the OsHDSTART1 gene by transducing the vector into the plant.
제12항의 제조방법에 의해 제조된, 야생형 대비 바깥쪽으로 잎이 말리는 초형변이가 증대되고 잎의 물 이용효율이 증가된, 형질전환 벼.The transgenic rice produced by the production method of claim 12, wherein the supermorphic variation in which the leaves are rolled outward is increased and the water utilization efficiency of the leaves is increased compared to the wild type.
KR1020210174453A 2021-12-08 2021-12-08 OsHDSTART1 gene regulating plant ideotype and use thereof KR20230086123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210174453A KR20230086123A (en) 2021-12-08 2021-12-08 OsHDSTART1 gene regulating plant ideotype and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210174453A KR20230086123A (en) 2021-12-08 2021-12-08 OsHDSTART1 gene regulating plant ideotype and use thereof

Publications (1)

Publication Number Publication Date
KR20230086123A true KR20230086123A (en) 2023-06-15

Family

ID=86764042

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210174453A KR20230086123A (en) 2021-12-08 2021-12-08 OsHDSTART1 gene regulating plant ideotype and use thereof

Country Status (1)

Country Link
KR (1) KR20230086123A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102113500B1 (en) 2018-12-03 2020-05-21 농업회사법인 주식회사 농우바이오 Method for producing genome-edited Brassica rapa plant having late flowering trait by SOC1 gene editing and the plant thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102113500B1 (en) 2018-12-03 2020-05-21 농업회사법인 주식회사 농우바이오 Method for producing genome-edited Brassica rapa plant having late flowering trait by SOC1 gene editing and the plant thereof

Similar Documents

Publication Publication Date Title
CN101607989B (en) Rice dwarf-related protein and coding gene and application thereof
KR20210039306A (en) Gene editing method using transgenic plants expressing CRISPR/Cas9 and gRNA, respectively
KR102113500B1 (en) Method for producing genome-edited Brassica rapa plant having late flowering trait by SOC1 gene editing and the plant thereof
CN113308479B (en) Application of SlNAC100 gene in improvement of low-temperature resistance of tomato
CN109609527A (en) CDPK18L gene is improving the application in tomato bacterial leaf spot resistance and high temperature resistance as negative regulatory factor
CN113151307B (en) Gene related to tobacco ethylene response transcription factor and application thereof
CN112812163B (en) Application of transcription factor in rice breeding and rice breeding method
US10041085B2 (en) Plant type related protein, and coding gene and application thereof
CN114150013B (en) Application of SlHDA4 gene in cultivation of top dominance-enhanced tomato germplasm
CN108456683B (en) Function and application of gene SID1 for regulating heading stage of rice
CN102399271A (en) Protein used for controlling sizes of seeds and organs, coding gene thereof, and application thereof
KR20230086123A (en) OsHDSTART1 gene regulating plant ideotype and use thereof
JP5403206B2 (en) Method for modifying plant morphology
KR20240072338A (en) OsHDSTART3 gene inducing leaf rolling and use thereof
KR20230161078A (en) OsHDSTART2 gene inducing plant ideotype and use thereof
CN115942868A (en) Cannabis plant with increased yield
KR20230109899A (en) OsMYB1 gene regulating seed germination and use thereof
KR102618072B1 (en) Guide RNA for editing vernalization gene and use thereof
CN116574701B (en) Histone demethylase SlJMJ10, coding gene thereof and application thereof in regulating and controlling tomato fruit size
KR20240086792A (en) Protein kinase gene for controlling heading date in rice and uses thereof
KR102051453B1 (en) Expression vector and process for enhancing biomass of plants by using suppression of PagSAP11 gene
US20220411809A1 (en) Gene mutations in tomato to yield compact and early yielding forms suitable for urban agriculture
CN116064572B (en) MdWOX11 gene and protein for promoting adventitious root development and application thereof
KR100496028B1 (en) A Method for Producing Herbicide-Resistant Chili Pepper Plant
CN117551686A (en) Method for regulating and controlling VRN1 gene transcription level of poaceae plant, biological material and application thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal