KR20230068545A - Fluidized bed boiler hydrogen chloride generation reducing agent using oyster shell, method for reducing hydrogen chloride generation in fluidized bed boiler furnace using the same and binder composition using the combustion residues - Google Patents
Fluidized bed boiler hydrogen chloride generation reducing agent using oyster shell, method for reducing hydrogen chloride generation in fluidized bed boiler furnace using the same and binder composition using the combustion residues Download PDFInfo
- Publication number
- KR20230068545A KR20230068545A KR1020210154438A KR20210154438A KR20230068545A KR 20230068545 A KR20230068545 A KR 20230068545A KR 1020210154438 A KR1020210154438 A KR 1020210154438A KR 20210154438 A KR20210154438 A KR 20210154438A KR 20230068545 A KR20230068545 A KR 20230068545A
- Authority
- KR
- South Korea
- Prior art keywords
- hydrogen chloride
- fluidized bed
- bed boiler
- weight
- oyster shell
- Prior art date
Links
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 title claims abstract description 85
- 229910000041 hydrogen chloride Inorganic materials 0.000 title claims abstract description 81
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 title claims abstract description 81
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 title claims abstract description 57
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 39
- 239000000203 mixture Substances 0.000 title claims abstract description 23
- 239000011230 binding agent Substances 0.000 title claims abstract description 19
- 239000003638 chemical reducing agent Substances 0.000 title claims description 28
- 239000000843 powder Substances 0.000 claims abstract description 50
- 239000004449 solid propellant Substances 0.000 claims abstract description 45
- 239000002893 slag Substances 0.000 claims description 20
- 239000000446 fuel Substances 0.000 claims description 14
- 239000004568 cement Substances 0.000 claims description 10
- 239000005416 organic matter Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 235000019738 Limestone Nutrition 0.000 claims description 7
- 239000006028 limestone Substances 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 241000237502 Ostreidae Species 0.000 abstract description 30
- 235000020636 oyster Nutrition 0.000 abstract description 30
- 239000007789 gas Substances 0.000 abstract description 23
- 238000010304 firing Methods 0.000 abstract description 12
- 239000003795 chemical substances by application Substances 0.000 abstract description 11
- 238000005406 washing Methods 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 8
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 abstract description 7
- 239000000920 calcium hydroxide Substances 0.000 abstract description 7
- 235000011116 calcium hydroxide Nutrition 0.000 abstract description 7
- 229910001861 calcium hydroxide Inorganic materials 0.000 abstract description 7
- 238000000227 grinding Methods 0.000 abstract description 7
- 239000007788 liquid Substances 0.000 abstract description 7
- 238000001035 drying Methods 0.000 abstract description 6
- 238000005507 spraying Methods 0.000 abstract description 3
- 238000011143 downstream manufacturing Methods 0.000 abstract 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 46
- 239000000292 calcium oxide Substances 0.000 description 26
- 235000012255 calcium oxide Nutrition 0.000 description 21
- 238000002156 mixing Methods 0.000 description 12
- 238000006722 reduction reaction Methods 0.000 description 10
- 239000000460 chlorine Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 238000006477 desulfuration reaction Methods 0.000 description 9
- 230000023556 desulfurization Effects 0.000 description 9
- 235000015170 shellfish Nutrition 0.000 description 9
- 239000002699 waste material Substances 0.000 description 9
- 239000002023 wood Substances 0.000 description 9
- 238000004064 recycling Methods 0.000 description 8
- 239000010440 gypsum Substances 0.000 description 7
- 229910052602 gypsum Inorganic materials 0.000 description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000004065 wastewater treatment Methods 0.000 description 4
- 239000000701 coagulant Substances 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 241000258957 Asteroidea Species 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000002734 clay mineral Substances 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000009313 farming Methods 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910000863 Ferronickel Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000019086 sulfide ion homeostasis Effects 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L9/00—Treating solid fuels to improve their combustion
- C10L9/10—Treating solid fuels to improve their combustion by using additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/021—Ash cements, e.g. fly ash cements ; Cements based on incineration residues, e.g. alkali-activated slags from waste incineration ; Kiln dust cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/08—Slag cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/14—Cements containing slag
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/24—Cements from oil shales, residues or waste other than slag
- C04B7/28—Cements from oil shales, residues or waste other than slag from combustion residues, e.g. ashes or slags from waste incineration
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/02—Use of additives to fuels or fires for particular purposes for reducing smoke development
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C10/00—Fluidised bed combustion apparatus
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/02—Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
- C10L2200/029—Salts, such as carbonates, oxides, hydroxides, percompounds, e.g. peroxides, perborates, nitrates, nitrites, sulfates, and silicates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Abstract
Description
본 발명은 굴패각을 활용한 유동층 보일러 염화수소 발생 저감제, 이를 이용한 유동층 보일러 노내 염소수소 발생 저감방법 및 그 연소 잔재물을 활용한 결합재 조성물에 관한 것으로서, 보다 상세하게는 전처리 공정이 복잡하여 재활용이 미흡했던 굴패각을 별도의 세척 및 소성 공정이 생략된 상태에서 폐기된 패각 그대로를 건조, 분쇄 공정만을 거쳐 얻어진 굴패각 분말을 유동층 보일러 염화수소 발생 저감제로 활용하고, 상기 굴패각 분말을 포함한 염화수소 발생 저감제를 고형연료를 사용하는 유동층 보일러 노 내에 투입 후 혼합 연소하여 건식형태로 유동층 보일러 노내 염화수소 발생을 저감하고, 상기 연소 후 남은 연소 잔재물을 활용한 결합재 조성물에 관한 것이다. The present invention relates to an agent for reducing hydrogen chloride generation in a fluidized bed boiler using oyster shells, a method for reducing generation of hydrogen chloride in a fluidized bed boiler furnace using the same, and a binder composition using the combustion residue, and more particularly, in a case where recycling is insufficient due to a complicated pretreatment process. The oyster shell powder obtained through the drying and crushing process of the discarded shells as they are without the separate washing and firing process is used as a hydrogen chloride generation reducer for the fluidized bed boiler, and the hydrogen chloride generation reducer including the oyster shell powder is used as a solid fuel. It relates to a binder composition that reduces the generation of hydrogen chloride in a fluidized bed boiler furnace in a dry form by mixing and burning after being put into a fluidized bed boiler furnace to be used, and utilizing combustion residues remaining after the combustion.
패각(貝殼)은 패류(shellfish, 貝類)의 껍질로 패류를 출하할 때 대부분 제거한 후에 내용물만을 유통이 이루어지고 있고, 패류 집하장 등의 주변에는 패각이 폐기물로 다량 발생하여 해안에 야적되어 연안을 오염시키고 여러 환경 문제를 유발하고 있는 실정이다. Shells are the shells of shellfish, and when shellfish are shipped, most of the shellfish are removed and only the contents are distributed, and shells are generated in large quantities as waste in the vicinity of shellfish collection points, etc., and are stored on the coast to pollute the coast. and causes a number of environmental problems.
현재 우리나라 해안에서는 연간 36만톤의 굴패각이 발생하는 것으로 알려져 있고, 특히, 굴양식에 따른 패각 발생이 많다. 이 중 10%만이 칼슘 비료 등으로 재사용되고 나머지는 해안에 방치되고 있는 실정이어서, 굴패각과 같은 수산폐기물의 대량 처리 필요성이 대두되고 있다. Currently, it is known that 360,000 tons of oyster shells are generated annually on the coast of Korea, and in particular, shells are often generated according to oyster farming. Of these, only 10% is reused as calcium fertilizer and the rest is left on the coast, so the need for mass processing of marine waste such as oyster shells is emerging.
패각의 화학적 조성은 대개 90중량% 이상이 CaCO3로 이루어져 있으며, 나머지 미량이 SiO2, MgO, Al2O3, Na2O, SO3와 같은 무기물로 이루어진다. The chemical composition of the shell usually consists of more than 90% by weight of CaCO 3 , and the remaining trace amounts are composed of inorganic materials such as SiO 2 , MgO, Al 2 O 3 , Na 2 O, and SO 3 .
그러나 패각에는 패류 탈착 시 잔존하는 유기물과 염분이 일부 존재하며, 이로 인해 패각을 오래 방치할 경우 유기물 부패 및 침출수 발생에 의한 악취 및 양식장 오염 문제 등이 발생한다. However, some of the organic matter and salts remaining during shellfish desorption are present in the shell, and when the shell is left unattended for a long time, problems such as odor and farm contamination due to organic matter decay and leachate generation occur.
이에 따라 패각을 재활용하기 위한 다양한 기술이 개발되고 있다. 이 중에서 특허문헌 1은 굴패각을 세척하여 염분을 제거하는 단계; 염분이 제거된 굴패각을 분쇄하는 단계; 분쇄된 굴패각을 소정의 입경으로 분말화하는 분급단계; 굴패각 분말을 600∼900℃의 온도에서 연소시켜 이산화탄소를 제거함으로써 생석회(산화칼슘)를 생성하는 소성단계; 생석회 40∼60중량부, 플라이애쉬 4∼20중량부, 석고 5∼20중량부, 고로슬래그 40∼60중량부를 배합비로 혼합하는 믹싱단계;를 포함하는 굴패각을 이용한 지반개량형 고화재 제조방법이 개시되어 있다. Accordingly, various technologies for recycling shells are being developed. Among them, Patent Document 1 includes the steps of washing oyster shells to remove salt; Grinding the desalted oyster shells; A classification step of powdering the pulverized oyster shells to a predetermined particle size; A sintering step of generating quicklime (calcium oxide) by burning oyster shell powder at a temperature of 600 to 900 ° C to remove carbon dioxide; A mixing step of mixing 40 to 60 parts by weight of quicklime, 4 to 20 parts by weight of fly ash, 5 to 20 parts by weight of gypsum, and 40 to 60 parts by weight of blast furnace slag in a mixing ratio; has been
특허문헌 2는 폐석고, 불가사리 분말, 패각류 껍질 분말 및 점토광물을 포함하는 무기계 응집제에 관한 발명으로서, 폐석고 분말 50∼200중량부, 불가사리 분말 50∼200중량부, 패각류 분말 50∼100중량부 및 점토광물 30∼70중량부로 이루어진 무기계 폐수처리용 응집조성물을 제공하고, 음식물 폐수처리용, 축산분뇨 폐수처리용 및 하천 폐수처리용 무기계 응집조성물로 적용가능성을 제시하고 있다. Patent Document 2 is an invention related to an inorganic coagulant containing waste gypsum, starfish powder, shell powder and clay mineral, waste gypsum powder 50 to 200 parts by weight, starfish powder 50 to 200 parts by weight, shellfish powder 50 to 100 parts by weight and 30 to 70 parts by weight of clay minerals. It provides an inorganic coagulant composition for wastewater treatment, and suggests applicability as an inorganic coagulant composition for food wastewater treatment, livestock manure wastewater treatment, and river wastewater treatment.
특허문헌 3은 폐각 재활용 사료의 제조방법에 관한 것으로, 수세 처리된 패각류 등의 원료를 소성로에 투입하여 1,300∼1,500℃의 온도에서 20∼30분 동안 1차 소성하는 단계; 1차 소성된 상기 원료를 분쇄기에 투입하여 분쇄하는 단계; 분쇄된 원료 분말을 분리기에 투입하여 분리하는 단계; 분리된 미분 분말을 입상성형 조립기에 투입하여 고온수를 결착제로 사용하여 입상화 되도록 성형하는 단계; 성형된 입상 사료를 상기 소성로에 투입하여 900∼1000℃의 온도에서 10∼20분 동안 2차소성하는 단계; 2차 소성된 상기 입상 사료를 냉각시킨 후 상기 소성로에 재투입하여 900∼1,000℃의 온도에서 10∼20분 동안 반복하여 3차 소성하는 단계; 및 3차 소성된 상기 입상 사료를 진동체에 투입하여 체가름하는 단계로 수행된다.Patent Document 3 relates to a method for producing waste recycled feed, which includes first firing at a temperature of 1,300 to 1,500 ° C. for 20 to 30 minutes by inputting raw materials such as shellfish washed with water into a firing furnace; Putting the firstly calcined raw material into a grinder and pulverizing it; Separating the pulverized raw material powder by introducing it into a separator; Injecting the separated pulverized powder into a granular molding machine and molding it into granules using hot water as a binder; Putting the molded granular feed into the firing furnace and secondarily firing it at a temperature of 900 to 1000 ° C. for 10 to 20 minutes; After cooling the secondly calcined granular feed, reintroducing it into the calcining furnace and repeating the third calcining at a temperature of 900 to 1,000 ° C. for 10 to 20 minutes; and a step of sifting the granular feed that has been calcined for the third time by introducing it into a vibrating body.
또한, 특허문헌 4는 굴패각을 열처리하는 단계, 열처리된 굴패각을 분쇄하여 슬러리를 제조하는 단계, 슬러리를 배기가스와 반응시켜 습식 탈황하는 단계, 그리고 습식 탈황 중 침전된 탈황 석고를 회수하는 단계를 포함하고, 열처리 단계는 굴패각을 800 내지 1,500℃에서 0.25 내지 10 시간 동안 열처리하여, 폐각을 습식 탈황에 이용하여 고품위의 탈황석고를 생산하는 방법을 제시하고 있다. In addition, Patent Document 4 includes the steps of heat-treating oyster shells, preparing slurry by grinding the heat-treated oyster shells, wet desulfurization by reacting the slurry with exhaust gas, and recovering precipitated desulfurized gypsum during wet desulfurization. In the heat treatment step, the oyster shells are heat-treated at 800 to 1,500 ° C. for 0.25 to 10 hours, and the waste shells are used for wet desulfurization to produce high-quality desulfurized gypsum.
특허문헌 5는 새로운 배연탈황 원료 생산용 패각 분쇄 시스템 및 이를 이용한 고품위 탈황석고 생산 방법을 제안하고 있으며, 구체적으로 패각을 세척, 건조(250∼350℃에서 35∼60분), 파쇄, 선별, 소성(500∼800℃에서 70∼100분) 등의 과정을 거친 분말을 배기가스와 반응시켜 습식 탈황하는 단계 및 습식 탈황 중 침전된 탈황석고를 회수하는 단계로 수행하여, 패각을 보다 고르게 분쇄하여 고품질의 패각 분체물을 제공할 수 있다고 보고하고 있다. Patent Document 5 proposes a shell crushing system for producing a new flue gas desulfurization raw material and a method for producing high-quality desulfurized gypsum using the same. (70 to 100 minutes at 500 to 800 ° C.) by reacting the powder with the exhaust gas to perform wet desulfurization and to recover the precipitated desulfurized gypsum during wet desulfurization, which pulverizes the shells more evenly to obtain high quality It is reported that shell powder can be provided.
상기와 같이 패각을 재활용하는 다양한 기술이 개발 진행되고 있다. 그러나, 패각을 재활용하기 위해서는 패각을 전처리하는 기술과 기존 현장에서 사용되고 있는 제품 대비 저렴하게 생산할 수 있는 기술이 요구되지만 세척, 건조, 분쇄, 고온 소성 등 전처리 공정 및 제품 제조 시 과도한 비용이 투입되어 폐패각 처리비용에 비하여 재활용 비용이 과도하게 투입되고, 최종 생산된 제품이 기존 제품에 비하여 경제성이 불리하여 현재 상용화되지 못하고 있는 실정이다. As described above, various technologies for recycling shells are being developed. However, in order to recycle shells, technologies for pre-processing shells and technologies that can be produced at a lower cost than products currently used in the field are required. The cost of recycling is excessive compared to the cost of shell treatment, and the final product is economically unfavorable compared to existing products, so it is not currently commercialized.
특히, 특허문헌 4 및 특허문헌 5는 패각을 이용하여 보일러 탈황제로 사용하여 보일러 황화수소 발생 저감제로 사용하고 있으나, 상기 종래기술은 별도의 탈황장치를 구비한 화력발전소 미분탄 보일러(Pulverized Combustion)의 습식 탈황제로 활용되기 때문에 세척, 건조, 분쇄 및 소성 과정을 거쳐 석회석(CaCO3) 성분을 생석회(CaO) 성분으로 전이시킨 후 이를 다시 물과 혼합하여 슬러리를 제조하고 이 슬러리를 배기가스와 반응시켜 습식 탈황하는 방식이기 때문에 공정비용이 과도한 문제점이 있다. In particular, Patent Document 4 and Patent Document 5 use shells as a boiler desulfurization agent and are used as a boiler hydrogen sulfide generation reduction agent, but the prior art is a wet desulfurization agent for a pulverized coal boiler (Pulverized Combustion) of a thermal power plant equipped with a separate desulfurization device Since it is used as a raw material, the limestone (CaCO 3 ) component is converted to the quicklime (CaO) component through the process of washing, drying, crushing, and firing, and then mixed with water again to prepare a slurry. Because of this method, there is a problem in that the process cost is excessive.
한편, 일반적으로 석탄만을 100% 연소하는 유동층 보일러에서는 유독가스인 염화수소 가스 발생이 없으나 일반 고형연료 및 바이오 고형연료를 사용하는 유동층 보일러에서는 염화수소 가스가 다량 발생되어 이의 제거가 필수적이다. On the other hand, in general, in a fluidized bed boiler that burns only coal 100%, hydrogen chloride gas, which is a toxic gas, is not generated, but in a fluidized bed boiler using general solid fuel and bio solid fuel, a large amount of hydrogen chloride gas is generated, and its removal is essential.
대부분 연소 후 후단 공정에서 액상 소석회를 분무하여 염화수소 가스를 제거하는 방식이 가장 많이 쓰이고 있는데 폐합성수지나 폐목재 등이 함유되어 있는 고형연료를 연소할 경우 많은 양의 염화수소 가스 발생량이 높아 최고 배출 허용농도인 0.3% 이하로 유지하기 위하여 액상 소석회를 과도하게 분무하는 실정이다. 이 때문에 고가의 액상 소석회의 다량 사용으로 보일러의 운전비용 상승 및 최종 남는 연소 잔재물이 액상 소석회의 수분 때문에 덩어리 형태로 뭉치게 배출되어 재활용이 어려운 문제점 등이 발생하게 된다. In most cases, the method of removing hydrogen chloride gas by spraying liquid slaked lime in the post-combustion process is the most commonly used method. When solid fuel containing waste synthetic resin or waste wood is burned, a large amount of hydrogen chloride gas is generated, resulting in the highest allowable emission concentration. In order to maintain phosphorus below 0.3%, liquid slaked lime is excessively sprayed. For this reason, the use of a large amount of expensive liquid slaked lime increases the operating cost of the boiler and the final remaining combustion residue is discharged in a lump form due to the moisture of the liquid slaked lime, resulting in problems such as difficult recycling.
이에, 본 발명자들은 종래 문제점을 해소하고자 노력한 결과, 전처리 공정이 복잡하여 재활용이 미흡했던 굴패각을 폐기된 패각 그대로를 건조, 분쇄 공정을 거쳐 적정 유기물함량, 수분함량, 염분함량을 가진 분쇄된 굴패각 분말을 고형연료를 사용하는 유동층 보일러 노 내에 투입 후 혼합 연소하여 염화수소 가스 발생을 연소 단계에서부터 획기적으로 저감시킬 수 있음을 확인하여, 상기 굴패각 분말이 유동층 보일러 내부에 염화수소 발생 저감제로 활용 가능하고 유기물 및 염소 성분이 함유된 굴패각이 연료와 함께 직접 투입되기 때문에 전처리 공정이 생략되어 유동층 보일러의 운전비용절감 효과를 확인함으로써, 본 발명을 완성하였다. Accordingly, the present inventors have tried to solve the conventional problems, and as a result, the discarded oyster shells, which were insufficiently recycled due to the complicated pretreatment process, were dried and pulverized to pulverized oyster shell powder having appropriate organic matter content, moisture content, and salt content. It was confirmed that hydrogen chloride gas generation can be drastically reduced from the combustion stage by mixing and burning after being put into a fluidized bed boiler furnace using solid fuel, and the oyster shell powder can be used as a hydrogen chloride reduction agent inside the fluidized bed boiler The present invention was completed by confirming the effect of reducing the operating cost of the fluidized bed boiler by omitting the pretreatment process because the oyster shells containing the components are directly injected together with the fuel.
본 발명의 목적은 패각을 별도의 세척 및 소성 공정이 생략된 상태에서 폐기된 패각 그대로를 건조, 분쇄 공정을 거쳐 유기물 및 염소 성분이 함유된 굴패각 분말을 포함한 유동층 보일러 염화수소 발생 저감제를 제공하는 것이다. An object of the present invention is to provide an agent for reducing hydrogen chloride generation in a fluidized bed boiler, including oyster shell powder containing organic matter and chlorine components, through drying and grinding the discarded shells as they are in a state in which a separate washing and firing process is omitted. .
본 발명의 다른 목적은 굴패각 분말을 고형연료를 사용하는 유동층 보일러의 노내 투입하여 혼합 연소하여 건식형태로 수행되는 유동층 보일러 노내 염화수소 발생 저감방법을 제공하는 것이다. Another object of the present invention is to provide a method for reducing hydrogen chloride generation in a fluidized bed boiler furnace in which oyster shell powder is put into the furnace of a fluidized bed boiler using solid fuel, mixed and burned, and carried out in a dry form.
본 발명의 또 다른 목적은 상기 유동층 보일러 노내 염화수소 발생 저감방법으로부터 수득된 연소 잔재물을 활용한 결합재 조성물을 제공하는 것이다. Another object of the present invention is to provide a binder composition utilizing combustion residues obtained from the method for reducing hydrogen chloride generation in the fluidized bed boiler furnace.
상기 목적을 달성하기 위하여, 본 발명은 탄산칼슘 성분이 90%이상이며 입경이 5mm 이하로 분쇄된 굴패각 분말을 활용한 유동층 보일러 염화수소 발생 저감제를 제공한다. In order to achieve the above object, the present invention provides a fluidized bed boiler hydrogen chloride generation reducer using oyster shell powder pulverized to a calcium carbonate component of 90% or more and a particle size of 5 mm or less.
본 발명의 유동층 보일러 염화수소 발생 저감제에는 상기 굴패각 분말 100중량부에 대하여, 석회석 분말을 5∼1,000중량부 더 포함할 수 있다. The fluidized bed boiler hydrogen chloride generation reducer of the present invention may further include 5 to 1,000 parts by weight of limestone powder based on 100 parts by weight of the oyster shell powder.
상기 굴패각 분말은 유기물 함유량이 0.1∼10중량%인 것이 바람직하고, 수분 함유량이 0.01∼5중량%인 것이 바람직하다.The oyster shell powder preferably has an organic content of 0.1 to 10% by weight, and preferably has a water content of 0.01 to 5% by weight.
또한, 굴패각 분말은 염분 함유량이 0.01∼3중량%인 것이 바람직하다. In addition, the oyster shell powder preferably has a salt content of 0.01 to 3% by weight.
본 발명에 의한 유동층 보일러 노내 염화수소 발생 저감방법은 상기 염화수소 발생 저감제와 고형연료를 유동층 보일러의 노 내에 투입한 후, 혼합 연소하여 건식형태로 염화수소 저감 방법을 실시하며, 상기 유동층 보일러 염화수소 발생 저감제 100중량부에 대하여, 상기 고형연료는 100∼2,000중량부를 투입하는 것이 바람직하다. In the method for reducing hydrogen chloride generation in a fluidized bed boiler furnace according to the present invention, the hydrogen chloride generation reducing agent and solid fuel are introduced into the furnace of a fluidized bed boiler, and then mixed and burned to reduce hydrogen chloride generation in a dry form, and the fluidized bed boiler hydrogen chloride generation reduction agent With respect to 100 parts by weight, it is preferable to add 100 to 2,000 parts by weight of the solid fuel.
상기 고형연료는 일반 고형연료(SRF, Solid Refuse Fuel) 및 바이오 고형연료(BIO-SRF, Biomass-Solid Refuse Fuel) 중 선택된 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. The solid fuel may use any one or a mixture of two or more selected from general solid fuel (SRF, Solid Refuse Fuel) and bio solid fuel (BIO-SRF, Biomass-Solid Refuse Fuel).
또한, 본 발명은 유동층 보일러 노내 염화수소 발생 저감방법을 통해 유동층 보일러에서 염화수소 발생 저감제와 고형연료를 혼합 연소 후 남는 연소 잔재물을 포함한 결합재 조성물을 제공한다. 이때, 상기 연소 잔재물은 CaO 함량이 10∼50중량%이고, Cl- 함량이 0.5∼25중량% 범위인 것이다. In addition, the present invention provides a binder composition including combustion residues remaining after mixing and burning a hydrogen chloride reducing agent and a solid fuel in a fluidized bed boiler through a method for reducing hydrogen chloride generation in a fluidized bed boiler furnace. At this time, the combustion residue has a CaO content of 10 to 50% by weight and a Cl - content in the range of 0.5 to 25% by weight.
본 발명의 결합재 조성물은 상기 연소 잔재물 100중량부에 대하여, 시멘트 10∼4,000중량부를 더 포함할 수 있으며, 또한, 상기 연소 잔재물 100중량부에 대하여, 슬래그 10∼4,000중량부를 더 포함할 수 있다. The binder composition of the present invention may further include 10 to 4,000 parts by weight of cement based on 100 parts by weight of the combustion residue, and may further include 10 to 4,000 parts by weight of slag based on 100 parts by weight of the combustion residue.
본 발명에 따르면, 종래 패각을 세척 및 소성하는 전처리 공정이 복잡하여 활용이 미흡한 굴패각을 본 발명에서는 폐기된 패각 그대로를 건조, 분쇄 공정만을 거친 분쇄된 굴패각 분말을 유동층 보일러 노내에 투입하여 염화수소 발생 저감효과를 확인함으로써, 분쇄된 굴패각을 활용한 유동층 보일러 염화수소 발생 저감제로서 활용할 수 있다. According to the present invention, in the present invention, discarded shells are dried and pulverized oyster shell powder, which has undergone only a crushing process, is put into a fluidized bed boiler furnace to reduce the generation of hydrogen chloride. By confirming the effect, it can be used as a hydrogen chloride generation reducing agent for a fluidized bed boiler using pulverized oyster shells.
또한, 본 발명의 분쇄된 굴패각을 활용한 유동층 보일러 염화수소 발생 저감제는 유동층 보일러 노 내에 투입하여 고형연료와 혼합 연소하여 건식형태로 유동층 보일러 노내 염화수소 발생을 저감함으로써, 종래 고형연료를 사용하는 유동층 보일러에서 연소 후 발생하는 염화수소(HCl) 가스의 대기 배출을 저감시키기 위하여 후단 공정에서 액상 소석회 등을 분무하여 염화수소 가스 배출을 저감하는 방법을 대체 가능하다. In addition, the fluidized bed boiler hydrogen chloride generation reducer using the pulverized oyster shells of the present invention is put into the fluidized bed boiler furnace and mixed with solid fuel for combustion to reduce hydrogen chloride generation in the fluidized bed boiler furnace in a dry form, thereby reducing the generation of hydrogen chloride in the fluidized bed boiler using conventional solid fuel In order to reduce the air emission of hydrogen chloride (HCl) gas generated after combustion in the post-process, it is possible to replace the method of reducing hydrogen chloride gas emission by spraying liquid slaked lime, etc.
따라서, 유동층 보일러의 운전비용을 절감할 수 있고, 굴패각을 대량 재활용할 수 있는 효과가 있다. Therefore, it is possible to reduce the operating cost of the fluidized bed boiler, and there is an effect of recycling a large amount of oyster shells.
도 1은 본 발명의 유동층 보일러 노내 염화수소 발생 저감방법에 따라 굴패각과 고형연료를 혼합 연소하여 염화수소 가스 발생량을 측정하는 장치 모식도이고,
도 2는 도 1의 실제 구축된 장치 외관사진이다. 1 is a schematic diagram of an apparatus for measuring the amount of hydrogen chloride gas generated by mixing and burning oyster shells and solid fuel according to the method for reducing hydrogen chloride generation in a fluidized bed boiler furnace of the present invention;
FIG. 2 is an exterior photograph of the actually built device of FIG. 1 .
이하, 본 발명을 상세히 설명하고자 한다. Hereinafter, the present invention will be described in detail.
본 발명은 탄산칼슘 성분이 90%이상이며 입경이 5mm 이하로 분쇄된 굴패각 분말을 포함한 유동층 보일러 염화수소 발생 저감제를 제공한다. The present invention provides a fluidized bed boiler hydrogen chloride reducing agent containing oyster shell powder pulverized to a particle size of 5 mm or less and having a calcium carbonate component of 90% or less.
본 발명은 별도의 세척 및 소성 전처리 공정 없이 건조 및 분쇄 공정만을 거쳐 유동층 보일러 염화수소 발생 저감제로 이용이 가능하다. The present invention can be used as a hydrogen chloride generation reducer for a fluidized bed boiler through only drying and grinding processes without separate washing and firing pretreatment processes.
그 이유는 유동층 보일러 연료로서 염소 성분이 다량 함유된 고형연료 등이 사용되기 때문에 염화수소 발생 저감제인 굴패각에 염소 성분이 일부 존재하더라도 보일러 운전 장애를 일으키지 않으며, 유기물 또한 보일러 내부에서 연료와 함께 완전 연소되기 때문이다. This is because solid fuel containing a large amount of chlorine is used as the fuel for the fluidized bed boiler, so even if some chlorine is present in the oyster shell, which is a hydrogen chloride reducing agent, it does not cause boiler operation problems, and organic matter is completely burned together with the fuel inside the boiler. Because.
따라서 고형연료를 사용하는 유동층 보일러의 염화수소 가스 발생 저감제로 활용되는 굴패각은 염분이나 유기물이 다량 함유되어 있거나 굴양식용 플라스틱 코팅사 및 수분이 일부 함유하고 있어도 코팅사 분리 작업, 세척이나 소성 과정 없이 활용할 수 있다는 장점이 있다. Therefore, oyster shells, which are used as a hydrogen chloride gas reduction agent for fluidized bed boilers using solid fuel, can be used without separating the coated yarn, washing or firing even if it contains a large amount of salt or organic matter, or contains some water and plastic coated yarn for oyster farming. There are advantages to being able to.
따라서, 본 발명의 굴패각 분말은 유기물 함유량 0.1∼10중량%인 것이고, 수분 함유량이 0.01∼5중량% 및 염분 함유량이 0.01∼3중량%를 포함할 수 있다. Therefore, the oyster shell powder of the present invention may have an organic content of 0.1 to 10% by weight, a water content of 0.01 to 5% by weight and a salt content of 0.01 to 3% by weight.
유동층 보일러에서 고형연료와 굴패각의 혼합 연소에 의한 염화수소 저감 원리는 탄산칼슘(CaCO3)이 주성분인 굴패각은 약800℃의 온도에서 탈탄산(CaO+CO2)되어 CaO 성분으로 전이된다. 이렇게 전이된 CaO 성분이 고형연료 연소 시 발생하는 염화수소(HCl) 성분과 노내에서 직접 반응하여 염화칼슘 성분으로 전이되어 연소 잔재물에 함유하게 된다. The principle of hydrogen chloride reduction by mixed combustion of solid fuel and oyster shells in a fluidized bed boiler is that oyster shells, whose main component is calcium carbonate (CaCO 3 ), are decarboxylated (CaO + CO 2 ) at a temperature of about 800 ° C and converted to CaO components. The transferred CaO component reacts directly with the hydrogen chloride (HCl) component generated during solid fuel combustion in the furnace to be converted to calcium chloride component and contained in the combustion residue.
식 1) CaO + 2HCl → CaCl2 + H2O Equation 1) CaO + 2HCl → CaCl 2 + H 2 O
따라서 본 발명의 유동층 보일러 염화수소 발생 저감제로서 사용되는 굴패각에는 탄산칼슘 성분이 90%이상, 입경이 5mm 이하로 분쇄된 것이 바람직하다. Therefore, in the oyster shell used as a hydrogen chloride generation reducer for a fluidized bed boiler of the present invention, it is preferable that the calcium carbonate component is 90% or more and the particle diameter is 5 mm or less.
더욱 바람직하게는 굴패각의 입경이 0.005∼5mm인 것이다. 이때, 굴패각을 0.005mm 미만으로 분쇄할 경우 염화수소 저감 효율은 좋아지나 분쇄 비용이 과도하게 상승되고 굴패각을 분쇄하지 않거나, 반면에 굴패각을 5mm를 초과하는 거친 알갱이 형태로 사용하면 보일러 내부에서 염화수소 저감 반응시간이 길어져 효율이 저하된다. More preferably, the grain size of the oyster shell is 0.005 to 5 mm. At this time, if the oyster shell is crushed to less than 0.005mm, the hydrogen chloride reduction efficiency is improved, but the grinding cost is excessively increased, and the oyster shell is not pulverized, whereas if the oyster shell is used in the form of coarse grains exceeding 5mm, the hydrogen chloride reduction reaction inside the boiler The longer the time, the lower the efficiency.
본 발명의 유동층 보일러 염화수소 발생 저감제에는 상기 굴패각 분말 100중량부에 대하여, 석회석 분말을 5∼1,000중량부 더 포함하는 것이 바람직한데, 상기 석회석 분말은 적조 발생과 같은 현상으로 패류 양식이 실패하여 굴패각을 활용한 염화수소 발생 저감제의 공급 자체가 불안정하거나 장거리 운송으로 비용이 과도할 경우에 사용하는 것이 바람직하다. The fluidized bed boiler hydrogen chloride generation reducer of the present invention preferably further includes 5 to 1,000 parts by weight of limestone powder based on 100 parts by weight of the oyster shell powder. It is preferable to use it when the supply itself of the hydrogen chloride generation reducing agent using is unstable or the cost is excessive due to long-distance transportation.
상기 석회석 분말은 입경이 5mm 이하이며 순도 80% 이상으로 시중에서 일반적으로 유통되는 제품이면 가능하다. The limestone powder may have a particle size of 5 mm or less and a purity of 80% or more and are generally distributed on the market.
상기 석회석 분말은 굴패각 분말 100중량부에 대하여 5중량부 미만일 경우 그 효과가 미비하고, 1,000중량부를 초과할 경우 상대적으로 굴패각 혼입율이 줄어들어 굴패각의 재활용율이 크게 저하된다.When the limestone powder is less than 5 parts by weight relative to 100 parts by weight of the oyster shell powder, the effect is insignificant, and when it exceeds 1,000 parts by weight, the oyster shell mixing ratio is relatively reduced, greatly reducing the recycling rate of the oyster shell.
본 발명의 유동층 보일러 염화수소 발생 저감제는 조개류의 껍질의 경우 해류 양식업에서 부산물로 다량 발생하고 있으며, 해안에 야적되어 연안 어장을 오염시키고 공유수면의 관리를 어렵게 하는 등 여러 가지 환경 문제를 유발시키고, 패각류 중 굴이 가장 많은 패각을 발생시키기 때문에 남해안, 서해안 연안환경에 가장 큰 문제가 지적되어 왔다. The fluidized bed boiler hydrogen chloride generation reducer of the present invention is generated in large quantities as a by-product in marine aquaculture in the case of shellfish shells, and is stored on the coast to pollute coastal fisheries and cause various environmental problems such as making management of public waters difficult, Since oysters produce the most shells among shellfish, the biggest problem has been pointed out in the coastal environment of the south and west coasts.
또한, 종래 패각을 세척 및 소성하는 전처리 공정이 복잡하여 활용이 미흡한 굴패각을 본 발명에서는 폐기된 패각 그대로를 건조, 분쇄하여 분쇄된 굴패각을 활용한다. In addition, in the present invention, the discarded shells are dried and crushed to utilize the crushed oyster shells, which are insufficiently utilized due to the complicated pretreatment process of washing and firing the shells.
또한, 패각을 별도의 세척 및 소성 공정이 생략된 상태에서 간단한 전처리 과정을 거쳐 염화수소 가스 발생 저감제로 만들어 유동층 보일러 내부에 고형연료와 혼합 연소시킴으로써 연료 연소 시 발생하는 염화수소(HCl)를 제거함과 동시에 패각 처리비용 및 고가의 액상 소석회 구입비용 절감과 더불어 폐기물 재활용으로 인한 자원 절약의 효과, 연안환경 오염방지 등의 다양한 효과를 기대할 수 있다.In addition, the shell is made into a hydrogen chloride gas reducing agent through a simple pretreatment process without separate washing and firing processes, and is mixed with solid fuel and burned inside the fluidized bed boiler to remove hydrogen chloride (HCl) generated during fuel combustion and at the same time In addition to reducing the cost of processing and purchasing expensive liquid slaked lime, various effects such as resource saving through waste recycling and prevention of coastal environment pollution can be expected.
본 발명은 굴패각 분을 포함한 유동층 보일러 염화수소 발생 저감제 100중량부에 대하여, 고형연료 100∼2,000중량부를 유동층 보일러의 노 내에 투입 후 혼합 연소하여 건식형태로 수행되는 유동층 보일러 노내 염화수소 발생 저감방법을 제공한다. The present invention provides a method for reducing hydrogen chloride generation in a fluidized bed boiler furnace in which 100 to 2,000 parts by weight of solid fuel is put into the furnace of a fluidized bed boiler and then mixed and burned in a dry form with respect to 100 parts by weight of the fluidized bed boiler hydrogen chloride generation reducing agent including oyster shell powder. do.
상기 유동층 보일러 염화수소 발생 저감제 100중량부에 대하여, 고형연료는 100∼2,000중량부를 투입하는 것이 바람직하다. 이때, 100중량부 미만인 경우 연료 성분 부족으로 발열량이 적어 발전 효율이 급격하게 저하되며, 2,000중량부를 초과할 경우에는 상대적으로 굴패각 분말의 투입량이 감소되어 염화수소 발생 저감 효과가 현저하게 저하된다.It is preferable to input 100 to 2,000 parts by weight of solid fuel with respect to 100 parts by weight of the fluidized bed boiler hydrogen chloride generation reducer. At this time, if it is less than 100 parts by weight, the power generation efficiency is rapidly reduced due to the lack of fuel component and the amount of heat generated is low.
상기 고형연료는 일반 고형연료(SRF, Solid Refuse Fuel) 및 바이오 고형연료(BIO-SRF, Biomass-Solid Refuse Fuel) 중 선택된 어느 하나 또는 둘 이상의 혼합물인 것이 바람직하다. The solid fuel is preferably any one selected from general solid fuel (SRF, Solid Refuse Fuel) and bio-solid fuel (BIO-SRF, Biomass-Solid Refuse Fuel), or a mixture of two or more.
도 1은 본 발명의 유동층 보일러 노내 염화수소 발생 저감방법에 따라 굴패각과 고형연료를 혼합 연소하여 염화수소 가스 발생량을 측정하는 장치 모식도이고, 도 2는 도 1의 실제 구축된 장치 외관사진이다. 1 is a schematic diagram of an apparatus for measuring the amount of hydrogen chloride gas generated by mixing and burning oyster shells and solid fuel according to the method for reducing hydrogen chloride generation in a fluidized bed boiler furnace of the present invention, and FIG. 2 is an external photograph of the actually constructed apparatus of FIG.
상기 장치로부터 염화수소 가스 발생량을 측정한 결과, 고형연료로서 우드칩 고형연료 70중량% 및 굴패각 분말 30중량%를 전기로에서 혼합 연소한 후 연소 잔재물의 배기 가스를 측정한 결과, 굴폐각 분말 혼입없이 사용한 경우 대비 염화수소 농도가 1/15 수준으로 저감결과를 확인할 수 있다. As a result of measuring the amount of hydrogen chloride gas generated from the device, as a result of measuring the exhaust gas of the combustion residue after mixing and burning 70% by weight of wood chip solid fuel and 30% by weight of oyster shell powder in an electric furnace as solid fuel, oyster shell powder was used without mixing The reduction result can be confirmed by reducing the hydrogen chloride concentration to 1/15 level compared to the case.
또한, 고형연료로서 우드칩 고형연료 70중량% 및 굴패각 분말 30중량%를 전기로에서 혼합 연소한 후 연소 잔재물은 CaO 성분 함량이 2배 정도의 증가와 Free-CaO 함량은 8배 정도 증가결과를 보임으로써, 굴패각 분말이 염화수소와 반응한 후 일부는 순수 생석회(CaO) 성분으로 존재함을 확인할 수 있다.In addition, as solid fuel, 70% by weight of wood chip solid fuel and 30% by weight of oyster shell powder were mixed and burned in an electric furnace, and the CaO content of the combustion residue increased about 2 times and the free-CaO content increased about 8 times. By this, it can be confirmed that some of the oyster shell powder reacts with hydrogen chloride and exists as a pure quicklime (CaO) component.
이상의 본 발명의 유동층 보일러 노내 염화수소 발생 저감방법에 따라, 본 발명의 굴패각 분말을 기존 유동층 보일러 노내에 투입하여 상기 굴패각과 고형연료를 직접 혼합 연소하여 염화수소 가스 발생을 연소 단계에서부터 획기적으로 저감시킬 수 있음을 확인함으로써, 상기 굴패각이 유동층 보일러 내부에 염화수소 발생 저감제로 유용하고 유기물 및 염소 성분이 함유된 굴패각이 연료와 함께 직접 투입되기 때문에 전처리 공정이 생략되어 공정비용절감 효과를 구현할 수 있다. According to the method for reducing hydrogen chloride generation in the fluidized bed boiler furnace of the present invention, the oyster shell powder of the present invention is introduced into the existing fluidized bed boiler furnace and directly mixed and burned the oyster shells and solid fuel to significantly reduce the generation of hydrogen chloride gas from the combustion stage. By confirming, since the oyster shells are useful as a hydrogen chloride reducing agent inside the fluidized bed boiler, and the oyster shells containing organic matter and chlorine are directly injected together with the fuel, the pretreatment process is omitted, thereby reducing the process cost.
나아가, 본 발명은 유동층 보일러 노내 염화수소 발생 저감방법을 통해 유동층 보일러에서 염화수소 발생 저감제와 고형연료를 혼합 연소 후 남는 연소 잔재물을 포함한 결합재 조성물을 제공한다. Furthermore, the present invention provides a binder composition including combustion residues remaining after mixing and burning a hydrogen chloride reducing agent and a solid fuel in a fluidized bed boiler through a method for reducing hydrogen chloride generation in a fluidized bed boiler furnace.
상기 염화수소 발생 저감 방법에 의해 유동층 보일러에 남는 연소 잔재물은 CaO 함량이 10∼50중량%이고, Cl- 함량이 0.5∼25중량% 범위이다. 이는 굴패각의 석회석 성분은 탈탈산되어 염화수소와 반응하여 생성된 CaCl2 형태로 존재하거나 일부 생석회(CaO) 형태로 존재하기 때문이다.The combustion residue remaining in the fluidized bed boiler by the hydrogen chloride generation reduction method has a CaO content of 10 to 50% by weight and a Cl - content in the range of 0.5 to 25% by weight. This is because the limestone component of oyster shells is deoxidized and reacts with hydrogen chloride to be present in the form of CaCl 2 or some quicklime (CaO).
상기 연소 잔재물이 시멘트 및 슬래그와 같이 활용될 경우 강도를 더욱 크게 증진시킬 수 있다.When the combustion residue is used together with cement and slag, strength can be further greatly improved.
따라서, 본 발명의 결합재 조성물은 상기 연소 잔재물 100중량부에 대하여, 시멘트 10∼4,000중량부를 더 포함할 수 있다. Therefore, the binder composition of the present invention may further include 10 to 4,000 parts by weight of cement based on 100 parts by weight of the combustion residue.
상기 시멘트는 일반 포틀랜드 시멘트, 조강 포틀랜드 시멘트, 준조강 시멘트, 고로슬래그 시멘트, 플라이애시 시멘트 중 어느 하나이거나 또는 둘 이상의 혼합물인 것이 바람직하다. 상기 시멘트는 10중량부 미만일 경우 그 효과가 미비하며, 반대로 4,000중량부를 초과할 경우 강도는 크게 증진되나 상대적으로 연소 잔재물의 혼입량이 감소하고 비용이 과도하게 상승하게 된다.The cement is preferably any one of general Portland cement, early-strength Portland cement, semi- early-strength cement, blast furnace slag cement, and fly ash cement, or a mixture of two or more. When the amount of the cement is less than 10 parts by weight, the effect is insignificant, and when it exceeds 4,000 parts by weight, the strength is greatly improved, but the amount of combustion residues is relatively reduced and the cost is excessively increased.
또한, 본 발명의 결합재 조성물은 상기 연소 잔재물 100중량부에 대하여, 슬래그 10∼4,000중량부를 더 포함할 수 있다. In addition, the binder composition of the present invention may further include 10 to 4,000 parts by weight of slag based on 100 parts by weight of the combustion residue.
상기 슬래그는 고로슬래그, 전로 및 전기로 환원슬래그, 전로 및 전기로 산화슬래그, 페로니켈 슬래그, 래들 슬래그, KR 슬래그, 석탄가스화 복합 슬래그, 스테인레스 슬래그, 연슬래그로 이루어진 군에서 선택된 미분말 또는 분진 형태의 어느 하나이거나 둘 이상의 혼합물인 것이 바람직하다.The slag is in the form of fine powder or dust selected from the group consisting of blast furnace slag, converter and electric furnace reduction slag, converter and electric furnace oxidation slag, ferronickel slag, ladle slag, KR slag, coal gasification composite slag, stainless slag, and lead slag Any one or a mixture of two or more is preferred.
상기 슬래그는 상기 연소 잔재물의 CaO 및 CaCl2 성분에 의해 자극 및 촉진되어 비결정질이 파괴되며 수화반응을 일으켜 경화될 수가 있다. 상기 슬래그는 10중량부 미만일 경우 그 효과가 미비하며, 반대로 4,000중량부를 초과할 경우 상대적으로 연소 잔재물의 혼입량이 크게 감소하여 자극제 및 촉진제 성분 부족으로 반응하지 못한 슬래그가 다량 존재하게 되어 오히려 강도가 크게 저하된다. The slag is stimulated and accelerated by the components of CaO and CaCl 2 of the combustion residue to destroy the amorphous state and cause a hydration reaction so that it can be hardened. When the slag is less than 10 parts by weight, the effect is insignificant. Conversely, when the amount exceeds 4,000 parts by weight, the amount of combustion residues is relatively greatly reduced, resulting in a large amount of slag that has not reacted due to lack of stimulant and accelerator components, so that the strength is rather large. It is lowered.
상기와 같이 본 발명에 의한 유동층 보일러 염화수소 발생 저감공정 후 발생된 연소 잔재물은 염소 성분이 높아 철근과 같이 사용되는 레미콘에는 사용이 불가능하지만 무근 콘크리트나 연약지반 강화용 등 다양한 건설현장에서 결합재로 활용 가치가 높다. As described above, the combustion residue generated after the hydrogen chloride generation reduction process of the fluidized bed boiler according to the present invention has a high chlorine content, so it cannot be used for ready-mixed concrete used with reinforcing bars, but it is useful as a binder at various construction sites such as unreinforced concrete or soft ground reinforcement. is high
이하에서 본 발명의 바람직한 실시예 및 비교예들이 기술되어질 것이다. 또한 이하의 실시예들은 본 발명을 예증하기 위한 것으로서 본 발명의 범위를 국한하는 것으로 이해되어져서는 아니된다.Preferred examples and comparative examples of the present invention will be described below. In addition, the following examples are intended to illustrate the present invention and should not be construed as limiting the scope of the present invention.
<비교예> <Comparative example>
연료로서 우드칩 고형연료 100%를 전기로에서 850℃에서 연소한 후 배기 가스를 측정하고 연소 잔재물을 분석하였다. After burning 100% of wood chip solid fuel as fuel at 850 °C in an electric furnace, exhaust gas was measured and combustion residues were analyzed.
<실시예> <Example>
연료로서 우드칩 고형연료 70중량% 및 굴패각 분말 30중량%를 전기로에서 850℃에서 연소한 후 배기 가스를 측정하고 연소 잔재물을 분석하였다.As fuel, 70% by weight of wood chip solid fuel and 30% by weight of oyster shell powder were burned in an electric furnace at 850 ° C., and then exhaust gas was measured and combustion residues were analyzed.
상기 굴패각 분말은 폐시된 굴패각 그대로 건조시켜 분쇄공정을 통해 수득되었으며, 상기 분쇄된 굴패각은 탄산칼슘 성분 92.3중량% 함유 및 평균 입경 430㎛이었다. The oyster shell powder was obtained through a crushing process by drying the discarded oyster shells as they were, and the crushed oyster shells contained 92.3% by weight of calcium carbonate component and had an average particle diameter of 430 μm.
<실험예 1> 배기가스 측정 <Experimental Example 1> Exhaust gas measurement
상기 비교예인 우드칩 고형연료 100%를 연소한 후 배기가스를 측정한 결과 이때 염화수소 농도는 4,923ppm으로 최고 허용농도인 3,000ppm을 초과하였다.As a result of measuring the exhaust gas after burning 100% of the wood chip solid fuel as the comparative example, the hydrogen chloride concentration was 4,923 ppm, exceeding the maximum allowable concentration of 3,000 ppm.
반면에, 실시예의 경우, 염화수소 농도 312ppm으로 측정되어, 상기 비교예에 비하여 약 1/15 수준으로 저감되었으며 최고 허용농도인 3,000ppm의 약 1/10 수준으로 유지할 수 있었다.On the other hand, in the case of the examples, the hydrogen chloride concentration was measured at 312 ppm, reduced to about 1/15 level compared to the comparative example, and could be maintained at about 1/10 level of the highest allowable concentration of 3,000 ppm.
<실험예 2> 연소 잔재물의 분석<Experimental Example 2> Analysis of combustion residues
상기 비교예 및 실시예 방식으로 연소한 후 발생되는 연소 잔재물의 화학조성 및 Free-CaO 함량 결과를 하기 표 1에 나타내었다. Table 1 below shows the chemical composition and Free-CaO content of the combustion residues generated after combustion in the Comparative Examples and Examples.
상기 표 1의 결과로부터, 비교예에서 발생된 연소 잔재물의 경우 CaO 성분 함량은 약 18%이고, Cl- 성분 함량은 약 5%였으나, 실시예에서 발생된 연소 잔재물의 경우 CaO 성분 함량은 약 35%로 약 2배 정도로 증가되었고, Cl- 성분 함량은 약 15%로 약 3배 증가하였음을 확인하였다. From the results of Table 1, in the case of the combustion residues generated in the comparative example, the CaO component content was about 18%, and the Cl - component content was about 5%, but in the case of the combustion residues generated in the examples, the CaO component content was about 35%. It was confirmed that the % was increased by about 2 times, and the Cl - component content was increased by about 3 times to about 15%.
상기의 결과는 굴패각 분말이 우드칩 고형연료 연소 시 발생하는 염화수소 성분과 반응하여 염화수소 가스를 대기중으로 배출시키지 아니하고 연소 잔재물에 고정화된 것을 의미한다. 즉, 우드칩 고형연료 연소 시 발생하는 염화수소와 굴패각 분말이 화학적 반응을 일으켰기 때문으로 해석된다. The above results mean that the oyster shell powder reacts with the hydrogen chloride component generated during the combustion of wood chip solid fuel and is fixed to the combustion residue without discharging hydrogen chloride gas into the atmosphere. In other words, it is interpreted that the hydrogen chloride generated during the combustion of wood chip solid fuel and the oyster shell powder caused a chemical reaction.
또한, Free-CaO 함량은 비교예에 비하여 실시예에서 약 8배 정도 증가하는 결과를 확인함으로써, 굴패각 분말이 염화수소와 반응한 후 일부는 순수 생석회(CaO) 성분으로 존재함을 확인할 수 있었다.In addition, by confirming the result that the Free-CaO content increased by about 8 times in the Example compared to the Comparative Example, it was confirmed that some of the oyster shell powder reacted with hydrogen chloride to exist as a pure quicklime (CaO) component.
<실험예 3> 연소잔재물의 결합재로서 압축강도 측정<Experimental Example 3> Measurement of compressive strength as a binder of combustion residues
상기 비교예 및 실시예에 따른 연소 잔재물을 결합재로서 활용성을 평가하기 위해 압축강도를 측정하고, 그 결과를 하기 표 2에 기재하였다. 물결합재비는 68% 조건이며 페이스트 형태로 제작하였다.In order to evaluate the usability of the combustion residues according to the Comparative Examples and Examples as a binder, the compressive strength was measured, and the results are shown in Table 2 below. The water binder ratio was 68% and was produced in the form of a paste.
상기 표 2의 결과로부터, 우드칩 고형연료만을 100% 연소한 비교예에 비하여 굴패각 미분말을 혼합 연소한 실시예의 압축강도가 크게 증가하였다. 상기 결과로부터, Free-CaO 및 CaCl2 함량이 더 높아 자경성이 더 강하게 나타난 것으로 판단된다. From the results in Table 2, the compressive strength of the example in which the oyster shell fine powder was mixed and burned was greatly increased compared to the comparative example in which only wood chip solid fuel was burned 100%. From the above results, it is determined that the free-CaO and CaCl 2 content is higher, and the self-hardening property is stronger.
특히 높은 Free-CaO 및 CaCl2의 함량이 높을 경우 시멘트의 수화반응 촉진 및 고로슬래그의 잠재수경성을 활성화시켜 수화시키는 데 매우 효과적이기 때문에 모든 재령에서 더욱 높은 강도를 보임을 확인할 수 있다. In particular, when the content of high Free-CaO and CaCl 2 is high, it is very effective in accelerating the hydration reaction of cement and activating latent hydraulic properties of blast furnace slag to hydrate it, so it can be confirmed that it shows higher strength at all ages.
이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다. Although the present invention has been described in detail only with respect to the specific embodiments described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention, and it is natural that such changes and modifications fall within the scope of the appended claims.
Claims (10)
상기 연소 잔재물이 CaO 함량 10∼50중량%, Cl- 함량 0.5∼25중량%가 함유된 것을 특징으로 하는 결합재 조성물. A binder composition including the hydrogen chloride generation reducer according to any one of claims 1 to 5 and combustion residues remaining after mixed combustion with solid fuel in a fluidized bed boiler furnace,
A binder composition, characterized in that the combustion residue contains 10 to 50% by weight of CaO and 0.5 to 25% by weight of Cl − content.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210154438A KR102641129B1 (en) | 2021-11-11 | 2021-11-11 | Fluidized bed boiler hydrogen chloride generation reducing agent using oyster shell, method for reducing hydrogen chloride generation in fluidized bed boiler furnace using the same and binder composition using the combustion residues |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210154438A KR102641129B1 (en) | 2021-11-11 | 2021-11-11 | Fluidized bed boiler hydrogen chloride generation reducing agent using oyster shell, method for reducing hydrogen chloride generation in fluidized bed boiler furnace using the same and binder composition using the combustion residues |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230068545A true KR20230068545A (en) | 2023-05-18 |
KR102641129B1 KR102641129B1 (en) | 2024-02-28 |
Family
ID=86545521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210154438A KR102641129B1 (en) | 2021-11-11 | 2021-11-11 | Fluidized bed boiler hydrogen chloride generation reducing agent using oyster shell, method for reducing hydrogen chloride generation in fluidized bed boiler furnace using the same and binder composition using the combustion residues |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102641129B1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09201513A (en) * | 1996-01-29 | 1997-08-05 | Kawabe Shiyokuriyouhin Kogyo Kk | In-furnace desulfurizing agent |
JPH1033935A (en) * | 1996-07-24 | 1998-02-10 | Mitsubishi Heavy Ind Ltd | Desulfurizing method in which sea shell is used as desulfurization agent |
KR100464666B1 (en) | 2001-06-07 | 2005-01-03 | 한국해양연구원 | Solidificator Manufacturing Method with Waste Oyster Shell |
KR100993223B1 (en) | 2010-03-03 | 2010-11-09 | 양옥순 | Method for producing of feed recycling shell |
KR101169563B1 (en) | 2012-02-13 | 2012-07-27 | 박영구 | An inorganic coagulant comprising waste plaster, starfish powder, shell powder and clay mineral |
KR101753823B1 (en) | 2015-11-30 | 2017-07-05 | 군산대학교산학협력단 | Manufacturing high quality desulfrutization lime method using shell for wet desulfurization |
KR20170097907A (en) * | 2016-02-19 | 2017-08-29 | 주식회사 대웅 | Low cement type binder composition |
KR102109756B1 (en) | 2019-05-23 | 2020-05-26 | 박우택 | manufacturing method of flue gas desulfurization base material and high quality desulfurization plaster by new shell grinding systems |
-
2021
- 2021-11-11 KR KR1020210154438A patent/KR102641129B1/en active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09201513A (en) * | 1996-01-29 | 1997-08-05 | Kawabe Shiyokuriyouhin Kogyo Kk | In-furnace desulfurizing agent |
JPH1033935A (en) * | 1996-07-24 | 1998-02-10 | Mitsubishi Heavy Ind Ltd | Desulfurizing method in which sea shell is used as desulfurization agent |
KR100464666B1 (en) | 2001-06-07 | 2005-01-03 | 한국해양연구원 | Solidificator Manufacturing Method with Waste Oyster Shell |
KR100993223B1 (en) | 2010-03-03 | 2010-11-09 | 양옥순 | Method for producing of feed recycling shell |
KR101169563B1 (en) | 2012-02-13 | 2012-07-27 | 박영구 | An inorganic coagulant comprising waste plaster, starfish powder, shell powder and clay mineral |
KR101753823B1 (en) | 2015-11-30 | 2017-07-05 | 군산대학교산학협력단 | Manufacturing high quality desulfrutization lime method using shell for wet desulfurization |
KR20170097907A (en) * | 2016-02-19 | 2017-08-29 | 주식회사 대웅 | Low cement type binder composition |
KR102109756B1 (en) | 2019-05-23 | 2020-05-26 | 박우택 | manufacturing method of flue gas desulfurization base material and high quality desulfurization plaster by new shell grinding systems |
Non-Patent Citations (2)
Title |
---|
Min-Hwan Cho et al. "Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich producer gas". Energy. Vol.87, pp. 586-593 (2015.05.29.) 1부.* * |
이학수 외. "굴패각의 물리화학적 특성 및 소성가공 특성에 관한 연구". 한국산학기술학회논문지. Vol.10(12), pp. 3971-3976 (2009.12.16) 1부.* * |
Also Published As
Publication number | Publication date |
---|---|
KR102641129B1 (en) | 2024-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101753823B1 (en) | Manufacturing high quality desulfrutization lime method using shell for wet desulfurization | |
US6077494A (en) | Method for removing ammonia from ammonia contaminated fly ash | |
JP5459698B2 (en) | Process for producing solidified coal ash containing shell powder | |
EP1876152A2 (en) | Process for physico-chemical adaptation of chemical gypsum or phosphogypsum for use in cement formulations and other construction materials | |
KR101954372B1 (en) | Manufacturing Method of Fuel Solid Comprising Organic Waste | |
JP2803855B2 (en) | Sewage sludge recycling system | |
JP2002521047A (en) | Manufacturing method of artificial reef mainly composed of industrial waste | |
KR100771490B1 (en) | Manufacturing method of solidification agent for organic or inorganic waste resources | |
KR20140092699A (en) | Sludge solidified agent and menufacturing method of artificial soil usign the same | |
JP7383545B2 (en) | Cement manufacturing method | |
KR101831971B1 (en) | Preparing method for complex calcium carbonate using coal ash | |
KR102484711B1 (en) | Desulfurizing agent, desulfurizing method for circulating fluidized bed boiler and binder agent | |
KR102571724B1 (en) | Marine grout material using shell and marine grouting method using the same | |
KR102641129B1 (en) | Fluidized bed boiler hydrogen chloride generation reducing agent using oyster shell, method for reducing hydrogen chloride generation in fluidized bed boiler furnace using the same and binder composition using the combustion residues | |
KR100509932B1 (en) | Scrapped material used practical use materials manufacture method | |
KR20220005935A (en) | Desulfurizing agent, desulfurizing method for circulating fluidized bed boiler and binder agent | |
KR100584219B1 (en) | Scrapped material used solidity manufacture method and treatment method of organic sludge | |
KR100966784B1 (en) | Manufacturing method solidfication agent for oganic or inorganic waste resouce of useing retreat mathod | |
KR101708399B1 (en) | Solidified soil and method for prepairing thereof | |
JP2005138073A (en) | Solid obtained by stabilizing waste | |
JP2001055756A (en) | Improved soil and its manufacture | |
JP4418244B2 (en) | Method for producing powdered solidified material | |
Lee | Characteristics and heavy metal leaching of ash generated from incineration of automobile shredder residue | |
JP2022045008A (en) | Producing method of cement or hardened cementitious material and producing system thereof | |
KR100967837B1 (en) | Environmentally friendly artificial earth and sand manufacturing method utilizing sewage sludge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
E90F | Notification of reason for final refusal | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) |