KR102641129B1 - Fluidized bed boiler hydrogen chloride generation reducing agent using oyster shell, method for reducing hydrogen chloride generation in fluidized bed boiler furnace using the same and binder composition using the combustion residues - Google Patents

Fluidized bed boiler hydrogen chloride generation reducing agent using oyster shell, method for reducing hydrogen chloride generation in fluidized bed boiler furnace using the same and binder composition using the combustion residues Download PDF

Info

Publication number
KR102641129B1
KR102641129B1 KR1020210154438A KR20210154438A KR102641129B1 KR 102641129 B1 KR102641129 B1 KR 102641129B1 KR 1020210154438 A KR1020210154438 A KR 1020210154438A KR 20210154438 A KR20210154438 A KR 20210154438A KR 102641129 B1 KR102641129 B1 KR 102641129B1
Authority
KR
South Korea
Prior art keywords
hydrogen chloride
fluidized bed
bed boiler
weight
oyster shell
Prior art date
Application number
KR1020210154438A
Other languages
Korean (ko)
Other versions
KR20230068545A (en
Inventor
문경주
윤성진
Original Assignee
주식회사 대웅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대웅 filed Critical 주식회사 대웅
Priority to KR1020210154438A priority Critical patent/KR102641129B1/en
Publication of KR20230068545A publication Critical patent/KR20230068545A/en
Application granted granted Critical
Publication of KR102641129B1 publication Critical patent/KR102641129B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/021Ash cements, e.g. fly ash cements ; Cements based on incineration residues, e.g. alkali-activated slags from waste incineration ; Kiln dust cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/28Cements from oil shales, residues or waste other than slag from combustion residues, e.g. ashes or slags from waste incineration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/029Salts, such as carbonates, oxides, hydroxides, percompounds, e.g. peroxides, perborates, nitrates, nitrites, sulfates, and silicates

Abstract

본 발명은 굴패각을 활용한 유동층 보일러 염화수소 발생 저감제, 이를 이용한 유동층 보일러의 노내 염소수소 발생 저감방법 및 그 연소 잔재물을 활용한 결합재 조성물에 관한 것이다.
본 발명은 별도의 세척 및 소성 공정이 생략된 상태에서 폐기된 패각 그대로를 건조, 분쇄 공정만을 거쳐 얻어진 굴패각 분말을 유동층 보일러 염화수소 발생 저감제로 활용하고, 상기 굴패각 분말을 포함한 염화수소 발생 저감제를 유동층 보일러 노 내에 투입하여 고형연료와 혼합 연소하여 건식형태로 유동층 보일러 노내 염화수소 발생을 저감함으로써, 종래 고형연료를 사용하는 유동층 보일러에서 연소 후 발생하는 염화수소(HCl) 가스의 대기 배출을 저감시키기 위하여 후단 공정에서 액상 소석회 등을 분무하여 염화수소 가스 배출을 저감하는 방법을 대체 가능하므로, 굴폐각의 처리비용절감과 유동층 보일러의 운전비용절감 효과를 구현할 수 있다.
The present invention relates to an agent for reducing hydrogen chloride generation in a fluidized bed boiler using oyster shell shells, a method for reducing hydrogen chloride generation in the furnace of a fluidized bed boiler using the same, and a binder composition using the combustion residue.
The present invention uses oyster shell powder obtained only through drying and grinding processes of discarded shells without separate washing and firing processes as a hydrogen chloride generation reducing agent for a fluidized bed boiler, and uses the hydrogen chloride generation reducing agent including the oyster shell powder as a hydrogen chloride generation reducing agent in a fluidized bed boiler. It is put into the furnace and mixed with solid fuel for combustion to reduce the generation of hydrogen chloride in the fluidized bed boiler furnace in a dry form, thereby reducing the atmospheric emission of hydrogen chloride (HCl) gas generated after combustion in the conventional fluidized bed boiler using solid fuel in the downstream process. Since it is possible to replace the method of reducing hydrogen chloride gas emissions by spraying liquid slaked lime, etc., it is possible to realize the effect of reducing the treatment costs of cave closures and reducing the operating costs of the fluidized bed boiler.

Description

굴패각을 활용한 유동층 보일러 염화수소 발생 저감제, 이를 이용한 유동층 보일러 노내 염소수소 발생 저감방법 및 그 연소 잔재물을 활용한 결합재 조성물{FLUIDIZED BED BOILER HYDROGEN CHLORIDE GENERATION REDUCING AGENT USING OYSTER SHELL, METHOD FOR REDUCING HYDROGEN CHLORIDE GENERATION IN FLUIDIZED BED BOILER FURNACE USING THE SAME AND BINDER COMPOSITION USING THE COMBUSTION RESIDUES}Fluidized bed boiler hydrogen chloride generation reduction agent using oyster shell shells, method for reducing chlorine hydrogen generation in a fluidized bed boiler furnace using the same, and binder composition using the combustion residue FLUIDIZED BED BOILER FURNACE USING THE SAME AND BINDER COMPOSITION USING THE COMBUSTION RESIDUES}

본 발명은 굴패각을 활용한 유동층 보일러 염화수소 발생 저감제, 이를 이용한 유동층 보일러 노내 염소수소 발생 저감방법 및 그 연소 잔재물을 활용한 결합재 조성물에 관한 것으로서, 보다 상세하게는 전처리 공정이 복잡하여 재활용이 미흡했던 굴패각을 별도의 세척 및 소성 공정이 생략된 상태에서 폐기된 패각 그대로를 건조, 분쇄 공정만을 거쳐 얻어진 굴패각 분말을 유동층 보일러 염화수소 발생 저감제로 활용하고, 상기 굴패각 분말을 포함한 염화수소 발생 저감제를 고형연료로 사용하는 유동층 보일러 노 내에 투입 후 혼합 연소하여 건식형태로 유동층 보일러 노내 염화수소 발생을 저감하고, 상기 연소 후 남은 연소 잔재물을 활용한 결합재 조성물에 관한 것이다. The present invention relates to a fluidized bed boiler hydrogen chloride generation reduction agent using oyster shell shells, a method for reducing hydrogen chloride generation in a fluidized bed boiler furnace using the same, and a binder composition using the combustion residue. More specifically, the pretreatment process is complicated and recycling is insufficient. Oyster shell powder obtained by drying and grinding the discarded shells without separate washing and firing processes is used as a hydrogen chloride generation reducing agent in a fluidized bed boiler, and the hydrogen chloride generation reducing agent including the oyster shell powder is used as solid fuel. It relates to a binder composition that reduces the generation of hydrogen chloride in a fluidized bed boiler furnace in a dry form by mixing and burning it after injection into the used fluidized bed boiler furnace, and utilizes the combustion residue remaining after the combustion.

패각(貝殼)은 패류(shellfish, 貝類)의 껍질로 패류를 출하할 때 대부분 제거한 후에 내용물만을 유통이 이루어지고 있고, 패류 집하장 등의 주변에는 패각이 폐기물로 다량 발생하여 해안에 야적되어 연안을 오염시키고 여러 환경 문제를 유발하고 있는 실정이다. Shells are the shells of shellfish (shellfish). When shellfish are shipped, most of them are removed and only the contents are distributed. A large amount of shells are generated as waste around shellfish collection points and are piled up on the coast, contaminating the coast. This is causing various environmental problems.

현재 우리나라 해안에서는 연간 36만톤의 굴패각이 발생하는 것으로 알려져 있고, 특히, 굴양식에 따른 패각 발생이 많다. 이 중 10%만이 칼슘 비료 등으로 재사용되고 나머지는 해안에 방치되고 있는 실정이어서, 굴패각과 같은 수산폐기물의 대량 처리 필요성이 대두되고 있다. Currently, it is known that 360,000 tons of oyster shells are generated annually on the coast of Korea, and in particular, a lot of shells are generated due to oyster farming. Of these, only 10% are reused as calcium fertilizers and the rest are left abandoned on the coast, raising the need for large-scale disposal of marine waste such as oyster shells.

패각의 화학적 조성은 대개 90중량% 이상이 CaCO3로 이루어져 있으며, 나머지 미량이 SiO2, MgO, Al2O3, Na2O, SO3와 같은 무기물로 이루어진다. The chemical composition of the shell usually consists of more than 90% by weight of CaCO 3 , and the remaining traces are made up of inorganic substances such as SiO 2 , MgO, Al 2 O 3 , Na 2 O, and SO 3 .

그러나 패각에는 패류 탈착 시 잔존하는 유기물과 염분이 일부 존재하며, 이로 인해 패각을 오래 방치할 경우 유기물 부패 및 침출수 발생에 의한 악취 및 양식장 오염 문제 등이 발생한다. However, there are some organic substances and salts that remain in the shell when the shell is desorbed, and if the shell is left for a long time, problems such as bad odor and farm contamination due to organic matter decay and leachate generation occur.

이에 따라 패각을 재활용하기 위한 다양한 기술이 개발되고 있다. 이 중에서 특허문헌 1은 굴패각을 세척하여 염분을 제거하는 단계; 염분이 제거된 굴패각을 분쇄하는 단계; 분쇄된 굴패각을 소정의 입경으로 분말화하는 분급단계; 굴패각 분말을 600∼900℃의 온도에서 연소시켜 이산화탄소를 제거함으로써 생석회(산화칼슘)를 생성하는 소성단계; 생석회 40∼60중량부, 플라이애쉬 4∼20중량부, 석고 5∼20중량부, 고로슬래그 40∼60중량부를 배합비로 혼합하는 믹싱단계;를 포함하는 굴패각을 이용한 지반개량형 고화재 제조방법이 개시되어 있다. Accordingly, various technologies are being developed to recycle shells. Among these, Patent Document 1 includes the steps of washing oyster shells to remove salt; Crushing oyster shells from which salt has been removed; A classification step of powdering the pulverized oyster shells into a predetermined particle size; A calcination step of producing quicklime (calcium oxide) by burning oyster shell powder at a temperature of 600 to 900°C to remove carbon dioxide; A ground improvement type solidified material manufacturing method using cave shells comprising a mixing step of mixing 40 to 60 parts by weight of quicklime, 4 to 20 parts by weight of fly ash, 5 to 20 parts by weight of gypsum, and 40 to 60 parts by weight of blast furnace slag is disclosed. It is done.

특허문헌 2는 폐석고, 불가사리 분말, 패각류 껍질 분말 및 점토광물을 포함하는 무기계 응집제에 관한 발명으로서, 폐석고 분말 50∼200중량부, 불가사리 분말 50∼200중량부, 패각류 분말 50∼100중량부 및 점토광물 30∼70중량부로 이루어진 무기계 폐수처리용 응집조성물을 제공하고, 음식물 폐수처리용, 축산분뇨 폐수처리용 및 하천 폐수처리용 무기계 응집조성물로 적용가능성을 제시하고 있다. Patent Document 2 is an invention regarding an inorganic coagulant containing waste gypsum, starfish powder, shellfish shell powder, and clay minerals, comprising 50 to 200 parts by weight of waste gypsum powder, 50 to 200 parts by weight of starfish powder, and 50 to 100 parts by weight of shell powder. and 30 to 70 parts by weight of clay minerals, providing a flocculating composition for treating inorganic wastewater, and suggesting applicability as an inorganic flocculating composition for food wastewater treatment, livestock manure wastewater treatment, and river wastewater treatment.

특허문헌 3은 폐각 재활용 사료의 제조방법에 관한 것으로, 수세 처리된 패각류 등의 원료를 소성로에 투입하여 1,300∼1,500℃의 온도에서 20∼30분 동안 1차 소성하는 단계; 1차 소성된 상기 원료를 분쇄기에 투입하여 분쇄하는 단계; 분쇄된 원료 분말을 분리기에 투입하여 분리하는 단계; 분리된 미분 분말을 입상성형 조립기에 투입하여 고온수를 결착제로 사용하여 입상화 되도록 성형하는 단계; 성형된 입상 사료를 상기 소성로에 투입하여 900∼1000℃의 온도에서 10∼20분 동안 2차소성하는 단계; 2차 소성된 상기 입상 사료를 냉각시킨 후 상기 소성로에 재투입하여 900∼1,000℃의 온도에서 10∼20분 동안 반복하여 3차 소성하는 단계; 및 3차 소성된 상기 입상 사료를 진동체에 투입하여 체가름하는 단계로 수행된다.Patent Document 3 relates to a method for manufacturing waste shell recycled feed, which includes the steps of putting raw materials such as washed shellfish into a firing furnace and performing primary firing at a temperature of 1,300 to 1,500°C for 20 to 30 minutes; Grinding the first fired raw material by putting it into a grinder; Separating the pulverized raw material powder by inputting it into a separator; Injecting the separated fine powder into a granulator and forming it into granules using high temperature water as a binder; Injecting the molded granular feed into the firing furnace and performing secondary firing at a temperature of 900 to 1000°C for 10 to 20 minutes; Cooling the second-fired granular feed and then reintroducing it into the kiln and repeating third-fire at a temperature of 900 to 1,000°C for 10 to 20 minutes; And it is performed by putting the thirdly fired granular feed into a vibrating sieve and sieving it.

또한, 특허문헌 4는 굴패각을 열처리하는 단계, 열처리된 굴패각을 분쇄하여 슬러리를 제조하는 단계, 슬러리를 배기가스와 반응시켜 습식 탈황하는 단계, 그리고 습식 탈황 중 침전된 탈황 석고를 회수하는 단계를 포함하고, 열처리 단계는 굴패각을 800 내지 1,500℃에서 0.25 내지 10 시간 동안 열처리하여, 폐각을 습식 탈황에 이용하여 고품위의 탈황석고를 생산하는 방법을 제시하고 있다. In addition, Patent Document 4 includes the steps of heat treating oyster shells, pulverizing the heat-treated oyster shells to produce a slurry, reacting the slurry with exhaust gas to wet desulfurize, and recovering the desulfurized gypsum precipitated during wet desulfurization. In the heat treatment step, the oyster shell is heat treated at 800 to 1,500°C for 0.25 to 10 hours, and the waste shell is used for wet desulfurization to produce high-quality desulfurized gypsum.

특허문헌 5는 새로운 배연탈황 원료 생산용 패각 분쇄 시스템 및 이를 이용한 고품위 탈황석고 생산 방법을 제안하고 있으며, 구체적으로 패각을 세척, 건조(250∼350℃에서 35∼60분), 파쇄, 선별, 소성(500∼800℃에서 70∼100분) 등의 과정을 거친 분말을 배기가스와 반응시켜 습식 탈황하는 단계 및 습식 탈황 중 침전된 탈황석고를 회수하는 단계로 수행하여, 패각을 보다 고르게 분쇄하여 고품질의 패각 분체물을 제공할 수 있다고 보고하고 있다. Patent Document 5 proposes a new shell crushing system for producing flue gas desulfurization raw materials and a method for producing high-quality desulfurized gypsum using the same. Specifically, the shells are washed, dried (35 to 60 minutes at 250 to 350 ° C.), crushed, sorted, and fired. (70 to 100 minutes at 500 to 800°C), which is carried out in a wet desulfurization step by reacting the powder with exhaust gas and a step of recovering the desulfurized gypsum precipitated during wet desulfurization, thereby pulverizing the shell more evenly and producing high quality product. It is reported that shell powder can be provided.

상기와 같이 패각을 재활용하는 다양한 기술이 개발 진행되고 있다. 그러나, 패각을 재활용하기 위해서는 패각을 전처리하는 기술과 기존 현장에서 사용되고 있는 제품 대비 저렴하게 생산할 수 있는 기술이 요구되지만 세척, 건조, 분쇄, 고온 소성 등 전처리 공정 및 제품 제조 시 과도한 비용이 투입되어 폐패각 처리비용에 비하여 재활용 비용이 과도하게 투입되고, 최종 생산된 제품이 기존 제품에 비하여 경제성이 불리하여 현재 상용화되지 못하고 있는 실정이다. As described above, various technologies for recycling shells are being developed. However, in order to recycle shells, technology to pre-process the shells and produce them cheaper than products currently used in the field is required. However, excessive costs are incurred during pre-treatment processes such as washing, drying, grinding, and high-temperature firing, and during product manufacturing, resulting in waste. The recycling cost is excessive compared to the shell processing cost, and the final product is economically unfavorable compared to existing products, so it is not currently commercialized.

특히, 특허문헌 4 및 특허문헌 5는 패각을 이용하여 보일러 탈황제로 사용하여 보일러 황화수소 발생 저감제로 사용하고 있으나, 상기 종래기술은 별도의 탈황장치를 구비한 화력발전소 미분탄 보일러(Pulverized Combustion)의 습식 탈황제로 활용되기 때문에 세척, 건조, 분쇄 및 소성 과정을 거쳐 석회석(CaCO3) 성분을 생석회(CaO) 성분으로 전이시킨 후 이를 다시 물과 혼합하여 슬러리를 제조하고 이 슬러리를 배기가스와 반응시켜 습식 탈황하는 방식이기 때문에 공정비용이 과도한 문제점이 있다. In particular, Patent Document 4 and Patent Document 5 use shells as a boiler desulfurization agent to reduce the generation of boiler hydrogen sulfide, but the prior art uses a wet desulfurization agent for a pulverized combustion boiler in a thermal power plant equipped with a separate desulfurization device. Since it is used as a drying agent, the limestone (CaCO 3 ) component is converted to quicklime (CaO) component through washing, drying, grinding, and firing processes, and then mixed with water to produce a slurry, and this slurry is reacted with exhaust gas to perform wet desulfurization. Because this method is used, there is a problem that the process cost is excessive.

한편, 일반적으로 석탄만을 100% 연소하는 유동층 보일러에서는 유독가스인 염화수소 가스 발생이 없으나 일반 고형연료 및 바이오 고형연료를 사용하는 유동층 보일러에서는 염화수소 가스가 다량 발생되어 이의 제거가 필수적이다. Meanwhile, in general, fluidized bed boilers that burn 100% of coal do not generate hydrogen chloride gas, which is a toxic gas, but in fluidized bed boilers that use general solid fuel and bio-solid fuel, a large amount of hydrogen chloride gas is generated, and its removal is essential.

대부분 연소 후 후단 공정에서 액상 소석회를 분무하여 염화수소 가스를 제거하는 방식이 가장 많이 쓰이고 있는데 폐합성수지나 폐목재 등이 함유되어 있는 고형연료를 연소할 경우 많은 양의 염화수소 가스 발생량이 높아 최고 배출 허용농도인 0.3% 이하로 유지하기 위하여 액상 소석회를 과도하게 분무하는 실정이다. 이 때문에 고가의 액상 소석회의 다량 사용으로 보일러의 운전비용 상승 및 최종 남는 연소 잔재물이 액상 소석회의 수분 때문에 덩어리 형태로 뭉치게 배출되어 재활용이 어려운 문제점 등이 발생하게 된다. In most cases, the method of removing hydrogen chloride gas by spraying liquid slaked lime in the post-combustion process is most commonly used. When burning solid fuel containing waste synthetic resin or waste wood, a large amount of hydrogen chloride gas is generated, so the maximum allowable emission concentration is high. In order to maintain phosphorus below 0.3%, liquid slaked lime is excessively sprayed. For this reason, the use of large amounts of expensive liquid slaked lime increases the operating cost of the boiler, and the final remaining combustion residues are discharged in lumps due to the moisture in the liquid slaked lime, making recycling difficult.

이에, 본 발명자들은 종래 문제점을 해소하고자 노력한 결과, 전처리 공정이 복잡하여 재활용이 미흡했던 굴패각을 폐기된 패각 그대로를 건조, 분쇄 공정을 거쳐 적정 유기물함량, 수분함량, 염분함량을 가진 분쇄된 굴패각 분말을 고형연료를 사용하는 유동층 보일러 노 내에 투입 후 혼합 연소하여 염화수소 가스 발생을 연소 단계에서부터 획기적으로 저감시킬 수 있음을 확인하여, 상기 굴패각 분말이 유동층 보일러 내부에 염화수소 발생 저감제로 활용 가능하고 유기물 및 염소 성분이 함유된 굴패각이 연료와 함께 직접 투입되기 때문에 전처리 공정이 생략되어 유동층 보일러의 운전비용절감 효과를 확인함으로써, 본 발명을 완성하였다. Accordingly, as a result of the present inventors' efforts to solve the existing problems, the pre-treatment process was complicated and recycling was insufficient. The discarded oyster shells were dried and pulverized to obtain pulverized oyster shell powder with appropriate organic content, moisture content, and salt content. It was confirmed that the generation of hydrogen chloride gas can be dramatically reduced from the combustion stage by mixing and burning after putting it into the fluidized bed boiler furnace using solid fuel. It was confirmed that the oyster shell powder can be used as a hydrogen chloride generation reduction agent inside the fluidized bed boiler and as an organic matter and chlorine agent. The present invention was completed by confirming the effect of reducing operating costs of the fluidized bed boiler by omitting the pretreatment process because the oyster shells containing the ingredients are directly added together with the fuel.

대한민국특허 제0464666호 (2005.01.03 공고)Republic of Korea Patent No. 0464666 (announced on January 3, 2005) 대한민국특허 제1169563호 (2012.07.27 공고)Republic of Korea Patent No. 1169563 (announced on July 27, 2012) 대한민국특허 제0993223호 (2010.11.09 공고)Republic of Korea Patent No. 0993223 (announced on November 9, 2010) 대한민국특허 제1753823호 (2017.07.05 공고)Republic of Korea Patent No. 1753823 (announced on July 5, 2017) 대한민국특허 제2109756호 (2020.05.26 공고)Republic of Korea Patent No. 2109756 (announced on May 26, 2020)

본 발명의 목적은 패각을 별도의 세척 및 소성 공정이 생략된 상태에서 폐기된 패각 그대로를 건조, 분쇄 공정을 거쳐 유기물 및 염소 성분이 함유된 굴패각 분말을 포함한 유동층 보일러 염화수소 발생 저감제를 제공하는 것이다. The purpose of the present invention is to provide a fluidized bed boiler hydrogen chloride generation reduction agent containing oyster shell powder containing organic matter and chlorine components by drying and grinding the discarded shells while omitting separate washing and firing processes. .

본 발명의 다른 목적은 굴패각 분말을 고형연료를 사용하는 유동층 보일러의 노내 투입하여 혼합 연소하여 건식형태로 수행되는 유동층 보일러 노내 염화수소 발생 저감방법을 제공하는 것이다. Another object of the present invention is to provide a method for reducing the generation of hydrogen chloride in a fluidized bed boiler furnace, which is performed in a dry manner by adding oyster shell powder into the furnace of a fluidized bed boiler using solid fuel and mixing and combustion.

본 발명의 또 다른 목적은 상기 유동층 보일러 노내 염화수소 발생 저감방법으로부터 수득된 연소 잔재물을 활용한 결합재 조성물을 제공하는 것이다. Another object of the present invention is to provide a binder composition utilizing combustion residues obtained from the method for reducing hydrogen chloride generation in the fluidized bed boiler furnace.

상기 목적을 달성하기 위하여, 본 발명은 탄산칼슘 성분이 90중량%이상이며 입경이 5mm 이하로 분쇄된 굴패각 분말을 활용한 유동층 보일러 염화수소 발생 저감제를 제공한다. In order to achieve the above object, the present invention provides a fluidized bed boiler hydrogen chloride generation reduction agent using oyster shell powder pulverized to a particle size of 5 mm or less and containing more than 90% by weight of calcium carbonate.

본 발명의 유동층 보일러 염화수소 발생 저감제에는 상기 굴패각 분말 100중량부에 대하여, 석회석 분말을 5∼1,000중량부 더 포함할 수 있다. The fluidized bed boiler hydrogen chloride generation reduction agent of the present invention may further include 5 to 1,000 parts by weight of limestone powder based on 100 parts by weight of the oyster shell powder.

상기 굴패각 분말은 유기물 함유량이 0.1∼10중량%인 것이 바람직하고, 수분 함유량이 0.01∼5중량%인 것이 바람직하다.The oyster shell powder preferably has an organic content of 0.1 to 10% by weight and a moisture content of 0.01 to 5% by weight.

또한, 굴패각 분말은 염분 함유량이 0.01∼3중량%인 것이 바람직하다. Additionally, the oyster shell powder preferably has a salt content of 0.01 to 3% by weight.

본 발명에 의한 유동층 보일러 노내 염화수소 발생 저감방법은 상기 염화수소 발생 저감제와 고형연료를 유동층 보일러의 노 내에 투입한 후, 혼합 연소하여 건식형태로 염화수소 저감 방법을 실시하며, 상기 유동층 보일러 염화수소 발생 저감제 100중량부에 대하여, 상기 고형연료는 100∼2,000중량부를 투입하는 것이 바람직하다. The method for reducing hydrogen chloride generation in a fluidized bed boiler furnace according to the present invention involves putting the hydrogen chloride generation reducing agent and solid fuel into the furnace of a fluidized bed boiler, and then performing mixed combustion to reduce hydrogen chloride in a dry form. For 100 parts by weight, it is preferable to add 100 to 2,000 parts by weight of the solid fuel.

상기 고형연료는 일반 고형연료(SRF, Solid Refuse Fuel) 및 바이오 고형연료(BIO-SRF, Biomass-Solid Refuse Fuel) 중 선택된 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. The solid fuel may be one or a mixture of two or more selected from general solid fuel (SRF, Solid Refuse Fuel) and bio-solid fuel (BIO-SRF, Biomass-Solid Refuse Fuel).

또한, 본 발명은 유동층 보일러 노내 염화수소 발생 저감방법을 통해 유동층 보일러에서 염화수소 발생 저감제와 고형연료를 혼합 연소 후 남는 연소 잔재물을 포함한 결합재 조성물을 제공한다. 이때, 상기 연소 잔재물은 CaO 함량이 10∼50중량%이고, Cl- 함량이 0.5∼25중량% 범위인 것이다. In addition, the present invention provides a binder composition containing combustion residues remaining after mixed combustion of a hydrogen chloride generation reducing agent and solid fuel in a fluidized bed boiler through a method for reducing hydrogen chloride generation in a fluidized bed boiler furnace. At this time, the combustion residue has a CaO content of 10 to 50% by weight and a Cl - content in the range of 0.5 to 25% by weight.

본 발명의 결합재 조성물은 상기 연소 잔재물 100중량부에 대하여, 시멘트 10∼4,000중량부를 더 포함할 수 있으며, 또한, 상기 연소 잔재물 100중량부에 대하여, 슬래그 10∼4,000중량부를 더 포함할 수 있다. The binder composition of the present invention may further include 10 to 4,000 parts by weight of cement based on 100 parts by weight of the combustion residue, and may further include 10 to 4,000 parts by weight of slag based on 100 parts by weight of the combustion residue.

본 발명에 따르면, 종래 패각을 세척 및 소성하는 전처리 공정이 복잡하여 활용이 미흡한 굴패각을 본 발명에서는 폐기된 패각 그대로를 건조, 분쇄 공정만을 거친 분쇄된 굴패각 분말을 유동층 보일러 노내에 투입하여 염화수소 발생 저감효과를 확인함으로써, 분쇄된 굴패각을 유동층 보일러 염화수소 발생 저감제로서 활용할 수 있다. According to the present invention, in the present invention, oyster shells, which are underutilized due to the complexity of the pretreatment process of washing and firing the shells, are dried and crushed oyster shell powder that has only undergone a grinding process is introduced into the fluidized bed boiler furnace to reduce the generation of hydrogen chloride. By confirming the effect, pulverized oyster shells can be used as a reducing agent for hydrogen chloride generation in a fluidized bed boiler.

또한, 본 발명의 분쇄된 굴패각을 활용한 유동층 보일러 염화수소 발생 저감제는 유동층 보일러 노 내에 투입하여 고형연료와 혼합 연소하여 건식형태로 유동층 보일러 노내 염화수소 발생을 저감함으로써, 종래 고형연료를 사용하는 유동층 보일러에서 연소 후 발생하는 염화수소(HCl) 가스의 대기 배출을 저감시키기 위하여 후단 공정에서 액상 소석회 등을 분무하여 염화수소 가스 배출을 저감하는 방법을 대체 가능하다. In addition, the fluidized bed boiler hydrogen chloride generation reduction agent using pulverized oyster shell of the present invention is put into the fluidized bed boiler furnace and mixed with solid fuel for combustion to reduce hydrogen chloride generation in the fluidized bed boiler furnace in a dry form, thereby reducing the fluidized bed boiler using conventional solid fuel. In order to reduce atmospheric emissions of hydrogen chloride (HCl) gas generated after combustion, it is possible to replace the method of reducing hydrogen chloride gas emissions by spraying liquid slaked lime, etc. in the later process.

따라서, 유동층 보일러의 운전비용을 절감할 수 있고, 굴패각을 대량 재활용할 수 있는 효과가 있다. Therefore, the operating cost of the fluidized bed boiler can be reduced and large quantities of oyster shells can be recycled.

도 1은 본 발명의 유동층 보일러 노내 염화수소 발생 저감방법에 따라 굴패각과 고형연료를 혼합 연소하여 염화수소 가스 발생량을 측정하는 장치 모식도이고,
도 2는 도 1의 실제 구축된 장치 외관사진이다.
Figure 1 is a schematic diagram of a device for measuring the amount of hydrogen chloride gas generated by mixing and burning oyster shells and solid fuel according to the method for reducing hydrogen chloride generation in the fluidized bed boiler furnace of the present invention,
FIG. 2 is a photograph of the exterior of the actually constructed device of FIG. 1.

이하, 본 발명을 상세히 설명하고자 한다. Hereinafter, the present invention will be described in detail.

본 발명은 탄산칼슘 성분이 90중량%이상이며 입경이 5mm 이하로 분쇄된 굴패각 분말을 포함한 유동층 보일러 염화수소 발생 저감제를 제공한다. The present invention provides a fluidized bed boiler hydrogen chloride generation reduction agent containing oyster shell powder with a calcium carbonate content of 90% by weight or more and a particle size of 5 mm or less.

본 발명은 별도의 세척 및 소성 전처리 공정 없이 건조 및 분쇄 공정만을 거쳐 유동층 보일러 염화수소 발생 저감제로 이용이 가능하다. The present invention can be used as a hydrogen chloride generation reduction agent in a fluidized bed boiler through only drying and grinding processes without separate washing and firing pretreatment processes.

그 이유는 유동층 보일러 연료로서 염소 성분이 다량 함유된 고형연료 등이 사용되기 때문에 염화수소 발생 저감제인 굴패각에 염소 성분이 일부 존재하더라도 보일러 운전 장애를 일으키지 않으며, 유기물 또한 보일러 내부에서 연료와 함께 완전 연소되기 때문이다. This is because solid fuel containing a large amount of chlorine is used as fluidized bed boiler fuel, so even if some chlorine is present in the oyster shell, which is a hydrogen chloride generation reducer, it does not cause boiler operation problems, and organic matter is also completely burned along with the fuel inside the boiler. Because.

따라서 고형연료를 사용하는 유동층 보일러의 염화수소 가스 발생 저감제로 활용되는 굴패각은 염분이나 유기물이 다량 함유되어 있거나 굴양식용 플라스틱 코팅사 및 수분이 일부 함유하고 있어도 코팅사 분리 작업, 세척이나 소성 과정 없이 활용할 수 있다는 장점이 있다. Therefore, oyster shell shells, which are used as a hydrogen chloride gas reduction agent in fluidized bed boilers using solid fuel, can be used without separating the coated sand, washing, or firing even if they contain a large amount of salt or organic matter or contain some moisture and plastic coating sand for oyster farming. There is an advantage to being able to do this.

따라서, 본 발명의 굴패각 분말은 유기물 함유량 0.1∼10중량%인 것이고, 수분 함유량이 0.01∼5중량% 및 염분 함유량이 0.01∼3중량%를 포함할 수 있다. Therefore, the oyster shell powder of the present invention may have an organic content of 0.1 to 10% by weight, a moisture content of 0.01 to 5% by weight, and a salt content of 0.01 to 3% by weight.

유동층 보일러에서 고형연료와 굴패각의 혼합 연소에 의한 염화수소 저감 원리는 탄산칼슘(CaCO3)이 주성분인 굴패각은 약800℃의 온도에서 탈탄산(CaO+CO2)되어 CaO 성분으로 전이된다. 이렇게 전이된 CaO 성분이 고형연료 연소 시 발생하는 염화수소(HCl) 성분과 노내에서 직접 반응하여 염화칼슘 성분으로 전이되어 연소 잔재물에 함유하게 된다. The principle of hydrogen chloride reduction through mixed combustion of solid fuel and oyster shell in a fluidized bed boiler is that oyster shell, which is mainly composed of calcium carbonate (CaCO 3 ), is decarboxylated (CaO + CO 2 ) at a temperature of about 800°C and converted to CaO component. The CaO component transferred in this way directly reacts with the hydrogen chloride (HCl) component generated during combustion of solid fuel in the furnace and is transferred to calcium chloride component, which is contained in the combustion residue.

식 1) CaO + 2HCl → CaCl2 + H2O Formula 1) CaO + 2HCl → CaCl 2 + H 2 O

따라서 본 발명의 유동층 보일러 염화수소 발생 저감제로서 사용되는 굴패각에는 탄산칼슘 성분이 90중량%이상, 입경이 5mm 이하로 분쇄된 것이 바람직하다. Therefore, it is preferable that the oyster shell used as a hydrogen chloride generation reduction agent in the fluidized bed boiler of the present invention is crushed to have a calcium carbonate component of 90% by weight or more and a particle size of 5 mm or less.

더욱 바람직하게는 굴패각의 입경이 0.005∼5mm인 것이다. 이때, 굴패각을 0.005mm 미만으로 분쇄할 경우 염화수소 저감 효율은 좋아지나 분쇄 비용이 과도하게 상승되고 굴패각을 분쇄하지 않거나, 반면에 굴패각을 5mm를 초과하는 거친 알갱이 형태로 사용하면 보일러 내부에서 염화수소 저감 반응시간이 길어져 효율이 저하된다. More preferably, the particle size of the oyster shell is 0.005 to 5 mm. At this time, if the oyster shells are crushed to less than 0.005mm, the hydrogen chloride reduction efficiency improves, but the grinding cost increases excessively and the oyster shells are not crushed, or if the oyster shells are used in the form of coarse granules exceeding 5mm, the hydrogen chloride reduction reaction inside the boiler As time increases, efficiency decreases.

본 발명의 유동층 보일러 염화수소 발생 저감제에는 상기 굴패각 분말 100중량부에 대하여, 석회석 분말을 5∼1,000중량부 더 포함하는 것이 바람직한데, 상기 석회석 분말은 적조 발생과 같은 현상으로 패류 양식이 실패하여 굴패각을 활용한 염화수소 발생 저감제의 공급 자체가 불안정하거나 장거리 운송으로 비용이 과도할 경우에 사용하는 것이 바람직하다. The fluidized bed boiler hydrogen chloride generation reducing agent of the present invention preferably further contains 5 to 1,000 parts by weight of limestone powder based on 100 parts by weight of the oyster shell powder. It is desirable to use it when the supply of the hydrogen chloride generation reducing agent itself is unstable or the cost is excessive due to long-distance transportation.

상기 석회석 분말은 입경이 5mm 이하이며 순도 80% 이상으로 시중에서 일반적으로 유통되는 제품이면 가능하다. The limestone powder can be any product that has a particle size of 5 mm or less and a purity of 80% or more that is generally distributed on the market.

상기 석회석 분말은 굴패각 분말 100중량부에 대하여 5중량부 미만일 경우 그 효과가 미비하고, 1,000중량부를 초과할 경우 상대적으로 굴패각 혼입율이 줄어들어 굴패각의 재활용율이 크게 저하된다.If the amount of the limestone powder is less than 5 parts by weight per 100 parts by weight of oyster shell powder, the effect is minimal, and if it exceeds 1,000 parts by weight, the mixing rate of oyster shell shells is relatively reduced and the recycling rate of oyster shell shells is greatly reduced.

본 발명의 유동층 보일러 염화수소 발생 저감제는 조개류의 껍질의 경우 해류 양식업에서 부산물로 다량 발생하고 있으며, 해안에 야적되어 연안 어장을 오염시키고 공유수면의 관리를 어렵게 하는 등 여러 가지 환경 문제를 유발시키고, 패각류 중 굴이 가장 많은 패각을 발생시키기 때문에 남해안, 서해안 연안환경에 가장 큰 문제가 지적되어 왔다. The fluidized bed boiler hydrogen chloride generation reduction agent of the present invention is generated in large quantities as a by-product in marine fish aquaculture in the case of shellfish shells, and causes various environmental problems such as contaminating coastal fishing grounds and making management of public waters difficult when stored on the coast. Because oysters produce the most shells among shellfish, the biggest problem has been pointed out in the coastal environment of the south and west coasts.

또한, 종래 패각을 세척 및 소성하는 전처리 공정이 복잡하여 활용이 미흡한 굴패각을 본 발명에서는 폐기된 패각 그대로를 건조, 분쇄하여 분쇄된 굴패각을 활용한다. In addition, in the present invention, oyster shells, which are underutilized due to the complicated pretreatment process of washing and firing the shells, are dried and pulverized and the pulverized oyster shells are utilized.

또한, 패각을 별도의 세척 및 소성 공정이 생략된 상태에서 간단한 전처리 과정을 거쳐 염화수소 가스 발생 저감제로 만들어 유동층 보일러 내부에 고형연료와 혼합 연소시킴으로써 연료 연소 시 발생하는 염화수소(HCl)를 제거함과 동시에 패각 처리비용 및 고가의 액상 소석회 구입비용 절감과 더불어 폐기물 재활용으로 인한 자원 절약의 효과, 연안환경 오염방지 등의 다양한 효과를 기대할 수 있다.In addition, the shells are made into a hydrogen chloride gas reduction agent through a simple pretreatment process, omitting separate washing and firing processes, and are mixed and burned with solid fuel inside the fluidized bed boiler to remove hydrogen chloride (HCl) generated during fuel combustion and at the same time remove the shells. In addition to reducing processing costs and the cost of purchasing expensive liquid slaked lime, various effects can be expected, such as resource saving through waste recycling and prevention of coastal environment pollution.

본 발명은 굴패각 분을 포함한 유동층 보일러 염화수소 발생 저감제 100중량부에 대하여, 고형연료 100∼2,000중량부를 유동층 보일러의 노 내에 투입 후 혼합 연소하여 건식형태로 수행되는 유동층 보일러 노내 염화수소 발생 저감방법을 제공한다. The present invention provides a method for reducing hydrogen chloride generation in a fluidized bed boiler furnace, which is performed in a dry form by injecting 100 to 2,000 parts by weight of solid fuel into the furnace of a fluidized bed boiler and then mixing and burning for 100 parts by weight of a fluidized bed boiler hydrogen chloride generation reduction agent containing oyster shell powder. do.

상기 유동층 보일러 염화수소 발생 저감제 100중량부에 대하여, 고형연료는 100∼2,000중량부를 투입하는 것이 바람직하다. 이때, 100중량부 미만인 경우 연료 성분 부족으로 발열량이 적어 발전 효율이 급격하게 저하되며, 2,000중량부를 초과할 경우에는 상대적으로 굴패각 분말의 투입량이 감소되어 염화수소 발생 저감 효과가 현저하게 저하된다.It is preferable to add 100 to 2,000 parts by weight of solid fuel for 100 parts by weight of the fluidized bed boiler hydrogen chloride generation reduction agent. At this time, if it is less than 100 parts by weight, the power generation efficiency is drastically reduced due to low heat generation due to a lack of fuel components, and if it exceeds 2,000 parts by weight, the amount of oyster shell powder input is relatively reduced, significantly reducing the effect of reducing hydrogen chloride generation.

상기 고형연료는 일반 고형연료(SRF, Solid Refuse Fuel) 및 바이오 고형연료(BIO-SRF, Biomass-Solid Refuse Fuel) 중 선택된 어느 하나 또는 둘 이상의 혼합물인 것이 바람직하다. The solid fuel is preferably one or a mixture of two or more selected from general solid fuel (SRF, Solid Refuse Fuel) and bio-solid fuel (BIO-SRF, Biomass-Solid Refuse Fuel).

도 1은 본 발명의 유동층 보일러 노내 염화수소 발생 저감방법에 따라 굴패각과 고형연료를 혼합 연소하여 염화수소 가스 발생량을 측정하는 장치 모식도이고, 도 2는 도 1의 실제 구축된 장치 외관사진이다. Figure 1 is a schematic diagram of a device for measuring the amount of hydrogen chloride gas generated by mixing and burning oyster shells and solid fuel according to the method for reducing hydrogen chloride generation in a fluidized bed boiler furnace of the present invention, and Figure 2 is a photograph of the exterior of the actually built device of Figure 1.

상기 장치로부터 염화수소 가스 발생량을 측정한 결과, 고형연료로서 우드칩 고형연료 70중량% 및 굴패각 분말 30중량%를 전기로에서 혼합 연소한 후 연소 잔재물의 배기 가스를 측정한 결과, 굴폐각 분말 혼입없이 사용한 경우 대비 염화수소 농도가 1/15 수준으로 저감결과를 확인할 수 있다. As a result of measuring the amount of hydrogen chloride gas generated from the above device, the exhaust gas of the combustion residue was measured after mixing 70% by weight of wood chip solid fuel and 30% by weight of oyster shell powder as solid fuel in an electric furnace. The reduction result can be confirmed by reducing the hydrogen chloride concentration to 1/15th of the case.

또한, 고형연료로서 우드칩 고형연료 70중량% 및 굴패각 분말 30중량%를 전기로에서 혼합 연소한 후 연소 잔재물은 CaO 성분 함량이 2배 정도의 증가와 Free-CaO 함량은 8배 정도 증가결과를 보임으로써, 굴패각 분말이 염화수소와 반응한 후 일부는 순수 생석회(CaO) 성분으로 존재함을 확인할 수 있다.In addition, after mixing and burning 70% by weight of wood chip solid fuel and 30% by weight of oyster shell powder as solid fuel in an electric furnace, the CaO content of the combustion residue increased by about 2 times and the free-CaO content increased by about 8 times. As a result, it can be confirmed that after the oyster shell powder reacts with hydrogen chloride, some of it exists as a pure quicklime (CaO) component.

이상의 본 발명의 유동층 보일러 노내 염화수소 발생 저감방법에 따라, 본 발명의 굴패각 분말을 기존 유동층 보일러 노내에 투입하여 상기 굴패각과 고형연료를 직접 혼합 연소하여 염화수소 가스 발생을 연소 단계에서부터 획기적으로 저감시킬 수 있음을 확인함으로써, 상기 굴패각이 유동층 보일러 내부에 염화수소 발생 저감제로 유용하고 유기물 및 염소 성분이 함유된 굴패각이 연료와 함께 직접 투입되기 때문에 전처리 공정이 생략되어 공정비용절감 효과를 구현할 수 있다. According to the above method of reducing hydrogen chloride generation in the fluidized bed boiler furnace of the present invention, the oyster shell powder of the present invention is put into the existing fluidized bed boiler furnace and the oyster shell shell and solid fuel are directly mixed and burned to dramatically reduce the generation of hydrogen chloride gas from the combustion stage. By confirming, the oyster shell is useful as a hydrogen chloride generation reducer inside the fluidized bed boiler, and since the oyster shell containing organic matter and chlorine components is directly input together with the fuel, the pretreatment process is omitted, thereby realizing a process cost reduction effect.

나아가, 본 발명은 유동층 보일러 노내 염화수소 발생 저감방법을 통해 유동층 보일러에서 염화수소 발생 저감제와 고형연료를 혼합 연소 후 남는 연소 잔재물을 포함한 결합재 조성물을 제공한다. Furthermore, the present invention provides a binder composition containing combustion residues remaining after mixed combustion of a hydrogen chloride generation reducing agent and solid fuel in a fluidized bed boiler through a method for reducing hydrogen chloride generation in a fluidized bed boiler furnace.

상기 염화수소 발생 저감 방법에 의해 유동층 보일러에 남는 연소 잔재물은 CaO 함량이 10∼50중량%이고, Cl- 함량이 0.5∼25중량% 범위이다. 이는 굴패각의 석회석 성분은 탈탈산되어 염화수소와 반응하여 생성된 CaCl2 형태로 존재하거나 일부 생석회(CaO) 형태로 존재하기 때문이다.The combustion residue remaining in the fluidized bed boiler by the method for reducing hydrogen chloride generation has a CaO content of 10 to 50% by weight and a Cl - content in the range of 0.5 to 25% by weight. This is because the limestone component of the oyster shell exists in the form of CaCl 2 produced by deoxidation and reaction with hydrogen chloride, or in the form of some quicklime (CaO).

상기 연소 잔재물이 시멘트 및 슬래그와 같이 활용될 경우 강도를 더욱 크게 증진시킬 수 있다.When the combustion residues are used together with cement and slag, the strength can be further improved.

따라서, 본 발명의 결합재 조성물은 상기 연소 잔재물 100중량부에 대하여, 시멘트 10∼4,000중량부를 더 포함할 수 있다. Therefore, the binder composition of the present invention may further include 10 to 4,000 parts by weight of cement based on 100 parts by weight of the combustion residue.

상기 시멘트는 일반 포틀랜드 시멘트, 조강 포틀랜드 시멘트, 준조강 시멘트, 고로슬래그 시멘트, 플라이애시 시멘트 중 어느 하나이거나 또는 둘 이상의 혼합물인 것이 바람직하다. 상기 시멘트는 10중량부 미만일 경우 그 효과가 미비하며, 반대로 4,000중량부를 초과할 경우 강도는 크게 증진되나 상대적으로 연소 잔재물의 혼입량이 감소하고 비용이 과도하게 상승하게 된다.The cement is preferably one of general Portland cement, early steel Portland cement, semi-early steel cement, blast furnace slag cement, and fly ash cement, or a mixture of two or more. If the amount of the cement is less than 10 parts by weight, the effect is minimal. Conversely, if the amount exceeds 4,000 parts by weight, the strength is greatly improved, but the amount of combustion residues mixed in is relatively reduced and the cost increases excessively.

또한, 본 발명의 결합재 조성물은 상기 연소 잔재물 100중량부에 대하여, 슬래그 10∼4,000중량부를 더 포함할 수 있다. In addition, the binder composition of the present invention may further include 10 to 4,000 parts by weight of slag based on 100 parts by weight of the combustion residue.

상기 슬래그는 고로슬래그, 전로 및 전기로 환원슬래그, 전로 및 전기로 산화슬래그, 페로니켈 슬래그, 래들 슬래그, KR 슬래그, 석탄가스화 복합 슬래그, 스테인레스 슬래그, 연슬래그로 이루어진 군에서 선택된 미분말 또는 분진 형태의 어느 하나이거나 둘 이상의 혼합물인 것이 바람직하다.The slag is in the form of fine powder or dust selected from the group consisting of blast furnace slag, converter and electric furnace reduction slag, converter and electric furnace oxidation slag, ferronickel slag, ladle slag, KR slag, coal gasification composite slag, stainless slag, and soft slag. It is preferable that it is one or a mixture of two or more.

상기 슬래그는 상기 연소 잔재물의 CaO 및 CaCl2 성분에 의해 자극 및 촉진되어 비결정질이 파괴되며 수화반응을 일으켜 경화될 수가 있다. 상기 슬래그는 10중량부 미만일 경우 그 효과가 미비하며, 반대로 4,000중량부를 초과할 경우 상대적으로 연소 잔재물의 혼입량이 크게 감소하여 자극제 및 촉진제 성분 부족으로 반응하지 못한 슬래그가 다량 존재하게 되어 오히려 강도가 크게 저하된다. The slag may be stimulated and promoted by the CaO and CaCl 2 components of the combustion residue, thereby destroying its amorphous nature and causing a hydration reaction to harden. If the amount of slag is less than 10 parts by weight, the effect is minimal, and on the contrary, if it exceeds 4,000 parts by weight, the amount of combustion residues is relatively greatly reduced, resulting in the presence of a large amount of slag that has not reacted due to a lack of stimulant and accelerator components, which increases the strength. It deteriorates.

상기와 같이 본 발명에 의한 유동층 보일러 염화수소 발생 저감공정 후 발생된 연소 잔재물은 염소 성분이 높아 철근과 같이 사용되는 레미콘에는 사용이 불가능하지만 무근 콘크리트나 연약지반 강화용 등 다양한 건설현장에서 결합재로 활용 가치가 높다. As described above, the combustion residue generated after the hydrogen chloride generation reduction process in the fluidized bed boiler according to the present invention has a high chlorine content, so it cannot be used in ready-mix concrete used with rebar, but it can be used as a binder in various construction sites such as for strengthening plain concrete or soft ground. is high.

이하에서 본 발명의 바람직한 실시예 및 비교예들이 기술되어질 것이다. 또한 이하의 실시예들은 본 발명을 예증하기 위한 것으로서 본 발명의 범위를 국한하는 것으로 이해되어져서는 아니된다.Preferred examples and comparative examples of the present invention will be described below. Additionally, the following examples are intended to illustrate the present invention and should not be construed as limiting the scope of the present invention.

<비교예> <Comparative example>

연료로서 우드칩 고형연료 100%를 전기로에서 850℃에서 연소한 후 배기 가스를 측정하고 연소 잔재물을 분석하였다. 100% wood chip solid fuel was burned at 850°C in an electric furnace, then exhaust gas was measured and combustion residues were analyzed.

<실시예> <Example>

연료로서 우드칩 고형연료 70중량% 및 굴패각 분말 30중량%를 전기로에서 850℃에서 연소한 후 배기 가스를 측정하고 연소 잔재물을 분석하였다.As fuel, 70% by weight of wood chip solid fuel and 30% by weight of oyster shell powder were burned at 850°C in an electric furnace, then the exhaust gas was measured and combustion residues were analyzed.

상기 굴패각 분말은 폐시된 굴패각 그대로 건조시켜 분쇄공정을 통해 수득되었으며, 상기 분쇄된 굴패각은 탄산칼슘 성분 92.3중량% 함유 및 평균 입경 430㎛이었다. The oyster shell powder was obtained by drying discarded oyster shells as is and grinding them, and the pulverized oyster shells contained 92.3% by weight of calcium carbonate and had an average particle diameter of 430㎛.

<실험예 1> 배기가스 측정 <Experimental Example 1> Exhaust gas measurement

상기 비교예인 우드칩 고형연료 100%를 연소한 후 배기가스를 측정한 결과 이때 염화수소 농도는 4,923ppm으로 최고 허용농도인 3,000ppm을 초과하였다.As a result of measuring the exhaust gas after burning 100% of the wood chip solid fuel as the comparative example, the hydrogen chloride concentration was 4,923 ppm, exceeding the maximum allowable concentration of 3,000 ppm.

반면에, 실시예의 경우, 염화수소 농도 312ppm으로 측정되어, 상기 비교예에 비하여 약 1/15 수준으로 저감되었으며 최고 허용농도인 3,000ppm의 약 1/10 수준으로 유지할 수 있었다.On the other hand, in the case of the example, the hydrogen chloride concentration was measured at 312 ppm, reduced to about 1/15 compared to the comparative example, and maintained at about 1/10 of the maximum allowable concentration of 3,000 ppm.

<실험예 2> 연소 잔재물의 분석<Experimental Example 2> Analysis of combustion residues

상기 비교예 및 실시예 방식으로 연소한 후 발생되는 연소 잔재물의 화학조성 및 Free-CaO 함량 결과를 하기 표 1에 나타내었다. The chemical composition and free-CaO content results of combustion residues generated after combustion according to the comparative examples and examples are shown in Table 1 below .

상기 표 1의 결과로부터, 비교예에서 발생된 연소 잔재물의 경우 CaO 성분 함량은 약 18%이고, Cl- 성분 함량은 약 5%였으나, 실시예에서 발생된 연소 잔재물의 경우 CaO 성분 함량은 약 35%로 약 2배 정도로 증가되었고, Cl- 성분 함량은 약 15%로 약 3배 증가하였음을 확인하였다. From the results in Table 1, in the case of the combustion residue generated in the comparative example, the CaO component content was about 18% and the Cl - component content was about 5%, but in the case of the combustion residue generated in the Example, the CaO component content was about 35%. It was confirmed that the % increased by about two times, and the Cl - component content increased by about three times to about 15%.

상기의 결과는 굴패각 분말이 우드칩 고형연료 연소 시 발생하는 염화수소 성분과 반응하여 염화수소 가스를 대기중으로 배출시키지 아니하고 연소 잔재물에 고정화된 것을 의미한다. 즉, 우드칩 고형연료 연소 시 발생하는 염화수소와 굴패각 분말이 화학적 반응을 일으켰기 때문으로 해석된다. The above results mean that the oyster shell powder reacted with the hydrogen chloride component generated during combustion of wood chip solid fuel and was fixed in the combustion residue without emitting hydrogen chloride gas into the atmosphere. In other words, it is interpreted that the hydrogen chloride generated during combustion of wood chip solid fuel and oyster shell powder caused a chemical reaction.

또한, Free-CaO 함량은 비교예에 비하여 실시예에서 약 8배 정도 증가하는 결과를 확인함으로써, 굴패각 분말이 염화수소와 반응한 후 일부는 순수 생석회(CaO) 성분으로 존재함을 확인할 수 있었다.In addition, it was confirmed that the Free-CaO content increased by about 8 times in the Example compared to the Comparative Example, confirming that some of the oyster shell powder reacted with hydrogen chloride and existed as a pure quicklime (CaO) component.

<실험예 3> 연소잔재물의 결합재로서 압축강도 측정<Experimental Example 3> Compressive strength measurement as a binder of combustion residues

상기 비교예 및 실시예에 따른 연소 잔재물을 결합재로서 활용성을 평가하기 위해 압축강도를 측정하고, 그 결과를 하기 표 2에 기재하였다. 물결합재비는 68% 조건이며 페이스트 형태로 제작하였다.To evaluate the usability of the combustion residues according to the comparative examples and examples above as a binder, the compressive strength was measured, and the results are shown in Table 2 below. The wave mixture ratio was 68% and it was produced in paste form.

상기 표 2의 결과로부터, 우드칩 고형연료만을 100% 연소한 비교예에 비하여 굴패각 미분말을 혼합 연소한 실시예의 압축강도가 크게 증가하였다. 상기 결과로부터, Free-CaO 및 CaCl2 함량이 더 높아 자경성이 더 강하게 나타난 것으로 판단된다. From the results in Table 2, the compressive strength of the example in which oyster shell powder was mixed and burned was significantly increased compared to the comparative example in which only wood chip solid fuel was 100% burned. From the above results, it is judged that self-hardening was stronger because the Free-CaO and CaCl 2 contents were higher.

특히 높은 Free-CaO 및 CaCl2의 함량이 높을 경우 시멘트의 수화반응 촉진 및 고로슬래그의 잠재수경성을 활성화시켜 수화시키는 데 매우 효과적이기 때문에 모든 재령에서 더욱 높은 강도를 보임을 확인할 수 있다. In particular, when the content of Free-CaO and CaCl 2 is high, it is very effective in promoting the hydration reaction of cement and hydrating blast furnace slag by activating its latent hydraulic properties, so it can be confirmed that it shows higher strength at all ages.

이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다. In the above, the present invention has been described in detail only with respect to the described embodiments, but it is clear to those skilled in the art that various changes and modifications are possible within the technical scope of the present invention, and it is natural that such changes and modifications fall within the scope of the appended patent claims.

Claims (10)

탄산칼슘 성분이 90중량%이상이며 입경이 5mm 이하로 분쇄된 굴패각 분말을 포함하되,
상기 굴패각 분말이 별도의 세척 및 소성 공정이 생략된 상태에서 폐기된 패각 그대로를 건조, 분쇄 공정만을 거쳐,
염분 함유량 0.01∼3중량%,
수분 함유량 0.01∼5중량 및
유기물 함유량 0.1∼10중량%를 함유하고 있어도 고형연료를 사용하는 유동층 보일러 노내에 투입하여 연소단계부터 염화수소 가스 발생을 저감시키는 것을 특징으로 하는 굴패각을 활용한 유동층 보일러 염화수소 발생 저감제.
Contains oyster shell powder with a calcium carbonate content of 90% by weight or more and a particle size of 5 mm or less,
The oyster shell powder goes through only a drying and grinding process with the discarded shells without the separate washing and firing process,
Salt content 0.01 to 3% by weight,
Moisture content 0.01 to 5 weight and
A fluidized bed boiler hydrogen chloride generation reduction agent using oyster shells, which is characterized in that it reduces hydrogen chloride gas generation from the combustion stage by putting it into the fluidized bed boiler furnace using solid fuel even if it contains 0.1 to 10% by weight of organic matter.
제1항에 있어서, 상기 굴패각 분말 100중량부에 대하여, 석회석 분말 5∼1,000중량부를 더 포함하는 것을 특징으로 하는 굴패각을 활용한 유동층 보일러 염화수소 발생 저감제. The fluidized bed boiler hydrogen chloride generation reduction agent using oyster shell according to claim 1, further comprising 5 to 1,000 parts by weight of limestone powder based on 100 parts by weight of the oyster shell powder. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1항 또는 제2항의 굴패각을 활용한 유동층 보일러 염화수소 발생 저감제와 유동층 보일러 노내 고형연료와 혼합 연소 후 남는 연소 잔재물을 포함한 결합재 조성물이고,
상기 굴패각 분말이 고형연료 연소 시 발생하는 염화수소 성분과 반응하여 연소 잔재물에 고정되어 상기 연소 잔재물이 CaO 함량 10∼50중량%, Cl- 함량 0.5∼25중량%가 함유된 것을 특징으로 하는 결합재 조성물.
It is a binder composition containing a fluidized bed boiler hydrogen chloride generation reduction agent using the shell shell of paragraph 1 or 2 and combustion residue remaining after mixed combustion with solid fuel in the fluidized bed boiler furnace,
The oyster shell powder reacts with the hydrogen chloride component generated during combustion of solid fuel and is fixed to the combustion residue, so that the combustion residue contains a CaO content of 10 to 50% by weight and a Cl - content of 0.5 to 25% by weight. A binder composition.
제8항에 있어서, 상기 연소 잔재물 100중량부에 대하여, 시멘트 10∼4,000중량부를 더 포함하는 것을 특징으로 하는 결합재 조성물. The binder composition according to claim 8, further comprising 10 to 4,000 parts by weight of cement based on 100 parts by weight of the combustion residue. 제9항에 있어서, 상기 연소 잔재물 100중량부에 대하여, 슬래그 10∼4,000중량부를 더 포함하는 것을 특징으로 하는 결합재 조성물. The binder composition according to claim 9, further comprising 10 to 4,000 parts by weight of slag based on 100 parts by weight of the combustion residue.
KR1020210154438A 2021-11-11 2021-11-11 Fluidized bed boiler hydrogen chloride generation reducing agent using oyster shell, method for reducing hydrogen chloride generation in fluidized bed boiler furnace using the same and binder composition using the combustion residues KR102641129B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210154438A KR102641129B1 (en) 2021-11-11 2021-11-11 Fluidized bed boiler hydrogen chloride generation reducing agent using oyster shell, method for reducing hydrogen chloride generation in fluidized bed boiler furnace using the same and binder composition using the combustion residues

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210154438A KR102641129B1 (en) 2021-11-11 2021-11-11 Fluidized bed boiler hydrogen chloride generation reducing agent using oyster shell, method for reducing hydrogen chloride generation in fluidized bed boiler furnace using the same and binder composition using the combustion residues

Publications (2)

Publication Number Publication Date
KR20230068545A KR20230068545A (en) 2023-05-18
KR102641129B1 true KR102641129B1 (en) 2024-02-28

Family

ID=86545521

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210154438A KR102641129B1 (en) 2021-11-11 2021-11-11 Fluidized bed boiler hydrogen chloride generation reducing agent using oyster shell, method for reducing hydrogen chloride generation in fluidized bed boiler furnace using the same and binder composition using the combustion residues

Country Status (1)

Country Link
KR (1) KR102641129B1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201513A (en) * 1996-01-29 1997-08-05 Kawabe Shiyokuriyouhin Kogyo Kk In-furnace desulfurizing agent
JPH1033935A (en) * 1996-07-24 1998-02-10 Mitsubishi Heavy Ind Ltd Desulfurizing method in which sea shell is used as desulfurization agent
KR100464666B1 (en) 2001-06-07 2005-01-03 한국해양연구원 Solidificator Manufacturing Method with Waste Oyster Shell
KR100993223B1 (en) 2010-03-03 2010-11-09 양옥순 Method for producing of feed recycling shell
KR101169563B1 (en) 2012-02-13 2012-07-27 박영구 An inorganic coagulant comprising waste plaster, starfish powder, shell powder and clay mineral
KR101753823B1 (en) 2015-11-30 2017-07-05 군산대학교산학협력단 Manufacturing high quality desulfrutization lime method using shell for wet desulfurization
KR101790542B1 (en) * 2016-02-19 2017-10-27 주식회사 대웅 Low cement type binder composition
KR102109756B1 (en) 2019-05-23 2020-05-26 박우택 manufacturing method of flue gas desulfurization base material and high quality desulfurization plaster by new shell grinding systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Min-Hwan Cho et al. "Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich producer gas". Energy. Vol.87, pp. 586-593 (2015.05.29.) 1부.*
이학수 외. "굴패각의 물리화학적 특성 및 소성가공 특성에 관한 연구". 한국산학기술학회논문지. Vol.10(12), pp. 3971-3976 (2009.12.16) 1부.*

Also Published As

Publication number Publication date
KR20230068545A (en) 2023-05-18

Similar Documents

Publication Publication Date Title
KR101753823B1 (en) Manufacturing high quality desulfrutization lime method using shell for wet desulfurization
US6077494A (en) Method for removing ammonia from ammonia contaminated fly ash
WO2006085893A9 (en) Mid-kiln injection of waste-derived materials
JP2803855B2 (en) Sewage sludge recycling system
JP2002521047A (en) Manufacturing method of artificial reef mainly composed of industrial waste
KR101954372B1 (en) Manufacturing Method of Fuel Solid Comprising Organic Waste
KR100461090B1 (en) Method for making manufactured aggregates from coal combustion by-products
KR102240695B1 (en) Method of manufacturing alumina clinker and potassium sulfate using oyster shell and alunite, and composition comprising alumina clinker or potassium sulfate
WO2020173906A1 (en) A composite
KR100771490B1 (en) Manufacturing method of solidification agent for organic or inorganic waste resources
CA3153500A1 (en) Synthetic soil and methods for producing same from waste
JP2023181518A (en) Cement manufacturing method
KR102641129B1 (en) Fluidized bed boiler hydrogen chloride generation reducing agent using oyster shell, method for reducing hydrogen chloride generation in fluidized bed boiler furnace using the same and binder composition using the combustion residues
KR100509932B1 (en) Scrapped material used practical use materials manufacture method
KR20220005935A (en) Desulfurizing agent, desulfurizing method for circulating fluidized bed boiler and binder agent
KR100584219B1 (en) Scrapped material used solidity manufacture method and treatment method of organic sludge
KR102484711B1 (en) Desulfurizing agent, desulfurizing method for circulating fluidized bed boiler and binder agent
KR101708399B1 (en) Solidified soil and method for prepairing thereof
EP0124038A2 (en) Process for producing cement material from industrial processing and urban slurries
JP2001055756A (en) Improved soil and its manufacture
KR100966784B1 (en) Manufacturing method solidfication agent for oganic or inorganic waste resouce of useing retreat mathod
KR101069239B1 (en) Changing Method of Organic and Inorganic Slurry Using Sulfuric Acid
CN108251174A (en) A kind of environmental protection solid sulphur formed coal and preparation method thereof
KR100497422B1 (en) The Manufacturing Method and The Soil Stabilizer Improving High Water Content-Soft Ground Reusong Industrial Discharge and Ocean Waste
Borowski et al. Using Agglomeration Techniques for Coal and Ash Waste Management in the Circular Economy

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
X701 Decision to grant (after re-examination)