KR20230068201A - 복수의 반도체 소자를 포함하는 에피택시 구조물 - Google Patents

복수의 반도체 소자를 포함하는 에피택시 구조물 Download PDF

Info

Publication number
KR20230068201A
KR20230068201A KR1020210154295A KR20210154295A KR20230068201A KR 20230068201 A KR20230068201 A KR 20230068201A KR 1020210154295 A KR1020210154295 A KR 1020210154295A KR 20210154295 A KR20210154295 A KR 20210154295A KR 20230068201 A KR20230068201 A KR 20230068201A
Authority
KR
South Korea
Prior art keywords
layer
light emitting
nanorod
substrate
single crystal
Prior art date
Application number
KR1020210154295A
Other languages
English (en)
Inventor
최준희
공기호
김낙현
김주성
박영환
박정훈
신동철
이은성
한주헌
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020210154295A priority Critical patent/KR20230068201A/ko
Priority to US17/720,872 priority patent/US20230143907A1/en
Publication of KR20230068201A publication Critical patent/KR20230068201A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

실시예에 따른 에피택시 구조물은, 상부 표면이 단결정 구조를 갖는 기판; 상기 기판의 상부 표면 위에 배치된 이차원 물질층; 및 상기 이차원 물질층의 상부 표면 위에 배치된 것으로, 수직 방향으로 연장된 나노 막대 형태를 갖는 복수의 나노 막대 발광 소자;를 포함하며, 상기 복수의 나노 막대 발광 소자의 각각은: 발광 나노 막대; 및 상기 발광 나노 막대의 측벽을 둘러싸며 절연성을 갖는 패시베이션막;을 포함할 수 있다.

Description

복수의 반도체 소자를 포함하는 에피택시 구조물 {Epitaxy structure including a plurality of semiconductor devices}
개시된 실시예들은 리모트 에피택시(remote epitaxy) 기술을 이용하여 제조된 복수의 반도체 소자를 포함하는 에피택시 구조물에 관한 것이다.
발광 다이오드(Light emitting diode; LED)는 종래의 광원에 비해 긴 수명, 낮은 소비전력, 빠른 응답 속도, 환경 친화성 등의 장점을 갖는 차세대 광원으로 알려져 있으며, 이러한 장점 때문에 산업적인 수요가 증대되고 있다. LED는 통상적으로 조명 장치, 디스플레이 장치의 백라이트 등 다양한 제품에 적용되어 사용되고 있다.
최근에는 Ⅱ-Ⅵ 족 또는 Ⅲ-Ⅴ 족 화합물 반도체를 이용한 마이크로 단위 또는 나노 단위의 초소형 LED가 개발되고 있다. 또한, 이러한 초소형 LED가 디스플레이 화소의 발광 요소로서 직접 적용된 마이크로 LED 디스플레이가 개발되고 있다. 그런데, LED를 이와 같이 마이크로 단위 또는 나노 단위로 소형화하는 경우에 LED의 발광 효율이 낮아질 수 있다.
리모트 에피택시(remote epitaxy) 기술을 이용하여 제조된 복수의 반도체 소자를 포함하는 에피택시 구조물을 제공한다.
또한, 고품질의 단결정 구조를 갖는 복수의 나노 막대 발광 소자를 포함하는 에피택시 구조물을 제공한다
일 실시예에 따른 에피택시 구조물은, 상부 표면이 단결정 구조를 갖는 기판; 상기 기판의 상부 표면 위에 배치된 이차원 물질층; 및 상기 이차원 물질층의 상부 표면 위에 배치된 것으로, 수직 방향으로 연장된 나노 막대 형태를 갖는 복수의 나노 막대 발광 소자;를 포함할 수 있으며, 상기 복수의 나노 막대 발광 소자의 각각은: 발광 나노 막대; 및 상기 발광 나노 막대의 측벽을 둘러싸며 절연성을 갖는 패시베이션막;을 포함할 수 있다.
일 실시예에 따르면, 상기 기판은, 지지층; 및 상기 지지층의 상부 표면 위에 배치된 단결정층;을 포함할 수 있다.
상기 지지층은 결정질 재료를 포함하며, 상기 단결정층은 이온 결합 특성을 갖는 Ⅲ-Ⅴ 족 화합물 반도체의 단결정 또는 이온 결정을 포함할 수 있다.
예를 들어, 상기 지지층은 실리콘(Si) 또는 사파이어를 포함할 수 있다.
예를 들어, 상기 단결정층은 LiF, GaN, 및 BaTiO3 중에서 적어도 하나의 단결정을 포함할 수 있다.
상기 지지층은 비정질 재료를 포함하며, 상기 단결정층은 이온빔 보조 증착 방식으로 형성될 수 있다.
예를 들어, 상기 단결정층은 (111) 방향, (001) 방향, 또는 (100) 방향으로 배향된 CeO2, Sc2O3, MgO, BaO, 및 BrN 중에서 적어도 하나를 포함할 수 있다.
상기 단결정층은 적어도 2개의 서브층을 포함하며, 각각의 서브층은 0.5 nm 내지 100 nm의 두께를 가질 수 있다.
예를 들어, 상기 지지층은 유리 또는 용융 실리카를 포함할 수 있다.
상기 이차원 물질층은 대응하는 발광 나노 막대로부터 각각 연장되는 복수의 나노 막대 형태를 갖도록 패터닝될 수 있다.
상기 단결정층은 대응하는 발광 나노 막대로부터 각각 연장되는 복수의 나노 막대 형태를 갖도록 패터닝될 수 있다.
다른 실시예에 따르면, 상기 기판은 상부 표면이 단결정 구조를 갖는 하나의 단일한 층을 포함할 수 있다.
예를 들어, 상기 기판은 4H-SiC, 6H-SiC, 및 3C-SiC 중에서 적어도 하나의 단결정을 포함할 수 있다.
예를 들어, 상기 이차원 물질층은 그래핀, 질화 붕소, 및 전이금속 디칼코게나이드 중에서 적어도 하나를 포함할 수 있다.
상기 발광 나노 막대는, 상기 이차원 물질층의 상부 표면 위에 배치되며 제1 도전형으로 도핑된 제1 반도체층; 상기 제1 반도체층 위에 배치된 발광층; 상기 발광층 위에 배치되며 제1 도전형과 전기적으로 상반되는 제2 도전형으로 도핑된 제2 반도체층; 및 상기 제2 반도체층 위에 배치된 전극;을 포함할 수 있다.
예를 들어, 상기 발광 나노 막대는 1 ㎛ 내지 20 ㎛의 범위의 높이를 갖고, 0.05 ㎛ 내지 1 ㎛의 범위의 직경을 가질 수 있다.
상기 패시베이션막은 상기 발광층의 결정 구조와 동일한 결정 구조를 갖는 절연성 결정 재료를 포함할 수 있다.
상기 패시베이션막은 상기 발광층과 격자 정합 에피택시 관계를 갖거나 또는 도메인 정합 에피택시 관계를 가질 수 있다.
다른 실시예에 따른 에피택시 구조물은, 상부 표면이 단결정 구조를 갖는 기판; 상기 기판의 상부 표면 위에 배치된 절연층; 상기 기판의 상부 표면 위에 배치되며 상기 절연층에 의해 서로 전기적으로 분리된 복수의 이차원 물질층; 및 상기 복수의 이차원 물질층 위에 각각 배치된 복수의 반도체 소자;를 포함할 수 있다.
상기 복수의 반도체 소자는 서로 다른 반도체 재료를 포함할 수 있다.
예를 들어, 상기 복수의 반도체 소자는 광원, 광검출기, 광변조기, 및 광증폭기 중에서 어느 하나를 포함할 수 있다.
또 다른 실시예에 따른 모놀리식 광집적회로는 에피택시 구조물을 포함하며, 상기 에피택시 구조물은: 상부 표면이 단결정 구조를 갖는 기판; 상기 기판의 상부 표면 위에 배치된 절연층; 상기 기판의 상부 표면 위에 배치되며 상기 절연층에 의해 서로 전기적으로 분리된 복수의 이차원 물질층; 및 상기 복수의 이차원 물질층 위에 각각 배치된 복수의 반도체 소자;를 포함하고, 상기 복수의 반도체 소자는 광원, 광검출기, 광변조기, 및 광증폭기 중에서 어느 하나를 포함할 수 있다.
개시된 실시예에 따르면, 리모트 에피택시(remote epitaxy) 기술을 이용하여 실리콘이나 유리와 같은 비교적 저렴한 기판 위에 고품질의 단결정 구조를 갖는 복수의 반도체 소자를 형성할 수 있다. 예를 들어, 고품질의 단결정 구조를 갖는 복수의 나노 막대 발광 소자를 포함하는 에피택시 구조물을 비교적 저렴한 비용으로 제조할 수 있다. 또한, 나노 막대 발광 소자가 고품질의 단결정 구조를 갖기 때문에 결함이 비교적 적어서 나노 막대 발광 소자의 발광 효율이 향상될 수 있다.
또한, 리모트 에피택시 기술을 이용함으로써, 나노 막대 발광 소자뿐만 아니라 상이한 반도체 재료를 포함하는 다양한 반도체 소자를 하나의 기판 위에 형성할 수 있다. 따라서, 광의 발생, 제어, 검출 등과 관련된 다양한 반도체 소자들이 집적된 광집적회로(photonic integrated circuit)를 제조하는 것이 가능하다.
도 1a 내지 도 1f는 일 실시예에 따른 복수의 나노 막대 발광 소자를 포함하는 에피택시 구조물을 제조하는 방법을 예시적으로 보이는 단면도이다.
도 2는 일 실시예에 따른 나노 막대 발광 소자의 개략적인 구성을 보이는 단면도이다.
도 3은 도 2에 도시된 나노 막대 발광 소자의 평면도이다.
도 4 및 도 5는 다른 실시예에 따른 복수의 나노 막대 발광 소자를 포함하는 에피택시 구조물을 제조하는 방법을 예시적으로 보이는 단면도이다.
도 6 및 도 7은 또 다른 실시예에 따른 복수의 나노 막대 발광 소자를 포함하는 에피택시 구조물을 제조하는 방법을 예시적으로 보이는 단면도이다.
도 8은 또 다른 실시예에 따른 기판의 구조를 개략적으로 보이는 단면도이다.
도 9는 또 다른 실시예에 따른 복수의 반도체 소자를 포함하는 에피택시 구조물을 예시적으로 보이는 단면도이다.
도 10은 나노 막대 발광 소자를 이용한 일 실시예에 따른 디스플레이 장치의 구성을 개략적으로 보이는 개념도이다.
도 11은 일 실시예에 따른 전자 장치의 개략적인 블록도이다.
도 12는 실시예들에 따른 디스플레이 장치가 모바일 장치에 적용된 예를 도시한다.
도 13은 실시예들에 따른 디스플레이 장치가 차량용 디스플레이 장치에 적용된 예를 도시한다.
도 14는 실시예들에 따른 디스플레이 장치가 증강 현실 안경 또는 가상 현실 안경에 적용된 예를 도시한다.
도 15는 실시예들에 따른 디스플레이 장치가 사이니지에 적용된 예를 도시한다.
도 16은 실시예들에 따른 디스플레이 장치가 웨어러블 디스플레이에 적용된 예를 도시한다.
이하, 첨부된 도면들을 참조하여, 나노 막대 발광 소자, 복수의 나노 막대 발광 소자를 포함하는 에피택시 구조물, 및 에피택시 구조물의 제조 방법에 대해 상세하게 설명한다. 이하의 도면들에서 동일한 참조부호는 동일한 구성요소를 지칭하며, 도면상에서 각 구성요소의 크기는 설명의 명료성과 편의상 과장되어 있을 수 있다. 또한, 이하에 설명되는 실시예는 단지 예시적인 것에 불과하며, 이러한 실시예들로부터 다양한 변형이 가능하다.
이하에서, "상부" 나 "상"이라고 기재된 것은 접촉하여 바로 위에 있는 것뿐만 아니라 비접촉으로 위에 있는 것도 포함할 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 다수의 표현을 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
"상기"의 용어 및 이와 유사한 지시 용어의 사용은 단수 및 다수 모두에 해당하는 것일 수 있다. 방법을 구성하는 단계들에 대하여 명백하게 순서를 기재하거나 반하는 기재가 없다면, 이러한 단계들은 적당한 순서로 행해질 수 있으며, 반드시 기재된 순서에 한정되는 것은 아니다.
또한, 명세서에 기재된 "...부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.
도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재들은 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로서 나타내어질 수 있다.
모든 예들 또는 예시적인 용어의 사용은 단순히 기술적 사상을 상세히 설명하기 위한 것으로서 청구범위에 의해 한정되지 않는 이상 이런 예들 또는 예시적인 용어로 인해 범위가 한정되는 것은 아니다.
도 1a 내지 도 1f는 일 실시예에 따른 복수의 나노 막대 발광 소자를 포함하는 에피택시 구조물을 제조하는 방법을 예시적으로 보이는 단면도이다.
먼저, 도 1a를 참조하면, 상부 표면이 단결정 구조를 갖는 기판(101)을 마련한다. 그리고, 기판(101)의 상부 표면 위에 이차원 물질층(103)을 형성할 수 있다. 기판(101)은, 예를 들어, 결정질 재료를 포함하는 지지층(101a) 및 지지층(101a)의 상부 표면 위에 배치되며 단결정 재료를 갖는 단결정층(101b)을 포함할 수 있다. 단결정층(101b)은 지지층(101a)의 상부 표면 위에서 직접 에피택시 성장될 수 있다. 이차원 물질층(103)은 단결정층(101b)의 상부 표면 위에 배치될 수 있다. 지지층(101a)은, 예를 들어, 실리콘(Si) 또는 사파이어를 포함할 수 있다. 단결정층(101b)은 이온 결합(ionic bond) 특성을 갖는 Ⅲ-Ⅴ 족 화합물 반도체의 단결정을 포함하거나 또는 이온 결정(ionic crystal)을 포함할 수 있다. 또한, 단결정층(101b)은 이차원 물질층(103) 위에 형성되는 후술하는 반도체 결정들과 동일한 결정 구조를 가질 수 있다. 예컨대, 단결정층(101b)은 LiF, GaN, 또는 BaTiO3의 단결정을 포함할 수 있다.
이차원 물질층(103)은 육방 정계 구조를 갖는 이차원 결정을 포함할 수 있다. 예를 들어, 이차원 물질층(103)은 그래핀, 질화 붕소(BN), 또는 전이금속과 칼코겐 원소의 화합물인 전이금속 디칼코게나이드(transition metal dichalcogenide)를 포함할 수 있다. 예를 들어, 전이금속 디칼코게나이드는 MoS2, WS2, TaS2, HfS2, ReS2, TiS2, NbS2, SnS2, MoSe2, WSe2, TaSe2, HfSe2, ReSe2, TiSe2, NbSe2, SnSe2, MoTe2, WTe2, TaTe2, HfTe2, ReTe2, TiTe2, NbTe2, SnTe2 등을 포함할 수 있다. 이러한 이차원 물질층(103)은 단결정층(101b)의 상부 표면 위에 단층(monolayer) 또는 2층(bilayer)으로 전사될 수 있다.
이온 결합에 의한 극성을 지니는 단결정층(101b)이 이차원 물질층(103)의 아래에 존재하는 경우, 이차원 물질층(103) 위에 반도체 결정을 직접 에피택시 성장시키는 것이 가능하다. 단결정층(101b)의 극성이 강할수록 이차원 물질층(103) 위에 반도체 결정의 성장을 유도하는 힘이 강해질 수 있다. 따라서, 하부의 단결정층(101b)과 직접적인 화학 결합을 하지 않으면서도 단결정층(101b)의 결정 방향에 따라 소정의 결정 구조를 갖는 반도체 결정이 이차원 물질층(103) 위에 성장될 수 있다. 이 경우, 이차원 물질층(103) 위에 성장되는 반도체 결정은 하부의 단결정층(101b)과 화학 결합하지 않을 뿐만 아니라 이차원 물질층(103)에 의해 응력이 완화될 수 있기 때문에 전위 밀도(dislocation density)가 비교적 낮은 고품질의 단결정이 될 수 있다. 따라서, 이차원 물질층(103)을 이용함으로써, 기판(101)과의 격자 상수 차이가 비교적 큰 반도체 단결정을 고품질로 성장시킬 수 있다.
예를 들어, 도 1b를 참조하면, 이차원 물질층(103)의 상부 표면 위에 제1 반도체층(104), 발광층(105), 제2 반도체층(106), 및 전극(107)을 순차적으로 성장시킬 수 있다. 제1 반도체층(104)은 제1 도전형, 예컨대 n형으로 도핑된 단결정 반도체 재료를 포함할 수 있으며, 제2 반도체층(106)은 제1 도전형과 전기적으로 상반되는 제2 도전형, 예컨대 p형으로 도핑된 단결정 반도체 재료를 포함할 수 있다. 예컨대, 제1 반도체층(104)은 실리콘(Si)으로 도핑되고 제2 반도체층(106)은 아연(Zn)으로 도핑될 수 있다.
발광층(105)은 장벽 사이에 양자우물이 배치된 양자우물 구조를 갖는다. 제1 반도체층(104) 및 제2 반도체층(106)으로부터 제공된 전자와 정공이 발광층(105) 내의 양자우물 내에서 재결합되면서 빛이 발생할 수 있다. 발광층(105) 내의 양자우물을 구성하는 재료의 에너지 밴드갭에 따라서 발광층(105)에서 발생하는 빛의 파장이 결정될 수 있다. 발광층(105)은 하나의 양자우물만을 포함할 수도 있으며 또는 복수의 양자우물과 복수의 장벽이 번갈아 배치된 다중양자우물(MQW, multi-quantum well)을 포함할 수도 있다. 발광층(105)의 두께 또는 발광층(105) 내의 양자우물의 개수는 발광 소자의 구동 전압과 발광 효율 등을 고려하여 적절하게 선택할 수 있다. 예를 들어, 발광층(105)의 직경의 2배 이하로 발광층(105)의 두께를 선택할 수 있다.
발광층(105)과 단결정층(101b) 사이에 배치되는 제1 반도체층(104)은 단결정층(101b)과의 격자 상수 차이가 발광층(105)의 양자우물과 단결정층(101b)과의 격자 상수 차이보다 작도록 선택될 수 있다. 다시 말해, 제1 반도체층(104)은 단결정층(101b)의 격자 상수와 발광층(105)의 양자우물의 격자 상수 사이의 격자 상수를 가질 수 있다. 예를 들어, 제1 반도체층(104)은 n-InxGa1-xN (0 < x < 0.2)를 포함할 수 있으며, 발광층(105)의 양자우물은 InyGa1-yN (0.25 <= y < 1)를 포함할 수 있다. 또는, 제1 반도체층(104)은 예컨대 n-In0.2Ga0.8N를 포함하고 발광층(105)의 양자우물은 예컨대 In0.35Ga0.65N를 포함할 수 있다. 그러면 격자 부정합(lattice mismatch)이 완화되어 발광층(105)의 결정 품질이 더욱 향상될 수 있다.
제1 및 제2 반도체층(104, 106)과 발광층(105)은 InGaN 외에도 다양한 다른 Ⅲ-Ⅴ 족 화합물 반도체 재료를 포함할 수도 있다. 예를 들어, 제1 및 제2 반도체층(104, 106)과 발광층(105)은 AlGaN, AlInGaN, GaAs, GaN, InP 등과 같은 재료를 포함할 수도 있으며, 상술한 재료의 조성비에 따라 발광 파장 및/또는 격자 상수를 조절할 수 있다.
전극(107)을 형성한 후에는, 도 1c에 도시된 바와 같이, 전극(107) 위에 일정한 간격으로 배열된 복수의 개구를 갖는 하드 마스크(120)를 형성한다. 예컨대, 하드 마스크(120)의 재료를 전극(107)의 상부 표면 위에 전체적으로 형성한 후에, 리소그래피 방식을 이용하여 일정한 간격으로 배열된 복수의 개구를 갖도록 하드 마스크(120)의 재료를 패터닝함으로써 하드 마스크(120)를 형성할 수 있다. 하드 마스크(120)는, 예를 들어, SiO2 단일층 또는 SiO2/Al 이중층으로 형성될 수 있다. 도 1c의 단면도에는 명시되지 않았지만, 상부에서 볼 때 하드 마스크(120)는 2차원 배열된 복수의 개구를 가질 수 있다.
그런 후, 도 1d를 참조하면, 하드 마스크(120)로 덮이지 않은 영역들을 건식 에칭 방식으로 에칭하여 제거할 수 있다. 예를 들어, 하드 마스크(120)의 개구 아래에 있는 전극(107), 제2 반도체층(106), 발광층(105), 제1 반도체층(104), 이차원 물질층(103), 및 단결정층(101b)을 순차적으로 건식 에칭하여 제거할 수 있다. 도 1d에는 단결정층(101b)까지 에칭을 수행하고 지지층(101a)에서 에칭이 정지되는 것으로 도시되었으나, 반드시 이에 한정되지 않는다. 예컨대, 제1 반도체층(104)까지 에칭을 수행하고 이차원 물질층(103)에서 에칭이 정지되거나, 또는 이차원 물질층(103)까지 에칭을 수행하고 단결정층(101b)에서 에칭이 정지될 수도 있다. 그러면, 전극(107), 제2 반도체층(106), 발광층(105), 및 제1 반도체층(104)이 복수의 나노 막대 형태로 패터닝될 수 있다. 이에 따라, 제1 반도체층(104), 발광층(105), 제2 반도체층(106), 및 전극(107)을 각각 포함하는 복수의 발광 나노 막대(110)들이 한꺼번에 형성될 수 있다.
그런 후, 예를 들어 KOH 용액 또는 TMAH(tetramethyl ammonium hydrooxide) 용액을 이용한 습식 처리를 통해 높이 방향을 따라 복수의 발광 나노 막대(110)들의 직경을 균일하게 만들 수 있다. 이 과정에서, 하드 마스크(120)도 제거될 수 있다.
도 1e를 참조하면, 발광 나노 막대(110)의 표면에 패시베이션막(108)을 균일한 두께로 형성할 수 있다. 패시베이션막(108)은 외부의 물리적 화학적 충격으로부터 발광 나노 막대(110)를 보호하는 역할 및 발광 나노 막대(110)를 절연시켜 전류의 누설을 방지하는 역할도 할 수 있다. 예를 들어, 패시베이션막(108)은 단순히 절연체 재료로 이루어질 수 있다.
또는, 패시베이션막(108)은 발광층(105)의 결정 구조와 동일한 결정 구조를 갖는 절연성 결정 재료를 포함할 수 있다. 특히, 패시베이션막(108)은 발광층(105)과 격자 정합 에피택시(lattice matching epitaxy) 관계를 갖거나 또는 도메인 정합 에피택시(domain matching epitaxy) 관계를 가질 수 있다. 격자 정합 에피택시 관계는 패시베이션막(108)의 격자 상수가 발광층(105)의 격자 상수와 거의 일치하는 관계를 의미한다. 또한, 도메인 정합 에피택시 관계는 패시베이션막(108)의 격자 상수가 발광층(105)의 격자 상수의 정수배와 거의 일치하거나 또는 발광층(105)의 격자 상수가 패시베이션막(108)의 격자 상수의 정수배와 거의 일치하는 관계를 의미한다. 이 경우, 발광층(105)의 바깥쪽 표면에 위치한 원자들이 패시베이션막(108)의 원자들과 대부분 결합할 수 있기 때문에, 발광층(105)의 바깥쪽 표면에서 불포화 결합(dangling bond)이 줄어들게 되고, 이에 따라 표면 결함도 감소하게 된다. 따라서, 발광층(105)의 전체 영역에서 전류가 비교적 균일하게 흐를 수 있고 발광층(105)의 전체 영역에서 비교적 균일하게 발광이 일어날 수 있다. 따라서, 발광층(105)의 발광 효율이 증가할 수 있다. 이와 같이 발광층(105)과 에피택시 관계를 갖는 패시베이션막(108)은, 예를 들어, ZrO, SrO, MgO, BaO, CeO2, Gd2O3, CaO, HfO2, TiO2, AlOx, BaN, SiN, TiN, CeN, AlN, ZnSe, ZnS, AlGaN, 및 AlxGa1-xAs (x ≥ 0.9) 중에서 적어도 하나의 재료를 포함할 수 있다.
마지막으로 도 1f를 참조하면, 발광 나노 막대(110)의 상부 표면에 존재하는 패시베이션막(108)을 제거할 수 있다. 남아 있는 패시베이션막(108)은 발광 나노 막대(110)의 측벽을 둘러싸고 있다. 패시베이션막(108)은 전극(107)의 측벽의 전체를 둘러쌀 수도 있으며 또는 일부를 둘러쌀 수도 있다. 또한, 이차원 물질층(103)까지 에칭을 수행하는 경우 패시베이션막(108)은 패터닝된 이차원 물질층(103)의 측벽까지 연장될 수 있으며, 단결정층(101b)까지 에칭을 수행하는 경우 패시베이션막(108)은 패터닝된 단결정층(101b)의 측벽까지 연장될 수 있다.
상술한 방식으로, 나노 막대 형태를 갖는 복수의 나노 막대 발광 소자(100) 및 복수의 나노 막대 발광 소자(100)를 포함하는 에피택시 구조물(1000)이 형성될 수 있다. 에피택시 구조물(1000)은 상부 표면이 단결정 구조를 갖는 기판(101), 기판(101)의 상부 표면 위에 배치된 이차원 물질층(103), 및 이차원 물질층(103)의 상부 표면 위에 배치된 복수의 나노 막대 발광 소자(100)를 포함할 수 있다. 복수의 나노 막대 발광 소자(100)는 기판(101)의 상부 표면에 대해 수직 방향으로 연장되도록 배치될 수 있다. 또한, 각각의 나노 막대 발광 소자(100)는 발광 나노 막대(110) 및 발광 나노 막대(110)의 측벽을 둘러싸는 패시베이션막(108)을 포함할 수 있다. 상세히 도시되지는 않았지만, 기판(101) 상에서 복수의 나노 막대 발광 소자(100)가 2차원 배열될 수 있다.
또한, 기판(101)의 단결정층(101b)과 이차원 물질층(103)도 복수의 발광 나노 막대(110)와 동일한 단면 형태를 갖도록 패터닝될 수 있다. 따라서, 기판(101)의 단결정층(101b)과 이차원 물질층(103)은 복수의 대응하는 발광 나노 막대(110)로부터 각각 연장되는 복수의 나노 막대 형태를 가질 수 있다.
복수의 나노 막대 발광 소자(100)는 이차원 물질층(103)으로부터 쉽게 분리될 수 있다. 따라서, 복수의 나노 막대 발광 소자(100)를 에피택시 구조물(1000)로부터 분리하기 위한 화학적 공정이 필요하지 않다. 또한, 나노 막대 발광 소자(100)의 분리된 부분의 절단면이 비교적 매끄러운 표면을 가질 수 있다. 에피택시 구조물(1000)로부터 개별적으로 분리된 나노 막대 발광 소자(100)가 유통/매매될 수도 있지만, 에피택시 구조물(1000) 자체가 유통/매매될 수도 있다. 예를 들어, 디스플레이 장치의 제조업자가 복수의 나노 막대 발광 소자(100)가 형성되어 있는 에피택시 구조물(1000)을 구입하고, 에피택시 구조물(1000)로부터 나노 막대 발광 소자(100)들을 분리하여 디스플레이 장치를 제조할 수 있다.
도 2는 일 실시예에 따른 나노 막대 발광 소자의 개략적인 구성을 보이는 단면도이다. 특히, 도 2는 도 1f에 도시된 에피택시 구조물(1000)로부터 분리된 나노 막대 발광 소자(100)의 구성을 예시적으로 보인다. 도 2를 참조하면, 나노 막대 발광 소자(100)는 발광 나노 막대(110) 및 발광 나노 막대(110)의 측벽을 둘러싸는 패시베이션막(108)을 포함할 수 있다. 발광 나노 막대(110)는, 제1 반도체층(104), 제1 반도체층(104) 위에 배치된 발광층(105), 및 발광층(105) 위에 배치된 제2 반도체층(106)을 포함할 수 있다. 또한, 발광 나노 막대(110)는 제2 반도체층(106) 위에 배치된 전극(107)을 더 포함할 수 있다. 비록 도시되지는 않았지만, 발광 나노 막대(110)는 제2 반도체층(106)과 전극(107) 사이에 배치되는 컨택층을 더 포함할 수도 있다.
발광 나노 막대(110)는 나노 규모 또는 마이크로 규모의 매우 작은 크기를 가질 수 있다. 예를 들어, 발광 나노 막대(110)는 대략적으로 0.05 ㎛ 내지 1 ㎛의 범위의 직경(D)을 가질 수 있다. 발광 나노 막대(110)는 높이 방향을 따라 대체로 균일한 직경을 가질 수 있다. 예를 들어, 제1 반도체층(104), 발광층(105), 제2 반도체층(106), 및 전극(107)의 직경이 대체로 동일할 수 있다. 제1 반도체층(104)의 하부 표면과 전극(107)의 상부 표면 사이의 길이를 발광 나노 막대(110)의 높이(H)라고 할 때, 발광 나노 막대(110)의 높이(H)는 대략적으로 1 ㎛ 내지 20 ㎛의 범위를 가질 수 있다. 또한, 발광 나노 막대(110)는, 예를 들어, 5 이상의 큰 종횡비를 가질 수 있다. 예를 들어, 발광 나노 막대(110)의 직경(D)은 약 500nm 내지 600 nm, 높이(H)는 약 4 ㎛ 내지 5 ㎛로 선택될 수 있다.
나노 막대 발광 소자(100)의 크기가 매우 작기 때문에 응력으로 인한 변형은 나노 막대 발광 소자(100)의 성능에 큰 영향을 줄 수 있다. 실시예에 따르면, 이차원 물질층(103)을 이용한 리모트 에피택시(remote epitaxy) 기술을 이용하여 고품질의 단결정 구조를 갖는 나노 막대 발광 소자(100)를 형성할 수 있다. 따라서, 나노 막대 발광 소자(100)가 고품질의 단결정 구조를 갖기 때문에 결함이 비교적 적어서 나노 막대 발광 소자(100)의 발광 효율이 향상될 수 있다. 또한, 실리콘과 같이 비교적 저렴한 기판 재료를 사용함으로써, 고품질의 단결정 구조를 갖는 복수의 나노 막대 발광 소자(100)를 포함하는 에피택시 구조물(1000)을 비교적 저렴한 비용으로 제조할 수 있다.
도 3은 도 2에 도시된 나노 막대 발광 소자(100)의 평면도이다. 도 3을 참조하면, 패시베이션막(108)은 발광 나노 막대(110)의 측벽을 완전히 둘러싸도록 배치될 수 있다. 따라서 패시베이션막(108)은 평면도로 보았을 때 링 형태를 가질 수 있으며, 전체적으로 원통 형태를 가질 수 있다. 도 3에는 발광 나노 막대(110)가 예시적으로 원형인 것으로 도시되었으나, 반드시 이에 한정되는 것은 아니다. 나노 막대 발광 소자(100)의 직경 방향을 따른 패시베이션막(108)의 두께(t), 다시 말해 패시베이션막(108)의 내측 측벽과 외측 측벽 사이의 거리는 약 5 nm 내지 약 70 nm의 범위 내에 있을 수 있다.
도 4 및 도 5는 다른 실시예에 따른 복수의 나노 막대 발광 소자를 포함하는 에피택시 구조물을 제조하는 방법을 예시적으로 보이는 단면도이다.
도 4를 참조하면, 기판(201)은 상부 표면이 단결정 구조를 갖는 하나의 단일한 층을 포함할 수 있다. 예를 들어, 기판(201)은 실리콘 카바이드(SiC)의 단결정을 포함할 수 있다. 특히, 기판(201)은 4H-SiC, 6H-SiC, 또는 3C-SiC의 단결정을 포함할 수 있다. 이 경우, 기판(201)은 극성 또는 이온 결합 특성을 갖는 단결정이 될 수 있다.
도 1a에 도시된 실시예에서는 단결정층(101b) 위에 이차원 물질층(103)을 전사하는 것으로 설명하였지만, 실리콘 카바이드를 포함하는 기판(201)의 상부 표면 위에는 전사 없이 직접 이차원 물질층(103)을 성장시킬 수 있다. 기판(201) 위에 이차원 물질층(103)을 성장시킨 후, 이차원 물질층(103)의 상부 표면 위에 제1 반도체층(104), 발광층(105), 제2 반도체층(106), 및 전극(107)을 순차적으로 성장시킬 수 있다.
그런 후, 도 1c 내지 도 1f에서 설명한 공정을 수행함으로써 복수의 나노 막대 발광 소자(100)를 포함하는 에피택시 구조물을 형성할 수 있다. 도 5를 참조하면, 에피택시 구조물(1100)은 기판(201) 및 기판(201)의 상부 표면 위에 배치된 복수의 나노 막대 발광 소자(100)를 포함할 수 있다. 기판(201)의 상부 표면과 각각의 나노 막대 발광 소자(100) 사이에는 이차원 물질층(103)이 배치되어 있다. 도 5에는 이차원 물질층(103)이 복수의 발광 나노 막대(110)와 동일한 단면 형태를 갖도록 패터닝된 것으로 도시되어 있지만, 제1 반도체층(104)까지만 패터닝되고 이차원 물질층(103)은 패터닝되지 않을 수도 있다.
지금까지는 기판을 구성하는 재료들이 결정질 재료인 것으로 설명하였지만, 유리와 같은 비정질 재료 위에 단결정 재료를 포함하는 나노 막대 발광 소자(100)를 형성하는 것도 가능하다. 도 6 및 도 7은 또 다른 실시예에 따른 복수의 나노 막대 발광 소자를 포함하는 에피택시 구조물을 제조하는 방법을 예시적으로 보이는 단면도이다.
도 6을 참조하면, 기판(301)은 유리(glass) 또는 용융 실리카(fused silica)와 같은 비정질 재료를 포함하는 지지층(301a) 및 지지층(301a)의 상부 표면 위에 배치된 단결정층(301b)을 포함할 수 있다. 비정질 재료를 포함하는 지지층(301a) 위에는, 예를 들어, 이온빔 보조 증착(ion beam assisted deposition, IBAD) 방식을 이용하여 단결정층(301b)을 성장시킬 수 있다. 예컨대, 단결정층(301b)은 (111) 방향, (001) 방향, 또는 (100) 방향으로 배향된 CeO2, Sc2O3, MgO, BaO, BrN 등을 포함할 수 있다. 단결정층(301b)의 상부 표면 위에는 이차원 물질층(103)이 전사될 수도 있으며 또는 직접 성장될 수도 있다. 그리고, 이차원 물질층(103)의 상부 표면 위에 제1 반도체층(104), 발광층(105), 제2 반도체층(106), 및 전극(107)을 순차적으로 성장시킬 수 있다. 제1 반도체층(104), 발광층(105), 및 제2 반도체층(106)은 단결정층(301b)의 재료와 배향에 따라, InGaN 외에 다양한 다른 Ⅲ-Ⅴ 족 화합물 반도체 재료, 예를 들어, AlGaN, AlInGaN, GaAs, GaN, InP 등을 포함할 수 있다.
그런 후, 도 1c 내지 도 1f에서 설명한 공정을 수행함으로써 복수의 나노 막대 발광 소자(100)를 포함하는 에피택시 구조물을 형성할 수 있다. 도 7을 참조하면, 에피택시 구조물(1200)은 기판(301) 및 기판(301)의 상부 표면 위에 배치된 복수의 나노 막대 발광 소자(100)를 포함할 수 있다. 기판(301)의 상부 표면, 다시 말해 단결정층(301b)의 상부 표면과 각각의 나노 막대 발광 소자(100) 사이에는 이차원 물질층(103)이 배치되어 있다. 도 7에는 이차원 물질층(103)만이 복수의 발광 나노 막대(110)와 동일한 단면 형태를 갖도록 패터닝된 것으로 도시되어 있지만, 단결정층(301b)도 역시 복수의 발광 나노 막대(110)와 동일한 단면 형태를 갖도록 패터닝될 수 있다.
도 6에는 단결정층(301b)이 단지 하나의 단일층을 포함하는 것으로 도시되었지만, 단결정층(301b)은 필요에 따라 2개 이상의 서브층을 갖는 복층 구조를 가질 수도 있다. 도 8은 또 다른 실시예에 따른 기판의 구조를 개략적으로 보이는 단면도이다. 도 8을 참조하면, 단결정층(301b)은, 예를 들어, 0.5 nm 내지 100 nm의 얇은 두께를 각각 갖는 복수의 서브 층(301-1b, 301-2b, 301-3b)들을 포함할 수 있다. 각각의 복수의 서브 층(301-1b, 301-2b, 301-3b)은 (111) 방향, (001) 방향, 또는 (100) 방향으로 배향된 CeO2, Sc2O3, MgO, BaO, 또는 BrN를 포함할 수 있다. 도 8에는 단결정층(301b)이 3개의 서브 층을 포함하는 것으로 도시되었지만, 반드시 이에 한정되는 것은 아니다. 단결정층(301b)은 2개의 서브 층 또는 4개 이상의 서브 층들을 포함할 수도 있다.
지금까지는 리모트 에피택시 기술을 이용하여 기판 위에 나노 막대 발광 소자(100)를 형성하는 예에 대해서만 설명하였지만, 나노 막대 발광 소자(100) 외에도 다양한 다른 반도체 소자들을 형성하는 것이 가능하다. 도 9는 또 다른 실시예에 따른 복수의 반도체 소자를 포함하는 에피택시 구조물을 예시적으로 보이는 단면도이다.
도 9를 참조하면, 에피택시 구조물(1300)은 기판(101), 기판(101)의 상부 표면 위에 배치된 절연층(1301), 기판(101)의 상부 표면 위에 배치되며 절연층(1301)에 의해 서로 전기적으로 분리된 복수의 이차원 물질층(103), 및 복수의 이차원 물질층(103) 위에 각각 배치된 복수의 반도체 소자(1310, 1320, 1330)를 포함할 수 있다. 복수의 반도체 소자(1310, 1320, 1330)는 서로 다른 반도체 재료를 포함할 수 있으며, 서로 다른 기능을 수행하도록 구성될 수 있다. 예를 들어, 복수의 반도체 소자(1310, 1320, 1330)는 InGaN, AlGaN, AlInGaN, GaAs, GaN, InP, Si, Ge 중에서 적어도 하나의 반도체 재료를 포함하여 구성될 수 있다. 또한, 복수의 반도체 소자(1310, 1320, 1330)는 광원, 광검출기, 광변조기, 광증폭기 중에서 어느 하나를 포함하도록 구성될 수 있다.
또한 도 9에 도시되지는 않았지만, 에피택시 구조물(1300)은 복수의 반도체 소자(1310, 1320, 1330) 외에도 기판(101)의 상부 표면 위에 배치된 다양한 광학 소자를 더 포함할 수 있다. 예를 들어, 광학 소자는 광도파로, 광커플러, 빔스플리터 등을 포함할 수 있다. 이러한 에피택시 구조물(1300)은, 예를 들어, 모놀리식 광집적회로(monolithic photonic integrated circuit)를 구현하는 데 사용될 수 있으며, 자율주행용 LiDAR(laser imaging detection and ranging) 센서, 데이터 센터용 광 연결 장치 등에 적용될 수 있다. 또한 도 9에는 에피택시 구조물(1300)이 도 1에 도시된 기판(101)을 포함하는 것으로 예시되었지만, 에피택시 구조물(1300)은 도 4에 도시된 기판(201) 또는 도 6에 도시된 기판(301)을 포함할 수도 있다.
한편, 위에서 설명한 나노 막대 발광 소자(100)는 다양한 응용이 가능하다. 특히, 나노 막대 발광 소자(100)는 차세대 디스플레이 장치의 화소들의 발광 요소로서 사용될 수 있다. 예를 들어, 도 10은 나노 막대 발광 소자를 이용한 일 실시예에 따른 디스플레이 장치의 구성을 개략적으로 보이는 개념도이다.
도 10을 참조하면, 디스플레이 장치(2000)는 복수의 제1 화소 전극(2002B), 복수의 제1 화소 전극(2002B)에 대응하는 제1 공통 전극(2003B), 복수의 제2 화소 전극(2002G), 복수의 제2 화소 전극(2002G)에 대응하는 제2 공통 전극(2003G), 복수의 제3 화소 전극(2002R), 복수의 제3 화소 전극(2002B)에 대응하는 제3 공통 전극(2003R), 각각의 제1 화소 전극(2002B)과 제1 공통 전극(2003B) 사이에 연결된 복수의 제1 나노 막대 발광 소자(100B), 각각의 제2 화소 전극(2002G)과 제2 공통 전극(2003G) 사이에 연결된 복수의 제2 나노 막대 발광 소자(100G), 및 각각의 제3 화소 전극(2002R)과 제3 공통 전극(2003R) 사이에 연결된 복수의 제3 나노 막대 발광 소자(100R)를 포함할 수 있다.
예를 들어, 제1 나노 막대 발광 소자(100B)는 청색광을 방출하도록 구성될 수 있으며, 제2 나노 막대 발광 소자(100G)는 녹색광을 방출하도록 구성될 수 있고, 제3 나노 막대 발광 소자(100R)는 적색광을 방출하도록 구성될 수 있다. 또한, 하나의 제1 화소 전극(2002B)은 제1 공통 전극(2003B)과 함께 하나의 청색 서브 화소를 구성하며, 하나의 제2 화소 전극(2002G)은 제2 공통 전극(2003G)과 함께 하나의 녹색 서브 화소를 구성하고, 하나의 제3 화소 전극(2002R)은 제3 공통 전극(2003R)과 함께 하나의 적색 서브 화소를 구성할 수 있다.
또한, 상술한 나노 막대 발광 소자(100)는 다양한 크기와 다양한 용도의 디스플레이 장치들에 제한 없이 적용될 수 있다. 예를 들어, 도 11 내지 도 16은 실시예에 따른 나노 막대 발광 소자(100)들이 적용된 디스플레이 장치를 포함하는 다양한 장치들을 예시적으로 보인다.
먼저, 도 11은 일 실시예에 따른 전자 장치의 개략적인 블록도이다. 도 11을 참조하면, 네트워크 환경(8200) 내에 전자 장치(8201)가 구비될 수 있다. 네트워크 환경(8200)에서 전자 장치(8201)는 제1 네트워크(8298)(근거리 무선 통신 네트워크 등)를 통하여 다른 전자 장치(8202)와 통신하거나, 또는 제2 네트워크(8299)(원거리 무선 통신 네트워크 등)를 통하여 또 다른 전자 장치(8204) 및/또는 서버(8208)와 통신할 수 있다. 전자 장치(8201)는 서버(8208)를 통하여 전자 장치(8204)와 통신할 수 있다. 전자 장치(8201)는 프로세서(8220), 메모리(8230), 입력 장치(8250), 음향 출력 장치(8255), 디스플레이 장치(8260), 오디오 모듈(8270), 센서 모듈(8276), 인터페이스(8277), 햅틱 모듈(8279), 카메라 모듈(8280), 전력 관리 모듈(8288), 배터리(8289), 통신 모듈(8290), 가입자 식별 모듈(8296), 및/또는 안테나 모듈(8297)을 포함할 수 있다. 전자 장치(8201)에는, 이 구성요소들 중 일부가 생략되거나, 다른 구성요소가 추가될 수 있다. 이 구성요소들 중 일부는 하나의 통합된 회로로 구현될 수 있다. 예를 들면, 센서 모듈(8276)(지문 센서, 홍채 센서, 조도 센서 등)은 디스플레이 장치(8260)(디스플레이 등)에 임베디드되어 구현될 수 있다.
프로세서(8220)는, 소프트웨어(프로그램(8240) 등)를 실행하여 프로세서(8220)에 연결된 전자 장치(8201) 중 하나 또는 복수개의 다른 구성요소들(하드웨어, 소프트웨어 구성요소 등)을 제어할 수 있고, 다양한 데이터 처리 또는 연산을 수행할 수 있다. 데이터 처리 또는 연산의 일부로, 프로세서(8220)는 다른 구성요소(센서 모듈(8276), 통신 모듈(8290) 등)로부터 수신된 명령 및/또는 데이터를 휘발성 메모리(8232)에 로드하고, 휘발성 메모리(8232)에 저장된 명령 및/또는 데이터를 처리하고, 결과 데이터를 비휘발성 메모리(8234)에 저장할 수 있다. 비휘발성 메모리(8234)는 전자 장치(8201) 내에 장착된 내장 메모리(8236)와 착탈 가능한 외장 메모리(8238)를 포함할 수 있다. 프로세서(8220)는 메인 프로세서(8221)(중앙 처리 장치, 어플리케이션 프로세서 등) 및 이와 독립적으로 또는 함께 운영 가능한 보조 프로세서(8223)(그래픽 처리 장치, 이미지 시그널 프로세서, 센서 허브 프로세서, 커뮤니케이션 프로세서 등)를 포함할 수 있다. 보조 프로세서(8223)는 메인 프로세서(8221)보다 전력을 작게 사용하고, 특화된 기능을 수행할 수 있다.
보조 프로세서(8223)는, 메인 프로세서(8221)가 인액티브 상태(슬립 상태)에 있는 동안 메인 프로세서(8221)를 대신하여, 또는 메인 프로세서(8221)가 액티브 상태(어플리케이션 실행 상태)에 있는 동안 메인 프로세서(8221)와 함께, 전자 장치(8201)의 구성요소들 중 일부 구성요소(디스플레이 장치(8260), 센서 모듈(8276), 통신 모듈(8290) 등)와 관련된 기능 및/또는 상태를 제어할 수 있다. 보조 프로세서(8223)(이미지 시그널 프로세서, 커뮤니케이션 프로세서 등)는 기능적으로 관련 있는 다른 구성 요소(카메라 모듈(8280), 통신 모듈(8290) 등)의 일부로서 구현될 수도 있다.
메모리(2230)는, 전자 장치(8201)의 구성요소(프로세서(8220), 센서모듈(8276) 등)가 필요로 하는 다양한 데이터를 저장할 수 있다. 데이터는, 예를 들어, 소프트웨어(프로그램(8240) 등) 및, 이와 관련된 명령에 대한 입력 데이터 및/또는 출력 데이터를 포함할 수 있다. 메모리(8230)는, 휘발성 메모리(8232) 및/또는 비휘발성 메모리(8234)를 포함할 수 있다.
프로그램(8240)은 메모리(8230)에 소프트웨어로 저장될 수 있으며, 운영 체제(8242), 미들 웨어(8244) 및/또는 어플리케이션(8246)을 포함할 수 있다.
입력 장치(8250)는, 전자 장치(8201)의 구성요소(프로세서(8220) 등)에 사용될 명령 및/또는 데이터를 전자 장치(8201)의 외부(사용자 등)로부터 수신할 수 있다. 입력 장치(8250)는, 리모트 컨트롤러, 마이크, 마우스, 키보드, 및/또는 디지털 펜(스타일러스 펜 등)을 포함할 수 있다.
음향 출력 장치(8255)는 음향 신호를 전자 장치(8201)의 외부로 출력할 수 있다. 음향 출력 장치(8255)는, 스피커 및/또는 리시버를 포함할 수 있다. 스피커는 멀티미디어 재생 또는 녹음 재생과 같이 일반적인 용도로 사용될 수 있고, 리시버는 착신 전화를 수신하기 위해 사용될 수 있다. 리시버는 스피커의 일부로 결합되어 있거나 또는 독립된 별도의 장치로 구현될 수 있다.
디스플레이 장치(8260)는 전자 장치(8201)의 외부로 정보를 시각적으로 제공할 수 있다. 디스플레이 장치(8260)는, 디스플레이, 홀로그램 장치, 또는 프로젝터 및 해당 장치를 제어하기 위한 제어 회로를 포함할 수 있다. 디스플레이 장치(8260)는 전술한 구동 회로, 마이크로 반도체 발광 소자, 측면 반사 구조, 하부 반사 구조 등을 포함할 수 있다. 디스플레이 장치(8260)는 터치를 감지하도록 설정된 터치 회로(Touch Circuitry), 및/또는 터치에 의해 발생되는 힘의 세기를 측정하도록 설정된 센서 회로(압력 센서 등)를 더 포함할 수 있다.
오디오 모듈(8270)은 소리를 전기 신호로 변환시키거나, 반대로 전기 신호를 소리로 변환시킬 수 있다. 오디오 모듈(8270)은, 입력 장치(8250)를 통해 소리를 획득하거나, 음향 출력 장치(8255), 및/또는 전자 장치(8201)와 직접 또는 무선으로 연결된 다른 전자 장치(전자 장치(8202) 등)의 스피커 및/또는 헤드폰을 통해 소리를 출력할 수 있다.
센서 모듈(8276)은 전자 장치(8201)의 작동 상태(전력, 온도 등), 또는 외부의 환경 상태(사용자 상태 등)를 감지하고, 감지된 상태에 대응하는 전기 신호 및/또는 데이터 값을 생성할 수 있다. 센서 모듈(8276)은, 제스처 센서, 자이로 센서, 기압 센서, 마그네틱 센서, 가속도 센서, 그립 센서, 근접 센서, 컬러 센서, IR(Infrared) 센서, 생체 센서, 온도 센서, 습도 센서, 및/또는 조도 센서를 포함할 수 있다.
인터페이스(8277)는 전자 장치(8201)가 다른 전자 장치(전자 장치(8102) 등)와 직접 또는 무선으로 연결되기 위해 사용될 수 있는 하나 이상의 지정된 프로토콜들을 지원할 수 있다. 인터페이스(8277)는, HDMI(High Definition Multimedia Interface), USB(Universal Serial Bus) 인터페이스, SD카드 인터페이스, 및/또는 오디오 인터페이스를 포함할 수 있다.
연결 단자(8278)는, 전자 장치(8201)가 다른 전자 장치(전자 장치(8202) 등)와 물리적으로 연결될 수 있는 커넥터를 포함할 수 있다. 연결 단자(8278)는, HDMI 커넥터, USB 커넥터, SD 카드 커넥터, 및/또는 오디오 커넥터(헤드폰 커넥터 등)를 포함할 수 있다.
햅틱 모듈(8279)은 전기적 신호를 사용자가 촉각 또는 운동 감각을 통해서 인지할 수 있는 기계적인 자극(진동, 움직임 등) 또는 전기적인 자극으로 변환할 수 있다. 햅틱 모듈(8279)은, 모터, 압전 소자, 및/또는 전기 자극 장치를 포함할 수 있다.
카메라 모듈(8280)은 정지 영상 및 동영상을 촬영할 수 있다. 카메라 모듈(8280)은 하나 이상의 렌즈를 포함하는 렌즈 어셈블리, 이미지 센서들, 이미지 시그널 프로세서들, 및/또는 플래시들을 포함할 수 있다. 카메라 모듈(8280)에 포함된 렌즈 어셈블리는 이미지 촬영의 대상인 피사체로부터 방출되는 빛을 수집할 수 있다.
전력 관리 모듈(8288)은 전자 장치(8201)에 공급되는 전력을 관리할 수 있다. 전력 관리 모듈(8288)은, PMIC(Power Management Integrated Circuit)의 일부로서 구현될 수 있다.
배터리(8289)는 전자 장치(8201)의 구성 요소에 전력을 공급할 수 있다. 배터리(8289)는, 재충전 불가능한 1차 전지, 재충전 가능한 2차 전지 및/또는 연료 전지를 포함할 수 있다.
통신 모듈(8290)은 전자 장치(8201)와 다른 전자 장치(전자 장치(8202), 전자 장치(8204), 서버(8208) 등)간의 직접(유선) 통신 채널 및/또는 무선 통신 채널의 수립, 및 수립된 통신 채널을 통한 통신 수행을 지원할 수 있다. 통신 모듈(8290)은 프로세서(8220)(어플리케이션 프로세서 등)와 독립적으로 운영되고, 직접 통신 및/또는 무선 통신을 지원하는 하나 이상의 커뮤니케이션 프로세서를 포함할 수 있다. 통신 모듈(8290)은 무선 통신 모듈(8292)(셀룰러 통신 모듈, 근거리 무선 통신 모듈, GNSS(Global Navigation Satellite System 등) 통신 모듈) 및/또는 유선 통신 모듈(8294)(LAN(Local Area Network) 통신 모듈, 전력선 통신 모듈 등)을 포함할 수 있다. 이들 통신 모듈 중 해당하는 통신 모듈은 제1 네트워크(8298)(블루투스, WiFi Direct 또는 IrDA(Infrared Data Association) 같은 근거리 통신 네트워크) 또는 제2 네트워크(8299)(셀룰러 네트워크, 인터넷, 또는 컴퓨터 네트워크(LAN, WAN 등)와 같은 원거리 통신 네트워크)를 통하여 다른 전자 장치와 통신할 수 있다. 이런 여러 종류의 통신 모듈들은 하나의 구성 요소(단일 칩 등)로 통합되거나, 또는 서로 별도의 복수의 구성 요소들(복수 칩들)로 구현될 수 있다. 무선 통신 모듈(8292)은 가입자 식별 모듈(8296)에 저장된 가입자 정보(국제 모바일 가입자 식별자(IMSI) 등)를 이용하여 제1 네트워크(8298) 및/또는 제2 네트워크(8299)와 같은 통신 네트워크 내에서 전자 장치(8201)를 확인 및 인증할 수 있다.
안테나 모듈(8297)은 신호 및/또는 전력을 외부(다른 전자 장치 등)로 송신하거나 외부로부터 수신할 수 있다. 안테나는 기판(PCB 등) 위에 형성된 도전성 패턴으로 이루어진 방사체를 포함할 수 있다. 안테나 모듈(8297)은 하나 또는 복수의 안테나들을 포함할 수 있다. 복수의 안테나가 포함된 경우, 통신 모듈(8290)에 의해 복수의 안테나들 중에서 제1 네트워크(8298) 및/또는 제2 네트워크(8299)와 같은 통신 네트워크에서 사용되는 통신 방식에 적합한 안테나가 선택될 수 있다. 선택된 안테나를 통하여 통신 모듈(8290)과 다른 전자 장치 간에 신호 및/또는 전력이 송신되거나 수신될 수 있다. 안테나 외에 다른 부품(RFIC 등)이 안테나 모듈(8297)의 일부로 포함될 수 있다.
구성요소들 중 일부는 주변 기기들간 통신 방식(버스, GPIO(General Purpose Input and Output), SPI(Serial Peripheral Interface), MIPI(Mobile Industry Processor Interface) 등)을 통해 서로 연결되고 신호(명령, 데이터 등)를 상호 교환할 수 있다.
명령 또는 데이터는 제2 네트워크(8299)에 연결된 서버(8208)를 통해서 전자 장치(8201)와 외부의 전자 장치(8204)간에 송신 또는 수신될 수 있다. 다른 전자 장치들(8202, 8204)은 전자 장치(8201)와 동일한 또는 다른 종류의 장치일 수 있다. 전자 장치(8201)에서 실행되는 동작들의 전부 또는 일부는 다른 전자 장치들(8202, 8204, 8208) 중 하나 이상의 장치들에서 실행될 수 있다. 예를 들면, 전자 장치(8201)가 어떤 기능이나 서비스를 수행해야 할 때, 기능 또는 서비스를 자체적으로 실행시키는 대신에 하나 이상의 다른 전자 장치들에게 그 기능 또는 그 서비스의 일부 또는 전체를 수행하라고 요청할 수 있다. 요청을 수신한 하나 이상의 다른 전자 장치들은 요청과 관련된 추가 기능 또는 서비스를 실행하고, 그 실행의 결과를 전자 장치(8201)로 전달할 수 있다. 이를 위하여, 클라우드 컴퓨팅, 분산 컴퓨팅, 및/또는 클라이언트-서버 컴퓨팅 기술이 이용될 수 있다.
도 12는 실시예들에 따른 디스플레이 장치가 모바일 장치에 적용된 예를 도시한다. 모바일 장치(9100)는 디스플레이 장치(9110)를 포함할 수 있으며, 디스플레이 장치(9110)는 전술한 구동 회로, 마이크로 반도체 발광 소자, 측면 반사 구조, 하부 반사 구조 등을 포함할 수 있다. 디스플레이 장치(9110)는 접힐 수 있는 구조 예를 들어, 다중 폴더블 구조를 가질 수 있다.
도 13은 실시예들에 따른 디스플레이 장치가 차량용 디스플레이 장치에 적용된 예를 도시한다. 디스플레이 장치는 자동차용 헤드업 디스플레이 장치(9200)일 수 있으며, 자동차의 일 영역에 구비된 디스플레이(9210)와, 디스플레이(9210)에서 생성된 영상을 운전자가 볼 수 있도록 광 경로를 변환하는 광경로 변경 부재(9220)를 포함할 수 있다.
도 14는 실시예들에 따른 디스플레이 장치가 증강 현실 안경 또는 가상 현실 안경에 적용된 예를 도시한다. 증강 현실 안경(9300)은 영상을 형성하는 투영 시스템(9310)과, 투영 시스템(9310)으로부터의 영상을 사용자의 눈에 들어가도록 안내하는 요소(9320)를 포함할 수 있다. 투영 시스템(9310)은 전술한 구동 회로, 마이크로 반도체 발광 소자, 측면 반사 구조, 하부 반사 구조 등을 포함할 수 있다.
도 15는 실시예들에 따른 디스플레이 장치가 사이니지(signage)에 적용된 예를 도시한다. 사이니지(9400)는 디지털 정보 디스플레이를 이용한 옥외 광고에 이용될 수 있으며, 통신망을 통해 광고 내용 등을 제어할 수 있다. 사이니지(9400)는 예를 들어, 도 11을 참조하여 설명한 전자 장치를 통해 구현될 수 있다.
도 16은 실시예들에 따른 디스플레이 장치가 웨어러블 디스플레이에 적용된 예를 도시한다. 웨어러블 디스플레이(9500)는 전술한 구동 회로, 마이크로 반도체 발광 소자, 측면 반사 구조, 하부 반사 구조 등을 포함할 수 있고, 도 11를 참조하여 설명한 전자 장치를 통해 구현될 수 있다.
예시적인 실시 예에 따른 디스플레이 장치는 이 밖에도 롤러블(rollable) TV, 스트레처블(stretchable) 디스플레이 등 다양한 제품에 적용될 수 있다.
상술한 나노 막대 발광 소자, 복수의 나노 막대 발광 소자를 포함하는 에피택시 구조물, 및 에피택시 구조물의 제조 방법은 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 권리범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 권리범위에 포함된 것으로 해석되어야 할 것이다.
100.....나노 막대 발광 소자
101, 201, 301.....기판
101a, 301a.....지지층
101b, 301b.....단결정층
103.....이차원 물질층
104, 106.....반도체층
105.....발광층
107.....전극
108.....패시베이션막
110.....발광 나노 막대
120.....하드 마스크
1000, 1100, 1200, 1300.....에피택시 구조물
1301.....절연층
1310, 1320, 1330.....반도체 소자

Claims (23)

  1. 상부 표면이 단결정 구조를 갖는 기판;
    상기 기판의 상부 표면 위에 배치된 이차원 물질층; 및
    상기 이차원 물질층의 상부 표면 위에 배치된 것으로, 수직 방향으로 연장된 나노 막대 형태를 갖는 복수의 나노 막대 발광 소자;를 포함하며,
    상기 복수의 나노 막대 발광 소자의 각각은:
    발광 나노 막대; 및
    상기 발광 나노 막대의 측벽을 둘러싸며 절연성을 갖는 패시베이션막;을 포함하는, 에피택시 구조물.
  2. 제1 항에 있어서,
    상기 기판은:
    지지층; 및
    상기 지지층의 상부 표면 위에 배치된 단결정층;을 포함하는, 에피택시 구조물.
  3. 제2 항에 있어서,
    상기 지지층은 결정질 재료를 포함하며,
    상기 단결정층은 이온 결합 특성을 갖는 Ⅲ-Ⅴ 족 화합물 반도체의 단결정 또는 이온 결정을 포함하는, 에피택시 구조물.
  4. 제3 항에 있어서,
    상기 지지층은 실리콘(Si) 또는 사파이어를 포함하는, 에피택시 구조물.
  5. 제3 항에 있어서,
    상기 단결정층은 LiF, GaN, 및 BaTiO3 중에서 적어도 하나의 단결정을 포함하는, 에피택시 구조물.
  6. 제2 항에 있어서,
    상기 지지층은 비정질 재료를 포함하며,
    상기 단결정층은 이온빔 보조 증착 방식으로 형성되는, 에피택시 구조물.
  7. 제6 항에 있어서,
    상기 단결정층은 (111) 방향, (001) 방향, 또는 (100) 방향으로 배향된 CeO2, Sc2O3, MgO, BaO, 및 BrN 중에서 적어도 하나를 포함하는, 에피택시 구조물.
  8. 제7 항에 있어서,
    상기 단결정층은 적어도 2개의 서브층을 포함하며, 각각의 서브층은 0.5 nm 내지 100 nm의 두께를 갖는, 에피택시 구조물.
  9. 제6 항에 있어서,
    상기 지지층은 유리 또는 용융 실리카를 포함하는, 에피택시 구조물.
  10. 제2 항에 있어서,
    상기 이차원 물질층은 대응하는 발광 나노 막대로부터 각각 연장되는 복수의 나노 막대 형태를 갖도록 패터닝되어 있는, 에피택시 구조물.
  11. 제2 항에 있어서,
    상기 단결정층은 대응하는 발광 나노 막대로부터 각각 연장되는 복수의 나노 막대 형태를 갖도록 패터닝되어 있는, 에피택시 구조물.
  12. 제1 항에 있어서,
    상기 기판은 상부 표면이 단결정 구조를 갖는 하나의 단일한 층을 포함하는, 에피택시 구조물.
  13. 제12 항에 있어서,
    상기 기판은 4H-SiC, 6H-SiC, 및 3C-SiC 중에서 적어도 하나의 단결정을 포함하는, 에피택시 구조물.
  14. 제12 항에 있어서,
    상기 이차원 물질층은 대응하는 발광 나노 막대로부터 각각 연장되는 복수의 나노 막대 형태를 갖도록 패터닝되어 있는, 에피택시 구조물.
  15. 제1 항에 있어서,
    상기 이차원 물질층은 그래핀, 질화 붕소, 및 전이금속 디칼코게나이드 중에서 적어도 하나를 포함하는, 에피택시 구조물.
  16. 제1 항에 있어서,
    상기 발광 나노 막대는:
    상기 이차원 물질층의 상부 표면 위에 배치되며 제1 도전형으로 도핑된 제1 반도체층;
    상기 제1 반도체층 위에 배치된 발광층;
    상기 발광층 위에 배치되며 제1 도전형과 전기적으로 상반되는 제2 도전형으로 도핑된 제2 반도체층; 및
    상기 제2 반도체층 위에 배치된 전극;을 포함하는, 에피택시 구조물.
  17. 제16 항에 있어서,
    상기 발광 나노 막대는 1 ㎛ 내지 20 ㎛의 범위의 높이를 갖고, 0.05 ㎛ 내지 1 ㎛의 범위의 직경을 갖는, 에피택시 구조물.
  18. 제16 항에 있어서,
    상기 패시베이션막은 상기 발광층의 결정 구조와 동일한 결정 구조를 갖는 절연성 결정 재료를 포함하는, 에피택시 구조물.
  19. 제18 항에 있어서,
    상기 패시베이션막은 상기 발광층과 격자 정합 에피택시 관계를 갖거나 또는 도메인 정합 에피택시 관계를 갖는, 에피택시 구조물.
  20. 상부 표면이 단결정 구조를 갖는 기판;
    상기 기판의 상부 표면 위에 배치된 절연층;
    상기 기판의 상부 표면 위에 배치되며 상기 절연층에 의해 서로 전기적으로 분리된 복수의 이차원 물질층; 및
    상기 복수의 이차원 물질층 위에 각각 배치된 복수의 반도체 소자;를 포함하는 에피택시 구조물.
  21. 제20 항에 있어서,
    상기 복수의 반도체 소자는 서로 다른 반도체 재료를 포함하는, 에피택시 구조물.
  22. 제20 항에 있어서,
    상기 복수의 반도체 소자는 광원, 광검출기, 광변조기, 및 광증폭기 중에서 어느 하나를 포함하는, 에피택시 구조물.
  23. 에피택시 구조물을 포함하며,
    상기 에피택시 구조물은:
    상부 표면이 단결정 구조를 갖는 기판;
    상기 기판의 상부 표면 위에 배치된 절연층;
    상기 기판의 상부 표면 위에 배치되며 상기 절연층에 의해 서로 전기적으로 분리된 복수의 이차원 물질층; 및
    상기 복수의 이차원 물질층 위에 각각 배치된 복수의 반도체 소자;를 포함하고,
    상기 복수의 반도체 소자는 광원, 광검출기, 광변조기, 및 광증폭기 중에서 어느 하나를 포함하는, 모놀리식 광집적회로.
KR1020210154295A 2021-11-10 2021-11-10 복수의 반도체 소자를 포함하는 에피택시 구조물 KR20230068201A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210154295A KR20230068201A (ko) 2021-11-10 2021-11-10 복수의 반도체 소자를 포함하는 에피택시 구조물
US17/720,872 US20230143907A1 (en) 2021-11-10 2022-04-14 Epitaxy structure including a plurality of semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210154295A KR20230068201A (ko) 2021-11-10 2021-11-10 복수의 반도체 소자를 포함하는 에피택시 구조물

Publications (1)

Publication Number Publication Date
KR20230068201A true KR20230068201A (ko) 2023-05-17

Family

ID=86229928

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210154295A KR20230068201A (ko) 2021-11-10 2021-11-10 복수의 반도체 소자를 포함하는 에피택시 구조물

Country Status (2)

Country Link
US (1) US20230143907A1 (ko)
KR (1) KR20230068201A (ko)

Also Published As

Publication number Publication date
US20230143907A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
US20230064207A1 (en) Hybrid element substrate and method of fabricating the same
US20220262784A1 (en) Hybrid element and method of fabricating the same
US20230143907A1 (en) Epitaxy structure including a plurality of semiconductor devices
US20230215979A1 (en) Micro light-emitting element, micro light-emitting element array including the micro light-emitting element, and display device including the micro light-emitting element array
US11769855B2 (en) Micro light emitting device and display apparatus having the same
KR20230114631A (ko) 나노 로드 발광 다이오드, 디스플레이 장치 및 제조 방법
EP4109572A1 (en) Nanorod light emitting device, method of manufacturing the same, and display apparatus including the same
US20220406959A1 (en) Nanorod light emitting device, substrate structure including a plurality of nanorod light emitting devices, and method of manufacturing the substrate structure
EP4318614A1 (en) Light-emitting device
EP3975271A1 (en) Micro light emitting device, display apparatus including the same, and method of manufacturing the same
EP4318613A1 (en) Light emitting device, display apparatus, and manufacturing method thereof
US20230402439A1 (en) Micro chip and display apparatus including the same
EP4333085A1 (en) Multi-wavelength light-emitting device and method of manufacturing the same
US20230170448A1 (en) Micro light emitting semiconductor device, display apparatus including the same, and method of manufacturing the same
EP4187609A1 (en) Display apparatus and method of manufacturing the same
KR20230175016A (ko) 반도체 소자 제조 방법, 반도체 소자 및 그 장치
KR20220117104A (ko) 하이브리드 전사 구조물 및 그 제조방법
KR20220117114A (ko) 하이브리드 소자 및 그 제조방법
KR20230000950A (ko) 발광 소자 및 이를 포함하는 디스플레이 장치
KR20230000902A (ko) 발광 소자 및 이를 포함하는 디스플레이 장치
KR20230148681A (ko) 나노 로드 발광 다이오드, 나노 로드 발광 다이오드를 포함하는 디스플레이 장치 및 나노 로드 발광 다이오드 제조 방법
KR20220085692A (ko) 디스플레이 장치 및 디스플레이 장치 제조 방법
KR20230108192A (ko) 디스플레이 장치, 디스플레이 장치를 포함하는 증강 현실 장치 및 디스플레이 장치 제조 방법
KR20230061031A (ko) 마이크로 발광 소자 및 이를 포함하는 디스플레이 장치
CN118053960A (zh) 多重微型发射器件及其制造方法以及显示装置及其制造方法