KR20230054792A - 비콘의 시간적 확산을 통한 plca-기반 네트워크에서의 emi 감소 - Google Patents
비콘의 시간적 확산을 통한 plca-기반 네트워크에서의 emi 감소 Download PDFInfo
- Publication number
- KR20230054792A KR20230054792A KR1020227033993A KR20227033993A KR20230054792A KR 20230054792 A KR20230054792 A KR 20230054792A KR 1020227033993 A KR1020227033993 A KR 1020227033993A KR 20227033993 A KR20227033993 A KR 20227033993A KR 20230054792 A KR20230054792 A KR 20230054792A
- Authority
- KR
- South Korea
- Prior art keywords
- transmission
- delay
- beacon signal
- cycle
- given
- Prior art date
Links
- 230000002123 temporal effect Effects 0.000 title description 29
- 230000007480 spreading Effects 0.000 title description 27
- 238000003892 spreading Methods 0.000 title description 27
- 230000009467 reduction Effects 0.000 title description 5
- 201000007902 Primary cutaneous amyloidosis Diseases 0.000 title 1
- 230000005540 biological transmission Effects 0.000 claims abstract description 269
- 238000000034 method Methods 0.000 claims description 50
- 230000000737 periodic effect Effects 0.000 claims description 8
- 238000011002 quantification Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims 2
- 230000001934 delay Effects 0.000 abstract description 10
- 230000006870 function Effects 0.000 description 42
- 238000004891 communication Methods 0.000 description 8
- 238000007726 management method Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- BNPSSFBOAGDEEL-UHFFFAOYSA-N albuterol sulfate Chemical compound OS(O)(=O)=O.CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1.CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 BNPSSFBOAGDEEL-UHFFFAOYSA-N 0.000 description 4
- 238000012913 prioritisation Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000013515 script Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 108700026140 MAC combination Proteins 0.000 description 1
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
- H04L12/403—Bus networks with centralised control, e.g. polling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
- H04L12/407—Bus networks with decentralised control
- H04L12/413—Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection [CSMA-CD]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Small-Scale Networks (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
장치는 네트워크 내의 다른 노드에 통신가능하게 결합될 수 있다. 장치는 다른 노드에 송신 사이클을 반복적으로 발행하도록 구성된 제어 회로를 포함할 수 있다. 주어진 송신 사이클은 데이터를 전송하기 위해 다른 노드 각각에 대한 적어도 하나의 전송 슬롯을 포함할 수 있다. 제어 회로는 다른 노드에 비콘 신호를 발행함으로써 송신 사이클을 개시하도록 구성될 수 있다. 제어 회로는, 다른 노드 모두가 직전의 송신 사이클에서 연관된 모든 전송 슬롯을 완료했다고 결정하고, 다른 노드의 송신이 완료되었다는 결정에 기초하여, 주어진 송신 사이클에 대한 비콘 신호의 송신을 지연시킴으로써, 주어진 송신 사이클에서 비콘 신호를 발행할 때를 결정하도록 구성될 수 있다.
Description
우선권
본 출원은 2020년 8월 26일자로 출원된 미국 가특허 출원 제63/070,643호에 대한 우선권을 주장하며, 그의 내용은 본원에 그 전체가 포함된다.
기술분야
본 개시내용은 이더넷 통신에 관한 것으로, 더 구체적으로는, 비콘의 시간적 확산을 사용하여 PHY 계층 충돌 회피(PHY layer collision avoidance, PLCA) 인에이블드 네트워크(단일 트위스티드 페어 이더넷, 10SPE, 또는 10BASE-T1S로도 알려진 IEEE 802.3cg 표준을 따름)에서 전자기 간섭(EMI)을 감소시키는 것에 관한 것이다.
10SPE는 현재 개정 및 개발 중에 있는 제안된 표준이다. 10SPE는 이더넷 근거리 통신망, 접속망 및 도시지역 통신망을 정의한다. 이더넷은 선택된 동작 속도로 특정되고; 공통 MAC(media access control) 사양 및 MIB(management information base)를 사용한다. CSMA/CD(Carrier Sense Multiple Access with Collision Detection) MAC 프로토콜은 공유된 매체(하프 듀플렉스) 동작뿐만 아니라 풀 듀플렉스 동작을 특정한다. 속도 특정 MII(Media Independent Interface)는 아키텍처식 및 선택적 구현 인터페이스를 선택된 PHY(Physical Layer entity)에 제공한다. 물리 계층은 송신용 프레임을 인코딩하고, 수신된 프레임을 디코딩하며, 이때 변조는 동작 속도, 송신 매체 및 지원된 링크 길이에 대해 명시된다. 다른 명시된 능력은 제어 및 관리 프로토콜, 및 선택된 트위스티드 페어 PHY 유형에 대한 전력의 제공을 포함한다.
본 개시내용의 예는 장치를 포함할 수 있다. 장치는 네트워크 인터페이스를 포함할 수 있다. 네트워크 인터페이스는 장치를 네트워크 내의 하나 이상의 다른 노드에 통신가능하게 결합하도록 구성될 수 있다. 장치는 네트워크 인터페이스를 통해 다른 노드에 송신 사이클을 반복적으로 발행하도록 구성된 제어 회로를 포함할 수 있다. 주어진 송신 사이클은 데이터를 전송하기 위해 다른 노드 각각에 대한 적어도 하나의 전송 슬롯을 포함할 수 있다. 제어 회로는 다른 노드에 비콘 신호를 발행함으로써 송신 사이클을 개시하도록 구성될 수 있다. 제어 회로는, 다른 노드 모두가 직전의 송신 사이클에서 연관된 모든 전송 슬롯을 완료했다고 결정하고, 이에 따라 다른 노드의 송신을 완료함으로써, 주어진 송신 사이클에서 비콘 신호를 발행할 때를 결정하도록 구성될 수 있다. 제어 회로는, 다른 노드의 송신이 완료되었다는 결정에 기초하여, 주어진 송신 사이클에 대한 비콘 신호의 송신을 지연시킴으로써, 주어진 송신 사이클에서 비콘 신호를 발행할 때를 추가로 결정하도록 구성될 수 있다.
본 개시내용의 예는, 네트워크 내의 노드에서, 네트워크 인터페이스 내의 다른 노드에 송신 사이클을 반복적으로 발행하는 것을 포함할 수 있다. 주어진 송신 사이클은 데이터를 전송하기 위해 다른 노드 각각에 대한 적어도 하나의 전송 슬롯을 포함할 수 있다. 방법은 다른 노드에 비콘 신호를 발행함으로써 송신 사이클을 개시하는 단계를 포함할 수 있다. 방법은 다른 노드 모두가 직전의 송신 사이클에서 연관된 모든 전송 슬롯을 완료했다고 결정하고, 이에 따라 다른 노드의 송신을 완료함으로써, 주어진 송신 사이클에서 비콘 신호를 발행할 때를 결정하는 단계를 포함할 수 있다. 방법은, 추가로, 다른 노드의 송신이 완료되었다는 결정에 기초하여, 주어진 송신 사이클에 대한 비콘 신호의 송신을 지연시킴으로써, 주어진 송신 사이클에서 비콘 신호를 발행할 때를 결정하는 단계를 포함할 수 있다.
도 1은 본 개시내용의 예에 따른 예시적인 10SPE 네트워크의 예시이다.
도 2는 본 개시내용의 예에 따른 예시적인 송신 사이클의 예시이다.
도 3은 본 개시내용의 예에 따른 예시적인 송신 사이클의 타이밍의 예시이다.
도 4 내지 도 9는 본 개시내용의 예에 따른, 다양한 조건에서 10SPE 노드에 의해 생성된 EMI를 예시한다.
도 10은 본 개시내용의 예에 따른, 비콘의 시간적 확산 또는 디더링의 타이밍 다이어그램의 예시이다.
도 11 및 도 12는 본 개시내용의 예에 따른, 비콘의 시간적 확산 또는 디더링으로부터 EMI의 잡음 감소를 예시한다.
도 13은 본 개시내용의 예에 따른, 비콘의 시간적 확산 또는 디더링을 위한 예시적인 방법을 예시한다.
도 14는 본 개시내용의 예에 따른, 비콘의 시간적 확산 또는 디더링을 위한 예시적인 방법을 예시하며, 여기서 비콘의 시간적 확산 또는 디더링이 선택적으로 적용될 수 있다.
도 2는 본 개시내용의 예에 따른 예시적인 송신 사이클의 예시이다.
도 3은 본 개시내용의 예에 따른 예시적인 송신 사이클의 타이밍의 예시이다.
도 4 내지 도 9는 본 개시내용의 예에 따른, 다양한 조건에서 10SPE 노드에 의해 생성된 EMI를 예시한다.
도 10은 본 개시내용의 예에 따른, 비콘의 시간적 확산 또는 디더링의 타이밍 다이어그램의 예시이다.
도 11 및 도 12는 본 개시내용의 예에 따른, 비콘의 시간적 확산 또는 디더링으로부터 EMI의 잡음 감소를 예시한다.
도 13은 본 개시내용의 예에 따른, 비콘의 시간적 확산 또는 디더링을 위한 예시적인 방법을 예시한다.
도 14는 본 개시내용의 예에 따른, 비콘의 시간적 확산 또는 디더링을 위한 예시적인 방법을 예시하며, 여기서 비콘의 시간적 확산 또는 디더링이 선택적으로 적용될 수 있다.
본 개시내용의 예는 장치를 포함할 수 있다. 장치는, 장치를 네트워크 내의 하나 이상의 다른 노드에 통신가능하게 결합하도록 구성된 네트워크 인터페이스를 포함할 수 있다. 네트워크 인터페이스는 10SPE와 같은 임의의 적합한 네트워크 프로토콜을 가질 수 있다. 장치는 제어 회로를 포함할 수 있다. 네트워크 인터페이스 및 제어 회로는 아날로그 회로부, 디지털 회로부, 프로세서에 의한 실행을 위한 명령어, 또는 이들의 임의의 적합한 조합에 의해 구현될 수 있다. 네트워크는 임의의 적합한 수 및 종류의 노드를 포함할 수 있다. 노드는 물리적 또는 가상 전자 디바이스일 수 있다. 적어도 하나의 노드는 네트워크 내의 다른 노드를 대신하여 네트워크 배정, 할당 또는 다른 관리 작업을 수행하도록 구성된 PLCA 제어기 노드와 같은 네트워크 제어기 노드일 수 있다. 네트워크 제어기 노드의 작업은 네트워크 관리 애플리케이션에 의해 구현될 수 있다. 각각의 노드는 네트워크 드라이버 또는 스택으로 구현될 수 있다. 스택은 제어 회로의 동작에 의해 표현될 수 있다. 제어 회로는 PHY 계층을 포함하거나 그에 통신가능하게 결합될 수 있다. 네트워크 트래픽은 네트워크의 다른 노드로의 통신을 위해 주어진 노드에서 생성될 수 있다. 주어진 노드의 제어 회로는 네트워크 인터페이스를 통해 다른 노드에 송신 사이클을 반복적으로 발행하도록 구성될 수 있다. 주어진 송신 사이클은 데이터를 전송하기 위해 다른 노드 각각에 대한 적어도 하나의 전송 슬롯을 포함할 수 있다. 전송 슬롯은 주어진 노드가 데이터를 전송할 시간 기회일 수 있다. 주어진 노드는, 주어진 시간에 그 자신의 데이터를 삽입하는 것을 제외하고, 다음 노드에 대한 송신 사이클을 반복할 수 있다. 주어진 노드의 제어 회로는 다른 노드에 비콘 신호를 발행함으로써 송신 사이클을 개시하도록 구성될 수 있다. 주어진 송신 사이클에서 비콘 신호를 발행할 때를 결정하는 것은 다른 노드 모두가 직전의 송신 사이클에서 연관된 모든 전송 슬롯을 완료했다고 결정하고, 이에 따라 다른 노드의 송신을 완료함으로써 수행될 수 있다. 비콘 신호는 주어진 송신 사이클에 대해 추가로 지연될 수 있다.
상기 실시예 중 임의의 실시예와 조합하여, 제어 회로는 장치 또는 다른 노드로부터의 전자기 간섭의 가능한 생성에 기초하여, 주어진 송신 사이클에 대한 비콘 신호의 송신을 선택적으로 지연시키도록 추가로 구성될 수 있다. EMI가 측정 또는 검출될 수 있다.
상기 실시예 중 임의의 실시예와 조합하여, 제어 회로는 역치보다 짧은 길이를 갖는 2개 이상의 추가적인 직전의 송신 사이클에 기초하여, 주어진 송신 사이클에 대한 비콘 신호의 송신을 선택적으로 지연시키도록 추가로 구성될 수 있다. 특정 역치는 주어진 시스템에 대해 평가될 수 있고, 예시적인 역치는 그들의 각각의 전송 슬롯을 사용하는 2개 미만의 노드일 수 있다. 다른 예시적인 역치는 최소 길이 송신 사이클의 양에 10%를 더한 것일 수 있다.
상기 실시예 중 임의의 실시예와 조합하여, 제어 회로는 서로의 역치 차이 내에 있는 길이를 갖는 2개 이상의 추가적인 직전의 송신 사이클에 기초하여, 주어진 송신 사이클에 대한 비콘 신호의 송신을 선택적으로 지연시키도록 추가로 구성될 수 있다. 그러한 역치는, 예컨대, 2개의 길이가 서로 10%, 5%, 또는 1% 내에 있는지 여부일 수 있다.
상기 실시예 중 임의의 실시예와 조합하여, 제어 회로는 직전의 송신 사이클에 대한 비콘 신호의 송신의 비-제로 지연과 상이한, 주어진 송신 사이클에 대한 비콘 신호의 송신의 지연을 설정하도록 추가로 구성될 수 있다.
상기 실시예 중 임의의 실시예와 조합하여, 제어 회로는 주어진 송신 사이클에 대한 비콘 신호의 송신의 가변 지연을 설정하도록 추가로 구성될 수 있다. 가변 지연은 각각의 송신 사이클 간에 다를 수 있다.
상기 실시예 중 임의의 실시예와 조합하여, 제어 회로는 랜덤 값인 주어진 송신 사이클에 대한 비콘 신호의 송신의 지연을 설정하도록 추가로 구성될 수 있다.
상기 실시예 중 임의의 실시예와 조합하여, 제어 회로는 주기 함수에 따라 주어진 송신 사이클에 대한 비콘 신호의 송신의 지연을 설정하도록 추가로 구성될 수 있다. 주기 함수는 톱니 신호, 삼각형 신호, 정현파 신호, 램프 함수 또는 임의의 다른 적합한 함수 또는 신호를 포함할 수 있다.
상기 실시예 중 임의의 실시예와 조합하여, 제어 회로는 함수에 따라 주어진 송신 사이클에 대한 비콘 신호의 송신의 지연을 설정하도록 추가로 구성될 수 있고, 주어진 송신 사이클에 대한 비콘 신호의 송신의 지연은, 직전의 송신 사이클에 대한 비콘 신호의 송신의 지연보다 길고, 직전의 송신 사이클에 대한 비콘 신호의 송신의 지연은, 추가적인 직전의 송신 사이클에 대한 비콘 신호의 송신의 지연보다 길었다.
상기 실시예 중 임의의 실시예와 조합하여, 제어 회로는 함수에 따라 주어진 송신 사이클에 대한 비콘 신호의 송신의 지연을 설정하도록 추가로 구성될 수 있고, 주어진 송신 사이클에 대한 비콘 신호의 송신의 지연은, 직전의 송신 사이클에 대한 비콘 신호의 송신의 지연보다 짧고, 직전의 송신 사이클에 대한 비콘 신호의 송신의 지연은, 추가적인 직전의 송신 사이클에 대한 비콘 신호의 송신의 지연보다 짧았다.
상기 실시예 중 임의의 실시예와 조합하여, 제어 회로는 직전의 송신 사이클에 추가적인 전송 슬롯을 추가함으로써, 주어진 송신 사이클에 대한 비콘 신호의 송신의 지연을 설정하도록 추가로 구성될 수 있고, 추가적인 전송 슬롯은 노드 중 임의의 노드에 의해 사용되지 않도록 구성된다.
상기 실시예 중 임의의 실시예와 조합하여, 제어 회로는 네트워크 내의 노드의 총 수의 정량화를 증가시킴으로써, 주어진 송신 사이클에 대한 비콘 신호의 송신의 지연을 설정하도록 추가로 구성될 수 있다.
도 1은 본 개시내용의 예에 따른 예시적인 10SPE 네트워크(100)의 예시이다. 본 개시내용에서 사용된 바와 같이, 10SPE는 임의의 10SPE, 10Base-T1S, 10Base-T1L, 또는 유사한 네트워크를 지칭할 수 있다. 네트워크(100)는 임의의 적합한 수 및 종류의 요소를 포함할 수 있다. 요소는 물리적 또는 가상 전자 디바이스를 포함할 수 있다. 이들은 노드로 지칭될 수 있다. 예를 들어, 네트워크(100)는 노드(102, 104A, 104B, 104C)를 포함할 수 있다. 이들 노드는 네트워크 매체(120)를 통해 서로 통신하도록 구성될 수 있다. 네트워크 매체(120)는 임의의 적합한 방식으로, 예컨대, 10SPE 네트워크 통신 프로토콜에 의해 구현될 수 있다.
노드(102)는 PLCA 제어기 노드와 같은 네트워크 제어기 노드일 수 있다. 노드(102)는 네트워크 내의 다른 노드를 대신하여 네트워크 배정, 할당 또는 다른 관리 작업을 수행함으로써 네트워크 제어기 노드로서 동작할 수 있다. 이러한 작업은 예를 들어, 네트워크 관리 애플리케이션(112)에 의해 노드(102)에서 수행될 수 있다. 노드(102, 104A, 104B, 104C)는 각각 제어 회로(106)에 의해 표현되는 네트워크 드라이버 또는 스택으로 구현될 수 있다. 제어 회로(106)는 PHY 계층(108)을 포함하거나 그에 통신가능하게 결합될 수 있다. 노드(102, 104A, 104B, 104C)는 각각 하나 이상의 최종 사용자 애플리케이션(110), 프로세서(114) 및 메모리(116)를 포함할 수 있다.
제어 회로(106)에 의해 표현되는 최종 사용자 애플리케이션(110), 네트워크 관리 애플리케이션(112) 및 네트워크 드라이버 또는 스택은 프로세서(114)에 의한 실행을 위한 소프트웨어, 라이브러리, 함수, 스크립트, 애플리케이션, 코드 또는 다른 명령어를 포함할 수 있다. 명령어는 각각의 메모리(116) 상에 저장될 수 있다. 명령어는 프로세서(114)에 의해 실행될 때, 사용자 애플리케이션(110), 네트워크 관리 애플리케이션(112) 및 제어 회로(106)로 하여금 본 개시내용의 기능을 수행하게 할 수 있다. 메모리(116)는, 장기 저장소든 단기 저장소든, 임의의 적합한 구현의 하나 이상의 메모리 요소에 의해 구현될 수 있다. 프로세서(114)는 임의의 적합한 프로세서, 코어, 또는 마이크로제어기 중 하나 이상에 의해 구현될 수 있다. 또한, 제어 회로(106)는 (위에서 논의된 바와 같이) 프로세서(114), 아날로그 회로부, 디지털 회로부 또는 이들의 임의의 적합한 조합에 의한 실행을 위해 임의의 적절한 명령어에 의해 구현될 수 있다.
노드(102, 104A, 104B, 104C)는 컴퓨터, 랩톱, 서버, 가상 기계, 모바일 디바이스, 또는 자동차 전자 제어 유닛(electronic control unit, ECU)과 같은 임의의 적절한 전자 디바이스를 구현할 수 있다. 노드(102, 104A, 104B, 104C)는 각각 최종 사용자 애플리케이션(110)의 상이한 구현을 포함할 수 있다. 최종 사용자 애플리케이션(110)은 최종 사용자 애플리케이션(110) 중 여타 최종 사용자 애플리케이션, 또는 노드(102, 104A, 104B, 104C) 중 여타 노드과의 통신을 요구할 수 있다. 그러한 통신은, 예를 들어 네트워크 매체(120)를 통해 10SPE를 사용하여 수행될 수 있다.
소정 개수의 노드가 도 1에 도시되어 있지만, 네트워크(100)는 10SPE 인에이블드 노드의 임의의 적합한 개수 및 조합을 포함할 수 있다.
각각의 노드는 트래픽 형상화(traffic shaping)를 수행하도록 구성될 수 있다. 일 예에서, 그러한 형상화는 디지털 로직을 사용하여 하드웨어에서 수행될 수 있다. 다른 예에서, 각각의 노드의 하드웨어에서 후크(hook)가 구현될 수 있고, 이에 따라 펌웨어는 또한 트래픽을 관찰할 수 있고 형상화할 수 있다. 트래픽을 형상화하는 것은 시간 감지 노드에 대한 대역폭 공정성(bandwidth fairness) 또는 우선순위화를 실시하기 위해 수행될 수 있다.
노드(102, 104A, 104B, 104C) 사이의 통신은 하기의 특징부에 나타난 송신 사이클 및 프레임을 사용하여 수행될 수 있다. 노드(102, 104A, 104B, 104C) 각각은 하기의 예를 따르는 프레임을 사용하여 서로 통신하도록 구성될 수 있다.
도 2는 본 개시내용의 예에 따른 예시적인 송신 사이클의 예시(200)이다. 송신 사이클은 도 1의 네트워크(100)에 대한 것일 수 있다.
제1 경우의 송신 사이클(202A)은 네트워크의 각각의 노드에 대한 전송 슬롯을 포함할 수 있다. N개의 노드가 네트워크 내에 있는 경우, 주어진 송신 사이클에 N개의 전송 슬롯이 포함될 수 있다. 예를 들어, 송신 사이클(202A)은 전송 슬롯(210, 212, 214)을 포함할 수 있다. 각각의 그러한 전송 슬롯은 주어진 노드에 할당될 수 있다. 전송 슬롯은 송신 사이클에 대해 고유한 식별자(0…N-1)로 식별될 수 있다. 식별자는 데이터 패킷의 전송자를 식별할 수 있다. 각각의 전송 슬롯은 소정 양까지의 데이터(206)를 포함할 수 있다. 아래에서 추가로 논의되는 바와 같이, 일부 예에서, 할당된 전송 슬롯은 어떠한 데이터도 갖지 않을 수 있다. 식별자는 데이터(206)에 포함될 수 있다. 식별자는 데이터의 전송자를 식별할 수 있다. 다양한 예에서, 전송 슬롯은 아래에서 더 상세히 논의되는 조건 하에서, 주어진 노드에 대해 생략될 수 있다. 전송 슬롯(210, 212, 214)은 무음(silence)(208) 기간에 의해 분리될 수 있다. 각각의 송신 사이클(202)은 비콘(204)에 의해 개시될 수 있다. 비콘(204)은 송신 사이클이 시작되고 있음을 나타내는 적절한 정보 단편을 포함할 수 있다. 비콘(204) 및 전송 슬롯(210)은 또한 무음(208) 기간에 의해 분리될 수 있다. 송신 사이클(202A)은 종료될 수 있고 다른 송신 사이클(202B)이 시작될 수 있다. 주어진 송신 사이클(202)에서 개별 노드에 의한 참여는 송신 사이클 간에 다를 수 있다.
송신 사이클(202)의 수신 시에, 주어진 노드가 그것을 파싱할 수 있다. 비콘(216)은 그 송신 사이클(202)을 결정하기 위해 분석될 수 있다. 무음(208) 또는 데이터의 부재는 송신 사이클(202)의 별개의 데이터 부분이 다음으로 수신되어야 한다고 결정하는 것으로 해석될 수 있다. 데이터(206)는 주어진 노드로의 또는 그로부터의 데이터가 포함되는지 여부를 결정하기 위해 분석될 수 있다. 주어진 노드는 그 자신의 데이터(206)를 송신 사이클 안에 삽입할 수 있다.
송신 사이클은 PLCA의 사용을 반영하여 네트워크에서 트래픽을 형상화할 수 있다. PLCA는 IEEE P802.3cg에 명시될 수 있다. PLCA는 네트워크 내의 노드에 액세스 공정성(access fairness)을 제공할 수 있다. 액세스 공정성은 주어진 송신 사이클(202)에서 네트워크에 액세스하는 각각의 노드의 능력을 포함할 수 있다. 그러나, PLCA는 노드 간의 대역폭 공정성 또는 우선순위화를 제공하지 않는다. 액세스 공정성이 제공되더라도, 주어진 노드가 그들의 패킷 안으로 다른 노드보다 더 많은 데이터를 삽입할 수 있기 때문에, 대역폭 공정성이 제공되지 않을 수 있다. 또한, 액세스 공정성은 노드 간의 임의의 우선순위화를 제공할 수 없다. 본 개시내용의 예는 노드 간의 대역폭 공정성 및 우선순위화를 제공할 수 있다. PLCA 및 그의 향상은 네트워크 스택에서의 실행을 위한 디지털 로직 또는 명령어에서 구현될 수 있다. PLCA 및 그의 향상은 펌웨어가 트래픽을 관찰하고 형상화하기 위한 후크를 포함할 수 있다.
충돌 기반 네트워크의 대부분의 구현을 이용하면, 최대 대역폭 이용은 단지 60%일 수 있다. 또한, 결정론적 거동이 없으면, 그것은 안전 필수(safety-critical) 애플리케이션에 사용되지 않을 수 있다. 대신에, PLCA를 이용하면, 노드(102)와 같은 네트워크 제어기 노드는 물리 계층 상에 네트워크 액세스를 구성할 수 있다. 이는 충돌을 방지할 수 있고, 결정론적 거동을 제공할 수 있고, 대역폭을 완전히 사용할 수 있다.
도 2에서, 각각의 노드의 각 PHY에는 정적 ID(0…N-1)가 할당될 수 있다. 네트워크 제어기 노드는 "0"의 ID를 가질 수 있다. 네트워크 제어기 노드는 새로운 송신 사이클을 시작하는 비콘(204)을 전송할 수 있다. 수신 시에, 다른 노드 각각은 각각의 PHY 하드웨어 또는 소프트웨어를 통해 각각의 전송 슬롯(210, 212, 214) 내에서 데이터를 전송할 기회를 가질 수 있다. 일 예에서, 노드는 각각의 전송 슬롯(210, 212, 214)에서 데이터를 전송할 기회를 패스하거나 양보할 수 있다. 다른 노드는, 무음(208)이 주어진 역치를 초과하는 경우, 주어진 노드가 데이터를 전송할 그의 기회를 스킵했었다는 것을 인식하도록 구성될 수 있다. 이어서, 다음의 전송 슬롯이 시작될 수 있다.
도 3은 본 개시내용의 예에 따른 예시적인 송신 사이클의 타이밍의 예시(300)이다. 송신 사이클 또는 버스 사이클을 완료하기 위한 최소 및 최대 시간이 계산될 수 있다.
완전한 송신 사이클을 완료하는 데 필요한 최소 시간은 다음과 같이 주어질 수 있다:
최소 버스 사이클 시간 = tBeacon + (N+1)*tSilence
여기서, tBeacon은 비콘(204)이 발행되는 데 필요한 시간이고, tSilence는 한 쌍의 전송 슬롯 사이의 무음(208)에 필요한 시간이고, N은 노드 또는 전송 슬롯의 개수이다. 그러한 최소 시간은, 모든 노드가 그들의 각각의 전송 슬롯을 사용할 그들의 기회를 양보한 경우에 발생할 것이다. tSilence의 값에 (N+1)을 곱하여, N개의 노드 각각 이후의 무음 기간(208) 및 비콘(204)과 제1 전송 슬롯 사이의 추가적인 무음 기간(208)을 고려한다.
완전한 송신 사이클을 완료하는 데 필요한 최대 시간은 다음과 같이 주어질 수 있다:
최대 버스 사이클 시간 = tBeacon + (N+1) *tSilence + N*tMTU
여기서, tBeacon은 비콘(204)이 발행되는 데 필요한 시간이고, tSilence는 한 쌍의 전송 슬롯 사이의 무음에 필요한 시간이고, tMTU는 가장 긴 허용된 데이터 길이(MTU - 최대 송신 유닛)를 전송하는 데 필요한 시간이고, N은 노드 또는 전송 슬롯의 개수이다. 그러한 최대 시간은, 모든 노드가 전송 슬롯 사이의 최대 시간을 사용하여 그의 데이터를 전송하였고(이에 따라, 전체 양의 무음을 취함), 모든 노드가 그들의 전송 슬롯을 사용하여 데이터를 전송하였고, 모든 노드가 그들의 각각의 전송 슬롯에서 최대 양의 데이터를 전송하였던 경우 발생할 것이다. 일 예에서, MTU는 64 바이트 길이일 수 있다. 무음(208) 타임아웃 기간은, 주어진 노드가 전송 전에, 무음 타임아웃 지속기간을 대기할 수 있기 때문에 이러한 계산에 포함될 수 있다.
주어진 송신 사이클에서 데이터-비콘(204)의 형태이든 또는 데이터(206)의 형태이든-의 전송은, 데이터를 전송하는 노드에 의해 EMI가 방출되게 할 수 있다. EMI의 양은 방출되는 데이터의 콘텐츠, 방출되는 데이터의 길이, 송신 사이클이 얼마나 자주 반복되는지, 송신 사이클의 주기성 또는 다른 적합한 인자에 따라 다를 수 있다. 본 개시내용의 예는 주어진 송신 사이클의 끝에 지연을 적용함으로써 EMI 송신을 감소시킬 수 있다.
노드(102, 104)는 예를 들어, 네트워크 매체(120) 상의 통신 버스를 다른 노드(102, 104)로 구동할 수 있는 출력 드라이버(도시되지 않음)를 포함할 수 있다. 노드(102, 104)는 출력을 생성하도록 인에이블되지 않을 때, 높은 임피던스 유휴 또는 수신 상태에 있을 수 있다. 이러한 상태로의 전환 및 이러한 상태로부터의 전환뿐만 아니라 드라이버 자체의 공통 모드 전압 입력 및 출력 레벨은 고유한 공통 모드 잡음을 생성할 수 있다.
도 4 내지 도 9는 본 개시내용의 예에 따른, 다양한 조건에서 10SPE 노드에 의해 생성된 EMI를 예시한다. 특히, 주어진 노드(102, 104)의 공통 모드 잡음은 상이한 조건 하에서 도 4 내지 도 9에 예시된다. 이러한 공통 모드 잡음은 신중한 드라이버 설계에 의해 감소될 수 있지만, 여전히 발생할 수 있다. 또한, 드라이버 설계에 대한 변경은, 다이 크기에 대한 변경, 및 전형적으로 다이 크기의 증가를 필요로 한다.
시스템(100)과 같은 10SPE 시스템은 자신의 동작을 위해 주기적으로 반복되는 비콘 비트 패턴에 의존할 수 있다. 이러한 반복 기간은, 예컨대 버스-유휴 또는 낮은 버스 활용의 경우에 일정해질 수 있다. 그 결과, 드라이버의 자연적으로 발생하는 공통 모드 잡음은 대응하는 주파수에서 에너지 축적을 야기하며, 이는 결국 EMI가 된다.
도 4는 10SPE 노드(102, 104) 사이의 네트워크 매체(120)의 버스가 완전히 유휴 상태일 때 생성되는 EMI를 예시한다. EMI 잡음의 한계가 예시된다. 한계는 주파수의 변경에 따라 크기가 다른 라인으로 표현된다. 이러한 한계는, 예컨대 통신 프로토콜 또는 실험 데이터에 따라 임의의 적합한 방식으로 정의될 수 있다. 한계는 임의의 적합한 허용 한계를 정의할 수 있으며, 이 한계를 초과하면 EMI 잡음이 다른 장비에 문제가 되는 것으로 간주될 수 있다. 도 4에 예시된 데이터의 플롯은 주어진 노드에서 관찰된 신호이다. 네트워크 매체(120) 상의 잡음이 충분히 높고, 결과적인 신호가 이 한계를 초과할 때, 생성된 잡음은 너무 높은 것으로 간주될 수 있다. 도 4의 경우에, 잡음은 한계를 초과하는 것에 가까워지지 않는다.
도 5는 10SPE 노드(102, 104)가 송신 사이클을 발행하고 있지만, 어떠한 노드도 자신의 전송 슬롯을 사용하고 있지 않아 각각의 송신 사이클의 시작 시에 비콘 신호만을 남길 때 생성되는 EMI를 예시한다. 또한, 도 5의 예에서, 노드(102)와 같은 하나의 노드 인스턴스가 존재할 수 있다.
도 5에서 도시된 바와 같이, EMI 간섭은 한계 라인에 접근하거나 심지어 그에 달하여, 수용가능하지 않게 큰 잡음을 반영한다. 이 잡음은 대역내일 수 있다. 대역내 주파수는, 신호가 데이터 복원에 관련되지 않거나 필요하지 않은 대역외 주파수와는 대조적으로, 적절한 데이터 복원에 관련되거나 필요한 주파수 범위를 포함할 수 있다. 잡음에 대한 대역내 주파수를 단순히 필터링하는 것은 데이터를 표시하는 데 사용될 필요가 있는 신호를 저하시키는 원치 않는 부작용을 가질 수 있다. 예를 들어, 대역내 잡음의 주파수 범위에 대해 신호가 필터링되면, 신호에 의해 전달되는 실제 데이터가 필터링될 수 있다. 따라서, 도 5에 도시된 종류의 잡음에 대한 필터링은 부적절한 솔루션일 수 있다. 이는 대역외 잡음에 대한 필터링과 대조적일 수 있으며, 이는 신호에서 통신되는 데이터를 저하시키지 않고 안전하게 달성될 수 있다.
도 6은 10SPE 노드(102, 104)가 송신 사이클을 발행하고 있지만, 어떠한 노드도 자신의 전송 슬롯을 사용하고 있지 않아 각각의 송신 사이클의 시작 시에 비콘 신호만을 남길 때 생성되는 EMI를 예시한다. 또한, 도 6의 예에서, 노드(102) 및 7개의 노드(104)와 같은 노드의 8개의 인스턴스가 존재할 수 있다.
도 6에 도시된 바와 같이, EMI 간섭은 도 5에 도시된 EMI 간섭만큼 심각하지 않을 수 있다. 따라서, 송신 사이클의 기간이 더 길거나 더 많은 노드가 사용되는 경우, EMI 간섭이 줄어들 수 있다.
도 7은 네트워크 매체(120) 내의 10SPE 노드(102, 104)가 송신 사이클을 발행하고 있을 때 생성되는 EMI를 예시하며, 여기서 노드는 최대 길이의 데이터의 메시지를 전송하기 위해 전송 슬롯을 사용하고 있다.
도 7에 도시된 바와 같이, EMI 간섭은 한계 라인 아래의 허용가능하게 낮은 레벨을 가질 수 있다. 따라서, 노드(102, 104)가 더 긴 메시지를 송신하면, EMI 간섭이 줄어들 수 있다.
도 8은 네트워크 매체(120) 내의 10SPE 노드(102, 104)가 짧고 비어 있지 않은 데이터 페이로드를 갖는 메시지를 발행하고 있고, 노드(102) 및 노드(104) 각각의 인스턴스와 같은 노드(102, 104)의 2개의 인스턴스가 존재할 때 생성되는 EMI를 예시한다. 짧은 데이터 페이로드는, 예를 들어 최대 허용 길이의 20%일 수 있다.
도 8에서 도시된 바와 같이, EMI 간섭은 한계 라인에 접근하거나 심지어 그에 달하여, 수용가능하지 않게 큰 잡음을 반영한다. 이 잡음은 대역내일 수 있다. 이는 메시지가 도 5의 메시지보다 더 길더라도 발생할 수 있다.
도 9는 네트워크 매체(120) 내의 10SPE 노드(102, 104)가 짧고 비어 있지 않은 데이터 페이로드를 갖는 메시지를 발행하고 있고, 노드(102) 및 7개의 노드(104)와 같은 노드의 8개의 인스턴스가 존재할 때 생성되는 EMI를 예시한다.
도 9에 도시된 바와 같이, EMI 간섭은 허용가능한 레벨 내에 있을 수 있다. 따라서, EMI 간섭은 도 8에 도시된 바와 같이 심각하지 않을 수 있으며, 도 9에서, 네트워크의 더 많은 노드가 더 긴 메시지를 송신한다.
따라서, 본 개시내용의 예의 발명자들은, 구동되지 않은 유휴 상태(예컨대, 빈 송신 기회)를 활용하는 버스 시스템(예컨대, 10SPE)에서, 일정한 레이트로 반복되는 패턴(예컨대, 비콘 신호)이 EMI 레벨의 증가로 이어질 수 있음을 발견하였다. 위에서 논의된 바와 같이, EMI는 노드(102, 104)에서의 유휴 상태로부터 구동 상태로의 그리고 그 반대로의 전환으로부터 비롯되는 고유한 공통 모드 변형에 의해 야기될 수 있다. 구체적으로, PLCA 구현의 경우, 낮은 버스 활용도의 경우에, 반복 비콘 패턴은 고정된 레이트로 발생하는 경우 유의미한 EMI 기여자가 될 수 있다.
일 예에서, 네트워크 제어기 노드(102)의 제어 회로(106A)는 비콘 신호의 시간적 확산 또는 디더링을 수행하도록 구성될 수 있다. 이는 임의의 적합한 기준으로, 예컨대, 검출된 EMI에 대한 응답으로, 잠재적인 EMI에 대한 응답으로 수행될 수 있거나, 본질적으로 예방적 또는 사전 예방적일 수 있다. 일 예에서, 시간적 확산은 각각의 사이클의 끝에 지연을 추가하는 것을 통해 달성될 수 있다. 이는 후속 사이클의 시작 전에 그러한 지연을 추가하는 것을 포함할 수 있다. 추가의 예에서, 지연의 길이는 동적으로 가변적일 수 있다.
따라서, 비콘의 시간적 발생 또는 주기성이 변조될 수 있다. 결국, 이는 생성된 EMI 잡음의 주파수 풋프린트를 확산시키는 효과를 가지며, 이는 EMI의 더 낮은 피크 값으로 이어질 수 있다. 버스/네트워크 대역폭을 손상시키지 않기 위해, 가변 지연은 송신이 없는 사이클에만 또는 이전의 송신 사이클 길이의 반복을 야기할 송신에만 추가될 수 있다. 지연은 임의의 적합한 함수에 의해, 예컨대, 랜덤, 의사-랜덤, 삼각형, 톱니, 또는 램프 함수에 의해 생성될 수 있다. 예를 들어, 지연은 삼각형 함수에 의해 생성될 수 있으며, 여기서 지연은 각각의 사이클에서 1 비트씩 증가 또는 감소한다. 솔루션은, 본질적으로 변형되기 쉬운 아날로그 변경의 최적화에 대한 필요성 없이, 디지털 구현으로서 구현될 수 있다. 구현 및 검증을 위한 오버헤드는 매우 작지만, 방출에 대한 예상되는 영향은 임계 영역에서의 방출 레벨의 대략 10 내지 15 dB 크기의 개선이다.
도 10은 본 개시내용의 예에 따른, 비콘의 시간적 확산 또는 디더링의 타이밍 다이어그램을 예시한다. 도 10의 타이밍 다이어그램은 예를 들어, 네트워크 제어기 노드(102)에 의해 생성된 사이클의 동작을 반영할 수 있다.
위에서 논의된 바와 같이, 네트워크 제어기 노드(102)는 다른 노드에 비콘 신호를 발행함으로써 송신 사이클을 개시하도록 구성될 수 있다. 네트워크 제어기 노드(102)는 주어진 송신 사이클에서 비콘 신호를 발행할 때를 결정하도록 구성될 수 있다.
네트워크 제어기 노드(102)는, 주어진 송신 사이클 X에 대해, 다른 노드(104) 모두가 직전의 송신 사이클 X-1에서 연관된 모든 전송 슬롯을 완료했는지 여부를 결정하고, 이에 따라 다른 노드의 송신을 완료하도록 구성될 수 있다. 네트워크 제어기 노드(102)는, 송신 사이클 X-1에서 다른 노드의 송신이 완료되었다는 결정에 기초하여, 송신 사이클 X 동안 비콘 신호의 송신을 지연시키도록 구성될 수 있다. 이는, 송신 사이클 X-1의 끝에 추가된 동적 가변 지연에 의해 표현될 수 있고, 이에 따라 송신 사이클 X를 시작하는 데 사용되는 비콘을 지연시킴으로써 송신 사이클 X를 지연시킨다.
유사하게, 네트워크 제어기 노드(102)는, 주어진 송신 사이클 X+1에 대해, 다른 노드(104) 모두가 직전의 송신 사이클 X에서 연관된 모든 전송 슬롯을 완료했는지 여부를 결정하고, 이에 따라 다른 노드의 송신을 완료하도록 구성될 수 있다. 네트워크 제어기 노드(102)는, 송신 사이클 N에서 다른 노드의 송신이 완료되었다는 결정에 기초하여, 송신 사이클 X+1 동안 비콘 신호의 송신을 지연시키도록 구성될 수 있다. 이는, 송신 사이클 X의 끝에 추가된 동적 가변 지연에 의해 표현될 수 있으며, 이에 따라 송신 사이클 X+1을 시작하는 데 사용되는 비콘을 지연시킴으로써 송신 사이클 X+1을 지연시킬 수 있다. 이러한 송신 사이클에서 사용되는 동적 가변 지연의 특정 값은 이전 또는 후속 송신 사이클에서 사용되는 동적 가변 지연의 특정 값과 상이할 수 있다.
그러한 지연은, 도 10에 도시된 바와 같은 X-1, X 및 X+1과 같은, 임의의 적합한 수의 사이클의 끝에 추가될 수 있다. 사이클 X-1, X, 및 X+1의 끝에 추가되는 지연은 각각 상이한 값 또는 길이를 가질 수 있다.
네트워크 제어기 노드(102)는 주어진 송신 사이클 동안 비콘 신호의 송신을 선택적 기준으로 지연시키도록 구성될 수 있고, 네트워크 제어기 노드(102)는 지연의 삽입을 턴 온 또는 턴 오프시키도록 구성될 수 있다. 네트워크 제어기 노드(102)는 임의의 적합한 기준으로, 주어진 송신 사이클 동안 비콘 신호의 송신을 지연시키도록 구성될 수 있다. 예를 들어, 네트워크 제어기 노드(102)는 노드(102, 104) 중 임의의 노드로부터의 EMI의 가능한 생성에 기초하여, 주어진 송신 사이클 동안 비콘 신호의 송신을 선택적으로 지연시키도록 구성될 수 있다. 이는, 예컨대, 주어진 유사한 길이의 주어진 수의 반복된 사이클, 또는 주어진 길이 미만인 동일한 길이의 주어진 수의 반복된 사이클에 기초하여 예측될 수 있다. 또한, EMI의 레벨 또는 반복되는 사이클의 양과 같은, 비콘 신호의 송신을 선택적으로 지연시키기 위한 설정은 사용자 또는 시스템 설정에 기초하고, 예컨대 레지스터(도시되지 않음)에 저장될 수 있다.
일 예에서, 네트워크 제어기 노드(102)는 역치보다 짧은 길이를 갖는 2개 이상의 추가적인 직전의 송신 사이클(X, X-1)에 기초하여, 주어진 송신 사이클(예컨대, X+1)에 대한 비콘 신호의 송신을 선택적으로 지연시키도록 구성될 수 있다. 특정 역치는 주어진 시스템에 대해 평가될 수 있고, 예시적인 역치는 그들의 각각의 전송 슬롯을 사용하는 2개 미만의 노드일 수 있다. 다른 예시적인 역치는 최소 길이 송신 사이클의 양에 10%를 더한 것일 수 있다. 다른 예에서, 네트워크 제어기 노드(102)는 대략 동일하고 서로의 역치 차이 내에 있는 길이를 갖는 2개 이상의 추가적인 직전의 송신 사이클(X-2, X-1)에 기초하여, 주어진 송신 사이클(예컨대, X+1)에 대한 비콘 신호의 송신을 선택적으로 지연시키도록 구성될 수 있다. 그러한 역치는, 예컨대, 2개의 길이가 서로 10%, 5%, 또는 1% 내에 있는지 여부일 수 있다. 또 다른 예에서, 네트워크 제어기 노드(102)는 역치보다 짧으며 대략 동일하고 서로의 역치 차이 내에 있는 길이를 갖는 2개 이상의 추가적인 직전의 송신 사이클(X, X-1)에 기초하여, 주어진 송신 사이클(예컨대, X+1)에 대한 비콘 신호의 송신을 선택적으로 지연시키도록 구성될 수 있다. 그러한 역치는, 예컨대, 2개의 길이가 서로 10%, 5%, 또는 1% 내에 있는지 여부일 수 있다.
네트워크 제어기 노드(102)는 직전의 송신 사이클(예컨대, X)에 대한 비콘 신호의 송신의 비-제로 지연과 상이한, 주어진 송신 사이클(예컨대, X+1)에 대한 비콘 신호의 송신의 지연을 설정하도록 구성될 수 있다. 즉, 사이클 X+1의 지연은 또한 비-제로 지연인 사이클 X의 지연과 상이한 비-제로 지연일 수 있다. 지연의 양은 임의의 적합한 값일 수 있다. 그러한 적합한 값은 송신 사이클마다 다른 값을 포함할 수 있다. 일 예에서, 네트워크 제어기 노드(102)는 랜덤 값인 주어진 송신 사이클에 대한 비콘 신호의 송신의 지연을 설정하도록 구성될 수 있다. 다른 예에서, 네트워크 제어기 노드(102)는 주기 함수에 따라 주어진 송신 사이클에 대한 비콘 신호의 송신의 지연을 설정하도록 구성될 수 있다.
예를 들어, 네트워크 제어기 노드(102)는 삼각형 함수에 따라 주어진 송신 사이클(X+1)에 대한 비콘 신호의 송신의 지연을 설정하도록 구성될 수 있으며, 여기서 임의의 2개의 주어진 송신 사이클 사이의 지연은 소량만큼만 다르다. 주어진 송신 사이클(X+1)에 대한 비콘 신호의 송신의 지연은, 직전의 송신 사이클(X)에 대한 비콘 신호의 송신의 지연보다 길고, 직전의 송신 사이클(X)에 대한 비콘 신호의 송신의 지연은, 추가적인 직전의 송신 사이클(X-1)에 대한 비콘 신호의 송신의 지연보다 길었다. 이러한 프로세스는 지연이 예컨대 시간 Y에서 피크 값에 도달할 때까지 계속될 수 있다. 후속적으로, 네트워크 제어기 노드(102)는, 추가로 삼각형 함수에 따라 다른 주어진 송신 사이클(Y+1)에 대한 비콘 신호의 송신의 지연을 설정하도록 구성될 수 있고, 주어진 송신 사이클(Y+1)에 대한 비콘 신호의 송신의 지연은, 직전의 송신 사이클(Y)에 대한 비콘 신호의 송신의 지연보다 짧다. 다음 송신 사이클(Y+2)에 대한 비콘 신호의 송신의 지연은, 주어진 송신 사이클(Y+1)에 대한 비콘 신호의 송신의 지연보다 짧을 것이다. 이는 지연이 최소 값에 도달할 때까지 계속될 수 있고, 그 후 지연은 증분적으로 증가될 수 있다. 유사하게, 톱니 함수, 램프 함수, 역 램프 함수, 정현파 함수, 랜덤 함수, 또는 의사-랜덤 함수가 사용될 수 있다.
네트워크 제어기 노드(102)에 의해 제공되는 지연의 길이는 가변적일 수 있지만, 지연의 최대 길이는 다른 노드 중 하나에 대한 미사용 전송 슬롯에 대한 시간의 길이보다 짧을 수 있다.
일 예에서, 네트워크 제어기 노드(102)는, 추가적인 전송 슬롯을 직전의 송신 사이클(X)에 추가함으로써, 주어진 송신 사이클(예컨대, X+1)에 대한 비콘 신호의 송신의 지연을 설정하도록 구성될 수 있다. 예를 들어, 최대값에 도달할 때까지 추가적인 전송 슬롯이 각각의 송신 사이클에 추가될 수 있으며, 여기서 전송 슬롯은 원래의 값으로 감소될 수 있다.
일 예에서, 네트워크 제어기 노드(102)는 시스템(100) 내의 노드(104)의 수의 정량화의 표현을 증가시킴으로써, 주어진 송신 사이클에 대한 비콘 신호의 송신의 지연을 설정하도록 구성될 수 있다. 예를 들어, 시스템(100)은 노드(104)의 10개의 인스턴스를 포함할 수 있다. 각각의 노드(104)는 MaxID와 같은 설정으로부터, 노드(104)의 10개의 인스턴스가 존재함을 알 수 있다. 각각의 노드(104)는 자신의 송신 슬롯이 언제 있을 것인지를 알기 위해 이러한 정보를 사용할 수 있다. MaxID는 노드(104) 및 네트워크 제어기 노드(102)의 총 수의 정량화일 수 있다. 네트워크 제어기 노드(102)는 주어진 송신 사이클에 대한 MaxID를 네트워크(100) 내의 노드의 수를 표현하는 데 실제로 필요한 값을 초과하도록 증가시킴으로써 그 송신 사이클 X에 대한 비콘 신호의 송신을 지연시키도록 구성될 수 있다. 이어서, 각각의 노드(104)는, 더 많은 수의 노드가 송신 기회 또는 전송 슬롯을 가졌던 후에 송신 사이클이 종료될 것으로 예상할 수 있다.
도 11 및 도 12는 본 개시내용의 예에 따른, 비콘의 시간적 확산 또는 디더링으로부터 EMI의 잡음 감소를 예시한다. 도 11은 비콘의 시간적 확산 또는 디더링을 수행하기 위해 네트워크 제어기 노드(102)의 상이한 구성에 의해 생성된 EMI를 예시한다. 도 12는 도 11의 더 상세한 도면일 수 있다.
도 11 및 도 12에 도시된 바와 같이, 제1 플롯(1102)에서, EMI의 가장 높은 피크는 비콘의 시간적 확산 또는 디더링 없이 발행된 네트워크 매체(120)의 반복적인 메시지로부터 발생할 수 있다. 제2 플롯(1104) 및 제3 플롯(1106)에서, 비콘의 시간적 확산 또는 디더링이 적용되었을 수 있다. 예를 들어, 각각의 송신 사이클의 끝에 지연이 추가되었을 수 있다. 지연은 삼각형 함수의 사용을 통해 사이클마다 달라졌을 수 있다. 제2 및 제3 플롯(1104, 1106)에서, 지연을 생성하기 위해 20 사이클 또는 단계의 주기를 갖는 삼각형 함수가 사용되었을 수 있다. 제2 플롯(1104)에서, 삼각형 함수는 각각 40 ns의 지연 단계를 포함했을 수 있다. 따라서, 사이클에 추가되는 지연은 {0 ns, 40 ns, 80 ns, 120 ns, … 760 ns, 800 ns, 760 ns, 720 ns…80 ns, 40 ns, 0 ns, 40 ns, 80 ns…}으로부터 점진적으로 선택될 것이다. 제3 플롯(1106)에서, 삼각형 함수는 각각 80 ns의 지연 단계를 포함했을 수 있다. 따라서, 사이클에 추가되는 지연은 {0 ns, 80 ns, 160 ns, 240 ns, … 1520 ns, 1600 ns, 1520 ns, … 80 ns, 0 ns, 80 ns…}으로부터 점진적으로 선택될 것이다.
도 11 및 도 12에 도시된 바와 같이, 제2 및 제3 플롯(1104, 1106) 둘 모두는 제1 플롯(1102)과 비교하여, 각각의 송신 사이클에 가변 지연을 추가함으로써 감소된 EMI를 나타낸다. 그러나, 제2 플롯(1104)과 제3 플롯(1106) 사이의 차이는 40 ns 내지 80 ns의 예시적인 지연의 증가된 단계 폭을 갖는 EMI 감소에 대한 감소된 리턴을 예시할 수 있다. 지연을 생성하기 위한 특정 함수(예컨대, 삼각형, 램프, 톱니 또는 랜덤)뿐만 아니라, 이러한 특정 함수의 파라미터(예컨대, 단계 크기 또는 단계 카운트)는 유효성 및 다른 설계 고려사항의 관점에서 특정 구현에서 평가될 수 있다. 예를 들어, 제3 플롯(1106)에 예시된 80 ns 단계 크기는 제2 플롯(1104)에 예시된 40 ns 단계 크기와 비교하여 EMI를 추가로 감소시키지만, 이는 추가 레이턴시를 희생하면서 이루어진다. 각각의 가변 지연은 송신 사이클의 레이턴시를 증가시키고, 이에 따라 네트워크 매체(120)의 대역폭을 감소시켰다.
또한, 본 개시내용의 예의 발명자들은, 후속 지연 사이의 차이가 실질적으로 클 때, 2개의 후속 지연 사이의 차이가 충분히 크면, EMI 감소를 위한 감소된 리턴 또는 심지어 EMI의 증가가 발생할 수 있다는 것을 발견하였다. 예를 들어, 지연을 생성하기 위해 램프 함수가 사용되는 경우, 램프 함수의 피크에서, 생성된 지연은 800 ns일 수 있다. 램프 함수에 의해 리턴된 다음 지연 값은 0 ns일 수 있다. 이러한 2개의 생성된 지연(800 ns)의 차이는 삼각형 함수와 같은 다른 함수보다 훨씬 더 클 수 있다. 삼각형 함수의 사용은 동기화에 대한 이점을 제공할 수 있다.
본 개시내용의 예는 노드(102, 104)의 기존 구현에 디지털 로직 또는 소프트웨어 변경을 가함으로써 구현될 수 있다. 그러한 변경은 기존의 아날로그 프론트-엔드 또는 다른 컴포넌트와 함께 작용할 수 있다. 또한, 본 개시내용의 예는 기존의 10SPE 사양을 사용하는 시스템 내에서 동작할 수 있다. 또한, 본 개시내용의 예의 구현은 노드(104)에 대한 변경을 필요로 하지 않고 네트워크 제어기 노드(102)에서 이루어질 수 있다.
도 13은 본 개시내용의 예에 따른, 비콘의 시간적 확산 또는 디더링을 위한 예시적인 방법(1300)의 예시이다. 방법(1300)은 예를 들어, 시스템(100)에 의해, 그리고 특히 네트워크 제어기 노드(102)에 의해 구현될 수 있다. 또한, 방법(1300)은 네트워크 제어기 노드(102)의 제어 회로(106A)에 의해 수행될 수 있다. 방법(1300)은 도 13에 도시된 것보다 더 많거나 더 적은 블록을 포함할 수 있다. 방법(1300)의 블록은 임의의 적합한 순서로 수행될 수 있고, 블록은 선택적으로 반복되거나, 재귀적으로 수행되거나, 생략될 수 있다.
블록(1305)에서, 방법의 동작이 초기화될 수 있다. 잡음 교정의 사양과 같은 시스템 또는 동작 선호도가 판독될 수 있다. 이들은, 예컨대 적용될 지연 유형의 사양을 포함할 수 있다. 이러한 선호도는 시스템의 사용자, 제조사 또는 소프트웨어에 의해 특정되고, 메모리에서 또는 하드웨어에서, 예컨대 퓨즈를 통해 제공될 수 있다.
블록(1310)에서, 비콘의 어떤 유형의 시간적 확산 또는 디더링이 수행될 것인지가 결정될 수 있다. 구체적으로, 사용될 지연의 유형이 결정될 수 있다. 주기 함수가 수행될 경우, 방법(1300)은 블록(1315)으로 진행할 수 있다. 랜덤 지연이 수행될 경우, 방법(1300)은 블록(1325)으로 진행할 수 있다. MaxID의 값으로 표현되는, 시스템 내의 노드의 예상된 수의 분산이 수행될 경우, 방법(1300)은 블록(1335)으로 진행할 수 있다.
블록(1315)에서, 주기 함수, 예컨대 삼각형, 램프, 톱니, 정현파 또는 다른 함수가 하나 이상의 지연을 생성하는 데 사용될 수 있다. 진폭, 단계 크기, 단계의 수, 기간의 수, 또는 다른 파라미터가 시스템 또는 사용자 설정으로부터 결정될 수 있다. 이 함수는 크기가 다른 지연을 생성하고 각각의 가변 지연을 송신 사이클의 끝에 추가하는 데 사용될 수 있다. 이는 주어진 수의 사이클 동안 수행될 수 있다. 방법(1300)은 블록(1320)으로 진행할 수 있다. 블록(1320)에서, 시간적 확산 또는 디더링이 계속될지 여부가 결정될 수 있다. 그렇다면, 방법(1300)은 예를 들어, 블록(1315)에서 반복될 수 있다. 그렇지 않으면, 방법(1300)은 블록(1345)으로 진행할 수 있다.
블록(1325)에서, 하나 이상의 지연을 생성하기 위해 랜덤이 사용될 수 있다. 지연의 길이는 제로와 최대 지연 길이 사이에서 랜덤하게 선택될 수 있다. 최대 지연 길이는, 예를 들어 노드(104)에 대한 전송 슬롯의 최소 크기에 대해 요구되는 시간에 설정될 수 있다. 지연을 수행하기 위한 주어진 수의 사이클은 시스템 또는 사용자 설정으로부터 결정될 수 있다. 지연은 크기가 다를 수 있고 송신 사이클의 끝에 추가될 수 있다. 이는 주어진 수의 사이클 동안 수행될 수 있다. 블록(1330)에서, 시간적 확산 또는 디더링이 계속될지 여부가 결정될 수 있다. 그렇다면, 방법(1300)은 예를 들어, 블록(1325)에서 반복될 수 있다. 그렇지 않으면, 방법(1300)은 블록(1345)으로 진행할 수 있다.
블록(1335)에서, 시스템의 노드의 수의 표시는 변할 수 있다. 표시는 MaxID로서 주어질 수 있다. MaxID 값은 주어진 수의 사이클 동안 변할 수 있다. 그 결과는, 시스템의 노드가 MaxID의 값의 증가에 따라 추가적인 양의 시간을 대기한다는 것일 수 있다. 블록(1340)에서, 시간적 확산 또는 디더링이 계속될지 여부가 결정될 수 있다. 그렇다면, 방법(1300)은 예를 들어, 블록(1335)에서 반복될 수 있다. 그렇지 않으면, 방법(1300)은 블록(1345)으로 진행할 수 있다.
블록(1345)에서, 방법(1300)이 종료될 수 있다.
도 14는 본 개시내용의 예에 따른, 비콘의 시간적 확산 또는 디더링을 위한 예시적인 방법(1400)의 예시이고, 여기서 비콘의 시간적 확산 또는 디더링이 선택적으로 적용될 수 있다. 방법(1400)은 예를 들어, 시스템(100)에 의해, 그리고 특히 네트워크 제어기 노드(102)에 의해 구현될 수 있다. 또한, 방법(1400)은 네트워크 제어기 노드(102)의 제어 회로(106A)에 의해 수행될 수 있다. 방법(1400)은 도 14에 도시된 것보다 더 많거나 더 적은 블록을 포함할 수 있다. 방법(1300)의 블록은 임의의 적합한 순서로 수행될 수 있고, 블록은 선택적으로 반복되거나, 재귀적으로 수행되거나, 생략될 수 있다.
블록(1405)에서, 방법의 동작이 초기화될 수 있다. EMI와 같은 잡음 레벨의 정의와 같은 시스템 또는 동작 선호도가 판독될 수 있다. 또한, 잡음에 대해 이용가능한 교정이 판독될 수 있는데, 예컨대 적용될 지연 유형이 판독될 수 있다. 이러한 선호도는 시스템의 사용자, 제조사 또는 소프트웨어에 의해 특정될 수 있다. 이들은 메모리에, 예컨대 레지스터에, 또는 하드웨어에, 예컨대 퓨즈를 통해 제공될 수 있다.
블록(1410)에서, 네트워크에서의 연속적인 송신 사이클이 관찰될 수 있다. 송신 사이클의 길이뿐만 아니라 송신 사이클의 서로에 대한 유사성이 관찰될 수 있다.
블록(1415)에서, 비콘의 시간적 확산 또는 디더링이 사용될지 여부가 결정될 수 있다. 이는 EMI의 역치 레벨이 검출되었는지 여부에 기초하여 결정될 수 있다. 또한, 이는 EMI의 역치 레벨이 예측되었는지 여부에 기초하여 결정될 수 있다. 다양한 예에서, 이는 각각이 역치 크기 미만이거나 역치 유사성 양 내에 있는 역치 수의 연속적인 사이클이 관찰되었다고 결정하는 것을 포함할 수 있다. 도 13에 도시된 바와 같은 또 다른 예에서, 비콘의 시간적 확산 또는 디더링은, EMI가 검출되었는지 또는 예측되었는지에 관계없이 사용되도록 인에이블될 수 있다. EMI가 관찰 또는 예측되면, 비콘의 시간적 확산 또는 디더링이 사용될 수 있다. 비콘의 시간적 확산 또는 디더링이 사용될 경우, 방법(1400)은 블록(1420)으로 진행할 수 있다. 그렇지 않으면, 방법(1400)은 블록(1445)으로 진행할 수 있다.
블록(1420)에서, 비콘의 어떤 유형의 시간적 확산 또는 디더링이 수행될 것인지가 결정될 수 있다. 구체적으로, 비콘의 시간적 확산 또는 디더링을 구현하는 데 사용될 지연의 유형이 결정될 수 있다. 주기 함수가 수행될 경우, 방법(1400)은 블록(1425)으로 진행할 수 있다. 랜덤 지연이 수행될 경우, 방법(1400)은 블록(1430)으로 진행할 수 있다. MaxID의 값으로 표현되는, 시스템 내의 노드의 예상된 수의 분산이 수행될 경우, 방법(1400)은 블록(1435)으로 진행할 수 있다.
블록(1425)에서, 주기 함수, 예컨대 삼각형, 램프, 톱니, 정현파 또는 다른 함수가 하나 이상의 지연을 생성하는 데 사용될 수 있다. 진폭, 블록 크기, 블록의 수, 기간의 수, 또는 다른 파라미터가 시스템 또는 사용자 설정으로부터 결정될 수 있다. 이 함수는 크기가 다른 지연을 생성하고 각각의 가변 지연을 송신 사이클의 끝에 추가하는 데 사용될 수 있다. 이는 주어진 수의 사이클 동안 수행될 수 있다. 방법(1400)은 블록(1440)으로 진행할 수 있다.
블록(1430)에서, 하나 이상의 지연을 생성하기 위해 랜덤 함수가 사용될 수 있다. 지연의 길이는 제로와 최대 지연 길이 사이에서 랜덤하게 선택될 수 있다. 최대 지연 길이는, 예를 들어 노드(104)에 대한 전송 슬롯의 최소 크기에 대해 요구되는 시간에 설정될 수 있다. 지연을 수행하기 위한 주어진 수의 사이클은 시스템 또는 사용자 설정으로부터 결정될 수 있다. 지연은 크기가 다를 수 있고 송신 사이클의 끝에 추가될 수 있다. 이는 주어진 수의 사이클 동안 수행될 수 있다. 방법(1400)은 블록(1440)으로 진행할 수 있다.
블록(1435)에서, 시스템의 노드의 수의 표시는 변할 수 있다. 표시는 MaxID로서 주어질 수 있다. MaxID 값은 주어진 수의 사이클 동안 변할 수 있다. 그 결과는, 시스템의 노드가 MaxID의 값의 증가에 따라 추가적인 양의 시간을 대기한다는 것일 수 있다. 방법(1300)은 블록(1440)으로 진행할 수 있다.
블록(1440)에서, 비콘의 시간적 확산 또는 디더링이 계속될지 여부가 결정될 수 있다. 결정은 블록(1410)에서 결정된 것과 동일한 방식으로 이루어질 수 있다. 그렇다면, 방법(1400)은 블록(1420)으로 또는 블록(1425, 1430, 1435) 중 이전에 선택된 하나로 리턴할 수 있다. 그렇지 않으면, 방법(1400)은 블록(1450)으로 진행할 수 있다.
블록(1445)에서, 정상 사이클 및 비콘 스케줄링이 유지될 수 있다. 방법(1400)은 블록(1450)으로 진행할 수 있다.
블록(1450)에서, 방법(1400)이 계속될지 여부가 결정될 수 있다. 그렇다면, 방법(1400)은 예를 들어, 블록(1410)에서 반복될 수 있다. 그렇지 않으면, 블록(1455)에서, 방법(1400)이 종료될 수 있다.
예가 전술되었지만, 다른 변형 및 예가 이러한 예의 사상 및 범주로부터 벗어남이 없이 본 개시내용으로부터 이루어질 수 있다.
Claims (14)
- 장치로서,
상기 장치를 네트워크 내의 하나 이상의 다른 노드에 통신가능하게 결합하도록 구성된 네트워크 인터페이스; 및
제어 회로를 포함하고, 상기 제어 회로는,
상기 네트워크 인터페이스를 통해 상기 다른 노드에 송신 사이클을 반복적으로 발행하고 - 주어진 송신 사이클은 데이터를 전송하기 위해 상기 다른 노드 각각에 대한 적어도 하나의 전송 슬롯을 포함함 -;
상기 다른 노드에 비콘 신호를 발행함으로써 송신 사이클을 개시하고;
상기 다른 노드 모두가 직전의 송신 사이클에서 연관된 모든 전송 슬롯을 완료했다고 결정하고, 이에 따라 상기 다른 노드의 송신을 완료하는 것; 및
상기 다른 노드의 송신이 완료되었다는 결정에 기초하여, 주어진 송신 사이클에 대한 상기 비콘 신호의 송신을 지연시키는 것
에 의해 상기 주어진 송신 사이클에서 비콘 신호를 발행할 때를 결정하도록 구성되는, 장치. - 제1항에 있어서, 상기 제어 회로는 상기 장치 또는 상기 다른 노드로부터의 전자기 간섭의 가능한 생성에 기초하여 상기 주어진 송신 사이클에 대한 상기 비콘 신호의 송신을 선택적으로 지연시키도록 추가로 구성되는, 장치.
- 제1항 또는 제2항에 있어서, 상기 제어 회로는 역치보다 짧은 길이를 갖는 2개 이상의 추가적인 직전의 송신 사이클에 기초하여 상기 주어진 송신 사이클에 대한 상기 비콘 신호의 송신을 선택적으로 지연시키도록 추가로 구성되는, 장치.
- 제1항 또는 제2항에 있어서, 상기 제어 회로는 서로의 역치 차이 내에 있는 길이를 갖는 2개 이상의 추가적인 직전의 송신 사이클에 기초하여 상기 주어진 송신 사이클에 대한 상기 비콘 신호의 송신을 선택적으로 지연시키도록 추가로 구성되는, 장치.
- 제1항 또는 제2항에 있어서, 상기 제어 회로는 상기 직전의 송신 사이클에 대한 비콘 신호의 송신의 비-제로 지연과 상이한, 상기 주어진 송신 사이클에 대한 상기 비콘 신호의 송신의 지연을 설정하도록 추가로 구성되는, 장치.
- 제1항 또는 제2항에 있어서, 상기 제어 회로는 상기 주어진 송신 사이클에 대한 상기 비콘 신호의 송신의 가변 지연을 설정하도록 추가로 구성되는, 장치.
- 제1항 또는 제2항에 있어서, 상기 제어 회로는 랜덤 값인 상기 주어진 송신 사이클에 대한 상기 비콘 신호의 송신의 지연을 설정하도록 추가로 구성되는, 장치.
- 제1항 또는 제2항에 있어서, 상기 제어 회로는 주기 함수에 따라 상기 주어진 송신 사이클에 대한 상기 비콘 신호의 송신의 지연을 설정하도록 추가로 구성되는, 장치.
- 제1항 또는 제2항에 있어서, 상기 제어 회로는 함수에 따라 상기 주어진 송신 사이클에 대한 상기 비콘 신호의 송신의 지연을 설정하도록 추가로 구성되고, 상기 주어진 송신 사이클에 대한 상기 비콘 신호의 송신의 지연은, 상기 직전의 송신 사이클에 대한 비콘 신호의 송신의 지연보다 길고, 상기 직전의 송신 사이클에 대한 상기 비콘 신호의 송신의 지연은, 추가적인 직전의 송신 사이클에 대한 비콘 신호의 송신의 지연보다 길었던, 장치.
- 제1항 또는 제2항에 있어서, 상기 제어 회로는 함수에 따라 상기 주어진 송신 사이클에 대한 상기 비콘 신호의 송신의 지연을 설정하도록 추가로 구성되고, 상기 주어진 송신 사이클에 대한 상기 비콘 신호의 송신의 지연은, 상기 직전의 송신 사이클에 대한 비콘 신호의 송신의 지연보다 짧고, 상기 직전의 송신 사이클에 대한 상기 비콘 신호의 송신의 지연은, 추가적인 직전의 송신 사이클에 대한 비콘 신호의 송신의 지연보다 짧았던, 장치.
- 제1항 또는 제2항에 있어서, 상기 제어 회로는 상기 직전의 송신 사이클에 추가적인 전송 슬롯을 추가함으로써 상기 주어진 송신 사이클에 대한 상기 비콘 신호의 송신의 지연을 설정하도록 추가로 구성되고, 상기 추가적인 전송 슬롯은 상기 노드 중 임의의 노드에 의해 사용되지 않도록 구성되는, 장치.
- 제1항 또는 제2항에 있어서, 상기 제어 회로는 상기 네트워크 내의 노드의 총 수의 정량화를 증가시킴으로써 상기 주어진 송신 사이클에 대한 상기 비콘 신호의 송신의 지연을 설정하도록 추가로 구성되는, 장치.
- 네트워크 내의 노드에서, 제1항 또는 제2항의 장치 중 임의의 장치의 제어 회로 중 임의의 제어 회로에 의한 동작을 수행하는 단계를 포함하는, 방법.
- 비일시적 기계 판독가능 매체를 포함하는 제조 물품으로서, 상기 매체는 명령어를 포함하고, 상기 명령어는, 프로세서에 의해 로딩 및 실행될 때, 상기 프로세서로 하여금, 제1항 또는 제2항의 장치 중 임의의 장치의 제어 회로를 구현하게 하는, 제조 물품.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063070643P | 2020-08-26 | 2020-08-26 | |
US63/070,643 | 2020-08-26 | ||
US17/409,858 | 2021-08-24 | ||
US17/409,858 US11700146B2 (en) | 2020-08-26 | 2021-08-24 | EMI reduction in PLCA-based networks through beacon temporal spreading |
PCT/US2021/047645 WO2022046962A1 (en) | 2020-08-26 | 2021-08-26 | Emi reduction in plca-based networks through beacon temporal spreading |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20230054792A true KR20230054792A (ko) | 2023-04-25 |
Family
ID=78078331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227033993A KR20230054792A (ko) | 2020-08-26 | 2021-08-26 | 비콘의 시간적 확산을 통한 plca-기반 네트워크에서의 emi 감소 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11700146B2 (ko) |
JP (1) | JP7526877B2 (ko) |
KR (1) | KR20230054792A (ko) |
CN (1) | CN115462037B (ko) |
DE (1) | DE112021004490T5 (ko) |
WO (1) | WO2022046962A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020219131A1 (en) * | 2019-04-25 | 2020-10-29 | Microchip Technology Incorporated | Changing a master node in a wired local area network and related systems, methods, and devices |
US11700146B2 (en) * | 2020-08-26 | 2023-07-11 | Microchip Technology Incorporated | EMI reduction in PLCA-based networks through beacon temporal spreading |
TWI832670B (zh) | 2023-01-13 | 2024-02-11 | 九暘電子股份有限公司 | 實體層碰撞避免裝置及其自動判定節點身分的方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5894559A (en) * | 1996-08-15 | 1999-04-13 | Advanced Micro Devices, Inc. | System for selectively reducing capture effect in a network station by increasing delay time after a predetermined number of consecutive successful transmissions |
US6643317B1 (en) * | 2000-02-25 | 2003-11-04 | Electronics For Imaging, Inc. | Digital spread spectrum circuit |
CN100555964C (zh) * | 2003-02-03 | 2009-10-28 | 索尼株式会社 | 通信方法、通信设备及计算机程序 |
DE10309164A1 (de) * | 2003-02-28 | 2004-09-09 | Siemens Ag | Scheduling von Echtzeitkommunikation in geschalteten Netzwerken |
US7974264B2 (en) * | 2007-07-13 | 2011-07-05 | Michael Rothschild | Method and a system for determining the spatial location of nodes in a wireless network |
US20090022163A1 (en) * | 2007-07-16 | 2009-01-22 | Vladimir Oksman | Adaptive network to dynamically account for hidden nodes |
JP4479813B2 (ja) * | 2008-03-18 | 2010-06-09 | ソニー株式会社 | 通信装置及び通信方法、通信システム、並びにコンピュータ・プログラム |
JP5491507B2 (ja) * | 2009-07-15 | 2014-05-14 | パナソニック株式会社 | 無線通信装置、無線通信システム、および無線通信方法、並びにこの無線通信方法を実行させるプログラム |
US8817677B2 (en) * | 2010-06-18 | 2014-08-26 | Panasonic Corporation | Power control device for home appliances |
US20140056286A1 (en) * | 2011-02-11 | 2014-02-27 | Panasonic Corporation | Wireless communication system and wireless slave and master units used therein |
KR101255100B1 (ko) * | 2011-06-20 | 2013-04-18 | 네스트필드(주) | 무선 네트워크에서 경합 없이 시간 슬롯을 노드들에 할당하는 장치 및 방법 |
KR102018016B1 (ko) | 2012-03-06 | 2019-09-03 | 인터디지탈 패튼 홀딩스, 인크 | 무선 근거리 통신망에서의 절전을 위한 방법 및 장치 |
JP5919205B2 (ja) * | 2013-01-28 | 2016-05-18 | 日立オートモティブシステムズ株式会社 | ネットワーク装置およびデータ送受信システム |
JP6232870B2 (ja) * | 2013-09-11 | 2017-11-22 | 株式会社リコー | 無線通信システム、無線通信方法、プログラム、及び記録媒体 |
JPWO2016043294A1 (ja) * | 2014-09-19 | 2017-04-27 | 株式会社東芝 | 無線通信装置および無線通信方法 |
JP6470966B2 (ja) * | 2014-12-24 | 2019-02-13 | 株式会社東芝 | 通信装置、サーバ装置、通信方法およびプログラム |
US11229023B2 (en) * | 2017-04-21 | 2022-01-18 | Netgear, Inc. | Secure communication in network access points |
GB201712136D0 (en) * | 2017-07-27 | 2017-09-13 | Finlay Alan | A sensor network for a rotatable element |
US10868765B2 (en) * | 2018-05-25 | 2020-12-15 | Microchip Technology Incorporated | Shaping traffic on PLCA-enabled 10SPE networks |
US11233750B2 (en) * | 2018-10-29 | 2022-01-25 | Hyundai Motor Company | Method and apparatus for allocating transmission opportunities in vehicle network |
US11171807B2 (en) * | 2018-10-30 | 2021-11-09 | Hyundai Motor Company | Method and apparatus for allocating priority transmission opportunities in vehicle network |
US11343359B2 (en) * | 2019-03-04 | 2022-05-24 | Hyundai Motor Company | Data transmission and reception method in vehicle network, and apparatus for the same |
KR102704176B1 (ko) * | 2019-03-15 | 2024-09-06 | 현대자동차주식회사 | 차량 네트워크에서 웨이크업 신호의 송수신을 위한 방법 및 장치 |
US11700146B2 (en) * | 2020-08-26 | 2023-07-11 | Microchip Technology Incorporated | EMI reduction in PLCA-based networks through beacon temporal spreading |
-
2021
- 2021-08-24 US US17/409,858 patent/US11700146B2/en active Active
- 2021-08-26 WO PCT/US2021/047645 patent/WO2022046962A1/en active Application Filing
- 2021-08-26 JP JP2023509562A patent/JP7526877B2/ja active Active
- 2021-08-26 CN CN202180030194.8A patent/CN115462037B/zh active Active
- 2021-08-26 DE DE112021004490.7T patent/DE112021004490T5/de active Pending
- 2021-08-26 KR KR1020227033993A patent/KR20230054792A/ko active Search and Examination
-
2023
- 2023-05-23 US US18/200,771 patent/US20230291606A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US11700146B2 (en) | 2023-07-11 |
JP2023539042A (ja) | 2023-09-13 |
US20230291606A1 (en) | 2023-09-14 |
CN115462037A (zh) | 2022-12-09 |
DE112021004490T5 (de) | 2023-08-10 |
WO2022046962A1 (en) | 2022-03-03 |
JP7526877B2 (ja) | 2024-08-01 |
CN115462037B (zh) | 2024-04-30 |
US20220070021A1 (en) | 2022-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7526877B2 (ja) | ビーコンの時間的拡散を通じたplcaベースのネットワークにおけるemi低減 | |
JP7314178B2 (ja) | Plca対応10speネットワーク上でのシェーピングトラフィック | |
US6813260B1 (en) | Systems and methods for prioritized access in a contention based network | |
CN101253784A (zh) | 动态调整cca门限的系统和方法 | |
US7248601B2 (en) | Method of allocating bandwidth on request to the stations of a local area network | |
US20110182178A1 (en) | Randomization Management For Carrier Sensing Multiple Access with Collision Avoidance (CSMA-CA) | |
US7283554B2 (en) | Network manager for a hybrid network environment | |
Ali et al. | Efficiency of restricted access window scheme of IEEE 802.11 ah under non-ideal channel condition | |
CN113315668B (zh) | 自适应调整网络组态的方法、节点设备和存储介质 | |
CN107070695B (zh) | 一种总线型网络负载自适应通信方法 | |
Roedig et al. | f-MAC: A deterministic media access control protocol without time synchronization | |
KR100889216B1 (ko) | 무선 센서 네트워크에서의 백오프 시간 결정 방법 및 이를이용한 채널 접근 방법 | |
KR20210141678A (ko) | 시간에 민감한 및 최선 노력의 데이터 패킷들에 대한 매체 액세스, 및 관련 시스템들, 방법들, 및 디바이스들 | |
CN113766451A (zh) | 缓和涉及多个系统的信道访问中的干扰 | |
Jan et al. | CSMA/CD protocol for time-constrained communication on bus networks | |
Siegfried et al. | Evaluation of protocol for industrial informatics systems | |
CN117729644A (zh) | 应用于智能穿戴设备的并发防拥塞方法及装置 | |
KR100590771B1 (ko) | 매체접속 제어장치 | |
Miskowicz | A generalized analytic approach to the evaluation of predictive p-CSMA/CD saturation performance | |
CN116528388A (zh) | 用于无线网络的设备和方法 | |
KR20230116723A (ko) | 무선랜에서 저지연 통신을 위한 방법 및 장치 | |
Yu et al. | Real-time MAC protocol based on coding-black-burst in wireless sensor networks | |
CN113794585A (zh) | 一种报文处理方法及装置 | |
Wang et al. | Quality-of-service in wireless personal area networks | |
Miśkowicz et al. | THE SIMPLIFIED DESIGN OF LONTALK/EIA-709.1 CONTROL NETWORK |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination |