KR20230048755A - Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same - Google Patents

Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same Download PDF

Info

Publication number
KR20230048755A
KR20230048755A KR1020210131555A KR20210131555A KR20230048755A KR 20230048755 A KR20230048755 A KR 20230048755A KR 1020210131555 A KR1020210131555 A KR 1020210131555A KR 20210131555 A KR20210131555 A KR 20210131555A KR 20230048755 A KR20230048755 A KR 20230048755A
Authority
KR
South Korea
Prior art keywords
group
compound
thin film
formula
precursor
Prior art date
Application number
KR1020210131555A
Other languages
Korean (ko)
Other versions
KR102682682B1 (en
Inventor
김효숙
석장현
박정우
Original Assignee
주식회사 한솔케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한솔케미칼 filed Critical 주식회사 한솔케미칼
Priority to KR1020210131555A priority Critical patent/KR102682682B1/en
Publication of KR20230048755A publication Critical patent/KR20230048755A/en
Application granted granted Critical
Publication of KR102682682B1 publication Critical patent/KR102682682B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a compound that can be deposited into a thin film through vapor deposition, and specifically, to a group 5 metal compound which is applicable to atomic layer deposition (ALD) or chemical vapor deposition (CVD) and has excellent thermal stability, a precursor containing the same, and a method of forming a thin film using the same. The compound is represented by chemical formula 1, and in the chemical formula 1, M is Ta or Nb and R1 to R3 are each independently hydrogen; and a linear or branched alkyl group having 1 to 6 carbon atoms.

Description

5족 금속 화합물, 이를 포함하는 증착용 전구체 조성물 및 이를 이용하여 박막을 형성하는 방법{GROUP 5 METAL COMPOUNDS, PRECURSOR COMPOSITIONS INCLUDING THE SAME, AND PROCESS FOR THE FORMATION OF THIN FILMS USING THE SAME}Group 5 metal compound, precursor composition for deposition containing the same, and method for forming a thin film using the same

본 발명은 기상 증착을 통하여 박막 증착이 가능한 기상 증착 화합물에 관한 것으로서, 구체적으로는 원자층 증착법(Atomic Layer Deposition, ALD) 또는 화학 기상 증착법(Chemical Vapor Deposition, CVD)에 적용 가능하고 열적 안정성이 우수한 5족 금속 전구체, 이를 포함하는 증착용 전구체 및 이를 이용하여 박막을 형성하는 방법에 관한 것이다.The present invention relates to a vapor deposition compound capable of depositing a thin film through vapor deposition, and specifically, it is applicable to atomic layer deposition (ALD) or chemical vapor deposition (CVD) and has excellent thermal stability. It relates to a group 5 metal precursor, a precursor for deposition including the same, and a method of forming a thin film using the same.

5족 금속, 특히 탄탈럼(Ta)과 니오븀(Nb)의 금속막, 및 탄탈럼과 니오븀의 산화막 또는 질화막은 다양한 반도체 소자 제조에 사용될 수 있다. A metal film of a group 5 metal, particularly tantalum (Ta) and niobium (Nb), and an oxide film or nitride film of tantalum and niobium may be used in manufacturing various semiconductor devices.

예를 들어, 니오븀 산화물 박막(Nb2O5)은 유전체 층의 high-k 물질에 저항 필름으로 적용되고 있다. Nb2O5 박막은 동적 임의 접근 기억장치(Dynamic Random Access Memory, DRAM) 소자의 유전막 층으로 사용되어 전류 누출을 감소시켜서 더 높은 k 값을 제공한다.For example, niobium oxide thin films (Nb 2 O 5 ) have been applied as resistive films to high-k materials in dielectric layers. Nb 2 O 5 thin films are used as dielectric layers in dynamic random access memory (DRAM) devices to reduce current leakage and provide higher k values.

한편, 반도체 소자 제조 공정에서 5족 금속 함유 막을 형성하기 위해서 스퍼터링이 주로 사용되고 있다. Meanwhile, sputtering is mainly used to form a group 5 metal-containing film in a semiconductor device manufacturing process.

그러나, 극히 얇은, 수 nm 두께의 5족 금속 함유 막을 요철이 있는 표면에 형성하기 위해서는 단차 피복성이 우수한 화학 증착법, 그 중에 특히 원자층 증착법이 필요하고, 따라서 이에 적합한 5족 금속 전구체 화합물이 필요하다.However, in order to form an extremely thin, several-nm-thick Group 5 metal-containing film on an uneven surface, chemical vapor deposition with excellent step coverage, especially atomic layer deposition, is required, and therefore a Group 5 metal precursor compound suitable for this is required. do.

한편, 현재 보고된 대표적인 니오븀 증착 전구체 화합물인 tBuN=Nb(EMA)3 (TBTEMNb)는 ALD 공정 최고 온도가 325℃ 정도로 알려져 있다. Meanwhile, tBuN=Nb(EMA) 3 (TBTEMNb), a representative niobium deposition precursor compound currently reported, is known to have a maximum ALD process temperature of about 325°C.

증착 온도가 높아지면 Nb2O5 박막의 밀도가 높아지고 결정화에 의한 유전상수의 향상이 기대되었지만, 350℃에서 증착된 박막의 경우 산소(O)의 함량이 감소하는 현상이 발생하고 이로 인해 누설 전류가 오히려 증가하였다. As the deposition temperature increases, the density of the Nb 2 O 5 thin film increases and the improvement in dielectric constant by crystallization is expected. rather increased.

이는 고온에서 니오븀 전구체가 열분해되기 때문으로 높은 피복(step coverage), 낮은 누설 전류를 동시에 얻기 위해서는 고온 증착이 가능한 니오븀 전구체의 개발이 필요한 실정이다. This is because the niobium precursor is thermally decomposed at a high temperature, and thus it is necessary to develop a niobium precursor capable of high-temperature deposition in order to simultaneously obtain high step coverage and low leakage current.

대한민국 공개특허공보 제10-2016-0124025호Republic of Korea Patent Publication No. 10-2016-0124025

본 발명은 상기와 같이 언급된 기존의 5족 금속 전구체의 문제점들을 해결하기 위한 것으로 열적 안정성이 우수한 증착용 5족 금속 전구체 화합물을 제공하는데 그 목적이 있다. An object of the present invention is to provide a Group 5 metal precursor compound for deposition having excellent thermal stability in order to solve the problems of the existing Group 5 metal precursors mentioned above.

또한, 본 발명은 상기 5족 금속 전구체 화합물을 이용하는 박막 제조 방법을 제공하고자 한다.In addition, the present invention is to provide a thin film manufacturing method using the Group 5 metal precursor compound.

그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the above-mentioned problem, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.

상기 언급된 바와 같은 5족 금속 전구체의 문제를 해결하기 위해서 본 발명자들은 N-linked Cp(사이클로펜타다이에닐, cyclopentadienyl) 리간드에 메틸(methyl)기를 도입하여 기존에 공지되었던 5족 금속 전구체 화합물에 비해 열적 안정성이 우수하고 고온 증착이 가능한 5족 금속 전구체를 합성하였다.In order to solve the problem of the Group 5 metal precursor as mentioned above, the present inventors introduce a methyl group into the N-linked Cp (cyclopentadienyl) ligand to obtain a previously known Group 5 metal precursor compound. A Group 5 metal precursor having excellent thermal stability and capable of high-temperature deposition was synthesized.

본원의 일 측면은, 하기 화학식 1로 표시되는 화합물을 제공한다:One aspect of the present application provides a compound represented by Formula 1 below:

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에서,In Formula 1,

M은 Ta 또는 Nb이고,M is Ta or Nb;

R1 내지 R3은 각각 독립적으로 수소; 탄소수 1 내지 6의 선형 또는 분지형의 알킬기이다.R 1 to R 3 are each independently hydrogen; It is a linear or branched alkyl group having 1 to 6 carbon atoms.

본원의 다른 측면은, 상기 화합물을 포함하는 기상 증착 전구체를 제공한다.Another aspect of the present disclosure provides a vapor deposition precursor comprising the compound.

본원의 또 다른 측면은, 상기 기상 증착 전구체를 챔버에 도입하는 단계를 포함하는, 박막의 제조 방법을 제공한다.Another aspect of the present disclosure provides a method for manufacturing a thin film, including introducing the vapor deposition precursor into a chamber.

본 발명에 따른 신규 기상 증착 5족 금속 화합물 및 상기 기상 증착 화합물을 포함하는 전구체는 열적 안정성이 우수하고 고온 증착이 가능하다.The novel vapor-deposited Group 5 metal compound according to the present invention and the precursor including the vapor-deposited compound have excellent thermal stability and can be deposited at high temperatures.

또한, 본 발명의 기상 증착 전구체는 균일한 박막 증착이 가능하고, 이에 따른 우수한 박막 물성, 두께 및 단차 피복성의 확보가 가능하다.In addition, the vapor deposition precursor of the present invention can deposit a uniform thin film, thereby securing excellent thin film properties, thickness, and step coverage.

상기와 같은 물성은 원자층 증착법 및 화학 기상 증착법에 적합한 전구체를 제공하고, 우수한 박막 특성에 기여한다.The above physical properties provide precursors suitable for atomic layer deposition and chemical vapor deposition, and contribute to excellent thin film properties.

도 1은 본원의 합성예 1에 의해 합성된 화합물의 핵자기공명(Nuclear magnetic resonance, NMR) 분석 결과이다.
도 2는 본원의 합성예 2에 의해 합성된 화합물의 핵자기공명(Nuclear magnetic resonance, NMR) 분석 결과이다.
도 3은 본원의 합성예 3에 의해 합성된 화합물의 핵자기공명(Nuclear magnetic resonance, NMR) 분석 결과이다.
도 4는 본원의 합성예 1에 의해 합성된 화합물의 열중량(Thermogravimetric, TG) 및 시차열(Differential Thermal) 분석 결과 이다.
도 5는 본원의 합성예 2에 의해 합성된 화합물의 열중량(Thermogravimetric, TG) 및 시차열(Differential Thermal) 분석 결과 이다.
도 6은 본원의 합성예 3에 의해 합성된 화합물의 열중량(Thermogravimetric, TG) 및 시차열(Differential Thermal) 분석 결과 이다.
1 is a nuclear magnetic resonance (NMR) analysis result of the compound synthesized by Synthesis Example 1 of the present application.
Figure 2 is a nuclear magnetic resonance (NMR) analysis result of the compound synthesized by Synthesis Example 2 of the present application.
Figure 3 is a nuclear magnetic resonance (NMR) analysis result of the compound synthesized by Synthesis Example 3 of the present application.
4 is a result of thermogravimetric (TG) and differential thermal analysis of the compound synthesized by Synthesis Example 1 of the present application.
5 is a result of thermogravimetric (TG) and differential thermal analysis of the compound synthesized by Synthesis Example 2 of the present application.
6 is a result of thermogravimetric (TG) and differential thermal analysis of the compound synthesized by Synthesis Example 3 of the present application.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 합성예 등을 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 합성예에 한정되지 않는다. Hereinafter, embodiments and synthetic examples of the present invention will be described in detail so that those skilled in the art can easily practice them. However, the present application may be implemented in many different forms and is not limited to the embodiments and synthesis examples described herein.

이하, 본원의 구현예 및 합성예를 상세히 설명한다. 그러나, 본원이 이러한 구현예 및 합성예와 도면에 제한되는 것은 아니다.Hereinafter, embodiments and synthesis examples of the present application will be described in detail. However, the present application is not limited to these embodiments and synthesis examples and drawings.

본원의 일 측면은, 하기 화학식 1로 표시되는 화합물을 제공한다.One aspect of the present application provides a compound represented by Formula 1 below.

[화학식 1][Formula 1]

Figure pat00002
Figure pat00002

상기 화학식 1에서,In Formula 1,

M은 Ta 또는 Nb이고,M is Ta or Nb;

R1 내지 R3은 각각 독립적으로 수소; 탄소수 1 내지 6의 선형 또는 분지형의 알킬기이다.R 1 to R 3 are each independently hydrogen; It is a linear or branched alkyl group having 1 to 6 carbon atoms.

상기 화합물은 N-linked Cp(cyclopentadienyl) 리간드에 메틸(methyl)기를 도입하여 기존에 공지되었던 5족 금속 전구체 화합물에 비해 열적 안정성이 우수하고 고온 증착이 가능하다.The compound introduces a methyl (methyl) group into an N-linked Cp (cyclopentadienyl) ligand, and thus has excellent thermal stability and high-temperature deposition, compared to previously known group 5 metal precursor compounds.

본원의 일 구현예에 있어서, 바람직하게는 R1 내지 R3은 각각 독립적으로 메틸기, 에틸기, n-프로필기, iso- 프로필기, n-부틸기, iso-부틸기, sec-부틸기 및 tert-부틸기로 이루어진 군에서 선택되는 어느 하나일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present application, preferably, R 1 to R 3 are each independently methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl and tert -It may be any one selected from the group consisting of a butyl group, but is not limited thereto.

본원의 일 구현예에 있어서, 바람직하게는 상기 화학식 1의 화합물은 하기 화학식 1-1 내지 1-3로 표시되는 화합물로 이루어진 군에서 선택된 어느 하나일 수 있다.In one embodiment of the present application, preferably, the compound represented by Chemical Formula 1 may be any one selected from the group consisting of compounds represented by Chemical Formulas 1-1 to 1-3.

[화학식 1-1][Formula 1-1]

Figure pat00003
Figure pat00003

[화학식 1-2][Formula 1-2]

Figure pat00004
Figure pat00004

[화학식 1-3][Formula 1-3]

Figure pat00005
Figure pat00005

본원의 다른 측면은, 상기 화합물을 포함하는 증착 전구체, 바람직하게는 기상 증착 전구체를 제공한다.Another aspect of the present application provides a deposition precursor, preferably a vapor deposition precursor, containing the compound.

상기 기상 증착 전구체는 N-linked Cp(cyclopentadienyl) 리간드에 메틸(methyl)기가 도입되어 열적 안정성이 우수한다. The vapor deposition precursor has excellent thermal stability because a methyl group is introduced into an N-linked cyclopentadienyl (Cp) ligand.

즉, 상기 기상 증착 전구체는 널리 사용되고 있는 공지의 니오븀 기상 전구체 화합물인 TBTEMNb에 비하여 중량이 반으로 감소하는 온도[T1/2]가 높다. 즉, TBTEMNb의 T1/2 온도는 204℃ 정도인데 비하여 본원의 니오븀 기상 전구체 화합물의 T1/2 온도는 250℃ 이상이었다.That is, the vapor deposition precursor has a high temperature [T 1/2 ] at which the weight is reduced by half compared to TBTEMNb, which is a known niobium vapor phase precursor compound that is widely used. That is, while the T 1/2 temperature of TBTEMNb was about 204°C, the T 1/2 temperature of the niobium vapor phase precursor compound of the present application was 250°C or higher.

본원의 또 다른 측면은, 상기 기상 증착 전구체를 챔버에 도입하는 단계를 포함하는 박막의 제조 방법을 제공한다. 상기 기상 증착 전구체를 챔버에 도입하는 단계는 물리흡착, 화학흡착, 또는 물리 및 화학흡착하는 단계를 포함할 수 있다.Another aspect of the present disclosure provides a method for manufacturing a thin film comprising introducing the vapor deposition precursor into a chamber. Introducing the vapor deposition precursor into the chamber may include physisorption, chemisorption, or physisorption and chemisorption.

본원의 일 구현예에 있어서, 상기 박막의 제조 방법은 원자층 증착법(Atomic Layer Deposition, ALD) 또는 화학 기상 증착법(Chemical Vapor Deposition, CVD)을 포함할 수 있고, 상기 화학 기상 증착은 유기 금속 화학 기상 증착(Metal Organic Chemical Vapor Deposition, MOCVD), 저압 화학기상증착(Low Pressure Chemical Vapor Deposition, LPCVD), 펄스화 화학 기상 증착법(P-CVD), 플라즈마 강화 원자층 증착법(PE-ALD) 또는 이들의 조합을 포함할 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present application, the method of manufacturing the thin film may include atomic layer deposition (ALD) or chemical vapor deposition (CVD), and the chemical vapor deposition is a metal-organic chemical vapor deposition method. Metal Organic Chemical Vapor Deposition (MOCVD), Low Pressure Chemical Vapor Deposition (LPCVD), Pulsed Chemical Vapor Deposition (P-CVD), Plasma Enhanced Atomic Layer Deposition (PE-ALD), or a combination thereof It may include, but is not limited thereto.

본원의 일 구현예에 있어서, 상기 박막의 제조 방법은 반응가스로 수소(H2), 산소(O) 원자 포함 화합물 및 질소(N) 원자 포함 화합물 중 어느 하나 이상을 주입하는 단계를 더 포함할 수 있다. In one embodiment of the present application, the method of manufacturing the thin film may further include injecting at least one of hydrogen (H 2 ), a compound containing an oxygen (O) atom, and a compound containing a nitrogen (N) atom as a reaction gas. can

원하는 박막이 산소를 함유하는 경우, 반응가스는 산소(O2), 오존(O3), 물(H2O), 과산화수소(H2O2) 및 이들의 임의의 조합으로부터 선택할 수 있으나, 이에 제한되는 것은 아니다.When the desired thin film contains oxygen, the reaction gas may be selected from oxygen (O 2 ), ozone (O 3 ), water (H 2 O), hydrogen peroxide (H 2 O 2 ), and any combination thereof, but It is not limited.

원하는 박막이 질소를 함유하는 경우, 반응물 가스는 질소(N2), 암모니아(NH3), 히드라진(N2H4) 및 이들의 임의의 조합으로부터 선택할 수 있으나, 이에 제한되는 것은 아니다.When the desired thin film contains nitrogen, the reactant gas may be selected from, but not limited to, nitrogen (N 2 ), ammonia (NH 3 ), hydrazine (N 2 H 4 ), and any combination thereof.

또한 박막이 5족 금속 이외의 다른 금속을 포함할 수도 있다.Also, the thin film may contain metals other than Group 5 metals.

이하, 합성예, 합성예, 실험예 및 제조예를 이용하여 본원을 좀더 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다. Hereinafter, the present application will be described in more detail using synthesis examples, synthesis examples, experimental examples, and preparation examples, but the present application is not limited thereto.

<합성예 1> tBuN=Nb(CMEN)(DMA) 합성<Synthesis Example 1> Synthesis of t BuN=Nb(CMEN)(DMA)

슈렝크 플라스크에 TBTDMNb 5g(17 mmol)과 톨루엔(toluene) 150 mL를 넣고 CMEN 리간드 2.6g(17 mmol)를 0℃에서 천천히 넣어준 뒤, 30분간 저온으로 유지하였다. After putting 5 g (17 mmol) of TBTDMNb and 150 mL of toluene in a Schlenk flask, 2.6 g (17 mmol) of CMEN ligand was slowly added thereto at 0° C., and the mixture was maintained at a low temperature for 30 minutes.

혼합물을 60~70℃에서 4시간동안 가열한 후, 실온에서 밤새 교반하였다. 반응이 종료되면 용매를 제거하고, 90~100℃ @0.4 Torr 조건에서 감압 증류하여 노란색 액체를 얻었다.The mixture was heated at 60-70 °C for 4 hours and then stirred overnight at room temperature. When the reaction was completed, the solvent was removed and distilled under reduced pressure at 90 to 100 ° C @ 0.4 Torr to obtain a yellow liquid.

합성예 1에 의해서 제조된 tBuN=Nb(CMEN)(DMA)의 NMR 측정 결과를 도 1에 나타내었다.1 shows NMR measurement results of tBuN =Nb(CMEN)(DMA) prepared by Synthesis Example 1.

합성예 1의 반응을 하기 반응 화학식 1로 나타내었다.The reaction of Synthesis Example 1 is represented by Reaction Formula 1 below.

[반응 화학식 1][Reaction Chemical Formula 1]

Figure pat00006
Figure pat00006

<합성예 2> tBuN=Nb(CMEN)(EMA) 합성<Synthesis Example 2> t BuN=Nb(CMEN)(EMA) synthesis

슈렝크 플라스크에 TBTEMNb 5g(15 mmol)과 톨루엔(toluene) 150 mL를 넣고 CMEN 리간드 2.3g(15 mmol)를 0℃에서 천천히 넣어준 뒤, 30분간 저온으로 유지하였다. 5 g (15 mmol) of TBTEMNb and 150 mL of toluene were added to a Schlenk flask, and 2.3 g (15 mmol) of CMEN ligand was slowly added thereto at 0° C., followed by maintaining the mixture at a low temperature for 30 minutes.

혼합물을 60~70℃에서 4시간동안 가열한 후, 실온에서 밤새 교반하였다. 반응이 종료되면 용매를 제거하고, 100~120℃ @0.4 Torr 조건에서 감압 증류하여 노란색 액체를 얻었다.The mixture was heated at 60-70 °C for 4 hours and then stirred overnight at room temperature. When the reaction was completed, the solvent was removed, and the yellow liquid was obtained by distillation under reduced pressure at 100 to 120 ° C @ 0.4 Torr.

합성예 2에 의해서 제조된 tBuN=Nb(CMEN)(EMA)의 NMR 측정 결과를 도 2에 나타내었다.The NMR measurement results of tBuN =Nb(CMEN)(EMA) prepared by Synthesis Example 2 are shown in FIG. 2.

합성예 2의 반응을 하기 반응 화학식 2로 나타내었다.The reaction of Synthesis Example 2 is represented by Reaction Formula 2 below.

[반응 화학식 2][Reaction Chemical Formula 2]

Figure pat00007
Figure pat00007

<합성예 3> tBuN=Nb(CMEN)(DEA) 합성<Synthesis Example 3> Synthesis of t BuN=Nb(CMEN)(DEA)

슈렝크 플라스크에 TBTDENb 5g(13 mmol)과 톨루엔(toluene) 150 mL를 넣고 CMEN 리간드 2.0g(13 mmol)를 0℃에서 천천히 넣어준 뒤, 30분간 저온으로 유지하였다. After putting 5g (13 mmol) of TBTDENb and 150 mL of toluene in a Schlenk flask, slowly adding 2.0 g (13 mmol) of CMEN ligand at 0 ° C., the mixture was maintained at a low temperature for 30 minutes.

혼합물을 60~70℃에서 4시간동안 가열한 후, 실온에서 밤새 교반하였다. 반응이 종료되면 용매를 제거하고, 110~120℃ @0.4 Torr 조건에서 감압 증류하여 노란색 액체를 얻었다.The mixture was heated at 60-70 °C for 4 hours and then stirred overnight at room temperature. When the reaction was completed, the solvent was removed and distilled under reduced pressure at 110 to 120 ° C @ 0.4 Torr to obtain a yellow liquid.

합성예 3에 의해서 제조된 tBuN=Nb(CMEN)(DEA)의 NMR 측정 결과를 도 3에 나타내었다.The NMR measurement results of tBuN =Nb(CMEN)(DEA) prepared by Synthesis Example 3 are shown in FIG. 3.

합성예 3의 반응을 하기 반응 화학식 3으로 나타내었다.The reaction of Synthesis Example 3 is represented by Reaction Formula 3 below.

[반응 화학식 3][Reaction Chemical Formula 3]

Figure pat00008
Figure pat00008

[실험예 1] 열중량(Thermogravimetric) 및 시차열(Differential Thermal) 분석 [Experimental Example 1] Thermogravimetric and Differential Thermal Analysis

합성예 1 내지 3에 의해서 합성된 화합물의 열적 특성을 측정하는 열중량 및 시차열 분석을 실시하여, 그 결과를 도 4 내지 6에 각각 나타내었다. Thermogravimetric and differential thermal analysis were performed to measure the thermal properties of the compounds synthesized in Synthesis Examples 1 to 3, and the results are shown in FIGS. 4 to 6, respectively.

분석 시 사용된 기기는 Mettler Toledo사의 TGA/DTA 1 STAR System으로 20μL 용량의 알루미나 도가니(Alumina crucible)를 사용하였다. 상기 화합물들을 10℃/분의 속도로 400℃까지 가온시키는 방법으로 진행하였으며, 200 mL/분의 속도로 아르곤(Ar) 가스를 주입하였다. The instrument used in the analysis was Mettler Toledo's TGA/DTA 1 STAR System, and an alumina crucible with a capacity of 20 μL was used. The compounds were heated up to 400 °C at a rate of 10 °C/min, and argon (Ar) gas was injected at a rate of 200 mL/min.

분석 결과, 중량이 반으로 감소하는 온도[T1/2]가 합성예 1의 화합물은 259℃, 합성예 2의 화합물은 260℃, 합성예 3의 화합물은 263℃로 측정되었다.As a result of the analysis, the temperature at which the weight is reduced by half [T 1/2 ] was measured to be 259 °C for the compound of Synthesis Example 1, 260 °C for the compound of Synthesis Example 2, and 263 °C for the compound of Synthesis Example 3.

또한, 400℃에서의 잔류물의 양은 합성예 1의 화합물은 12%, 합성예 2의 화합물은 9.6%, 합성예 3의 화합물은 6.3%로 측정되었다.In addition, the amount of residue at 400°C was measured to be 12% for the compound of Synthesis Example 1, 9.6% for the compound of Synthesis Example 2, and 6.3% for the compound of Synthesis Example 3.

한편, 5 wt%의 중량 감소가 일어나는 온도가 합성예 1의 화합물은 192℃, 합성예 2의 화합물은 193℃, 합성예 3의 화합물은 198℃로 측정되었다.On the other hand, the temperature at which a weight loss of 5 wt % occurs was measured to be 192° C. for the compound of Synthesis Example 1, 193° C. for the compound of Synthesis Example 2, and 198° C. for the compound of Synthesis Example 3.

[제조예 1][Production Example 1]

본 발명의 합성예 1 내지 합성예 3에 의해 합성된 신규 니오븀 금속 전구체 및 반응물 O3를 교호로 적용하여 기판 상에 박막을 증착하였다. 본 실험에 사용된 기판은 p-형 Si 웨이퍼로서, 저항은 0.02 Ω·m이다. 증착에 앞서 p-형 Si 웨이퍼는 아세톤-에탄올-탈이온수(DI water)에 각각 10분씩 초음파 처리(Ultra sonic)하여 세척하였다. Si 웨이퍼 상에 형성된 자연 산화물 박막은 HF 10%(HF:H2O=1:9)의 용액에 10초 동안 담근 후 제거하였다. A thin film was deposited on a substrate by alternately applying the novel niobium metal precursor and the reactant O 3 synthesized in Synthesis Examples 1 to 3 of the present invention. The substrate used in this experiment is a p-type Si wafer, and its resistance is 0.02 Ω·m. Prior to deposition, the p-type Si wafer was cleaned by ultrasonic treatment (ultra sonic) in acetone-ethanol-DI water for 10 minutes each. The native oxide thin film formed on the Si wafer was immersed in a 10% HF (HF:H 2 O=1:9) solution for 10 seconds and then removed.

기판은 150-450℃의 온도로 유지하여 준비하였고, 상기 합성예 1로 합성된 신규 니오븀 전구체는 일정한 온도로 유지된 버블러(bubbler)에서 기화시켰다. The substrate was prepared by maintaining a temperature of 150-450° C., and the novel niobium precursor synthesized in Synthesis Example 1 was vaporized in a bubbler maintained at a constant temperature.

퍼지(purge)가스는 아르곤(Ar)을 공급하여 증착챔버 내 잔존하는 전구체와 반응가스를 퍼지하였으며, 아르곤의 유량은 1000 sccm으로 하였다. 반응가스로는 224g/cm3 농도의 오존(O3)을 사용하였으며, 각 반응 기체는 공압 밸브의 on/off를 조절하여 주입하고 공정 온도에서 성막하였다.As a purge gas, argon (Ar) was supplied to purge the precursor and reaction gas remaining in the deposition chamber, and the flow rate of argon was set to 1000 sccm. Ozone (O 3 ) at a concentration of 224 g/cm 3 was used as the reaction gas, and each reaction gas was injected by adjusting the on/off of a pneumatic valve and formed at a process temperature.

ALD 사이클은 전구체 펄스 10/15초 후, 아르곤 10초 퍼징 후, 반응물 펄스 2/5/8/10초 후, 아르곤 10초 퍼징 순서를 포함하였다. 증착챔버의 압력은 1-1.5torr로 조절하였고, 증착온도는 150-450℃로 조절하였다. The ALD cycle included a 10/15 s precursor pulse followed by a 10 s argon purge, followed by a 2/5/8/10 s reactant pulse followed by a 10 s argon purge sequence. The pressure of the deposition chamber was adjusted to 1-1.5 torr, and the deposition temperature was adjusted to 150-450 °C.

합성예 1 내지 합성예 3의 화합물을 전구체로 사용하여 산화 니오븀 박막이 형성됨을 확인할 수 있었다.It was confirmed that niobium oxide thin films were formed using the compounds of Synthesis Examples 1 to 3 as precursors.

[제조예 2][Production Example 2]

본 발명의 합성예 1 내지 합성예 3에 의해 합성된 신규 니오븀 금속 전구체를 사용하여 화학기상증착법으로 니오븀 원소를 포함하는 박막을 제조하였다. 상기 합성예 1 내지 합성예 3에 의해 합성한 전구체가 포함되어 있는 전구체 개시용액(starting precursor solution)을 준비하였다. Using the novel niobium metal precursor synthesized in Synthesis Example 1 to Synthesis Example 3 of the present invention, a thin film containing elemental niobium was prepared by chemical vapor deposition. A starting precursor solution containing the precursors synthesized in Synthesis Examples 1 to 3 was prepared.

이 전구체 개시용액을 0.1cc/min의 유속으로 90-150℃의 온도가 유지되는 기화기에 전달하였다. 이렇게 기화된 전구체는 50 내지 300sccm 헬륨 캐리어 가스를 사용하여 증착챔버에 전달하였다. 반응가스로는 수소(H2)와 산소(O2)를 사용하였고, 각각 0.5L/min(0.5pm)씩의 유속으로 증착챔버에 공급하였다. 증착챔버의 압력은 1~15 torr로 조절하였고, 증착온도는 150-450℃로 조절하였다. 이와 같은 조건에서 약 15분 동안 증착공정을 수행하였다.This precursor starting solution was delivered to a vaporizer maintained at a temperature of 90-150° C. at a flow rate of 0.1 cc/min. The vaporized precursor was delivered to the deposition chamber using 50 to 300 sccm helium carrier gas. Hydrogen (H 2 ) and oxygen (O 2 ) were used as reaction gases, and were supplied to the deposition chamber at a flow rate of 0.5 L/min (0.5 pm), respectively. The pressure of the deposition chamber was adjusted to 1 to 15 torr, and the deposition temperature was adjusted to 150 to 450 °C. The deposition process was performed for about 15 minutes under these conditions.

상술한 제조예를 통한 박막의 제조를 통해서 합성예 1 내지 합성예 3의 화합물을 전구체로 사용하여 니오븀 박막을 형성할 수 있음을 확인할 수 있었다.It was confirmed that the niobium thin film could be formed by using the compounds of Synthesis Example 1 to Synthesis Example 3 as a precursor through the preparation of the thin film through the above-described Preparation Example.

Ta 또는 Nb 함유 전구체 및 1종 이상의 반응가스는 반응 챔버에 동시에 화학 기상 증착법, 원자층 증착법, 또는 다른 조합으로 도입될 수 있다. The Ta or Nb containing precursor and one or more reactant gases may be simultaneously introduced into the reaction chamber by chemical vapor deposition, atomic layer deposition, or some other combination.

한 예로, Ta 또는 Nb 함유 전구체는 하나의 펄스로 도입될 수 있고, 2개의 추가 금속 공급원은 개별 펄스로 함께 도입될 수 있다. 또한, 반응 챔버는 Ta 또는 Nb 함유 전구체 도입 전에 이미 반응물 종을 함유할 수도 있다. In one example, the Ta or Nb containing precursor may be introduced in one pulse, and the two additional metal sources may be introduced together in separate pulses. Additionally, the reaction chamber may already contain the reactant species prior to introduction of the Ta or Nb containing precursor.

반응물 가스는 반응 챔버로부터 멀리 위치하는 플라즈마 시스템을 통과하여 라디칼로 분해될 수도 있다. 또한, 다른 금속 공급원이 펄스에 의해 도입되면서 Ta 또는 Nb 함유 전구체가 연속적으로 반응 챔버에 도입될 수 있다.The reactant gases may be decomposed into radicals by passing through a plasma system remote from the reaction chamber. Alternatively, the Ta or Nb containing precursor may be continuously introduced into the reaction chamber while the other metal source is introduced by pulses.

예를 들어, 원자층 증착 유형의 공정에서 증기상의 Ta 또는 Nb 함유 전구체가 반응 챔버에 도입되어, 여기서 적당한 기판과 접촉한 후, Ta 또는 Nb 함유 전구체는 반응기를 퍼징함으로써 반응 챔버로부터 제거될 수 있다. For example, in an atomic layer deposition type process a vapor phase Ta or Nb containing precursor is introduced into a reaction chamber where, after contact with a suitable substrate, the Ta or Nb containing precursor may be removed from the reaction chamber by purging the reactor. .

산소 공급원이 반응 챔버에 도입되고, 여기서 자가 제한 방식으로 흡수된 Ta 또는 Nb 함유 전구체와 반응한다. 과량의 산소 공급원은 반응 챔버를 퍼징 및/또는 탈기함으로써 반응 챔버로부터 제거될 수 있다. 원하는 필름이 Ta 또는 Nb 금속 산화물 필름인 경우, 상기 공정은 원하는 필름 두께를 얻을 때까지 반복될 수 있다.An oxygen source is introduced into the reaction chamber, where it reacts with the absorbed Ta or Nb containing precursor in a self-limiting manner. Excess oxygen source may be removed from the reaction chamber by purging and/or degassing the reaction chamber. If the desired film is a Ta or Nb metal oxide film, the process may be repeated until the desired film thickness is obtained.

상기의 박막 제조를 통해서, 신규 합성된 Ta 또는 Nb함유 전구체가 기존 Ta 또는 Nb 함유 전구체의 박막 증착 시의 문제점을 보완할 뿐만 아니라 CVD 뿐만 아니라 ALD에도 적용이 가능하고, 우수한 열적 안정성을 가지고 있음을 확인하였다. Through the above thin film production, the newly synthesized Ta or Nb-containing precursor not only compensates for the problems in thin film deposition of the existing Ta or Nb-containing precursor, but also can be applied to ALD as well as CVD, and has excellent thermal stability. Confirmed.

또한, 상기 신규 Ta 또는 Nb 함유 전구체를 통해 균일한 박막 증착이 가능하고, 이에 따른 우수한 박막 물성, 두께 및 단차 피복성을 확보할 수 있다.In addition, uniform thin film deposition is possible through the novel Ta or Nb-containing precursor, and thus excellent thin film properties, thickness, and step coverage can be secured.

본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the claims to be described later rather than the detailed description above, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts thereof are interpreted as being included in the scope of the present invention. It should be.

Claims (8)

하기 화학식 1로 표시되는 화합물:
[화학식 1]
Figure pat00009

상기 화학식 1에서,
M은 Ta 또는 Nb이고,
R1 내지 R3은 각각 독립적으로 수소; 탄소수 1 내지 6의 선형 또는 분지형의 알킬기이다.
A compound represented by Formula 1 below:
[Formula 1]
Figure pat00009

In Formula 1,
M is Ta or Nb;
R 1 to R 3 are each independently hydrogen; It is a linear or branched alkyl group having 1 to 6 carbon atoms.
제1항에 있어서,
R1 내지 R3은 각각 독립적으로 메틸기, 에틸기, n-프로필기, iso- 프로필기, n-부틸기, iso-부틸기, sec-부틸기 및 tert-부틸기로 이루어진 군에서 선택되는 어느 하나인, 화합물.
According to claim 1,
R 1 to R 3 are each independently selected from the group consisting of a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group and a tert-butyl group, , compound.
제1항에 있어서,
상기 화학식 1의 화합물은
하기 화학식 1-1 내지 1-3로 표시되는 화합물로 이루어진 군에서 선택된 어느 하나인,
화합물.

[화학식 1-1]
Figure pat00010


[화학식 1-2]
Figure pat00011


[화학식 1-3]
Figure pat00012

According to claim 1,
The compound of Formula 1 is
Any one selected from the group consisting of compounds represented by Formulas 1-1 to 1-3,
compound.

[Formula 1-1]
Figure pat00010


[Formula 1-2]
Figure pat00011


[Formula 1-3]
Figure pat00012

제1항 내지 제3항 중 어느 한 항에 기재된 화합물을 포함하는, 기상 증착 전구체.
A vapor deposition precursor comprising the compound according to any one of claims 1 to 3.
제4항의 기상 증착 전구체를 챔버에 도입하는 단계를 포함하는, 박막의 제조 방법.
A method for producing a thin film comprising introducing the vapor deposition precursor of claim 4 into a chamber.
제5항에 있어서,
상기 박막의 제조 방법은 원자층 증착법(Atomic Layer Deposition, ALD) 또는 화학 기상 증착법(Chemical Vapor Deposition, CVD)을 포함하는, 박막의 제조 방법.
According to claim 5,
The method for producing the thin film includes an atomic layer deposition (ALD) or a chemical vapor deposition (CVD) method.
제6항에 있어서,
반응가스로 수소(H2), 산소(O) 원자 포함 화합물 및 질소(N) 원자 포함 화합물 중 어느 하나 이상을 주입하는 단계를 더 포함하는, 박막의 제조 방법.
According to claim 6,
The method of manufacturing a thin film further comprising the step of injecting at least one of hydrogen (H 2 ), a compound containing oxygen (O) atoms, and a compound containing nitrogen (N) atoms as a reaction gas.
제7항에 있어서,
상기 반응가스는 산소(O2), 오존(O3), 물(H2O), 과산화수소(H2O2), 질소(N2), 암모니아(NH3) 및 히드라진(N2H4) 중에서 선택된 어느 하나 이상인 것인, 박막의 제조 방법.
According to claim 7,
The reaction gas is oxygen (O 2 ), ozone (O 3 ), water (H 2 O), hydrogen peroxide (H 2 O 2 ), nitrogen (N 2 ), ammonia (NH 3 ) and hydrazine (N 2 H 4 ) Any one or more selected from among, a method for producing a thin film.
KR1020210131555A 2021-10-05 2021-10-05 Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same KR102682682B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210131555A KR102682682B1 (en) 2021-10-05 2021-10-05 Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210131555A KR102682682B1 (en) 2021-10-05 2021-10-05 Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same

Publications (2)

Publication Number Publication Date
KR20230048755A true KR20230048755A (en) 2023-04-12
KR102682682B1 KR102682682B1 (en) 2024-07-09

Family

ID=85984110

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210131555A KR102682682B1 (en) 2021-10-05 2021-10-05 Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same

Country Status (1)

Country Link
KR (1) KR102682682B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160124025A (en) 2015-04-16 2016-10-26 레르 리키드 쏘시에떼 아노님 뿌르 레뜌드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Group v-containing film forming compositions and vapor deposition of niobium-containing films
KR20180028371A (en) * 2016-09-08 2018-03-16 주식회사 유피케미칼 Group 5 metal compounds, preparing methods thereof, precursor compositions including the same for film deposition, and depositing methods of film using the same
KR20190100269A (en) * 2016-12-30 2019-08-28 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Zirconium, Hafnium and Titanium Precursors and Deposition of Group 4 Containing Films Using the Precursors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160124025A (en) 2015-04-16 2016-10-26 레르 리키드 쏘시에떼 아노님 뿌르 레뜌드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Group v-containing film forming compositions and vapor deposition of niobium-containing films
KR20180028371A (en) * 2016-09-08 2018-03-16 주식회사 유피케미칼 Group 5 metal compounds, preparing methods thereof, precursor compositions including the same for film deposition, and depositing methods of film using the same
KR20190100269A (en) * 2016-12-30 2019-08-28 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Zirconium, Hafnium and Titanium Precursors and Deposition of Group 4 Containing Films Using the Precursors

Also Published As

Publication number Publication date
KR102682682B1 (en) 2024-07-09

Similar Documents

Publication Publication Date Title
KR101602984B1 (en) Niobium and vanadium organometallic precursors for thin film deposition
JP7385687B2 (en) Metal complexes containing cyclopentadienyl ligands
KR20150013082A (en) Volatile dihydropyrazinyl and dihydropyrazine metal complexes
KR101841444B1 (en) Group 5 metal compounds, preparing methods thereof, precursor compositions including the same for film deposition, and depositing methods of film using the same
KR20140067147A (en) Tungsten diazabutadiene precursors, their synthesis, and their use for tungsten containing film depositions
JP2015015483A (en) Metal-enolate precursors for depositing metal-containing films
CN113943321B (en) Group 5 metal compound for thin film deposition and method for forming group 5 metal-containing thin film using the same
EP2451989A2 (en) Bis-ketoiminate copper precursors for deposition of copper-containing films
US9034761B2 (en) Heteroleptic (allyl)(pyrroles-2-aldiminate) metal-containing precursors, their synthesis and vapor deposition thereof to deposit metal-containing films
KR102504310B1 (en) Cobalt compounds, precursor composition including the same, and preparing method of thin film using the same
KR101772478B1 (en) Organic group 13 precursor and method for depositing thin film using thereof
KR102123331B1 (en) Cobalt precursors, preparation method thereof and process for the formation of thin films using the same
KR20210058370A (en) Tungsten Compound, Method for Preparation of the Same, and Tungsten-Containing Thin Film, Method of Manufacturing the Same
KR101546319B1 (en) Tungsten precursors and the method for depositing tungsten-containg films
KR102682682B1 (en) Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same
KR20210058289A (en) Tungsten Precursor, Method for Preparation of the Same, and Tungsten-Containing Thin Film, Method of Manufacturing the Same
KR102557282B1 (en) Novel compounds, precursor composition including the same, and preparing method of thin film using the same
KR102557277B1 (en) Rare earth precursors, preparation method thereof and process for the formation of thin films using the same
KR102432833B1 (en) Organometallic compounds, precursor composition including the same, and preparing method of thin film using the same
KR20140075024A (en) Alkali metal diazabutadiene compounds and their use for alkali metal-containing film depositions
KR102211654B1 (en) A tungsten precursor compound and tungsten containing thin film prepared by using the same
JP4289141B2 (en) ORGANIC SILICON COMPOUND, SOLUTION RAW MATERIAL, AND METHOD FOR FORMING SILICON-CONTAINING FILM USING THE COMPOUND
KR20210056848A (en) Method of depositing niobium nitride thin films
KR20160062675A (en) Nickel Bis beta-ketoiminate precusor and the method for nickel containing film deposition

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant