KR102682682B1 - Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same - Google Patents

Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same Download PDF

Info

Publication number
KR102682682B1
KR102682682B1 KR1020210131555A KR20210131555A KR102682682B1 KR 102682682 B1 KR102682682 B1 KR 102682682B1 KR 1020210131555 A KR1020210131555 A KR 1020210131555A KR 20210131555 A KR20210131555 A KR 20210131555A KR 102682682 B1 KR102682682 B1 KR 102682682B1
Authority
KR
South Korea
Prior art keywords
group
compound
thin film
formula
precursor
Prior art date
Application number
KR1020210131555A
Other languages
Korean (ko)
Other versions
KR20230048755A (en
Inventor
김효숙
석장현
박정우
Original Assignee
주식회사 한솔케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한솔케미칼 filed Critical 주식회사 한솔케미칼
Priority to KR1020210131555A priority Critical patent/KR102682682B1/en
Publication of KR20230048755A publication Critical patent/KR20230048755A/en
Application granted granted Critical
Publication of KR102682682B1 publication Critical patent/KR102682682B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 기상 증착을 통하여 박막 증착할 수 있는 화합물에 관한 것으로서, 구체적으로는 원자층 증착법(Atomic Layer Deposition, ALD) 또는 화학 기상 증착법(Chemical Vapor Deposition, CVD)에 적용가능하고 열적 안정성 이 우수한 5족 금속 화합물, 이를 포함하는 전구체 및 이를 이용하여 박막을 형성하는 방법에 관한 것이다.The present invention relates to a compound that can be deposited into a thin film through vapor deposition. Specifically, it is applicable to Atomic Layer Deposition (ALD) or Chemical Vapor Deposition (CVD) and has excellent thermal stability. It relates to a group metal compound, a precursor containing the same, and a method of forming a thin film using the same.

Description

5족 금속 화합물, 이를 포함하는 증착용 전구체 조성물 및 이를 이용하여 박막을 형성하는 방법{GROUP 5 METAL COMPOUNDS, PRECURSOR COMPOSITIONS INCLUDING THE SAME, AND PROCESS FOR THE FORMATION OF THIN FILMS USING THE SAME}Group 5 metal compound, precursor composition for deposition containing the same, and method of forming a thin film using the same {GROUP 5 METAL COMPOUNDS, PRECURSOR COMPOSITIONS INCLUDING THE SAME, AND PROCESS FOR THE FORMATION OF THIN FILMS USING THE SAME}

본 발명은 기상 증착을 통하여 박막 증착이 가능한 기상 증착 화합물에 관한 것으로서, 구체적으로는 원자층 증착법(Atomic Layer Deposition, ALD) 또는 화학 기상 증착법(Chemical Vapor Deposition, CVD)에 적용 가능하고 열적 안정성이 우수한 5족 금속 전구체, 이를 포함하는 증착용 전구체 및 이를 이용하여 박막을 형성하는 방법에 관한 것이다.The present invention relates to a vapor deposition compound capable of depositing a thin film through vapor deposition. Specifically, it is applicable to Atomic Layer Deposition (ALD) or Chemical Vapor Deposition (CVD) and has excellent thermal stability. It relates to a Group 5 metal precursor, a deposition precursor containing the same, and a method of forming a thin film using the same.

5족 금속, 특히 탄탈럼(Ta)과 니오븀(Nb)의 금속막, 및 탄탈럼과 니오븀의 산화막 또는 질화막은 다양한 반도체 소자 제조에 사용될 수 있다. Group 5 metals, especially metal films of tantalum (Ta) and niobium (Nb), and oxide or nitride films of tantalum and niobium can be used to manufacture various semiconductor devices.

예를 들어, 니오븀 산화물 박막(Nb2O5)은 유전체 층의 high-k 물질에 저항 필름으로 적용되고 있다. Nb2O5 박막은 동적 임의 접근 기억장치(Dynamic Random Access Memory, DRAM) 소자의 유전막 층으로 사용되어 전류 누출을 감소시켜서 더 높은 k 값을 제공한다.For example, niobium oxide thin film (Nb 2 O 5 ) is applied as a resistive film to the high-k material of the dielectric layer. Nb 2 O 5 thin films are used as dielectric layers in dynamic random access memory (DRAM) devices to reduce current leakage and provide higher k values.

한편, 반도체 소자 제조 공정에서 5족 금속 함유 막을 형성하기 위해서 스퍼터링이 주로 사용되고 있다. Meanwhile, sputtering is mainly used to form a film containing a Group 5 metal in the semiconductor device manufacturing process.

그러나, 극히 얇은, 수 nm 두께의 5족 금속 함유 막을 요철이 있는 표면에 형성하기 위해서는 단차 피복성이 우수한 화학 증착법, 그 중에 특히 원자층 증착법이 필요하고, 따라서 이에 적합한 5족 금속 전구체 화합물이 필요하다.However, in order to form an extremely thin, several nm thick Group 5 metal-containing film on a surface with irregularities, a chemical vapor deposition method with excellent step coverage, especially an atomic layer deposition method, is required, and therefore a Group 5 metal precursor compound suitable for this method is required. do.

한편, 현재 보고된 대표적인 니오븀 증착 전구체 화합물인 tBuN=Nb(EMA)3 (TBTEMNb)는 ALD 공정 최고 온도가 325℃ 정도로 알려져 있다. Meanwhile, tBuN=Nb(EMA) 3 (TBTEMNb), a currently reported representative niobium deposition precursor compound, is known to have a maximum ALD process temperature of approximately 325°C.

증착 온도가 높아지면 Nb2O5 박막의 밀도가 높아지고 결정화에 의한 유전상수의 향상이 기대되었지만, 350℃에서 증착된 박막의 경우 산소(O)의 함량이 감소하는 현상이 발생하고 이로 인해 누설 전류가 오히려 증가하였다. As the deposition temperature increases, the density of the Nb 2 O 5 thin film is expected to increase and the dielectric constant is expected to improve due to crystallization. However, in the case of thin films deposited at 350°C, the oxygen (O) content decreases, resulting in leakage current. Rather, it increased.

이는 고온에서 니오븀 전구체가 열분해되기 때문으로 높은 피복(step coverage), 낮은 누설 전류를 동시에 얻기 위해서는 고온 증착이 가능한 니오븀 전구체의 개발이 필요한 실정이다. This is because the niobium precursor is thermally decomposed at high temperatures, so it is necessary to develop a niobium precursor capable of high temperature deposition in order to simultaneously obtain high step coverage and low leakage current.

대한민국 공개특허공보 제10-2016-0124025호Republic of Korea Patent Publication No. 10-2016-0124025

본 발명은 상기와 같이 언급된 기존의 5족 금속 전구체의 문제점들을 해결하기 위한 것으로 열적 안정성이 우수한 증착용 5족 금속 전구체 화합물을 제공하는데 그 목적이 있다. The purpose of the present invention is to solve the problems of the existing Group 5 metal precursors mentioned above and to provide a Group 5 metal precursor compound for deposition with excellent thermal stability.

또한, 본 발명은 상기 5족 금속 전구체 화합물을 이용하는 박막 제조 방법을 제공하고자 한다.Additionally, the present invention seeks to provide a thin film manufacturing method using the Group 5 metal precursor compound.

그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.

상기 언급된 바와 같은 5족 금속 전구체의 문제를 해결하기 위해서 본 발명자들은 N-linked Cp(사이클로펜타다이에닐, cyclopentadienyl) 리간드에 메틸(methyl)기를 도입하여 기존에 공지되었던 5족 금속 전구체 화합물에 비해 열적 안정성이 우수하고 고온 증착이 가능한 5족 금속 전구체를 합성하였다.In order to solve the problem of the Group 5 metal precursor as mentioned above, the present inventors introduced a methyl group into the N-linked Cp (cyclopentadienyl) ligand to form a previously known Group 5 metal precursor compound. A Group 5 metal precursor with excellent thermal stability and capable of high temperature deposition was synthesized.

본원의 일 측면은, 하기 화학식 1로 표시되는 화합물을 제공한다:One aspect of the present application provides a compound represented by the following formula (1):

[화학식 1][Formula 1]

상기 화학식 1에서,In Formula 1,

M은 Ta 또는 Nb이고,M is Ta or Nb,

R1 내지 R3은 각각 독립적으로 수소; 탄소수 1 내지 6의 선형 또는 분지형의 알킬기이다.R 1 to R 3 are each independently hydrogen; It is a linear or branched alkyl group having 1 to 6 carbon atoms.

본원의 다른 측면은, 상기 화합물을 포함하는 기상 증착 전구체를 제공한다.Another aspect of the present application provides a vapor deposition precursor containing the above compound.

본원의 또 다른 측면은, 상기 기상 증착 전구체를 챔버에 도입하는 단계를 포함하는, 박막의 제조 방법을 제공한다.Another aspect of the present disclosure provides a method for manufacturing a thin film, comprising introducing the vapor deposition precursor into a chamber.

본 발명에 따른 신규 기상 증착 5족 금속 화합물 및 상기 기상 증착 화합물을 포함하는 전구체는 열적 안정성이 우수하고 고온 증착이 가능하다.The novel vapor deposition Group 5 metal compound and the precursor containing the vapor deposition compound according to the present invention have excellent thermal stability and are capable of high temperature deposition.

또한, 본 발명의 기상 증착 전구체는 균일한 박막 증착이 가능하고, 이에 따른 우수한 박막 물성, 두께 및 단차 피복성의 확보가 가능하다.In addition, the vapor deposition precursor of the present invention enables uniform thin film deposition, thereby ensuring excellent thin film physical properties, thickness, and step coverage.

상기와 같은 물성은 원자층 증착법 및 화학 기상 증착법에 적합한 전구체를 제공하고, 우수한 박막 특성에 기여한다.The above physical properties provide a precursor suitable for atomic layer deposition and chemical vapor deposition and contribute to excellent thin film properties.

도 1은 본원의 합성예 1에 의해 합성된 화합물의 핵자기공명(Nuclear magnetic resonance, NMR) 분석 결과이다.
도 2는 본원의 합성예 2에 의해 합성된 화합물의 핵자기공명(Nuclear magnetic resonance, NMR) 분석 결과이다.
도 3은 본원의 합성예 3에 의해 합성된 화합물의 핵자기공명(Nuclear magnetic resonance, NMR) 분석 결과이다.
도 4는 본원의 합성예 1에 의해 합성된 화합물의 열중량(Thermogravimetric, TG) 및 시차열(Differential Thermal) 분석 결과 이다.
도 5는 본원의 합성예 2에 의해 합성된 화합물의 열중량(Thermogravimetric, TG) 및 시차열(Differential Thermal) 분석 결과 이다.
도 6은 본원의 합성예 3에 의해 합성된 화합물의 열중량(Thermogravimetric, TG) 및 시차열(Differential Thermal) 분석 결과 이다.
Figure 1 shows the results of nuclear magnetic resonance (NMR) analysis of the compound synthesized in Synthesis Example 1 herein.
Figure 2 shows the results of nuclear magnetic resonance (NMR) analysis of the compound synthesized in Synthesis Example 2 of the present application.
Figure 3 shows the results of nuclear magnetic resonance (NMR) analysis of the compound synthesized in Synthesis Example 3 herein.
Figure 4 shows the results of thermogravimetric (TG) and differential thermal analysis of the compound synthesized in Synthesis Example 1 of the present application.
Figure 5 shows the results of thermogravimetric (TG) and differential thermal analysis of the compound synthesized in Synthesis Example 2 of the present application.
Figure 6 shows the results of thermogravimetric (TG) and differential thermal analysis of the compound synthesized in Synthesis Example 3 of the present application.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 합성예 등을 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 합성예에 한정되지 않는다. Hereinafter, implementation examples and synthesis examples of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. However, the present application may be implemented in various different forms and is not limited to the implementation examples and synthesis examples described herein.

이하, 본원의 구현예 및 합성예를 상세히 설명한다. 그러나, 본원이 이러한 구현예 및 합성예와 도면에 제한되는 것은 아니다.Hereinafter, embodiments and synthesis examples of the present application will be described in detail. However, the present application is not limited to these embodiments and synthesis examples and drawings.

본원의 일 측면은, 하기 화학식 1로 표시되는 화합물을 제공한다.One aspect of the present application provides a compound represented by the following formula (1).

[화학식 1][Formula 1]

상기 화학식 1에서,In Formula 1,

M은 Ta 또는 Nb이고,M is Ta or Nb,

R1 내지 R3은 각각 독립적으로 수소; 탄소수 1 내지 6의 선형 또는 분지형의 알킬기이다.R 1 to R 3 are each independently hydrogen; It is a linear or branched alkyl group having 1 to 6 carbon atoms.

상기 화합물은 N-linked Cp(cyclopentadienyl) 리간드에 메틸(methyl)기를 도입하여 기존에 공지되었던 5족 금속 전구체 화합물에 비해 열적 안정성이 우수하고 고온 증착이 가능하다.The compound introduces a methyl group into the N-linked Cp (cyclopentadienyl) ligand and has superior thermal stability compared to previously known Group 5 metal precursor compounds and enables high-temperature deposition.

본원의 일 구현예에 있어서, 바람직하게는 R1 내지 R3은 각각 독립적으로 메틸기, 에틸기, n-프로필기, iso- 프로필기, n-부틸기, iso-부틸기, sec-부틸기 및 tert-부틸기로 이루어진 군에서 선택되는 어느 하나일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present application, preferably, R 1 to R 3 are each independently methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group and tert. -It may be any one selected from the group consisting of a butyl group, but is not limited thereto.

본원의 일 구현예에 있어서, 바람직하게는 상기 화학식 1의 화합물은 하기 화학식 1-1 내지 1-3로 표시되는 화합물로 이루어진 군에서 선택된 어느 하나일 수 있다.In one embodiment of the present application, preferably, the compound of Formula 1 may be any one selected from the group consisting of compounds represented by the following Formulas 1-1 to 1-3.

[화학식 1-1][Formula 1-1]

[화학식 1-2][Formula 1-2]

[화학식 1-3][Formula 1-3]

본원의 다른 측면은, 상기 화합물을 포함하는 증착 전구체, 바람직하게는 기상 증착 전구체를 제공한다.Another aspect of the present disclosure provides a deposition precursor containing the above compound, preferably a vapor deposition precursor.

상기 기상 증착 전구체는 N-linked Cp(cyclopentadienyl) 리간드에 메틸(methyl)기가 도입되어 열적 안정성이 우수한다. The vapor deposition precursor has excellent thermal stability due to the introduction of a methyl group into the N-linked Cp (cyclopentadienyl) ligand.

즉, 상기 기상 증착 전구체는 널리 사용되고 있는 공지의 니오븀 기상 전구체 화합물인 TBTEMNb에 비하여 중량이 반으로 감소하는 온도[T1/2]가 높다. 즉, TBTEMNb의 T1/2 온도는 204℃ 정도인데 비하여 본원의 니오븀 기상 전구체 화합물의 T1/2 온도는 250℃ 이상이었다.That is, the vapor deposition precursor has a higher temperature [T 1/2 ] at which its weight is reduced by half compared to TBTEMNb, a widely used and known niobium vapor precursor compound. That is, the T 1/2 temperature of TBTEMNb was about 204°C, whereas the T 1/2 temperature of the niobium vapor phase precursor compound of the present application was 250°C or more.

본원의 또 다른 측면은, 상기 기상 증착 전구체를 챔버에 도입하는 단계를 포함하는 박막의 제조 방법을 제공한다. 상기 기상 증착 전구체를 챔버에 도입하는 단계는 물리흡착, 화학흡착, 또는 물리 및 화학흡착하는 단계를 포함할 수 있다.Another aspect of the present disclosure provides a method for manufacturing a thin film including introducing the vapor deposition precursor into a chamber. The step of introducing the vapor deposition precursor into the chamber may include physical adsorption, chemical adsorption, or physical and chemical adsorption.

본원의 일 구현예에 있어서, 상기 박막의 제조 방법은 원자층 증착법(Atomic Layer Deposition, ALD) 또는 화학 기상 증착법(Chemical Vapor Deposition, CVD)을 포함할 수 있고, 상기 화학 기상 증착은 유기 금속 화학 기상 증착(Metal Organic Chemical Vapor Deposition, MOCVD), 저압 화학기상증착(Low Pressure Chemical Vapor Deposition, LPCVD), 펄스화 화학 기상 증착법(P-CVD), 플라즈마 강화 원자층 증착법(PE-ALD) 또는 이들의 조합을 포함할 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present application, the method of manufacturing the thin film may include Atomic Layer Deposition (ALD) or Chemical Vapor Deposition (CVD), and the chemical vapor deposition is an organic metal chemical vapor. Deposition (Metal Organic Chemical Vapor Deposition, MOCVD), Low Pressure Chemical Vapor Deposition (LPCVD), Pulsed Chemical Vapor Deposition (P-CVD), Plasma Enhanced Atomic Layer Deposition (PE-ALD), or a combination thereof It may include, but is not limited to this.

본원의 일 구현예에 있어서, 상기 박막의 제조 방법은 반응가스로 수소(H2), 산소(O) 원자 포함 화합물 및 질소(N) 원자 포함 화합물 중 어느 하나 이상을 주입하는 단계를 더 포함할 수 있다. In one embodiment of the present application, the method of manufacturing the thin film may further include the step of injecting at least one of hydrogen (H 2 ), a compound containing an oxygen (O) atom, and a compound containing a nitrogen (N) atom as a reaction gas. You can.

원하는 박막이 산소를 함유하는 경우, 반응가스는 산소(O2), 오존(O3), 물(H2O), 과산화수소(H2O2) 및 이들의 임의의 조합으로부터 선택할 수 있으나, 이에 제한되는 것은 아니다.When the desired thin film contains oxygen, the reaction gas may be selected from oxygen (O 2 ), ozone (O 3 ), water (H 2 O), hydrogen peroxide (H 2 O 2 ), and any combination thereof. It is not limited.

원하는 박막이 질소를 함유하는 경우, 반응물 가스는 질소(N2), 암모니아(NH3), 히드라진(N2H4) 및 이들의 임의의 조합으로부터 선택할 수 있으나, 이에 제한되는 것은 아니다.If the desired thin film contains nitrogen, the reactant gas may be selected from, but is not limited to, nitrogen (N 2 ), ammonia (NH 3 ), hydrazine (N 2 H 4 ), and any combination thereof.

또한 박막이 5족 금속 이외의 다른 금속을 포함할 수도 있다.Additionally, the thin film may contain metals other than Group 5 metals.

이하, 합성예, 합성예, 실험예 및 제조예를 이용하여 본원을 좀더 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다. Hereinafter, the present application will be described in more detail using synthesis examples, synthesis examples, experimental examples, and production examples, but the present application is not limited thereto.

<합성예 1> tBuN=Nb(CMEN)(DMA) 합성<Synthesis Example 1> t BuN=Nb(CMEN)(DMA) synthesis

슈렝크 플라스크에 TBTDMNb 5g(17 mmol)과 톨루엔(toluene) 150 mL를 넣고 CMEN 리간드 2.6g(17 mmol)를 0℃에서 천천히 넣어준 뒤, 30분간 저온으로 유지하였다. 5 g (17 mmol) of TBTDMNb and 150 mL of toluene were added to the Schlenk flask, and 2.6 g (17 mmol) of CMEN ligand was slowly added at 0°C, followed by maintaining the temperature at low temperature for 30 minutes.

혼합물을 60~70℃에서 4시간동안 가열한 후, 실온에서 밤새 교반하였다. 반응이 종료되면 용매를 제거하고, 90~100℃ @0.4 Torr 조건에서 감압 증류하여 노란색 액체를 얻었다.The mixture was heated at 60-70°C for 4 hours and then stirred at room temperature overnight. When the reaction was completed, the solvent was removed, and a yellow liquid was obtained by distillation under reduced pressure at 90-100°C @0.4 Torr.

합성예 1에 의해서 제조된 tBuN=Nb(CMEN)(DMA)의 NMR 측정 결과를 도 1에 나타내었다.The NMR measurement results of tBuN =Nb(CMEN)(DMA) prepared in Synthesis Example 1 are shown in Figure 1.

합성예 1의 반응을 하기 반응 화학식 1로 나타내었다.The reaction of Synthesis Example 1 is shown in the following reaction formula 1.

[반응 화학식 1][Reaction Formula 1]

<합성예 2> tBuN=Nb(CMEN)(EMA) 합성<Synthesis Example 2> t BuN=Nb(CMEN)(EMA) synthesis

슈렝크 플라스크에 TBTEMNb 5g(15 mmol)과 톨루엔(toluene) 150 mL를 넣고 CMEN 리간드 2.3g(15 mmol)를 0℃에서 천천히 넣어준 뒤, 30분간 저온으로 유지하였다. 5 g (15 mmol) of TBTEMNb and 150 mL of toluene were added to the Schlenk flask, and 2.3 g (15 mmol) of CMEN ligand was slowly added at 0°C, followed by maintaining the temperature at low temperature for 30 minutes.

혼합물을 60~70℃에서 4시간동안 가열한 후, 실온에서 밤새 교반하였다. 반응이 종료되면 용매를 제거하고, 100~120℃ @0.4 Torr 조건에서 감압 증류하여 노란색 액체를 얻었다.The mixture was heated at 60-70°C for 4 hours and then stirred at room temperature overnight. When the reaction was completed, the solvent was removed, and a yellow liquid was obtained by distillation under reduced pressure at 100-120°C @0.4 Torr.

합성예 2에 의해서 제조된 tBuN=Nb(CMEN)(EMA)의 NMR 측정 결과를 도 2에 나타내었다.The NMR measurement results of tBuN =Nb(CMEN)(EMA) prepared in Synthesis Example 2 are shown in FIG. 2.

합성예 2의 반응을 하기 반응 화학식 2로 나타내었다.The reaction of Synthesis Example 2 is shown in the following reaction formula 2.

[반응 화학식 2][Reaction Formula 2]

<합성예 3> tBuN=Nb(CMEN)(DEA) 합성<Synthesis Example 3> t BuN=Nb(CMEN)(DEA) synthesis

슈렝크 플라스크에 TBTDENb 5g(13 mmol)과 톨루엔(toluene) 150 mL를 넣고 CMEN 리간드 2.0g(13 mmol)를 0℃에서 천천히 넣어준 뒤, 30분간 저온으로 유지하였다. 5 g (13 mmol) of TBTDENb and 150 mL of toluene were added to the Schlenk flask, 2.0 g (13 mmol) of CMEN ligand was slowly added at 0°C, and the temperature was maintained at low temperature for 30 minutes.

혼합물을 60~70℃에서 4시간동안 가열한 후, 실온에서 밤새 교반하였다. 반응이 종료되면 용매를 제거하고, 110~120℃ @0.4 Torr 조건에서 감압 증류하여 노란색 액체를 얻었다.The mixture was heated at 60-70°C for 4 hours and then stirred at room temperature overnight. When the reaction was completed, the solvent was removed, and a yellow liquid was obtained by distillation under reduced pressure at 110-120°C @0.4 Torr.

합성예 3에 의해서 제조된 tBuN=Nb(CMEN)(DEA)의 NMR 측정 결과를 도 3에 나타내었다.The NMR measurement results of tBuN =Nb(CMEN)(DEA) prepared in Synthesis Example 3 are shown in FIG. 3.

합성예 3의 반응을 하기 반응 화학식 3으로 나타내었다.The reaction of Synthesis Example 3 is shown in the following reaction formula 3.

[반응 화학식 3][Reaction Formula 3]

[실험예 1] 열중량(Thermogravimetric) 및 시차열(Differential Thermal) 분석 [Experimental Example 1] Thermogravimetric and differential thermal analysis

합성예 1 내지 3에 의해서 합성된 화합물의 열적 특성을 측정하는 열중량 및 시차열 분석을 실시하여, 그 결과를 도 4 내지 6에 각각 나타내었다. Thermogravimetric and differential thermal analysis were performed to measure the thermal properties of the compounds synthesized in Synthesis Examples 1 to 3, and the results are shown in Figures 4 to 6, respectively.

분석 시 사용된 기기는 Mettler Toledo사의 TGA/DTA 1 STAR System으로 20μL 용량의 알루미나 도가니(Alumina crucible)를 사용하였다. 상기 화합물들을 10℃/분의 속도로 400℃까지 가온시키는 방법으로 진행하였으며, 200 mL/분의 속도로 아르곤(Ar) 가스를 주입하였다. The instrument used for analysis was Mettler Toledo's TGA/DTA 1 STAR System, which used an alumina crucible with a capacity of 20 μL. The above compounds were heated to 400°C at a rate of 10°C/min, and argon (Ar) gas was injected at a rate of 200 mL/min.

분석 결과, 중량이 반으로 감소하는 온도[T1/2]가 합성예 1의 화합물은 259℃, 합성예 2의 화합물은 260℃, 합성예 3의 화합물은 263℃로 측정되었다.As a result of the analysis, the temperature at which the weight is reduced by half [T 1/2 ] was measured to be 259°C for the compound in Synthesis Example 1, 260°C for the compound in Synthesis Example 2, and 263°C for the compound in Synthesis Example 3.

또한, 400℃에서의 잔류물의 양은 합성예 1의 화합물은 12%, 합성예 2의 화합물은 9.6%, 합성예 3의 화합물은 6.3%로 측정되었다.In addition, the amount of residue at 400°C was measured to be 12% for the compound in Synthesis Example 1, 9.6% for the compound in Synthesis Example 2, and 6.3% for the compound in Synthesis Example 3.

한편, 5 wt%의 중량 감소가 일어나는 온도가 합성예 1의 화합물은 192℃, 합성예 2의 화합물은 193℃, 합성예 3의 화합물은 198℃로 측정되었다.Meanwhile, the temperature at which a weight loss of 5 wt% occurred was measured to be 192°C for the compound of Synthesis Example 1, 193°C for the compound of Synthesis Example 2, and 198°C for the compound of Synthesis Example 3.

[제조예 1][Production Example 1]

본 발명의 합성예 1 내지 합성예 3에 의해 합성된 신규 니오븀 금속 전구체 및 반응물 O3를 교호로 적용하여 기판 상에 박막을 증착하였다. 본 실험에 사용된 기판은 p-형 Si 웨이퍼로서, 저항은 0.02 Ω·m이다. 증착에 앞서 p-형 Si 웨이퍼는 아세톤-에탄올-탈이온수(DI water)에 각각 10분씩 초음파 처리(Ultra sonic)하여 세척하였다. Si 웨이퍼 상에 형성된 자연 산화물 박막은 HF 10%(HF:H2O=1:9)의 용액에 10초 동안 담근 후 제거하였다. A thin film was deposited on a substrate by alternately applying the new niobium metal precursor and reactant O 3 synthesized according to Synthesis Examples 1 to 3 of the present invention. The substrate used in this experiment was a p-type Si wafer, and the resistance was 0.02 Ω·m. Prior to deposition, the p-type Si wafer was cleaned by ultrasonic treatment in acetone-ethanol-deionized water (DI water) for 10 minutes each. The native oxide thin film formed on the Si wafer was removed after being immersed in a 10% HF solution (HF:H 2 O=1:9) for 10 seconds.

기판은 150-450℃의 온도로 유지하여 준비하였고, 상기 합성예 1로 합성된 신규 니오븀 전구체는 일정한 온도로 유지된 버블러(bubbler)에서 기화시켰다. The substrate was prepared by maintaining a temperature of 150-450°C, and the new niobium precursor synthesized in Synthesis Example 1 was vaporized in a bubbler maintained at a constant temperature.

퍼지(purge)가스는 아르곤(Ar)을 공급하여 증착챔버 내 잔존하는 전구체와 반응가스를 퍼지하였으며, 아르곤의 유량은 1000 sccm으로 하였다. 반응가스로는 224g/cm3 농도의 오존(O3)을 사용하였으며, 각 반응 기체는 공압 밸브의 on/off를 조절하여 주입하고 공정 온도에서 성막하였다.As a purge gas, argon (Ar) was supplied to purge the remaining precursor and reaction gas in the deposition chamber, and the flow rate of argon was set to 1000 sccm. Ozone (O 3 ) at a concentration of 224 g/cm 3 was used as the reaction gas, and each reaction gas was injected by controlling the on/off of the pneumatic valve and formed into a film at the process temperature.

ALD 사이클은 전구체 펄스 10/15초 후, 아르곤 10초 퍼징 후, 반응물 펄스 2/5/8/10초 후, 아르곤 10초 퍼징 순서를 포함하였다. 증착챔버의 압력은 1-1.5torr로 조절하였고, 증착온도는 150-450℃로 조절하였다. The ALD cycle included a 10/15 second precursor pulse followed by a 10 second purge with argon, followed by a 2/5/8/10 second reactant pulse followed by a 10 second purge with argon. The pressure of the deposition chamber was adjusted to 1-1.5 torr, and the deposition temperature was adjusted to 150-450°C.

합성예 1 내지 합성예 3의 화합물을 전구체로 사용하여 산화 니오븀 박막이 형성됨을 확인할 수 있었다.It was confirmed that a niobium oxide thin film was formed using the compounds of Synthesis Examples 1 to 3 as precursors.

[제조예 2][Production Example 2]

본 발명의 합성예 1 내지 합성예 3에 의해 합성된 신규 니오븀 금속 전구체를 사용하여 화학기상증착법으로 니오븀 원소를 포함하는 박막을 제조하였다. 상기 합성예 1 내지 합성예 3에 의해 합성한 전구체가 포함되어 있는 전구체 개시용액(starting precursor solution)을 준비하였다. A thin film containing niobium element was manufactured by chemical vapor deposition using the new niobium metal precursor synthesized according to Synthesis Examples 1 to 3 of the present invention. A starting precursor solution containing the precursor synthesized according to Synthesis Examples 1 to 3 was prepared.

이 전구체 개시용액을 0.1cc/min의 유속으로 90-150℃의 온도가 유지되는 기화기에 전달하였다. 이렇게 기화된 전구체는 50 내지 300sccm 헬륨 캐리어 가스를 사용하여 증착챔버에 전달하였다. 반응가스로는 수소(H2)와 산소(O2)를 사용하였고, 각각 0.5L/min(0.5pm)씩의 유속으로 증착챔버에 공급하였다. 증착챔버의 압력은 1~15 torr로 조절하였고, 증착온도는 150-450℃로 조절하였다. 이와 같은 조건에서 약 15분 동안 증착공정을 수행하였다.This precursor starting solution was delivered to a vaporizer maintained at a temperature of 90-150°C at a flow rate of 0.1 cc/min. The vaporized precursor was delivered to the deposition chamber using 50 to 300 sccm helium carrier gas. Hydrogen (H 2 ) and oxygen (O 2 ) were used as reaction gases, and each was supplied to the deposition chamber at a flow rate of 0.5 L/min (0.5 pm). The pressure of the deposition chamber was adjusted to 1 to 15 torr, and the deposition temperature was adjusted to 150-450°C. The deposition process was performed for about 15 minutes under these conditions.

상술한 제조예를 통한 박막의 제조를 통해서 합성예 1 내지 합성예 3의 화합물을 전구체로 사용하여 니오븀 박막을 형성할 수 있음을 확인할 수 있었다.Through the preparation of the thin film through the above-described preparation examples, it was confirmed that a niobium thin film could be formed using the compounds of Synthesis Examples 1 to 3 as precursors.

Ta 또는 Nb 함유 전구체 및 1종 이상의 반응가스는 반응 챔버에 동시에 화학 기상 증착법, 원자층 증착법, 또는 다른 조합으로 도입될 수 있다. The Ta or Nb containing precursor and one or more reaction gases may be simultaneously introduced into the reaction chamber by chemical vapor deposition, atomic layer deposition, or other combinations.

한 예로, Ta 또는 Nb 함유 전구체는 하나의 펄스로 도입될 수 있고, 2개의 추가 금속 공급원은 개별 펄스로 함께 도입될 수 있다. 또한, 반응 챔버는 Ta 또는 Nb 함유 전구체 도입 전에 이미 반응물 종을 함유할 수도 있다. In one example, a Ta or Nb containing precursor can be introduced in one pulse and two additional metal sources can be introduced together in separate pulses. Additionally, the reaction chamber may already contain reactant species prior to introduction of the Ta or Nb containing precursors.

반응물 가스는 반응 챔버로부터 멀리 위치하는 플라즈마 시스템을 통과하여 라디칼로 분해될 수도 있다. 또한, 다른 금속 공급원이 펄스에 의해 도입되면서 Ta 또는 Nb 함유 전구체가 연속적으로 반응 챔버에 도입될 수 있다.The reactant gases may be decomposed into radicals by passing through a plasma system located away from the reaction chamber. Additionally, Ta or Nb containing precursors can be introduced into the reaction chamber continuously while other metal sources are introduced by pulses.

예를 들어, 원자층 증착 유형의 공정에서 증기상의 Ta 또는 Nb 함유 전구체가 반응 챔버에 도입되어, 여기서 적당한 기판과 접촉한 후, Ta 또는 Nb 함유 전구체는 반응기를 퍼징함으로써 반응 챔버로부터 제거될 수 있다. For example, in an atomic layer deposition type process, a Ta or Nb containing precursor in vapor phase is introduced into a reaction chamber, where it is contacted with a suitable substrate, and then the Ta or Nb containing precursor can be removed from the reaction chamber by purging the reactor. .

산소 공급원이 반응 챔버에 도입되고, 여기서 자가 제한 방식으로 흡수된 Ta 또는 Nb 함유 전구체와 반응한다. 과량의 산소 공급원은 반응 챔버를 퍼징 및/또는 탈기함으로써 반응 챔버로부터 제거될 수 있다. 원하는 필름이 Ta 또는 Nb 금속 산화물 필름인 경우, 상기 공정은 원하는 필름 두께를 얻을 때까지 반복될 수 있다.An oxygen source is introduced into the reaction chamber, where it reacts with the adsorbed Ta or Nb containing precursor in a self-limiting manner. Excess oxygen source can be removed from the reaction chamber by purging and/or degassing the reaction chamber. If the desired film is a Ta or Nb metal oxide film, the above process can be repeated until the desired film thickness is achieved.

상기의 박막 제조를 통해서, 신규 합성된 Ta 또는 Nb함유 전구체가 기존 Ta 또는 Nb 함유 전구체의 박막 증착 시의 문제점을 보완할 뿐만 아니라 CVD 뿐만 아니라 ALD에도 적용이 가능하고, 우수한 열적 안정성을 가지고 있음을 확인하였다. Through the above thin film production, the newly synthesized Ta or Nb-containing precursor not only complements the problems in thin film deposition of the existing Ta or Nb-containing precursor, but is also applicable to ALD as well as CVD, and has excellent thermal stability. Confirmed.

또한, 상기 신규 Ta 또는 Nb 함유 전구체를 통해 균일한 박막 증착이 가능하고, 이에 따른 우수한 박막 물성, 두께 및 단차 피복성을 확보할 수 있다.In addition, the novel Ta- or Nb-containing precursor enables uniform thin film deposition, thereby ensuring excellent thin film physical properties, thickness, and step coverage.

본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the claims described below rather than the detailed description above, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts are interpreted to be included in the scope of the present invention. It has to be.

Claims (8)

하기 화학식 1로 표시되고,
중량이 반으로 감소하는 온도(T1/2)가 250 ℃ 이상인,
화합물:

[화학식 1]

상기 화학식 1에서,
M은 Ta 또는 Nb이고,
R1 내지 R3은 각각 독립적으로 수소; 탄소수 1 내지 6의 선형 또는 분지형의 알킬기이다.
It is represented by the following formula 1,
The temperature at which the weight is reduced by half (T 1/2 ) is 250 ℃ or more,
compound:

[Formula 1]

In Formula 1,
M is Ta or Nb,
R 1 to R 3 are each independently hydrogen; It is a linear or branched alkyl group having 1 to 6 carbon atoms.
제1항에 있어서,
R1 내지 R3은 각각 독립적으로 메틸기, 에틸기, n-프로필기, iso- 프로필기, n-부틸기, iso-부틸기, sec-부틸기 및 tert-부틸기로 이루어진 군에서 선택되는 어느 하나인, 화합물.
According to paragraph 1,
R 1 to R 3 are each independently selected from the group consisting of methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group and tert-butyl group. , compound.
제1항에 있어서,
상기 화학식 1의 화합물은
하기 화학식 1-1 내지 1-3로 표시되는 화합물로 이루어진 군에서 선택된 어느 하나인,
화합물.

[화학식 1-1]


[화학식 1-2]


[화학식 1-3]

According to paragraph 1,
The compound of Formula 1 is
Any one selected from the group consisting of compounds represented by the following formulas 1-1 to 1-3,
compound.

[Formula 1-1]


[Formula 1-2]


[Formula 1-3]

제1항 내지 제3항 중 어느 한 항에 기재된 화합물을 포함하는, 기상 증착 전구체.
A vapor deposition precursor comprising the compound according to any one of claims 1 to 3.
제4항의 기상 증착 전구체를 챔버에 도입하는 단계를 포함하는, 박막의 제조 방법.
A method of producing a thin film, comprising introducing the vapor deposition precursor of claim 4 into a chamber.
제5항에 있어서,
상기 박막의 제조 방법은 원자층 증착법(Atomic Layer Deposition, ALD) 또는 화학 기상 증착법(Chemical Vapor Deposition, CVD)을 포함하는, 박막의 제조 방법.
According to clause 5,
The method of manufacturing the thin film includes Atomic Layer Deposition (ALD) or Chemical Vapor Deposition (CVD).
제6항에 있어서,
반응가스로 수소(H2), 산소(O) 원자 포함 화합물 및 질소(N) 원자 포함 화합물 중 어느 하나 이상을 주입하는 단계를 더 포함하는, 박막의 제조 방법.
According to clause 6,
A method for producing a thin film, further comprising the step of injecting at least one of hydrogen (H 2 ), a compound containing an oxygen (O) atom, and a compound containing a nitrogen (N) atom as a reaction gas.
제7항에 있어서,
상기 반응가스는 산소(O2), 오존(O3), 물(H2O), 과산화수소(H2O2), 질소(N2), 암모니아(NH3) 및 히드라진(N2H4) 중에서 선택된 어느 하나 이상인 것인, 박막의 제조 방법.
In clause 7,
The reaction gases include oxygen (O 2 ), ozone (O 3 ), water (H 2 O), hydrogen peroxide (H 2 O 2 ), nitrogen (N 2 ), ammonia (NH 3 ), and hydrazine (N 2 H 4 ). A method of producing a thin film, which is at least one selected from among.
KR1020210131555A 2021-10-05 2021-10-05 Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same KR102682682B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210131555A KR102682682B1 (en) 2021-10-05 2021-10-05 Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210131555A KR102682682B1 (en) 2021-10-05 2021-10-05 Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same

Publications (2)

Publication Number Publication Date
KR20230048755A KR20230048755A (en) 2023-04-12
KR102682682B1 true KR102682682B1 (en) 2024-07-09

Family

ID=85984110

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210131555A KR102682682B1 (en) 2021-10-05 2021-10-05 Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same

Country Status (1)

Country Link
KR (1) KR102682682B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9786671B2 (en) 2015-04-16 2017-10-10 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Niobium-containing film forming compositions and vapor deposition of niobium-containing films
JP6803460B2 (en) * 2016-09-08 2020-12-23 ユーピー ケミカル カンパニー リミテッド Group 5 metal compound, its production method, a precursor composition for film deposition containing it, and a film deposition method using the same.
US10364259B2 (en) * 2016-12-30 2019-07-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same

Also Published As

Publication number Publication date
KR20230048755A (en) 2023-04-12

Similar Documents

Publication Publication Date Title
JP7072511B2 (en) Organometallic compounds
JP6596737B2 (en) Metal complexes containing amidoimine ligands
JP5654439B2 (en) Metal enolate precursors for depositing metal-containing films
US9416443B2 (en) Method for the deposition of a ruthenium containing film using arene diazadiene ruthenium(0) precursors
KR20140067147A (en) Tungsten diazabutadiene precursors, their synthesis, and their use for tungsten containing film depositions
KR101841444B1 (en) Group 5 metal compounds, preparing methods thereof, precursor compositions including the same for film deposition, and depositing methods of film using the same
JP6193260B2 (en) Nickel allyl amidinate precursor for nickel-containing film deposition
EP2451989A2 (en) Bis-ketoiminate copper precursors for deposition of copper-containing films
KR102504310B1 (en) Cobalt compounds, precursor composition including the same, and preparing method of thin film using the same
KR20150101318A (en) Precursor compositions for forming zirconium-containing film and method of forming zirconium-containing film using them as precursors
KR101772478B1 (en) Organic group 13 precursor and method for depositing thin film using thereof
TW201311702A (en) Heteroleptic (allyl) (pyrroles-2-aldiminate) metal-containing precursors, their synthesis and vapor deposition thereof to deposit metal-containing films
KR101822884B1 (en) Depositing method of tungsten-containing film using tungsten compound, and precursor composition including the same for tungsten-containing film deposition
KR102123331B1 (en) Cobalt precursors, preparation method thereof and process for the formation of thin films using the same
KR101546319B1 (en) Tungsten precursors and the method for depositing tungsten-containg films
KR20210058370A (en) Tungsten Compound, Method for Preparation of the Same, and Tungsten-Containing Thin Film, Method of Manufacturing the Same
KR102682682B1 (en) Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same
KR102557282B1 (en) Novel compounds, precursor composition including the same, and preparing method of thin film using the same
KR20210058289A (en) Tungsten Precursor, Method for Preparation of the Same, and Tungsten-Containing Thin Film, Method of Manufacturing the Same
KR102472597B1 (en) Group 4 organometallic precursor compound into which η6 borata benzene ligand is introduced, a method for manufacturing the same, and a method for forming a thin film using the same
KR102211654B1 (en) A tungsten precursor compound and tungsten containing thin film prepared by using the same
US20220356198A1 (en) Method for producing organometallic compound and thin film fabricated using organometallic compound obtained thereby
TWI593820B (en) Preparation of lanthanide-containing precursors and deposition of lanthanide-containing films
JP4289141B2 (en) ORGANIC SILICON COMPOUND, SOLUTION RAW MATERIAL, AND METHOD FOR FORMING SILICON-CONTAINING FILM USING THE COMPOUND
JP2024117104A (en) Thin film forming material, thin film and method for producing thin film

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant