KR20230048731A - Method of plastic degradation - Google Patents

Method of plastic degradation Download PDF

Info

Publication number
KR20230048731A
KR20230048731A KR1020210131514A KR20210131514A KR20230048731A KR 20230048731 A KR20230048731 A KR 20230048731A KR 1020210131514 A KR1020210131514 A KR 1020210131514A KR 20210131514 A KR20210131514 A KR 20210131514A KR 20230048731 A KR20230048731 A KR 20230048731A
Authority
KR
South Korea
Prior art keywords
plasma
treatment
plastic
present
confirmed
Prior art date
Application number
KR1020210131514A
Other languages
Korean (ko)
Other versions
KR102575814B1 (en
Inventor
이미자
김현영
서우덕
Original Assignee
대한민국(농촌진흥청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(농촌진흥청장) filed Critical 대한민국(농촌진흥청장)
Priority to KR1020210131514A priority Critical patent/KR102575814B1/en
Publication of KR20230048731A publication Critical patent/KR20230048731A/en
Application granted granted Critical
Publication of KR102575814B1 publication Critical patent/KR102575814B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/50Destroying solid waste or transforming solid waste into something useful or harmless involving radiation, e.g. electro-magnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32348Dielectric barrier discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B2101/00Type of solid waste
    • B09B2101/75Plastic waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B2017/001Pretreating the materials before recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

The present invention provides: a method for promoting the decomposition of plastic, comprising a step of treating plastic with plasma; and the plastic decomposed by the method. By confirming that the peaks corresponding to a carbonyl group peak and an ether peak increase through plasma treatment through the method of the present invention, it is confirmed that plasma can be used as a pretreatment method to promote decomposition of waste vinyl.

Description

플라스틱 분해 방법{Method of plastic degradation}Method of plastic degradation {Method of plastic degradation}

본 발명은 플라스틱에 플라즈마를 처리하는 단계를 포함하는 플라스틱 분해 촉진 방법; 및 상기 방법에 의해 분해된 플라스틱에 관한 것이다.The present invention relates to a method for accelerating decomposition of plastics, comprising the step of treating plastics with plasma; and plastics decomposed by the method.

농업용 필름은 토양이나 온실을 덮거나 목초와 건초를 감싸 보호하기 위한 용도로 사용되는 것이나 농업 수준이 향상됨에 따라 사용량이 증가하고 있다. 전 세계 농업용 필름 시장은 2016년 78억 2,000만 달러에서 연평균 성장률 7.18%로 증가하여, 2021년에는 110억 6,000만 달러에 이를 것으로 전망하고 있으며, 우리나라에서는 2017년 7,300만 달러에서 연평균 성장률 6.0%로 증가하여, 2022년에는 9,840만 달러에 이를 것으로 전망되고 있다(농업용 필름 시장, 연구개발특구기술 글로벌 시장동향 보고서 2018). 이러한 농업용 필름 중, 10% 이상이 토양을 덮기 위한 멀칭 필름(mulching film)으로서 사용되며, 그 재질은 비분해성의 폴리에틸렌이 주류이다. 멀칭 필름은 이의 역할이 종료되면 사용된 필름을 제거하기 위한 노력이 많이 소요됨에 따라, 최근 폐비닐 분해 촉진에 관한 연구가 활발히 진행되고 있으나, 안정한 구조와 높은 분자량, 산화 및 가수분해가 가능한 카보닐 그룹과 같은 결합의 부재, 높은 소수성과 같은 여러 이유로 인해 미생물에 의한 생분해가 어렵다. Agricultural films are used to cover soil or greenhouses or to protect pastures and hay, but their usage is increasing as the level of agriculture improves. The global agricultural film market is expected to increase at an average annual growth rate of 7.18% from $7.82 billion in 2016 and reach $11.06 billion in 2021. It is expected to increase and reach $ 98.4 million in 2022 (agricultural film market, research and development special zone technology global market trend report 2018). Among these agricultural films, more than 10% is used as a mulching film for covering soil, and non-degradable polyethylene is the main material. As the mulching film takes a lot of effort to remove the used film once its role is finished, research on promoting the decomposition of waste vinyl has been actively conducted recently, but carbonyl with stable structure, high molecular weight, and oxidation and hydrolysis Biodegradation by microorganisms is difficult due to various reasons such as lack of group-like bonds and high hydrophobicity.

이러한 문제를 해결하기 위해서는, UV, 열, 강산과 같은 물리적, 화학적 전처리가 필수적이다. 일반적으로 폴리에틸렌 생분해 기작은 고분자 사슬 내 카보닐 그룹의 생성에 의해 시작되는 것으로, 즉, 상기 고분자 내에 미생물 효소에 의해 분해 가능한 카보닐 그룹이 형성되어야 한다. 카보닐 그룹이 생성되면 monooxygenase에 의해 알코올 그룹으로 전환되고, 이후 최종적으로는 알데하이드 그룹으로 산화되어 분해된다.In order to solve these problems, physical and chemical pretreatments such as UV, heat, and strong acid are essential. In general, the biodegradation mechanism of polyethylene is initiated by the generation of a carbonyl group in a polymer chain, that is, a carbonyl group degradable by a microbial enzyme must be formed in the polymer. When a carbonyl group is generated, it is converted to an alcohol group by monooxygenase and finally oxidized to an aldehyde group.

그러나 수거되지 않고 불법 매립된 농업용 폐비닐은 거의 분해가 되지 않으며, 수분과 공기의 유통을 차단하고 토양 내 미생물들의 흐름을 막아 토양을 더욱 황폐화시키게 된다. 또한, 불법적인 소각 때는 산불의 위험에다 다이옥신, 염소 및 염화수소가스 등을 배출해 대기오염을 유발시켜 농촌 환경 훼손의 원인이 되고 있다. However, agricultural waste vinyl that is illegally landfilled without being collected is hardly decomposed, blocks the flow of moisture and air, and blocks the flow of microorganisms in the soil, further devastation of the soil. In addition, illegal incineration causes air pollution by emitting dioxin, chlorine and hydrogen chloride gas, in addition to the risk of forest fire. It is causing damage to the rural environment.

한편, 우리나라는 2020년 관계부처가 합동으로 화이트바이오산업 활성화전략을 내놓은 바 있다. 이는 바이오기술이 플라스틱산업에 접목된 것으로 식물 등 재생 가능한 자원을 이용하거나 미생물, 효소, 촉매 등을 활용해 기존 플라스틱산업의 소재를 바이오기반으로 대체하는 산업이다. 화이트바이오제품은 생산과정에 이산화탄소 배출량도 비교적 적고, 원료인 식물 등 바이오매스 재배과정에 이산화탄소를 흡수해 탄소중립에 기여하기 때문에 환경오염을 해결하는 대안으로 세계적인 관심이 높아지고 있다. 농업용으로는 생분해성 멀칭 필름이 대표적이며, 최근에는 필수 농자재로써 사용되고 있다. 그러나, 이러한 생분해성 멀칭 필름이 제대로 되지 않아 조기분해, 약한 강도 등으로 인한 신뢰도 하락 및 비싼 가격으로 인해 농가보급이 쉽게 확대되지 못하고 있다. 따라서, 생분해성 멀칭 필름의 기술 개발과는 별도로, 기존 멀칭 필름에 대한 생분해성으로의 표면 개질에 대한 연구가 필요한 실정이다.Meanwhile, in Korea, related ministries jointly put forward a strategy to revitalize the white bio industry in 2020. This is an industry in which biotechnology is grafted onto the plastics industry, using renewable resources such as plants or using microorganisms, enzymes, and catalysts to replace materials in the existing plastics industry with bio-based ones. White bio products emit relatively little carbon dioxide in the production process and contribute to carbon neutrality by absorbing carbon dioxide in the process of growing biomass, such as raw materials such as plants, so global interest is increasing as an alternative solution to environmental pollution. For agricultural use, biodegradable mulching film is representative, and recently it has been used as an essential agricultural material. However, this biodegradable mulching film is not properly distributed to farms due to early decomposition, low reliability due to weak strength, and high price. Therefore, apart from technology development of biodegradable mulching films, research on surface modification to biodegradability of existing mulching films is required.

이러한 배경 하에, 본 발명자들은 친환경적 농업용 폐비닐을 분해를 위해 연구 노력한 결과, 오염된 공기, 물, 토양의 정화와 같은 환경 개선 분야에서도 응용되고 있는 플라즈마를 처리한 농업용 폐비닐의 카보닐 그룹 증가함에 따라 미생물 효소에 의한 분해가 가능하게 됨을 확인한 결과, 플라즈마 처리가 폐비닐 분해 촉진을 위한 전처리 방법으로 사용할 수 있음을 확인함으로써, 본 발명을 완성하였다.Under this background, the present inventors have made efforts to decompose eco-friendly agricultural waste vinyl, and as a result, the carbonyl group of agricultural waste vinyl treated with plasma, which is also applied in the field of environmental improvement such as the purification of polluted air, water, and soil, increases. As a result of confirming that degradation by microbial enzymes is possible, the present invention was completed by confirming that plasma treatment can be used as a pretreatment method for promoting decomposition of waste vinyl.

본 발명의 하나의 목적은 플라스틱에 플라즈마를 처리하는 단계를 포함하는 플라스틱 분해 촉진 방법을 제공하는 것이다.One object of the present invention is to provide a method for accelerating decomposition of plastics comprising the step of treating plastics with plasma.

본 발명의 다른 하나의 목적은 상기 방법에 의해 분해된 플라스틱을 제공하는 것이다.Another object of the present invention is to provide a plastic degraded by the above method.

이를 구체적으로 설명하면 다음과 같다. 한편, 본 발명에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 발명에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.A detailed description of this is as follows. Meanwhile, each description and embodiment disclosed in the present invention may also be applied to each other description and embodiment. That is, all combinations of the various elements disclosed herein fall within the scope of the present invention. In addition, it cannot be seen that the scope of the present invention is limited by the specific descriptions described below.

상기 목적을 달성하기 위한 본 발명의 하나의 양태는, 플라스틱에 플라즈마를 처리하는 단계를 포함하는 플라스틱 분해 촉진 방법을 제공한다.One aspect of the present invention for achieving the above object provides a plastic decomposition acceleration method comprising the step of treating plastic with plasma.

본 발명의 용어, "플라스틱"은 열 또는 압력에 의하여 성형할 수 있는 유기물 기반 고분자 물질 및 그 혼합물을 이르는 용어로, 일상생활에 널리 사용하는 필름, 합성섬유, 병, 튜브, 장난감에서 고내열, 고강도 재료에 이르기까지 다양한 용도로 사용한다. 본 발명에 있어서, 상기 플라스틱은 농업용 비닐로 사용된 저밀도 폴리에틸렌(Low Density PolyEthylene, LPDE)인 폐플라스틱을 의미할 수 있으며, 보다 구체적으로, 사용후 농업용 멀칭(Mulching) 필름을 의미할 수 있다. As used herein, the term "plastic" refers to organic-based polymeric materials and mixtures thereof that can be molded by heat or pressure, and is widely used in daily life, such as films, synthetic fibers, bottles, tubes, toys, high heat resistance, It is used for various purposes ranging from high-strength materials. In the present invention, the plastic may refer to waste plastic, which is Low Density PolyEthylene (LPDE) used as agricultural vinyl, and more specifically, may refer to a post-use agricultural mulching film.

상기 용어, "멀칭(Mulching)"은 농작물을 재배할 때 경지토양의 표면을 덮어주는 일을 의미하며, 예전에는 볏짚, 보릿짚, 목초 등을 사용하였으나, 오늘날은 폴리에틸렌 필름을 이용한다. 상기 폴리에틸렌 필름을 멀칭 필름 혹은 멀칭 비닐이라고도 하며, 노지에서 키우는 작물 재배에 이용될 뿐만 아니라, 하우스 등의 원예 시설에서도 이용될 수 있다. 본 발명에 있어서, 상기 멀칭 필름은 노지용 멀칭 필름을 의미할 수 있으나, 이에 제한되는 것은 아니다.The term "mulching" refers to covering the surface of cultivated soil when cultivating crops. In the past, rice straw, barley straw, grass, etc. were used, but today polyethylene film is used. The polyethylene film is also referred to as a mulching film or mulching vinyl, and can be used not only for growing crops in the open field, but also for horticultural facilities such as houses. In the present invention, the mulching film may mean a mulching film for open fields, but is not limited thereto.

본 발명의 용어, "플라즈마"는 고체, 액체, 기체 외 제4의 물질 상태라고 알려져 있는 물질의 형태로써, 저온 플라즈마 (혹은 비평형 플라즈마)를 의미할 수 있다. 본 발명에 있어서, 상기 플라즈마는 유전체 장벽 방전 (Dielectric Barrier Discharge, DBD)방식에 의한 것으로, 구체적으로 유전체 양면의 전극에 전기를 통과시켜 플라즈마 이온을 생성시키는 전기적 특성을 이용할 수 있다. 상기 DBD 방식은 대기압(상압)과 상온에서 방전 가능하기 때문에 산업체에서 널리 이용되고 있으며, 물질 표면 처리의 경우 거의 모든 처리가 DBD 방식을 통해 이뤄질 수 있다.As used herein, the term "plasma" is a form of material known as the fourth state of matter other than solid, liquid, and gas, and may mean low-temperature plasma (or non-equilibrium plasma). In the present invention, the plasma is by a dielectric barrier discharge (DBD) method, and specifically, it is possible to use the electrical property of generating plasma ions by passing electricity through electrodes on both sides of the dielectric. The DBD method is widely used in industry because it can be discharged at atmospheric pressure (normal pressure) and room temperature, and in the case of material surface treatment, almost all treatments can be performed through the DBD method.

본 발명의 용어, "플라스틱 분해"는 구체적으로 폐플라스틱 분해를 의미하며, 보다 구체적으로 농업용 멀칭 필름 분해를 의미하는 것이나, 이에 제한되는 것은 아니다. 본 발명의 목적상, 상기 플라스틱 분해 방법은 플라즈마 처리에 의한 플라스틱의 표면 개질을 통해 생분해성을 높여주는 것을 의미할 수 있다.As used herein, the term "plastic decomposition" specifically refers to waste plastic decomposition, and more specifically refers to decomposition of agricultural mulching films, but is not limited thereto. For the purpose of the present invention, the plastic decomposition method may mean increasing biodegradability through surface modification of plastic by plasma treatment.

본 발명의 일 실시예에서는, 농업용 멀칭 필름에 대해 플라즈마 방전수 처리에 의한 카보닐 그룹 생성 여부를 확인한 결과, 상기 방전수 처리 전에 비해 처리 후의 필름에서 1,750 cm-1 부근 (C=O carbonyl peak) 및 1,100 cm-1 부근 (C-O, ether peak)에서 흡광도가 증가하였음을 확인하였다(도 3). In one embodiment of the present invention, as a result of confirming whether carbonyl groups are generated by plasma discharge water treatment for agricultural mulching films, 1,750 cm -1 in the film after treatment compared to before the discharge water treatment (C = O carbonyl peak) And it was confirmed that the absorbance increased around 1,100 cm -1 (CO, ether peak) (FIG. 3).

또한, 본 발명의 일 실시예에서는, 농업용 멀칭 필름에 대해 플라즈마 직접 처리에 의한 카보닐 그룹 생성 여부를 확인한 결과, 마찬가지로 상기 플라즈마 직접 처리 전에 비해 처리 후의 필름에서 시간의존적으로 1,750 cm-1 부근 (C=O carbonyl peak) 및 1,100 cm-1 부근 (C-O, ether peak)에서 흡광도가 증가하였음을 확인하였다(도 4). In addition, in one embodiment of the present invention, as a result of confirming whether or not carbonyl groups are generated by direct plasma treatment for agricultural mulching films, similarly, compared to before the direct plasma treatment, the film after treatment has a time-dependent close to 1,750 cm -1 (C = O carbonyl peak) and around 1,100 cm -1 (CO, ether peak), it was confirmed that the absorbance increased (FIG. 4).

이를 통해, 플라즈마 처리에 의해 사용 후 농업용 멀칭 필름(폐플라스틱)의 표면이 미생물 생분해에 유리하도록 개질되었음을 확인하였다.Through this, it was confirmed that the surface of the agricultural mulching film (waste plastic) was modified to be advantageous for microbial biodegradation after use by plasma treatment.

상기 목적을 달성하기 위한 본 발명의 다른 하나의 양태는, 플라스틱에 플라즈마를 처리하는 단계를 포함하는 플라스틱 분해 촉진 방법에 의해 분해된 플라스틱을 제공한다.Another aspect of the present invention for achieving the above object provides a plastic degraded by a method for accelerating plastic decomposition, which includes treating the plastic with plasma.

이 때, 상기 "플라스틱", "플라즈마" 및 "플라스틱 분해"는 상술한 바와 같다.At this time, the "plastic", "plasma" and "plastic decomposition" are as described above.

본 발명의 방법으로 처리된 농업용 폐비닐의 카보닐 그룹 증가함에 따라 미생물 효소에 의한 분해가 가능하게 됨을 확인하였으며, 표면유전체격벽방전 플라즈마는 폐비닐 분해 촉진을 위한 전처리 방법으로 유용하게 활용될 수 있다.It was confirmed that decomposition by microbial enzymes becomes possible as the carbonyl group of agricultural waste vinyl treated by the method of the present invention increases, and surface dielectric barrier discharge plasma can be usefully used as a pretreatment method to promote decomposition of waste vinyl. .

도 1은 플라즈마 운전 조건 및 플라즈마 장치의 활성종 특성을 분석한 결과를 나타낸 그래프이다.
도 2는 무처리 멀칭 필름의 사용 전후의 FT-IR 분석 결과를 나타낸 그래프이다.
도 3A는 플라즈마 방전수(pH3.4) 및 산성수(pH3.0)에 저장한 멀칭 필름의 FT-IR 분석 결과를 나타낸 그래프이다.
도 4는 시간별 플라즈마 직접 처리에 의한 멀칭 필름의 FT-IR 분석 결과를 나타낸 그래프이다.
도 5은 무처리, 플라즈마 방전수 처리 및 플라즈마 직접 처리에 의한 카보닐 인덱스(Ico)를 비교 분석한 그래프이다.
1 is a graph showing the results of analyzing plasma operating conditions and active species characteristics of a plasma device.
Figure 2 is a graph showing the results of FT-IR analysis before and after using the untreated mulching film.
3A is a graph showing the results of FT-IR analysis of mulching films stored in plasma discharge water (pH 3.4) and acidic water (pH 3.0).
4 is a graph showing the results of FT-IR analysis of mulching films by direct plasma treatment over time.
5 is a graph comparing and analyzing the carbonyl index (Ico) by non-treatment, plasma discharge water treatment, and plasma direct treatment.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These examples are intended to explain the present invention in more detail, and the scope of the present invention is not limited by these examples.

실험예 1. 플라즈마 방전수 제조Experimental Example 1. Preparation of Plasma Discharge Water

먼저, 표면 유전체 격벽 방전(Surface Dielectric Barrier Discharge, SDBD)을 이용한 플라즈마 처리 방전수를 제조하였다. First, plasma treated discharge water using surface dielectric barrier discharge (SDBD) was prepared.

구체적으로, SDBD 대기압 플라즈마로 수표면에서 20분간 방전시켜 제조한 플라즈마 방전수를 희석하여 pH 3.4으로 준비하였고, 사용 전 및 사용 후 멀칭용 필름을 각각의 플라즈마 방전수에 6일 동안 저장하였다. 이때, 플라즈마 방전수의 비교예로서 pH 3.0의 산성용액을 사용하였으며, 마찬가지로 사용 전 및 사용 후 멀칭용 필름을 각각의 산성용액에 6일동안 저장하여 비교하였다. 상기 멀칭용 필름은 실제 농가에서 참깨용 및 콩용으로 5개월 동안 밭에 멀칭하여 사용한 것을 사용하였다. 상세한 시험 재료 및 시료 명칭은 하기 표 1에 나타내었다.Specifically, plasma discharge water prepared by discharging for 20 minutes on the water surface with SDBD atmospheric pressure plasma was diluted and prepared to pH 3.4, and mulching films were stored in each plasma discharge water for 6 days before and after use. At this time, an acidic solution of pH 3.0 was used as a comparative example of plasma discharge water, and similarly, mulching films before and after use were stored in each acidic solution for 6 days and compared. The mulching film was used by mulching in the field for 5 months for sesame and soybeans in actual farms. Detailed test materials and sample names are shown in Table 1 below.

번호number 필름종류film type 비닐두께(mm)Vinyl thickness (mm) 산성수 처리acid water treatment 플라즈마 방전수 처리Plasma discharge water treatment 1One 참깨Sesame 0.0180.018 A1A1 D1D1 22 옥수수corner 0.0390.039 A2A2 D2D2 33 bean 0.0330.033 A3A3 D3D3 44 bean 0.0350.035 A4A4 D4D4 55 참깨-사용후Sesame - after use 0.0180.018 A5A5 D5D5 66 옥수수-사용후corn - after 0.0390.039 A6A6 D6D6 77 콩-사용후Beans - After 0.0350.035 A7A7 D7D7

실험예 2. 플라즈마 직접 처리Experimental Example 2. Plasma direct treatment

플라즈마 직접 처리는 상기와 같이 SDBD 대기압 플라즈마를 이용하여 상압, 상온에서 110W로 20, 40 및 60분 동안 멀칭용 필름에 직접 표면 처리하였다. Plasma direct treatment was performed on the surface of the mulching film for 20, 40, and 60 minutes at atmospheric pressure and room temperature at 110 W using SDBD atmospheric pressure plasma as described above.

구체적으로, 플라즈마 장치를 20분 동안 방전하는 운전 조건으로 처리하였으며, 각 시료에 대해 10분간의 텀을 두었고, 10분이 지나면 바로 재가동하는 방식으로 진행하였다. Specifically, the plasma device was treated under an operating condition of discharging for 20 minutes, a 10-minute period was set for each sample, and the operation was performed immediately after 10 minutes.

플라즈마 직접 처리에 의한 상기 멀칭 필름 표면의 기능기 변화는 FT-IR 분석을 통해 확인하였고, 상기 분석은 5회 반복하여 실시하였다. 플라즈마 직접 처리 대상은 상기 표 1 중, 시료 번호 1, 5 및 7에 대해 실시하였으며, 각각 20, 40 및 60 분 동안 처리하였다. 상세한 시료 명칭은 하기 표 2에 나타내었다.The functional group change on the surface of the mulching film by direct plasma treatment was confirmed through FT-IR analysis, and the analysis was repeated 5 times. Plasma direct treatment was performed on sample Nos. 1, 5, and 7 in Table 1, and was treated for 20, 40, and 60 minutes, respectively. Detailed sample names are shown in Table 2 below.

번호number 플라즈마 처리 시간(분)Plasma treatment time (minutes) 2020 4040 6060 1One P20-1P20-1 P40-1P40-1 P60-1P60-1 55 P20-5P20-5 P40-5P40-5 P60-5P60-5 77 P20-7P20-7 P40-7P40-7 P60-7P60-7

또한, FT-IR의 1,740 cm-1과 1,835 cm-1에서의 absorbance 측정을 통해 carbonyl index(Ico)를 분석하였으며, 이의 식은 다음과 같다.In addition, the carbonyl index (Ico) was analyzed through absorbance measurement at 1,740 cm -1 and 1,835 cm -1 of FT-IR, and its formula is as follows.

Ico = [A(1740)-A(1835)]/(0.008*t)Ico = [A(1740)-A(1835)]/(0.008*t)

A: absorbance, t: timeA: absorbance, t: time

실험예 3. 멀칭 필름의 화학적 특성 분석Experimental Example 3. Chemical Characteristics Analysis of Mulching Film

본 발명에서 사용한 멀칭 필름의 화학적 특성을 알아보기 위하여 FT-IR 및 카보닐 등에 대한 피크를 분석한 결과를, 하기 표 3에 나타내었다.In order to examine the chemical properties of the mulching film used in the present invention, the results of peak analysis for FT-IR and carbonyl are shown in Table 3 below.

Wavenumbers(cm-1)Wavenumbers (cm -1 ) Peak peak 1,740 및 1,8351,740 and 1,835 Carbonyl index (Ico) Carbonyl index (Ico) 1470.461470.46 CH2 bending peak CH2 bending peak 1234.221234.22 C-O groupC-O group 909 및 2,020909 and 2020 vinyl index(Iv)vinyl index (IV)

실험예 4. 플라즈마 장치의 활성종 특성 분석Experimental Example 4. Analysis of Active Species Characteristics of Plasma Device

Gas analyzer를 사용해 챔버에 설치된 가스 포트(gas port)로 가스를 샘플링하여 플라즈마 발생 부근의 활성종을 조사하였으며, 활성종 발생 농도는 플라즈마 노출 시간에 따라 나타내었다. Active species in the vicinity of plasma generation were investigated by sampling gas through a gas port installed in the chamber using a gas analyzer, and the concentration of active species was expressed according to the plasma exposure time.

그 결과, 도 1에 나타난 바와 같이, 오존(O3), 일산화질소(NO) 및 이산화질소(NO2) 가 검출되었으며, 이때, 상기 O3 및 NOx는 각각 CO physics CLD60 및 Anseros Ozomat GM professional를 사용하여 측정하였다. 이들의 최대 발생 농도는 각각 465 ppm, 486 ppm 및 407 ppm으로 나타났으나, O3는 반감기가 짧아 금방 분해되었음을 확인하였다.As a result, as shown in FIG. 1, ozone (O 3 ), nitrogen monoxide (NO), and nitrogen dioxide (NO 2 ) were detected. At this time, the O 3 and NOx were detected using CO physics CLD60 and Anseros Ozomat GM professional, respectively. was measured. Their maximum concentrations were 465 ppm, 486 ppm and 407 ppm, respectively, but it was confirmed that O 3 was quickly decomposed due to its short half-life.

실시예 1. 무처리 필름의 FT-IR 분석Example 1. FT-IR analysis of untreated film

아무런 처리가 되지 않은 대조군 필름의 사용 전 및 사용 후 FT-IR 비교 분석을 통해, 고분자 내에 미생물 효소에 의해 분해 가능한 카보닐 그룹 생성 여부를 확인하기 위해, C1, C2, C4, C5, C6 및 C7의 흡광도를 확인하였다.C1, C2, C4, C5, C6 and C7 to determine whether carbonyl groups degradable by microbial enzymes are generated in the polymer through comparative FT-IR analysis before and after use of the control film without any treatment. The absorbance of was confirmed.

그 결과, 도 2에 나타난 바와 같이, 사용 전에 비해 사용 후의 필름에서 1,750 cm-1 부근 (C=O carbonyl peak) 및 1,100 cm-1 부근 (C-O, ether peak)에서 흡광도가 증가하였음을 확인하였다. As a result, as shown in FIG. 2, it was confirmed that the absorbance increased at around 1,750 cm -1 (C=O carbonyl peak) and around 1,100 cm -1 (CO, ether peak) in the film after use compared to before use.

따라서, 상기 필름을 실제 사용하는 동안의 물리적/화학적 변화로 인해 미생물 생분해에 유리한 표면 개질이 발생하였음 확인하였다. Therefore, it was confirmed that surface modification favorable to microbial biodegradation occurred due to physical/chemical changes during actual use of the film.

실시예 2. 플라즈마 방전수 처리(산 처리) 필름의 FT-IR 분석Example 2. FT-IR analysis of plasma discharge water treatment (acid treatment) film

산 처리 수단으로서 사용한 플라즈마 방전수 처리에 의한 카보닐 그룹 생성 여부를 확인하기 위해, 상기 실험예 1에서 제조한 플라즈마 방전수(pH 3.4)에 6일간 저장한 멀칭 필름의 사용 전후 D1, D2, D4, D5, D6 및 D7의 FT-IR 분석을 실시하였다. 또한, 비교예로서 산성수(pH 3.0)에 6일간 저장한 A1, A2, A4, A5, A6 및 A7의 FT-IR 분석을 실시하여 비교하였다.D1, D2, D4 before and after use of the mulching film stored in the plasma discharge water (pH 3.4) prepared in Experimental Example 1 for 6 days in order to check whether carbonyl groups are generated by the plasma discharge water treatment used as an acid treatment means. , FT-IR analysis of D5, D6 and D7 was performed. In addition, as a comparative example, FT-IR analysis of A1, A2, A4, A5, A6 and A7 stored in acidic water (pH 3.0) for 6 days was performed and compared.

그 결과, 도 3A 및 도 3B에 나타난 바와 같이, 멀칭 필름을 사용하기 전에 비해 사용한 후 필름의 1,750 cm-1 부근 (C=O carbonyl peak) 및 1,100 cm-1 부근 (C-O, ether peak)에서 흡광도가 증가하였음을 확인하였으며, 시료에 따라 산성수/방전수 처리에 대한 카보닐 그룹 생성의 차이를 확인하였다.As a result, as shown in FIGS. 3A and 3B, absorbance at around 1,750 cm -1 (C = O carbonyl peak) and around 1,100 cm -1 (CO, ether peak) after using the mulching film compared to before using it. It was confirmed that was increased, and a difference in carbonyl group generation for acidic water/discharge water treatment was confirmed depending on the sample.

따라서, 플라즈마 방전수 처리를 통해 미생물 생분해에 유리한 표면 개질이 발생하였음 확인하였다. Therefore, it was confirmed that surface modification favorable to microbial biodegradation occurred through plasma discharge water treatment.

실시예 3. 플라즈마 직접 처리 필름의 FT-IR 분석Example 3. FT-IR analysis of plasma direct treated films

플라즈마 직접 처리에 의한 카보닐 그룹 생성 여부를 확인하기 위해, SDBD 대기압 플라즈마를 이용하여 상압, 상온에서 110W로 20, 40 및 60분 동안 멀칭용 필름에 직접 표면 처리하고 FT-IR 분석을 실시하였다.In order to confirm whether or not carbonyl groups were generated by direct plasma treatment, FT-IR analysis was performed after direct surface treatment of the mulching film at 110 W at normal pressure and room temperature for 20, 40, and 60 minutes using SDBD atmospheric pressure plasma.

그 결과, 도 4에 나타난 바와 같이, 각 시료별 시간의존적으로 1,750 cm-1 부근 (C=O carbonyl peak) 및 1,100 cm-1 부근 (C-O, ether peak)에서 흡광도가 증가하였음을 확인하였다.As a result, as shown in FIG. 4, it was confirmed that the absorbance increased at around 1,750 cm -1 (C=O carbonyl peak) and around 1,100 cm -1 (CO, ether peak) in a time-dependent manner for each sample.

따라서, 플라즈마 직접 처리를 통해 미생물 생분해에 유리한 표면 개질이 발생하였음 확인하였다. Therefore, it was confirmed that surface modification favorable to microbial biodegradation occurred through direct plasma treatment.

아울러, 상기 실시예 1 내지 3에서 확인한 FT-IR의 1,740 cm-1과 1,835 cm-1에서의 흡광도를 이용하여 카보닐 인덱스(Ico)를 비교 분석하였다.In addition, the carbonyl index (Ico) was comparatively analyzed using the absorbances at 1,740 cm -1 and 1,835 cm -1 of FT-IR confirmed in Examples 1 to 3.

그 결과, 도 5에 나타난 바와 같이, 멀칭 필름 사용 전 카보닐 인덱스는 플라즈마 처리 방전수에서 가장 높았으며, 무처리 대비 7배 이상, 산성수 대비 5배 이상, 60분 간 플라즈마 직접 처리에 대비해서도 2배 이상 현저히 우수함을 확인하였다. 멀칭 필름 사용 후 카보닐 인덱스는 플라즈마 직접 처리에서 높은 수치를 확인하였다.As a result, as shown in FIG. 5, the carbonyl index before using the mulching film was the highest in the plasma treated discharge water, 7 times more than untreated, 5 times more than acidic water, in preparation for direct plasma treatment for 60 minutes. It was also confirmed that it was significantly better than 2 times. After using the mulching film, the carbonyl index was confirmed to be high in direct plasma treatment.

종합하면, 플라즈마 처리를 통해 카보닐 그룹 피크 및 에테르 피크(ether peak)에 해당하는 피크가 증가함을 확인함으로써, 플라즈마는 폐비닐 분해 촉진을 위한 전처리 방법으로 사용할 수 있음을 확인하였다.In summary, it was confirmed that the peaks corresponding to the carbonyl group peak and the ether peak increased through plasma treatment, and thus it was confirmed that plasma can be used as a pretreatment method to promote decomposition of waste vinyl.

이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art to which the present invention pertains will be able to understand that the present invention may be embodied in other specific forms without changing its technical spirit or essential features. In this regard, it should be understood that the embodiments described above are illustrative in all respects and not limiting. The scope of the present invention should be construed as including all changes or modifications derived from the meaning and scope of the claims to be described later and equivalent concepts rather than the detailed description above are included in the scope of the present invention.

Claims (9)

플라스틱에 플라즈마를 처리하는 단계를 포함하는, 플라스틱 분해 촉진 방법.A method for accelerating decomposition of plastics, comprising subjecting plastics to plasma. 제1항에 있어서, 상기 플라스틱은 농업용 폐플라스틱인 것인, 플라스틱 분해 촉진 방법.The method of claim 1, wherein the plastic is agricultural waste plastic. 제1항에 있어서, 상기 플라즈마 처리는 표면 유전체 격벽 방전 (Surface Dielectric Barrier Discharge) 방식인 것인, 플라스틱 분해 촉진 방법.The method of claim 1, wherein the plasma treatment is a surface dielectric barrier discharge method. 제1항에 있어서, 상기 플라즈마 처리는 플라즈마 방전수 처리 또는 플라즈마 직접 처리인 것인, 플라스틱 분해 촉진 방법.The method according to claim 1, wherein the plasma treatment is a plasma discharge water treatment or a direct plasma treatment. 제4항에 있어서, 상기 플라즈마 방전수 처리는 6일 내지 180일 동안 저장한 것인, 플라스틱 분해 촉진 방법.The method according to claim 4, wherein the plasma discharge water treatment is stored for 6 to 180 days. 제4항에 있어서, 상기 플라즈마 직접 처리는 20 분 내기 60분 동안 표면에 직접 처리한 것인, 플라스틱 분해 촉진 방법.The method of claim 4, wherein the plasma direct treatment is performed directly on the surface for 20 minutes to 60 minutes. 제4항에 있어서, 상기 플라즈마 방전수는 pH 3.4인 것인, 플라스틱 분해 촉진 방법.The method of claim 4, wherein the plasma discharge water has a pH of 3.4. 제1항에 있어서, 상기 플라즈마 처리는 카보닐 그룹을 생성하여 표면이 친수성으로 개질되는 것인, 플라스틱 분해 촉진 방법.The method of claim 1, wherein the plasma treatment generates carbonyl groups to modify the surface to be hydrophilic. 제1항 내지 제8항의 방법에 의해 분해된 플라스틱.A plastic degraded by the method of claims 1 to 8.
KR1020210131514A 2021-10-05 2021-10-05 Method of plastic degradation KR102575814B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210131514A KR102575814B1 (en) 2021-10-05 2021-10-05 Method of plastic degradation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210131514A KR102575814B1 (en) 2021-10-05 2021-10-05 Method of plastic degradation

Publications (2)

Publication Number Publication Date
KR20230048731A true KR20230048731A (en) 2023-04-12
KR102575814B1 KR102575814B1 (en) 2023-09-08

Family

ID=85984248

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210131514A KR102575814B1 (en) 2021-10-05 2021-10-05 Method of plastic degradation

Country Status (1)

Country Link
KR (1) KR102575814B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020052989A (en) * 2000-12-25 2002-07-04 미키 히로후미 Method of treatment with a microwave plasma
KR100981851B1 (en) * 2008-09-29 2010-09-13 한국전력공사 Method and Apparatus for treating plastic wastes
KR20190080039A (en) * 2017-12-28 2019-07-08 한국화학연구원 Apparatus for decomposition of volatile organic compounds and decomposing method using it
WO2020145424A1 (en) * 2019-01-08 2020-07-16 주식회사 아이엠기술 Metal coating method for plastic outer shape requiring robustness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020052989A (en) * 2000-12-25 2002-07-04 미키 히로후미 Method of treatment with a microwave plasma
KR100981851B1 (en) * 2008-09-29 2010-09-13 한국전력공사 Method and Apparatus for treating plastic wastes
KR20190080039A (en) * 2017-12-28 2019-07-08 한국화학연구원 Apparatus for decomposition of volatile organic compounds and decomposing method using it
WO2020145424A1 (en) * 2019-01-08 2020-07-16 주식회사 아이엠기술 Metal coating method for plastic outer shape requiring robustness

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. Sourkouni et al., "Study on the influence of advanced treatment ... circular economy for plastics", Ultrasonic Sonochemistry, Vol.76, p.105627 (2021.06.10.)* *
김태훈 외, "폐플라스틱 복합필름 기반 콘크리트용 골재의 표면 개질", Vol.9, No.3, p.295 (2021년 9월)* *

Also Published As

Publication number Publication date
KR102575814B1 (en) 2023-09-08

Similar Documents

Publication Publication Date Title
Ghatge et al. Biodegradation of polyethylene: a brief review
Pattanasuttichonlakul et al. Accelerating biodegradation of PLA using microbial consortium from dairy wastewater sludge combined with PLA-degrading bacterium
KR20070097622A (en) Soil improver with white-rot fungi and methods of using thereof for plant restoration and recover of heavy metals contaminated soil around abandoned mine area
CN107162652B (en) Odorless livestock and poultry manure organic fertilizer and preparation method and application thereof
CN110125169A (en) The method for improveing the repairing organic polluted soil of Fenton oxidation method integrating solid microbial reagent
Xu et al. Photo‐oxidation and biodegradation of polyethylene films containing polyethylene glycol modified TiO2 as pro‐oxidant additives
CN110052159A (en) A kind of new type of safe high-performance bio deodorant and preparation method thereof
Mistry et al. Bioaugmentation with a defined bacterial consortium: A key to degrade high molecular weight polylactic acid during traditional composting
Qiang et al. Plastic mulching, and occurrence, incorporation, degradation, and impacts of polyethylene microplastics in agroecosystems
KR102575814B1 (en) Method of plastic degradation
Rajeshkumar et al. Assessment of biodegradation of lignocellulosic fiber-based composites–A systematic review
CN108611301B (en) Composite biological deodorant and preparation method thereof
KR101831966B1 (en) Method for producing humified lignin conversion product
CN113003736A (en) Method for humification of phenol pollutants driven by fungal laccase and application
Dumitrescu et al. Obtaining biofertilizer by composting vegetable waste, sewage sludge and sawdust
Bautista-Zamudio et al. Biodegradation of plastics by white rot fungi: A review
Pandey et al. Ecofriendly behavior of host matrix in composites prepared from agro‐waste and polypropylene
JP2008245629A (en) Microbial preparation for treatment of woody waste
Geweely et al. Enhancement of fungal degradation of starch based plastic polymer by laser-induced plasma
KR100981102B1 (en) Environment-friendly mature fermentation fertilizer, apparatus for producing of it and manufacturing method using the apparatus
Kumar et al. Photo-/bio-degradability of agro waste and ethylene–propylene copolymers composites under abiotic and biotic environments
JP3656963B2 (en) Woody defibrated material, method for producing the same, and microbial material
Kume et al. Utilization of agro-resources by radiation treatment-production of animal feed and mushroom from oil palm wastes
CN110402963A (en) A kind of wood tar base fruit tree controls the preparation and application of rotten fungicide
Calvo et al. Needs and emerging opportunities of electron beam accelerators on radiation processing technology for industrial and environmental applications in South America

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant