KR20230046638A - Method for confirming 3-HP production ability of 3-HP production gene using E. coli having 3-hydroxypropionic acid production ability inserted with 3-hydroxypropionic acid production gene - Google Patents

Method for confirming 3-HP production ability of 3-HP production gene using E. coli having 3-hydroxypropionic acid production ability inserted with 3-hydroxypropionic acid production gene Download PDF

Info

Publication number
KR20230046638A
KR20230046638A KR1020210129843A KR20210129843A KR20230046638A KR 20230046638 A KR20230046638 A KR 20230046638A KR 1020210129843 A KR1020210129843 A KR 1020210129843A KR 20210129843 A KR20210129843 A KR 20210129843A KR 20230046638 A KR20230046638 A KR 20230046638A
Authority
KR
South Korea
Prior art keywords
gene
production
coli
dna
copies
Prior art date
Application number
KR1020210129843A
Other languages
Korean (ko)
Inventor
이정연
성민경
김재형
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020210129843A priority Critical patent/KR20230046638A/en
Publication of KR20230046638A publication Critical patent/KR20230046638A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/52Propionic acid; Butyric acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01003Aldehyde dehydrogenase (NAD+) (1.2.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01006Methionine adenosyltransferase (2.5.1.6), i.e. adenosylmethionine synthetase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/0103Glycerol dehydratase (4.2.1.30)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present specification relates to microorganisms and/or Escherichia coli, into which an exogenous 3-hydroxypropionate (3-HP) production gene is inserted into genomic DNA and which has the ability to produce the 3-HP, and to uses thereof, wherein the use is to measure the production capacity of the inserted 3-HP production gene.

Description

3-하이드록시프로피온산 생산 유전자가 삽입된 3-하이드록시프로피온산 생산능을 가지는 대장균을 이용한 3-HP 생산 유전자의 3-HP 생산능 확인 방법{Method for confirming 3-HP production ability of 3-HP production gene using E. coli having 3-hydroxypropionic acid production ability inserted with 3-hydroxypropionic acid production gene}Method for confirming 3-HP production ability of 3-HP production gene using E. coli having 3-hydroxypropionic acid production ability into which 3-hydroxypropionic acid production gene has been inserted using E. coli having 3-hydroxypropionic acid production ability inserted with 3-hydroxypropionic acid production gene}

외래의 3-하이드록시프로피온산 (3-hydroxypropionate, 3-HP) 생산 유전자가 유전체 DNA (genomic DNA) 내부에 삽입되어, 3-HP 생산능을 가지는 미생물 및/또는 대장균과 이의 용도와 상기 미생물 및/또는 대장균을 배양하는 단계를 포함하는 상기 대장균 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법에 관한 것이다.Foreign 3-hydroxypropionate (3-HP) production gene is inserted into genomic DNA, microorganisms and / or Escherichia coli having 3-HP production ability and their uses and the microorganisms and / Or, it relates to a method for confirming 3-HP production ability of a 3-HP production gene inserted into the E. coli genomic DNA comprising the step of culturing E. coli.

3-하이드록시프로피온산 (3-hydroxypropionic acid, 3-HP)은 여러 화학공정에 사용되는 중요한 합성 중간체로, 아크릴산 (acrylic acid), 아크릴산메틸 (methyl acrylate), 아크릴아마이드 (acrylamide), 1,3-프로판디올, 에틸 3-HP, 말로닉 산 (malonic acid), 프로피올락톤 (propiolactone) 및 아크릴로니트릴 (acrylonitrile) 등의 다양한 화학 물질로 전환 가능한 플랫폼 화합물이다. 또한, 2004년 미국 Department of Energy (DOE)로부터 Top 12 value-added bio-chemical로 선정된 이후 학계와 산업계에서 활발히 연구되고 있다.3-hydroxypropionic acid (3-HP) is an important synthetic intermediate used in various chemical processes. It is a platform compound that can be converted into various chemicals including propanediol, ethyl 3-HP, malonic acid, propiolactone and acrylonitrile. In addition, since being selected as a Top 12 value-added bio-chemical by the US Department of Energy (DOE) in 2004, it has been actively researched in academia and industry.

3-HP는 에틸렌 사이아노하이드린, 베타-아이도프로피온산, 베타-브로모프로피온산, 베타-클로로프로피온산, 베타-프로피오락톤, 아크릴산 등을 중간체로 하여 화학적 공정을 통해 생산될 수 있고, 글리세롤로부터 생물학적 공정을 통해 생산될 수도 있다. 그러나 이러한 화학물질 대부분이 유독하며 발암성을 띠고, 높은 온도와 압력의 조건으로 대량의 에너지를 소모하며 다량으로 공해 물질을 배출하는 문제가 있다.3-HP can be produced through chemical processes using ethylene cyanohydrin, beta-idopropionic acid, beta-bromopropionic acid, beta-chloropropionic acid, beta-propiolactone, acrylic acid, etc. as intermediates, and can be produced from glycerol. It can also be produced through a biological process. However, most of these chemicals are toxic and carcinogenic, consume a large amount of energy under conditions of high temperature and pressure, and emit a large amount of pollutants.

3-HP의 생산은 크게 화학적 방법과 생물학적 방법의 두 가지 방법으로 이루어지나, 화학적 방법의 경우 초기 물질이 고가인 점, 생산 과정 중 독성 물질이 생성되는 점 등에 의해 비친환경적이라는 지적이 있어, 친환경적인 바이오 공정이 각광받고 있다.The production of 3-HP is largely done by two methods, chemical and biological methods, but in the case of the chemical method, it is pointed out that the initial material is expensive and toxic substances are generated during the production process, so it is pointed out that it is not eco-friendly. Bio-processing is in the limelight.

미생물을 이용하여 3-HP 생합성을 위해 기존에 3-HP 생산과 세포의 성장이 동시에 일어나는 1단계 발효 방식의 연구가 주로 진행되었지만, 3-HP 생산용 기질이 세포의 성장에도 사용되고, 아세테이트 (acetate)나 젖산 (lactate)과 같은 부산물이 발생하여 3-HP의 수율 및 생산성이 저하되는 문제점이 있었고, 3-HP 생산과 세포의 성장을 별도로 진행시킨 2단계 제조 방법을 통해 이를 개선하고자 했다.For 3-HP biosynthesis using microorganisms, studies on a one-step fermentation method in which 3-HP production and cell growth occur simultaneously have been mainly conducted, but substrates for 3-HP production are also used for cell growth, and acetate (acetate) ) and lactic acid (lactate), there was a problem in that the yield and productivity of 3-HP were lowered, and this was improved through a two-step manufacturing method in which 3-HP production and cell growth were separately performed.

그러나, 글리세롤로부터 3-HP를 생산하는 유전자 세트를 포함하는 플라스미드 벡터를 가진 대장균의 경우 플라스크에서 배양 배지 및 최소 배지를 사용하여 세포 성장과 3-HP 생산을 분리한 상기 2단계 배양을 적용했을 때 3-HP를 생산하지 못하였고, 이로 인해 2단계 배양을 적용하지 못하여 최소 배지에 세포 성장을 위한 탄소원 및 3-HP 전환에 소모되는 탄소원을 동시에 넣고 성장과 생산을 동시에 진행해야 했으므로 세포 농도가 낮을 뿐만 아니라 이로 인해 재조합 유전자의 성능을 평가하는데 적합하지 않았다.However, in the case of Escherichia coli having a plasmid vector containing a gene set for producing 3-HP from glycerol, when the above two-step culture in which cell growth and 3-HP production are separated using a culture medium and a minimal medium in a flask is applied 3-HP could not be produced, and as a result, the second-stage culture could not be applied, so the carbon source for cell growth and the carbon source consumed for 3-HP conversion had to be added to the minimum medium at the same time, and growth and production had to proceed simultaneously, so the cell concentration was low. In addition, it was not suitable for evaluating the performance of recombinant genes.

또한, 상기 유전자 세트를 포함하는 플라스미드 벡터를 가진 대장균 배양 시 벡터의 유지 및 생산성을 일정하게 유지하기 위해 항생제 투입이 필수적이었고, 이에 따른 항생제 투입 비용 및 환경 오염에 대한 우려가 발생하였다.In addition, when culturing E. coli with a plasmid vector containing the gene set, it was necessary to add antibiotics to maintain a constant level of maintenance and productivity of the vector, which raised concerns about the cost of antibiotics and environmental pollution.

상기와 같은 배경하에서, 본 발명자들은 외래의 3-하이드록시프로피온산 (3-hydroxypropionate, 3-HP) 생산 유전자를 유전체 DNA (genomic DNA) 내부에 삽입하여 3-HP 생산과 세포의 성장을 별도로 진행시킨 2단계 제조 방법을 통해 3-HP 생산을 확인하여, 본 발명을 완성하였다.Under the above background, the present inventors inserted a foreign 3-hydroxypropionate (3-HP) production gene into genomic DNA to separately proceed with 3-HP production and cell growth. The present invention was completed by confirming the production of 3-HP through a two-step manufacturing method.

일 예는 외래의 3-하이드록시프로피온산 (3-hydroxypropionate, 3-HP) 생산 유전자가 1 복제수 이상 유전체 DNA (genomic DNA) 내부에 삽입되고, 3-HP 생산능을 가지는, 미생물 (예컨대, 대장균)을 제공한다.One example is a foreign 3-hydroxypropionate (3-hydroxypropionate, 3-HP) production gene is inserted into genomic DNA of 1 copy or more and has a 3-HP production ability, a microorganism (eg, E. coli ) is provided.

다른 예는 상기 미생물 (예컨대, 대장균)을 포함하는, 상기 미생물 (예컨대, 대장균) 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인용 조성물을 제공한다.Another example provides a composition for confirming 3-HP productivity of a 3-HP production gene inserted into genomic DNA of the microorganism (eg, E. coli), including the microorganism (eg, E. coli).

다른 예는 외래의 3-하이드록시프로피온산 (3-hydroxypropionate, 3-HP) 생산 유전자가 1 복제수 이상 유전체 DNA (genomic DNA) 내부에 삽입되고, 3-HP 생산능을 가지는, 미생물 (예컨대, 대장균)을 배양하는 단계를 포함하는, 상기 미생물 (예컨대, 대장균) 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법을 제공한다.Another example is a microorganism (eg, E. ) Provides a method for confirming the 3-HP productivity of the 3-HP production gene inserted into the genomic DNA of the microorganism (eg, E. coli), comprising the step of culturing.

본 명세서는 외래의 3-하이드록시프로피온산 (3-hydroxypropionate, 3-HP) 생산 유전자가 유전체 DNA (genomic DNA) 내부에 삽입되고, 3-HP 생산능을 가지는, 미생물 및/또는 대장균과 이의 용도와 상기 미생물 및/또는 대장균을 배양하는 단계를 포함하는 상기 대장균 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법과 관련된 기술을 제공한다.The present specification is a microorganism and / or Escherichia coli having a foreign 3-hydroxypropionate (3-HP) production gene inserted into genomic DNA and having a 3-HP production ability and its use and Provided is a technique related to a method for confirming 3-HP production ability of a 3-HP production gene inserted into the E. coli genomic DNA, which includes culturing the microorganism and / or E. coli.

본 명세서에서 “3-하이드록시프로피온산 (3-hydroxypropionate, 3-HP)”은 카르복실산, 특히 β-카르복실산에 해당하고, 산성 점성 액체이며, 미생물 (예컨대, 대장균)에 의해 생산될 수 있다.In this specification, “3-hydroxypropionate (3-HP)” corresponds to carboxylic acid, particularly β-carboxylic acid, is an acidic viscous liquid, and can be produced by microorganisms (eg, Escherichia coli). there is.

본 명세서에서 “미생물”은 단세포 박테리아를 포함하는 것일 수 있고, 예를 들어, 대장균을 포함하는 에스케리키아 속일 수 있다.In the present specification, “microorganism” may include unicellular bacteria, and may be, for example, Escherichia genus including Escherichia coli.

본 명세서에서 “대장균”은 에스케리키아 속으로, E.coli DH5a, E.coli JM101, E.coli K12, E.coli W3110, E.coli X1776, E.coli B, 및/또는 E.coli XL1-Blue 일 수 있다.As used herein, “Escherichia coli” refers to the genus Escherichia, E.coli DH5a, E.coli JM101, E.coli K12, E.coli W3110, E.coli X1776, E.coli B, and/or E.coli XL1 -Can be Blue.

일 예는 외래의 3-하이드록시프로피온산 (3-hydroxypropionate, 3-HP) 생산 유전자가 1 복제수 이상 유전체 DNA (genomic DNA) 내부에 삽입되고, 3-HP 생산능을 가지는, 미생물 (예컨대, 대장균)을 제공한다.One example is a foreign 3-hydroxypropionate (3-hydroxypropionate, 3-HP) production gene is inserted into genomic DNA of 1 copy or more and has a 3-HP production ability, a microorganism (eg, E. coli ) is provided.

다른 예는 외래의 3-하이드록시프로피온산 (3-hydroxypropionate, 3-HP) 생산 유전자가 1 복제수 이상 유전체 DNA (genomic DNA) 내부에 삽입되고, 3-HP 생산능을 가지는, 미생물 (예컨대, 대장균)을 배양하는 단계를 포함하는, 상기 미생물 (예컨대, 대장균) 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법을 제공한다.Another example is a microorganism (eg, E. ) Provides a method for confirming the 3-HP productivity of the 3-HP production gene inserted into the genomic DNA of the microorganism (eg, E. coli), comprising the step of culturing.

상기 3-HP 생산 유전자는 글리세롤 탈수효소 (glycerol dehydratase), 알데하이드 탈수소효소 (aldehyde dehydrogenase), 글리세롤 탈수효소 재활성효소 (glycerol dehydratase reactivase) 및 아데노실트랜스퍼라아제 (adenosyltransferase)로 이루어진 군으로부터 선택되는 1종 이상의 효소의 유전자를 포함할 수 있고, 이에 제한되는 것은 아니다.The 3-HP production gene is 1 selected from the group consisting of glycerol dehydratase, aldehyde dehydrogenase, glycerol dehydratase reactivase and adenosyltransferase It may include genes of more than one species of enzyme, but is not limited thereto.

상기 미생물 (예컨대, 대장균)의 유전자 중 yqhD, glpK, ldhA, ack-pta 및 gldA로 이루어진 군에서 선택된 유전자가 결실될 수 있고, 이에 제한되는 것은 아니다.Among the genes of the microorganism (eg, E. coli), a gene selected from the group consisting of yqhD, glpK, ldhA, ack-pta, and gldA may be deleted, but is not limited thereto.

상기 미생물 (예컨대, 대장균)을 배양하는 단계에서 상기 대장균의 유전자 중 yqhD, glpK, ldhA, ack-pta 및 gldA로 이루어진 군에서 선택된 유전자가 결실될 수 있고, 이에 제한되는 것은 아니다.In the step of culturing the microorganism (eg, E. coli), a gene selected from the group consisting of yqhD, glpK, ldhA, ack-pta, and gldA among genes of the E. coli may be deleted, but is not limited thereto.

상기 3-HP 생산 유전자는 상기 미생물 (예컨대, 대장균)의 ldhA, gldA, glpK, yqhD, mgsA, poxB 및 nfrA 유전자로 이루어진 군에서 선택된 1종 이상의 유전자가 위치한 곳에 삽입될 수 있고, 이에 제한되는 것은 아니다.The 3-HP production gene can be inserted where one or more genes selected from the group consisting of ldhA, gldA, glpK, yqhD, mgsA, poxB and nfrA genes of the microorganism (eg, Escherichia coli) are located, and are limited thereto no.

상기 3-HP 생산 유전자는 CRISPR-Cas9 시스템에 의해 유전체 DNA 내부에 삽입될 수 있고, 이에 제한되는 것은 아니다.The 3-HP production gene may be inserted into genomic DNA by the CRISPR-Cas9 system, but is not limited thereto.

상기 3-HP 생산능을 가지는, 미생물 (예컨대, 대장균)은 상기 3-HP 생산 유전자의 복제수에 비례하여 3-HP 생산능이 증가할 수 있고, 이에 제한되는 것은 아니다.Microorganisms (eg, Escherichia coli) having the 3-HP production ability may increase the 3-HP production ability in proportion to the copy number of the 3-HP production gene, but are not limited thereto.

다른 예는 상기 미생물 (예컨대, 대장균)을 포함하는, 상기 미생물 (예컨대, 대장균) 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인용 조성물을 제공한다.Another example provides a composition for confirming 3-HP productivity of a 3-HP production gene inserted into genomic DNA of the microorganism (eg, E. coli), including the microorganism (eg, E. coli).

상기 3-HP 생산능 확인은 상기 대장균에 의해 생산되는 3-HP 생산량이 상기 대장균 유전체 DNA에 삽입된 3-HP 생산 유전자 복제수에 비례하는지 여부를 확인하는 것일 수 있고, 이에 제한되는 것은 아니다.Confirmation of the 3-HP productivity may be to determine whether the 3-HP production produced by the E. coli is proportional to the copy number of the 3-HP production gene inserted into the E. coli genomic DNA, but is not limited thereto.

상기 미생물 (예컨대, 대장균) 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법은 상기 미생물 (예컨대, 대장균)에 의해 생산된 3-HP의 양을 측정하는 단계를 추가로 포함할 수 있고, 이에 제한되는 것은 아니다.The method for confirming the 3-HP production ability of the 3-HP production gene inserted into the genomic DNA of the microorganism (eg, E. coli) further comprises measuring the amount of 3-HP produced by the microorganism (eg, E. coli). It can be done, but is not limited thereto.

상기 생산된 3-HP의 양을 측정하는 단계에서, 상기 대장균에 의해 생산되는 3-HP 생산량이 상기 대장균 유전체 DNA에 삽입된 3-HP 생산 유전자 복제수에 비례하는지 여부를 확인하여, 3-HP 생산능을 확인할 수 있고, 이에 제한되는 것은 아니다.In the step of measuring the amount of 3-HP produced, it is confirmed whether the production of 3-HP produced by the E. coli is proportional to the number of copies of the 3-HP production gene inserted into the E. coli genomic DNA, 3-HP Productivity can be confirmed, but is not limited thereto.

상기 미생물 (예컨대, 대장균) 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법은 항생제를 투여하는 단계를 포함하지 않을 수 있고, 이에 제한되는 것은 아니다.The method for confirming the 3-HP production ability of the 3-HP production gene inserted into the genomic DNA of the microorganism (eg, E. coli) may not include the step of administering an antibiotic, but is not limited thereto.

상기 미생물 (예컨대, 대장균) 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법은 상기 3-HP 생산 유전자의 복제수에 비례하여 3-HP 생산능이 증가하는 것을 특징으로 할 수 있고, 이에 제한되는 것은 아니다.The method for confirming the 3-HP production ability of the 3-HP production gene inserted into the microbial (eg, E. coli) genomic DNA may be characterized in that the 3-HP production capacity increases in proportion to the copy number of the 3-HP production gene. Yes, but not limited thereto.

상기 미생물 (예컨대, 대장균)을 배양하는 단계는,The step of culturing the microorganism (eg, Escherichia coli),

탄소원으로 글루코스 및/또는 수크로스를 포함하는 배지에서 배양하는 제1단계 배양 단계; 및A first step of culturing in a medium containing glucose and/or sucrose as a carbon source; and

탄소원으로 글리세롤을 포함하는 배지에서 배양하는 제2단계 배양 단계The second step of culturing in a medium containing glycerol as a carbon source

를 포함할 수 있고, 이에 제한되는 것은 아니다.It may include, but is not limited thereto.

상기 제2단계 배양 단계의 배지는 탄소원으로 글루코스 및/또는 수크로스를 포함하지 않을 수 있고, 이에 제한되는 것은 아니다.The medium of the second stage culture step may not contain glucose and/or sucrose as a carbon source, but is not limited thereto.

이하, 본 출원을 보다 상세히 설명한다.Hereinafter, the present application will be described in more detail.

일 예에 따른 미생물은 유기산을 합성하는 능력을 가질 수 있으며, 예를 들면, 예를 들면, 3-하이드록시프로피온산 (3-Hydroxypropionic Acid)을 합성하는 능력 (또는 3-HP 생산능)을 가질 수 있다. 일 예에 따른 미생물은 그 자체가 유기산 생산에 관여하는 유전자를 포함하여 유기산을 생산하거나, 유기산 생산능을 가지도록 또는 유기산 생산능이 강화되도록 유전적으로 조작된 균주일 수 있다. 상기 유기산의 생산은 균주 내에서 생산되는 것, 세포 내에서 생산되어 세포 외부로 분비되는 것, 또는 그 조합을 포함한다.A microorganism according to one embodiment may have the ability to synthesize an organic acid, for example, may have the ability to synthesize 3-hydroxypropionic acid (or 3-HP production ability). there is. According to one embodiment, the microorganism itself may be a strain genetically engineered to produce an organic acid by including a gene involved in the production of an organic acid, or to have an organic acid-producing ability or to enhance the organic acid-producing ability. Production of the organic acid includes production in a strain, production in a cell and secretion to the outside of the cell, or a combination thereof.

본 출원에서, “3-히드록시프로피온산 (3-HP) 생산능을 갖는다”는 것은 자연적으로 3-HP 생산능을 갖는 세포 및/또는 미생물, 또는 3-HP 생산능이 없는 모균주에 3-HP 생산능이 부여된 미생물을 의미할 수 있다. 일 예에 따른 변이가 도입됨으로써 상기 미생물이 3-HP 생산능을 갖는 경우 및/또는 3-HP 생산능을 갖지 않는 미생물에 일 예에 따른 변이가 도입됨으로써 상기 미생물이 3-HP 생산능을 갖게 되는 경우를 의미하기 위하여 사용될 수 있다. 예를 들면, 3-HP 생산능을 갖는 에스케리키아 속 미생물이란 천연형 미생물 자체 또는 3-HP 생산 기작과 관련된 외부 유전자가 삽입되거나 내재적 유전자의 활성을 강화시키거나 불활성시켜 향상된 3-HP 생산능을 가지게 된 에스케리키아 속 미생물을 의미할 수 있다.In this application, “having the ability to produce 3-hydroxypropionic acid (3-HP)” means that a cell and/or microorganism naturally having the ability to produce 3-HP, or a parent strain without the ability to produce 3-HP It may mean a microorganism endowed with productivity. When the microorganism has 3-HP production ability by introducing the mutation according to one embodiment and/or by introducing the mutation according to one embodiment to a microorganism having no 3-HP production ability, the microorganism has 3-HP production ability. It can be used to mean the case of being. For example, microorganisms of the genus Escherichia having 3-HP production ability are natural microorganisms themselves or foreign genes related to 3-HP production mechanisms are inserted, or the activity of endogenous genes is enhanced or inactivated to improve 3-HP production ability It may mean a microorganism of the genus Escherichia that has a

본 명세서에서 제공하는 외래의 3-하이드록시프로피온산 (3-hydroxypropionate, 3-HP) 생산 유전자가 유전체 DNA (genomic DNA) 내부에 삽입되는 미생물에서 유전체 상기 3-HP 생산 유전자가 유전체 DNA 내부로의 삽입은 하기를 포함하는 목적 유전자 (예컨대, 외래의 3-하이드록시프로피온산 (3-hydroxypropionate, 3-HP) 생산 유전자)의 다중 삽입용 조성물 및/또는 시스템에 의해 이루어질 수 있고, 이에 제한되는 것은 아니다:In microorganisms in which the foreign 3-hydroxypropionate (3-HP) production gene provided herein is inserted into genomic DNA, the 3-HP production gene is inserted into genomic DNA may be achieved by a composition and/or system for multiple insertion of a target gene (e.g., a foreign 3-hydroxypropionate, 3-HP production gene) including, but not limited to:

(1) Cas9 단백질을 암호화하는 유전자 및 재조합효소 (recombinase)를 암호화하는 유전자를 포함하는, 재조합벡터 (“공통 재조합벡터”);(1) a recombinant vector containing a gene encoding a Cas9 protein and a gene encoding a recombinase (“common recombinant vector”);

(2) 하기를 포함하는, 대상 세포의 유전체 상에 존재하며 목적 유전자 (예컨대, 외래의 3-하이드록시프로피온산 (3-hydroxypropionate, 3-HP) 생산 유전자)가 도입되는 부위인 표적 부위에 특이적인 재조합벡터 (“가변 재조합벡터”) 세트:(2) Specific to the target site, which is present on the genome of the target cell and is a site where a target gene (eg, a foreign 3-hydroxypropionate, 3-HP production gene) is introduced, including the following Set of Recombinants (“Variable Recombinants”):

i) 온도 민감성 원점 (ts origin), 및 상기 표적 부위에 특이적인 가이드 RNA (guide RNA; gRNA)를 발현하는 유전자를 포함하는 재조합벡터 (“G 재조합벡터”); 및 i) a temperature sensitive origin (ts origin), and a recombinant vector containing a gene expressing a guide RNA (gRNA) specific to the target site (“G recombinant vector”); and

ii) 목적 유전자, 및 상기 유전자의 양 말단에 상기 표적 부위 전후의 상동성 영역 (homologous region)을 포함하며, 상기 상동성 영역 내 PAM 서열 (NNGG)은 CAAA로 치환된 것인 재조합벡터 (“D 재조합 DNA”). ii) A recombinant vector ("D Recombinant DNA”).

상기 다중 삽입용 조성물은, 상기 공통 재조합벡터, G 재조합벡터 및 D 재조합 DNA에 항생제 내성 유전자를 포함하지 않을 수 있다. 항생제 내성 유전자를 포함하지 않음으로써 각 벡터의 크기를 작게 유지할 수 있고, 대상 세포의 대사 부담을 줄일 수 있으며, 항생제 내성 유전자 없이도 항생제 내성 유전자에 의한 도입 가능한 유전자의 수 제한 없이 목적 유전자를 반복 삽입할 수 있는 장점이 있다.The composition for multiple insertion may not include an antibiotic resistance gene in the common recombinant vector, the G recombinant vector, and the D recombinant DNA. By not including the antibiotic resistance gene, the size of each vector can be kept small, the metabolic burden of the target cell can be reduced, and the target gene can be repeatedly inserted without limiting the number of genes that can be introduced by the antibiotic resistance gene. There are advantages to being able to

본 명세서에서, “대상 세포”란 형질전환 대상이 되는 세포를 의미하며, 그 종류는 형질전환의 목적 범위에서 제한 없이 선택될 수 있다. 일 예에서, 상기 대상 세포는 원핵세포일 수 있으며, 또 다른 일 예에서, 상기 대상 세포는 박테리아 계의 세포일 수 있다. 일 예에서, 상기 대상 세포는 그람 음성균과 그람 양성균을 모두 포함할 수 있으며, 일 구체예에서 상기 대상 세포는 대장균일 수 있으나, 이에 제한되지 않는다.In the present specification, "target cell" means a cell to be transformed, and the type may be selected without limitation within the target range of transformation. In one embodiment, the target cell may be a prokaryotic cell, and in another embodiment, the target cell may be a bacterial cell. In one example, the target cells may include both Gram-negative bacteria and Gram-positive bacteria, and in one embodiment, the target cells may be Escherichia coli, but is not limited thereto.

본 명세서에서, “목적 유전자”란 대상 세포의 유전체에 삽입되기 위한 핵산 분자를 의미하고, 예컨대, 외래의 3-하이드록시프로피온산 (3-hydroxypropionate, 3-HP) 생산 유전자일 수 있다.In the present specification, “target gene” refers to a nucleic acid molecule to be inserted into the genome of a target cell, and may be, for example, an exogenous 3-hydroxypropionate (3-HP) production gene.

본 명세서에서 별도의 언급이 없는, 한 온도는 섭씨 온도를 의미한다.Unless otherwise stated herein, a temperature refers to a temperature in degrees Celsius.

본 명세서에서 특별한 언급이 없는 한, 염기 서열은 5’ 말단에서 3’ 말단 방향으로, 아미노산 서열은 N 말단에서 C 말단 방향으로 기재되었다.Unless otherwise specified herein, the base sequence is written from the 5' end to the 3' end, and the amino acid sequence is written from the N-terminus to the C-terminus.

본 명세서에서 목적 유전자의 다중 삽입용 조성물 및/또는 시스템은, (1) Cas9 단백질을 암호화하는 유전자 및 재조합효소를 암호화하는 유전자를 포함하는, 공통 재조합벡터를 포함한다.In the present specification, the composition and/or system for multiple insertion of a target gene includes (1) a common recombinant vector including a gene encoding a Cas9 protein and a gene encoding a recombinase.

상기 공통 재조합벡터는 대상 세포에 최초 1회 삽입된 이후에는 추가적인 삽입을 필요로 하지 않아, 세포의 부담을 줄일 수 있다.The common recombinant vector does not require additional insertion after being inserted into a target cell once, thereby reducing the burden on the cell.

상기 공통 재조합벡터는 작동 가능하게 연결된 유도 가능한 프로모터 (inducible promoter), Cas9 단백질을 암호화하는 유전자 및 재조합효소를 암호화하는 유전자를 포함할 수 있다.The common recombinant vector may include an operably linked inducible promoter, a gene encoding a Cas9 protein, and a gene encoding a recombinase.

상기 유도 가능한 프로모터는 Cas9를 암호화하는 유전자 및/또는 재조합효소를 암호화하는 유전자의 발현을 조절하기 위한 목적 범위에서 제한 없이 선택되어 사용될 수 있다. 일 실시예에서, 상기 유도 가능한 프로모터는 아라비노스 (arabinose)에 의해 유도되는 프로모터일 수 있다.The inducible promoter may be selected and used without limitation within a range of purposes for regulating the expression of a gene encoding Cas9 and/or a gene encoding a recombinase. In one embodiment, the inducible promoter may be a promoter induced by arabinose.

상기 Cas9 단백질은 대상 세포의 유전체 중 PAM (Protospacer adjacent Motif)를 인식하여 절단 (예를 들어, 이중가닥 절단 (Double strand break; DSB))하는 역할을 수행한다. 상기 PAM 서열은 NNGG 서열일 수 있으며, 상기 “N”은 “A”, “T”, “C” 또는 “G”염기일 수 있다.The Cas9 protein plays a role of recognizing and cutting (eg, double strand break; DSB) PAM (Protospacer adjacent Motif) in the genome of a target cell. The PAM sequence may be a NNGG sequence, and the “N” may be an “A”, “T”, “C” or “G” base.

상기 Cas9 단백질은 스트렙토코커스 피오게네스 (Streptococcus pyonenes)에서 유래한 것일 수 있으며, 서열번호 1의 핵산 서열에 의해 암호화되는 것일 수 있으나, 이에 제한되지 않는다.The Cas9 protein may be derived from Streptococcus pyonenes, and may be encoded by the nucleic acid sequence of SEQ ID NO: 1, but is not limited thereto.

상기 Cas9 단백질에 의해 생성된 이중가닥 절단이 재조합효소 등에 의해 회복되지 않는 경우, 세포가 사망하면서 선별과정에서 탈락하게 되므로 항생제 내성 유전자 없이도 세포의 선별이 가능하다.When the double-stranded break generated by the Cas9 protein is not recovered by a recombinase or the like, the cell dies and is eliminated in the selection process, so cell selection is possible without the antibiotic resistance gene.

상기 재조합효소는 후술되는 상동성 부위를 기반으로 목적 유전자를 대상 세포의 유전체에 삽입하기 위한 목적 범위에서 제한 없이 선택될 수 있으며, 예를 들어 RED 재조합효소일 수 있다. 일 예에서, 상기 재조합효소는 서열번호 2의 핵산 서열에 의해 암호화되는 것일 수 있으며, 상기 재조합효소에 의해 목적 유전자가 대상 세포 내 유전체에 삽입되어 DSB가 회복되는 경우에는 세포의 사망이 일어나지 않는다.The recombinase may be selected without limitation from a target range for inserting a target gene into the genome of a target cell based on a homology site described later, and may be, for example, a RED recombinase. In one example, the recombinase may be encoded by the nucleic acid sequence of SEQ ID NO: 2, and when the target gene is inserted into the target cell's genome by the recombinase and the DSB is restored, cell death does not occur.

본 명세서에서 목적 유전자의 다중 삽입용 조성물 및/또는 시스템은, (2) 가변 재조합 벡터 세트를 포함한다. 상기 가변 재조합 벡터 세트는 (i) 온도 민감성 원점 및 표적 부위에 특이적인 가이드 RNA (guide RNA; gRNA)를 발현하는 유전자를 포함하는 G 재조합벡터 (gRNA-containing), 및 (ii) 목적 유전자 및 상동성 영역을 포함하는, D 재조합 DNA (Donor)를 포함한다.In the present specification, the composition and/or system for multiple insertion of a target gene includes (2) a set of variable recombination vectors. The variable recombinant vector set includes (i) a G recombinant vector (gRNA-containing) containing a gene expressing a guide RNA (gRNA) specific to a temperature-sensitive origin and target site, and (ii) a target gene and phase. D recombinant DNA (Donor), including homologous regions.

상기 가변 재조합 벡터 세트는 대상 세포의 표적 부위의 위치에 따라 gRNA 및 상동성 영역이 상기 표적 부위에 특이적으로 디자인될 수 있으며, 상기 디자인은 당업계에 알려진 방법을 제한 없이 사용하여 수행될 수 있다.In the set of variable recombinant vectors, gRNAs and homologous regions may be designed specifically for the target site according to the location of the target site in the target cell, and the design may be performed using a method known in the art without limitation. .

상기 가변 재조합 벡터 세트는 (i) 온도 민감성 원점 및 표적 부위에 특이적인 가이드 RNA를 발현하는 유전자를 포함하는 G 재조합벡터를 포함한다.The variable recombinant vector set includes (i) a G recombinant vector including a temperature sensitive origin and a gene expressing a guide RNA specific to a target site.

상기 온도 민감성 원점을 사용함으로써 특정 온도 이상에서 형질 도입된 형질전환체를 배양함으로써 형질전환체 내 G 재조합벡터를 제거할 수 있다.By using the temperature-sensitive origin, the G recombinant vector can be removed from the transformant by culturing the transduced transformant at a specific temperature or higher.

일 예에서 상기 특정 온도는 온도 민감성 원점의 종류에 따라 적절히 선택될 수 있으며, 예를 들어, 섭씨 36도 이상, 섭씨 37도 이상, 섭씨 39도 이상, 또는 섭씨 41도 이상일 수 있으나 이에 제한되는 것은 아니다.In one example, the specific temperature may be appropriately selected according to the type of temperature sensitive origin, and may be, for example, 36 degrees Celsius or more, 37 degrees Celsius or more, 39 degrees Celsius or more, or 41 degrees Celsius or more, but is not limited thereto no.

상기 온도 민감성 원점에 의해 G 온도 변화만으로 간편하게 G 재조합벡터의 제거가 가능하며 새로운 표적 위치에 특이적인 새로운 G 재조합벡터와 D 재조합벡터를 도입하여 새로운 위치에 목적 유전자를 도입할 수 있게 되어 단순한 공정으로 다중 유전자 도입이 가능하다.The temperature-sensitive origin makes it possible to easily remove the G recombinant vector only by changing the G temperature, and introduces a new G recombinant vector and D recombinant vector specific for the new target site to introduce the target gene into the new site, resulting in a simple process. Multiple gene introduction is possible.

상기 가이드 RNA (gRNA)를 발현하는 유전자는 목적 유전자를 도입하려는 목적 위치에 따라 통상의 기술자가 적절히 선택하여 설계할 수 있다.A gene expressing the guide RNA (gRNA) can be designed by appropriately selecting by a person skilled in the art according to the target site to introduce the target gene.

상기 가이드 RNA의 타겟 유전자는 ldhA, yqhD, glpK, gldA, mgsA, poxB 및 nfrA로 이루어진 군에서 선택되는 1 이상일 수 있고, 이에 제한되는 것은 아니다.The target gene of the guide RNA may be at least one selected from the group consisting of ldhA, yqhD, glpK, gldA, mgsA, poxB, and nfrA, but is not limited thereto.

일 구현예에서 상기 가이드 RNA는 서열번호 3 내지 17의 핵산 서열로 이루어지는 군에서 선택되는 1 이상일 수 있고, 이에 제한되는 것은 아니다.In one embodiment, the guide RNA may be one or more selected from the group consisting of nucleic acid sequences of SEQ ID NOs: 3 to 17, but is not limited thereto.

또한, 형질전환 대상이 되는 대상 세포에서 상기 가이드 RNA의 타겟이 되는 유전자가 결실될 수 있고, 이에 제한되지 않는다.In addition, the target gene of the guide RNA may be deleted in the target cell to be transformed, but is not limited thereto.

상기 대상 세포에서 가이드 RNA의 타겟이 되는 유전자가 결실되는 경우, 유전자의 몸통 (body) 부분이 결실되고, 해당 유전자의 머리 (head) 및 꼬리 (tail) 부분은 남아있을 수 있고, 상기 머리 및 꼬리 부분의 유전자를 타겟으로 하여 상기 가이드 RNA가 작용할 수 있다.When a gene targeted by the guide RNA is deleted in the target cell, the body of the gene is deleted, and the head and tail of the gene may remain. The guide RNA can act by targeting the gene of the part.

상기 가변 재조합 벡터 세트는 (ii) 목적 유전자 및 상동성 영역을 포함하는, D (Donor) 재조합 DNA를 포함한다.The variable recombinant vector set includes (ii) D (Donor) recombinant DNA, including a target gene and a homology region.

상기 D 재조합 DNA는 상기 대상 세포에 선형 DNA의 형태로 도입될 수 있으며, 일 예에서, 상기 선형 DNA는 제한효소를 이용하여 벡터를 절단하거나, 중합효소 연쇄반응(PCR)으로 증폭하여 제조되는 것일 수 있다. 또한, 상기 D 재조합 DNA는 재조합벡터 또는 DNA 가닥일 수 있다.The D recombinant DNA may be introduced into the target cell in the form of linear DNA, and in one example, the linear DNA is prepared by digesting a vector using a restriction enzyme or amplifying by polymerase chain reaction (PCR). can In addition, the D recombinant DNA may be a recombinant vector or a DNA strand.

상기 상동성 영역은 표적부위의 상류(upstream) 및 하류(downstream)와 대응하며, 각각 상기 목적 유전자의 5’ 말단 및 3’ 말단에 부착된다. 상기 상동성 영역은 필요에 따라 그 길이가 적절히 조절될 수 있으며, 예를 들어, 각각 50 내지 1200bp, 50 내지 1000bp, 50 내지 800bp, 50 내지 700bp, 50 내지 600bp, 50 내지 500bp, 100 내지 1200bp, 100 내지 1000bp, 100 내지 800bp, 100 내지 700bp, 100 내지 600bp, 100 내지 500bp, 200 내지 1200bp, 200 내지 1000bp, 200 내지 800bp, 200 내지 700bp, 200 내지 600bp, 200 내지 500bp, 300 내지 1200bp, 300 내지 1000bp, 300 내지 800bp, 300 내지 600bp, 또는 300 내지 500bp일 수 있으나, 이에 제한되지 않는다.The homology region corresponds to upstream and downstream of the target site, and is attached to the 5' end and 3' end of the target gene, respectively. The length of the homology region may be appropriately adjusted as needed, for example, 50 to 1200 bp, 50 to 1000 bp, 50 to 800 bp, 50 to 700 bp, 50 to 600 bp, 50 to 500 bp, 100 to 1200 bp, 100 to 1000 bp, 100 to 800 bp, 100 to 700 bp, 100 to 600 bp, 100 to 500 bp, 200 to 1200 bp, 200 to 1000 bp, 200 to 800 bp, 200 to 700 bp, 200 to 600 bp, 200 to 500 bp, 120 to 3000 bp, 300 bp It may be 1000 bp, 300 to 800 bp, 300 to 600 bp, or 300 to 500 bp, but is not limited thereto.

상기 상동성 영역의 길이가 지나치게 짧은 경우 상동성 재조합의 효율이 감소할 수 있으며, 상동성 영역의 지나치게 긴 경우에는 세포에 도입되는 벡터의 크기가 지나치게 크게 되어 세포 도입 효율이 낮아질 수 있다.If the length of the homology region is too short, the efficiency of homologous recombination may be reduced, and if the homology region is too long, the size of the vector introduced into cells may be excessively large, resulting in low cell transduction efficiency.

대상 세포를 대장균으로 하는 경우, 상기 상동성 영역은 최소한 50bp 이상의 길이를 갖는 것이 바람직하며, 상동성 영역의 길이가 50bp 미만인 경우, 상동성 재조합의 효율이 감소할 수 있다. 상기 상동성 영역의 길이는 실험적으로 성공 여부 구별을 용이하게 하기 위해 100bp 이상, 또는 500bp 이상으로 설계될 수 있다.When the target cell is Escherichia coli, the homologous region preferably has a length of at least 50 bp or more. When the homologous region is less than 50 bp in length, the efficiency of homologous recombination may decrease. The length of the homology region may be designed to be 100 bp or more, or 500 bp or more in order to experimentally distinguish success or failure.

상기 상동성 영역은 목적 유전자를 도입하려는 목적 위치에 따라 통상의 기술자가 적절히 선택하여 설계할 수 있으며, 일 구현예에서 상기 상동성 영역은 서열번호 18 내지 31의 핵산 서열일 수 있다.The homology region can be appropriately selected and designed by a person skilled in the art according to the target site to introduce the target gene, and in one embodiment, the homology region may be a nucleic acid sequence of SEQ ID NOs: 18 to 31.

상기 상동성 영역 중 상기 목적 유전자의 5’ 말단에 부착되는 상동성 영역 (또는 상동성 팔, homologous arm)은 PAM (protospacer adjacent motif) 서열을 다른 서열로 치환한 핵산 서열을 포함한다. 상기 PAM 서열은 Cas9 단백질 (Cas 제한 효소)이 절단하는 위치를 지정하는 역할을 하는 것으로 알려져 있으며, 일반적으로 NGG의 서열을 갖는다. 이 때 PAM 서열의 각 “N” 염기는 “A”, “T”, “G” 또는 “C” 염기를 의미한다. 본 명세서에서 PAM 서열은, 일반적으로 알려진 ‘NGG’ 서열의 5’ 말단에 하나의 염기를 더 포함하는, ‘NNGG’를 의미할 수 있다.Among the homology regions, the homology region (or homologous arm) attached to the 5' end of the target gene includes a nucleic acid sequence in which a protospacer adjacent motif (PAM) sequence is substituted with another sequence. The PAM sequence is known to play a role in specifying the site at which the Cas9 protein (Cas restriction enzyme) cleaves, and generally has the sequence of NGG. In this case, each “N” base in the PAM sequence means an “A”, “T”, “G” or “C” base. In the present specification, the PAM sequence may mean 'NNGG', which further includes one base at the 5' end of the generally known 'NGG' sequence.

상기 PAM 서열을 치환하는 핵산 서열은, Cas9에 특이적으로 인식되지 않도록 하기 위한 목적 범위에서 ‘NNGG’의 서열이 아닌 한 제한 없이 사용될 수 있으며, 예를 들어, 상기 NNGG 핵산 서열은, NNAA, NNAT, NNAG, NNAC, NNTA, NNTT, NNTG, NNTC, NNCA, NNCT, NNCG, NNCC, NNGA, NNGT, 또는 NNGC 핵산 서열로 치환될 수 있다.A nucleic acid sequence substituting the PAM sequence may be used without limitation as long as it is not a sequence of 'NNGG' within the purpose range for not being specifically recognized by Cas9. For example, the NNGG nucleic acid sequence is NNAA, NNAT , NNAG, NNAC, NNTA, NNTT, NNTG, NNTC, NNCA, NNCT, NNCG, NNCC, NNGA, NNGT, or NNGC nucleic acid sequences.

상기 PAM 서열이 치환되지 않는 상동성 영역이 목적 유전자의 5’ 말단에 부착되는 경우, 목적 유전자를 반복적으로 도입하면서 Cas9 단백질이 해당 부위를 재인식하여 다시 절단하게 될 위험이 있다.When the homology region in which the PAM sequence is not substituted is attached to the 5' end of the gene of interest, there is a risk that the Cas9 protein will recognise and cleave the site again while repeatedly introducing the gene of interest.

본 명세서에서 형질전환체의 제조 방법은, 하기의 단계를 포한다:The method for producing a transformant in the present specification includes the following steps:

(1) 대상 세포에 본 발명이 제공하는 조성물 및/또는 시스템을 도입하는 단계;(1) introducing the composition and/or system provided by the present invention into a target cell;

(2) 상기 대상 세포에서 Cas9 및 재조합효소를 발현시켜, 대상 세포의 표적 부위에 목적 유전자를 삽입하는 단계; 및(2) expressing Cas9 and a recombinase in the target cell to insert the gene of interest into the target site of the target cell; and

(3) 상기 표적 부위에 목적 유전자가 삽입된 세포를 섭씨 36도 이상의 온도에서 배양하여 G 재조합벡터를 제거하는 단계.(3) removing the G recombinant vector by culturing the cells into which the gene of interest has been inserted into the target site at a temperature of 36 degrees Celsius or higher.

상기 방법으로 제조되는 형질전환체는 목적 유전자가 유전체 상에 존재하는 복수 개의 표적 부위에 삽입 (다중 삽입 또는 다중 도입)된 것일 수 있다. 상기 각 표적 부위에 삽입된 목적 유전자는 서로 동일 및/또는 상이한 것일 수 있다.The transformant prepared by the above method may have a target gene inserted into a plurality of target sites on the genome (multiple insertion or multiple introduction). The target genes inserted into each of the target sites may be the same and/or different from each other.

본 발명이 제공하는 형질전환체의 제조 방법은 (1) 대상 세포에 본 발명이 제공하는 조성물 및/또는 시스템을 도입하는 단계를 포함한다.The method for producing a transformant provided by the present invention includes (1) introducing the composition and/or system provided by the present invention into a target cell.

상기 조성물은 및/또는 시스템에 관한 구체적인 내용은 상술한 바와 같다Details of the composition and/or system are as described above.

상기 (1) 단계에서, 공통 재조합벡터 및 가변 재조합벡터 세트는 동시에 및/또는 순차적으로 도입될 수 있으며, 외부 벡터 도입 목적 범위에서 당업계에 알려진 방법을 자유롭게 선택하여 도입될 수 있다.In step (1), the common recombinant vector and variable recombinant vector set may be introduced simultaneously and/or sequentially, and may be introduced by freely selecting a method known in the art within the scope of the purpose of external vector introduction.

본 명세서에서 형질전환체의 제조 방법은 (2) 상기 대상 세포에서 Cas9 및 재조합효소를 발현시켜, 대상 세포의 표적 부위에 목적 유전자를 삽입하는 단계를 포함한다.In the present specification, the method for producing a transformant includes (2) expressing Cas9 and a recombinase in the target cell and inserting the target gene into the target site of the target cell.

상기 대상 세포의 표적 부위는 대상 세포에 도입된 G 재조합벡터에서 발현되는 gRNA에 의해 결정되며, 해당 gRNA가 지정하는 위치의 PAM 서열(NNGG)을 Cas9이 절단 (예를 들어, 이중 가닥 절단)하게 된다.The target site of the target cell is determined by the gRNA expressed in the G recombinant vector introduced into the target cell, and Cas9 cleaves (eg, double-strand break) the PAM sequence (NNGG) at the position designated by the gRNA. do.

상기 대상 세포에서 Cas9 및/또는 재조합효소를 발현시키는 단계는, 유도 가능한 프로모터 (inducible promoter)를 사용하여 유도함으로써 수행될 수 있다. 일 구현예에서, 상기 유도 가능한 프로모터는 아라비노스에 의해 유도 가능한 프로모터일 수 있다.The step of expressing Cas9 and/or recombinase in the target cell may be performed by induction using an inducible promoter. In one embodiment, the inducible promoter may be a promoter inducible by arabinose.

상기 Cas9 및/또는 재조합효소가 항시 발현되는 경우, 대상 세포의 대사 부담이 증가할 수 있으며, 의도하지 않은 유전체 부위가 손상될 위험이 증가할 수 있다.When the Cas9 and/or recombinase are constitutively expressed, the metabolic burden of the target cell may increase, and the risk of damage to an unintended genomic region may increase.

본 명세서에서 형질전환체의 제조 방법은, (3) 상기 표적 부위에 목적 유전자가 삽입된 세포를 섭씨 36도 이상의 온도에서 배양하여 G 재조합벡터를 제거하는 단계를 포함한다.In the present specification, the method for preparing a transformant includes (3) culturing cells into which the target gene has been inserted at the target site at a temperature of 36 degrees Celsius or higher to remove the G recombinant vector.

상기 G재조합벡터의 제거는 상술된 온도 민감성 원점 (ts origin)에 의해 수행될 수 있다. 상기 배양 온도는 상기 온도 민감성 원점의 종류에 따라 적절히 선택될 수 있으며, 섭씨 (이하 동일) 36도 이상, 37도 이상, 39도 이상 또는 41도 이상일 수 있으나, 이에 제한되지 않는다.Removal of the G recombination vector may be performed by the above-described temperature sensitive origin (ts origin). The culture temperature may be appropriately selected according to the type of the temperature-sensitive origin, and may be 36 degrees Celsius (the same below), 37 degrees or more, 39 degrees or more, or 41 degrees Celsius or more, but is not limited thereto.

본 명세서에서 형질전환체의 제조 방법은, 상기 G재조합벡터를 제거하는 단계 이후에, 하기의 단계를 추가로 포함할 수 있다:In the present specification, the method for preparing a transformant may further include the following steps after removing the G recombinant vector:

(i) 상기 형질전환체에, 상기 형질전환체의 유전체 상에 존재하며 상기 목적유전자가 삽입된 부위 이외의 새로운 표적 부위에 특이적인 가변 재조합벡터 세트를 도입하는 단계;(i) introducing into the transformant a variable recombinant vector set that is present on the genome of the transformant and is specific for a new target site other than the site into which the gene of interest is inserted;

(ii) 상기 가변 재조합벡터 세트가 도입된 형질전환체에서 Cas9 및 재조합효소를 발현시켜, 상기 새로운 표적 부위에 목적 유전자를 삽입하는 단계; 및(ii) expressing Cas9 and a recombinase in the transformant into which the variable recombinant vector set is introduced, and inserting the target gene into the new target site; and

(iii) 상기 새로운 표적 부위에 목적 유전자가 삽입된 형질전환체를 섭씨 36도 이상의 온도에서 배양하여 G 재조합벡터를 제거하는 단계.(iii) removing the G recombinant vector by culturing the transformant in which the target gene has been inserted into the new target site at a temperature of 36 degrees Celsius or higher.

상기 (i) 단계 내지 (iii) 단계는 대상 세포의 유전체에 존재하는 표적 부위의 수만큼 반복될 수 있다. 상기 표적 부위마다 상기 가변 재조합벡터 세트 내 gRNA 및/또는 상동성 영역을 치환하여 사용할 수 있다.Steps (i) to (iii) may be repeated as many times as the number of target sites present in the genome of the target cell. gRNAs and/or homologous regions in the variable recombinant vector set may be substituted for each target site.

상기 반복 단계에 의해 다수의 표적 부위에 목적 유전자를 삽입할 수 있으며, 도입된 목적 유전자의 전체 길이 9kb 이상 또는 10kb 이상의 큰 목적 유전자를 빠르고 간편하게 대상 세포의 유전체에 도입할 수 있는 장점이 있다.There is an advantage in that a target gene can be inserted into a plurality of target sites by the repetition step, and a large target gene having a total length of 9 kb or more or 10 kb or more of the introduced target gene can be quickly and easily introduced into the genome of a target cell.

본 발명은 또한 상기 방법으로 제조된 형질전환체를 제공한다.The present invention also provides a transformant prepared by the above method.

상기 형질전환체 내에 삽입된 목적 유전자의 전체 길이는 1kb 이상, 5kb 이상, 10kb 이상, 1 내지 30kb, 1 내지 15kb, 1 내지 10kb, 5 내지 30kb, 5 내지 15kb, 5 내지 10kb, 10 내지 30kb, 또는 10 내지 15kb 일 수 있으나, 이에 제한되지 않는다.The total length of the target gene inserted into the transformant is 1 kb or more, 5 kb or more, 10 kb or more, 1 to 30 kb, 1 to 15 kb, 1 to 10 kb, 5 to 30 kb, 5 to 15 kb, 5 to 10 kb, 10 to 30 kb, Or it may be 10 to 15 kb, but is not limited thereto.

본 명세서에서 제공하는 외래의 3-하이드록시프로피온산 (3-hydroxypropionate, 3-HP) 생산 유전자가 유전체 DNA (genomic DNA) 내부에 삽입되는 대장균의 상기 3-HP 생산 유전자는 1 복제수 이상 100 복제수 이하, 2 복제수 이상 100 복제수 이하, 3 복제수 이상 100 복제수 이하, 4 복제수 이상 100 복제수 이하, 5 복제수 이상 100 복제수 이하, 6 복제수 이상 100 복제수 이하, 7 복제수 이상 100 복제수 이하, 1 복제수 이상 50 복제수 이하, 2 복제수 이상 50 복제수 이하, 3 복제수 이상 50 복제수 이하, 4 복제수 이상 50 복제수 이하, 5 복제수 이상 50 복제수 이하, 6 복제수 이상 50 복제수 이하, 7 복제수 이상 50 복제수 이하, 1 복제수 이상 30 복제수 이하, 2 복제수 이상 30 복제수 이하, 3 복제수 이상 30 복제수 이하, 4 복제수 이상 30 복제수 이하, 5 복제수 이상 30 복제수 이하, 6 복제수 이상 30 복제수 이하, 7 복제수 이상 30 복제수 이하, 1 복제수 이상 20 복제수 이하, 2 복제수 이상 20 복제수 이하, 3 복제수 이상 20 복제수 이하, 4 복제수 이상 20 복제수 이하, 5 복제수 이상 20 복제수 이하, 6 복제수 이상 20 복제수 이하, 7 복제수 이상 20 복제수 이하, 1 복제수 이상 10 복제수 이하, 2 복제수 이상 10 복제수 이하, 3 복제수 이상 10 복제수 이하, 4 복제수 이상 10 복제수 이하, 5 복제수 이상 10 복제수 이하, 6 복제수 이상 10 복제수 이하, 7 복제수 이상 10 복제수 이하, 1 복제수 이상 8 복제수 이하, 2 복제수 이상 8 복제수 이하, 3 복제수 이상 8 복제수 이하, 4 복제수 이상 8 복제수 이하, 5 복제수 이상 8 복제수 이하, 6 복제수 이상 8 복제수 이하 또는 7 복제수 이상 8 복제수 이하로 유전체 DNA 내부로 삽입될 수 있고, 이에 제한되는 것은 아니다.The 3-HP production gene of E. coli, in which the foreign 3-hydroxypropionate (3-HP) production gene provided herein is inserted into genomic DNA, is 1 copy or more 100 copies 2 copies or more and 100 copies or less, 3 copies or more and 100 copies or less, 4 copies or more and 100 copies or less, 5 copies or more and 100 copies or less, 6 copies or more and 100 copies or less, 7 copies More than 100 copies, 1 copy more than 50 copies, 2 copies more than 50 copies, 3 copies more than 50 copies, 4 copies more than 50 copies, 5 copies more and less than 50 copies , 6 copies or more but 50 copies or less, 7 copies or more and 50 copies or less, 1 copy number or more but 30 copies or less, 2 copies or more and 30 copies or less, 3 copies or more and 30 copies or less, 4 copies or more 30 copies or less, 5 copies or more and 30 copies or less, 6 copies or more and 30 copies or less, 7 copies or more and 30 copies or less, 1 copy or more and 20 copies or less, 2 copies or more and 20 copies or less, 3 copies more than 20 copies, 4 copies more than 20 copies, 5 copies more than 20 copies, 6 copies more than 20 copies, 7 copies more than 20 copies, 1 copies more than 10 copies 2 copies and 10 copies or less, 3 copies and 10 copies and 4 copies, 5 copies and 10 copies and 10 copies, 6 copies and 10 copies and 7 copies More than 1 copy and less than 10 copies, More than 1 copy and less than 8 copies, More than 2 copies and less than 8 copies, More than 3 copies and less than 8 copies, More than 4 copies and less than 8 copies, More than 5 copies and less than 8 copies It may be inserted into genomic DNA at 6 copies or more and 8 copies or less, or 7 copies or more and 8 copies or less, but is not limited thereto.

일 예에서, 상기 미생물 (예컨대, 대장균)은 3-HP 생산능을 가지고 있거나 3-HP 생산능을 가지도록 유전적으로 조작된 균주일 수 있다. 상기 3-HP의 생산은 균주 내에서 생산되는 것, 세포 내에서 생산되어 세포 외부로 분비되는 것, 또는 그 조합을 포함한다.In one example, the microorganism (eg, Escherichia coli) may be a strain having 3-HP production ability or genetically engineered to have 3-HP production ability. The production of 3-HP includes production in a strain, production in a cell and secretion to the outside of the cell, or a combination thereof.

본 명세서에서 “글리세롤 탈수효소 (glycerol dehydratase)”는 화학 반응을 촉매하는 효소로, 탄소-산소 결합을 절단하는 분해효소, 특히 가수분해효소 계열에 속하고, 글리세롤 지질 대사에 참여하고, 보조 인자인 코발라민을 사용한다. 상기 효소는 dhaB (GenBank accession no. U30903.1) 유전자에 의해 암호화되는 것일 수 있으나, 이에 제한되지 않는다.In the present specification, “glycerol dehydratase” is an enzyme that catalyzes a chemical reaction, a decomposition enzyme that cleaves a carbon-oxygen bond, particularly belongs to the family of hydrolases, participates in glycerol lipid metabolism, and is a cofactor Use cobalamin. The enzyme may be encoded by dhaB (GenBank accession no. U30903.1) gene, but is not limited thereto.

상기 dhaB 유전자는 클렙시엘라 뉴모니아 (Klebsiella pneumonia)에서 유래한 것이고, 상기 글리세롤 탈수효소를 암호화하는 유전자는 dhaB1, dhaB2 및/또는 dhaB3를 암호화하는 유전자를 포함할 수 있고, 이에 제한되는 것은 아니다. 상기 글리세롤 탈수효소 단백질 및 이를 암호화하는 유전자는 글리세롤을 3-하이드록시프로판알 (3-hydroxypropanal, 3-HPA)과 물 (H2O)로 분해하는 효소 활성을 유지하는 범위 내에서 유전자 및/또는 아미노산 서열의 변이를 포함할 수 있다.The dhaB gene is derived from Klebsiella pneumoniae, and the gene encoding the glycerol dehydratase may include genes encoding dhaB1, dhaB2 and/or dhaB3, but is not limited thereto. . The glycerol dehydratase protein and the gene encoding it are genes and/or It may contain variations in the amino acid sequence.

본 명세서에서 “알데하이드 탈수소효소 (aldehyde dehydrogenase)”는 알데하이드의 산화를 촉매하는 효소이다. 상기 효소는 알데하이드 (R-C(=O)-H) 를 카르복실산 (R-C(=O)-O-H)으로 변환시킬 수 있다. 상기 효소는 aldH 유전자에 의해 암호화되는 것일 수 있고, 상기 유전자는 대장균 (Escherichia coli) 또는 E. coli K12 MG1655 18-3 세포주에서 유래한 aldH (GenBank Accession no. U00096.3; EaldH) 유전자, 클렙시엘라 뉴모니아 (K. pneumonia)에서 유래한 puuC 유전자, 및/또는 아조스피릴룸 브라실렌스 (Azospirillum brasilense) 유래의 KGSADH 유전자일 수 있고, 이에 제한되지 않는다. 상기 알데하이드 탈수소효소 단백질 및 이를 암호화하는 유전자는 3-HPA로부터 3-HP를 생산하기 위한 활성을 유지하는 범위 내에서 유전자 및/또는 아미노산 서열의 변이를 포함할 수 있다.In the present specification, “aldehyde dehydrogenase” is an enzyme that catalyzes the oxidation of aldehyde. This enzyme can convert an aldehyde (R-C(=O)-H) into a carboxylic acid (R-C(=O)-O-H). The enzyme may be encoded by the aldH gene, and the gene is aldH (GenBank Accession no. U00096.3; EaldH) gene derived from Escherichia coli or E. coli K12 MG1655 18-3 cell line, Klebsi It may be a puuC gene derived from K. pneumonia, and/or a KGSADH gene derived from Azospirillum brasilense, but is not limited thereto. The aldehyde dehydrogenase protein and the gene encoding it may include mutations in the gene and/or amino acid sequence within the range of maintaining activity for producing 3-HP from 3-HPA.

본 명세서에서 “글리세롤 탈수효소 재활성효소 (glycerol dehydratase reactivase)”는 글리세롤 탈수효소의 촉매 반응 시 상기 촉매의 활성을 유지시키는 작용을 한다. 상기 효소는 gdrAB 유전자에 의해 암호화되는 것일 수 있고, 클렙시엘라 뉴모니아 (Klebsiella pneumonia)에서 유래한 것일 수 있다. In the present specification, "glycerol dehydratase reactivase" serves to maintain the activity of the catalyst during the catalytic reaction of glycerol dehydratase. The enzyme may be encoded by the gdrAB gene and may be derived from Klebsiella pneumonia.

본 명세서에서 “아데노실트랜스퍼라아제 (adenosyltransferase)”는 비타민 B12 재사용을 개선하는 역할을 하고, 유전자 btuR (GenBank: AAA23530.1)에 의해 암호화될 수 있고, 이는 대장균 (Escherichia coli)에서 유래할 수 있다.In this specification, “adenosyltransferase” serves to improve vitamin B 12 recycling and can be encoded by the gene btuR (GenBank: AAA23530.1), which can be derived from Escherichia coli. can

본 명세서에서 “yqhD”는 alcohol dehydrogenase를 암호화하는 유전자로서 글리세롤이 글리세롤 탈수효소에 의해 3-하이드록시프로판알과 물로 분해하였을 때 3-하이드록시프로판알을 1,3-PDO로 전환하는 효소를 암호화한다.In the present specification, “yqhD” is a gene encoding alcohol dehydrogenase, which converts 3-hydroxypropanal into 1,3-PDO when glycerol is decomposed into 3-hydroxypropanal and water by glycerol dehydrogenase Encoding enzyme do.

본 명세서에서 “glpK”는 글리세롤 키나아제 (glycerol kinase)를 암호화하는 유전자일 수 있다.In the present specification, “glpK” may be a gene encoding glycerol kinase.

본 명세서에서 “ldhA”는 락테이트 디하이드로게나제 (lactate dehydrogenase)를 암호화하는 유전자일 수 있다.In the present specification, “ldhA” may be a gene encoding lactate dehydrogenase.

본 명세서에서 “gldA”는 글리세롤 디하이드로게나제 (glycerol dehydrogenase)를 암호화하는 유전자일 수 있다.In the present specification, “gldA” may be a gene encoding glycerol dehydrogenase.

본 명세서에서 “ack-pta”는 acetate kinase-phosphate acetyltransferase를 암호화하는 유전자일 수 있다.In the present specification, “ack-pta” may be a gene encoding acetate kinase-phosphate acetyltransferase.

본 명세서에서 “mgsA”는 메틸글리옥살 신타아제 (methylglyoxal synthase)를 암호화하는 유전자일 수 있다.In the present specification, “mgsA” may be a gene encoding methylglyoxal synthase.

본 명세서에서 “poxB”는 pyruvate dehydrogenase를 암호화하는 유전자일 수 있다.In the present specification, “poxB” may be a gene encoding pyruvate dehydrogenase.

본 명세서에서 “nfrA”는 bacteriophage adsorption protein A를 암호화하는 유전자일 수 있다.In the present specification, “nfrA” may be a gene encoding bacteriophage adsorption protein A.

본 명세서에서 “벡터”는 숙주 세포로 염기의 클로닝 및/또는 전이를 위한 임의의 매개물을 말한다. 벡터는 다른 DNA 단편이 결합하여 결합된 단편의 복제를 가져올 수 있는 복제단위 (replicon)일 수 있다. "복제단위"란 생체 내에서 DNA 복제의 자가 유닛으로서 기능하는, 즉, 스스로의 조절에 의해 복제 가능한, 임의의 유전적 단위 (예컨대, 플라스미드, 파지, 코스미드, 염색체, 바이러스)를 의미할 수 있다. 본 발명에 있어서 벡터는 숙주 중에서 복제 가능한 것이면 특별히 한정되지 않으며 당업계에 알려진 임의의 벡터를 이용할 수 있다. 상기 재조합 벡터의 제작에 사용된 벡터는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스, 및/또는 박테리오파지일 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, λEMBL3, λEMBL4, λFIXII, λDASHII, λZAPII, λgt10, λgt11, Charon4A, 및/또는 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pDZ 벡터, pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계, 및/또는 pET계 등을 사용할 수 있다. 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있다. 일 예에서, 상기 벡터는 벡터 내로 삽입되어 전달된 유전자가 숙주세포의 게놈 내로 비가역적으로 융합되어 세포 내에서 유전자 발현이 장기간 안정적으로 지속되도록 하는 것일 수 있다. 이러한 벡터는, 해당 유전자가 선택된 숙주 내에서 발현될 수 있도록 하는 전사 및 해독 발현 조절 서열을 포함할 수 있다. 발현 조절 서열로는, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 및/또는 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 일 예에서, 개시 코돈 및 종결 코돈은 일반적으로 목적 단백질을 암호화하는 핵산 서열의 일부로 간주될수 있고, 유전자 작제물이 투여되었을 때 개체에서 작용을 나타내야 하며 코딩 서열과 인프레임 (in frame)에 있을 수 있다. 또한 복제 가능한 발현벡터인 경우 복제 기원을 포함할 수 있다. 그 외에, 인핸서, 목적하는 유전자의 3'말단의 비번역영역, 선별 마커 (예컨대, 항생제 내성 마커), 및/또는 복제가능단위 등을 적절하게 포함할 수도 있다. 상기 벡터는 자가 복제하거나 숙주 게놈 DNA에 통합될 수 있다.As used herein, “vector” refers to any medium for cloning and/or transfer of a base into a host cell. A vector may be a replica, into which other DNA fragments may be combined to effect replication of the linked fragments. "Replication unit" can mean any genetic unit (e.g., plasmid, phage, cosmid, chromosome, virus) that functions as a self-unit of DNA replication in vivo, that is, is capable of replicating under its own control. there is. In the present invention, the vector is not particularly limited as long as it is capable of replicating in the host, and any vector known in the art may be used. The vector used in the construction of the recombinant vector may be a natural or recombinant plasmid, cosmid, virus, and/or bacteriophage. For example, pWE15, M13, λEMBL3, λEMBL4, λFIXII, λDASHII, λZAPII, λgt10, λgt11, Charon4A, and/or Charon21A may be used as phage vectors or cosmid vectors, and pDZ vectors, pBR systems, A pUC system, a pBluescript II system, a pGEM system, a pTZ system, a pCL system, and/or a pET system, etc. can be used. Usable vectors are not particularly limited, and known expression vectors can be used. In one example, the vector may be inserted into the vector so that the transferred gene is irreversibly fused into the genome of the host cell to stably maintain gene expression in the cell for a long period of time. Such vectors may contain transcriptional and translational expression control sequences that allow the gene of interest to be expressed in the host of choice. Expression control sequences may include any operator sequence for regulating transcription, and/or sequences regulating termination of transcription and translation. In one example, the initiation codon and stop codon can generally be considered part of a nucleic acid sequence encoding a protein of interest, should be functional in a subject when the genetic construct is administered, and may be in frame with the coding sequence. there is. Also, in the case of an expression vector capable of replication, an origin of replication may be included. In addition, an enhancer, an untranslated region at the 3' end of the gene of interest, a selectable marker (eg, antibiotic resistance marker), and/or a replicable unit may be appropriately included. The vectors can replicate autonomously or integrate into the host genomic DNA.

일 예에 따르면, 벡터 내의 각 구성요소는 서로 작동 가능하게 연결되어야 하며, 이들 구성요소 서열의 연결은 편리한 제한 효소 부위에서 라이게이션 (연결)에 의해 수행될 수 있고, 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터 (oligonucleotide adaptor) 또는 링커 (linker)를 사용하여 수행될 수 있다.According to one example, each component in the vector must be operably linked to each other, and the linkage of these component sequences can be performed by ligation (linkage) at a convenient restriction enzyme site, if such a site does not exist , It can be performed using a synthetic oligonucleotide adapter or linker according to a conventional method.

본 명세서에서 “형질도입”은 박테리오파지 (bacteriophage)를 매개로 하여 세균 DNA가 다른 세균으로 이동되는 현상을 일컫는 것이며, 수평적 유전자 이동 (horizontal gene transfer, HGT)의 방법 중 하나이다. 이렇게 형질도입이 가능한 bacteriophage를 “형질도입 입자” 또는 “형질도입 phage”라고 부르고, 다른 세균으로부터 DNA를 받은 세포를 “형질도입체 (transductant)”라고 부른다.In the present specification, “transduction” refers to a phenomenon in which bacterial DNA is transferred to other bacteria via a bacteriophage, and is one of the methods of horizontal gene transfer (HGT). Bacteriophages capable of transduction in this way are called “transducing particles” or “transducing phages,” and cells receiving DNA from other bacteria are called “transductants.”

본 명세서에서 “형질전환”은 유전자를 숙주 세포 내에 도입하여 숙주세포 내에서 발현시킬 수 있도록 하는 것이며, 형질전환된 유전자는 숙주 세포 내에서 발현될 수 있으면 숙주 세포의 염색체 내 삽입 또는 염색체 외에 위치하고 있는 것이든 제한하지 않고 포함될 수 있다. 또한, 상기 유전자는 표적 단백질을 암호화하는 DNA 및/또는 RNA를 포함한다. 상기 유전자는 숙주 미생물 내로 도입되어 발현될 수 있는 것이면, 그 도입되는 형태는 제한이 없다. 예를 들면, 상기 유전자는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주 미생물에 도입될 수 있다. 상기 발현 카세트는 통상 상기 유전자에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및/또는 번역 종결신호 등의 발현 조절 요소를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 유전자는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있다.In the present specification, "transformation" is to introduce a gene into a host cell so that it can be expressed in the host cell, and the transformed gene is inserted into the chromosome of the host cell or located outside the chromosome if it can be expressed in the host cell. Anything can be included without limitation. In addition, the gene includes DNA and/or RNA encoding the target protein. As long as the gene can be introduced and expressed into a host microorganism, the introduced form is not limited. For example, the gene may be introduced into a host microorganism in the form of an expression cassette, which is a genetic construct containing all elements required for self-expression. The expression cassette may include expression control elements such as a promoter operably linked to the gene, a transcription termination signal, a ribosome binding site, and/or a translation termination signal. The expression cassette may be in the form of an expression vector capable of self-replication. In addition, the gene may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell.

본 명세서에서, 형질전환시키는 방법은 유전자를 세포 내로 도입하는 방법이면 제한 없이 포함되며, 숙주 세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법 (electroporation), 인산칼슘 (CaPO4) 침전, 염화칼슘 (CaCl2) 침전, 미세주입법 (microinjection), 레트로바이러스 감염 (retroviral infection), 폴리에틸렌글리콜 (PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및/또는 초산 리튬-DMSO법 등이 사용될 수 있으나, 이에 한정되지 않는다.In the present specification, the transformation method is included without limitation as long as it is a method of introducing a gene into a cell, and can be performed by selecting a suitable standard technique as known in the art according to the host cell. For example, electroporation, calcium phosphate (CaPO4) precipitation, calcium chloride (CaCl2) precipitation, microinjection, retroviral infection, polyethylene glycol (PEG) method, DEAE-dextran method , cationic liposome method, and/or lithium acetate-DMSO method may be used, but is not limited thereto.

미생물 (예컨대, 대장균)을 배양하는 단계를 포함하는, 상기 미생물 (예컨대, 대장균) 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법에서, 상기 배양하는 단계는 제1단계 배양 단계 및/또는 제1단계 배양 단계 및 제2단계 배양 단계를 포함할 수 있고, 이에 제한되는 것은 아니다.In the method for confirming the 3-HP production ability of the 3-HP production gene inserted into the genomic DNA of the microorganism (eg, E. coli), comprising the step of culturing the microorganism (eg, E. coli), the culturing step is the first step of culturing. Step and / or may include a first step culture step and a second step culture step, but is not limited thereto.

상기 미생물 (예컨대, 대장균)을 배양하는 단계는,The step of culturing the microorganism (eg, Escherichia coli),

탄소원으로 글루코스 및/또는 수크로스를 포함하는 배지에서 배양하는 제1단계 배양 단계; 및A first step of culturing in a medium containing glucose and/or sucrose as a carbon source; and

탄소원으로 글리세롤을 포함하는 배지에서 배양하는 제2단계 배양 단계The second step of culturing in a medium containing glycerol as a carbon source

를 포함할 수 있고, 이에 제한되는 것은 아니다.It may include, but is not limited thereto.

상기 탄소원으로 글루코스 및/또는 수크로스를 포함하는 배지는 LB 배지일 수 있고, 상기 탄소원으로 글리세롤을 포함하는 배지는 M9 배지일 수 있고, 이에 제한되는 것은 아니다.The medium containing glucose and/or sucrose as the carbon source may be LB medium, and the medium containing glycerol as the carbon source may be M9 medium, but is not limited thereto.

상기 배양은 당업계에 알려진 적절한 배지와 배양 조건에 따라 이루어질 수 있고 적절한 방식으로 특정 균주의 요건을 충족해야 하며, 통상의 기술자에 의해 적절하게 변형될 수 있다.The culture can be performed according to appropriate media and culture conditions known in the art, and must meet the requirements of a specific strain in an appropriate manner, and can be appropriately modified by a person skilled in the art.

상기 배양 방법은 예를 들면, 회분식 배양 (batch culture), 연속식 배양 (continuous culture), 유가식 배양 (fed-batch culture), 또는 이들의 조합 배양을 포함할 수 있으나, 이에 한정되는 것은 아니다.The culture method may include, for example, batch culture, continuous culture, fed-batch culture, or a combination culture thereof, but is not limited thereto.

일 예에 따르면, 배지에 다양한 탄소원, 질소원 및 미량원소 성분을 포함할 수 있고, 상기 재조합 세포를 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 온도 및/또는 pH 등을 조절하면서 배양할 수 있다. 사용될 수 있는 탄소원으로는 글루코스, 수크로스, 락토스, 프락토스, 말토스, 전분, 및/또는 셀룰로스와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 및/또는 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 및/또는 리놀레산과 같은 지방산, 글리세롤, 및/또는 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있으나, 이에 한정되는 것은 아니다. 사용될 수 있는 질소원으로는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두밀 및 요소 또는 무기 화합물, 예를 들면 황산 암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄이 포함될 수 있다. 질소원 또한 개별적으로 또는 혼합물로서 사용할 수 있으나 이에 한정되는 것은 아니다. 사용될 수 있는 인의 공급원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함될 수 있으며, 이에 한정되는 것은 아니다. 또한, 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 함유할 수 있으며, 이에 한정되는 것은 아니다. 그 외에, 아미노산 및 비타민과 같은 필수 성장 물질이 포함될 수 있다. 또한 배지에 적절한 전구체들이 사용될 수 있다. 상기 배지 또는 개별 성분은 배양과정에서 배양액에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있으나, 이에 한정되는 것은 아니다.According to one example, the medium may contain various carbon sources, nitrogen sources, and trace element components, and the recombinant cells are controlled by temperature and/or pH in a conventional medium containing appropriate carbon sources, nitrogen sources, amino acids, vitamins, and the like. You can cultivate while doing it. Carbon sources that can be used include sugars and carbohydrates such as glucose, sucrose, lactose, fructose, maltose, starch, and/or cellulose, oils and fats such as soybean oil, sunflower oil, castor oil, and/or coconut oil, fatty acids such as palmitic acid, stearic acid, and/or linoleic acid; alcohols such as glycerol, and/or ethanol; and organic acids such as acetic acid. These materials may be used individually or as a mixture, but are not limited thereto. Nitrogen sources that can be used include peptone, yeast extract, broth, malt extract, corn steep liquor, soybean meal and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate. Nitrogen sources may also be used individually or as a mixture, but are not limited thereto. Sources of phosphorus that may be used include, but are not limited to, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts. In addition, the medium may contain metal salts such as magnesium sulfate or iron sulfate necessary for growth, but is not limited thereto. In addition, essential growth substances such as amino acids and vitamins may be included. Precursors suitable for the medium may also be used. The medium or individual components may be added in a batchwise or continuous manner by a method suitable for the culture medium during the culture process, but is not limited thereto.

일 예에 따르면, 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 미생물 배양액에 적절한 방식으로 첨가하여 배양액의 pH를 조정할 수 있다. 또한, 배양 중에 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 추가적으로, 배양액의 호기 상태를 유지하기 위하여, 배양액 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있다. 배양액의 온도는 20℃ 내지 45℃, 25℃ 내지 40℃ 또는 30℃ 내지 37℃일 수 있고, 예컨대, 37℃일 수 있다. 배양기간은 유용물질 (예컨대, 3-HP)이 원하는 생산량으로 수득될 때까지 계속될 수 있으며, 예를 들면, 3 내지 60시간, 3 내지 48시간, 3 내지 36시간, 3 내지 28시간, 6 내지 60시간, 6 내지 48시간, 6 내지 36시간, 6 내지 28시간, 12 내지 60시간, 12 내지 48시간, 12 내지 36시간, 12 내지 28시간, 20 내지 60시간, 20 내지 48시간, 20 내지 36시간 또는 20 내지 28시간일 수 있고, 예컨대, 24시간일 수 있고, 이에 제한되는 것은 아니다.According to one example, the pH of the culture medium may be adjusted by adding compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid to the microbial culture medium in an appropriate manner during cultivation. In addition, the formation of bubbles can be suppressed by using an antifoaming agent such as a fatty acid polyglycol ester during cultivation. Additionally, in order to maintain the aerobic state of the culture medium, oxygen or oxygen-containing gas (eg, air) may be injected into the culture medium. The temperature of the culture medium may be 20 °C to 45 °C, 25 °C to 40 °C or 30 °C to 37 °C, for example, 37 °C. The culturing period may be continued until a useful material (eg, 3-HP) is obtained in a desired yield, for example, 3 to 60 hours, 3 to 48 hours, 3 to 36 hours, 3 to 28 hours, 6 to 60 hours, 6 to 48 hours, 6 to 36 hours, 6 to 28 hours, 12 to 60 hours, 12 to 48 hours, 12 to 36 hours, 12 to 28 hours, 20 to 60 hours, 20 to 48 hours, 20 to 36 hours or 20 to 28 hours, for example, 24 hours, but is not limited thereto.

상기 배양된 미생물 (또는 재조합 세포) 및/또는 배양 배지에서 3-HP를 분리 및/또는 회수하는 단계는 배양방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배지, 배양액, 또는 미생물로부터 목적하는 물질 (예컨대, 3-HP)을 수집하는 것일 수 있다. 예를 들면, 원심분리, 여과, 추출, 분무, 건조, 증방, 침전, 결정화, 전기영동, 분별용해 (예컨대 암모늄 설페이트 침전), 및/또는 크로마토그래피 (예컨대 이온 교환, 친화성, 소수성, 액체, 및 크기배제) 등의 방법을 사용할 수 있으나 이에 제한되지 않는다. 상기 배양 배지는 미생물 (또는 재조합 세포)를 배양한 배지를 의미할 수 있다.The step of separating and/or recovering 3-HP from the cultured microorganisms (or recombinant cells) and/or culture medium may be performed by using a suitable method known in the art according to the culture method to obtain the desired target from the culture medium, culture medium, or microorganism. It may be to collect a substance (eg, 3-HP). For example, centrifugation, filtration, extraction, spraying, drying, steaming, precipitation, crystallization, electrophoresis, fractionation (eg ammonium sulfate precipitation), and/or chromatography (eg ion exchange, affinity, hydrophobicity, liquid, and size exclusion) may be used, but is not limited thereto. The culture medium may mean a medium in which microorganisms (or recombinant cells) are cultured.

일 예에서, 상기 3-HP 생산 방법은 3-HP를 정제하는 단계를 상기 분리 및/또는 회수하는 단계 이전, 동시, 또는 그 이후에 추가적으로 포함할 수 있다.In one example, the 3-HP production method may additionally include a step of purifying 3-HP before, simultaneously with, or after the step of separating and/or recovering.

본 명세서에서 외래의 3-하이드록시프로피온산 (3-hydroxypropionate, 3-HP) 생산 유전자가 유전체 DNA (genomic DNA) 내부에 삽입된 미생물 및/또는 대장균은 3-HP 생산능을 가지고, 상기 미생물 및/또는 대장균을 포함하는 상기 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인용 조성물을 제공한다. 또한, 상기 미생물 및/또는 대장균을 배양하는 단계를 포함하는, 상기 미생물 및/또는 대장균 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법을 제공한다.In the present specification, the foreign 3-hydroxypropionate (3-HP) production gene is inserted into the genomic DNA (genomic DNA) microorganisms and / or Escherichia coli have 3-HP production ability, the microorganisms and / Alternatively, it provides a composition for confirming the 3-HP production ability of the 3-HP production gene inserted into the genomic DNA containing E. coli. In addition, it provides a method for confirming the 3-HP productivity of the 3-HP production gene inserted into the microorganism and / or E. coli genomic DNA, comprising the step of culturing the microorganism and / or E. coli.

도 1은 Cas9 유전자 및 재조합 효소를 포함하는 공통 재조합벡터의 계열지도이다.
도 2는 D 재조합 DNA가 포함하는 목적 유전자의 5' 및 3' 말단에 삽입 위치 전후에 연결된 상동성 팔 (homology arm) 부위를 나타낸 것이다.
도 3은 4종의 목적 유전자 (삽입 유전자)를 포함하는 카세트 재조합벡터를 나타낸 것이다.
도 4는 3-HP 생산 유전자 플라스미드 벡터인 pCDF_J23101_dhaB_gdrAB_J23100_aldH_btuR 벡터를 나타낸 것이다.
도 5는 pRSFDuet-1 벡터 기반의 3-HP 생산 pRSF 플라스미드 벡터를 나타낸 것이다.
1 is a series map of a common recombinant vector including a Cas9 gene and a recombinase.
FIG. 2 shows homology arm regions connected before and after the insertion site at the 5' and 3' ends of the gene of interest included in the D recombinant DNA.
Figure 3 shows a cassette recombinant vector containing four types of target genes (inserted genes).
Figure 4 shows the pCDF_J23101_dhaB_gdrAB_J23100_aldH_btuR vector, which is a 3-HP production gene plasmid vector.
5 shows a 3-HP production pRSF plasmid vector based on the pRSFDuet-1 vector.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are only to illustrate the present invention, and the present invention is not limited by the following examples.

본 명세서에서 특별한 언급이 없는 한 온도는 모두 섭씨 온도를 기준으로 하며, 핵산 서열은 특별한 사정이 없는 한 5' 말단에서 3' 말단 방향으로 기재되었다.In this specification, unless otherwise specified, all temperatures are based on Celsius, and nucleic acid sequences are written from the 5' end to the 3' end unless otherwise specified.

실시예 1. 균주 재조합을 위한 플라스미드 디자인Example 1. Plasmid design for strain recombination

1-1. 공통 재조합벡터 (Cas9 및 재조합 효소 포함) 제조1-1. Manufacture of common recombinant vectors (including Cas9 and recombinase)

본 실시예에서는 Cas9 유전자 및 재조합 효소를 포함하는 공통 재조합벡터를 제조하였다.In this example, a common recombinant vector including a Cas9 gene and a recombinase was prepared.

보다 구체적으로, RSF 원점 (origin), 아라비노스 (arabinose)로 유도 (induction)되는 araBAD 프로모터 하에 Cas9의 전사를 조절하는 araC 유전자와 RED 재조합효소 (recombinase) 유전자 발현 벡터에 Cas9 유전자 (서열번호 1) 및 재조합 효소 (RED recomgbinase; 서열번호 2)를 삽입하여, 공통 재조합벡터를 제조하였고, 구체적인 정보는 하기 표 1에 나타내었다.More specifically, the Cas9 gene (SEQ ID NO: 1) in the araC gene and the RED recombinase gene expression vector that regulates the transcription of Cas9 under the araBAD promoter, which is induction with the RSF origin and arabinose And a recombinase (RED recomgbinase; SEQ ID NO: 2) was inserted to prepare a common recombinant vector, and specific information is shown in Table 1 below.

도 1에 공통 재조합벡터의 계열지도를 나타내었다. 상기 공통 재조합벡터는 첫 번째 유전자 삽입시에 1회 삽입된 이후로 추가적인 유전자 삽입 과정 없이도 재조합 세포 내에서 항상 유지되며, 도입되는 gRNA와 상동성 영역의 종류에 따라 유전체를 편집할 수 있도록 하는 기능을 수행한다.Figure 1 shows a family map of common recombinant vectors. Since the common recombinant vector is inserted once during the first gene insertion, it is always maintained in the recombinant cell without an additional gene insertion process, and functions to edit the genome according to the type of gRNA and homology region to be introduced. carry out

명칭designation 서열 (5'->3')Sequence (5'->3') 서열번호sequence number Cas9 geneCas9 gene atggataagaaatactcaataggcttagatatcggcacaaatagcgtcggatgggcggtgatcactgatgaatataaggttccgtctaaaaagttcaaggttctgggaaatacagaccgccacagtatcaaaaaaaatcttataggggctcttttatttgacagtggagagacagcggaagcgactcgtctcaaacggacagctcgtagaaggtatacacgtcggaagaatcgtatttgttatctacaggagattttttcaaatgagatggcgaaagtagatgatagtttctttcatcgacttgaagagtcttttttggtggaagaagacaagaagcatgaacgtcatcctatttttggaaatatagtagatgaagttgcttatcatgagaaatatccaactatctatcatctgcgaaaaaaattggtagattctactgataaagcggatttgcgcttaatctatttggccttagcgcatatgattaagtttcgtggtcattttttgattgagggagatttaaatcctgataatagtgatgtggacaaactatttatccagttggtacaaacctacaatcaattatttgaagaaaaccctattaacgcaagtggagtagatgctaaagcgattctttctgcacgattgagtaaatcaagacgattagaaaatctcattgctcagctccccggtgagaagaaaaatggcttatttgggaatctcattgctttgtcattgggtttgacccctaattttaaatcaaattttgatttggcagaagatgctaaattacagctttcaaaagatacttacgatgatgatttagataatttattggcgcaaattggagatcaatatgctgatttgtttttggcagctaagaatttatcagatgctattttactttcagatatcctaagagtaaatactgaaataactaaggctcccctatcagcttcaatgattaaacgctacgatgaacatcatcaagacttgactcttttaaaagctttagttcgacaacaacttccagaaaagtataaagaaatcttttttgatcaatcaaaaaacggatatgcaggttatattgatgggggagctagccaagaagaattttataaatttatcaaaccaattttagaaaaaatggatggtactgaggaattattggtgaaactaaatcgtgaagatttgctgcgcaagcaacggacctttgacaacggctctattccccatcaaattcacttgggtgagctgcatgctattttgagaagacaagaagacttttatccatttttaaaagacaatcgtgagaagattgaaaaaatcttgacttttcgaattccttattatgttggtccattggcgcgtggcaatagtcgttttgcatggatgactcggaagtctgaagaaacaattaccccatggaattttgaagaagttgtcgataaaggtgcttcagctcaatcatttattgaacgcatgacaaactttgataaaaatcttccaaatgaaaaagtactaccaaaacatagtttgctttatgagtattttacggtttataacgaattgacaaaggtcaaatatgttactgaaggaatgcgaaaaccagcatttctttcaggtgaacagaagaaagccattgttgatttactcttcaaaacaaatcgaaaagtaaccgttaagcaattaaaagaagattatttcaaaaaaatagaatgttttgatagtgttgaaatttcaggagttgaagatagatttaatgcttcattaggtacctaccatgatttgctaaaaattattaaagataaagattttttggataatgaagaaaatgaagatatcttagaggatattgttttaacattgaccttatttgaagatagggagatgattgaggaaagacttaaaacatatgctcacctctttgatgataaggtgatgaaacagcttaaacgtcgccgttatactggttggggacgtttgtctcgaaaattgattaatggtattagggataagcaatctggcaaaacaatattagattttttgaaatcagatggttttgccaatcgcaattttatgcagctgatccatgatgatagtttgacatttaaagaagacattcaaaaagcacaagtgtctggacaaggcgatagtttacatgaacatattgcaaatttagctggtagccctgctattaaaaaaggtattttacagactgtaaaagttgttgatgaattggtcaaagtaatggggcggcataagccagaaaatatcgttattgaaatggcacgtgaaaatcagacaactcaaaagggccagaaaaattcgcgagagcgtatgaaacgaatcgaagaaggtatcaaagaattaggaagtcagattcttaaagagcatcctgttgaaaatactcaattgcaaaatgaaaagctctatctctattatctccaaaatggaagagacatgtatgtggaccaagaattagatattaatcgtttaagtgattatgatgtcgatcacattgttccacaaagtttccttaaagacgattcaatagacaataaggtcttaacgcgttctgataaaaatcgtggtaaatcggataacgttccaagtgaagaagtagtcaaaaagatgaaaaactattggagacaacttctaaacgccaagttaatcactcaacgtaagtttgataatttaacgaaagctgaacgtggaggtttgagtgaacttgataaagctggttttatcaaacgccaattggttgaaactcgccaaatcactaagcatgtggcacaaattttggatagtcgcatgaatactaaatacgatgaaaatgataaacttattcgagaggttaaagtgattaccttaaaatctaaattagtttctgacttccgaaaagatttccaattctataaagtacgtgagattaacaattaccatcatgcccatgatgcgtatctaaatgccgtcgttggaactgctttgattaagaaatatccaaaacttgaatcggagtttgtctatggtgattataaagtttatgatgttcgtaaaatgattgctaagtctgagcaagaaataggcaaagcaaccgcaaaatatttcttttactctaatatcatgaacttcttcaaaacagaaattacacttgcaaatggagagattcgcaaacgccctctaatcgaaactaatggggaaactggagaaattgtctgggataaagggcgagattttgccacagtgcgcaaagtattgtccatgccccaagtcaatattgtcaagaaaacagaagtacagacaggcggattctccaaggagtcaattttaccaaaaagaaattcggacaagcttattgctcgtaaaaaagactgggatccaaaaaaatatggtggttttgatagtccaacggtagcttattcagtcctagtggttgctaaggtggaaaaagggaaatcgaagaagttaaaatccgttaaagagttactagggatcacaattatggaaagaagttcctttgaaaaaaatccgattgactttttagaagctaaaggatataaggaagttaaaaaagacttaatcattaaactacctaaatatagtctttttgagttagaaaacggtcgtaaacggatgctggctagtgccggagaattacaaaaaggaaatgagctggctctgccaagcaaatatgtgaattttttatatttagctagtcattatgaaaagttgaagggtagtccagaagataacgaacaaaaacaattgtttgtggagcagcataagcattatttagatgagattattgagcaaatcagtgaattttctaagcgtgttattttagcagatgccaatttagataaagttcttagtgcatataacaaacatagagacaaaccaatacgtgaacaagcagaaaatattattcatttatttacgttgacgaatcttggagctcccgctgcttttaaatattttgatacaacaattgatcgtaaacgatatacgtctacaaaagaagttttagatgccactcttatccatcaatccatcactggtctttatgaaacacgcattgatttgagtcagctaggaggtgactgaatggataagaaatactcaataggcttagatatcggcacaaatagcgtcggatgggcggtgatcactgatgaatataaggttccgtctaaaaagttcaaggttctgggaaatacagaccgccacagtatcaaaaaaaatcttataggggctcttttatttgacagtggagagacagcggaagcgactcgtctcaaacggacagctcgtagaaggtatacacgtcggaagaatcgtatttgttatctacaggagattttttcaaatgagatggcgaaagtagatgatagtttctttcatcgacttgaagagtcttttttggtggaagaagacaagaagcatgaacgtcatcctatttttggaaatatagtagatgaagttgcttatcatgagaaatatccaactatctatcatctgcgaaaaaaattggtagattctactgataaagcggatttgcgcttaatctatttggccttagcgcatatgattaagtttcgtggtcattttttgattgagggagatttaaatcctgataatagtgatgtggacaaactatttatccagttggtacaaacctacaatcaattatttgaagaaaaccctattaacgcaagtggagtagatgctaaagcgattctttctgcacgattgagtaaatcaagacgattagaaaatctcattgctcagctccccggtgagaagaaaaatggcttatttgggaatctcattgctttgtcattgggtttgacccctaattttaaatcaaattttgatttggcagaagatgctaaattacagctttcaaaagatacttacgatgatgatttagataatttattggcgcaaattggagatcaatatgctgatttgtttttggcagctaagaatttatcagatgctattttactttcagatatcctaagagtaaatactgaaataactaaggctcccctatcagcttcaatgattaaacgctacgatgaacatcatcaagacttgactcttttaaaagctttagttcgacaacaacttccagaaaagtataaagaaatcttttttgatcaatcaaaaaacggatatgcaggttatattgatgggggagctagccaagaagaattttataaatttatcaaaccaattttagaaaaaatggatggtactgaggaattattggtgaaactaaatcgtgaagatttgctgcgcaagcaacggacctttgacaacggctctattccccatcaaattcacttgggtgagctgcatgctattttgagaagacaagaagacttttatccatttttaaaagacaatcgtgagaagattgaaaaaatcttgacttttcgaattccttattatgttggtccattggcgcgtggcaatagtcgttttgcatggatgactcggaagtctgaagaaacaattaccccatggaattttgaagaagttgtcgataaaggtgcttcagctcaatcatttattgaacgcatgacaaactttgataaaaatcttccaaatgaaaaagtactaccaaaacatagtttgctttatgagtattttacggtttataacgaattgacaaaggtcaaatatgttactgaaggaatgcgaaaaccagcatttctttcaggtgaacagaagaaagccattgttgatttactcttcaaaacaaatcgaaaagtaaccgttaagcaattaaaagaagattatttcaaaaaaatagaatgttttgatagtgttgaaatttcaggagttgaagatagatttaatgcttcattaggtacctaccatgatttgctaaaaattattaaagataaagattttttggataatgaagaaaatgaagatatcttagaggatattgttttaacattgaccttatttgaagatagggagatgattgaggaaagacttaaaacatatgctcacctctttgatgataaggtgatgaaacagcttaaacgtcgccgttatactggttggggacgtttgtctcgaaaattgattaatggtattagggataagcaatctggcaaaacaatattagattttttgaaatcagatggttttgccaatcgcaattttatgcagctgatccatgatgatagtttgacatttaaagaagacattcaaaaagcacaagtgtctggacaaggcgatagtttacatgaacatattgcaaatttagctggtagccctgctattaaaaaaggtattttacagactgtaaaagttgttgatgaattggtcaaagtaatggggcggcataagccagaaaatatcgttattgaaatggcacgtgaaaatcagacaactcaaaagggccagaaaaattcgcgagagcgtatgaaacgaatcgaagaaggtatcaaagaattaggaagtcagattcttaaagagcatcctgttgaaaatactcaattgcaaaatgaaaagctctatctctattatctccaaaatggaagagacatgtatgtggaccaagaattagatattaatcgtttaagtgattatgatgtcgatcacattgttccacaaagtttccttaaagacgattcaatagacaataaggtcttaacgcgttctgataaaaatcgtggtaaatcggataacgttccaagtgaagaagtagtcaaaaagatgaaaaactattggagacaacttctaaacgccaagttaatcactcaacgtaagtttgataatttaacgaaagctgaacgtggaggtttgagtgaacttgataaagctggttttatcaaacgccaattggttgaaactcgccaaatcactaagcatgtggcacaaattttggatagtcgcatgaatactaaatacgatgaaaatgataaacttattcgagaggttaaagtgattaccttaaaatctaaattagtttctgacttccgaaaagatttccaattctataaagtacgtgagattaacaattaccatcatgcccatgatgcgtatctaaatgccgtcgttggaactgctttgattaagaaatatccaaaacttgaatcggagtttgtctatggtgattataaagtttatgatgttcgtaaaatgattgctaagtctgagcaagaaataggcaaagcaaccgcaaaatatttcttttactctaatatcatgaacttcttcaaaacagaaattacacttgcaaatggagagattcgcaaacgccctctaatcgaaactaatggggaaactggagaaattgtctgggataaagggcgagattttgccacagtgcgcaaagtattgtccatgccccaagtcaatattgtcaagaaaacagaagtacagacaggcggattctccaaggagtcaattttaccaaaaagaaattcggacaagcttattgctcgtaaaaaagactgggatccaaaaaaatatggtggttttgatagtccaacggtagcttattcagtcctagtggttgctaaggtggaaaaagggaaatcgaagaagttaaaatccgttaaagagttactagggatcacaattatggaaagaagttcctttgaaaaaaatccgattgactttttagaagctaaaggatataaggaagttaaaaaagacttaatcattaaactacctaaatatagtctttttgagttagaaaacggtcgtaaacggatgctggctagtgccggagaattacaaaaaggaaatgagctggctctgccaagcaaatatgtgaattttttatatttagctagtcattatgaaaagttgaagggtagtccagaagataacgaacaaaaacaattgtttgtggagcagcataagcattatttagatgagattattgagcaaatcagtgaattttctaagcgtgttattttagcagatgccaatttagataaagttcttagtgcatataacaaacatagagacaaaccaatacgtgaacaagcagaaaatattattcatttatttacgttgacgaatcttggagctcccgctgcttttaaatattttgatacaacaattgatcgtaaacgatatacgtctacaaaagaagttttagatgccactcttatccatcaatccatcactggtctttatgaaacacgcattgatttgagtcagctaggaggtgactga 1One RED recomgbinase geneRED recombinase gene atggatattaatactgaaactgagatcaagcaaaagcattcactaaccccctttcctgttttcctaatcagcccggcatttcgcgggcgatattttcacagctatttcaggagttcagccatgaacgcttattacattcaggatcgtcttgaggctcagagctgggcgcgtcactaccagcagctcgcccgtgaagagaaagaggcagaactggcagacgacatggaaaaaggcctgccccagcacctgtttgaatcgctatgcatcgatcatttgcaacgccacggggccagcaaaaaatccattacccgtgcgtttgatgacgatgttgagtttcaggagcgcatggcagaacacatccggtacatggttgaaaccattgctcaccaccaggttgatattgattcagaggtataaaacgaatgagtactgcactcgcaacgctggctgggaagctggctgaacgtgtcggcatggattctgtcgacccacaggaactgatcaccactcttcgccagacggcatttaaaggtgatgccagcgatgcgcagttcatcgcattactgatcgttgccaaccagtacggccttaatccgtggacgaaagaaatttacgcctttcctgataagcagaatggcatcgttccggtggtgggcgttgatggctggtcccgcatcatcaatgaaaaccagcagtttgatggcatggactttgagcaggacaatgaatcctgtacatgccggatttaccgcaaggaccgtaatcatccgatctgcgttaccgaatggatggatgaatgccgccgcgaaccattcaaaactcgcgaaggcagagaaatcacggggccgtggcagtcgcatcccaaacggatgttacgtcataaagccatgattcagtgtgcccgtctggccttcggatttgctggtatctatgacaaggatgaagccgagcgcattgtcgaaaatactgcatacactgcagaacgtcagccggaacgcgacatcactccggttaacgatgaaaccatgcaggagattaacactctgctgatcgccctggataaaacatgggatgacgacttattgccgctctgttcccagatatttcgccgcgacattcgtgcatcgtcagaactgacacaggccgaagcagtaaaagctcttggattcctgaaacagaaagccgcagagcagaaggtggcagcatgacaccggacattatcctgcagcgtaccgggatcgatgtgagagctgtcgaacagggggatgatgcgtggcacaaattacggctcggcgtcatcaccgcttcagaagttcacaacgtgatagcaaaaccccgctccggaaagaagtggcctgacatgaaaatgtcctacttccacaccctgcttgctgaggtttgcaccggtgtggctccggaagttaacgctaaagcactggcctggggaaaacagtacgagaacgacgccagaaccctgtttgaattcacttccggcgtgaatgttactgaatccccgatcatctatcgcgacgaaagtatgcgtaccgcctgctctcccgatggtttatgcagtgacggcaacggccttgaactgaaatgcccgtttacctcccgggatttcatgaagttccggctcggtggtttcgaggccataaagtcagcttacatggcccaggtgcagtacagcatgtgggtgacgcgaaaaaatgcctggtactttgccaactatgacccgcgtatgaagcgtgaaggcctgcattatgtcgtgattgagcgggatgaaaagtacatggcgagttttgacgagatcgtgccggagttcatcgaaaaaatggacgaggcactggctgaaattggttttgtatttggggagcaatggcgatgaatggatattaatactgaaactgagatcaagcaaaagcattcactaaccccctttcctgttttcctaatcagcccggcatttcgcgggcgatattttcacagctatttcaggagttcagccatgaacgcttattacattcaggatcgtcttgaggctcagagctgggcgcgtcactaccagcagctcgcccgtgaagagaaagaggcagaactggcagacgacatggaaaaaggcctgccccagcacctgtttgaatcgctatgcatcgatcatttgcaacgccacggggccagcaaaaaatccattacccgtgcgtttgatgacgatgttgagtttcaggagcgcatggcagaacacatccggtacatggttgaaaccattgctcaccaccaggttgatattgattcagaggtataaaacgaatgagtactgcactcgcaacgctggctgggaagctggctgaacgtgtcggcatggattctgtcgacccacaggaactgatcaccactcttcgccagacggcatttaaaggtgatgccagcgatgcgcagttcatcgcattactgatcgttgccaaccagtacggccttaatccgtggacgaaagaaatttacgcctttcctgataagcagaatggcatcgttccggtggtgggcgttgatggctggtcccgcatcatcaatgaaaaccagcagtttgatggcatggactttgagcaggacaatgaatcctgtacatgccggatttaccgcaaggaccgtaatcatccgatctgcgttaccgaatggatggatgaatgccgccgcgaaccattcaaaactcgcgaaggcagagaaatcacggggccgtggcagtcgcatcccaaacggatgttacgtcataaagccatgattcagtgtgcccgtctggccttcggatttgctggtatctatgacaaggatgaagccgagcgcattgtcgaaaatactgcatacactgcagaacgtcagccggaacgcgacatcactccggttaacgatgaaaccatgcaggagattaacactctgctgatcgccctggataaaacatgggatgacgacttattgccgctctgttcccagatatttcgccgcgacattcgtgcatcgtcagaactgacacaggccgaagcagtaaaagctcttggattcctgaaacagaaagccgcagagcagaaggtggcagcatgacaccggacattatcctgcagcgtaccgggatcgatgtgagagctgtcgaacagggggatgatgcgtggcacaaattacggctcggcgtcatcaccgcttcagaagttcacaacgtgatagcaaaaccccgctccggaaagaagtggcctgacatgaaaatgtcctacttccacaccctgcttgctgaggtttgcaccggtgtggctccggaagttaacgctaaagcactggcctggggaaaacagtacgagaacgacgccagaaccctgtttgaattcacttccggcgtgaatgttactgaatccccgatcatctatcgcgacgaaagtatgcgtaccgcctgctctcccgatggtttatgcagtgacggcaacggccttgaactgaaatgcccgtttacctcccgggatttcatgaagttccggctcggtggtttcgaggccataaagtcagcttacatggcccaggtgcagtacagcatgtgggtgacgcgaaaaaatgcctggtactttgccaactatgacccgcgtatgaagcgtgaaggcctgcattatgtcgtgattgagcgggatgaaaagtacatggcgagttttgacgagatcgtgccggagttcatcgaaaaaatggacgaggcactggctgaaattggttttgtatttggggagcaatggcgatga 22

1-2. G 재조합벡터 (guide RNA 및 ts Origin 포함)1-2. G Recombinant Vector (including guide RNA and ts Origin)

온도 민감성 pSC101 원점 (origin), 앰피실린 (Ampicilin) 항생제 내성 유전자, J23100 프로모터 하에 integration site를 지정하는 sgRNA 및 스트렙토코커스 피오게네스 (Streptococcus pyrogenes; S. pyogenes)의 CRISPR-Cas9 시스템의 sgRNA scaffold (Cas9과 연계 작용하는 sequence)를 포함하는 발현 벡터를 제조하였으며, G (Guide RNA-containing) 재조합벡터로 명명하였다.The temperature-sensitive pSC101 origin, the ampicillin antibiotic resistance gene, the sgRNA specifying the integration site under the J23100 promoter, and the sgRNA scaffold of the CRISPR-Cas9 system of Streptococcus pyogenes ( S. pyogenes ) (Cas9 An expression vector containing the sequence acting in conjunction with ) was prepared and named G (Guide RNA-containing) recombinant vector.

상기 sgRNA는 삽입 목적 위치에 따라 당업계에 알려진 방법으로 제조될 수 있으며, 본 발명에서 사용된 sgRNA를 암호화하는 유전자의 핵산 서열은 하기 표 2에 나타내었다.The sgRNA can be prepared by a method known in the art depending on the insertion site, and the nucleic acid sequence of the gene encoding the sgRNA used in the present invention is shown in Table 2 below.

TargetTarget gRNA 서열 (5'->3')gRNA sequence (5'->3') Accession NumberAccession Number 서열번호sequence number ldhAldhA GCACGTTGTGGCAGGCAGACGCACGTTGTGGCAGGCAGAC BAA14990.1 (GenBank)BAA14990.1 (GenBank) 33 TAACGTCTGATTCAGAGAACTAACGTCTGATTCAGAGAAC 44 AACGTCTGATTCAGAGAACAAACGTCTGATTCAGAGAACA 55 yqhDyqhD ACTTTCCTGCTGGCGGTTGGACTTTCCTGCTGGCGGTTGG BAE77068.1 (GenBank)BAE77068.1 (GenBank) 66 CACCAAATTTATCGCCGCAGCACCAAATTTATCGCCGCAG 77 glpKglpK ATTGTCTGGGAAAAAGAAACATTGTCTGGGAAAAAGAAAC BAE77384.1 (GenBank)BAE77384.1 (GenBank) 88 CGTCGTTCTTCCGAAGTATACGTCGTTCTTCCGAAGTATA 99 gldAgldA ATCGCGGAGACTGCGCAGTGATCGCGGAGACTGCGCAGTG AAC76927.2 (GenBank)AAC76927.2 (GenBank) 1010 CCTCGATACTGCCAAAGCACCCTCGATACTGCCAAAGCAC 1111 mgsAmgsA CGAGATAACGCTGATAATCGCGAGATAACGCTGATAATCG CAA72119.1 (GenBank)CAA72119.1 (GenBank) 1212 CGCAGCAAGGCTTTCACGTCCGCAGCAAGGCTTTCACGTC 1313 poxBpoxB CAGTGCATGGTTGCCCCTTCCAGTGCATGGTTGCCCCTTC CAA27725.1 (GenBank)CAA27725.1 (GenBank) 1414 GTACTTGTGGGATCTGCTCCGTACTTGTGGGGATCTGCTCC 1515 nfrAnfrA CGCATGCAGCCACCAGTAGACGCATGCAGCCACCAGTAGA AAC36849.1 (GenBank)AAC36849.1 (GenBank) 1616 CCAGTCGCGCCATTAAAGTCCCAGTCGCGCCATTAAAGTC 1717

1-3. D 재조합 DNA (상동성 영역 및 목적 유전자 포함)1-3. D Recombinant DNA (including homology regions and target genes)

유전체에 도입되는 목적 유전자 (donor 또는 insert)를 포함하는 D (Donor) 재조합 DNA는 하기와 같이 제조되었다.D (Donor) recombinant DNA containing the target gene (donor or insert) to be introduced into the genome was prepared as follows.

목적 유전자로는 대한민국 공개특허 제10-2020-0051375호의 pCDF_J23101_dhaB_gdrAB_J23100_aldH_btuR 벡터의 dhaB, gdrAB, aldH 및 btuR 부분을 사용하였으며, 상기 목적 유전자의 5' 및 3' 말단에 삽입 위치 전후 각각 1kb 길이의 상동성 팔 (homology arm) 부위를 연결하였다. 이 때, 5' 방향 (외래 목적 유전자 오페론의 시작 부분) 상동성 팔에 포함된 PAM 서열 (NNGG)은 CAAA로 치환하여 3-HP 생산 유전자 카세트 재조합 벡터 (도 3 참조)를 준비하였다. 상기 PAM 서열에서, N 염기는 A 염기, T 염기, C 염기 또는 G 염기를 의미한다.As the target gene, dhaB, gdrAB, aldH and btuR parts of the pCDF_J23101_dhaB_gdrAB_J23100_aldH_btuR vector of Korean Patent Publication No. 10-2020-0051375 were used, and homology arms 1 kb long before and after the insertion site at the 5' and 3' ends of the target gene, respectively. (homology arm) region was connected. At this time, the PAM sequence (NNGG) included in the homology arm in the 5' direction (the beginning of the foreign target gene operon) was substituted with CAAA to prepare a 3-HP production gene cassette recombinant vector (see FIG. 3). In the PAM sequence, N base means A base, T base, C base or G base.

구체적으로, 상기 pCDF_J23101_dhaB_gdrAB_J23100_aldH_btuR 벡터에 xbaI 및 pacI 제한효소 (Thermo Scientific)처리를 하여 절편을 준비하고, 대장균 (E. coli) W3110 균주 (KCTC에서 구입)의 genomic DNA를 하기 표 3의 프라이머로 PCR을 진행하여, homology arm의 upstream 및 downstream 절편을 준비하고, 상기 두 절편을 In-fusion (TAKARA) 반응으로 혼합하여, 3-HP 생산 유전자 카세트 재조합 벡터를 제조하였다.Specifically, the pCDF_J23101_dhaB_gdrAB_J23100_aldH_btuR vector was treated with xbaI and pacI restriction enzymes (Thermo Scientific) to prepare a fragment, and PCR was performed on the genomic DNA of E. coli W3110 strain (purchased from KCTC) with the primers shown in Table 3 below Thus, upstream and downstream fragments of the homology arm were prepared, and the two fragments were mixed in an In-fusion (TAKARA) reaction to prepare a 3-HP production gene cassette recombinant vector.

homology arm primer 종류Types of homology arm primers homology arm 서열 (5'->3')homology arm sequence (5'->3') 서열번호sequence number ldhA_upstream_ForldhA_upstream_For actgaaccgctctaggcgattgggatgtgtgcattaccactgaaccgctctaggcgattgggatgtgtgcattacc 4848 ldhA_upstream_RevldhA_upstream_Rev tagctgtaaatctagatctctctgcactgcccgctagctgtaaatctagatctctctgcactgcccgc 4949 ldhA_downstream_ForldhA_downstream_For tactagcgcagcttaagctcaaagccaaaggactcgtactagcgcagcttaagctcaaagccaaaggactcg 5050 ldhA_downstream_RevldhA_downstream_Rev cagcagcctaggttaacgatcaattgcccgctattttcccagcagcctaggttaacgatcaattgcccgctattttcc 5151 yqhD_upstream_ForyqhD_upstream_For actgaaccgctctagggcggagttaatcccgctgactgaaccgctctagggcggagttaatcccgctg 5252 yqhD_upstream_RevyqhD_upstream_Rev tagctgtaaatctagcactttctgttcgcgaaccagtttctagctgtaaatctagcactttctgttcgcgaaccagtttc 5353 yqhD_downstream_ForyqhD_downstream_For tactagcgcagcttagaacagtatgttaccaaaccggttgtactagcgcagcttagaacagtatgttaccaaaccggttg 5454 yqhD_downstream_RevyqhD_downstream_Rev cagcagcctaggttaagggctttgccgacacctcagcagcctaggttaagggctttgccgacacct 5555 glpK_upstream_ForglpK_upstream_For tactagcgcagcttaacctatggcactggctgcttactagcgcagcttaacctatggcactggctgct 5656 glpK_upstream_RevglpK_upstream_Rev tagctgtaaatctaggtcatattacagcgaagctttttgttagctgtaaatctaggtcatattacagcgaagctttttgt 5757 glpK_downstream_ForglpK_downstream_For tactagcgcagcttaaagcgtttatgccgcatccgtactagcgcagcttaaagcgtttatgccgcatccg 5858 glpK_downstream_RevglpK_downstream_Rev cagcagcctaggttatcttcgttgtcgcctttgacgcagcagcctaggtttcttcgttgtcgcctttgacg 5959 gldA_upstream_ForgldA_upstream_For actgaaccgctctagcatgcacgaagaattccgtaacactgaaccgctctagcatgcacgaagaattccgtaac 6060 gldA_upstream_RevgldA_upstream_Rev tagctgtaaatctagaaacctaaaacaaatttgtcaccctagctgtaaatctagaaacctaaaacaaatttgtcaccc 6161 gldA_downstream_ForgldA_downstream_For tactagcgcagcttagaagcggcatgtgcagaaggtactagcgcagcttagaagcggcatgtgcagaagg 6262 gldA_downstream_RevgldA_downstream_Rev cagcagcctaggttatctgaaaccaccccaatatgtgccagcagcctaggtttatctgaaaccaccccaatatgtgc 6363 mgsA_upstream_FormgsA_upstream_For actgaaccgctctaggattgtgattctggagaaaggtcgcactgaaccgctctaggattgtgattctggagaaaggtcgc 6464 mgsA_upstream_RevmgsA_upstream_Rev tagctgtaaatctagcggaccgtctgaagtaatattgctagctgtaaatctagcggaccgtctgaagtaatattgc 6565 mgsA_downstream_FormgsA_downstream_For tactagcgcagcttatccgcgcaggtaaagtgctactagcgcagcttatccgcgcaggtaaagtgc 6666 mgsA_downstream_RevmgsA_downstream_Rev cagcagcctaggttacgaatgaatgagagcaaaagcgggcagcagcctaggttacgaatgaatgagagcaaaagcggg 6767 poxB_upstream_ForpoxB_upstream_For actgaaccgctctagcggcattaaagatgcgcgcaactgaaccgctctagcggcattaaagatgcgcgca 6868 poxB_upstream_RevpoxB_upstream_Rev tagctgtaaatctagacaacagcgtgctgggcttagctgtaaatctagacaacagcgtgctgggct 6969 poxB_downstream_ForpoxB_downstream_For tactagcgcagcttaagctcgcaatagtgactacattcgctactagcgcagcttaagctcgcaatagtgactacattcgc 7070 poxB_downstream_RevpoxB_downstream_Rev cagcagcctaggttacgtgatgacctgcggccccagcagcctaggttacgtgatgacctgcggccc 7171 nfrA_upstream_FornfrA_upstream_For actgaaccgctctagtgtgcggccaggcgtcgtagtgcactgaaccgctctagtgtgcggccaggcgtcgtagtgc 7272 nfrA_upstream_RevnfrA_upstream_Rev tagctgtaaatctaggggcttccggacgatccgtagctgtaaatctaggggcttccggacgatccg 7373 nfrA_downstream_FornfrA_downstream_For tactagcgcagcttaggcgagcagtttttgcgctactagcgcagcttaggcgagcagtttttgcgc 7474 nfrA_downstream_RevnfrA_downstream_Rev cagcagcctaggttaacagaaaaataacgacgaagcaacccagcagcctaggttaacagaaaaataacgacgaagcaacc 7575

상기 PAM 서열을 CAAA 서열로 치환함으로써 이후 형질전환의 반복 단계에서 이미 도입되어 발현되고 있는 외래 유전자 삽입 위치가 다시 Cas9에 의해 절단되는 것을 방지할 수 있다.By substituting the PAM sequence with the CAAA sequence, it is possible to prevent the insertion site of the foreign gene, which has already been introduced and expressed, from being cleaved by Cas9 again in the subsequent transformation step.

상기 3-HP 생산 유전자 카세트 재조합 벡터를 삽입하기 위해, 상기 표 2의 guide RNA 서열이 삽입하고자 하는 대장균 genome 상에서 작용을 하도록 상기 guide RNA에 타겟이 되는 유전자에 작용하는 homology arms의 서열을 하기 표 4에 나타내었다.In order to insert the 3-HP production gene cassette recombinant vector, the sequence of the homology arms acting on the gene targeted by the guide RNA so that the guide RNA sequence of Table 2 acts on the E. coli genome to be inserted is shown in Table 4 below. shown in

homology arm 종류Types of homology arms homology arm 서열 (5'->3')homology arm sequence (5'->3') 서열번호sequence number ldhA_upstreamldhA_upstream ggcgattgggatgtgtgcattacccaacggcaaacgctgtagcgaacagtcacttgccgccgggagctgtggcagctattaattcattaaatccgccagcttataagttaatgtctgttttgcggtcgccagcgttaactggttcgcggtcagatccacttgtgcaccttctttcagcatttcgctaatggtgttatcgagttcattaagctgcgggttagcgcacatcatacgggtcattgccagccctttggcggcgattgggatgtgtgcattacccaacggcaaacgctgtagcgaacagtcacttgccgccgggagctgtggcagctattaattcattaaatccgccagcttataagttaatgtctgttttgcggtcgccagcgttaactggttcgcggtcagatccacttgtgcaccttctttcagcatttcgctaatggtgttatcgagttcattaagctgcgggttagcgcacatcatacgggtcattgccagccctttggc 1818 ldhA_downstreamldhA_downstream tactagcgcagcttaagctcaaagccaaaggactcgttcacctgttgcaggtacttcttgtcgtactgttttgtgctataaacggcgagtttcataagactttctccagtgatgttgaatcacatttaagctactaaaaatattttacaaaatttcaaatttaattgaaagctatggcgatattgaaaaattcatcaacaactatgcttagtgtaggcgcaaccttcaactgaacggttaaacatgccacaatactactagcgcagcttaagctcaaagccaaaggactcgttcacctgttgcaggtacttcttgtcgtactgttttgtgctataaacggcgagtttcataagactttctccagtgatgttgaatcacatttaagctactaaaaatattttacaaaatttcaaatttaattgaaagctatggcgatattgaaaattcatcaacaactatgcttagtgtagatacctggaaccttaactgcaacctgaacctgcaactg 1919 yqhD_upstreamyqhD_upstream ggcggagttaatcccgctggctgccatcgacggctggaaatgctcatcttcgccaatgtccatcaacagttcctgtaactgcaaaatatcgacattgagacgcaaccctgccagcggcacctctgacgtggcataggtttcgcactcaaacggcaacggcaccgtcagcagcaggtattcattggcatcataacgaaacacgcgttcattgatataaccgattttatgcccggaaaagagaattatgatgccaggggcggagttaatcccgctggctgccatcgacggctggaaatgctcatcttcgccaatgtccatcaacagttcctgtaactgcaaaatatcgacattgagacgcaaccctgccagcggcacctctgacgtggcataggtttcgcactcaaacggcaacggcaccgtcagcagcaggtattcattggcatcataacgaaacacgcgtttcattgatgattagaccgattgatgatagaccgattga 2020 yqhD_downstreamyqhD_downstream tactagcgcagcttagaacagtatgttaccaaaccggttgatgccaaaattcaggaccgtttcgcagaaggcattttgctgacgctaatcgaagatggtccgaaagccctgaaagagccagaaaactacgatgtgcgcgccaacgtcatgtgggcggcgactcaggcgctgaacggtttgattggcgctggcgtaccgcaggactgggcaacgcatatgctgggccacgaactgactgcgatgcacggtctggattactagcgcagcttagaacagtatgttaccaaaccggttgatgccaaaattcaggaccgtttcgcagaaggcattttgctgacgctaatcgaagatggtccgaaagccctgaaagagccagaaaactacgatgtgcgcgccaacgtcatgtgggcggcgactcaggcgctgaacggtttgattggcgctggcgtaccgcaggactgggcaacgcatatgctgggccacgaactgactgcgatgcacggtctggat 2121 glpK_upstreamglpK_upstream ccgggttgttgattttcttcggtgtgggttgcgttgcagcactaaaagtcgctggtgcgtcttttggtcagtgggaaatcagtgtcatttggggactgggggtggcaatggccatctacctgaccgcaggggtttccggcgcgcatcttaatcccgctgttaccattgcattgtggctgtttgcctgtttcgacaagcgcaaagttattccttttatcgtttcacaagttgccggcgctttctgtgctgcggcttccgggttgttgattttcttcggtgtgggttgcgttgcagcactaaaagtcgctggtgcgtcttttggtcagtgggaaatcagtgtcatttggggactgggggtggcaatggccatctacctgaccgcaggggtttccggcgcgcatcttaatcccgctgttaccattgcattgtggctgtttgcctgtttcgacaagcgcaaagttattccttttatcgtttcacaagttgccggcgctttctgtgctgcggctt 2222 glpK_downstreamglpK_downstream tactagcgcagcttaacctatggcactggctgctttatgctgatgaacactggcgagaaagcggtgaaatcagaaaacggcctgctgaccaccatcgcctgcggcccgactggcgaagtgaactatgcgttggaaggtgcggtgtttatggcaggcgcatccattcagtggctgcgcgatgaaatgaagttgattaacgacgcctacgattccgaatatttcgccaccaaagtgcaaaacaccaatggtgtgtattactagcgcagcttaacctatggcactggctgctttatgctgatgaacactggcgagaaagcggtgaaatcagaaaacggcctgctgaccaccatcgcctgcggcccgactggcgaagtgaactatgcgttggaaggtgcggtgtttatggcaggcgcatccattcagtggctgcgcgatgaaatgaagttgattaacgacgcctacgattccgaatatttcgccaccaaagtgcaaaacaccaatggtgtgtat 2323 gldA_upstreamgldA_upstream catgcacgaagaattccgtaacgcgctggttaacgccgcctctgccgacgctatcgccagcctgctgcaacatgaactggaactgtaaaaggaaacatcatggaactgtatctggacaccgctaacgtcgcagaagtcgaacgtctggcacgcatattccccattgccggggtgacaactaacccgagcattatcgctgccagcaaggagtccatatgggaagtgctgccgcgtctgcaaaaagcgattggtgatcatgcacgaagaattccgtaacgcgctggttaacgccgcctctgccgacgctatcgccagcctgctgcaacatgaactggaactgtaaaaggaaacatcatggaactgtatctggacaccgctaacgtcgcagaagtcgaacgtctggcacgcatattccccattgccggggtgacaactaacccgagcattatcgctgccagcaaggagtccatatgggaggtgctgcagcaaggagtccatatgggaagtgctg 2424 gldA_downstreamgldA_downstream tactagcgcagcttagaagcggcatgtgcagaaggtgaaaccattcacaacatgcctggcggcgcgacgccagatcaggtttacgccgctctgctggtagccgaccagtacggtcagcgtttcctgcaagagtgggaataacctactccaaactcccggcttgtccgggagtttgaacgcaaaattgcctgatgcgctacgcttatcaggcctacgcaatctctgcaatatattgaatttgcgtgcttttgtaggtactagcgcagcttagaagcggcatgtgcagaaggtgaaaccattcacaacatgcctggcggcgcgacgccagatcaggtttacgccgctctgctggtagccgaccagtacggtcagcgtttcctgcaagagtgggaataacctactccaaactcccggcttgtccgggagtttgaacgcaaaattgcctgatgcgctacgcttatcaggcctacgcaatctctgcaatatattgaatttgcgtgcttttgtagg 2525 mgsA_upstreammgsA_upstream gattgtgattctggagaaaggtcgctttatcagcccgtggaagcatattctggttgatgaatttcaggatatctcgccgcagcgggcagcgttgttagcggcattacgcaagcaaaacagtcagacgacgttgttcgctgttggtgatgactggcaggcgatttaccgattcagcggtgcgcaaatgtcgctcaccaccgctttccatgaaaactttggtgaaggcgaacgctgtgatttagacacgacttaccggattgtgattctggagaaaggtcgctttatcagcccgtggaagcatattctggttgatgaatttcaggatatctcgccgcagcgggcagcgttgttagcggcattacgcaagcaaaacagtcagacgacgttgttcgctgttggtgatgactggcaggcgatttaccgattcagcggtgcgcaaatgtcgctcaccaccgctttccatgaaaactttggtgaaggcgaacgctgtgatttagacacgacttaccg 2626 mgsA_downstreammgsA_downstream tactagcgcagcttatccgcgcaggtaaagtgcgagtcgtcagttccataatgtacatccgtagttaactttcctacagattactgtaagcacttatcgctgcaagataaagaccgaaaaagcctgcgcacaggcacaaaaatctcaggaagatggttgtttttccgcccactgcaggaaagtatttcgcgtttgtgggtcagccagtttaaaccaatacttcagccgttgttctgtgagcacctgagactgcggtactagcgcagcttatccgcgcaggtaaagtgcgagtcgtcagttccataatgtacatccgtagttaactttcctacagattactgtaagcacttatcgctgcaagataaagaccgaaaaagcctgcgcacaggcacaaaaatctcaggaagatggttgtttttccgcccactgcaggaaagtatttcgcgtttgtgggtcagccagtttaaaccaatacttcagccgttgttctgtgagcacctgagactgcgg 2727 poxB_upstreampoxB_upstream ttaccttagccagtttgttttcgccagttcgatcacttcatcaccgcgtccgctgatgattgcgcgcagcatatacaggctgaaacctttggcctgttcgagtttgatctgcggtggaatggctaactcttctttggcgaccaccacatccaccaacaccggaccgtcgatggagaaggcgcgttgcagggcttcatcaacttcagacgctttttctacacggatacccgtaatgccgcacgcttcggcaatgcgttaccttagccagtttgttttcgccagttcgatcacttcatcaccgcgtccgctgatgattgcgcgcagcatatacaggctgaaacctttggcctgttcgagtttgatctgcggtggaatggctaactcttctttggcgaccaccacatccaccaacaccggaccgtcgatggagaaggcgcgttgcagggcttcatcaacttcagacgctttttctacacggatacccgtaatgccgcacgcttcggcaatgcg 2828 poxB_downstreampoxB_downstream tactagcgcagcttaagctcgcaatagtgactacattcgcggaatagctcttgtgggtgggtttcctggaaatagccgctgccaatttcgctggagggaatatgagcggcaatcgccagtaccggaacgtgattgcggtggcaatcgaacaggccgttgattaagtgcaggttgccggggccgcacgatccggcgcagaccgccagttctccgctaagttgtgcttcagcgccagcggcaaaggccgccacttcttactagcgcagcttaagctcgcaatagtgactacattcgcggaatagctcttgtgggtgggtttcctggaaatagccgctgccaatttcgctggagggaatatgagcggcaatcgccagtaccggaacgtgattgcggtggcaatcgaacaggccgttgattaagtgcaggttgccggggccgcacgatccggcgcagaccgccagttctccgctaagttgtgcttcagcgccagcggcaaaggccgccacttct 2929 nfrA_upstreamnfrA_upstream tgtgcggccaggcgtcgtagtgcgtctcgccggtccagatattccagcggaccccgactccgccaagctgcgcgccctgagtgcctttatcacgatagccgttgtcctgaacgtgagcgtaaggctcaatagtctgtccgttagctaccttctgatgccagctgacgcgataatctgccgtccacgcctgaatatcctggcggatatattgcgccgcatcgaggtacaggttttgggcaaaccagcctgaaccgttgtgcggccaggcgtcgtagtgcgtctcgccggtccagatattccagcggaccccgactccgccaagctgcgcgccctgagtgcctttatcacgatagccgttgtcctgaacgtgagcgtaaggctcaatagtctgtccgttagctaccttctgatgccagctgacgcgataatctgccgtccacgcctgaatatcctggcggatatattgcgccgcatcgaggtacaggttttgggcaaaccagcctgaaccgt 3030 nfrA_downstreamnfrA_downstream tactagcgcagcttaggcgagcagtttttgcgctgcgtcgtactgaccttcttttaacagcaccggtagcgtcgcgccaacaacatactggcggttgtcggcaaactgtaccgtataattcgccaacgcctgaacggggttagcgctgtatttagataacagatagagccaacttttctcttgtgcgtccgtggtaaatagtggcttattttcaatgagataatgctggaggcgtgctttttcgccacgataagctactagcgcagcttaggcgagcagtttttgcgctgcgtcgtactgaccttcttttaacagcaccggtagcgtcgcgccaacaacatactggcggttgtcggcaaactgtaccgtataattcgccaacgcctgaacggggttagcgctgtatttagataacagatagagccaacttttctcttgtgcgtccgtggtaaatagtggcttattttcaatgagataatgctggaggcgtgctttttcgccacgataagc 3131

상기 homology arm 연결부위 및 상기 카세트 재조합벡터를 각각 도 2 및 도 3에 나타내었다.The homology arm junction and the cassette recombinant vector are shown in FIGS. 2 and 3, respectively.

실시예 2. 유전자 결실 및 3-하이드록시프로피온산 (3-hydroxypropionic acid, 3-HP) 생산 유전자가 genomic DNA에 삽입된 균주 제조Example 2. Gene deletion and 3-hydroxypropionic acid (3-hydroxypropionic acid, 3-HP) Production of a strain inserted into genomic DNA

상기 실시예 1에서 제조된 공통 재조합벡터, G 재조합벡터 및 D 재조합 DNA를 대장균 (E. coli) W3110 균주 (KCTC에서 구입)에서 yqhD, glpK, ldhA, ack-pta gldA 유전자를 결실시킨 균주인 W3110 (△yqhD, △glpK, △ldhA, △ack-pta 및 △gldA) (DKALG 균주라 명명함)에 5 복제수, 6 복제수 및 7 복제수로 각각 형질도입하였다. 이후 공통 재조합벡터의 Cas9 및 RED 재조합효소를 발현하여 형질전환체를 제조하였다.The common recombinant vector, G recombinant vector and D recombinant DNA prepared in Example 1 were used in E. coli W3110 strain (purchased from KCTC), a strain in which yqhD, glpK, ldhA, ack-pta and gldA genes were deleted. W3110 (ΔyqhD, ΔglpK, ΔldhA, Δack-pta and ΔgldA) (named DKALG strains) were transduced with 5 copies, 6 copies and 7 copies, respectively. Subsequently, transformants were prepared by expressing Cas9 and RED recombinase of the common recombinant vector.

상기 DKALG 균주에 5 복제수를 형질도입하는 것은 G 재조합벡터로 상기 실시예 1-2의 ldhA, gldA, glpK, yqhD 및 mgsA (5개) sgRNA를 사용하여 형질도입한 것이고, 상기 6 복제수를 형질도입하는 것은 상기 실시예 1-2의 ldhA, gldA, glpK, yqhD, mgsA 및 poxB (6개) sgRNA를 사용하여 형질도입한 것이고, 상기 7 복제수를 형질도입하는 것은 상기 실시예 1-2의 ldhA, gldA, glpK, yqhD, mgsA, poxB 및 nfrA (7개) sgRNA를 사용하여 형질도입한 것이다.Transduction of the 5 copy number into the DKALG strain was performed using the ldhA, gldA, glpK, yqhD and mgsA (5) sgRNAs of Example 1-2 as a G recombinant vector, and the 6 copy number The transduction was performed using ldhA, gldA, glpK, yqhD, mgsA and poxB (six) sgRNAs of Example 1-2, and the 7 copies were transduced as in Example 1-2. It was transduced using ldhA, gldA, glpK, yqhD, mgsA, poxB and nfrA (seven) sgRNAs.

구체적으로, 상기 대장균 균주를 섭씨 37℃ 조건에서 O.D (600nm) 0.5 내지 1 사이가 되도록 배양하고, DW (distilled water)로 두 번 세척 후 각 재조합벡터 50 내지 100ng를 첨가하여 전기천공 (electroporation)하여 콜로니를 선별하였다. D 재조합 DNA의 경우 제조된 벡터를 효소 처리하거나 PCR을 수행하여 선형 (linear) 형태로 도입하거나 벡터 그대로 도입하였다.Specifically, the E. coli strain was cultured at 37 ° C. to have an O.D. (600 nm) of 0.5 to 1, washed twice with distilled water (DW), and then electroporated by adding 50 to 100 ng of each recombinant vector. Colonies were selected. D In the case of recombinant DNA, the prepared vector was introduced in a linear form by enzymatic treatment or PCR, or introduced as a vector.

이후 LB 배지에서 선별된 콜로니를 섭씨 37℃에서 배양하고, 아라비노스 (arabinose)를 0.1 내지 1%(w/v) 농도로 첨가하여 RED 재조합효소를 발현시키고, 섭씨 37℃에서 1시간 동안 추가로 배양하였다.Thereafter, the selected colonies in LB medium were cultured at 37 ° C., and RED recombinase was expressed by adding arabinose at a concentration of 0.1 to 1% (w / v), and further at 37 ° C. for 1 hour. cultured.

상기 제조된 형질전환체에 대해 콜로니 PCR을 수행하여, 형질전환이 이루어진 균주를 선별하고, 상기 선별된 형질전환체 G 재조합벡터의 제거가 확인될 때까지 세포 도말 (streaking)을 수행하면서 37℃에서 배양하여 G 재조합벡터를 형질전환체로부터 제거하였다. 구체적으로, 앰피실린을 첨가한 LB-agar 플레이트와 LB-agar 플레이트에 각각 도말하여 카나마이신 첨가 배지에서는 생장이 확인되지만 앰피실린이 첨가된 배지에서는 자라지 않는 균주를 선별하였다.Colony PCR was performed on the prepared transformants to select transformed strains, and cell streaking was performed at 37° C. until removal of the selected transformant G recombinant vector was confirmed. The G recombinant vector was removed from the transformants by culturing. Specifically, the cells were plated on an ampicillin-added LB-agar plate and an LB-agar plate, respectively, and growth was confirmed in kanamycin-added medium, but strains that did not grow in ampicillin-added medium were selected.

콜로니 PCR의 경우, Taq polymerase가 5kb 이상의 DNA 증폭시 효율이 급감함을 고려하여, 5' 상동성 팔 부위보다 100bp 상류 부위부터 삽입되는 dhab1 유전자의 5' 부근까지 약 1.0~1.5kb 부위가 증폭되도록 프라이머를 설계하여 목적 유전자의 삽입 여부를 확인하였고, 상기 프라이머의 구체적인 정보를 하기 표 5에 나타내었다.In the case of colony PCR, considering that the efficiency of Taq polymerase amplifies DNA of 5 kb or more, about 1.0 to 1.5 kb is amplified from a region 100 bp upstream of the 5' homology arm region to the 5' vicinity of the inserted dhab1 gene. Primers were designed to confirm the insertion of the target gene, and specific information of the primers is shown in Table 5 below.

프라미어 이름prime name 프라이머 서열 (5'->3')Primer sequence (5'->3') 서열번호sequence number poxB_ForpoxB_For agtgtgcgcaccagatgcagtgtgcgcaccagatgc 3232 poxB_RevpoxB_Rev gtttgccgtccagttcgacgagtttgccgtccagttcgacga 3333 nfrA_FornfrA_For cgctctccgttacgttgattaatcgcgctctccgttacgttgattaatcg 3434 nfrA_RevnfrA_Rev gtttgccgtccagttcgacgagtttgccgtccagttcgacga 3535 mgsA_FormgsA_For gaaggcagaaaacgctgtcggaaggcagaaaacgctgtcg 3636 mgsA_RevmgsA_Rev gtttgccgtccagttcgacgagtttgccgtccagttcgacga 3737 ldhA_ForldhA_For caatgatcggcggttcgccaatgatcggcggttcgc 3838 ldhA_RevldhA_Rev gtttgccgtccagttcgacgagtttgccgtccagttcgacga 3939 yqhD_ForyqhD_For cacgtcgagtaaccgccacgtcgagtaaccgc 4040 yqhD_RevyqhD_Rev gtttgccgtccagttcgacgagtttgccgtccagttcgacga 4141 gldA_ForgldA_For ctgcgggcgatcagcatatgctgcgggcgatcagcatatg 4242 gldA_RevgldA_Rev gtttgccgtccagttcgacgagtttgccgtccagttcgacga 4343 glpK_ForglpK_For gctgtttgcctgtttcgacaagcgctgtttgcctgtttcgacaagc 4444 glpK_RevglpK_Rev gtttgccgtccagttcgacgagtttgccgtccagttcgacga 4545

비교예 1. 3-HP 생산 유전자 플라스미드 벡터가 삽입된 균주 제조Comparative Example 1. Preparation of strain into which 3-HP production gene plasmid vector was inserted

3-HP 생산 유전자 플라스미드 벡터를 이용하여 실험을 진행하기 위해, 20~30 복제수를 가지는 대한민국 공개특허 제 10-2020-0051375 호의 pCDF_J23101_dhaB_gdrAB_J23100_aldH_btuR 벡터를 준비하였고, 해당 벡터의 구조를 도 4에 나타내었다.In order to conduct experiments using the 3-HP production gene plasmid vector, the pCDF_J23101_dhaB_gdrAB_J23100_aldH_btuR vector of Korean Patent Publication No. 10-2020-0051375 having a copy number of 20 to 30 was prepared, and the structure of the vector is shown in FIG. 4.

또한, pRSFDuet-1 (Merck Millipore 71341) 벡터에 xbaI 및 bglII 제한효소 (Thermo Scientific)를 처리한 후, qiagen PCR purification kit로 정제하여 상기 벡터의 정제 절편을 얻었다. 그 후, 상기 pCDF_J23101_dhaB_gdrAB_J23100_aldH_btuR 벡터에 대하여 하기 표 6의 프라이머를 사용하여 PCR을 수행하고, 상기 xbaI 및 bglII 제한효소를 처리하고 qiagen PCR purification kit로 정제하여 상기 3-HP 생산 유전자 카세트 재조합 벡터의 정제 절편을 얻었다.In addition, pRSFDuet-1 (Merck Millipore 71341) vector was treated with xbaI and bglII restriction enzymes (Thermo Scientific), and then purified with qiagen PCR purification kit to obtain a purified fragment of the vector. Then, PCR was performed on the pCDF_J23101_dhaB_gdrAB_J23100_aldH_btuR vector using the primers in Table 6, and the xbaI and bglII restriction enzymes were treated and purified with qiagen PCR purification kit to obtain a purified fragment of the 3-HP production gene cassette recombinant vector. got it

프라미어 이름prime name 프라이머 서열 (5'->3')Primer sequence (5'->3') 서열번호sequence number 3-HP_For3-HP_For ctagatttacagctagctcagtccctagatttacagctagctcagtcc 4646 3-HP_Rev3-HP_Rev tgccatattaataatcgatccctatctgctgccatattaataatcgatccctatctgc 4747

상기 정제과정을 통해 얻은 pRSFDuet-1 벡터의 정제 절편을 상기 3-HP 생산 유전자 카세트 재조합 벡터의 정제 절편과 NEB T4 ligase (NEB M0202S)로 연결하여 3-HP 생산 유전자 플라스미드 벡터를 제조하였고, 제조한 벡터의 구조를 도 5에 나타내었다.The purified fragment of the pRSFDuet-1 vector obtained through the purification process was ligated with the purified fragment of the 3-HP production gene cassette recombinant vector with NEB T4 ligase (NEB M0202S) to prepare a 3-HP production gene plasmid vector. The structure of the vector is shown in FIG. 5 .

상기 준비한 pCDF_J23101_dhaB_gdrAB_J23100_aldH_btuR 벡터 및 pRSFDuet-1 벡터 기반의 3-HP 생산 유전자 플라스미드 벡터룰 상기 실시예 2의 DKALG 균주에 전기 천공 장치 (Eppendorf Eporator)를 사용한 전기천공법으로 도입하여 형질전환하여, pRSFDuet-1 벡터 기반의 3-HP 생산 유전자 플라스미드를 삽입한 균주 (3-HP_pRSF) 및 pCDF_J23101_dhaB_gdrAB_J23100_aldH_btuR 벡터 플라스미드를 삽입한 균주 (3-HP_pCDF)를 제조하였다.The pCDF_J23101_dhaB_gdrAB_J23100_aldH_btuR vector prepared above and the 3-HP production gene plasmid vector based on the pRSFDuet-1 vector were introduced into the DKALG strain of Example 2 by electroporation using an electroporation device (Eppendorf Eporator) to transform the pRSFDuet-1 vector A strain (3-HP_pRSF) into which the 3-HP production gene plasmid was inserted and a strain (3-HP_pCDF) into which the pCDF_J23101_dhaB_gdrAB_J23100_aldH_btuR vector plasmid was inserted were prepared.

실시예 3. 세포 2단계 배양 및 3-HP 생산Example 3. Cell 2-step culture and 3-HP production

상기 실시예 2에서 제조된 3-HP 생산 유전자가 genomic DNA에 각각 5 복제수 (3-HP_5gD), 6 복제수 (3-HP_6gD) 및 7 복제수 (3-HP_7gD) 삽입된 균주 및 상기 비교예 1에서 제조된 3-HP 생산 유전자 플라스미드 벡터가 20~30 복제수 삽입된 균주 (3-HP_pCDF) 및 3-HP 생산 유전자 플라스미드 벡터가 100 복제수 이상 삽입된 균주 (3-HP_pRSF)를 탄소원으로 글리세롤만을 포함하는 최소 배지 (M9_Gly)를 사용하는 2단계 (2-step) 배양 방법을 통해 배양을 진행하였다.5 copy number (3-HP_5gD), 6 copy number (3-HP_6gD) and 7 copy number (3-HP_7gD) inserted into genomic DNA of the 3-HP production gene prepared in Example 2, respectively, and the comparative example The strain (3-HP_pCDF) into which the 3-HP production gene plasmid vector prepared in 1 was inserted at 20 to 30 copies (3-HP_pCDF) and the strain (3-HP_pRSF) into which the 3-HP production gene plasmid vector was inserted at 100 copies or more were used as carbon sources, such as glycerol Culture was carried out through a two-step culture method using a minimal medium containing only (M9_Gly).

상기 균주를 LB 배지 (성장배지) 50mL에 1% 접종하여 24시간동안 37℃에서 200rpm 조건으로 성장시켰고 (제1단계 배양), 원심분리기로 전체 세포를 수거하고 상등액을 버렸다. 그 후, 정제수, M9 최소 배지 염, 글리세롤, 황산마그네슘, 염화칼슘이 포함되어 있는 최소 배지 (M9_Gly; 생산배지)에 상기 수거한 전체 세포를 투입하고 24시간 이상 37℃에서 200rpm 조건에서 배양 (제2단계 배양)하여 일정 시간마다 샘플을 수거한 후, HPLC로 3-HP 생산량을 확인하였다.The strain was inoculated in 50 mL of LB medium (growth medium) at 1% and grown at 37° C. and 200 rpm for 24 hours (first stage culture), and the whole cells were harvested by centrifugation and the supernatant was discarded. Thereafter, the collected whole cells were added to a minimal medium (M9_Gly; production medium) containing purified water, M9 minimal medium salt, glycerol, magnesium sulfate, and calcium chloride, and cultured at 200 rpm at 37 ° C for more than 24 hours (second step culture) to collect samples at regular intervals, and then confirm the production of 3-HP by HPLC.

상기 LB 배지는 BD Difco Miller Luria-Bertani 제품을 25g/L 농도로 DW (증류수)에 용해시킨 뒤 121℃에서 15분동안 autoclave 멸균하여 제조한 배지고, 상기 최소 배지 (M9_Gly)는 배지 1L당 Disodium phosphate 6g, Monopotassium phosphate 3g, Ammonium chloride 1g, Sodium chloride 0.5g, 1M CaCl2 0.1ml, 1M MgSO4 2ml, 5mM Vitamin B12 0.1ml 및 Glycerol 20g을 포함하는 배지이다. 상기 HPCL 측정 조건은 하기 표 7에 나타내었다.The LB medium is a medium prepared by dissolving BD Difco Miller Luria-Bertani product in DW (distilled water) at a concentration of 25 g / L and autoclave sterilization at 121 ° C for 15 minutes, and the minimum medium (M9_Gly) is Disodium per 1 L of medium A medium containing phosphate 6g, Monopotassium phosphate 3g, Ammonium chloride 1g, Sodium chloride 0.5g, 1M CaCl 2 0.1ml, 1M MgSO 4 2ml, 5mM Vitamin B 12 0.1ml and Glycerol 20g. The HPCL measurement conditions are shown in Table 7 below.

DetectorDetector RI / UV detectorRI / UV detector ColumnColumn Bio-Rad Aminex HPX-87H Ion Exclusion Column 300 mmⅹ7.8 mmBio-Rad Aminex HPX-87H Ion Exclusion Column 300 mm×7.8 mm Mobile phaseMobile phase 0.5 mM H2SO40.5 mM H2SO4 Flow rateFlow rate 0.4 mL/min0.4 mL/min Run timeRun time 35 min35min Column temperatureColumn temperature 35℃35℃ Detector temperatureDetector temperature 35℃35℃ Injection volumeInjection volume 5 μL5 μL

비교예 2. 기존 방식으로 균주 배양 및 3-HP 생산Comparative Example 2. Strain culture and 3-HP production in the conventional way

추가적으로, 기존의 방식과의 비교를 위해 상기 비교예 1에서 제조된 3-HP 생산 유전자 플라스미드 벡터가 20~30 복제수 삽입된 균주 (3-HP_pCDF) 및 3-HP 생산 유전자 플라스미드 벡터가 100 복제수 이상 삽입된 균주 (3-HP_pRSF)를 이용하여 배지 1L당 Disodium phosphate 6g, Monopotassium phosphate 3g, Ammonium chloride 1g, Sodium chloride 0.5g, 1M CaCl2 0.1ml, 1M MgSO4 2ml, 5mM Vitamin B12 0.1ml, Glycerol 20g, Glucose 5g 및 5% Streptomycin 0.1ml를 포함하는 최소 배지 (M9_Glu)에서 배양하였다.Additionally, for comparison with the conventional method, the strain (3-HP_pCDF) into which the 3-HP production gene plasmid vector prepared in Comparative Example 1 was inserted at 20 to 30 copies and the 3-HP production gene plasmid vector at 100 copies Disodium phosphate 6g, Monopotassium phosphate 3g, Ammonium chloride 1g, Sodium chloride 0.5g, 1M CaCl2 0.1ml, 1M MgSO4 2ml, 5mM Vitamin B12 0.1ml, Glycerol 20g, It was cultured in minimal medium (M9_Glu) containing 5 g of Glucose and 0.1 ml of 5% Streptomycin.

구체적으로, 상기 실시예 3의 LB 배지에 상기 균주 (3-HP_pCDF 및 3-HP_pRSF)를 접종하여 24시간동안 37℃, 200RPM 조건으로 배양한 뒤 saturation된 배양액을 상기 최소 배지 (M9_Glu)에 1 (v/v)% volume으로 접종한 뒤, 동일하게 24시간동안 37℃, 200RPM 조건으로 성장과 생산을 동시에 진행하는 배양을 진행하였다.Specifically, the strains (3-HP_pCDF and 3-HP_pRSF) were inoculated into the LB medium of Example 3 and cultured at 37 ° C. and 200 RPM for 24 hours, and then the saturated culture medium was added to the minimal medium (M9_Glu) with 1 ( After inoculation with v / v)% volume, culture was performed in which growth and production were performed simultaneously at 37 ° C and 200 RPM for 24 hours.

실시예 4. 배양 방법에 따른 3-HP 생산량 측정 결과Example 4. 3-HP production measurement results according to the culture method

상기 실시예 3 및 비교예 2에서 측정한 흡광도 측정을 통해 측정한 세포 농도 및 상기 실시예 3 및 비교예 2에서 측정한 3-HP 농도를 하기 표 8에 나타내었다.The cell concentration measured through the absorbance measurement measured in Example 3 and Comparative Example 2 and the 3-HP concentration measured in Example 3 and Comparative Example 2 are shown in Table 8 below.

사용된 균주의 종류Types of strains used 사용된 생산 배지Production medium used 세포 농도 (OD600)Cell Concentration (OD 600 ) 3-HP 농도 (g/L)3-HP concentration (g/L) 3-HP 농도 / 세포 농도 (OD600)3-HP concentration / cell concentration (OD 600 ) 3-HP_5gD3-HP_5gD M9_GlyM9_Gly 3.843.84 4.064.06 1.0571.057 3-HP_6gD3-HP_6gD M9_GlyM9_Gly 3.783.78 4.94.9 1.2961.296 3-HP_7gD3-HP_7gD M9_GlyM9_Gly 3.633.63 5.35.3 1.4601.460 3-HP_pCDF3-HP_pCDF M9_GluM9_Glu 0.4290.429 0.19670.1967 0.4590.459 3-HP_pRSF3-HP_pRSF M9_GluM9_Glu 0.4770.477 0.13110.1311 0.2750.275 3-HP_pCDF3-HP_pCDF M9_GlyM9_Gly 2.3952.395 4.87904.8790 2.0372.037 3-HP_pRSF3-HP_pRSF M9_GlyM9_Gly 2.9782.978 0.83190.8319 0.2790.279

그 결과, 3-HP 생산 유전자가 genomic DNA에 삽입된 균주의 경우 유전자 복제수 증가에 따라 선형적인 3-HP 농도 증가를 확인하였고, 이를 통해 해당 균주의 경우 재조합 유전자 성능 확인에 적절하다는 것을 확인하였다.As a result, in the case of strains in which the 3-HP production gene was inserted into genomic DNA, a linear increase in 3-HP concentration was confirmed according to the increase in gene copy number, and through this, it was confirmed that the strain was appropriate for recombinant gene performance confirmation. .

그러나, 플라스미드 벡터가 삽입된 균주의 경우, 복제수가 100이상인 3-HP_pRSF 균주와 복제수가 20 ~ 30인 3-HP_pCDF가 생산한 3-HP 농도를 비교했을 때, 복제수 증가에 따른 3-HP 농도 증가를 확인할 수 없었고, 이를 통해 해당 균주의 경우 재조합 유전자 성능 확인에 적절하지 않다는 것을 확인하였다.However, in the case of the strain into which the plasmid vector was inserted, when comparing the 3-HP concentration produced by the 3-HP_pRSF strain with copy number of 100 or more and 3-HP_pCDF with copy number of 20 to 30, the 3-HP concentration according to copy number increase An increase could not be confirmed, and through this, it was confirmed that the strain was not suitable for confirming the performance of the recombinant gene.

이를 통해, 재조합 유전자 성능 확인을 위해서는 타겟 유전자를 플라스미드 벡터 형태로 삽입하는 것이 아니라, genomic DNA에 삽입하여야 하는 것을 확인하였다.Through this, it was confirmed that in order to confirm the performance of the recombinant gene, the target gene should be inserted into genomic DNA rather than inserted in the form of a plasmid vector.

<110> LG CHEM, LTD. <120> Method for confirming 3-HP production ability of 3-HP production gene using E. coli having 3-hydroxypropionic acid production ability inserted with 3-hydroxypropionic acid production gene <130> DPP20212280KR <160> 75 <170> koPatentIn 3.0 <210> 1 <211> 4107 <212> DNA <213> Artificial Sequence <220> <223> Cas9 gene <400> 1 atggataaga aatactcaat aggcttagat atcggcacaa atagcgtcgg atgggcggtg 60 atcactgatg aatataaggt tccgtctaaa aagttcaagg ttctgggaaa tacagaccgc 120 cacagtatca aaaaaaatct tataggggct cttttatttg acagtggaga gacagcggaa 180 gcgactcgtc tcaaacggac agctcgtaga aggtatacac gtcggaagaa tcgtatttgt 240 tatctacagg agattttttc aaatgagatg gcgaaagtag atgatagttt ctttcatcga 300 cttgaagagt cttttttggt ggaagaagac aagaagcatg aacgtcatcc tatttttgga 360 aatatagtag atgaagttgc ttatcatgag aaatatccaa ctatctatca tctgcgaaaa 420 aaattggtag attctactga taaagcggat ttgcgcttaa tctatttggc cttagcgcat 480 atgattaagt ttcgtggtca ttttttgatt gagggagatt taaatcctga taatagtgat 540 gtggacaaac tatttatcca gttggtacaa acctacaatc aattatttga agaaaaccct 600 attaacgcaa gtggagtaga tgctaaagcg attctttctg cacgattgag taaatcaaga 660 cgattagaaa atctcattgc tcagctcccc ggtgagaaga aaaatggctt atttgggaat 720 ctcattgctt tgtcattggg tttgacccct aattttaaat caaattttga tttggcagaa 780 gatgctaaat tacagctttc aaaagatact tacgatgatg atttagataa tttattggcg 840 caaattggag atcaatatgc tgatttgttt ttggcagcta agaatttatc agatgctatt 900 ttactttcag atatcctaag agtaaatact gaaataacta aggctcccct atcagcttca 960 atgattaaac gctacgatga acatcatcaa gacttgactc ttttaaaagc tttagttcga 1020 caacaacttc cagaaaagta taaagaaatc ttttttgatc aatcaaaaaa cggatatgca 1080 ggttatattg atgggggagc tagccaagaa gaattttata aatttatcaa accaatttta 1140 gaaaaaatgg atggtactga ggaattattg gtgaaactaa atcgtgaaga tttgctgcgc 1200 aagcaacgga cctttgacaa cggctctatt ccccatcaaa ttcacttggg tgagctgcat 1260 gctattttga gaagacaaga agacttttat ccatttttaa aagacaatcg tgagaagatt 1320 gaaaaaatct tgacttttcg aattccttat tatgttggtc cattggcgcg tggcaatagt 1380 cgttttgcat ggatgactcg gaagtctgaa gaaacaatta ccccatggaa ttttgaagaa 1440 gttgtcgata aaggtgcttc agctcaatca tttattgaac gcatgacaaa ctttgataaa 1500 aatcttccaa atgaaaaagt actaccaaaa catagtttgc tttatgagta ttttacggtt 1560 tataacgaat tgacaaaggt caaatatgtt actgaaggaa tgcgaaaacc agcatttctt 1620 tcaggtgaac agaagaaagc cattgttgat ttactcttca aaacaaatcg aaaagtaacc 1680 gttaagcaat taaaagaaga ttatttcaaa aaaatagaat gttttgatag tgttgaaatt 1740 tcaggagttg aagatagatt taatgcttca ttaggtacct accatgattt gctaaaaatt 1800 attaaagata aagatttttt ggataatgaa gaaaatgaag atatcttaga ggatattgtt 1860 ttaacattga ccttatttga agatagggag atgattgagg aaagacttaa aacatatgct 1920 cacctctttg atgataaggt gatgaaacag cttaaacgtc gccgttatac tggttgggga 1980 cgtttgtctc gaaaattgat taatggtatt agggataagc aatctggcaa aacaatatta 2040 gattttttga aatcagatgg ttttgccaat cgcaatttta tgcagctgat ccatgatgat 2100 agtttgacat ttaaagaaga cattcaaaaa gcacaagtgt ctggacaagg cgatagttta 2160 catgaacata ttgcaaattt agctggtagc cctgctatta aaaaaggtat tttacagact 2220 gtaaaagttg ttgatgaatt ggtcaaagta atggggcggc ataagccaga aaatatcgtt 2280 attgaaatgg cacgtgaaaa tcagacaact caaaagggcc agaaaaattc gcgagagcgt 2340 atgaaacgaa tcgaagaagg tatcaaagaa ttaggaagtc agattcttaa agagcatcct 2400 gttgaaaata ctcaattgca aaatgaaaag ctctatctct attatctcca aaatggaaga 2460 gacatgtatg tggaccaaga attagatatt aatcgtttaa gtgattatga tgtcgatcac 2520 attgttccac aaagtttcct taaagacgat tcaatagaca ataaggtctt aacgcgttct 2580 gataaaaatc gtggtaaatc ggataacgtt ccaagtgaag aagtagtcaa aaagatgaaa 2640 aactattgga gacaacttct aaacgccaag ttaatcactc aacgtaagtt tgataattta 2700 acgaaagctg aacgtggagg tttgagtgaa cttgataaag ctggttttat caaacgccaa 2760 ttggttgaaa ctcgccaaat cactaagcat gtggcacaaa ttttggatag tcgcatgaat 2820 actaaatacg atgaaaatga taaacttatt cgagaggtta aagtgattac cttaaaatct 2880 aaattagttt ctgacttccg aaaagatttc caattctata aagtacgtga gattaacaat 2940 taccatcatg cccatgatgc gtatctaaat gccgtcgttg gaactgcttt gattaagaaa 3000 tatccaaaac ttgaatcgga gtttgtctat ggtgattata aagtttatga tgttcgtaaa 3060 atgattgcta agtctgagca agaaataggc aaagcaaccg caaaatattt cttttactct 3120 aatatcatga acttcttcaa aacagaaatt acacttgcaa atggagagat tcgcaaacgc 3180 cctctaatcg aaactaatgg ggaaactgga gaaattgtct gggataaagg gcgagatttt 3240 gccacagtgc gcaaagtatt gtccatgccc caagtcaata ttgtcaagaa aacagaagta 3300 cagacaggcg gattctccaa ggagtcaatt ttaccaaaaa gaaattcgga caagcttatt 3360 gctcgtaaaa aagactggga tccaaaaaaa tatggtggtt ttgatagtcc aacggtagct 3420 tattcagtcc tagtggttgc taaggtggaa aaagggaaat cgaagaagtt aaaatccgtt 3480 aaagagttac tagggatcac aattatggaa agaagttcct ttgaaaaaaa tccgattgac 3540 tttttagaag ctaaaggata taaggaagtt aaaaaagact taatcattaa actacctaaa 3600 tatagtcttt ttgagttaga aaacggtcgt aaacggatgc tggctagtgc cggagaatta 3660 caaaaaggaa atgagctggc tctgccaagc aaatatgtga attttttata tttagctagt 3720 cattatgaaa agttgaaggg tagtccagaa gataacgaac aaaaacaatt gtttgtggag 3780 cagcataagc attatttaga tgagattatt gagcaaatca gtgaattttc taagcgtgtt 3840 attttagcag atgccaattt agataaagtt cttagtgcat ataacaaaca tagagacaaa 3900 ccaatacgtg aacaagcaga aaatattatt catttattta cgttgacgaa tcttggagct 3960 cccgctgctt ttaaatattt tgatacaaca attgatcgta aacgatatac gtctacaaaa 4020 gaagttttag atgccactct tatccatcaa tccatcactg gtctttatga aacacgcatt 4080 gatttgagtc agctaggagg tgactga 4107 <210> 2 <211> 1885 <212> DNA <213> Artificial Sequence <220> <223> RED recomgbinase gene <400> 2 atggatatta atactgaaac tgagatcaag caaaagcatt cactaacccc ctttcctgtt 60 ttcctaatca gcccggcatt tcgcgggcga tattttcaca gctatttcag gagttcagcc 120 atgaacgctt attacattca ggatcgtctt gaggctcaga gctgggcgcg tcactaccag 180 cagctcgccc gtgaagagaa agaggcagaa ctggcagacg acatggaaaa aggcctgccc 240 cagcacctgt ttgaatcgct atgcatcgat catttgcaac gccacggggc cagcaaaaaa 300 tccattaccc gtgcgtttga tgacgatgtt gagtttcagg agcgcatggc agaacacatc 360 cggtacatgg ttgaaaccat tgctcaccac caggttgata ttgattcaga ggtataaaac 420 gaatgagtac tgcactcgca acgctggctg ggaagctggc tgaacgtgtc ggcatggatt 480 ctgtcgaccc acaggaactg atcaccactc ttcgccagac ggcatttaaa ggtgatgcca 540 gcgatgcgca gttcatcgca ttactgatcg ttgccaacca gtacggcctt aatccgtgga 600 cgaaagaaat ttacgccttt cctgataagc agaatggcat cgttccggtg gtgggcgttg 660 atggctggtc ccgcatcatc aatgaaaacc agcagtttga tggcatggac tttgagcagg 720 acaatgaatc ctgtacatgc cggatttacc gcaaggaccg taatcatccg atctgcgtta 780 ccgaatggat ggatgaatgc cgccgcgaac cattcaaaac tcgcgaaggc agagaaatca 840 cggggccgtg gcagtcgcat cccaaacgga tgttacgtca taaagccatg attcagtgtg 900 cccgtctggc cttcggattt gctggtatct atgacaagga tgaagccgag cgcattgtcg 960 aaaatactgc atacactgca gaacgtcagc cggaacgcga catcactccg gttaacgatg 1020 aaaccatgca ggagattaac actctgctga tcgccctgga taaaacatgg gatgacgact 1080 tattgccgct ctgttcccag atatttcgcc gcgacattcg tgcatcgtca gaactgacac 1140 aggccgaagc agtaaaagct cttggattcc tgaaacagaa agccgcagag cagaaggtgg 1200 cagcatgaca ccggacatta tcctgcagcg taccgggatc gatgtgagag ctgtcgaaca 1260 gggggatgat gcgtggcaca aattacggct cggcgtcatc accgcttcag aagttcacaa 1320 cgtgatagca aaaccccgct ccggaaagaa gtggcctgac atgaaaatgt cctacttcca 1380 caccctgctt gctgaggttt gcaccggtgt ggctccggaa gttaacgcta aagcactggc 1440 ctggggaaaa cagtacgaga acgacgccag aaccctgttt gaattcactt ccggcgtgaa 1500 tgttactgaa tccccgatca tctatcgcga cgaaagtatg cgtaccgcct gctctcccga 1560 tggtttatgc agtgacggca acggccttga actgaaatgc ccgtttacct cccgggattt 1620 catgaagttc cggctcggtg gtttcgaggc cataaagtca gcttacatgg cccaggtgca 1680 gtacagcatg tgggtgacgc gaaaaaatgc ctggtacttt gccaactatg acccgcgtat 1740 gaagcgtgaa ggcctgcatt atgtcgtgat tgagcgggat gaaaagtaca tggcgagttt 1800 tgacgagatc gtgccggagt tcatcgaaaa aatggacgag gcactggctg aaattggttt 1860 tgtatttggg gagcaatggc gatga 1885 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ldhA <400> 3 gcacgttgtg gcaggcagac 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ldhA <400> 4 taacgtctga ttcagagaac 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ldhA <400> 5 aacgtctgat tcagagaaca 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> yqhD <400> 6 actttcctgc tggcggttgg 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> yqhD <400> 7 caccaaattt atcgccgcag 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> glpK <400> 8 attgtctggg aaaaagaaac 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> glpK <400> 9 cgtcgttctt ccgaagtata 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gldA <400> 10 atcgcggaga ctgcgcagtg 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gldA <400> 11 cctcgatact gccaaagcac 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mgsA <400> 12 cgagataacg ctgataatcg 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mgsA <400> 13 cgcagcaagg ctttcacgtc 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> poxB <400> 14 cagtgcatgg ttgccccttc 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> poxB <400> 15 gtacttgtgg gatctgctcc 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nfrA <400> 16 cgcatgcagc caccagtaga 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nfrA <400> 17 ccagtcgcgc cattaaagtc 20 <210> 18 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> ldhA_upstream <400> 18 ggcgattggg atgtgtgcat tacccaacgg caaacgctgt agcgaacagt cacttgccgc 60 cgggagctgt ggcagctatt aattcattaa atccgccagc ttataagtta atgtctgttt 120 tgcggtcgcc agcgttaact ggttcgcggt cagatccact tgtgcacctt ctttcagcat 180 ttcgctaatg gtgttatcga gttcattaag ctgcgggtta gcgcacatca tacgggtcat 240 tgccagccct ttggc 255 <210> 19 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> ldhA_downstream <400> 19 tactagcgca gcttaagctc aaagccaaag gactcgttca cctgttgcag gtacttcttg 60 tcgtactgtt ttgtgctata aacggcgagt ttcataagac tttctccagt gatgttgaat 120 cacatttaag ctactaaaaa tattttacaa aatttcaaat ttaattgaaa gctatggcga 180 tattgaaaaa ttcatcaaca actatgctta gtgtaggcgc aaccttcaac tgaacggtta 240 aacatgccac aatac 255 <210> 20 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> yqhD_upstream <400> 20 ggcggagtta atcccgctgg ctgccatcga cggctggaaa tgctcatctt cgccaatgtc 60 catcaacagt tcctgtaact gcaaaatatc gacattgaga cgcaaccctg ccagcggcac 120 ctctgacgtg gcataggttt cgcactcaaa cggcaacggc accgtcagca gcaggtattc 180 attggcatca taacgaaaca cgcgttcatt gatataaccg attttatgcc cggaaaagag 240 aattatgatg ccagg 255 <210> 21 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> yqhD_downstream <400> 21 tactagcgca gcttagaaca gtatgttacc aaaccggttg atgccaaaat tcaggaccgt 60 ttcgcagaag gcattttgct gacgctaatc gaagatggtc cgaaagccct gaaagagcca 120 gaaaactacg atgtgcgcgc caacgtcatg tgggcggcga ctcaggcgct gaacggtttg 180 attggcgctg gcgtaccgca ggactgggca acgcatatgc tgggccacga actgactgcg 240 atgcacggtc tggat 255 <210> 22 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> glpK_upstream <400> 22 ccgggttgtt gattttcttc ggtgtgggtt gcgttgcagc actaaaagtc gctggtgcgt 60 cttttggtca gtgggaaatc agtgtcattt ggggactggg ggtggcaatg gccatctacc 120 tgaccgcagg ggtttccggc gcgcatctta atcccgctgt taccattgca ttgtggctgt 180 ttgcctgttt cgacaagcgc aaagttattc cttttatcgt ttcacaagtt gccggcgctt 240 tctgtgctgc ggctt 255 <210> 23 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> glpK_downstream <400> 23 tactagcgca gcttaaccta tggcactggc tgctttatgc tgatgaacac tggcgagaaa 60 gcggtgaaat cagaaaacgg cctgctgacc accatcgcct gcggcccgac tggcgaagtg 120 aactatgcgt tggaaggtgc ggtgtttatg gcaggcgcat ccattcagtg gctgcgcgat 180 gaaatgaagt tgattaacga cgcctacgat tccgaatatt tcgccaccaa agtgcaaaac 240 accaatggtg tgtat 255 <210> 24 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> gldA_upstream <400> 24 catgcacgaa gaattccgta acgcgctggt taacgccgcc tctgccgacg ctatcgccag 60 cctgctgcaa catgaactgg aactgtaaaa ggaaacatca tggaactgta tctggacacc 120 gctaacgtcg cagaagtcga acgtctggca cgcatattcc ccattgccgg ggtgacaact 180 aacccgagca ttatcgctgc cagcaaggag tccatatggg aagtgctgcc gcgtctgcaa 240 aaagcgattg gtgat 255 <210> 25 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> gldA_downstream <400> 25 tactagcgca gcttagaagc ggcatgtgca gaaggtgaaa ccattcacaa catgcctggc 60 ggcgcgacgc cagatcaggt ttacgccgct ctgctggtag ccgaccagta cggtcagcgt 120 ttcctgcaag agtgggaata acctactcca aactcccggc ttgtccggga gtttgaacgc 180 aaaattgcct gatgcgctac gcttatcagg cctacgcaat ctctgcaata tattgaattt 240 gcgtgctttt gtagg 255 <210> 26 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> mgsA_upstream <400> 26 gattgtgatt ctggagaaag gtcgctttat cagcccgtgg aagcatattc tggttgatga 60 atttcaggat atctcgccgc agcgggcagc gttgttagcg gcattacgca agcaaaacag 120 tcagacgacg ttgttcgctg ttggtgatga ctggcaggcg atttaccgat tcagcggtgc 180 gcaaatgtcg ctcaccaccg ctttccatga aaactttggt gaaggcgaac gctgtgattt 240 agacacgact taccg 255 <210> 27 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> mgsA_downstream <400> 27 tactagcgca gcttatccgc gcaggtaaag tgcgagtcgt cagttccata atgtacatcc 60 gtagttaact ttcctacaga ttactgtaag cacttatcgc tgcaagataa agaccgaaaa 120 agcctgcgca caggcacaaa aatctcagga agatggttgt ttttccgccc actgcaggaa 180 agtatttcgc gtttgtgggt cagccagttt aaaccaatac ttcagccgtt gttctgtgag 240 cacctgagac tgcgg 255 <210> 28 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> poxB_upstream <400> 28 ttaccttagc cagtttgttt tcgccagttc gatcacttca tcaccgcgtc cgctgatgat 60 tgcgcgcagc atatacaggc tgaaaccttt ggcctgttcg agtttgatct gcggtggaat 120 ggctaactct tctttggcga ccaccacatc caccaacacc ggaccgtcga tggagaaggc 180 gcgttgcagg gcttcatcaa cttcagacgc tttttctaca cggatacccg taatgccgca 240 cgcttcggca atgcg 255 <210> 29 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> poxB_downstream <400> 29 tactagcgca gcttaagctc gcaatagtga ctacattcgc ggaatagctc ttgtgggtgg 60 gtttcctgga aatagccgct gccaatttcg ctggagggaa tatgagcggc aatcgccagt 120 accggaacgt gattgcggtg gcaatcgaac aggccgttga ttaagtgcag gttgccgggg 180 ccgcacgatc cggcgcagac cgccagttct ccgctaagtt gtgcttcagc gccagcggca 240 aaggccgcca cttct 255 <210> 30 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> nfrA_upstream <400> 30 tgtgcggcca ggcgtcgtag tgcgtctcgc cggtccagat attccagcgg accccgactc 60 cgccaagctg cgcgccctga gtgcctttat cacgatagcc gttgtcctga acgtgagcgt 120 aaggctcaat agtctgtccg ttagctacct tctgatgcca gctgacgcga taatctgccg 180 tccacgcctg aatatcctgg cggatatatt gcgccgcatc gaggtacagg ttttgggcaa 240 accagcctga accgt 255 <210> 31 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> nfrA_downstream <400> 31 tactagcgca gcttaggcga gcagtttttg cgctgcgtcg tactgacctt cttttaacag 60 caccggtagc gtcgcgccaa caacatactg gcggttgtcg gcaaactgta ccgtataatt 120 cgccaacgcc tgaacggggt tagcgctgta tttagataac agatagagcc aacttttctc 180 ttgtgcgtcc gtggtaaata gtggcttatt ttcaatgaga taatgctgga ggcgtgcttt 240 ttcgccacga taagc 255 <210> 32 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> poxB_For <400> 32 agtgtgcgca ccagatgc 18 <210> 33 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> poxB_Rev <400> 33 gtttgccgtc cagttcgacg a 21 <210> 34 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> nfrA_For <400> 34 cgctctccgt tacgttgatt aatcg 25 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> nfrA_Rev <400> 35 gtttgccgtc cagttcgacg a 21 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mgsA_For <400> 36 gaaggcagaa aacgctgtcg 20 <210> 37 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mgsA_Rev <400> 37 gtttgccgtc cagttcgacg a 21 <210> 38 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ldhA_For <400> 38 caatgatcgg cggttcgc 18 <210> 39 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ldhA_Rev <400> 39 gtttgccgtc cagttcgacg a 21 <210> 40 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> yqhD_For <400> 40 cacgtcgagt aaccgc 16 <210> 41 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> yqhD_Rev <400> 41 gtttgccgtc cagttcgacg a 21 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gldA_For <400> 42 ctgcgggcga tcagcatatg 20 <210> 43 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> gldA_Rev <400> 43 gtttgccgtc cagttcgacg a 21 <210> 44 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> glpK_For <400> 44 gctgtttgcc tgtttcgaca agc 23 <210> 45 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> glpK_Rev <400> 45 gtttgccgtc cagttcgacg a 21 <210> 46 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 3-HP_For <400> 46 ctagatttac agctagctca gtcc 24 <210> 47 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> 3-HP_Rev <400> 47 tgccatatta ataatcgatc cctatctgc 29 <210> 48 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> ldhA_upstream_For <400> 48 actgaaccgc tctaggcgat tgggatgtgt gcattacc 38 <210> 49 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> ldhA_upstream_Rev <400> 49 tagctgtaaa tctagatctc tctgcactgc ccgc 34 <210> 50 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> ldhA_downstream_For <400> 50 tactagcgca gcttaagctc aaagccaaag gactcg 36 <210> 51 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> ldhA_downstream_Rev <400> 51 cagcagccta ggttaacgat caattgcccg ctattttcc 39 <210> 52 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> yqhD_upstream_For <400> 52 actgaaccgc tctagggcgg agttaatccc gctg 34 <210> 53 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> yqhD_upstream_Rev <400> 53 tagctgtaaa tctagcactt tctgttcgcg aaccagtttc 40 <210> 54 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> yqhD_downstream_For <400> 54 tactagcgca gcttagaaca gtatgttacc aaaccggttg 40 <210> 55 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> yqhD_downstream_Rev <400> 55 cagcagccta ggttaagggc tttgccgaca cct 33 <210> 56 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> glpK_upstream_For <400> 56 tactagcgca gcttaaccta tggcactggc tgct 34 <210> 57 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> glpK_upstream_Rev <400> 57 tagctgtaaa tctaggtcat attacagcga agctttttgt 40 <210> 58 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> glpK_downstream_For <400> 58 tactagcgca gcttaaagcg tttatgccgc atccg 35 <210> 59 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> glpK_downstream_Rev <400> 59 cagcagccta ggttatcttc gttgtcgcct ttgacg 36 <210> 60 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> gldA_upstream_For <400> 60 actgaaccgc tctagcatgc acgaagaatt ccgtaac 37 <210> 61 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> gldA_upstream_Rev <400> 61 tagctgtaaa tctagaaacc taaaacaaat ttgtcaccc 39 <210> 62 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> gldA_downstream_For <400> 62 tactagcgca gcttagaagc ggcatgtgca gaagg 35 <210> 63 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> gldA_downstream_Rev <400> 63 cagcagccta ggttatctga aaccacccca atatgtgc 38 <210> 64 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> mgsA_upstream_For <400> 64 actgaaccgc tctaggattg tgattctgga gaaaggtcgc 40 <210> 65 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> mgsA_upstream_Rev <400> 65 tagctgtaaa tctagcggac cgtctgaagt aatattgc 38 <210> 66 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> mgsA_downstream_For <400> 66 tactagcgca gcttatccgc gcaggtaaag tgc 33 <210> 67 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mgsA_downstream_Rev <400> 67 cagcagccta ggttacgaat gaatgagagc aaaagcggg 39 <210> 68 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> poxB_upstream_For <400> 68 actgaaccgc tctagcggca ttaaagatgc gcgca 35 <210> 69 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> poxB_upstream_Rev <400> 69 tagctgtaaa tctagacaac agcgtgctgg gct 33 <210> 70 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> poxB_downstream_For <400> 70 tactagcgca gcttaagctc gcaatagtga ctacattcgc 40 <210> 71 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> poxB_downstream_Rev <400> 71 cagcagccta ggttacgtga tgacctgcgg ccc 33 <210> 72 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> nfrA_upstream_For <400> 72 actgaaccgc tctagtgtgc ggccaggcgt cgtagtgc 38 <210> 73 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> nfrA_upstream_Rev <400> 73 tagctgtaaa tctaggggct tccggacgat ccg 33 <210> 74 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> nfrA_downstream_For <400> 74 tactagcgca gcttaggcga gcagtttttg cgc 33 <210> 75 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> nfrA_downstream_Rev <400> 75 cagcagccta ggttaacaga aaaataacga cgaagcaacc 40 <110> LG CHEM, LTD. <120> Method for confirming 3-HP production ability of 3-HP production gene using E. coli having 3-hydroxypropionic acid production ability inserted with 3-hydroxypropionic acid production gene <130> DPP20212280KR <160> 75 <170> koPatentIn 3.0 < 210> 1 <211> 4107 <212> DNA <213> Artificial Sequence <220> <223> Cas9 gene <400> 1 atggataaga aatactcaat aggcttagat atcggcacaa atagcgtcgg atgggcggtg 60 atcactgatg aatataaggt tccgtctaaa aagttcaagg ttctgggaaa tacagaccgc 120 cacagtatca aaaaaaatct tataggggct cttttatttg acagtggaga gacagcggaa 180 gcgactcgtc tcaaacggac agctcgtaga aggtatacac gtcggaagaa tcgtatttgt 240 tatctacagg agattttttc aaatgagatg gcgaaagtag atgatagttt ctttcatcga 300 cttgaagagt cttttttggt ggaagaagac aagaagcatg aacgtcatcc tatttttgga 360 aatatagtag atgaagttgc ttatcatgag aaatatccaa ctatctatca tctgcgaaaa 420 aaattggtag attctactga taaagcggat ttgcgcttaa tctatttggc cttagcgcat 480 atgattaagt ttcgtggtca ttttttgatt gagggagatt taaatcctga taatagtgat 540 gtggacaaac tatttatcca gttggtacaa acctacaatc aattatttga agaaaaccct 600 attaacgcaa gtggagtaga tgctaaagcg attctttctg cacgattgag taaatcaaga 660 cgattagaaa atctcattgc tcagctcccc ggtgagaaga aaaatggctt atttgggaat 720 ctcattgctt tgtcattggg tttgacccct aattttaaat caaattttga tttggcagaa 780 gatgctaaat tacagctttc aaaagatact tacgatgatg atttagataa tttattggcg 840 caaattggag atcaatatgc tgatttgttt ttggcagcta agaatttatc agatgctatt 900 ttactttcag atatcctaag agtaaatact gaaataacta aggctcccct atcagcttca 960 atgattaaac gctacgatga acatcatcaa gacttgactc ttttaaaagc tttagttcga 1020 caacaacttc cagaaaagta taaagaaatc ttttttgatc aatcaaaaaa cggatatgca 1080 ggttatattg atgggggagc tagccaagaa gaattttata aatttatcaa accaatttta 1140 gaaaaaatgg atggtactga ggaattattg gtgaaactaa atcgtgaaga tttgctgcgc 1200 aagcaacgga cctttgacaa cggctctatt ccccatcaaa ttcacttggg tgagctgcat 1260 gctattttga gaagacaaga agacttttat ccatttttaa aagacaatcg tgagaagatt 1320 gaaaaaatct tgacttttcg aattccttat tatgttggtc cattggcgcg tggcaatagt 1380 cgttttgcat ggatgactcg gaagtctgaa gaaacaatta ccccatggaa ttttgaagaa 1440 gttgtcgata aaggtgcttc agctcaatca tttattgaac gcatgacaaa ctttgataaa 1500 aatcttccaa atgaaaaagt actaccaaaa catagtttgc tttatgagta ttttacggtt 1560 tataacgaat tgacaaaggt caaatatgtt actgaaggaa tgcgaaaacc agcatttctt 1620 tcaggtgaac agaagaaagc cattgttgat ttactcttca aaacaaatcg aaaagtaacc 1680 gttaagcaat taaaagaaga ttatttcaaa aaaatagaat gttttgatag tgttgaaatt 1740 tcaggagttg aagatagatt taatgcttca ttaggtacct accatgattt gctaaaaatt 1800 attaaagata aagatttttt ggataatgaa gaaaatgaag atatcttaga ggatattgtt 1860 ttaacattga ccttatttga agatagggag atgattgagg aaagacttaa aacatatgct 1920 cacctctttg atgataaggt gatgaaacag cttaaacgtc gccgttatac tggttgggga 1980 cgtttgtctc gaaaattgat taatggtatt agggataagc aatctggcaa aacaatatta 2040 gattttttga aatcagatgg ttttgccaat cgcaatttta tgcagctgat ccatgatgat 2100 agtttgacat ttaaagaaga cattcaaaaa gcacaagtgt ctggacaagg cgatagttta 2160 catgaacata ttgcaaattt agctggtagc cctgctatta aaaaaggtat tttacagact 2220 gtaaaagttg ttgatgaatt ggtcaaagta atggggcggc ataagccaga aaatatcgtt 2280 attgaaatgg cacgtgaaaa tcagacaact caaaagggcc agaaaaattc gcgagagcgt 2340 atgaaacgaa tcgaagaagg tatcaaagaa ttaggaagtc agattcttaa agagcatcct 2400 gttgaaaata ctcaattgca aaatgaaaag ctctatctct attatctcca aaatggaaga 2460 gacatgtatg tggaccaaga attagatatt aatcgtttaa gtgattatga tgtcgatcac 2520 attgttccac aaagtttcct taaagacgat tcaatagaca ataaggtctt aacgcgttct 2580 gataaaaatc gtggtaaatc ggataacgtt ccaagtgaag aagtagtcaa aaagatgaaa 2640 aactattgga gacaacttct aaacgccaag ttaatcactc aacgtaagtt tgataattta 2700 acgaaagctg aacgtggagg tttgagtgaa cttgataaag ctggttttat caaacgccaa 2760 ttggttgaaa ctcgccaaat cactaagcat gtggcacaaa ttttggatag tcgcatgaat 2820 actaaatacg atgaaaatga taaacttatt cgagaggtta aagtgattac cttaaaatct 2880 aaattagttt ctgacttccg aaaagatttc caattctata aagtacgtga gattaacaat 2940 taccatcatg cccatgatgc gtatctaaat gccgtcgttg gaactgcttt gattaagaaa 3000 tatccaaaac ttgaatcgga gtttgtctat ggtgattata aagtttatga tgttcgtaaa 3060 atgattgcta agtctgagca agaaataggc aaagcaaccg caaaatattt cttttactct 3120 aatatcatga acttcttcaa aacagaaatt acacttgcaa atggagagat tcgcaaacgc 3180 cctctaatcg aaactaatgg ggaaactgga gaaattgtct gggataaagg gcgagatttt 3240 gccacagtgc gcaaagtatt gtccatgccc caagtcaata ttgtcaagaa aacagaagta 3300 cagacaggcg gattctccaa ggagtcaatt ttaccaaaaa gaaattcgga caagcttatt 3360 gctcgtaaaa aagactggga tccaaaaaaa tatggtggtt ttgatagtcc aacggtagct 3420 tattcagtcc tagtggttgc taaggtggaa aaagggaaat cgaagaagtt aaaatccgtt 3480 aaagagttac tagggatcac aattatggaa agaagttcct ttgaaaaaaa tccgattgac 3540 tttttagaag ctaaaggata taaggaagtt aaaaaagact taatcattaa actacctaaa 3600 tatagtcttt ttgagttaga aaacggtcgt aaacggatgc tggctagtgc cggagaatta 3660 caaaaaggaa atgagctggc tctgccaagc aaatatgtga attttttata tttagctagt 3720 cattatgaaa agttgaaggg tagtccagaa gataacgaac aaaaacaatt gtttgtggag 3780 cagcataagc attatttaga tgagattatt gagcaaatca gtgaattttc taagcgtgtt 3840 attttagcag atgccaattt agataaagtt cttagtgcat ataacaaaca tagagacaaa 3900 ccaatacgtg aacaagcaga aaatattatt catttattta cgttgacgaa tcttggagct 3960 cccgctgctt ttaaatattt tgatacaaca attgatcgta aacgatatac gtctacaaaa 4020 gaagttttag atgccactct tatccatcaa tccatcactg gtctttatga aacacgcatt 4080 gatttgagtc agctaggagg tgactga 4107 <210> 2 <211> 1885 <212> DNA <213> Artificial Sequence <220> <223> RED recomgbinase gene <400> 2 atggatatta atactgaaac tgagatcaag caaaagcatt cactaacccc ctttcctgtt 60 ttcctaatca gcccggcatt tcgcgggcga tattttcaca gctatttcag gagttcagcc 120 atgaacgctt attacattca ggatcgtctt gaggctcaga gctgggcgcg tcactaccag 180 cagctcgccc gtgaagagaa agaggcagaa ctggcagacg acatggaaaa aggcctgccc 240 cagcacctgt ttgaatcgct atgcatcgat catttgcaac gccacggggc cagcaaaaaa 300 tccattaccc gtgcgtttga tgacgatgtt gagtttcagg agcgcatggc agaacacatc 360 cggtacatgg ttgaaaccat tgctcaccac caggttgata ttgattcaga ggtataaaac 420 gaatgagtac tgcactcgca acgctggctg ggaagctggc tgaacgtgtc ggcatggatt 480 ctgtcgaccc acaggaactg atcaccactc ttcgccagac ggcatttaaa ggtgatgcca 540 gcgatgcgca gttcatcgca ttactgatcg ttgccaacca gtacggcctt aatccgtgga 600 cgaaagaaat ttacgccttt cctgataagc agaatggcat cgttccggtg gtgggcgttg 660 atggctggtc ccgcatcatc aatgaaaacc agcagtttga tggcatggac tttgagcagg 720 acaatgaatc ctgtacatgc cggatttacc gcaaggaccg taatcatccg atctgcgtta 780 ccgaatggat ggatgaatgc cgccgcgaac cattcaaaac tcgcgaaggc agagaaatca 840 cggggccgtg gcagtcgcat cccaaacgga tgttacgtca taaagccatg attcagtgtg 900 cccgtctggc cttcggattt gctggtatct atgacaagga tgaagccgag cgcattgtcg 960 aaaatactgc atacactgca gaacgtcagc cggaacgcga catcactccg gttaacgatg 1020 aaaccatgca ggagattaac actctgctga tcgccctgga taaaacatgg gatgacgact 1080 tattgccgct ctgttcccag atatttcgcc gcgacattcg tgcatcgtca gaactgacac 1140 aggccgaagc agtaaaagct cttggattcc tgaaacagaa agccgcagag cagaaggtgg 1200 cagcatgaca ccggacatta tcctgcagcg taccgggatc gatgtgagag ctgtcgaaca 1260 gggggatgat gcgtggcaca aattacggct cggcgtcatc accgcttcag aagttcacaa 1320 cgtgatagca aaaccccgct ccggaaagaa gtggcctgac atgaaaatgt cctacttcca 1380 caccctgctt gctgaggttt gcaccggtgt ggctccggaa gttaacgcta aagcactggc 1440 ctggggaaaa cagtacgaga acgacgccag aaccctgttt gaattcactt ccggcgtgaa 1500 tgttactgaa tccccgatca tctatcgcga cgaaagtatg cgtaccgcct gctctcccga 1560 tggtttatgc agtgacggca acggccttga actgaaatgc ccgtttacct cccgggattt 1620 catgaagttc cggctcggtg gtttcgaggc cataaagtca gcttacatgg cccaggtgca 1680 gtacagcatg tgggtgacgc gaaaaaatgc ctggtacttt gccaactatg acccgcgtat 1740 gaagcgtgaa ggcctgcatt atgtcgtgat tgagcgggat gaaaagtaca tggcgagttt 1800 tgacgagatc gtgccggagt tcatcgaaaa aatggacgag gcactggctg aaattggttt 1860 tgtatttggg gagcaatggc gatga 1885 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ldhA <400> 3 gcacgttgtg gcaggcagac 20 <210> 4 <210> 4 > DNA <213> Artificial Sequence <220> <223> ldhA <400> 4 taacgtctga ttcagagaac 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ldhA <400> 5 aacgtctgat tcagagaaca 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> yqhD <400> 6 actttcctgc tggcggttgg 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> yqhD <400> 7 caccaaattt atcgccgcag 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> glpK <400> 8 attgtctggg aaaaagaaac 20 <210> 9 < 211> 20 <212> DNA <213> Artificial Sequence <220> <223> glpK <400> 9 cgtcgttctt ccgaagtata 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gldA <400> 10 atcgcggaga ctgcgcagtg 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gldA <400> 11 cctcgatact gccaaagcac 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mgsA <400> 12 cgagataacg ctgataatcg 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mgsA <400> 13 cgcagcaagg ctttcacgtc 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> poxB <400> 14 cagtgcatgg ttgccccttc 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220 > <223> poxB <400> 15 gtacttgtgg gatctgctcc 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nfrA <400> 16 cgcatgcagc caccagtaga 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nfrA <400> 17 ccagtcgcgc cattaaagtc 20 <210> 18 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> ldhA_upstream <400 > 18 ggcgattggg atgtgtgcat tacccaacgg caaacgctgt agcgaacagt cacttgccgc 60 cgggagctgt ggcagctatt aattcattaa atccgccagc ttataagtta atgtctgttt 120 tgcggtcgcc agcgttaact ggttcgcggt cagatccact tgtgcacctt ctttcagcat 180 ttcgctaatg gtgttatcga gttcattaag ctgcgggtta gcgcacatca tacgggtcat 240 tgccagccct ttggc 255 <210> 19 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> ldhA_downstream <400> 19 tactagcgca gcttaagctc aaagccaaag gactcgttca cctgttgcag gtacttcttg 60 tcgtactgtt ttgtgctata aacggcgagt ttcataagac tttctccagt gatgttgaat 120 cacatttaag ctactaaaaa tattttacaa aatttcaaat ttaattgaaa gctatggcga 180 tattgaaaaa ttcatcaaca actatgctta gtgtaggcgc aaccttcaac tgaacggtta 240 aacatgccac aatac 255 <210> 20 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> yqhD_upstream <400> 20 ggcggagtta atcccgctgg ctgccatcga cggctggaaa tgctcatctt cgccaatgtc 60 catcaacagt tcctgtaact gcaaaatatc gacattgaga cgcaaccctg ccagcggcac 120 ctctgacgtg gcataggttt cgcactcaaa cggcaacggc accgtcagca gcaggtattc 180 attggcatca taacgaaaca cgcgttcatt gatataaccg attttatgcc cggaaaagag 240 aattatgatg ccagg 255 <210> 21 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> yqhD_downstream <400> 21 tactagcgca gcttagaaca gtatgttacc aaaccggttg atgccaaaat tcaggaccgt 60 ttcgcagaag gcattttgct gacgctaatc gaagatggtc cgaaagccct gaaagagcca 120 gaaaactacg atgtgcgcgc caacgtcatg tgggcggcga ctcaggcgct gaacggtttg 180 attggcgctg gcgtaccgca ggactgggca acgcatatgc tgggccacga actgactgcg 240 atgcacggtc tggat 255 <210> 22 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> glpK_upstream <400> 22 ccgggttgtt gattttcttc ggtgtgggtt gcgttgcagc actaaaagtc gctggtgcgt 60 cttttggtca gtgggaaatc agtgtcattt ggggactggg ggtggcaatg gccatctacc 120 tgaccgcagg ggtttccggc gcgcatctta atcccgctgt taccattgca ttgtggctgt 180 ttgcctgttt cgacaagcgc aaagttattc cttttatcgt ttcacaagtt gccggcgctt 240 tctgtgctgc ggctt 255 <210> 23 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> glpK_downstream <400> 23 tactagcgca gcttaaccta tggcactggc tgctttatgc tgatgaacac tggcgagaaa 60 gcggtgaaat cagaaaacgg cctgctgacc accatcgcct gcggcccgac tggcgaagtg 120 aactatgcgt tggaaggtgc ggtgtttatg gcaggcgcat ccattcagtg gctgcgcgat 180 gaaatgaagt tgattaacga cgcctacgat tccgaatatt tcgccaccaa agtgcaaaac 240 accaatggtg tgtat 255 <210> 24 <211> 255 <212> DNA <213> Artificial Sequence <220> <223 > gldA_upstream <400> 24 catgcacgaa gaattccgta acgcgctggt taacgccgcc tctgccgacg ctatcgccag 60 cctgctgcaa catgaactgg aactgtaaaa ggaaacatca tggaactgta tctggacacc 120 gctaacgtcg cagaagtcga acgtctggca cgcatattcc ccattgccgg ggtgacaact 180 aacccgagca ttatcgctgc cagcaaggag tccatatggg aagtgctgcc gcgtctgcaa 240 aaagcgattg gtgat 255 <210> 25 <211> 255 <212> DNA < 213> Artificial Sequence <220> <223> gldA_downstream <400> 25 tactagcgca gcttagaagc ggcatgtgca gaaggtgaaa ccattcacaa catgcctggc 60 ggcgcgacgc cagatcaggt ttacgccgct ctgctggtag ccgaccagta cggtcagcgt 120 ttcctgcaag agtgggaata acctactcca aactcccggc ttgtccggga gtttgaacgc 180 aaaattgcct gatgcgctac gcttatcagg cctacgcaat ctctgcaata tattgaattt 240 gcgtgctttt gtagg 255 <210> 26 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> mgsA_upstream <400> 26 gattgtgatt ctggagaaag gtcgctttat cagcccgtgg aagcatattc tggttgatga 60 atttcaggat atctcgccgc agcgggcagc gttgttagcg gcattacgca agcaaaacag 120 tcagacgacg ttgttcgctg ttggtgatga ctggcaggcg atttaccgat tcagcggtgc 180 gcaaatgtcg ctcaccaccg ctttccatga aaactttggt gaaggcgaac gctgtgattt 240 agacacgact taccg 255 <210> 27 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> mgsA_downstream <400> 27 tactagcgca gcttatccgc gcaggtaaag tgcgagtcgt cagttccata atgtacatcc 60 gtagttaact ttcctacaga ttactgtaag cacttatcgc tgcaagataa agaccgaaaa 120 agcctgcgca caggcacaaa aatctcagga agatggttgt ttttccgccc actgcaggaa 180 agtatttcgc gtttgtgggt cagccagttt aaaccaatac ttcagccgtt gttctgtgag 240 cacctgagac tgcgg 255 <210> 28 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> poxB_upstream <400> 28 ttaccttagc cagtttgttt tcgccagttc gatcacttca tcaccgcgtc cgctgatgat 60 tgcgcgcagc atatacaggc tgaaaccttt ggcctgttcg agtttgatct gcggtggaat 120 ggctaactct tctttggcga ccaccacatc caccaacacc ggaccgtcga tggagaaggc 180 gcgttgcagg gcttcatcaa cttcagacgc tttttctaca cggatacccg taatgccgca 240 cgcttcggca atgcg 255 <210> 29 <211> 255 <212> DNA <213> Artificial Sequence <220> <223> poxB_downstream <400> 29 tactagcgca gcttaagctc gcaatagtga ctacattcgc ggaatagctc ttgtgggtgg 60 gtttcctgga aatagccgct gccaatttcg ctggagggaa tatgagcggc aatcgccagt 120 accggaacgt gattgcggtg gcaatcgaac aggccgttga ttaagtgcag gttgccgggg 180 ccgcacgatc cggcgcagac cgccagttct ccgctaagtt gtgcttcagc gccagcggca 240 aaggccgcca cttct 255 <210> 30 <211> 255 <212> DNA <213> Artificial Sequence < 220> <223> nfrA_upstream <400> 30 tgtgcggcca ggcgtcgtag tgcgtctcgc cggtccagat attccagcgg accccgactc 60 cgccaagctg cgcgccctga gtgcctttat cacgatagcc gttgtcctga acgtgagcgt 120 aaggctcaat agtctgtccg ttagctacct tctgatgcca gctgacgcga taatctgccg 180 tccacgcctg aatatcctgg cggatatatt gcgccgcatc gaggtacagg ttttgggcaa 240 accagcctga accgt 255 <210> 31 <211> 255 < 212> DNA <213> Artificial Sequence <220> <223> nfrA_downstream <400> 31 tactagcgca gcttaggcga gcagtttttg cgctgcgtcg tactgacctt cttttaacag 60 caccggtagc gtcgcgccaa caacatactg gcggttgtcg gcaaactgta ccgtataatt 120 cgccaacgcc tgaacggggt tagcgctgta tttagataac agatagagcc aacttttctc 180 ttgtgcgtcc gtggtaaata gtggcttatt ttcaatgaga taatgctgga ggcgtgcttt 240 ttcgccacga taagc 255 <210> 32 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> poxB_For <400> 32 agtgtgcgca ccagatgc 18 <210> 33 <211> 21 <212> DNA <213> Artificial Sequence <220 > <223> poxB_Rev <400> 33 gtttgccgtc cagttcgacg a 21 <210> 34 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> nfrA_For <400> 34 cgctctccgt tacgttgatt aatcg 25 <210> 35 < 211> 21 <212> DNA <213> Artificial Sequence <220> <223> nfrA_Rev <400> 35 gtttgccgtc cagttcgacg a 21 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mgsA_For <400> 36 gaaggcagaa aacgctgtcg 20 <210> 37 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mgsA_Rev <400> 37 gtttgccgtc cagttcgacg a 21 <210> 38 <211> 18 <212 > DNA <213> Artificial Sequence <220> <223> ldhA_For <400> 38 caatgatcgg cggttcgc 18 <210> 39 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ldhA_Rev <400> 39 gtttgccgtc cagttcgacg a 21 <210> 40 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> yqhD_For <400> 40 cacgtcgagt aaccgc 16 <210> 41 <211> 21 <212> DNA Artificial Sequence <220> <223> yqhD_Rev <400> 41 gtttgccgtc cagttcgacg a 21 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gldA_For <400> 42 ctgcgggcga tcagcatatg 20 <210> 43 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> gldA_Rev <400> 43 gtttgccgtc cagttcgacg a 21 <210> 44 <211> 23 <212> DNA <213> Artificial Sequence <220> < 223> glpK_For <400> 44 gctgtttgcc tgtttcgaca agc 23 <210> 45 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> glpK_Rev <400> 45 gtttgccgtc cagttcgacg a 21 <210> 46 <211> 24 <212> DNA <213 > Artificial Sequence <220> <223> 3-HP_For <400> 46 ctagatttac agctagctca gtcc 24 <210> 47 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> 3-HP_Rev <400> 47 tgccatatta ataatcgatc cctatctgc 29 <210> 48 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> ldhA_upstream_For <400> 48 actgaaccgc tctaggcgat tgggatgtgt gcattacc 38 <210> 49 <21 212> DNA <213> Artificial Sequence <220> <223> ldhA_upstream_Rev <400> 49 tagctgtaaa tctagatctc tctgcactgc ccgc 34 <210> 50 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> ldhA_downstream_For <400 > 50 tactagcgca gcttaagctc aaagccaaag gactcg 36 <210> 51 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> ldhA_downstream_Rev <400> 51 cagcagccta ggttaacgat caattgcccg ctattttcc 39 <342> 52 <342> 52 <210> > DNA <213> Artificial Sequence <220> <223> yqhD_upstream_For <400> 52 actgaaccgc tctagggcgg agttaatccc gctg 34 <210> 53 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> yqhD_upstream_Rev <400> 53 tagctgtaaa tctagcactt tctgttcgcg aaccagtttc 40 <210> 54 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> yqhD_downstream_For <400> 54 tactagcgca gcttagaaca gtatgttacc aaaccggttg 11 5 211> aaaccggttg 40 <211> DNA <213> Artificial Sequence <220> <223> yqhD_downstream_Rev <400> 55 cagcagccta ggttaagggc tttgccgaca cct 33 <210> 56 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> glpK_upstream_For <400> 56 tactagcgca gcttaaccta tggcactggc tgct 34 <210> 57 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> glpK_upstream_Rev <400> 57 tagctgtaaa tctaggtcat attacagcga agctttttgt 40 <210> 23 <211> DNA <213> Artificial Sequence <220> <223> glpK_downstream_For <400> 58 tactagcgca gcttaaagcg tttatgccgc atccg 35 <210> 59 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> glpK_downstream_Rev <400> 59 cagcagccta ggttatcttc gttgtcgcct ttgacg 36 <210> 60 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> gldA_upstream_For <400> 60 actgaaccgc tctagcatgc acgaagaatt ccgtaac 37 <210> 61 <211> 39 <212> DNA 213> Artificial Sequence <220> <223> gldA_upstream_Rev <400> 61 tagctgtaaa tctagaaacc taaaacaaat ttgtcaccc 39 <210> 62 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> gldA_downstream_For <400> 6 gtacttagcagc2 ggcatgtgca gaagg 35 <210> 63 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> gldA_downstream_Rev <400> 63 cagcagccta ggttatctga aaccacccca atatgtgc 38 <210> 64 <211> 40 <212> DNA <213 > Artificial Sequence <220> <223> mgsA_upstream_For <400> 64 actgaaccgc tctaggattg tgattctgga gaaaggtcgc 40 <210> 65 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> mgsA_upstream_Rev <400> 65 c tagctctgtaggaa aatattgc 38 <210> 66 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> mgsA_downstream_For <400> 66 tactagcgca gcttatccgc gcaggtaaag tgc 33 <210> 67 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> mgsA_downstream_Rev <400> 67 cagcagccta ggttacgaat gaatgagagc aaaagcggg 39 <210> 68 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> poxB_upstream_For <400> 68 35 <210> 69 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> poxB_upstream_Rev <400> 69 tagctgtaaa tctagacaac agcgtgctgg gct 33 <210> 70 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> poxB_downstream_For <400> 70 tactagcgca gcttaagctc gcaatagtga ctacattcgc 40 <210> 71 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> poxB_downstream_Rev <400> 71 cagcagccta tgggattacgt3cta <210> 72 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> nfrA_upstream_For <400> 72 actgaaccgc tctagtgtgc ggccaggcgt cgtagtgc 38 <210> 73 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> nfrA_upstream_Rev <400> 73 tagctgtaaa tctaggggct tccggacgat ccg 33 <210> 74 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> nfrA_downstream_For <400> 74 tactagcgca gcttaggctgat gcagt < 210> 75 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> nfrA_downstream_Rev<400> 75 cagcagccta ggttaacaga aaaataacga cgaagcaacc 40

Claims (10)

외래의 3-하이드록시프로피온산 (3-hydroxypropionate, 3-HP) 생산 유전자가 1 복제수 이상 유전체 DNA (genomic DNA) 내부에 삽입되고, 3-HP 생산능을 가지는, 대장균을 배양하는 단계를 포함하는, 상기 대장균 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법.A foreign 3-hydroxypropionate (3-HP) producing gene is inserted into genomic DNA of 1 copy or more and culturing E. coli having 3-HP production ability , Method for confirming the 3-HP production ability of the 3-HP production gene inserted into the E. coli genomic DNA. 제1항에 있어서, 상기 3HP 생산 유전자는 글리세롤 탈수효소 (glycerol dehydratase), 알데하이드 탈수소효소 (aldehyde dehydrogenase), 글리세롤 탈수효소 재활성효소 (glycerol dehydratase reactivase) 및 아데노실트랜스퍼라아제 (adenosyltransferase)로 이루어진 군으로부터 선택되는 1종 이상의 효소의 유전자를 포함하는, 상기 대장균 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법.According to claim 1, wherein the 3HP production gene is a group consisting of glycerol dehydratase, aldehyde dehydrogenase, glycerol dehydratase reactivase and adenosyltransferase (adenosyltransferase) 3-HP production ability confirmation method of the 3-HP production gene inserted into the E. coli genomic DNA, including the gene of one or more enzymes selected from. 제1항에 있어서, 상기 배양하는 단계에서 대장균의 유전자 중 yqhD, glpK, ldhA, ack-pta 및 gldA로 이루어진 군에서 선택된 유전자가 결실된 대장균을 배양하는 것인, 상기 대장균 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법.The method of claim 1, wherein in the culturing step, culturing E. coli in which a gene selected from the group consisting of yqhD, glpK, ldhA, ack-pta, and gldA among the genes of E. coli is deleted, the 3 inserted into the E. coli genomic DNA -How to confirm the 3-HP production ability of the HP production gene. 제1항에 있어서, 상기 3-HP 생산 유전자는 상기 대장균의 ldhA, gldA, glpK, yqhD, mgsA, poxB 및 nfrA 유전자로 이루어진 군에서 선택된 1종 이상의 유전자가 위치한 곳에 삽입되는 것인, 상기 대장균 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법.The E. coli genome according to claim 1, wherein the 3-HP production gene is inserted where one or more genes selected from the group consisting of ldhA, gldA, glpK, yqhD, mgsA, poxB, and nfrA genes of the E. coli are located. Method for confirming 3-HP production ability of 3-HP production gene inserted into DNA. 제1항에 있어서, 상기 3-HP 생산 유전자는 CRISPR-Cas9 시스템에 의해 유전체 DNA 내부에 삽입되는 것인, 상기 대장균 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법.The method of claim 1, wherein the 3-HP production gene is inserted into the genomic DNA by the CRISPR-Cas9 system. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 대장균에 의해 생산된 3-HP의 양을 측정하는 단계를 추가로 포함하는, 상기 대장균 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법.The method according to any one of claims 1 to 5, further comprising the step of measuring the amount of 3-HP produced by the E. coli, the 3-HP production gene inserted into the E. coli genomic DNA How to check HP productivity. 제6항에 있어서, 상기 생산된 3-HP의 양을 측정하는 단계에서, 상기 대장균에 의해 생산되는 3-HP 생산량이 상기 대장균 유전체 DNA에 삽입된 3-HP 생산 유전자 복제수에 비례하는지 여부를 확인하여, 3-HP 생산능을 확인하는 것인, 상기 대장균 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법.The method of claim 6, wherein in the step of measuring the amount of 3-HP produced, whether the 3-HP production produced by the E. coli is proportional to the copy number of the 3-HP production gene inserted into the E. coli genomic DNA To confirm, to confirm the 3-HP production capacity, a method for confirming the 3-HP production capacity of the 3-HP production gene inserted into the E. coli genomic DNA. 제1항 내지 제5항 중 어느 한 항에 있어서, 항생제를 투여하는 단계를 포함하지 않는, 상기 대장균 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법.The method according to any one of claims 1 to 5, which does not include the step of administering an antibiotic, to confirm the 3-HP production ability of the 3-HP producing gene inserted into the genomic DNA of the E. coli. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 배양하는 단계는,
탄소원으로 글루코스 또는 수크로스를 포함하는 배지에서 배양하는 제1단계 배양 단계; 및
탄소원으로 글리세롤을 포함하는 배지에서 배양하는 제2단계 배양 단계
를 포함하는 것인, 상기 대장균 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법.
The method of any one of claims 1 to 5, wherein the culturing step,
A first step of culturing in a medium containing glucose or sucrose as a carbon source; and
The second step of culturing in a medium containing glycerol as a carbon source
A method for confirming the 3-HP production ability of the 3-HP production gene inserted into the E. coli genomic DNA comprising a.
제9항에 있어서, 상기 제2단계 배양 단계의 배지는 탄소원으로 글루코스 또는 수크로스를 포함하지 않는 것인, 상기 대장균 유전체 DNA에 삽입된 3-HP 생산 유전자의 3-HP 생산능 확인 방법.10. The method of claim 9, wherein the culture medium of the second step does not contain glucose or sucrose as a carbon source.
KR1020210129843A 2021-09-30 2021-09-30 Method for confirming 3-HP production ability of 3-HP production gene using E. coli having 3-hydroxypropionic acid production ability inserted with 3-hydroxypropionic acid production gene KR20230046638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210129843A KR20230046638A (en) 2021-09-30 2021-09-30 Method for confirming 3-HP production ability of 3-HP production gene using E. coli having 3-hydroxypropionic acid production ability inserted with 3-hydroxypropionic acid production gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210129843A KR20230046638A (en) 2021-09-30 2021-09-30 Method for confirming 3-HP production ability of 3-HP production gene using E. coli having 3-hydroxypropionic acid production ability inserted with 3-hydroxypropionic acid production gene

Publications (1)

Publication Number Publication Date
KR20230046638A true KR20230046638A (en) 2023-04-06

Family

ID=85917902

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210129843A KR20230046638A (en) 2021-09-30 2021-09-30 Method for confirming 3-HP production ability of 3-HP production gene using E. coli having 3-hydroxypropionic acid production ability inserted with 3-hydroxypropionic acid production gene

Country Status (1)

Country Link
KR (1) KR20230046638A (en)

Similar Documents

Publication Publication Date Title
KR101511639B1 (en) Recombinant microorganisms and methods of use thereof
KR102569806B1 (en) Microorganism transformed by a gene encoding adenosyltransferase and uses thereof
KR102108021B1 (en) Recombinant Corynebacterium glutamicum strain for producing glutaric acid and a method of producing glutaric acid using the same
RU2678139C2 (en) Escherichia species microorganism having l-tryptophan production capacity and method for producing l-tryptophan using same
EP2176415B1 (en) Preparing method for (s)-3-hydroxybutyric acid and (s)-3-hydroxybutyrate ester using recombinant microorganism
JP2017534268A (en) Modified microorganisms and methods for the production of useful products
KR101437042B1 (en) Method of produciton for 3-hydroxypropionic aicd by using glycerol and glucose
JP2021523731A (en) Recombinant corynebacterium having 1,3-PDO-producing ability and inhibiting 3-HP-producing ability, and a method for producing 1,3-PDO using the same.
JP5649119B2 (en) Shiro-inositol producing cell and method for producing scyllo-inositol using the cell
JP2018529354A (en) Recombinant microorganism producing L-threonine and method for producing L-threonine using the same
KR20230046638A (en) Method for confirming 3-HP production ability of 3-HP production gene using E. coli having 3-hydroxypropionic acid production ability inserted with 3-hydroxypropionic acid production gene
EP4242312A1 (en) Microorganisms having capability of producing 3-hydroxypropionic acid from glucose and uses thereof
KR20230046915A (en) E. coli having 3-hydroxypropionic acid production ability by inserting 3-hydroxypropionic acid production gene into genomic DNA and uses thereof
JP2023540330A (en) Corynebacterium glutamicum mutant strain with improved L-citrulline production ability and method for producing L-citrulline using the same
JP2023540518A (en) Corynebacterium glutamicum mutant strain with improved L-lysine production ability and method for producing L-lysine using the same
CN117940569A (en) Coli having 3-hydroxypropionate producing ability, into which 3-hydroxypropionate producing gene has been inserted, and use thereof
KR20240086762A (en) Microorganisms that simultaneously produce 1,3-propanediol and 3-hydroxypropionic acid from glycerol, and their uses
KR20200136242A (en) Use of inducible promoter for improving conversion of glucose to glycerol
KR102639658B1 (en) Two-step method for manufacturing 3-hydroxypropionic acid
WO2023055174A1 (en) Escherichia coli having 3-hydroxypropionate production ability, with 3-hydroxypropionate production gene inserted into same, and use thereof
KR20240086763A (en) Microorganisms that simultaneously produce 1,3-propanediol and 3-hydroxypropionic acid from glucose, and their uses
JP7475408B2 (en) Corynebacterium sp. microorganism having improved L-arginine or L-citrulline producing ability and method for producing L-arginine or L-citrulline using the same
KR102659292B1 (en) 5&#39;-UTR for improving conversion of glucose to glycerol and uses thereof
KR101494386B1 (en) 3-hydroxyaldehyde and/or 3-hydroxypropionic acid-producing recombinant microorganism and method of producing 3-hydroxyaldehyde and/or 3-hydroxypropionic acid using the same
KR20230108789A (en) Mutant in Escherichia with enhanced L-histidine productivity and method for preparing L-histidine using the same