KR20230044974A - 외란광을 고려하여 거리 측정을 수행하는 라이다 센서 및 그 제어 방법 - Google Patents

외란광을 고려하여 거리 측정을 수행하는 라이다 센서 및 그 제어 방법 Download PDF

Info

Publication number
KR20230044974A
KR20230044974A KR1020220122697A KR20220122697A KR20230044974A KR 20230044974 A KR20230044974 A KR 20230044974A KR 1020220122697 A KR1020220122697 A KR 1020220122697A KR 20220122697 A KR20220122697 A KR 20220122697A KR 20230044974 A KR20230044974 A KR 20230044974A
Authority
KR
South Korea
Prior art keywords
light
value
current
lidar sensor
distance
Prior art date
Application number
KR1020220122697A
Other languages
English (en)
Inventor
박성주
김창수
이재영
김주영
천무웅
고재근
조상수
송민지
Original Assignee
주식회사 유진로봇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유진로봇 filed Critical 주식회사 유진로봇
Priority to PCT/KR2022/014487 priority Critical patent/WO2023048549A1/ko
Publication of KR20230044974A publication Critical patent/KR20230044974A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/146Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4915Time delay measurement, e.g. operational details for pixel components; Phase measurement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

외란광을 고려하여 거리 측정을 수행하는 라이다 센서 및 그 제어 방법을 개시한다.
본 발명의 실시예에 따른 외란광을 고려하여 보정을 수행하는 라이다 센서에 있어서, 라이다 센서는, 송신 광을 발광하는 광 송신부; 상기 송신 광이 대상체로부터 반사된 반사 광을 수광하여 전기적 신호인 수광 신호로 변환하는 광 수신부; 상기 광 수신부에 흐르는 전류를 확인하기 위한 전류 센싱을 수행하는 전류 측정부; 및 상기 송신 광에 대한 광 송신을 제어하고, 상기 수광 신호를 획득하며, 상기 수광 신호의 분석 결과와 상기 전류 센싱 결과를 기반으로 대상체와의 거리값을 보정하여 거리 측정값을 산출하는 프로세서를 포함할 수 있다.

Description

외란광을 고려하여 거리 측정을 수행하는 라이다 센서 및 그 제어 방법{LiDAR Sensor that Measures Distance Considering Disturbance Light and Its Control Method}
본 발명은 외란광을 고려하여 대상체와의 거리 측정을 수행하는 라이다 센서 및 그 제어 방법에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 발명의 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
라이다(LIDAR: Light Detection and Ranging) 센서는 대상체에 빛, 예를 들어 레이저를 조사한 후, 대상체로부터 반사된 빛을 분석하여 대상체의 물성, 예를 들어 거리, 방향, 속도, 온도, 물질 분포 및 농도 특성 등을 측정할 수 있는 원격 탐지 장치 중 하나이다.
라이다 센서는 자율 주행차, 이동 로봇, 청소 로봇, 거리 측정기 등 다양한 분야에서 사용되고 있다. 라이더 센서는 적용 분야에서 요구되는 스펙에 따라, 사이즈, 회전속도, 광원의 스펙 등을 다르게 하고 있으나, 회전형 타입의 라이더 센서가 갖는 동작 원리는 기본적으로 공통된다.
다만, 라이다 센서는 수신되는 수신 광량(광 수신 시간)에 따라 거리 측정에 대한 오차가 발생하여 거리값 측정을 위한 보정을 수행한다.
하지만, 라이다 센서는 외란 광이 수신 광에 포함될 경우, 거리값 보정을 위한 보상값이 산출이 어렵고, 거리 측정값에 대한 정확도가 떨어지게 되는 문제가 있다.
본 발명은 대상체로부터 반사된 반사 광을 수광하는 광 수신부에 대한 전류 센싱을 수행하고, 수광 신호의 분석 결과와 전류 센싱 결과를 이용하여 산출된 지연 오차 보상값을 기반으로 대상체와의 거리값을 보정하여 거리 측정값을 산출하는 외란광을 고려하여 거리 측정을 수행하는 라이다 센서 및 그 제어 방법을 제공하는 데 주된 목적이 있다.
본 발명의 일 측면에 의하면, 상기 목적을 달성하기 위한 외란광을 고려하여 보정을 수행하는 라이다 센서에 있어서, 라이다 센서는, 송신 광을 발광하는 광 송신부; 상기 송신 광이 대상체로부터 반사된 반사 광을 수광하여 전기적 신호인 수광 신호로 변환하는 광 수신부; 상기 광 수신부에 흐르는 전류를 확인하기 위한 전류 센싱을 수행하는 전류 측정부; 및 상기 송신 광에 대한 광 송신을 제어하고, 상기 수광 신호를 획득하며, 상기 수광 신호의 분석 결과와 상기 전류 센싱 결과를 기반으로 대상체와의 거리값을 보정하여 거리 측정값을 산출하는 프로세서를 포함할 수 있다.
또한, 본 발명의 다른 측면에 의하면, 상기 목적을 달성하기 위한 라이다 센서에서, 외란광을 고려하여 보정을 수행하는 라이다 센서 제어 방법에 있어서, 라이다 센서 제어 방법은, 송신 광을 발광하는 광 송신 단계; 상기 송신 광이 대상체로부터 반사된 반사 광을 수광하여 전기적 신호인 수광 신호로 변환하는 광 수신 단계; 상기 광 수신 단계에서 흐르는 전류를 확인하기 위한 전류 센싱을 수행하는 전류 측정 단계; 및 상기 송신 광에 대한 광 송신을 제어하고, 상기 수광 신호를 획득하며, 상기 수광 신호의 분석 결과와 상기 전류 센싱 결과를 기반으로 대상체와의 거리값을 보정하여 거리 측정값을 산출하는 제어 단계를 포함할 수 있다.
또한, 본 발명의 다른 측면에 의하면, 상기 목적을 달성하기 위한 이동체에 있어서, 이동체는, 송신 광을 송신하고, 대상체로부터 반사된 반사 광을 수광하는 광 수신부에 대한 전류 센싱을 수행하여 산출된 지연 오차 보상값을 기반으로 대상체와의 거리값을 보정하여 거리 측정값을 산출하는 라이다 센서; 및 상기 거리 측정값을 기반으로 상기 이동체를 이동시키는 이동 장치를 포함하며, 상기 라이다 센서는, 송신 광에 대한 광 송신을 제어하고, 상기 수광 신호를 획득하며, 상기 수광 신호의 분석 결과와 상기 광 수신부에 흐르는 전류를 확인하기 위한 전류 센싱을 수행한 상기 전류 센싱 결과를 기반으로 대상체와의 거리값을 보정하여 거리 측정값을 산출하는 프로세서를 포함할 수 있다.
이상에서 설명한 바와 같이, 본 발명은 외란 광을 고려하여 거리값 보상을 처리하여 거리 측정값의 정확도를 향상 시킬 수 있는 효과가 있다.
또한, 본 발명은 외란 광으로 인해 발생할 수 있는 측정 오류를 최소화할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 따른 라이다 센서를 개략적으로 나타낸 블록 구성도이다.
도 2는 본 발명의 실시예에 따른 라이다 센서의 프로세서를 개략적으로 나타낸 블록 구성도이다.
도 3은 본 발명의 실시예에 따른 라이다 센서의 제어 방법을 설명하기 위한 순서도이다.
도 4는 본 발명의 실시예에 따른 외란광에 따른 라이다 센서의 수광 시간 및 보상값의 변화를 나타낸 그래프이다.
도 5 및 도 6은 본 발명의 실시예에 따른 라이다 센서의 거리값 보정을 위한 전류 측정부를 나타낸 예시도이다.
도 7은 본 발명의 실시예에 따른 라이다 센서의 쉬프트 보상값을 설명하기 위한 도면이다.
도 8은 본 발명의 실시예에 따른 외란광 노출 시 스캐닝 결과를 나타낸 도면이다.
도 9는 본 발명의 실시예에 따른 라이다 센서를 포함하는 이동체를 개략적으로 나타낸 블록 구성도이다.
도 10은 본 발명의 실시예에 따른 이동체의 거리 측정 동작을 설명하기 위한 예시도이다.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 바람직한 실시예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다. 이하에서는 도면들을 참조하여 본 발명에서 제안하는 외란광을 고려하여 거리 측정을 수행하는 라이다 센서 및 그 제어 방법에 대해 자세하게 설명하기로 한다.
도 1은 본 발명의 실시예에 따른 라이다 센서를 개략적으로 나타낸 블록 구성도이다.
본 실시예에 따른 라이다 센서(10)는 광 송신부(100), 광 수신부(200), 전류 측정부(210), 프로세서(300), 입력부(400), 출력부(500), 메모리(600) 및 데이터베이스(700)를 포함한다. 도 1의 라이다 센서(10)는 일 실시예에 따른 것으로서, 도 1에 도시된 모든 블록이 필수 구성요소는 아니며, 다른 실시예에서 라이다 센서(10)에 포함된 일부 블록이 추가, 변경 또는 삭제될 수 있다.
라이다 센서(10)는 광을 송수신하여 주변 환경 또는 대상체를 스캐닝하는 동작을 수행한다.
라이다 센서(10)는 비행 시간(ToF: Time of Flight) 처리 방식으로 대상체와의 거리를 측정할 수 있다.
라이다 센서(10)는 송신 광(예: 레이저)의 펄스 또는 구형파 신호를 방출하고, 측정 범위 내에 있는 대상체들로부터 반사된 반사 광에 대한 반사 펄스 또는 구형파 신호들이 수신되는 시간을 측정함으로써, 라이다 센서(10)와 대상체 사이의 거리를 측정한다.
본 실시예에 따른 라이다 센서(10)는 대상체로부터 반사된 반사 광을 수광하는 광 수신부에 대한 전류 센싱을 수행하고, 수광 신호의 분석 결과와 전류 센싱 결과를 이용하여 산출된 지연 오차 보상값을 기반으로 대상체와의 거리값을 보정하여 거리 측정값을 산출하는 동작을 수행한다.
이하, 라이다 센서(10)에 포함된 구성요소 각각에 대해 설명하도록 한다.
광 송신부(100)는 송신 광을 발광하는 동작을 수행한다.
광 송신부(100)는 프로세서(300)의 제어를 기반으로 송신 광을 출력할 수 있다. 광 송신부(100)는 광원, 이미터(emitter) 등으로 구현될 수 있으며, 전기적 신호를 광으로 변환하여 외부 또는 대상체로 레이저 광을 조사할 수 있다.
예를 들어, 광 송신부(100)는 FMCW(Frequency Modulated Continuous Wave) 방식으로 송신 광을 출력할 수 있다. 또한, 광 송신부(100)는 생성된 레이저 광에 대한 빔스티어링을 수행 할 수 있다. 광 송신부(100)는 레이저 광의 경로를 변경하여 빔스티어링을 수행할 수 있다.
광 수신부(200)는 송신 광이 대상체로부터 반사된 반사 광을 수광하여 전기적 신호인 수광 신호로 변환하는 동작을 수행한다.
광 수신부(200)는 복수의 포토 다이오드를 포함하는 포토 디텍터(Photodetectors), 포토센서(Photosensors) 등으로 구현될 수 있으며, 수신된 반사 광을 전기적 신호(수광 신호)로 전환할 수 있다.
광 수신부(200)는 송신되는 레이저 광 각각의 지점에서 반사 광을 수신할 수 있다. 예를 들면, 제1 지점을 향해 레이저광이 출력되면, 광 수신부(200)는 제1 지점에서 되돌아오는 반사 광을 수신하여 수광 신호를 출력할 수 있다. 또한, 제2 지점을 향해 레이저광이 출력되면, 광 수신부(200)는 제2 지점에서 되돌아오는 반사 광을 수신하여 수광 신호를 출력할 수 있다. 이와 같이, 광 수신부(200)는 연속적인 복수의 지점에서 되돌아 오는 반사 광을 수신하여 각 지점에 대한 수광 신호를 생성할 수 있다.
전류 측정부(210)는 광 수신부(200)에 흐르는 전류를 확인하기 위한 전류 센싱을 수행한다. 전류 측정부(210)는
광 수신부(200)는 외란광(예: 태양광 등)에 노출되는 경우 흐르는 연속 전류(continuous current)가 달라져, 센서 특징(수광 시간 대비 보정값의 그래프)이 달라지게 된다. 이에, 전류 측정부(210)는 광 수신부(200)에 흐르는 연속 전류를 모니터링하여 외란광으로 인해 발생하는 전류를 측정할 수 있다.
전류 측정부(210)는 광 수신부(200)에 수신된 광에 대상체로부터 반사된 반사 광만 포함될 경우 전류 센싱 결과가 기 설정된 정상 범주 내에 포함되나, 수신 광에 대상체로부터 반사된 반사 광과 외란 광이 함께 포함된 경우 전류 센싱 결과가 기 설정된 정상 범주를 벗어나며, 수광 시간 대비 보정값의 그래프의 결과가 쉬프트(Shift)된다.
전류 측정부(210)는 직류-직류 컨버터(DC-DC Converter), 전류 센서(Current Sensor) 및 전류 센싱용 핀 다이오드(PIN Diode) 등을 포함할 수 있으며, 직류-직류 컨버터(DC-DC Converter), 전류 센서 및 전류 센싱용 핀 다이오드(PIN Diode) 중 적어도 하나를 사용하여 광 수신부(200)에서의 연속 전류(Continuous Current)를 측정함으로써, 전류 센싱을 수행할 수 있다.
전류 측정부(210)는 직류-직류 컨버터(DC-DC Converter)를 포함하는 경우, 반사 광을 수광하는 광 수신부(200)에 연결된 직류-직류 컨버터를 이용하여 광 수신부(200)의 연속 전류(Continuous Current)를 측정하여 전류 센싱을 수행한다.
전류 측정부(210)는 광 수신부(200)의 바이어스(Bias)에 직류-직류 컨버터(DC-DC Converter)를 연결하여 전류 센싱을 수행할 수 있다.
한편, 전류 측정부(210)는 전류 센서를 포함하는 경우, 반사 광을 수광하는 광 수신부(200)에 연결된 전류 센서를 이용하여 광 수신부(200)의 연속 전류(Continuous Current)를 측정하여 전류 센싱을 수행한다.
전류 측정부(210)는 병렬로 연결된 저항 및 전류 센서를 광 수신부(200)의 바이어스(Bias)에 연결하여 연속 전류를 실시간으로 모니터링할 수 있다.
한편, 전류 측정부(210)는 전류 센싱용 핀 다이오드(PIN Diode)를 포함하는 경우, 반사 광을 수광하는 광 수신부(200)의 기 설정된 인접 거리 내에 전류 센싱용 핀 다이오드를 배치하고, 전류 센싱용 핀 다이오드에 수광되는 반사 광에 의한 연속 전류(Continuous Current)를 측정하여 전류 센싱을 수행한다.
프로세서(300)는 라이다 센서(10)의 전반적인 제어를 수행한다.
프로세서(300)는 송신 광에 대한 광 송신을 제어하고, 수광 신호를 획득하며, 수광 신호의 분석 결과와 전류 센싱 결과를 기반으로 대상체와의 거리값을 보정하여 거리 측정값을 산출한다.
본 실시예에 따른 프로세서(300)에 대한 자세한 설명은 도 2에 기재하도록 한다.
입력부(400)는 라이다 센서(10)의 동작을 위한 신호 또는 데이터를 입력하거나 획득하는 수단을 의미한다. 입력부(400)는 프로세서(300)와 연동하여 다양한 형태의 신호 또는 데이터를 입력하거나, 외부 장치와 연동하여 직접 데이터를 획득하여 프로세서(300)로 전달할 수도 있다.
출력부(500)는 프로세서(300)와 연동하여 전류 센싱 결과, 지연 오차 보상값, 거리값 보정 결과 등 다양한 정보를 출력 또는 표시할 수 있다. 출력부(500)는 라이다 센서(10), 라이다 센서(10)가 설치된 이동체 등에 구비된 디스플레이(미도시)를 통해 다양한 정보를 표시할 수 있으며, 터치 센싱이 가능한 터치스크린과, 화상을 제공하는 디스플레이 패널 모듈을 포함하도록 구현될 수 있으나, 반드시 이에 한정되는 것은 아니다.
한편, 출력부(500)는 라이다 센서(10)와 연동하는 외주 장치 또는 단말기로 출력 정보를 전달할 수도 있다.
메모리(600)는 프로세서(300)에 의해 실행 가능한 적어도 하나의 명령어 또는 프로그램을 포함한다. 메모리(600)는 송신 광 또는 수신 광 제어 동작, 신호 분석 동작, 전류 측정 동작, 보상값 산출 동작, 거리값 보정 동작 등을 위한 명령어 또는 프로그램을 포함할 수 있다. 메모리(600)는 하드웨어적으로 ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 등과 같은 다양한 저장 기기일 수 있다.
데이터베이스(700)는 데이터베이스 관리 프로그램(DBMS)을 이용하여 컴퓨터 시스템의 저장공간(하드디스크 또는 메모리)에 구현된 일반적인 데이터구조를 의미하는 것으로, 데이터의 검색(추출), 삭제, 편집, 추가 등을 자유롭게 행할 수 있는 데이터 저장형태를 뜻하는 것으로, 오라클(Oracle), 인포믹스(Infomix), 사이베이스(Sybase), DB2와 같은 관계형 데이타베이스 관리 시스템(RDBMS)이나, 겜스톤(Gemston), 오리온(Orion), O2 등과 같은 객체 지향 데이타베이스 관리 시스템(OODBMS) 및 엑셀론(Excelon), 타미노(Tamino), 세카이주(Sekaiju) 등의 XML 전용 데이터베이스(XML Native Database)를 이용하여 본 발명의 일 실시예의 목적에 맞게 구현될 수 있고, 기 설정된 저장 기능의 목표치를 달성하기 위하여 소정의 필드(Field) 또는 엘리먼트들을 가지고 있을 수 있다.
본 실시예에 따른 데이터베이스(700)는 송신 광 또는 수신 광 제어 동작, 신호 분석 동작, 전류 측정 동작, 보상값 산출 동작, 거리값 보정 동작 등과 관련된 데이터를 저장하고, 저장된 데이터를 제공할 수 있다.
데이터베이스(700)에 저장된 데이터는 신호 분석 결과, 전류 센싱 결과, 지연 오차 보상값을 산출하기 위한 수광 시간 및 보상값에 대한 룩업 테이블 등에 대한 데이터일 수 있다.
데이터베이스(700)는 라이다 센서(10) 내에 구현되는 것으로 기재하고 있으나 반드시 이에 한정되는 것은 아니며, 라이다 센서(10)와 연동하는 별도의 데이터 저장장치 또는 데이터 저장 서버 등으로 구현될 수도 있다.
도 2는 본 발명의 실시예에 따른 라이다 센서의 프로세서를 개략적으로 나타낸 블록 구성도이다.
본 실시예에 따른 프로세서(300)는 송신 제어부(310), 수광 신호 획득부(320), 신호 분석부(330), 보상값 산출부(350) 및 거리값 보정부(360)를 포함한다. 도 2의 프로세서(300)는 일 실시예에 따른 것으로서, 도 2에 도시된 모든 블록이 필수 구성요소는 아니며, 다른 실시예에서 프로세서(300)에 포함된 일부 블록이 추가, 변경 또는 삭제될 수 있다.
한편, 프로세서(300)는 컴퓨팅 디바이스로 구현될 수 있고, 프로세서(300)에 포함된 각 구성요소들은 각각 별도의 기능을 수행하는 소프트웨어로 구현되거나, 소프트웨어가 결합된 별도의 하드웨어 장치로 구현될 수 있다.
프로세서(300)는 송신 광에 대한 광 송신을 제어하고, 수광 신호를 획득하며, 수광 신호의 분석 결과와 전류 센싱 결과를 기반으로 대상체와의 거리값을 보정하여 거리 측정값을 산출한다.
송신 제어부(310)는 기 설정된 발광 지속 시간을 기반으로 송신 광에 대한 광 송신을 제어하는 동작을 수행한다. 여기서, 발광 지속 시간은 송신 광을 송신하기 위한 펄스 신호(레이저 펄스)의 온(ON) 상태에서 오프(OFF) 상태까지의 시간을 의미한다.
수광 신호 획득부(320)는 대상체로부터 반사된 반사 광에 대한 수광 신호를 획득하는 동작을 수행한다.
수광 신호 획득부(320)는 광 수신부(200)로부터 전환된 수광 신호를 획득한다.
신호 분석부(330)는 수광 신호를 분석하는 동작을 수행한다.
신호 분석부(330)는 수광 신호의 펄스를 기반으로 비행 시간(ToF: Time of Flight) 및 수광 시간(Tw)를 산출한다.
신호 분석부(330)는 반사 광의 수광 시작 시간에서 송신 광의 광 송신 시작 시간을 뺀 시간 차이값을 비행 시간(ToF)으로 산출한다.
또한, 신호 분석부(330)는 반사 광의 수광 종료 시간에서 반사 광의 수광 시작 시간을 뺀 시간 차이값을 수광 시간(Tw)으로 산출한다.
보상값 산출부(350)는 수광 신호의 분석 결과와 전류 센싱 결과를 기반으로 지연 오차 보상값(COMP)을 산출한다.
보상값 산출부(350)는 외란광으로 인해 변형된 보상 커브를 보상하기 위한 보상 커브 보상 지수(dw)를 산출하고, 보상 커브 보상 지수(dw)과 수광 시간(Tw)을 통해 계산한 수광 시간 조정값(Tw_new)을 이용하여 지연 오차 보상값(COMP)을 산출할 수 있다. 여기서, 보상 커브는 수광 시간(Tw) 대비 지연 오차 보상값(COMP)에 대한 그래프를 의미한다.
보상값 산출부(350)는 전류 센싱 결과에 포함된 전류 센싱값과 외란광이 없을 때의 최소 전류 기준값의 전류 차이값을 계산하여 보상 커브 보상 지수(dw)를 산출할 수 있다.
보상값 산출부(350)는 [수학식 1]를 이용하여 보상 커브 보상 지수(dw)를 산출할 수 있다.
Figure pat00001
(dw: 보상 커브 보상 지수, K: 전류값을 시간 단위으로 치환하기 위한 치환 변수(상수값), Ic_now: 전류 측정부에서 센싱된 전류 센싱값, Ic_min: 외란광이 최소일 때 센싱된 최소 전류 기준값)
보상값 산출부(350)는 수광 시간(Tw)과 보상 커브 보상 지수(dw)를 통해 계산하여 수광 시간 조정값(Tw_new)을 산출할 수 있다. 여기서, 보상값 산출부(350)는 수광 시간(Tw)과 보상 커브 보상 지수(dw)를 합산하여 수광 시간 조정값(Tw_new)을 산출할 수 있으나 반드시 이에 한정되는 것은 아니며, 외란 광에 의한 보상 커브의 쉬프트를 보상하여 수광 시간을 조정할 수 있다면 다양한 계산 방식으로 수광 시간 조정값(Tw_new)을 산출할 수 있다.
보상값 산출부(350)는 기 생성된 수광 시간(Tw) 및 지연 오차 보상값(COMP)에 대한 룩업 테이블에서 수광 시간 조정값에 대응하는 보상값을 추출하여 지연 오차 보상값(COMP)을 산출할 수 있다. 여기서, 룩업 테이블은 조정 가능한 수광 시간(또는 수광 시간 조정값) 각각의 펄스 폭마다 계산된 보상값에 따른 함수 또는 테이블로 표현될 수 있다(도 7 참고).
한편, 보상값 산출부(350)는 룩업 테이블을 이용하여 지연 오차 보상값(COMP)을 산출하는 것으로 기재하고 있으나 반드시 이에 한정되는 것은 아니며, 별도로 저장된 데이터를 이용하여 지연 오차 보상값(COMP)을 산출할 수도 있다.
보상값 산출부(350)는 [수학식 2]를 이용하여 지연 오차 보상값(COMP)을 산출할 수 있다.
Figure pat00002
(Comp(Tw_new): 수광 시간 조정값에 대한 지연 오차 보상값, ToF: 비행 시간(ToF), C: 공기 중의 빛의 속도, d: 실제 거리)
거리값 보정부(360)는 산출된 지연 오차 보상값(COMP)을 적용하여 대상체의 거리값을 보정하여 거리 측정값을 산출한다.
거리값 보정부(360)는 비행 시간(ToF), 광 속도 및 지연 오차 보상값(COMP)을 이용하여 거리값을 보정하여 거리 측정값을 산출한다.
거리값 보정부(360)는 [수학식 3]을 이용하여 거리값을 보정한 거리 측정값을 산출할 수 있다.
Figure pat00003
(Range: 거리 측정값, ToFr: r 시점의 비행 시간(ToF), C: 공기 중의 빛의 속도, Comp(Tw_new): 수광 시간 조정값에 대한 지연 오차 보상값)
도 3은 본 발명의 실시예에 따른 라이다 센서의 제어 방법을 설명하기 위한 순서도이다.
라이다 센서(10)는 기 설정된 발광 지속 시간으로 송신 광을 제어하여 광 송신을 수행한다(S310).
라이다 센서(10)는 대상체로부터 반사된 반사 광을 수광한다(S320).
라이다 센서(10)는 수광된 반사 광에 대한 수광 신호를 획득하고(S330), 수광 신호를 분석하여 비행 시간(ToF) 및 수광 시간(Tw)를 산출한다(S340).
한편, 라이다 센서(10)는 단계 S320에서 수광된 반사 광에 대한 전류 센싱을 수행한다(S350). 여기서, 수광된 반사 광에는 외란 광이 포함되어 있을 수 있다.
라이다 센서(10)는 외란광에 의한 보상 커브 보상을 위한 보상 커브 보상 지수(dw)를 산출한다(S360).
라이다 센서(10)는 보상 커브 보상 지수(dw)과 수광 시간(Tw)을 통해 계산한 수광 시간 조정값을 이용하여 지연 오차 보상값(COMP)을 산출한다(S370).
라이다 센서(10)는 산출된 지연 오차 보상값(COMP)을 적용하여 대상체의 거리값을 보정하여 거리 측정값을 산출한다(S380).
도 3에서는 각 단계를 순차적으로 실행하는 것으로 기재하고 있으나, 반드시 이에 한정되는 것은 아니다. 다시 말해, 도 3에 기재된 단계를 변경하여 실행하거나 하나 이상의 단계를 병렬적으로 실행하는 것으로 적용 가능할 것이므로, 도 3은 시계열적인 순서로 한정되는 것은 아니다.
도 3에 기재된 본 실시예에 따른 라이다 센서의 제어 방법은 애플리케이션(또는 프로그램)으로 구현되고 단말장치(또는 컴퓨터)로 읽을 수 있는 기록매체에 기록될 수 있다. 본 실시예에 따른 라이다 센서의 제어 방법을 구현하기 위한 애플리케이션(또는 프로그램)이 기록되고 단말장치(또는 컴퓨터)가 읽을 수 있는 기록매체는 컴퓨팅 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치 또는 매체를 포함한다.
도 4는 본 발명의 실시예에 따른 외란광에 따른 라이다 센서의 수광 시간 및 보상값의 변화를 나타낸 그래프이다.
라이다 센서(10)는 광 수신부(200)가 외란 광(태양광)에 노출된 경우, 연속 전류가 발생하게 된다. 즉, 외란 광 노출이 증가하게 되면, 연속 전류로 인해 전류 센싱값이 증가하게 된다.
도 4의 보상 커브 그래프를 참고하면, 외란 광의 노출로 인해 전류 센싱값이 증가하면, 수광 시간(Tw) 대비 지연 오차 보상값(COMP)에 대한 보상 커브가 f1 -> f2 -> f3 -> f4 와 같이 쉬프트(Shift) 변형이 발생하게 된다.
이에, 본 발명은 실시간으로 상시 전류 센싱(모니터링)을 수행하여 전류를 측정하고, 전류 측정 결과를 이용하여 f4을 f1로 쉬프트 보상하여 지연 오차 보상값(COMP)을 산출할 수 있다.
도 5 및 도 6은 본 발명의 실시예에 따른 라이다 센서의 거리값 보정을 위한 전류 측정부를 나타낸 예시도이다.
라이다 센서(10)의 전류 측정부(210)는 직류-직류 컨버터(DC-DC Converter), 전류 센서(Current Sensor) 및 전류 센싱용 핀 다이오드(PIN Diode) 등을 포함할 수 있으며, 직류-직류 컨버터(DC-DC Converter), 전류 센서 및 전류 센싱용 핀 다이오드(PIN Diode) 중 적어도 하나를 사용하여 광 수신부(200)에서의 연속 전류(Continuous Current)를 측정함으로써, 전류 센싱을 수행할 수 있다.
도 5의 (a)와 같이, 전류 측정부(210)는 직류-직류 컨버터(210a)를 포함하는 경우, 반사 광을 수광하는 광 수신부(200)에 연결된 직류-직류 컨버터(210a)를 이용하여 광 수신부(200)의 연속 전류(Continuous Current)를 측정하여 전류 센싱을 수행한다.
전류 측정부(210)는 광 수신부(200)의 바이어스(Bias)에 직류-직류 컨버터(210a)를 연결하여 전류 센싱을 수행할 수 있다.
도 5의 (b)와 같이, 전류 측정부(210)는 전류 센서(210b)를 포함하는 경우, 반사 광을 수광하는 광 수신부(200)에 연결된 전류 센서(210b)를 이용하여 광 수신부(200)의 연속 전류(Continuous Current)를 측정하여 전류 센싱을 수행한다.
전류 측정부(210)는 병렬로 연결된 저항 및 전류 센서(210b)를 광 수신부(200)의 바이어스(Bias)에 연결하여 연속 전류를 실시간으로 모니터링할 수 있다.
도 6의 (a) 및 (b)와 같이, 전류 측정부(210)는 전류 센싱용 핀 다이오드(210c)를 포함하는 경우, 반사 광을 수광하는 광 수신부(200)의 기 설정된 인접 거리 내에 전류 센싱용 핀 다이오드(210c)를 배치하고, 전류 센싱용 핀 다이오드(210c)에 수광되는 반사 광에 의한 연속 전류(Continuous Current)를 측정하여 전류 센싱을 수행한다.
도 8은 본 발명의 실시예에 따른 외란광 노출 시 스캐닝 결과를 나타낸 도면이다.
도 8의 (a) 및 (b)는 외란광(태양광)에 따른 거리 측정값 보상의 예를 나타낸다. 상술한 내용과 같이 (수광량에 따른 적응적 발광/수광 제어가 없을 때) 비행 시간(ToF)을 수광 시간(수광량) 대비 보정을 수행하여야 한다.
수광 시간(수광량)에 따라 광 수신부의 측정 민감도가 달라지기 때문에, 외란 광에 노출 시 광 수신부에는 전류가 흐르며, 다른 특성을 가진 센서가 된다. 이렇게 되면 보상값을 적용해도 거리 측정에 왜곡이 대거 생기게 된다(도 8의 (b) 참고).
도 9는 본 발명의 실시예에 따른 라이다 센서를 포함하는 이동체를 개략적으로 나타낸 블록 구성도이다.
도 9에 도시된 바와 같이, 이동체(1)는 대상 물체 인식장치(11) 및 이동 장치(13)를 포함한다. 이동체(1)는 도 9에서 예시적으로 도시한 다양한 구성요소들 중에서 일부 구성요소를 생략하거나 다른 구성요소를 추가로 포함할 수 있다. 예컨대, 이동체는 청소 모듈을 추가로 포함할 수 있다.
본 실시예에 따른 이동체(1)는 대상체에 조사된 레이저광이 반사된 수광 신호를 기반으로 전류 센싱, 거리값 보정 등을 수행하여 대상체의 위치 정보를 산출하는 대상 물체 인식장치(11)와 대상 물체의 위치를 기반으로 이동체(1)를 이동시키는 이동 장치(13)를 포함한다.
이동체(1)에 포함된 이동 장치(13)는 미리 정의된 방식에 따라 특정 위치에서 다른 위치로 이동 가능하도록 설계된 장치를 의미하며, 모터, 바퀴, 레일, 보행용 다리, 날개, 멀티로터 등과 같은 이동 수단을 이용하여, 특정 위치에서 다른 위치로 이동할 수 있다.
이동체(1)는 대상 물체 인식장치(11)를 이용하여 외부의 정보를 수집한 후 수집된 정보에 따라서 이동할 수도 있고, 사용자에 의해 별도의 조작 수단을 이용하여 이동할 수 있다. 이동체(1)의 일례로는 로봇 청소기, 장난감 자동차, 산업용 또는 군사용 목적 등으로 이용 가능한 이동 로봇 등이 있을 수 있다.
로봇 청소기는 청소 공간을 주행하면서 바닥에 쌓인 먼지 등의 이물질을 흡입함으로써 청소 공간을 자동으로 청소하는 장치이다. 일반적인 청소기가 사용자에 의한 외력으로 이동하는 것과 달리, 로봇 청소기는 외부의 정보 또는 미리 정의된 이동 패턴을 이용하여 이동하면서 청소 공간을 청소한다.
로봇 청소기는 미리 정의된 패턴을 이용하여 자동적으로 이동하거나, 또는 감지 센서에 의해 외부의 장애물을 감지한 후, 감지된 바에 따라 이동할 수도 있고, 사용자에 의해 조작되는 원격 제어 장치로부터 전달되는 신호에 따라 이동 가능하다.
대상 물체 인식장치(11)의 감지 센서는 라이다(LIDAR: LIght Detection And Ranging)로 구현될 수 있다. 라이다는 레이저광를 조사하고, 반사되어 돌아오는 반사신호의 시간 및 세기를 측정하고, 빛의 속도를 이용하여 반사체의 거리 및 표면 정보를 측정하는 장치이다. 반사신호는 포토 다이오드를 통하여 전기적인 신호로 변경되며, 기 설정된 파장 대역을 가질 수 있다.
도 10은 본 발명의 실시예에 따른 이동체의 거리 측정 동작을 설명하기 위한 예시도이다.
도 10를 참조하면, 이동체(1)에서 대상 물체 인식장치(11)가 이동 장치(13)의 본체의 상단부에 위치하고 있으나, 이는 예시일 뿐이며 이에 한정되는 것은 아니고 구현되는 설계에 따라 적합한 위치에서 하나 이상으로 구현될 수 있다.
대상 물체 인식장치(11)는 한 쌍의 광원 및 광 다이오드를 이용하여 광을 송수신하며, 이동성 거울 및 회전체를 이용하여 주변을 3 차원 스캐닝한다. 여기서, 송신 광 및 수신 광이 송수신되는 경로는 서로 다른 경로로 형성될 수 있으며, 광 경로의 개폐를 통해 일부 경로는 공유될 수도 있다.
대상 물체 인식장치(11)는 타임 오브 플라이트(ToF: Time of Flight) 방식으로 동작할 수 있다. 타임 오브 플라이트 방식은 레이저가 펄스 또는 구형파 신호를 방출하여 측정 범위 내에 있는 물체들로부터의 반사 펄스 또는 구형파 신호들이 수신기에 도착하는 시간을 측정함으로써, 측정 대상(300)과 대상 물체 인식장치(11) 사이의 거리를 측정한다.
이동 장치(13)는 대상체(15)까지의 거리를 기반으로 주행 경로를 산출하거나 장애물을 검출하여 이동체(1)를 이동시킨다. 이동 장치(13)는 인공 표식의 상대 위치를 기반으로 이동체(1)를 이동시킬 수 있다.
이상의 설명은 본 발명의 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명의 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명의 실시예들은 본 발명의 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
10: 라이다 센서 100: 광 송신부
200: 광 수신부 210: 전류 측정부
300: 프로세서 400: 입력부
500: 출력부 600: 메모리
700: 데이터베이스
310: 송신 제어부 320: 수광 신호 획득부
330: 신호 분석부 350: 보상값 산출부
360: 거리값 보정부

Claims (15)

  1. 외란광을 고려하여 보정을 수행하는 라이다 센서에 있어서,
    송신 광을 발광하는 광 송신부;
    상기 송신 광이 대상체로부터 반사된 반사 광을 수광하여 전기적 신호인 수광 신호로 변환하는 광 수신부;
    상기 광 수신부에 흐르는 전류를 확인하기 위한 전류 센싱을 수행하는 전류 측정부; 및
    상기 송신 광에 대한 광 송신을 제어하고, 상기 수광 신호를 획득하며, 상기 수광 신호의 분석 결과와 상기 전류 센싱 결과를 기반으로 대상체와의 거리값을 보정하여 거리 측정값을 산출하는 프로세서
    를 포함하는 것을 특징으로 하는 라이다 센서.
  2. 제1항에 있어서,
    상기 프로세서는,
    기 설정된 발광 지속 시간으로 상기 송신 광에 대한 광 송신을 제어하는 송신 제어부;
    상기 대상체로부터 반사된 반사 광에 대한 상기 수광 신호를 획득하는 수광 신호 획득부;
    상기 수광 신호를 분석하여 비행 시간(ToF: Time of Flight) 및 수광 시간(Tw)를 산출하는 신호 분석부;
    상기 수광 신호의 분석 결과와 상기 전류 센싱 결과를 기반으로 지연 오차 보상값(COMP)을 산출하는 보상값 산출부; 및
    상기 지연 오차 보상값(COMP)을 적용하여 상기 대상체의 거리값을 보정하여 거리 측정값을 산출하는 거리값 보정부
    를 포함하는 것을 특징으로 하는 라이다 센서.
  3. 제2항에 있어서,
    상기 보상값 산출부는,
    외란광으로 인해 변형된 보상 커브를 보상하기 위한 보상 커브 보상 지수(dw)를 산출하고, 상기 보상 커브 보상 지수(dw)과 수광 시간(Tw)을 통해 계산한 수광 시간 조정값을 이용하여 상기 지연 오차 보상값(COMP)을 산출하는 것을 특징으로 하는 라이다 센서.
  4. 제3항에 있어서,
    상기 보상값 산출부는,
    상기 전류 센싱 결과에 포함된 전류 센싱값과 외란광이 없을 때의 최소 전류 기준값의 전류 차이값을 계산하여 상기 보상 커브 보상 지수(dw)를 산출하는 것을 특징으로 하는 라이다 센서.
  5. 제3항에 있어서,
    상기 보상값 산출부는,
    기 생성된 수광 시간 및 보상값에 대한 룩업 테이블에서 상기 수광 시간 조정값에 대응하는 보상값을 추출하여 상기 지연 오차 보상값(COMP)을 산출하는 것을 특징으로 하는 라이다 센서.
  6. 제3항에 있어서,
    상기 거리값 보정부는,
    상기 비행 시간(ToF), 광 속도 및 상기 지연 오차 보상값(COMP)을 이용하여 상기 거리값을 보정하여 상기 거리 측정값을 산출하는 것을 특징으로 하는 라이다 센서.
  7. 제1항에 있어서,
    상기 전류 측정부는,
    직류-직류 컨버터(DC-DC Converter)를 포함하며,
    상기 반사 광을 수광하는 상기 광 수신부에 연결된 상기 직류-직류 컨버터를 이용하여 상기 광 수신부의 연속 전류(Continuous Current)를 측정하여 상기 전류 센싱을 수행하는 것을 특징으로 하는 라이다 센서.
  8. 제1항에 있어서,
    상기 전류 측정부는,
    전류 센서를 포함하며,
    상기 반사 광을 수광하는 상기 광 수신부에 연결된 상기 전류 센서를 이용하여 상기 광 수신부의 연속 전류(Continuous Current)를 측정하여 상기 전류 센싱을 수행하는 것을 특징으로 하는 라이다 센서.
  9. 제1항에 있어서,
    상기 전류 측정부는,
    전류 센싱용 핀 다이오드(PIN Diode)를 포함하며,
    상기 반사 광을 수광하는 상기 광 수신부의 기 설정된 인접 거리 내에 상기 전류 센싱용 핀 다이오드를 배치하여, 상기 전류 센싱용 핀 다이오드로 수광되는 반사 광에 대한 연속 전류(Continuous Current)를 측정하여 상기 전류 센싱을 수행하는 것을 특징으로 하는 라이다 센서.
  10. 라이다 센서에서, 외란광을 고려하여 보정을 수행하는 라이다 센서 제어 방법에 있어서,
    송신 광을 발광하는 광 송신 단계;
    상기 송신 광이 대상체로부터 반사된 반사 광을 수광하여 전기적 신호인 수광 신호로 변환하는 광 수신 단계;
    상기 광 수신 단계에서 흐르는 전류를 확인하기 위한 전류 센싱을 수행하는 전류 측정 단계; 및
    상기 송신 광에 대한 광 송신을 제어하고, 상기 수광 신호를 획득하며, 상기 수광 신호의 분석 결과와 상기 전류 센싱 결과를 기반으로 대상체와의 거리값을 보정하여 거리 측정값을 산출하는 제어 단계
    를 포함하는 것을 특징으로 하는 라이다 센서 제어 방법.
  11. 제10항에 있어서,
    상기 제어 단계는,
    기 설정된 발광 지속 시간으로 상기 송신 광에 대한 광 송신을 제어하는 송신 제어 단계;
    상기 대상체로부터 반사된 반사 광에 대한 상기 수광 신호를 획득하는 수광 신호 획득 단계;
    상기 수광 신호를 분석하여 비행 시간(ToF: Time of Flight) 및 수광 시간(Tw)를 산출하는 신호 분석 단계;
    상기 수광 신호의 분석 결과와 상기 전류 센싱 결과를 기반으로 지연 오차 보상값(COMP)을 산출하는 보상값 산출 단계; 및
    상기 지연 오차 보상값(COMP)을 적용하여 상기 대상체의 거리값을 보정하여 거리 측정값을 산출하는 거리값 보정 단계
    를 포함하는 것을 특징으로 하는 라이다 센서 제어 방법.
  12. 제11항에 있어서,
    상기 보상값 산출 단계는,
    외란광으로 인해 변형된 보상 커브를 보상하기 위한 보상 커브 보상 지수(dw)를 산출하고, 상기 보상 커브 보상 지수(dw)과 수광 시간(Tw)을 통해 계산한 수광 시간 조정값을 이용하여 상기 지연 오차 보상값(COMP)을 산출하는 것을 특징으로 하는 라이다 센서 제어 방법.
  13. 제12항에 있어서,
    상기 거리값 보정부는,
    상기 비행 시간(ToF), 광 속도 및 상기 지연 오차 보상값(COMP)을 이용하여 상기 거리값을 보정하여 상기 거리 측정값을 산출하는 것을 특징으로 하는 라이다 센서 제어 방법.
  14. 제10항에 있어서,
    상기 전류 측정 단계는,
    직류-직류 컨버터(DC-DC Converter), 전류 센서 및 전류 센싱용 핀 다이오드(PIN Diode) 중 적어도 하나를 사용하여 상기 광 수신 단계에서의 연속 전류(Continuous Current)를 측정함으로써, 상기 전류 센싱을 수행하는 것을 특징으로 하는 라이다 센서 제어 방법.
  15. 이동체에 있어서,
    송신 광을 송신하고, 대상체로부터 반사된 반사 광을 수광하는 광 수신부에 대한 전류 센싱을 수행하여 산출된 지연 오차 보상값을 기반으로 대상체와의 거리값을 보정하여 거리 측정값을 산출하는 라이다 센서; 및
    상기 거리 측정값을 기반으로 상기 이동체를 이동시키는 이동 장치를 포함하며,
    상기 라이다 센서는, 송신 광에 대한 광 송신을 제어하고, 상기 수광 신호를 획득하며, 상기 수광 신호의 분석 결과와 상기 광 수신부에 흐르는 전류를 확인하기 위한 전류 센싱을 수행한 상기 전류 센싱 결과를 기반으로 대상체와의 거리값을 보정하여 거리 측정값을 산출하는 프로세서를 포함하는 것을 특징으로 하는 이동체.
KR1020220122697A 2021-09-27 2022-09-27 외란광을 고려하여 거리 측정을 수행하는 라이다 센서 및 그 제어 방법 KR20230044974A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/014487 WO2023048549A1 (ko) 2021-09-27 2022-09-27 라이다 센서 및 그 제어 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210127260 2021-09-27
KR1020210127260 2021-09-27

Publications (1)

Publication Number Publication Date
KR20230044974A true KR20230044974A (ko) 2023-04-04

Family

ID=85928445

Family Applications (5)

Application Number Title Priority Date Filing Date
KR1020220119632A KR20230044948A (ko) 2021-09-27 2022-09-21 단차와 빛반사율을 이용하여 수평 각도를 측정하는 라이다 센서
KR1020220119631A KR20230044947A (ko) 2021-09-27 2022-09-21 전자 방해 잡음 및 빛샘을 차폐하여 노이즈를 제거하는 라이다 센서
KR1020220119630A KR20230044946A (ko) 2021-09-27 2022-09-21 송수광 시 노이즈 광을 최소화하는 라이다 센서
KR1020220122697A KR20230044974A (ko) 2021-09-27 2022-09-27 외란광을 고려하여 거리 측정을 수행하는 라이다 센서 및 그 제어 방법
KR1020220122696A KR20230044973A (ko) 2021-09-27 2022-09-27 송신 광 조정 기반 라이다 센서 및 그 제어 방법

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020220119632A KR20230044948A (ko) 2021-09-27 2022-09-21 단차와 빛반사율을 이용하여 수평 각도를 측정하는 라이다 센서
KR1020220119631A KR20230044947A (ko) 2021-09-27 2022-09-21 전자 방해 잡음 및 빛샘을 차폐하여 노이즈를 제거하는 라이다 센서
KR1020220119630A KR20230044946A (ko) 2021-09-27 2022-09-21 송수광 시 노이즈 광을 최소화하는 라이다 센서

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020220122696A KR20230044973A (ko) 2021-09-27 2022-09-27 송신 광 조정 기반 라이다 센서 및 그 제어 방법

Country Status (1)

Country Link
KR (5) KR20230044948A (ko)

Also Published As

Publication number Publication date
KR20230044946A (ko) 2023-04-04
KR20230044973A (ko) 2023-04-04
KR20230044947A (ko) 2023-04-04
KR20230044948A (ko) 2023-04-04

Similar Documents

Publication Publication Date Title
CA2657677C (en) Optical distance measuring method and corresponding optical distance measurement device
US9635351B2 (en) Integrated reference pixel
CN108957470B (zh) 飞行时间测距传感器及其测距方法
US20140300887A1 (en) Optical distance measuring apparatus
CN111685634A (zh) 一种升降电梯梯门开闭控制方法
US10223793B1 (en) Laser distance measuring method and system
US20220381909A1 (en) 3d lidar based target object recognizing method, apparatus, and mobile object using the same
KR102664396B1 (ko) 라이다 장치 및 그 동작 방법
JP2020020612A (ja) 測距装置、測距方法、プログラム、移動体
JP2023011556A (ja) 劣化したlidar範囲測定精度を検出するための方法およびシステム
KR100845528B1 (ko) 이방성 초음파센서를 이용한 이동로봇의 주행 중 장애물회피와 자동충전을 위한 접속장치 및 방법
KR20230044974A (ko) 외란광을 고려하여 거리 측정을 수행하는 라이다 센서 및 그 제어 방법
WO2020195333A1 (ja) 距離計測回路、測距装置および移動体
KR102163664B1 (ko) 라이다 감지거리 증가 장치 및 방법
KR20160138707A (ko) 검출정확도를 높인 차량데이터 검출 시스템
KR102035019B1 (ko) 거리 측정 장치, 시간 디지털 변환기, 및 이동체
US20220155442A1 (en) Light detection device, lidar device including the same, and method of measuring distance
KR101981038B1 (ko) 거리 측정 장치, 신호 판별기, 및 이동체
CN105242277A (zh) 一种带背景抑制的立体区域测距传感器
CN215375766U (zh) 一种激光雷达温度补偿系统
US20240085537A1 (en) Lidar device and operating method thereof
KR102653633B1 (ko) 무인 반송차 및 무인 반송차의 이동을 제어하기 위한 방법
KR20130040029A (ko) 측정 대상 물체에 대한 거리를 측정하는 방법 및 장치
US9972098B1 (en) Remote distance estimation system and method
KR102018158B1 (ko) 거리 측정 장치, 광 송수신기, 및 이동체