KR20230037040A - Thick plate for high-strength container with excellent core toughness and manufacturing method - Google Patents

Thick plate for high-strength container with excellent core toughness and manufacturing method Download PDF

Info

Publication number
KR20230037040A
KR20230037040A KR1020237004339A KR20237004339A KR20230037040A KR 20230037040 A KR20230037040 A KR 20230037040A KR 1020237004339 A KR1020237004339 A KR 1020237004339A KR 20237004339 A KR20237004339 A KR 20237004339A KR 20230037040 A KR20230037040 A KR 20230037040A
Authority
KR
South Korea
Prior art keywords
rolling
thick plate
strength
furnace
temperature
Prior art date
Application number
KR1020237004339A
Other languages
Korean (ko)
Inventor
장롱 씨에
쥔핑 우
리엔윈 시
레이 팡
칭춘 리
Original Assignee
난징 아이론 앤드 스틸 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 난징 아이론 앤드 스틸 컴퍼니 리미티드 filed Critical 난징 아이론 앤드 스틸 컴퍼니 리미티드
Publication of KR20230037040A publication Critical patent/KR20230037040A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Abstract

우량한 코어부 인성(toughness)을 구비한 고강도 용기용 후판(厚板) 및 제조방법은 강철생산 기술분야에 관한 것으로, 이의 화학성분 및 질량백분율은 아래와 같이, C: 0.08% ~ 0.12%이고, Si: 0.10% ~ 0.30%이고, Mn: 1.10% ~ 1.50%이고, Ni: 0.50% ~ 0.80%이고, Mo: 0.08% ~ 0.15%이고, V: 0.03% ~ 0.06%이고, P≤0.006%이고, S≤0.002%이며, 나머지는 Fe와 불가피한 불순물이다. 최대 두께가 80mm에 달하여 -70℃조건에서 사용되는 고강도 저온 용기판의 수요를 만족시키고, 1/4 두께 코어부 -70℃ KV2값≥150J이고, 항복 강도(yield strength)≥420MPa이고, 인장 강도≥560MPa으로서, 대형 저온 구형 탱크 또는 저장 탱크를 건조하는 데 사용할 수 있다.A thick plate for a high-strength container having excellent core toughness and a manufacturing method relate to the field of steel production technology, and its chemical composition and mass percentage are as follows: C: 0.08% to 0.12%, and Si : 0.10% to 0.30%, Mn: 1.10% to 1.50%, Ni: 0.50% to 0.80%, Mo: 0.08% to 0.15%, V: 0.03% to 0.06%, P≤0.006%, S≤0.002%, the remainder being Fe and unavoidable impurities. The maximum thickness reaches 80mm to meet the demand for high-strength low-temperature container board used in -70℃ conditions, 1/4 thickness core part -70℃ KV 2 value ≥ 150J, yield strength ≥ 420MPa, tensile strength With strength≥560MPa, it can be used to dry large low-temperature spherical tanks or storage tanks.

Description

우량한 코어부 인성을 구비한 고강도 용기용 후판(厚板) 및 제조방법Thick plate for high-strength container with excellent core toughness and manufacturing method

본 발명은 강철생산 기술분야에 관한 것으로, 특히, 우량한 코어부 인성(toughness)을 구비한 고강도 용기용 후판(厚板) 및 제조방법에 관한 것이다.The present invention relates to the field of steel production technology, and in particular, to a high-strength container plate having excellent core toughness and a manufacturing method.

화학공업의 저온 구형 탱크 등 설비가 대용적화로 발전함에 따라, 저온 용기용 강판의 두께에 대한 요구도 점차적으로 증가하고 있으며, 대형 저온 에틸렌 구형 탱크를 건조할 경우, 강판은 두께방향 성능의 균일성을 향상시켜 설비의 안전성을 보장하기 위해 통상적으로 두께가 두꺼운 강판의 코어부 충격 성능도 기술 지표 요구에 도달할 것을 요구한다. 판 두께가 증가됨에 따라, 두께가 동일한 블랭크재를 이용해 생산할 경우에는 압연 압축비가 감소되며, 노멀라이징(normalizing)+템퍼링(tempering) 처리를 이용한 후에는 코어부의 충격 성능을 보장하기가 매우 어렵고 코어부 인성(toughness)의 안정성도 떨어지며, 담금질(quenching)+템퍼링을 이용할 경우에는 코어부의 냉각 속도가 향상되고 코어부 조직을 세분화하여 코어부의 인성을 보장할 수 있다.As facilities such as low-temperature spherical tanks in the chemical industry develop with large capacity, the demand for the thickness of steel plates for low-temperature containers is gradually increasing. In order to improve the safety of the equipment, it is usually required that the impact performance of the core part of thick steel plate also meet the technical index requirements. As the plate thickness increases, the rolling compression ratio decreases when producing blanks of the same thickness, and after using the normalizing + tempering treatment, it is very difficult to guarantee the impact performance of the core part and the toughness of the core part The stability of the toughness is also reduced, and when quenching + tempering is used, the cooling rate of the core part is improved and the toughness of the core part can be guaranteed by subdividing the structure of the core part.

중국 국내에서 저온 구형 탱크에 사용되는 두께가 두꺼운 강판은 통상적으로 09MnNiDR강을 사용하고 사용 온도가 -70℃에 도달할 수 있지만, 이의 항복 강도(yield strength)와 인장 강도가 낮은 편이라, 60mm이상의 후판(厚板)을 표준화로 생산 완료하는 데 요구하는 값이 260MPa 및 420MPa에 불과하다. 저온 코어부의 인성을 보장하는 전제 하에 강판의 강도를 대폭 향상시킬 경우, 판 두께를 증가시키지 않거나 소폭 증가시키는 상황에서 저온 구형 탱크 등 용기의 용적을 대폭 증가시킬 수 있다.Thick steel plates used in low-temperature spherical tanks in China are usually 09MnNiDR steel, and the working temperature can reach -70 ° C, but their yield strength and tensile strength are low, so thick plates of 60 mm or more are used. The values required to complete the production of thick plates with standardization are only 260MPa and 420MPa. If the strength of the steel sheet is greatly improved under the premise of ensuring the toughness of the low-temperature core, the volume of a container such as a low-temperature spherical tank can be greatly increased without increasing the thickness of the sheet or by slightly increasing it.

공개번호 CN104911319B인 중국 발명 특허가 창출한 저온 구형 탱크 용기용 강판 및 이의 생산방법은 Nb 미량 합금화를 이용해 2단계 제어 압연, 담금질+템퍼링 또는 노멀라이징+담금질+템퍼링 공정의 열처리를 진행하여, 1/2 두께의 충격이 -70℃에서의 사용을 만족시킬 수 있지만, 이의 후판은 항복 강도가 약 400MPa이고, 인장 강도 또한 560MPa 미만이다.The steel sheet for low-temperature spherical tank containers and its production method created by Chinese invention patent Publication No. CN104911319B is a two-step control rolling using Nb trace alloying, quenching + tempering, or normalizing + quenching + tempering heat treatment, 1/2 Although the impact of the thickness can satisfy the use at -70 ° C, the thick plate thereof has a yield strength of about 400 MPa and a tensile strength of less than 560 MPa.

정리하면, 종래기술에서 두께>50mm인 강판이 -70℃의 사용온도와 항복 강도≥420MPa 및 인장 강도≥560MPa를 동시에 만족시키는 저온 용기용 강은 아직 보도되지 않았다.In summary, in the prior art, steel for low-temperature containers in which a steel sheet having a thickness of > 50 mm simultaneously satisfies a service temperature of -70 ° C, yield strength ≥ 420 MPa and tensile strength ≥ 560 MPa has not yet been reported.

본 발명은 상기 기술문제를 해결하기 위하여, 우량한 코어부 인성을 구비한 고강도 용기용 후판(厚板) 및 제조방법을 제공한다. In order to solve the above technical problem, the present invention provides a thick plate for a high-strength container having excellent core toughness and a manufacturing method.

상기 기술문제를 해결하기 위하여 본 발명은 우량한 코어부 인성(toughness)을 구비한 고강도 용기용 후판(厚板)을 제공하며, 이의 화학성분 및 질량백분율은 아래와 같이, C: 0.08% ~ 0.12%이고, Si: 0.10% ~ 0.30%이고, Mn: 1.10% ~ 1.50%이고, Ni: 0.50% ~ 0.80%이고, Mo: 0.08% ~ 0.15%이고, V: 0.03% ~ 0.06%이고, P≤0.006%이고, S≤0.002%이며, 나머지는 Fe와 불가피한 불순물이다.In order to solve the above technical problem, the present invention provides a thick plate for a high-strength container having excellent toughness of the core part, and its chemical composition and mass percentage are as follows, C: 0.08% to 0.12% , Si: 0.10% to 0.30%, Mn: 1.10% to 1.50%, Ni: 0.50% to 0.80%, Mo: 0.08% to 0.15%, V: 0.03% to 0.06%, P≤0.006% , and S≤0.002%, the remainder being Fe and unavoidable impurities.

기술효과에 있어서, 본 발명의 제품은 전체 두께의 저온 충격 인성이 -70℃의 사용 요구를 만족시키고, 종래기술에 따른 0.5Ni 저온강을 기초로 항복 강도(yield strength)와 인장 강도를 대폭 향상시켜 재료 성능을 업그레이드시킨다.In terms of technical effect, the product of the present invention satisfies the use requirements of -70 ° C in low temperature impact toughness of the entire thickness, and significantly improves yield strength and tensile strength based on 0.5Ni low temperature steel according to the prior art. to improve material performance.

본 발명이 진일보로 한정한 기술방안은 아래와 같다.The technical solutions limited to the further steps of the present invention are as follows.

상술한 바와 같이, 우량한 코어부 인성을 구비한 고강도 용기용 후판에 있어서, 이의 화학성분 및 질량백분율은 아래와 같이, C: 0.08% ~ 0.09%이고, Si: 0.10% ~ 0.21%이고, Mn: 1.10% ~ 1.45%이고, Ni: 0.50% ~ 0.62%이고, Mo: 0.08% ~ 0.10%이고, V: 0.03% ~ 0.037%이고, P≤0.006%이고, S≤0.0005%이며, 나머지는 Fe와 불가피한 불순물이다.As described above, in the thick plate for a high-strength container having excellent core toughness, its chemical composition and mass percentage are as follows: C: 0.08% to 0.09%, Si: 0.10% to 0.21%, Mn: 1.10 % ~ 1.45%, Ni: 0.50% ~ 0.62%, Mo: 0.08% ~ 0.10%, V: 0.03% ~ 0.037%, P≤0.006%, S≤0.0005%, the rest is Fe and unavoidable is an impurity

상술한 바와 같이, 우량한 코어부 인성을 구비한 고강도 용기용 후판에 있어서, 이의 화학성분 및 질량백분율은 아래와 같이, C: 0.10% ~ 0.11%이고, Si: 0.14% ~ 0.20%이고, Mn: 1.18% ~ 1.37%이고, Ni: 0.50% ~ 0.74%이고, Mo: 0.096% ~ 0.12%이고, V: 0.039% ~ 0.047%이고, P≤0.005%이고, S≤0.001%이며, 나머지는 Fe와 불가피한 불순물이다.As described above, in the thick plate for a high-strength container having excellent core toughness, its chemical composition and mass percentage are as follows: C: 0.10% to 0.11%, Si: 0.14% to 0.20%, Mn: 1.18 % ~ 1.37%, Ni: 0.50% ~ 0.74%, Mo: 0.096% ~ 0.12%, V: 0.039% ~ 0.047%, P≤0.005%, S≤0.001%, the rest is Fe and unavoidable is an impurity

상술한 바와 같이, 우량한 코어부 인성을 구비한 고강도 용기용 후판에 있어서, 강판의 두께는 50 내지 80mm이다.As described above, in the thick plate for a high-strength container having excellent core toughness, the thickness of the steel plate is 50 to 80 mm.

본 발명의 다른 목적은, 우량 코어부 인성을 구비한 고강도 용기용 후판의 제조방법을 제공하는 데 있으며, 이는 아래의 단계를 포함한다.Another object of the present invention is to provide a method for manufacturing a thick plate for a high-strength container having excellent core toughness, which includes the following steps.

제강 연속 주조 단계: 쇳물을 미리 처리하고, 회전로의 꼭대기 및 바닥에 복합 취입하여 제련하고, LF+RH 정련하고, 성분의 설계 요구에 근거해 성분 제어를 진행하고, 연속 주조과정은 전자기를 이용해 교반하고, 생산된 블랭크재는 두께가 260mm이며;Steelmaking continuous casting stage: molten metal is pre-treated, smelting is performed by complex blowing at the top and bottom of the rotary furnace, LF+RH refining, component control is carried out according to the design requirements of the component, and the continuous casting process uses electromagnetic Stirring, the blank produced is 260mm thick;

슬라브(slab) 가열 단계: 슬라브를 1150 내지 1180℃로 가열하고, 슬라브의 로(爐) 제련 총 시간≥240min이고, 균열(soaking)구간 보온시간은 30 내지 60min이고, 전체 슬라브 온도 균일성≤10℃이며;Slab heating step: the slab is heated to 1150 to 1180 ° C, the total furnace smelting time of the slab is ≥ 240 min, the soaking section warming time is 30 to 60 min, and the total slab temperature uniformity ≤ 10 °C;

압연 및 냉각 제어 단계: 슬라브는 로에서 꺼낸 후에 고압수를 이용하여 디스케일링(descaling)을 실시하고, 디스케일링 수압≥18MPa이고, 2단계 제어 압연을 이용하고, 제1 단계는 오스테나이트(austenite) 재결정구역에서 압연하고, 제2 단계는 오스테나이트 비재결정구역(austenite non-recrystallization region)에서 정밀 압연을 진행하고, 압연한 후에 냉각을 제어하며;Rolling and cooling control step: After the slab is taken out of the furnace, descaling is performed using high-pressure water, the descaling water pressure is ≥ 18 MPa, and two-step controlled rolling is used, and the first step is austenite rolling in the recrystallization zone, the second step is precision rolling in the austenite non-recrystallization region, and controlling cooling after rolling;

열처리 단계: 오프라인 담금질(quenching)+템퍼링(tempering) 공정을 이용해 열처리를 진행한다.Heat treatment step: Heat treatment is performed using an offline quenching + tempering process.

상술한 바와 같이, 우량한 코어부 인성을 구비한 고강도 용기용 후판의 제조방법에 있어서,As described above, in the method of manufacturing a thick plate for a high-strength container having excellent core toughness,

제강 연속 주조 단계:쇳물을 미리 처리하고, 쇳물 중 S함량<0.002wt%이고, 회전로를 이용해 제강을 진행하고, LF로(爐)는 심층 탈산소와 탈황을 실시하고, 합금 성분이 목표 범위에 도달하도록 조정하고, RH로(爐)는 탈가스를 진행하고, 진공도≤0.3torr이며; 2차 냉각수 약냉 및 저(低)인장속도 방안을 이용해 연속 주조를 진행하고, 슬라브 인장 속도는 0.8 내지 1.2m/min이고, 연속 주조 슬라브의 두께는 260mm이고, 캐스팅 블랭크(casting blank)는 스택 냉각(stack cooling) 처리를 진행하고, 스택 냉각 시간≥48시간이다.Steelmaking continuous casting stage: The molten metal is pre-treated, the S content in the molten metal is <0.002wt%, the steelmaking is carried out using a rotary furnace, the LF furnace is subjected to deep deoxygenation and desulfurization, and the alloy composition is within the target range. , and the RH furnace proceeds with degassing, and the degree of vacuum ≤ 0.3 torr; Continuous casting is performed using the secondary cooling water weak cooling and low tensile speed method, the slab tensile speed is 0.8 to 1.2 m/min, the thickness of the continuously cast slab is 260 mm, and the casting blank is stack cooled. (stack cooling) treatment is carried out, and the stack cooling time is ≧48 hours.

상술한 바와 같이, 우량한 코어부 인성을 구비한 고강도 용기용 후판의 제조방법은 아래와 같이, 2단계 제어 압연 이용 단계: 제1 단계는 오스테나이트 재결정구역에서 압연하고, 총 압하량은 30% 내지 50%이며; 제2 단계는 오스테나이트 비재결정구역에서 정밀 압연을 진행하고, 압연 개시 온도는 850℃보다 낮고, 압하량은 45% 내지 65%이고, 최종 압연 온도는 780 내지 820℃이며; 압연한 후에 냉각을 제어하고, 셀프 템퍼링(self tempering) 온도는 580 내지 620℃ 사이로 제어한다.As described above, the manufacturing method of a high-strength container thick plate having excellent core toughness is as follows, using two-step controlled rolling: the first step is rolling in an austenite recrystallization zone, and the total reduction is 30% to 50 %; The second step is precision rolling in the austenite non-recrystallization zone, the rolling start temperature is lower than 850°C, the rolling reduction is 45% to 65%, and the final rolling temperature is 780 to 820°C; Cooling is controlled after rolling, and the self tempering temperature is controlled between 580 and 620°C.

상술한 바와 같이, 우량한 코어부 인성을 구비한 고강도 용기용 후판의 제조방법에 있어서, 열처리에 이용되는 오프라인 담금질 단계: 담금질 온도가 870 내지 890℃이고, 보온 시간이 30 내지 60min이고, 로에서 꺼낸 후, 설비의 최대 냉각 능력을 이용해 직접 실온으로 담금질한다.As described above, in the method for manufacturing a high-strength container thick plate having excellent core toughness, the off-line quenching step used for heat treatment: the quenching temperature is 870 to 890 ° C, the warming time is 30 to 60 min, and the After that, it is quenched directly to room temperature using the maximum cooling capacity of the equipment.

상술한 바와 같이, 우량한 코어부 인성을 구비한 고강도 용기용 후판의 제조방법에 있어서, 템퍼링 단계: 담금질하는 강판을 605 내지 625℃까지 가열하고, 40 내지 70min 동안 템퍼링을 실시하고, 로에서 꺼내 공냉을 실시하여 균일하고 미세하게 템퍼링된 소르바이트(sorbite)조직을 획득한다.As described above, in the method of manufacturing a thick plate for a high-strength container having excellent core toughness, tempering step: heating the steel plate to be quenched to 605 to 625 ° C, tempering for 40 to 70 min, taking it out of the furnace and cooling in air to obtain a uniform and finely tempered sorbite structure.

본 발명의 유익한 효과는 아래와 같다.Beneficial effects of the present invention are as follows.

(1) 본 발명의 화학성분 설계(1) Chemical composition design of the present invention

C: 강의 강화 원소와 오스테나이트(austenite) 안정 원소로서, 강 중에 탄소 함유량이 증가되고, 항복점과 인장 강도가 향상되고, 탄소 함량이 0.1%가 증가될 때마다 인장 강도가 약 90MPa 향상되고, 항복 강도(yield strength)가 40 내지 50MPa 향상될 수 있지만, 가소성과 충격성이 떨어지고 연성-취성 천이온도(ductile-brittle transition temperature)가 높아져 HAZ 저온 인성(toughness)에 해로우므로, 설계할 때 강도를 보장하는 전제하에 가능한 낮추며;C: As a strengthening element and austenite stable element in steel, as the carbon content in the steel increases, the yield point and tensile strength improve. Although the yield strength can be improved by 40 to 50 MPa, the plasticity and impact properties are poor and the ductile-brittle transition temperature is high, which is detrimental to the low-temperature toughness of HAZ. As low as possible under the premise;

Ni: Fe와 α, γ상 고용체를 형성해 γ상 중에서 무한고용(固溶) 하여 γ상 구역을 확대할 수 있으며, 오스테나이트 형성 및 안정 원소로서, 나선 전위(screw dislocation)가 쉽게 분해되지 않도록 하여 크로스 슬립(cross slip)의 발생을 보장하고 소재의 소성 변형 성능을 향상시킬 수 있으며, Ni는 귀금속 원소이기도 하므로, 성능을 보장하는 전제하에 가능한 적게 첨가하며;Ni: Forms α and γ phase solid solutions with Fe to form infinite solid solution in the γ phase to expand the γ phase region, forms austenite and is a stable element, prevents screw dislocation from easily It can ensure the occurrence of cross slip and improve the plastic deformation performance of the material, and since Ni is also a noble metal element, it is added as little as possible under the premise of ensuring performance;

Mn: 오스테나이트 안정 원소로서, 기저체 강화 원소이기도 하며, 고용 강화와 침전 강화를 통해 강도를 향상시켜 소재의 담금질성(hardenability)이 뚜렷하게 향상하고, Mn 원소는 연속 주조과정에서 코어부 편석(segregation)이 쉽게 발생하므로, 함량이 너무 높은 것은 좋지 않으며;Mn: As an austenite stable element, it is also a base material strengthening element, and the hardenability of the material is clearly improved by improving the strength through solid solution strengthening and precipitation strengthening, and Mn element segregates the core part during the continuous casting process. ) easily occurs, so it is not good to have too high a content;

Si: 탈산소 원소로서, P가 결정입계(crystal boundary)에서 군집(clustering)되는 것을 억제할 수 있지만, Si의 함량이 지나치게 높을 경우, 용접열 영향구역(HAZ)의 저온 인성(toughness)에 불리하며;Si: As a deoxidizing element, it can suppress clustering of P at the crystal boundary, but when the content of Si is too high, it is disadvantageous to the low-temperature toughness of the weld heat affected zone (HAZ). and;

S 및 P: S는 쉽게 Mn와 석출물 MnS를 형성해 저온 인성을 떨구고; P는 쉽게 결정입계에서 군집되어 결정입계의 내균열확장능력을 떨구고 저온 인성을 악화시키며;S and P: S easily forms Mn and precipitate MnS to reduce low-temperature toughness; P easily clusters at the grain boundary, reducing the crack expansion resistance of the grain boundary and deteriorating low-temperature toughness;

Mo: 담금질성을 향상시켜 강도가 향상되고 강의 템퍼링 안정성이 향상될 수 있으며, 크롬 또는 망간 등과 공존할 경우, 다른 원소로 유발되는 템퍼링 취성을 떨구거나 억제할 수 있으며;Mo: Strength and tempering stability of steel can be improved by improving hardenability, and when coexisting with chromium or manganese, tempering brittleness caused by other elements can be reduced or suppressed;

V: 담금질성을 향상시킬 수 있고, 강한 카보나이트라이드(carbonitride) 형성 원소로서, 고용 및 석출을 통해 소재의 강도를 향상할 수 있으며, V는 Cr 및 Mo와 동시에 존재할 경우, 템퍼링 과정에서 복잡한 탄화물을 형성해 용접 이음의 소성 및 인성을 떨구며, 소성 및 인성을 보장하도록 설계하려면 반드시 V의 양을 제어하고 결정 입자에 대한 V의 세분화 역할과 강도에 대한 V의 유익한 역할을 검토해야 하며;V: can improve hardenability, and as a strong carbonitride forming element, can improve the strength of the material through solid solution and precipitation, and when V exists simultaneously with Cr and Mo, complex carbides are formed in the tempering process Forming and reducing the plasticity and toughness of the welded joint, designing to ensure plasticity and toughness, the amount of V must be controlled, and the role of subdivision of V on crystal grains and the beneficial role of V on strength must be reviewed;

(2) 본 발명에 의해 제조된 저온용 고강도 용기판은 두께가 50 내지 80mm이고, -70℃조건하에서 1/4 두께 코어부 KV2값≥150J이고, 항복 강도(yield strength)≥420MPa이고, 인장 강도≥560MPa이며;(2) The low-temperature high-strength container plate manufactured according to the present invention has a thickness of 50 to 80 mm, a 1/4 thickness core KV 2 value ≥ 150 J under -70 ° C condition, and a yield strength ≥ 420 MPa, tensile strength ≥ 560 MPa;

(3) 본 발명의 제품은 09MnNiDR 등과 같은 국내외 0.5Ni강 브랜드를 대체해 프로판(propane), 부탄(butane), 에탄(ethane) 및 에틸렌 등 용기의 건조에 사용하여 소재 성능을 업그레이드하고 용기의 대형화 발전에 소재 보장을 제공할 수 있다.(3) The product of the present invention replaces domestic and foreign 0.5Ni steel brands such as 09MnNiDR and is used for drying containers such as propane, butane, ethane and ethylene to upgrade material performance and enlarge the container It can provide material guarantee for power generation.

도 1은 실시예 1에서 4% 질산 알코올 용액으로 부식시킨 80mm 강판의 1/4 두께 템퍼링(tempering) 상태의 조직 사진이고;
도 2는 실시예 1에서 4% 질산 알코올 용액으로 부식시킨 80mm 강판의 1/2 두께 템퍼링 상태의 조직 사진이다.
1 is a photograph of the structure of a 1/4 thickness tempered state of an 80 mm steel sheet corroded with a 4% nitric acid alcohol solution in Example 1;
Figure 2 is a photograph of the structure of the 1/2 thickness tempered state of the 80mm steel sheet corroded with 4% nitric acid alcohol solution in Example 1.

이하 실시예에서 제공한 우량한 코어부 인성(toughness)을 구비한 고강도 용기용 후판(厚板) 및 제조방법에 있어서, 화학성분은 표 1에 기재된 바와 같고, 제련 및 압연 공정의 파라미터는 표 2에 기재된 바와 같고, 열처리공정의 파라미터는 표 3에 기재된 바와 같고, 구체적인 단계는 아래와 같다.In the thick plates and manufacturing methods for high-strength containers having excellent core toughness provided in the following examples, the chemical components are as shown in Table 1, and the parameters of the smelting and rolling process are shown in Table 2. As described, the parameters of the heat treatment process are as shown in Table 3, and the specific steps are as follows.

제강 연속 주조 단계: 쇳물을 미리 처리하고, 쇳물 중 S 함량<0.002wt%이고, 회전로를 이용해 제강을 진행하고, LF로(爐)는 심층 탈산소와 탈황을 실시하고, 합금 성분이 목표 범위에 도달하도록 조정하고, RH로(爐)는 탈가스를 진행하고, 진공도≤0.3torr이며; 2차 냉각수 약냉 및 저(低)인장속도 방안을 이용해 연속 주조를 진행하고, 슬라브(slab) 인장 속도는 0.8 내지 1.2m/min이고, 연속 주조 슬라브의 두께는 260mm이고, 캐스팅 블랭크(casting blank)는 스택 냉각(stack cooling) 처리를 진행하고, 스택 냉각 시간≥48시간이며;Steelmaking continuous casting stage: molten metal is pre-treated, S content in molten metal is <0.002wt%, steel is made using a rotary furnace, LF furnace is used for deep deoxygenation and desulfurization, and alloy components are within the target range , and the RH furnace proceeds with degassing, and the degree of vacuum ≤ 0.3 torr; Continuous casting is performed using the secondary cooling water weak cooling and low tensile speed method, the slab tensile speed is 0.8 to 1.2 m/min, the thickness of the continuous casting slab is 260 mm, and the casting blank is subjected to stack cooling treatment, and the stack cooling time is ≥ 48 hours;

슬라브(slab) 가열 단계: 슬라브를 1150 내지 1180℃로 가열하고, 슬라브의 로(爐) 제련 총 시간≥240min이고, 균열(soaking)구간 보온시간은 30 내지 60min이고, 전체 슬라브 온도 균일성≤10℃이며;Slab heating step: the slab is heated to 1150 to 1180 ° C, the total furnace smelting time of the slab is ≥ 240 min, the soaking section warming time is 30 to 60 min, and the total slab temperature uniformity ≤ 10 °C;

2단계 제어 압연 이용 단계: 제1 단계는 오스테나이트(austenite) 재결정구역에서 압연하고, 총 압하량은 30% 내지 50%이며; 제2 단계는 오스테나이트 비재결정구역(austenite non-recrystallization region)에서 정밀 압연을 진행하고, 압연 개시 온도는 850℃보다 낮고, 압하량은 45% 내지 65%이고, 최종 압연 온도는 780 내지 820℃이며; 압연한 후에 냉각을 제어하고, 셀프 템퍼링(self tempering) 온도는 580 내지 620℃ 사이로 제어하며;Step using two-step controlled rolling: the first step is rolling in an austenite recrystallization zone, and the total reduction is 30% to 50%; In the second step, precision rolling is performed in the austenite non-recrystallization region, the rolling start temperature is lower than 850 ° C, the rolling reduction is 45% to 65%, and the final rolling temperature is 780 to 820 ° C. is; Cooling is controlled after rolling, and the self tempering temperature is controlled between 580 and 620°C;

열처리에 이용되는 오프라인 담금질(quenching) 단계: 담금질 온도는 870 내지 890℃이고, 보온 시간은 30 내지 60min이고, 로에서 꺼낸 후, 설비의 최대 냉각 능력을 이용해 직접 실온으로 담금질하며;Off-line quenching step used for heat treatment: the quenching temperature is 870-890 ° C, the holding time is 30-60 min, and after being taken out of the furnace, it is directly quenched to room temperature using the maximum cooling capacity of the equipment;

템퍼링(tempering) 단계: 담금질하는 강판을 605 내지 625℃까지 가열하고, 40 내지 70min 동안 템퍼링을 실시하고, 로에서 꺼내 공냉을 실시하여 균일하고 미세하게 템퍼링된 소르바이트(sorbite)조직을 획득한다.Tempering step: the steel sheet to be quenched is heated to 605 to 625° C., tempered for 40 to 70 min, taken out of the furnace and air-cooled to obtain a uniform and finely tempered sorbite structure.

표 1 Table 1

Figure pct00001
Figure pct00001

표 2 Table 2

Figure pct00002
Figure pct00002

표 3 Table 3

Figure pct00003
Figure pct00003

실시예에 따른 제품의 역학 성능은 표 4에 기재된 바와 같다.The mechanical performance of the products according to the examples is as shown in Table 4.

표 4Table 4

Figure pct00004
Figure pct00004

이와 동시에, 도 1과 도 2에서 알 수 있다시피, 본 발명의 제품이 획득한 조직은 템퍼링 소르바이트 조직으로서, 양호한 종합 역학 성능을 획득할 수 있다. 최대 두께가 80mm에 달하여 -70℃조건에서 사용되는 고강도 저온 용기판의 요구를 만족시키고, 1/4 두께 코어부 -70℃ KV2값≥150J이고, 항복 강도≥420MPa이며, 인장 강도≥560MPa으로서, 종래기술에 따른 0.5Ni 저온강을 기초로 항복 강도와 인장 강도를 대폭 향상시키며, 09MnNiDR 등과 같은 중국 국내외 0.5Ni강 브랜드를 대체해 프로판(propane), 부탄(butane), 에탄(ethane) 및 에틸렌 등 용기의 건조에 사용하여 소재 성능을 업그레이드하고 용기의 대형화 발전에 소재 보장을 제공할 수 있다.At the same time, as can be seen from Figs. 1 and 2, the tissue obtained by the product of the present invention is a tempered sorbite tissue, which can obtain good overall mechanical performance. The maximum thickness reaches 80mm to meet the requirements of high-strength low-temperature container board used in -70℃ conditions, and the 1/4 thickness core part -70℃ KV 2 value ≥ 150J, yield strength ≥ 420MPa, tensile strength ≥ 560MPa. , Significantly improve yield strength and tensile strength based on 0.5Ni low-temperature steel according to the prior art, and replace propane, butane, ethane and ethylene by replacing Chinese and foreign 0.5Ni steel brands such as 09MnNiDR It can be used for drying containers to upgrade material performance and provide material guarantee for the development of larger containers.

상기 실시예 외에도 본 발명은 다른 실시방식이 있을 수도 있다. 균등한 치환 또는 등가적 변환을 이용해 형성된 기술방안은 모두 본 발명이 보호를 청구한 범위에 포함된다.In addition to the above embodiments, the present invention may have other embodiments. All technical solutions formed using equivalent substitution or equivalent transformation are included in the scope of the claimed protection of the present invention.

Claims (9)

우량한 코어부 인성(toughness)을 구비한 고강도 용기용 후판(厚板)에 있어서,
이의 화학성분 및 질량백분율은 아래와 같이,
C: 0.08%~0.12%이고, Si: 0.10% ~ 0.30%이고, Mn: 1.10% ~ 1.50%이고, Ni: 0.50% ~ 0.80%이고, Mo: 0.08% ~ 0.15%이고, V: 0.03% ~ 0.06%이고, P≤0.006%이고, S≤0.002%이며, 나머지는 Fe와 불가피한 불순물인 것을 특징으로 하는 우량한 코어부 인성을 구비한 고강도 용기용 후판.
In the thick plate for a high-strength container having excellent core toughness,
Its chemical composition and mass percentage are as follows:
C: 0.08% to 0.12%, Si: 0.10% to 0.30%, Mn: 1.10% to 1.50%, Ni: 0.50% to 0.80%, Mo: 0.08% to 0.15%, V: 0.03% to 0.06%, P≤0.006%, S≤0.002%, and the rest is Fe and unavoidable impurities.
제1항에 있어서,
이의 화학성분 및 질량백분율은 아래와 같이,
C: 0.08% ~ 0.09%이고, Si: 0.10% ~ 0.21%이고, Mn: 1.10% ~ 1.45%이고, Ni: 0.50% ~ 0.62%이고, Mo: 0.08% ~ 0.10%이고, V: 0.03% ~ 0.037%이고, P≤0.006%이고, S≤0.0005%이며, 나머지는 Fe와 불가피한 불순물인 것을 특징으로 하는 우량한 코어부 인성을 구비한 고강도 용기용 후판.
According to claim 1,
Its chemical composition and mass percentage are as follows:
C: 0.08% to 0.09%, Si: 0.10% to 0.21%, Mn: 1.10% to 1.45%, Ni: 0.50% to 0.62%, Mo: 0.08% to 0.10%, V: 0.03% to 0.03% 0.037%, P≤0.006%, S≤0.0005%, and the rest is Fe and unavoidable impurities.
제1항에 있어서,
이의 화학성분 및 질량백분율은 아래와 같이,
C: 0.10% ~ 0.11%이고, Si: 0.14% ~ 0.20%이고, Mn: 1.18% ~ 1.37%이고, Ni: 0.50% ~ 0.74%이고, Mo: 0.096% ~ 0.12%이고, V: 0.039% ~ 0.047%이고, P≤0.005%이고, S≤0.001%이며, 나머지는 Fe와 불가피한 불순물인 것을 특징으로 하는 우량한 코어부 인성을 구비한 고강도 용기용 후판.
According to claim 1,
Its chemical composition and mass percentage are as follows:
C: 0.10% to 0.11%, Si: 0.14% to 0.20%, Mn: 1.18% to 1.37%, Ni: 0.50% to 0.74%, Mo: 0.096% to 0.12%, V: 0.039% to 0.039% 0.047%, P≤0.005%, S≤0.001%, and the rest is Fe and unavoidable impurities.
제1항에 있어서,
강판의 두께는 50 내지 80mm인 것을 특징으로 하는 우량한 코어부 인성을 구비한 고강도 용기용 후판.
According to claim 1,
A thick plate for a high-strength container having excellent core toughness, characterized in that the thickness of the steel plate is 50 to 80 mm.
제1항 내지 제4항 중 어느 한 항에 따른 우량한 코어부 인성을 구비한 고강도 용기용 후판의 제조방법에 있어서,
제강 연속 주조 단계: 쇳물을 미리 처리하고, 회전로의 꼭대기 및 바닥에 복합 취입하여 제련하고, LF+RH 정련하고, 성분의 설계 요구에 근거해 성분 제어를 진행하고, 연속 주조과정은 전자기를 이용해 교반하고, 생산된 블랭크재는 두께가 260mm인 단계;
슬라브(slab) 가열 단계: 슬라브를 1150 내지 1180℃로 가열하고, 슬라브의 로(爐) 제련 총 시간≥240min이고, 균열(soaking)구간 보온시간은 30 내지 60min이고, 전체 슬라브 온도 균일성≤10℃인 단계;
압연 및 냉각 제어 단계: 슬라브는 로에서 꺼낸 후에 고압수를 이용하여 디스케일링(descaling)을 실시하고, 디스케일링 수압≥18MPa이고, 2단계 제어 압연을 이용하고, 제1 단계는 오스테나이트(austenite) 재결정구역에서 압연하고, 제2 단계는 오스테나이트 비-재결정구역(austenite non-recrystallization region)에서 정밀 압연을 진행하고, 압연한 후에 냉각을 제어하는 단계;
열처리 단계: 오프라인 담금질(quenching)+템퍼링(tempering) 공정을 이용해 열처리를 진행하는 단계;를 포함하는 것을 특징으로 하는 우량한 코어부 인성을 구비한 고강도 용기용 후판의 제조방법.
In the method of manufacturing a thick plate for a high-strength container having excellent core toughness according to any one of claims 1 to 4,
Steelmaking continuous casting stage: molten metal is pre-treated, smelting is performed by complex blowing at the top and bottom of the rotary furnace, LF+RH refining, component control is carried out according to the design requirements of the component, and the continuous casting process uses electromagnetic stirring, and the produced blank material has a thickness of 260 mm;
Slab heating step: the slab is heated to 1150 to 1180 ° C, the total furnace smelting time of the slab is ≥ 240 min, the soaking section warming time is 30 to 60 min, and the total slab temperature uniformity ≤ 10 ℃ step;
Rolling and cooling control step: After the slab is taken out of the furnace, descaling is performed using high-pressure water, the descaling water pressure is ≥ 18 MPa, and two-step controlled rolling is used, and the first step is austenite rolling in the recrystallization region, and the second step is precision rolling in the austenite non-recrystallization region, and controlling cooling after rolling;
Heat treatment step: a step of performing heat treatment using an offline quenching + tempering process.
제5항에 있어서,
제강 연속 주조는 쇳물을 미리 처리하고, 쇳물 중 S 함량<0.002wt%이고, 회전로를 이용해 제강을 진행하고, LF로(爐)는 심층 탈산소와 탈황을 실시하고, 합금 성분이 목표 범위에 도달하도록 조정하고, RH로(爐)는 탈가스를 진행하고, 진공도≤0.3torr이며; 2차 냉각수 약냉 및 저(低)인장속도 방안을 이용해 연속 주조를 진행하고, 슬라브 인장 속도는 0.8 내지 1.2m/min이고, 연속 주조 슬라브의 두께는 260mm이고, 캐스팅 블랭크(casting blank)는 스택 냉각(stack cooling) 처리를 진행하고, 스택 냉각 시간≥48시간인 것을 특징으로 하는 우량한 코어부 인성을 구비한 고강도 용기용 후판의 제조방법.
According to claim 5,
In steelmaking continuous casting, the molten metal is pre-treated, the S content in the molten metal is <0.002wt%, the steelmaking is performed using a rotary furnace, the LF furnace is subjected to deep deoxygenation and desulfurization, and the alloy components are within the target range. adjusted to reach, the RH furnace proceeds with degassing, the degree of vacuum ≤ 0.3torr; Continuous casting is performed using the secondary cooling water weak cooling and low tensile speed method, the slab tensile speed is 0.8 to 1.2 m/min, the thickness of the continuously cast slab is 260 mm, and the casting blank is stack cooled. A method of manufacturing a thick plate for a high-strength container having excellent core toughness, characterized in that the stack cooling treatment is performed and the stack cooling time is ≥ 48 hours.
제5항에 있어서,
2단계 제어 압연 이용 단계는 제1 단계는 오스테나이트 재결정구역에서 압연하고, 총 압하량은 30% 내지 50%이며; 제2 단계는 오스테나이트 비재결정구역에서 정밀 압연을 진행하고, 압연 개시 온도는 850℃보다 낮고, 압하량은 45% 내지 65%이고, 최종 압연 온도는 780 내지 820℃이며; 압연한 후에 냉각을 제어하고, 셀프 템퍼링(self tempering) 온도는 580 내지 620℃ 사이로 제어하는 것을 특징으로 하는 우량한 코어부 인성을 구비한 고강도 용기용 후판의 제조방법.
According to claim 5,
In the step of using two-step controlled rolling, the first step is rolling in the austenite recrystallization zone, and the total reduction is 30% to 50%; The second step is precision rolling in the austenite non-recrystallization zone, the rolling start temperature is lower than 850°C, the rolling reduction is 45% to 65%, and the final rolling temperature is 780 to 820°C; A method of manufacturing a thick plate for a high-strength container having excellent core toughness, characterized in that cooling is controlled after rolling, and the self-tempering temperature is controlled between 580 and 620 ° C.
제5항에 있어서,
열처리에 이용되는 오프라인 담금질 단계는 담금질 온도가 870 내지 890℃이고, 보온 시간이 30 내지 60min이고, 로에서 꺼낸 후, 설비의 최대 냉각 능력을 이용해 직접 실온으로 담금질하는 것을 특징으로 하는 우량한 코어부 인성을 구비한 고강도 용기용 후판의 제조방법.
According to claim 5,
The offline quenching step used for heat treatment has excellent core toughness, characterized by a quenching temperature of 870 to 890 ° C, a holding time of 30 to 60 min, and quenching directly to room temperature using the maximum cooling capacity of the equipment after taking out of the furnace. Method for manufacturing a thick plate for a high-strength container having a.
제5항에 있어서,
템퍼링 단계는 담금질하는 강판을 605 내지 625℃까지 가열하고, 40 내지 70min 동안 템퍼링을 실시하고, 로에서 꺼내 공냉을 실시하여 균일하고 미세하게 템퍼링된 소르바이트(sorbite)조직을 획득하는 것을 특징으로 하는 우량한 코어부 인성을 구비한 고강도 용기용 후판의 제조방법.
According to claim 5,
In the tempering step, the steel sheet to be quenched is heated to 605 to 625 ° C, tempered for 40 to 70 min, taken out of the furnace and air-cooled to obtain a uniform and finely tempered sorbite structure. A method of manufacturing a thick plate for a high-strength container having excellent core toughness.
KR1020237004339A 2020-07-17 2020-12-02 Thick plate for high-strength container with excellent core toughness and manufacturing method KR20230037040A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010690126.1A CN112080684B (en) 2020-07-17 2020-07-17 High-strength container thick plate with excellent core toughness and manufacturing method thereof
CN202010690126.1 2020-07-17
PCT/CN2020/133464 WO2022011935A1 (en) 2020-07-17 2020-12-02 High-strength container thick plate having excellent core toughness, and manufacturing method

Publications (1)

Publication Number Publication Date
KR20230037040A true KR20230037040A (en) 2023-03-15

Family

ID=73735662

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237004339A KR20230037040A (en) 2020-07-17 2020-12-02 Thick plate for high-strength container with excellent core toughness and manufacturing method

Country Status (3)

Country Link
KR (1) KR20230037040A (en)
CN (1) CN112080684B (en)
WO (1) WO2022011935A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875309B (en) * 2022-04-08 2023-07-14 鞍钢股份有限公司 Steel for thick high-strength nuclear reactor containment vessel and manufacturing method thereof
CN115125380B (en) * 2022-06-24 2023-08-22 舞阳钢铁有限责任公司 Method for efficiently heating and rolling alloy steel by matching trolley furnace with continuous furnace
CN116590612A (en) * 2022-07-18 2023-08-15 柳州钢铁股份有限公司 Low-cost Q690 steel plate
CN115216589A (en) * 2022-07-28 2022-10-21 湖南华菱湘潭钢铁有限公司 Heat treatment method for improving core toughness of steel for large-thickness high-strength ocean engineering
CN115181911B (en) * 2022-08-04 2023-05-05 江苏省沙钢钢铁研究院有限公司 Super-thick Q500qE bridge steel plate and production method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3579307B2 (en) * 1999-08-19 2004-10-20 Jfeスチール株式会社 60kg-class direct quenched and tempered steel with excellent weldability and toughness after strain aging
CN101660100B (en) * 2008-08-27 2011-05-11 宝山钢铁股份有限公司 Super-thick quenched and tempered steel plate with good obdurability matching, and manufacturing method thereof
CN102766805A (en) * 2012-07-30 2012-11-07 宝山钢铁股份有限公司 Thick steel plate for nuclear power plant containment and manufacture method thereof
CN103540838B (en) * 2013-09-29 2016-01-20 舞阳钢铁有限责任公司 A kind of Steel plate for low-temperature vessel and production method
CN104726787A (en) * 2013-12-23 2015-06-24 鞍钢股份有限公司 Favorable-low-temperature-toughness high-strength pressure vessel thick plate and production method thereof
JP6253974B2 (en) * 2013-12-27 2017-12-27 Jfeスチール株式会社 Thick steel plate for reactor containment vessel with excellent brittle crack propagation stopping characteristics
JP6128042B2 (en) * 2014-03-31 2017-05-17 Jfeスチール株式会社 Low yield ratio high strength spiral steel pipe pile and manufacturing method thereof
CN104195428A (en) * 2014-07-31 2014-12-10 南京钢铁股份有限公司 High-strength V-containing and low-C 5Ni steel medium plate and manufacturing method of steel medium plate
CN107974643B (en) * 2017-11-18 2020-07-03 武汉钢铁有限公司 -70 ℃ normalized high-strength low-yield-ratio pressure vessel steel and manufacturing method thereof
JP7031477B2 (en) * 2018-05-08 2022-03-08 日本製鉄株式会社 Hot-rolled steel sheet, square steel pipe, and its manufacturing method
CN110184531A (en) * 2018-07-20 2019-08-30 江阴兴澄特种钢铁有限公司 The tank plate and its manufacturing method of a kind of thick easily welding center portion excellent in low temperature toughness of 40-60mm
CN109440008A (en) * 2018-12-03 2019-03-08 南阳汉冶特钢有限公司 A kind of ultralow temperature pressure vessel 09MnNiDR steel plate and its production method
CN111020409B (en) * 2019-12-31 2021-11-05 苏州雷格姆海洋石油设备科技有限公司 High-strength microalloyed steel, underwater oil and gas pipeline quick connector and manufacturing method
CN111893399A (en) * 2020-07-17 2020-11-06 南京钢铁股份有限公司 High-strength container plate with excellent low-temperature toughness and manufacturing method thereof

Also Published As

Publication number Publication date
CN112080684A (en) 2020-12-15
CN112080684B (en) 2021-11-19
WO2022011935A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
WO2021036272A1 (en) High-strength and low-yield-ratio 9ni steel plate for ship lng storage tanks and manufacturing method therefor
WO2021179443A1 (en) Ultra-thick container steel plate with good low-temperature impact toughness in core and manufacturing method therefor
WO2022011936A1 (en) High-strength vessel plate having excellent low-temperature toughness and manufacturing method
KR20230037040A (en) Thick plate for high-strength container with excellent core toughness and manufacturing method
CN111996437B (en) Production method of large-thickness high-toughness ultrahigh-strength steel plate with yield strength of 1100MPa
CN110295320B (en) Large-wall-thickness X52MS acid-resistant pipeline steel plate produced by LF-RH refining process and manufacturing method thereof
CN109440009A (en) A kind of TMCP state ship VOC storage tank low-temperature steel plate and manufacturing method
CN110079740B (en) High-toughness hot-rolled 530 MPa-grade automobile cold-stamped axle housing steel plate and manufacturing method thereof
CN108914006B (en) Ultrahigh-strength quenched and tempered steel plate with excellent performance in thickness direction and manufacturing method thereof
CN102277540B (en) igh temperature PWHT softening and production method thereof
CN103882344A (en) Vanadium, chromium and molybdenum added steel plate and production method thereof
KR20220004220A (en) 7Ni steel plate and production process for LNG storage tank
CN110129685B (en) Manufacturing method of 7Ni steel thick plate for ultra-low temperature container
CN111270169A (en) Ni-containing alloy steel plate with excellent low-temperature toughness and production method thereof
CN111996462B (en) Longitudinal variable-thickness ultrahigh-strength ship board and production method thereof
CN112048659B (en) High-strength high-ductility steel plate and preparation method thereof
CN114875331B (en) 610 MPa-grade thick steel plate with excellent core fatigue performance and production method thereof
CN116121644A (en) High-toughness mine disc saw blade steel plate and manufacturing method thereof
CN113444969B (en) Steel plate for low-temperature service condition of American standard container and production method thereof
CN105112780A (en) Low-carbon-equivalent-coefficient steel plate for large-thickness pressure-bearing equipment, and production method
CN114086051B (en) High-strength high-toughness easily-welded nano steel with thickness of 60-120 mm and thickness of 850MPa and preparation method thereof
CN111850401B (en) Low-cost high-strength and high-toughness pressure vessel steel plate and production method thereof
CN114892073B (en) Steel plate suitable for cold spinning and manufacturing method thereof
CN110592470B (en) Large-thickness SA302GrC steel plate with low-temperature toughness and preparation method thereof
CN116043130A (en) Economical 700 MPa-level storage tank steel plate with excellent die-welding performance and manufacturing method thereof