KR20230033830A - UP gene from Arabidopsis thaliana regulating resistance to environment stress in plant and uses thereof - Google Patents

UP gene from Arabidopsis thaliana regulating resistance to environment stress in plant and uses thereof Download PDF

Info

Publication number
KR20230033830A
KR20230033830A KR1020210116716A KR20210116716A KR20230033830A KR 20230033830 A KR20230033830 A KR 20230033830A KR 1020210116716 A KR1020210116716 A KR 1020210116716A KR 20210116716 A KR20210116716 A KR 20210116716A KR 20230033830 A KR20230033830 A KR 20230033830A
Authority
KR
South Korea
Prior art keywords
ala ala
protein
plant
gene
stress
Prior art date
Application number
KR1020210116716A
Other languages
Korean (ko)
Inventor
윤대진
박기석
알리 악타르
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020210116716A priority Critical patent/KR20230033830A/en
Publication of KR20230033830A publication Critical patent/KR20230033830A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/12Processes for modifying agronomic input traits, e.g. crop yield
    • A01H1/121Plant growth habits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/12Processes for modifying agronomic input traits, e.g. crop yield
    • A01H1/121Plant growth habits
    • A01H1/1215Flower development or morphology, e.g. flowering promoting factor [FPF]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/12Processes for modifying agronomic input traits, e.g. crop yield
    • A01H1/122Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • A01H1/1225Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold or salt resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Biochemistry (AREA)
  • Environmental Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Physiology (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The present invention relates to a UP gene (Unknown Protein, AT3G47850) for regulating growth, flowering, and resistance to environmental stress and uses thereof. Environmental stress resistance in a plant can be controlled and regulated through silencing or overexpression of a UP protein-coding gene. Therefore, it can be used to improve plant productivity.

Description

환경 스트레스에 대한 저항성을 조절하는 UP 유전자 및 이의 용도{UP gene from Arabidopsis thaliana regulating resistance to environment stress in plant and uses thereof}UP gene regulating resistance to environmental stress and its uses {UP gene from Arabidopsis thaliana regulating resistance to environment stress in plant and uses thereof}

본 발명은 성장, 개화 및 환경 스트레스에 대한 저항성을 조절하는 UP 유전자(Unknown Protein, AT3G47850) 및 이의 용도에 관한 것으로, 더욱 상세하게는 서열번호 1로 표시되는 UP 단백질(Uncharacterized Protein)의 코딩 유전자를 통해 성장, 개화 및 환경 스트레스에 대한 기능을 조절하는 방법, 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진된 형질전환 식물체를 제조하는 방법, 이로부터 제조되는 형질전환 식물체, 유전체 교정용 조성물 및 이를 포함하는 키트에 관한 것이다.The present invention relates to a UP gene (Unknown Protein, AT3G47850) that regulates growth, flowering, and resistance to environmental stress and uses thereof, and more particularly, to the coding gene of the UP protein (Uncharacterized Protein) represented by SEQ ID NO: 1 A method for controlling growth, flowering, and function against environmental stress, a method for preparing a transgenic plant with improved resistance to drying stress and shortening of flowering period, a transgenic plant prepared therefrom, a composition for genome editing, and including the same It's about a kit that does.

식물은 병원균 감염 및 곤충의 공격과 같은 생물 스트레스와 가뭄, 더위, 추위, 영양결핍 같은 환경 스트레스 속에서 끊임없이 신호를 주고 받으며 살아간다. 특히 환경 스트레스는 식물의 지리적 분포에 따라 영향을 미치고 농업에서 식물의 생산성을 제한하며 안정적인 식량확보와 밀접하게 연관되어 있다.Plants live by exchanging signals constantly under biological stress such as pathogen infection and insect attack, and environmental stress such as drought, heat, cold, and nutrient deficiency. In particular, environmental stress affects the geographic distribution of plants, limits plant productivity in agriculture, and is closely related to food security.

식물은 복잡하고 다양한 환경 스트레스 아래에서 살기 때문에 복잡하고 다양한 신호반응이 발달했을 것이라 예상되나, 실제 밝혀진 것은 몇 가지 단백질과 유전자만이 확인되고 있다. 왜냐하면 스트레스 관련 단백질을 코딩하는 유전자의 기능이 여러 개로 중복되어 있어 하나의 유전자기능장애가 생겨도 스트레스 반응에서 중요한 표현형이 관찰되지 않기도 하고, 반대로 너무 필수적 기능을 가지고 있어 기능 상실이 되면 생존에 불리하여 스트레스 환경 하에서 살아남지 않아 연구가 불가능한 경우도 많으며, 단백질이나 거대 분자가 물리적 신호(예를 들어, 고압, 이온 농도,온도의 변화)에 대한 센서로 기능하는 것을 증명하는 것이 기술적으로 힘들기 때문에 스트레스와 관련된 단백질 또는 유전자를 밝혀내기 매우 어렵다.Plants are expected to develop complex and diverse signal responses because they live under complex and diverse environmental stresses, but only a few proteins and genes have actually been identified. This is because several functions of genes encoding stress-related proteins are duplicated, so even if one gene malfunctions, an important phenotype in the stress response may not be observed. stress-related proteins or macromolecules are technically difficult to demonstrate that proteins or macromolecules function as sensors for physical signals (e.g., high pressure, ionic concentration, temperature change). Or the genes are very difficult to identify.

그 중에서 어렵게 밝혀진 단백질들이 있다. 예를 들어 애기장대의 OSCA1(reduced hyperosmolality-induced calcium increase 1)은 고 삼투압 스트레스와 관련된 단백질로, 건조나 염분 스트레스에는 관여하지 않는 것으로 알려져 있다.Among them, there are proteins that have been difficult to identify. For example, OSCA1 (reduced hyperosmolality-induced calcium increase 1) of Arabidopsis is a protein related to hyperosmotic stress and is not known to be involved in dryness or salt stress.

토양의 염분 농도는 농경지 조성에 영향을 미치며, 전세계적으로 농업 생산성을 제한하는 중요한 요소로, 높은 염도는 이온 독성(Na+), 고삼투압 스트레스, 산화 손상과 같은 2차 스트레스를 유발한다. Soil salt concentration affects cropland composition and is an important factor limiting agricultural productivity worldwide. High salinity causes secondary stresses such as ion toxicity (Na + ), hyperosmotic stress, and oxidative damage.

이에 식물체의 염분, 건조, ABA 스트레스에 대한 저항성을 증진시키기 위한 방법이 연구 대상이 되고 있으며, 이와 관련하여 저온 스트레스 내성 관련 유전자와 이에 따른 형질전환 식물체에 대한 연구가 이루어지고 있으나 아직 미비한 실정이다.Accordingly, a method for enhancing the resistance of plants to salt, dryness, and ABA stress is being researched, and in this regard, studies on low temperature stress tolerance related genes and transgenic plants are being conducted, but are still incomplete.

특허문헌 1. 대한민국 공개특허공보 제10-2021-0069839호Patent Document 1. Republic of Korea Patent Publication No. 10-2021-0069839

따라서, 본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 식물체의 성장, 개화 및 환경 스트레스에 대한 저항성을 조절하는 방법을 제공하는 것이다.Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for controlling plant growth, flowering, and resistance to environmental stress.

본 발명의 다른 목적은 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진된 형질전환 식물체의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing transgenic plants with improved resistance to drying stress and shortening of flowering period.

본 발명의 또 다른 목적은 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진된 형질전환 식물체를 제공하는 것이다.Another object of the present invention is to provide transgenic plants with improved resistance to drying stress and shortening of flowering time.

본 발명의 또 다른 목적은 식물체의 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진시키는 유전체 교정용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for genome correction that shortens the flowering period of plants and enhances resistance to drying stress.

본 발명은 상기 목적을 이루기 위하여, 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 발현을 조절하는 단계를 포함하는, 식물체의 성장, 개화 및 환경 스트레스에 대한 저항성을 조절하는 방법을 제공한다.In order to achieve the above object, the present invention includes the step of regulating the expression of the coding gene of the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1, which regulates the growth, flowering and resistance of plants to environmental stress provides a way

상기 UP 단백질 코딩 유전자의 발현 조절은, ⅰ) 상기 UP 단백질 코딩 유전자를 결손시켜 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진시키거나; ⅱ) 상기 UP 단백질 코딩 유전자를 도입 및 과발현시켜 성장 촉진 및 염분 스트레스와 ABA 스트레스에 대한 저항성을 증진시키는 것;일 수 있다.Regulating the expression of the UP protein-encoding gene, i) shortening the flowering period and enhancing resistance to drying stress by deleting the UP protein-encoding gene; ii) promoting growth and enhancing resistance to salt stress and ABA stress by introducing and overexpressing the UP protein coding gene;

상기 UP 단백질 코딩 유전자의 과발현은 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자를 포함하는 재조합 벡터를 이용하여 수행되는 것일 수 있다.The overexpression of the UP protein coding gene may be performed using a recombinant vector containing the coding gene of the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1.

상기 UP 단백질 코딩 유전자의 결손은 VIGS(Virus-induced gene silencing), siRNA, shRNA, miRNA, 리보자임(ribozyme), PNA(peptide nucleic acids), 안티센스 올리고핵산, T-DNA 삽입 또는 유전체/유전자 교정(genome/gene editing) 시스템을 이용하여 수행되는 것일 수 있다.The deletion of the UP protein coding gene is VIGS (Virus-induced gene silencing), siRNA, shRNA, miRNA, ribozyme (ribozyme), PNA (peptide nucleic acids), antisense oligonucleic acid, T-DNA insertion or genome / gene correction ( genome/gene editing) system.

상기 UP 단백질 코딩 유전자의 결손은, 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)와 엔도뉴클레아제(endonuclease) 단백질의 복합체(ribonucleoprotein); 또는 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제(endonuclease) 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 이용하는 것일 수 있다.The deletion of the UP protein coding gene is a guide RNA specific to the target sequence of the coding gene of the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1 and a complex of endonuclease protein (ribonucleoprotein); Or a recombinant vector containing DNA encoding a guide RNA specific to the target nucleotide sequence of the coding gene of the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1 and a nucleic acid sequence encoding an endonuclease protein ; may be used.

상기 UP 단백질(Unknown Protein, AT3G47850) 코딩 유전자는 서열번호 2로 표시될 수 있다.The UP protein (Unknown Protein, AT3G47850) coding gene may be represented by SEQ ID NO: 2.

상기 엔도뉴클레아제(endonuclease) 단백질은 Cas9 단백질일 수 있다.The endonuclease protein may be a Cas9 protein.

상기 식물체는 애기장대(Arabidopsis thaliana)일 수 있다.The plant may be Arabidopsis thaliana .

본 발명은 상기 목적을 이루기 위하여, (a) 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)와 엔도뉴클레아제(endonuclease) 단백질의 복합체(ribonucleoprotein); 또는 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 식물세포에 도입하여 유전체를 교정하는 단계; 및The present invention, in order to achieve the above object, (a) a guide RNA specific to the target sequence of the coding gene of the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1 and an endonuclease a complex of proteins (ribonucleoprotein); Or a UP protein represented by SEQ ID NO: 1 (Unknown Protein, AT3G47850) Recombinant vector containing a DNA encoding a guide RNA specific to the target sequence of the coding gene and a nucleic acid sequence encoding an endonuclease protein; plant Correcting the genome by introducing into cells; and

(b) 상기 유전체가 교정된 형질전환 식물체를 재분화하는 단계;를 포함하는 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진된 형질전환 식물체의 제조방법을 제공한다.(b) regenerating the transgenic plant in which the genome has been corrected; a method for producing a transgenic plant with improved resistance to drying stress and shortening of flowering time is provided.

상기 식물체는 애기장대(Arabidopsis thaliana)일 수 있다.The plant may be Arabidopsis thaliana .

본 발명은 상기 또 다른 목적을 이루기 위하여, 상기 방법으로 제조된 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진된 형질전환 식물체를 제공한다.In order to achieve the above another object, the present invention provides a transgenic plant with improved resistance to drying stress and reduced flowering time prepared by the above method.

본 발명은 상기 또 다른 목적을 이루기 위하여, 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)와 엔도뉴클레아제(endonuclease) 단백질의 복합체(ribonucleoprotein); 또는 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제(endonuclease) 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 유효성분으로 함유하는 식물체의 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진시키는 유전체 교정용 조성물을 제공한다.In order to achieve the above another object, the present invention is a guide RNA specific to the target sequence of the coding gene of the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1 and an endonuclease protein complex of (ribonucleoprotein); Or a recombinant vector containing DNA encoding a guide RNA specific to the target nucleotide sequence of the coding gene of the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1 and a nucleic acid sequence encoding an endonuclease protein It provides a composition for genome correction that improves resistance to drying stress and shortens the flowering period of plants containing ; as an active ingredient.

본 발명은 상기 또 다른 목적을 이루기 위하여, 상기 조성물을 포함하는 개화시기 단축 및 건조 스트레스에 대한 저항성이 증진된 식물체를 제조하기 위한 키트를 제공한다.In order to achieve the above another object, the present invention provides a kit for preparing a plant containing the composition to shorten flowering time and improve resistance to drying stress.

본 발명의 UP 단백질(Unknown Protein, AT3G47850)은 식물체에서 성장, 개화 및 환경 스트레스에 대한 저항성을 양성 또는 음성 조절하는 기능을 가지고 있으므로, UP 단백질 코딩 유전자의 침묵 또는 과발현을 통해 식물체에서의 환경 스트레스 저항성을 제어 및 조절할 수 있으므로, 식물의 생산성을 향상시키는데 이용될 수 있다.Since the UP protein (Unknown Protein, AT3G47850) of the present invention has the function of positively or negatively regulating growth, flowering, and resistance to environmental stress in plants, environmental stress resistance in plants can be achieved through silencing or overexpression of UP protein coding genes. can be controlled and regulated, so it can be used to improve plant productivity.

도 1은 UP 변이 대립 형질체에 크리스퍼 영역(빨간색)과 본 발명에 사용된 UP 프라이머를 도시한 도면이다.
도 2는 Col-0 에코타임 애기장대(Arabidopsis thaliana) 식물체(WT)와 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR)에 대한 지노타이핑(Genotyping) 분석 결과이다.
도 3은 Col-0 에코타임 애기장대(Arabidopsis thaliana) 식물체(WT)와 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR)에 대한 RT-PCR 분석 결과이다.
도 4는 Col-0 에코타임 애기장대(Arabidopsis thaliana) 식물체(WT)와 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR)에 대한 qRT-PCR 분석 결과이다.
도 5는 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체 및 야생형(Columbia-0, Col0) 식물체를 7일 동안 성장시킨 묘목을 촬영한 사진이다.
도 6은 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체 및 야생형(Columbia-0, Col0) 식물체의 하배축 발아 길이를 측정하여 나타낸 그래프이다.
도 7은 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체 및 야생형(Columbia-0, Col0) 식물체의 뿌리 길이를 측정하여 나타낸 그래프이다.
도 8은 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체 및 야생형(Columbia-0, Col0) 식물체를 25일 동안 성장시킨 묘목을 촬영한 사진이다.
도 9는 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체 및 야생형(Columbia-0, Col0) 식물체를 25일 동안 성장시킨 묘목을 촬영한 사진이다.
도 10은 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체 및 야생형(Columbia-0, Col0) 식물체를 25일 동안 성장시킨 묘목의 FT 유전자 발현을 qRT-PCR로 측정하여 나타낸 그래프이다.
도 11은 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR) 및 야생형(Columbia-0, Col0) 식물체의 장각을 촬영한 사진이다.
도 12는 야생형(Columbia-0, Col0) 식물체, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체를 0 mM, 75 mM, 100 mM 또는 125 mM NaCl 첨가한 MS 배지에 7일간 생장시켰고, 종자 발아정도를 측정한 사진이다.
도 13은 야생형(Columbia-0, Col0) 식물체, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체를 0 mM 또는 150 mM NaCl 첨가한 MS 배지에 7일간 생장시킨 후, 묘목의 뿌리 길이를 측정한 사진이다.
도 14는 ABA 처리 조건에서 야생형(Columbia-0, Col0) 식물체, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체의 발아율을 비교한 결과이다.
도 15는 건조 스트레스 조건에서, 야생형(Columbia-0, Col0) 식물체, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체의 표현형을 비교한 결과이다.
도 16은 UP의 기능에 대한 가상 모델을 나타낸 것이다.
1 is a diagram showing a CRISPR region (red) in a UP mutant allele and a UP primer used in the present invention.
Figure 2 shows the results of genotyping analysis of the Col-0 Ecotime Arabidopsis thaliana plant (WT) and the transgenic plant (UP-CRISPR) prepared in Example 2.
Figure 3 shows the results of RT-PCR analysis of the Col-0 Ecotime Arabidopsis thaliana plant (WT) and the transgenic plant (UP-CRISPR) prepared in Example 2.
4 shows the results of qRT-PCR analysis of the Col-0 Ecotime Arabidopsis thaliana plant (WT) and the transgenic plant (UP-CRISPR) prepared in Example 2.
5 is a photograph of seedlings grown from a transgenic plant (UP-CRISPR) prepared in Example 2, a hos15 transgenic plant prepared from Comparative Example 1, and a wild type (Columbia-0, Col0) plant for 7 days. .
6 is a graph showing the measurement of hypocotyl germination length of transgenic plants (UP-CRISPR) prepared in Example 2, hos15 transgenic plants prepared in Comparative Example 1, and wild-type (Columbia-0, Col0) plants.
7 is a graph showing root lengths of transgenic plants (UP-CRISPR) prepared in Example 2, hos15 transgenic plants prepared in Comparative Example 1, and wild-type (Columbia-0, Col0) plants.
8 is a photograph of seedlings grown from a transgenic plant (UP-CRISPR) prepared in Example 2, a hos15 transgenic plant prepared from Comparative Example 1, and a wild-type (Columbia-0, Col0) plant for 25 days. .
9 is a photograph of seedlings grown from a transgenic plant (UP-CRISPR) prepared in Example 2, a hos15 transgenic plant prepared from Comparative Example 1, and a wild-type (Columbia-0, Col0) plant for 25 days. .
10 shows FT gene expression of seedlings grown for 25 days with transgenic plants (UP-CRISPR) prepared in Example 2, hos15 transgenic plants prepared in Comparative Example 1, and wild-type (Columbia-0, Col0) plants. It is a graph shown by measuring by qRT-PCR.
11 is a photograph of the long angles of transgenic plants (UP-CRISPR) and wild-type (Columbia-0, Col0) plants prepared in Example 2.
12 shows a wild-type (Columbia-0, Col0) plant, a transgenic plant prepared from Example 2 (UP-CRISPR), and a hos15 transgenic plant prepared from Comparative Example 1 in the presence of 0 mM, 75 mM, 100 mM, or 125 mM It was grown for 7 days in NaCl-added MS medium and the degree of seed germination was measured.
13 shows wild-type (Columbia-0, Col0) plants, transgenic plants prepared in Example 2 (UP-CRISPR), and hos15 transformed plants prepared in Comparative Example 1 in MS medium supplemented with 0 mM or 150 mM NaCl. This is a photograph of the root length of the seedling after growing for 7 days.
14 is a result of comparing the germination rates of wild-type (Columbia-0, Col0) plants, transgenic plants (UP-CRISPR) prepared in Example 2, and hos15 transgenic plants prepared in Comparative Example 1 under ABA treatment conditions.
15 is a result of comparing the phenotypes of wild-type (Columbia-0, Col0) plants, transgenic plants (UP-CRISPR) prepared from Example 2, and hos15 transgenic plants prepared from Comparative Example 1 under dry stress conditions. .
16 shows a virtual model for the function of UP.

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

G 단백질-미토겐활성화단백질키나이제 신호전달 체계와 관련된 사람의 GPS2(G protein pathway suppressor 2)는 NCOR1-HDAC3-TBL1 복합체로 기능을 하여, Ras, MAPK, JNK 신호전달을 억제하는 등 여러 생리학적 과정에 관여하는 것으로 알려져 있다. 이에 본 발명자들은 상기 GPS2의 동족체인, 식물에서의 서열번호 1로 표시되는 아미노산 서열을 지니는 UP(Uncharacterized Protein) 단백질을 발견하고, 상기 UP 유전자와 환경 스트레스 반응 간의 관련성을 연구하던 중, 애기장대의 UP 유전자가 식물의 발달, 개화, 앱시스산(ABA), 염 스트레스 및 건조 스트레스를 조절 및 제어하는 음성 또는 양성 조절자로서 작용함을 규명하여 본 발명을 완성하게 되었다.Human GPS2 (G protein pathway suppressor 2), which is related to the G protein-mitogen-activated protein kinase signal transduction system, functions as the NCOR1-HDAC3-TBL1 complex, suppressing Ras, MAPK, and JNK signaling, and has various physiological effects. known to be involved in the process. Accordingly, the present inventors discovered an uncharacterized protein (UP) protein having an amino acid sequence represented by SEQ ID NO: 1 in plants, which is a homolog of the GPS2, and while studying the relationship between the UP gene and the environmental stress response, Arabidopsis thaliana The present invention was completed by identifying that the UP gene functions as a negative or positive regulator that regulates and controls plant development, flowering, abscisic acid (ABA), salt stress, and drying stress.

본 발명의 일 측면은 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 발현을 조절하는 단계를 포함하는, 식물체의 성장, 개화 및 환경 스트레스에 대한 저항성을 조절하는 방법에 관한 것이다.One aspect of the present invention relates to a method for regulating the growth, flowering and resistance to environmental stress of a plant, comprising the step of regulating the expression of a gene encoding the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1 will be.

본 발명에서 종자 발아, 개화, UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자는 서열번호 2로 표시되는 것일 수 있다.In the present invention, the coding gene for seed germination, flowering, and UP protein (Unknown Protein, AT3G47850) may be represented by SEQ ID NO: 2.

상기 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 발현이 억제된 경우, 식물체의 성장이 감소되고 염분 스트레스와 ABA 스트레스에 대한 저항성이 낮아진 반면, 개화 시기는 빨라지고 건조 스트레스에 대한 저항성은 증가하는 것을 확인하였다. When the expression of the coding gene of the UP protein (Unknown Protein, AT3G47850) is suppressed, plant growth is reduced and resistance to salt stress and ABA stress is lowered, while flowering time is accelerated and resistance to drying stress is increased Confirmed.

본 발명에서 상기 UP 단백질(Unknown Protein, AT3G47850)은 서열번호 1로 표시되는 아미노산 서열로 이루어진 것일 수 있고, 상기 단백질의 기능적 동등물도 상기 UP 단백질의 범위에 포함된다. In the present invention, the UP protein (Unknown Protein, AT3G47850) may consist of the amino acid sequence represented by SEQ ID NO: 1, and functional equivalents of the protein are also included in the scope of the UP protein.

상기 "기능적 동등물"이란 아미노산의 부가, 치환 또는 결실의 결과, 상기 서열번호 1로 표시되는 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더 더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 1로 표시되는 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다. "실질적으로 동질의 생리활성"이란 식물체의 성장, 개화 및 환경 스트레스에 대한 저항성을 조절하는 활성을 의미한다.The "functional equivalent" means at least 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably, the amino acid sequence represented by SEQ ID NO: 1 as a result of addition, substitution or deletion of amino acids. More specifically, it refers to a protein that has a sequence homology of 95% or more and exhibits substantially the same physiological activity as the protein represented by SEQ ID NO: 1. "Substantially homogeneous physiological activity" means an activity that regulates plant growth, flowering and resistance to environmental stress.

본 발명에 따른 식물체의 성장, 개화 및 환경 스트레스에 대한 저항성을 조절하는 방법은, 상기 UP 단백질 코딩 유전자의 발현을 조절함으로써 형질전환 식물체를 제조함으로써 식물체의 성장, 개화 및 환경 스트레스에 대한 저항성을 선택적으로 조절할 수 있는 것이다. 구체적으로 ⅰ) 상기 UP 단백질 코딩 유전자를 결손시켜 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진시키거나; ⅱ) 상기 UP 단백질 코딩 유전자를 도입 및 과발현시켜 성장 촉진 및 염분 스트레스와 ABA 스트레스에 대한 저항성을 증진시키는 것일 수 있다.The method for regulating plant growth, flowering and resistance to environmental stress according to the present invention is to selectively control plant growth, flowering and resistance to environmental stress by preparing transgenic plants by regulating the expression of the UP protein-encoding gene. that can be adjusted with Specifically, i) shortening the flowering period and enhancing resistance to drying stress by deleting the UP protein coding gene; ii) It may be to introduce and overexpress the UP protein coding gene to promote growth and enhance resistance to salt stress and ABA stress.

PWR-HDA9-HOS15 복합체는 식물의 발달, 개화 등과 같은 성장 관련 과정과 환경 스트레스 관련 신호 전달 체계 등 여러 생리학적 과정에 관여를 하는 것으로 알려져 있다. 이와 관련된 단백질 혹은 유전자가 있는지 수 많은 실험을 통해 확인한 결과, 동물의 GPS2의 동족체인 UP 단백질을 규명하였다. 상기 UP 단백질이 식물의 발달, 개화, 환경 스트레스에 대하여 실질적 영향을 미치는지에 대하여 확인하기 위하여, 표현형 실험과 qRT-PCR 분석을 수행하였고, 그 결과 형질전환 식물체(UP-CRISPR)가 하배축 발달, 개화, ABA, 염 스트레스 그리고 건조 스트레스에 대하여 서열은 전혀 다르지만 hos15 유전자와 유사하게 기능한다는 것을 확인하였다. 이를 통해 UP 유전자가 PWR-HDA9-HOS15 복합체와 함께 여러 생리학적 과정에 기능한다는 것을 유추해볼 수 있다. 즉, UP 유전자는 애기장대(Arabidopsis thaliana) 내에서 성장, 개화시기, ABA, 염 및 건조 스트레스에 응답하여 신호 전달 기작을 조절하는데 중요한 역할을 한다는 것을 알 수 있다.The PWR-HDA9-HOS15 complex is known to be involved in various physiological processes, such as growth-related processes such as plant development and flowering, and environmental stress-related signal transduction systems. As a result of confirming through numerous experiments whether there is a protein or gene related to this, the UP protein, which is a homolog of GPS2 in animals, was identified. In order to confirm whether the UP protein has a substantial effect on plant development, flowering, and environmental stress, phenotypic experiments and qRT-PCR analysis were performed. , ABA, salt stress, and drying stress, it was confirmed that the sequence was completely different, but the function was similar to that of the hos15 gene. From this, it can be inferred that the UP gene functions in various physiological processes together with the PWR-HDA9-HOS15 complex. That is, it can be seen that the UP gene plays an important role in regulating signal transduction mechanisms in response to growth, flowering time, ABA, salt and dry stress in Arabidopsis thaliana .

도 16은 실험결과를 바탕으로 본 발명에 따른 UP의 기능에 대한 가상 모델을 나타낸 것으로, UP 단백질은 다기능을 지닌 단백질로 PWR-HOS15-HDA9과 함께 복합체를 이루어 하배축 발달, 개화 시기, 염 스트레스, ABA 반응 그리고 건조 스트레스를 포함한 여러 생리학적 과정에 관여하는 것으로 여겨진다. UP 단백질의 기능적 소실은 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진시키는 반면 UP 단백질의 발현은 성장 촉진 및 염분 스트레스와 ABA 스트레스에 대한 저항성을 증진시킨다. 따라서 UP 단백질 코딩 유전자의 발현을 조절함으로써, 원하는 목적에 따라 원하는 특징(성장, 개화시기, 스트레스에 대한 저항성)을 갖는 식물체를 제조할 수 있다.16 shows a virtual model for the function of the UP according to the present invention based on the experimental results. The UP protein is a multifunctional protein and forms a complex with PWR-HOS15-HDA9 to determine hypocotyl development, flowering time, salt stress, It is believed to be involved in several physiological processes including the ABA response and drying stress. Functional loss of UP protein shortens flowering time and enhances resistance to drying stress, whereas expression of UP protein promotes growth and enhances resistance to salt and ABA stress. Therefore, by regulating the expression of the UP protein-encoding gene, a plant having desired characteristics (growth, flowering time, resistance to stress) can be prepared according to a desired purpose.

상기 UP 단백질 코딩 유전자의 과발현은 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자를 포함하는 재조합 벡터를 이용하여 수행되는 것일 수 있으나, 유전자의 과발현을 유도하는 당업계의 통상의 방법이라면 특별히 이에 제한되지 않는다.Overexpression of the UP protein coding gene may be performed using a recombinant vector containing the coding gene of the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1, but conventional methods in the art for inducing overexpression of the gene The method is not particularly limited thereto.

상기 UP 단백질 코딩 유전자의 결손은 VIGS(Virus-induced gene silencing), RNAi 또는 안티센스 RNA, T-DNA 삽입, 내생 트랜스포존(transposon), 방사선 조사 또는 CRISPR/Cas9 유전자 교정 시스템을 통한 돌연변이 유발을 이용하여 수행될 수 있으나, 유전자의 발현을 억제하는 당업계의 통상의 방법이라면 특별히 이에 제한되지 않는다.Deletion of the UP protein coding gene is performed using virus-induced gene silencing (VIGS), RNAi or antisense RNA, T-DNA insertion, endogenous transposon, irradiation, or mutagenesis through the CRISPR/Cas9 gene editing system It may be, but it is not particularly limited thereto, as long as it is a conventional method in the art for inhibiting gene expression.

본 발명에서 용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호화된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.As used herein, the term "recombinant" refers to a cell that replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a peptide, a protein encoded by a heterologous peptide or a heterologous nucleic acid. Recombinant cells can express genes or gene segments not found in the cell's native form, either in sense or antisense form. A recombinant cell may also express a gene found in the cell in its natural state, but the gene has been reintroduced into the cell by artificial means as a modified one.

본 발명에서 상기 UP 단백질 코딩 유전자의 과발현을 위해 사용된 "재조합 벡터"는 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함할 수 있으며, 상기 벡터는 플라스미드 벡터, 코스미드 벡터, 박테리오파지 벡터 및 바이러스 벡터로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.In the present invention, the "recombinant vector" used for overexpression of the UP protein-encoding gene may contain essential regulatory elements operably linked to express the gene insert, and the vector may include a plasmid vector, a cosmid vector, a bacteriophage vector and It may be any one selected from the group consisting of viral vectors.

상기 UP 단백질 코딩 유전자의 과발현을 위해 사용된 "재조합 벡터"는 상기 UP 유전자가 발현될 수 있도록, 발현조절 서열과 기능적으로 연결되어 있다. 예를 들어, 벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널, 인핸서 같은 발현 조절 요소 외에도 막 표적화 또는 분비를 위한 신호서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 또한, 벡터는 선택성 마커를 포함할 수 있으며, 벡터는 자가 복제하거나 숙주 DNA에 통합될 수 있다. 본 발명의 벡터는 당해 기술 분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용한다.The “recombinant vector” used for overexpression of the UP protein-encoding gene is functionally linked to an expression control sequence so that the UP gene can be expressed. For example, vectors include expression control elements such as promoters, operators, initiation codons, stop codons, polyadenylation signals, and enhancers, as well as signal sequences or leader sequences for membrane targeting or secretion, and can be prepared in various ways depending on the purpose. . In addition, vectors can include selectable markers, and vectors can replicate autonomously or integrate into host DNA. The vector of the present invention can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cutting and ligation using enzymes generally known in the art.

상기 UP 단백질을 코딩하는 유전자의 결손은 UP 단백질 코딩 유전자에 VIGS (Virus-induced gene silencing) 시스템, siRNA, shRNA, miRNA, 리보자임(ribozyme), PNA(peptide nucleic acids), 안티센스 올리고핵산, T-DNA 삽입 또는 유전체/유전자 교정(genome/gene editing) 시스템 등을 이용하여 UP 단백질 코딩 유전자의 발현을 저해(억제)하는 것일 수 있으나, 이에 제한되지 않으며, 유전자의 발현을 저해하는 당업계의 통상의 방법이면 모두 가능할 수 있다.The deletion of the gene encoding the UP protein is a virus-induced gene silencing (VIGS) system, siRNA, shRNA, miRNA, ribozyme, peptide nucleic acids (PNA), antisense oligonucleic acid, T- It may be to inhibit (inhibit) the expression of a UP protein-coding gene using a DNA insertion or genome / gene editing system, etc., but is not limited thereto, and conventional methods in the art for inhibiting gene expression Any way can be possible.

상기 "VIGS(Virus-induced gene silencing)"는 바이러스 벡터에 식물유전자를 도입한 후 식물체를 감염시키면, 그 도입된 유전자의 내인성 식물유전자가 발현이 억제되는 현상을 말한다. 이는 PTGS(Post-transcriptionalgene silencing)의 일종으로서, 전사-후(post-transcriptional), RNA 턴오버(RNA turnover) 및 뉴클레오티드서열 특이적(nucleotide sequence-specific) 이라는 특징들을 가진다. The "VIGS (Virus-induced gene silencing)" refers to a phenomenon in which the expression of endogenous plant genes of the introduced genes is suppressed when a plant gene is introduced into a viral vector and then infected with a plant. This is a type of PTGS (Post-transcriptionalgene silencing), and has the characteristics of post-transcriptional, RNA turnover, and nucleotide sequence-specific.

상기 "T-DNA(Tranffered DNA)"는 Ti 플라스미드를 갖춘 토양세균인 Agrobacterium tumefaciens가 식물에 감염할 때 식물세포에 이행하는 Ti플라스미드의 영역으로서 양 끝이 25 염기쌍의 불완전한 직열반복배열(경계배열, border sequence)로 둘러싸여 있으며, T-DNA상에는 Agrobacterium에 의한 식물세포의 종양화에 관계하는 시토카인 합성유전자, 옥신합성 유전자 또는 오핀합성 유전자 등이 존재한다.The "T-DNA (Tranffered DNA)" is a region of Ti plasmid that is transferred to plant cells when Agrobacterium tumefaciens, a soil bacterium equipped with Ti plasmid, infects plants, and is an incomplete tandem repeat sequence of 25 base pairs at both ends (boundary sequence, border sequence), and there are cytokine synthesis genes, auxin synthesis genes, or opin synthesis genes related to the tumorigenization of plant cells by Agrobacterium on the T-DNA.

상기 "siRNA(small interfering RNA)"는 RNA 간섭 또는 유전자 사일런싱(silencing)을 매개할 수 있는 약 20 뉴클레오티드 크기의 작은 핵산 분자를 의미한다.The "small interfering RNA (siRNA)" refers to a small nucleic acid molecule with a size of about 20 nucleotides capable of mediating RNA interference or gene silencing.

상기 siRNA가 세포 내에 도입되면 다이서(dicer) 단백질에 의해 인지되어 상기 바이오마커 유전자를 분해하여 결국 유전자의 발현을 저해할 수 있다. 상기 siRNA는 공지된 siRNA를 직접 화학적으로 합성하는 방법(Sui G 등, (2002) Proc Natl Acad Sci USA 99:5515-5520), 실험적 환경에서 전사를 이용한 siRNA의 합성법(Brummelkamp TR 등, (2002) Science 296:550-553)에 의해 제조될 수 있으나, 이에 제한되는 것은 아니다.When the siRNA is introduced into cells, it is recognized by dicer protein and degrades the biomarker gene, eventually inhibiting gene expression. The siRNA is a method of directly chemically synthesizing known siRNA (Sui G et al., (2002) Proc Natl Acad Sci USA 99:5515-5520), a method of synthesizing siRNA using transcription in an experimental environment (Brummelkamp TR et al., (2002) Science 296: 550-553), but is not limited thereto.

상기 "shRNA(short hairpin RNA)"는 siRNA 타겟 서열의 센스 및 안티센스 서열이 5-9개의 염기로 구성된 루프(loop)를 사이에 두고 위치한 짧은 헤어핀 RNA(short hairpin RNA)를 의미한다.The "short hairpin RNA (shRNA)" refers to a short hairpin RNA in which the sense and antisense sequences of the siRNA target sequence are interposed with a loop consisting of 5 to 9 bases interposed therebetween.

상기 shRNA는 siRNA의 고가의 생합성 비용, 낮은 세포 형질감염 효율로 인한 RNA 간섭 효과의 단시간 유지 등의 단점을 극복하기 위한 것으로 RNA 중합효소 의 프로모터로부터 아데노 바이러스, 렌티 바이러스 및 플라스미드 발현 벡터 시스템을 이용하여 이를 세포 내로 도입하여 발현시킬 수 있으며, 상기 shRNA는 세포 내에 존재하는 siRNA 프로세싱 효소(Dicer or Rnase)에 의해 정확한 구조를 갖는 siRNA로 전환되어 목적 유전자의 사일런싱을 유도할 수 있다.The shRNA is to overcome the disadvantages of high cost of biosynthesis of siRNA, short-term maintenance of RNA interference effect due to low cell transfection efficiency, etc., using adenovirus, lentivirus and plasmid expression vector system from RNA polymerase promoter It can be introduced into a cell and expressed, and the shRNA is converted into a siRNA having a precise structure by a siRNA processing enzyme (Dicer or Rnase) present in the cell to induce silencing of the target gene.

상기 "miRNA(micro RNA)"는 생물의 유전자 발현을 제어하는 역할을 하는 하는 RNA 로서 통상의 mRNA가 수천개의 뉴클레오타이드(nucleotide)로 이루어진 데 반해 상기 miRNA는 20 내지 25개의 뉴클레오타이드로 구성될 수 있다.The "miRNA (micro RNA)" is RNA that plays a role in controlling the gene expression of organisms, and the miRNA may consist of 20 to 25 nucleotides, whereas normal mRNA consists of thousands of nucleotides.

상기 "리보자임(ribozyme)"은 RNA 스플라이싱(splicing), tRNA합성, 단백질 합성 등의 생화학 반응을 촉매하는 효소의 기능을 가진 RNA를 의미한다. The "ribozyme" refers to RNA having an enzyme function that catalyzes biochemical reactions such as RNA splicing, tRNA synthesis, and protein synthesis.

상기 "PNA(peptide nucleic acids)"는 DNA의 생화학적 불안정성을 보완하기 위해 유기합성으로 개발된 인공 DNA를 의미한다.The "PNA (peptide nucleic acids)" refers to artificial DNA developed through organic synthesis to compensate for the biochemical instability of DNA.

상기 "안티센스"는 안티센스 올리고머라고도 하며, 왓슨-크릭 염기쌍 형성에 의해 RNA 내의 표적 서열과 혼성화되어 표적 서열 내에서 mRNA와 RNA:올리고머 헤테로이중체를 형성할 수 있는 뉴클레오티드 염기의 서열 및 서브유닛간 백본을 갖는 올리고머를 의미한다. 상기 안티센스는 표적 서열에 대한 정확한 서열 상보성 또는 근사 상보성을 가질 수 있고, mRNA의 번역을 차단 또는 저해하며, mRNA의 스플라이스 변이체를 생산하는 mRNA의 프로세싱 과정을 변화시킬 수 있다.The "antisense" is also referred to as an antisense oligomer, and is hybridized with a target sequence in RNA by Watson-Crick base pairing to form an mRNA and RNA: oligomeric heteroduplex in the target sequence A sequence of nucleotide bases and a backbone between subunits It means an oligomer having The antisense may have exact sequence complementarity or near complementarity to the target sequence, block or inhibit translation of mRNA, and alter the processing of mRNA to produce splice variants of mRNA.

상기 "유전체/유전자 교정(genome/gene editing) 시스템"은 인간 세포를 비롯한 동ㅇ식물 세포의 유전체 염기서열에 표적지향형 변이를 도입할 수 있는 기술로서, DNA 절단에 의한 하나 이상의 핵산 분자의 결실(deletion), 삽입(insertion), 치환(substitutions) 등에 의하여 특정 유전자를 녹-아웃(knock-out) 또는 녹-인(knock-in)하거나, 단백질을 생성하지 않는 비-코딩(non-coding) DNA 서열에도 변이를 도입할 수 있는 기술을 말한다. 본 발명의 목적상 상기 유전체 교정은 특히 엔도뉴클레아제(endonuclease) 단백질 예컨대, Cas9(CRISPR associated protein 9) 단백질 및 가이드 RNA를 이용하여 식물체에 변이를 도입하는 것일 수 있다. 또한, 용어 '유전자 교정'은 '유전자 편집'과 혼용되어 사용될 수 있다.The "genome/gene editing system" is a technology capable of introducing target-directed mutations into genomic sequences of animal and plant cells, including human cells, and deletion of one or more nucleic acid molecules by DNA cleavage ( Deletion, insertion, substitution, etc., knock-out or knock-in of a specific gene, or non-coding DNA that does not produce a protein It refers to a technology that can introduce mutations into sequences. For the purposes of the present invention, the genome editing may be to introduce mutations into plants using endonuclease proteins, such as Cas9 (CRISPR associated protein 9) protein and guide RNA. Also, the term 'gene editing' may be used interchangeably with 'gene editing'.

상기 UP 단백질 코딩 유전자의 결손으로 바람직한 것은 유전체/유전자 교정(genome/gene editing) 시스템을 이용하여 수행되는 것일 수 있고, 이는 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)와 엔도뉴클레아제(endonuclease) 단백질의 복합체(ribonucleoprotein); 또는 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제(endonuclease) 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 이용하여 수행되는 것일 수 있다.Deletion of the UP protein coding gene may be preferably carried out using a genome/gene editing system, which is the target of the coding gene of the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1 a complex of nucleotide sequence-specific guide RNA and endonuclease protein (ribonucleoprotein); Or a recombinant vector containing DNA encoding a guide RNA specific to the target nucleotide sequence of the coding gene of the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1 and a nucleic acid sequence encoding an endonuclease protein It may be performed using ;.

상기 "표적 유전자"는 본 발명을 통해 교정하고자 하는 식물체의 유전체 내에, 서열번호 2로 표시되는 UP 유전자에 있는 일부 DNA를 의미하며, 코딩 영역 및 비-코딩 영역을 모두 포함할 수 있다. 당업자는 그 목적에 따라, 제조하고자 하는 유전체 교정 식물체에 대하여 원하는 변이에 따라 상기 표적 유전자를 선별할 수 있으며, 본 발명에서는 서열번호 4 또는 서열번호 5로 표시되는 UP 단백질의 코딩 유전자를 표적서열로 사용할 수 있다.The "target gene" refers to a part of DNA in the UP gene represented by SEQ ID NO: 2 in the genome of a plant to be corrected through the present invention, and may include both a coding region and a non-coding region. Depending on the purpose, those skilled in the art can select the target gene according to the desired mutation for the genome editing plant to be produced, and in the present invention, the coding gene of the UP protein represented by SEQ ID NO: 4 or SEQ ID NO: 5 is used as a target sequence can be used

본 발명에서 "가이드 RNA(guide RNA)"는 짧은 단일 가닥의 RNA로, 표적 유전자를 암호화하는 염기서열 중 표적 DNA에 특이적인 RNA를 포함하며, 표적 DNA 염기서열과 전부 또는 일부가 상보적으로 결합하여 해당 표적 DNA 염기서열로 엔도뉴클레아제 단백질을 이끄는 역할을 하는 리보핵산을 의미한다. 상기 가이드 RNA는 두 개의 RNA, 즉, crRNA(CRISPR RNA) 및 tracrRNA(trans-activating crRNA)를 구성 요소로 포함하는 이중 RNA(dual RNA); 또는 표적 유전자 내 염기서열과 전부 또는 일부 상보적인 서열을 포함하는 제1 부위 및 엔도뉴클레아제(특히, RNA-가이드 뉴클레아제)와 상호작용하는 서열을 포함하는 제2 부위를 포함하는 단일 사슬 가이드 RNA(single guide RNA, sgRNA) 형태를 말하나, 엔도뉴클레아제가 표적 염기서열에서 활성을 가질 수 있는 형태라면 제한없이 본 발명의 범위에 포함될 수 있으며, 함께 사용된 엔도뉴클레아제의 종류 또는 엔도뉴클레아제의 유래 미생물 등을 고려하여 당업계의 공지된 기술에 따라 제조하여 사용할 수 있다.In the present invention, "guide RNA" is a short single-stranded RNA, including RNA specific to a target DNA among base sequences encoding a target gene, and complementary in whole or in part to the target DNA base sequence. It means ribonucleic acid that serves to guide the endonuclease protein to the target DNA base sequence. The guide RNA is a dual RNA comprising two RNAs, that is, crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA) as components; or a single chain comprising a first region comprising a sequence complementary in whole or in part to a base sequence in a target gene and a second region comprising a sequence interacting with an endonuclease (particularly, an RNA-guided nuclease). Guide RNA (single guide RNA, sgRNA) form, but if the endonuclease can be active in the target sequence, it can be included in the scope of the present invention without limitation, and the type of endonuclease used together or endo It can be prepared and used according to known techniques in the art in consideration of the microorganism derived from the nuclease.

또한, 상기 가이드 RNA는 플라스미드 주형으로부터 전사된 것, 생체 외(in vitro)에서 전사된(transcribed) 것(예컨대, 올리고뉴클레오티드 이중가닥) 또는 합성한 가이드 RNA 등일 수 있으나, 이에 제한되지 않는다.In addition, the guide RNA may be a guide RNA transcribed from a plasmid template, transcribed in vitro (eg, oligonucleotide duplex), or synthesized guide RNA, but is not limited thereto.

본 발명에 있어서, 상기 가이드 RNA는 서열번호 4 또는 5의 염기서열로 이루어진 UP 단백질 코딩 유전자의 표적 염기서열에 특이적으로 고안된 것으로서, 상기 서열번호 4 또는 5의 염기서열에 특이적으로 고안된 가이드 RNA에 대한 정방향 올리고 및 역방향 올리고는 서열번호 4 내지 7로 표시될 수 있으며, InDel 돌연변이 유도 효율이 높은 것이 특징이다. In the present invention, the guide RNA is designed specifically for the target nucleotide sequence of the UP protein coding gene consisting of the nucleotide sequence of SEQ ID NO: 4 or 5, and the guide RNA designed specifically for the nucleotide sequence of SEQ ID NO: 4 or 5 Forward and reverse oligos may be represented by SEQ ID NOs: 4 to 7, and are characterized by high InDel mutation induction efficiency.

또한, 본 발명에 있어서, 상기 엔도뉴클레아제 단백질은 Cas9, Cpf1(CRISPR from Prevotella and Francisella 1), TALEN(Transcription activator-like effector nuclease), ZFN(Zinc Finger Nuclease) 및 이의 기능적 유사체로 이루어진 군으로부터 선택되는 하나 이상일 수 있고, 바람직하게는 Cas9 단백질일 수 있으나, 이에 제한되지 않는다.In addition, in the present invention, the endonuclease protein is from the group consisting of Cas9, Cpf1 (CRISPR from Prevotella and Francisella 1), TALEN (Transcription activator-like effector nuclease), ZFN (Zinc Finger Nuclease) and functional analogues thereof It may be one or more selected, preferably a Cas9 protein, but is not limited thereto.

또한, 상기 Cas9 단백질은 스트렙토코커스 피요제네스(Streptococcus pyogenes) 유래의 Cas9 단백질, 캠필로박터 제주니(Campylobacter jejuni) 유래의 Cas9 단백질, 스트렙토코커스 써모필러스(Streptococcus thermophilus) 또는 스트렙토코커스 아우레우스(Streptococcus aureus) 유래의 Cas9 단백질, 네이쎄리아 메닝기티디스(Neisseria meningitidis) 유래의 Cas9 단백질, 파스투렐라 물토시다(Pasteurella multocida) 유래의 Cas9 단백질, 프란시셀라 노비시다(Francisella novicida) 유래의 Cas9 단백질 등으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되지 않는다. Cas9 단백질 또는 이의 유전자 정보는 NCBI(National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터베이스에서 얻을 수 있다.In addition, the Cas9 protein is a Cas9 protein derived from Streptococcus pyogenes , a Cas9 protein derived from Campylobacter jejuni, Streptococcus thermophilus or Streptococcus aureus Cas9 protein derived from Neisseria meningitidis ( Neisseria meningitidis ) derived Cas9 protein, Pasteurella multocida ( Pasteurella multocida ) derived Cas9 protein, Francisella novicida ( Francisella novicida ) derived Cas9 protein, etc. It may be one or more selected from the group, but is not limited thereto. Cas9 protein or genetic information thereof can be obtained from known databases such as GenBank of National Center for Biotechnology Information (NCBI).

상기 Cas9 단백질은 RNA-guided DNA 엔도뉴클레아제 효소로, 이중 가닥 DNA 절단(double stranded DNA break)을 유도한다. Cas9 단백질이 정확하게 표적 염기서열에 결합하여 DNA 가닥을 잘라내기 위해서는 PAM(Protospacer Adjacent Motif)이라 알려진 3개의 염기로 이루어진 짧은 염기서열이 표적 염기서열 옆에 존재해야 하며, Cas9 단백질은 PAM 서열(NGG)로부터 3번째와 4번째 염기쌍 사이를 추정하여 절단한다.The Cas9 protein is an RNA-guided DNA endonuclease enzyme and induces double stranded DNA break. In order for the Cas9 protein to accurately bind to the target sequence and cut the DNA strand, a short sequence consisting of three bases known as PAM (Protospacer Adjacent Motif) must be present next to the target sequence, and the Cas9 protein has a PAM sequence (NGG) It is cut by estimating between the 3rd and 4th base pairs from .

상기 가이드 RNA와 엔도뉴클레아제 단백질은 리보핵산-단백질(ribonucleoprotein) 복합체를 형성하여 RNA 유전자 가위(RNA-Guided Engineered Nuclease, RGEN)로 작동할 수 있다.The guide RNA and the endonuclease protein may form a ribonucleoprotein complex to operate as RNA-Guided Engineered Nuclease (RGEN).

또한, UP 단백질(Unknown Protein, AT3G47850) 코딩 유전자를 구성하는 뉴클레오티드 서열 중 표적 영역에 특이적인 RNA 서열이며, 상기 표적 영역은 서열번호 4 또는 5의 염기서열인 것을 특징으로 하는 가이드 RNA을 제공한다.In addition, it is an RNA sequence specific to a target region among nucleotide sequences constituting a UP protein (Unknown Protein, AT3G47850) coding gene, and the target region provides a guide RNA characterized in that the nucleotide sequence of SEQ ID NO: 4 or 5.

본 발명에서 가이드 RNA는 표적 영역에 특이적인 RNA 서열 외에, 엔도뉴클레아제 결합 부위를 포함한다. 상기 엔도뉴클레아제는 바람직하게는 RNA-가이드 뉴클레아제일 수 있으나, 이에 제한되지 않는다. In the present invention, the guide RNA includes an endonuclease binding site in addition to the RNA sequence specific to the target region. The endonuclease may preferably be an RNA-guided nuclease, but is not limited thereto.

본 발명의 가이드 RNA는 단일 사슬 가이드 RNA(single guide RNA, sgRNA) 형태일 수 있다.The guide RNA of the present invention may be in the form of a single guide RNA (sgRNA).

또한, 상기 표적 영역에 특이적인 RNA 서열은 합성 시, PAM 염기로부터 20번째에 해당하는 표적 서열의 염기가 아데닌(adenine, A), 티민(thymine, T) 또는 시토신(cytosine, C)일 경우 구아닌(guanine, G)으로 대체하여 합성될 수 있다.In addition, when the RNA sequence specific to the target region is synthesized, when the base of the target sequence corresponding to the 20th base from the PAM base is adenine (A), thymine (T) or cytosine (cytosine (C)), guanine It can be synthesized by replacing it with (guanine, G).

본 발명의 실험예에 따르면, 본 발명에 따른 가이드 RNA는 서열번호 4 또는 5의 염기서열로 이루어진 UP 단백질 코딩 유전자의 표적 서열에서 삽입-결실(insertion-deletion, InDel) 돌연변이를 유도하며, 수 bp 크기(500 bp)의 결실 돌연변이를 일으키는 것을 확인하였다.According to the experimental example of the present invention, the guide RNA according to the present invention induces an insertion-deletion (InDel) mutation in the target sequence of the UP protein coding gene consisting of the nucleotide sequence of SEQ ID NO: 4 or 5, and several bp It was confirmed that a deletion mutation of the size (500 bp) was caused.

본 발명에서 사용된 CRISPR/Cas9 시스템은 교정하고자 하는 특정 유전자의 특정위치에 이중나선 절단을 도입하여 DNA 수선 과정에서 유도되는 불완전 수선에 의한 삽입-결실(insertion-deletion, InDel) 돌연변이를 유도시키는 NHEJ(non-homologous end joining) 기작에 의한 유전자 교정 방법이다.The CRISPR/Cas9 system used in the present invention introduces a double helix break at a specific position of a specific gene to be corrected, thereby inducing insertion-deletion (InDel) mutations caused by incomplete repair induced in the DNA repair process. (non-homologous end joining) is a gene editing method.

상기 가이드 RNA와 엔도뉴클레아제 단백질의 복합체를 식물세포에 형질도입하는 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens et al., 1982, Nature 296:72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8:363-373), 원형질체의 전기천공법(Shillito et al., 1985, Bio/Technol. 3:1099-1102), 식물 요소로의 현미주사법(Crossway et al., 1986, Mol. Gen. Genet. 202:179-185), 각종 식물 요소의(DNA 또는 RNA-코팅된) 입자 충격법(Klein et al., 1987, Nature 327:70), 아그로박테리움 튜메파시엔스(Agrobacterium tumefaciens) 매개된 유전자 전이에서(비완전성) 박테리아에 의한 감염 등으로부터 적당하게 선택될 수 있다.A method for transducing the complex of the guide RNA and endonuclease protein into plant cells is the calcium/polyethylene glycol method for protoplasts (Krens et al., 1982, Nature 296:72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8:363-373), electroporation of protoplasts (Shillito et al., 1985, Bio/Technol. 3:1099-1102), microinjection into plant elements (Crossway et al., 1986, Mol. Gen. Genet. 202:179-185), particle bombardment of various plant elements (DNA or RNA-coated) (Klein et al., 1987, Nature 327:70), Agrobacterium tumefaciens (Agrobacterium tumefaciens) mediated gene transfer (incomplete) infection by bacteria and the like.

또한, 상기 UP 단백질 코딩 유전자를 결손하는 방법에 있어서, 상기 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터를 이용하는 방법이 가장 바람직하며, 상기 재조합 벡터를 식물세포에 도입하여 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진된 형질전환 식물체를 제공할 수 있다.In addition, in the method of deleting the UP protein-encoding gene, a method using a recombinant vector containing DNA encoding a guide RNA specific to the target sequence and a nucleic acid sequence encoding an endonuclease protein is most preferred, , By introducing the recombinant vector into plant cells, it is possible to provide transgenic plants with reduced flowering time and improved resistance to drying stress.

상기 재조합 벡터는 상기 표적 DNA에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 삽입하고 이를 숙주세포 내에서 발현시킬 수 있는 발현 시스템을 포함하는 모든 플라스미드일 수 있다. 상기 플라스미드는 목적 유전자 발현을 위한 요소(elements)를 포함하는 것으로, 복제원점(replication origin), 프로모터, 작동 유전자(operator), 전사 종결 서열(terminator) 등을 포함할 수 있고, 숙주 세포의 게놈 내로의 도입을 위한 적절한 효소 부위(예컨대, 제한 효소 부위) 및/또는 임의로 숙주 세포 내로의 성공적인 도입을 확인하기 위한 선별 마커 및/또는 단백질로의 번역을 위한 리보좀 결합 부위(ribosome binding site; RBS) 및/또는 전사 조절 인자 등을 추가로 포함할 수 있다.The recombinant vector may be any plasmid including an expression system capable of inserting DNA encoding a guide RNA specific to the target DNA and a nucleic acid sequence encoding an endonuclease protein and expressing the same in a host cell. The plasmid contains elements for expression of a target gene, may include a replication origin, a promoter, an operator, a transcription terminator, and the like, and is incorporated into the genome of a host cell. A suitable enzyme site (e.g., restriction enzyme site) for introduction of and/or optionally a selectable marker to confirm successful introduction into a host cell and/or a ribosome binding site (RBS) for translation into a protein, and / or transcription regulators and the like may be further included.

본 발명에 따른 방법에 있어서, 상기 재조합 벡터를 식물세포에 도입하는 것은 형질전환 방법을 의미한다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 재조합 벡터를 적당한 선조 세포로 도입시키는데 이용될 수 있다. 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens et al., 1982, Nature 296: 72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8: 363-373), 원형질체의 전기천공법(Shillito et al., 1985, Bio/Technol. 3: 1099-1102), 식물 요소로의 현미주사법(Crossway et al.,1986, Mol. Gen. Genet. 202: 179-185), 각종 식물 요소의(DNA 또는 RNA-코팅된) 입자 충격법(Klein et al.,1987, Nature 327: 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 튜메파시엔스(Agrobacterium tumefaciens) 매개된 유전자 전이에서(비완전성) 바이러스에 의한 감염(EP 0 301 316호) 등으로부터 적당하게 선택될 수 있다. 본 발명에 따른 바람직한 방법은 아그로박테리움 매개된 DNA 전달을 포함한다.In the method according to the present invention, introducing the recombinant vector into plant cells refers to a transformation method. Transformation of plant species is now common for plant species including both dicotyledonous as well as monocotyledonous plants. In principle, any transformation method can be used to introduce the recombinant vectors according to the invention into suitable progenitor cells. Methods include the calcium/polyethylene glycol method for protoplasts (Krens et al., 1982, Nature 296: 72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8: 363-373), electroporation of protoplasts ( Shillito et al., 1985, Bio/Technol. 3: 1099-1102), microinjection into plant elements (Crossway et al., 1986, Mol. Gen. Genet. 202: 179-185), various plant elements ( DNA or RNA-coated) particle bombardment (Klein et al., 1987, Nature 327: 70), Agrobacterium tumefaciens mediated genes by infiltration of plants or transformation of mature pollen or microspores It can be suitably selected from infection by a virus in metastasis (incomplete) (EP 0 301 316) and the like. Preferred methods according to the present invention include Agrobacterium mediated DNA delivery.

본 발명에서 "식물체"는, 성숙한 식물체뿐만 아니라 성숙한 식물로 발육할 있는 식물 세포, 식물 조직 및 식물의 종자 등을 모두 포함하는 의미이다.In the present invention, "plant" is meant to include not only mature plants but also plant cells, plant tissues, and plant seeds capable of developing into mature plants.

상기 식물세포는 배양 세포, 배양 조직, 배양 기관 또는 전체 식물일 수 있고, 식물 조직은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 소포자, 난세포, 종자 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 식물 조직은 인 플란타(in planta)이거나 기관 배양, 조직 배양 또는 세포 배양 상태일 수 있다. The plant cell may be a cultured cell, a cultured tissue, a cultured organ, or a whole plant, and the plant tissue may be a differentiated or undifferentiated plant tissue, such as, but not limited to, roots, stems, leaves, pollen, microspores, and egg cells. , including various types of cells used for seed and culture, namely single cells, protoplasts, shoots and callus tissues. Plant tissue may be in planta or may be in organ culture, tissue culture or cell culture.

본 발명에서 상기 식물체는 특별히 제한되지 않으며, 일례로서 벼, 밀, 보리, 옥수수, 콩, 감자, 밀, 팥, 귀리 또는 수수를 포함하는 식량 작물류; 애기장대, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파 또는 당근을 포함하는 채소 작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩 또는 유채를 포함하는 특용작물류; 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구 또는 바나나를 포함하는 과수류; 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합 또는 튤립을 포함하는 화훼류; 및 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐 또는 페레니얼라이그라스를 포함하는 사료작물류로 이루어진 군으로부터 선택된 어느 하나이며, 구체적으로는 애기장대(Arabidopsis thaliana)이나, 이에 제한되지 않는다.In the present invention, the plant is not particularly limited, and as an example, food crops including rice, wheat, barley, corn, soybean, potato, wheat, red beans, oats or sorghum; vegetable crops including Arabidopsis, Chinese cabbage, radish, red pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, pumpkin, green onion, onion or carrot; Special crops including ginseng, tobacco, cotton, sesame, sugar cane, sugar beet, perilla, peanut or rapeseed; fruit trees including apple trees, pear trees, jujube trees, peaches, kiwi trees, grapes, tangerines, persimmons, plums, apricots or bananas; flowers including roses, gladiolus, gerberas, carnations, chrysanthemums, lilies or tulips; And any one selected from the group consisting of feed crops including ryegrass, red clover, orchard grass, alpha alpha, tall fescue or perennial ryegrass, specifically Arabidopsis thaliana ), but is not limited thereto.

상기 재조합 벡터가 도입된 형질전환 식물체들은 당업계에 공지된 표준 기술을 사용하여 캘러스 유도, 발근 및 토양 순화와 같은 과정을 거쳐 재분화시킬 수 있으며, 꺾꽂이, 접붙이기 등과 같은 무성번식방법 및 종자를 이용하여 유성번식방법에 의해 생산할 수 있다. Transgenic plants into which the recombinant vector is introduced can be regenerated through processes such as callus induction, rooting, and soil purification using standard techniques known in the art, and asexual propagation methods such as cuttings and grafting and seeds are used. It can be produced by sexual reproduction method.

본 발명의 다른 측면은 (a) 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)와 엔도뉴클레아제(endonuclease) 단백질의 복합체(ribonucleoprotein); 또는 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 식물세포에 도입하여 유전체를 교정하는 단계; 및Another aspect of the present invention is (a) a complex of a guide RNA specific to the target nucleotide sequence of the coding gene of the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1 and an endonuclease protein (ribonucleoprotein); Or a UP protein represented by SEQ ID NO: 1 (Unknown Protein, AT3G47850) Recombinant vector containing a DNA encoding a guide RNA specific to the target sequence of the coding gene and a nucleic acid sequence encoding an endonuclease protein; plant Correcting the genome by introducing into cells; and

(b) 상기 유전체가 교정된 형질전환 식물체를 재분화하는 단계;를 포함하는 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진된 형질전환 식물체의 제조방법에 관한 것이다.(b) regenerating the transgenic plant in which the genome has been corrected; and a method for producing a transgenic plant with improved resistance to drying stress and shortening of flowering period.

본 발명의 제조방법에 있어서, 상기 UP 단백질은 바람직하게는 서열번호 1의 아미노산 서열로 이루어진 단백질 및 상기 단백질의 기능적 동등물을 포함할 수 있고, 구체적인 내용은 전술한 것과 같다.In the production method of the present invention, the UP protein may preferably include a protein consisting of the amino acid sequence of SEQ ID NO: 1 and a functional equivalent of the protein, and details are as described above.

또한, 본 발명의 제조방법에 있어서, 상기 식물세포를 형질전환시키는 방법은 전술한 바와 같으며, 상기 형질전환된 식물세포로부터 형질전환 식물을 재분화하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다. 형질전환된 식물세포는 전식물로 재분화되어야 한다. 캘러스 또는 원형질체 배양으로부터 성숙한 식물의 재분화를 위한 기술은 수많은 여러 가지 종에 대해서 당업계에 주지되어 있다(Handbook of Plant Cell Culture, 1-5권, 1983-1989 Momillan, N.Y.).In addition, in the production method of the present invention, the method of transforming the plant cells is as described above, and the method of regenerating the transformed plants from the transformed plant cells can be any method known in the art. can Transformed plant cells must regenerate into whole plants. Techniques for regeneration of mature plants from callus or protoplast cultures are well known in the art for a number of different species (Handbook of Plant Cell Culture, Vols. 1-5, 1983-1989 Momillan, N.Y.).

식물의 형질전환에 이용되는 "식물세포"는 어떤 식물세포도 된다. 식물세포는 배양 세포, 배양 조직, 배양기관 또는 전체 식물이다. "식물 조직"은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 종자, 암 조직 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 식물 조직은 인 플란타(in planta)이거나 기관 배양, 조직배양 또는 세포 배양 상태일 수 있다. A "plant cell" used for plant transformation can be any plant cell. A plant cell is a cultured cell, cultured tissue, cultured organ or whole plant. "Plant tissue" refers to differentiated or undifferentiated plant tissues, such as but not limited to roots, stems, leaves, pollen, seeds, cancer tissues, and various types of cells used in culture, i.e., single cells, protoplasts. (protoplast), shoot and callus tissue. The plant tissue may be in planta or may be in organ culture, tissue culture or cell culture.

상기 UP 단백질을 코딩하는 유전자의 발현을 식물세포에서 저해시키면 비형질전환 식물체 즉, 야생형 식물체에 비해 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진시킬 수 있다.Inhibiting the expression of the gene encoding the UP protein in plant cells can shorten the flowering period and improve resistance to drying stress compared to non-transformed plants, that is, wild-type plants.

상기 UP 단백질 코딩 유전자의 결손은 VIGS(Virus-induced gene silencing), siRNA, shRNA, miRNA, 리보자임(ribozyme), PNA(peptide nucleic acids), 안티센스 올리고핵산, T-DNA 삽입 또는 유전체/유전자 교정(genome/gene editing) 시스템으로 식물세포를 형질전환시켜 UP 단백질 코딩 유전자의 발현을 억제하는 것일 수 있으나, 이에 제한되지 않으며, 당업계에 공지된 유전자 발현 저해 기술을 이용할 수 있다.The deletion of the UP protein coding gene is VIGS (Virus-induced gene silencing), siRNA, shRNA, miRNA, ribozyme (ribozyme), PNA (peptide nucleic acids), antisense oligonucleic acid, T-DNA insertion or genome / gene correction ( genome/gene editing) system to transform plant cells to inhibit the expression of UP protein-encoding genes, but is not limited thereto, and gene expression inhibition techniques known in the art may be used.

상기 유전체/유전자 교정(genome/gene editing) 시스템에 대해서는 상기 식물체의 성장, 개화 및 환경 스트레스에 대한 저항성을 조절하는 방법에서 서술한 바와 동일하므로, 이를 참조로 한다.Since the genome/gene editing system is the same as described in the method for controlling plant growth, flowering, and resistance to environmental stress, this reference is made.

본 발명은 상기 방법에 의해 제조된 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진된 형질전환 식물체 및 이의 종자를 제공한다.The present invention provides a transgenic plant and its seed with improved resistance to drying stress and reduced flowering period prepared by the above method.

본 발명에 따른 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진된 형질전환 식물체는 UP 단백질 코딩 유전자의 발현을 저해시켜 개화시기 단축 및 건조 스트레스에 대한 저항성이 증가된 것을 특징으로 한다.Transgenic plants with reduced flowering time and improved resistance to drying stress according to the present invention are characterized in that the expression of the UP protein-encoding gene is inhibited to shorten flowering time and increase resistance to drying stress.

본 발명에 따른 개화시기 단축 및 건조 스트레스에 대한 저항성이 증진된 형질을 가지는 유전체 교정 식물체는 UP 단백질 코딩 유전자를 CRISPR/Cas9 시스템을 이용하여 교정한 것으로, 애기장대 유래 UP 단백질 코딩 유전자인 AT3G47850 유전자가 녹-아웃된 유전체 교정 식물체이다.The genome-edited plant having improved resistance to drying stress and shortened flowering period according to the present invention is a UP protein-coding gene corrected using the CRISPR/Cas9 system, and the AT3G47850 gene, an Arabidopsis-derived UP protein-coding gene, is It is a knock-out genome correcting plant.

본 발명의 또 다른 측면은 상기 제조방법에 의해 제조된 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진된 형질전환 식물체에 관한 것이다.Another aspect of the present invention relates to a transgenic plant with improved resistance to drying stress and reduced flowering time produced by the above production method.

본 발명에서 용어 "형질전환"은, 유전물질인 DNA를 다른 계통의 살아 있는 세포에 주입했을 때, DNA가 그 세포에 들어가 유전형질(遺傳形質)을 변화시키는 현상으로, 형질변환, 형전환, 또는 형변환이라고도 한다.In the present invention, the term "transformation" is a phenomenon in which, when DNA as a genetic material is injected into a living cell of a different lineage, the DNA enters the cell and changes hereditary character. Also called type conversion.

본 발명에서 상기 식물체를 "형질전환"하는 것은 당업자에게 공지된 형질전환기술에 의해 수행될 수 있다. 구체적으로는, 아그로박테리움을 이용한 형질전환방법, 미세사출법(microprojectile bombardment), 일렉트로포레이션(electroporation), PEG-매개 융합법(PEG-mediated fusion), 미세주입법(microinjection), 리포좀 매개법(liposome-mediated method), 인-플란타 형질전환법(In planta transformation), 진공 침윤법(Vacuum infiltration method), 화아침지법(floral meristem dipping method) 또는 아그로박테리아 분사법(Agrobacterium spraying method)을 이용할 수 있으며, 보다 구체적으로는 아그로박테리움을 이용한 형질전환방법 또는 아그로박테리아 분사법(Agrobacterium spraying method)을 이용할 수 있다.In the present invention, "transformation" of the plant may be performed by a transformation technique known to those skilled in the art. Specifically, transformation method using Agrobacterium, microprojectile bombardment, electroporation, PEG-mediated fusion, microinjection, liposome mediation method ( liposome-mediated method), in-planta transformation, vacuum infiltration method, floral meristem dipping method, or Agrobacterium spraying method can be used. And, more specifically, a transformation method using Agrobacterium or an Agrobacterium spraying method may be used.

본 발명에서 "식물체"는, 성숙한 식물체뿐만 아니라 성숙한 식물로 발육할 있는 식물 세포, 식물 조직 및 식물의 종자 등을 모두 포함하는 의미이다.In the present invention, "plant" is meant to include not only mature plants but also plant cells, plant tissues, and plant seeds capable of developing into mature plants.

상기 식물세포는 배양 세포, 배양 조직, 배양 기관 또는 전체 식물일 수 있고, 식물 조직은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 소포자, 난세포, 종자 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 식물 조직은 인 플란타(in planta)이거나 기관 배양, 조직 배양 또는 세포 배양 상태일 수 있다. The plant cell may be a cultured cell, a cultured tissue, a cultured organ, or a whole plant, and the plant tissue may be a differentiated or undifferentiated plant tissue, such as, but not limited to, roots, stems, leaves, pollen, microspores, and egg cells. , including various types of cells used for seed and culture, namely single cells, protoplasts, shoots and callus tissues. Plant tissue may be in planta or may be in organ culture, tissue culture or cell culture.

본 발명에서 상기 식물체는 특별히 제한되지 않으며, 일례로서 벼, 밀, 보리, 옥수수, 콩, 감자, 밀, 팥, 귀리 또는 수수를 포함하는 식량 작물류; 애기장대, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파 또는 당근을 포함하는 채소 작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩 또는 유채를 포함하는 특용작물류; 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구 또는 바나나를 포함하는 과수류; 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합 또는 튤립을 포함하는 화훼류; 및 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐 또는 페레니얼라이그라스를 포함하는 사료작물류로 이루어진 군으로부터 선택된 어느 하나이며, 구체적으로는 애기장대(Arabidopsis thaliana)이나, 이에 제한되지 않는다.In the present invention, the plant is not particularly limited, and as an example, food crops including rice, wheat, barley, corn, soybean, potato, wheat, red beans, oats or sorghum; vegetable crops including Arabidopsis, Chinese cabbage, radish, red pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, pumpkin, green onion, onion or carrot; Special crops including ginseng, tobacco, cotton, sesame, sugar cane, sugar beet, perilla, peanut or rapeseed; fruit trees including apple trees, pear trees, jujube trees, peaches, kiwi trees, grapes, tangerines, persimmons, plums, apricots or bananas; flowers including roses, gladiolus, gerberas, carnations, chrysanthemums, lilies or tulips; And any one selected from the group consisting of feed crops including ryegrass, red clover, orchard grass, alpha alpha, tall fescue or perennial ryegrass, specifically Arabidopsis thaliana ), but is not limited thereto.

본 발명에서 상기 형질전환된 식물체는 UP 단백질 또는 이를 코딩하는 유전자를 발현하지 않으므로, 상기 UP 단백질 코딩 유전자 또는 UP 단백질 코딩 유전자를 타겟으로 하는 sgRNA를 포함하는 CRISPR/Cas9 시스템을 통해 식물체에 존재하는 UP의 발현을 억제할 수 있다.In the present invention, since the transformed plant does not express the UP protein or the gene encoding it, the UP present in the plant through the CRISPR/Cas9 system containing the UP protein-encoding gene or the sgRNA targeting the UP protein-encoding gene expression can be inhibited.

본 발명의 실험예에 따르면, 애기장대 유래의 UP 유전자가 결실된 형질전환체를 제작하기 위하여 CRISPR/Cas9 시스템을 사용하여, 형질전환체를 제작하였다. 대조군(야생형 애기장대)와 형질전환 식물체(UP-CRISPR)에서의 개화정도를 측정하였다. 그 결과 야생형인 애기장대보다 형질전환 식물체(UP-CRISPR)의 개화시기가 현저히 빠르게 진행되었으며, 개화와 관련된 FT 유전자 발현도 유의적으로 높게 발현된다는 것을 확인하였다(도 8, 9). 또한, 건조 스트레스에 대한 방어 반응에서 UP 유전자 기능을 확인하기 위하여, 야생형(Columbia-0, Col0) 식물체, 형질전환 식물체(UP-CRISPR)의 표현형과 생존율을 확인한 결과, 형질전환 식물체(UP-CRISPR)의 종자가 야생형 애기장대에 비해 생존율이 현저히 높은 것을 확인하였다(도 15).According to the experimental example of the present invention, a transformant was prepared using the CRISPR/Cas9 system to prepare a transformant in which the Arabidopsis-derived UP gene was deleted. The degree of flowering in the control group (wild-type Arabidopsis thaliana) and transgenic plants (UP-CRISPR) was measured. As a result, it was confirmed that the flowering time of the transgenic plant (UP-CRISPR) proceeded significantly faster than that of wild-type Arabidopsis thaliana, and the expression of the FT gene related to flowering was also significantly higher (Figs. 8 and 9). In addition, in order to confirm the UP gene function in the defense response to drying stress, as a result of confirming the phenotype and survival rate of wild-type (Columbia-0, Col0) plants and transgenic plants (UP-CRISPR), transgenic plants (UP-CRISPR It was confirmed that the seeds of ) had a significantly higher survival rate than wild-type Arabidopsis thaliana (FIG. 15).

상기의 결과를 통해, 본 발명의 형질전환된 식물체는 개화시기 및 건조 스트레스 저항성 유전자인 UP 유전자의 세포 내 발현 수준을 억제하여, 개화 시기를 촉진하고, 성장 단계에서 문제가 되는 건조 스트레스에 대한 저항성을 증진시킬 수 있음을 확인하였다.Through the above results, the transformed plant of the present invention suppresses the intracellular expression level of the UP gene, which is a gene for flowering time and dry stress resistance, promotes flowering time, and resistance to drying stress, which is a problem in the growth stage was confirmed to be able to improve.

본 발명의 또 다른 측면은 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)와 엔도뉴클레아제(endonuclease) 단백질의 복합체(ribonucleoprotein); 또는 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제(endonuclease) 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;을 유효성분으로 함유하는 식물체의 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진시키는 유전체 교정용 조성물에 관한 것이다. 본 발명의 조성물은 유효성분으로 식물체의 성장, 개화시기 및 환경 스트레스에 대한 저항성을 조절할 수 있는 애기장대 유리 UP 단백질 코딩 유전자를 포함하며, 상기 유전자의 발현이 저해되면, 식물체의 개화시기 단축 및 건조 스트레스에 대한 저항성을 증가시킬 수 있다Another aspect of the present invention is a complex of guide RNA and endonuclease protein specific for the target nucleotide sequence of the coding gene of the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1 (ribonucleoprotein ); Or a recombinant vector containing DNA encoding a guide RNA specific to the target nucleotide sequence of the coding gene of the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1 and a nucleic acid sequence encoding an endonuclease protein It relates to a composition for genome correction that improves resistance to drying stress and shortens the flowering period of plants containing ; as an active ingredient. The composition of the present invention contains, as an active ingredient, an Arabidopsis thaliana free UP protein coding gene capable of controlling plant growth, flowering time and resistance to environmental stress. May increase resistance to stress

이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명하기로 한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. However, these examples are intended to explain the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited thereto.

실험재료 및 실험방법Experiment material and experiment method

식물 재료 및 성장조건Plant materials and growing conditions

애기장대(Arabidopsis thaliana) 야생형(Columbia-0, Col0) 1종과 형질전환 식물체의 종자를 3 × 3 mm 간격으로 파종하였다. 종자는 5% 소듐 하이포클로라이트 및 0.15% Triton-X 100에서 7분 동안 표면 살균하고 증류수로 세척한 후, MS 플레이트(0.5× Murashige-Skoog salts, pH 5.7; 1.5 % sucrose; 및 0.6% agar)에서 생장시켰다. 상기 MS 배지에서 110 μmolm-2s-1의 빛 강도 하에서 1주일간 발아 및 생장시킨 후, 16 h/8 h 낮:밤의 주기를 가지고 65% 습도를 유지하는 22 ℃ 챔버로 옮겨 2 주간 생장시켰으며, 흙으로 옮겨 심은 애기장대는 장일조건(16h light/8h dark, 70-90 uE m-2sec-1)과 22-23℃의 환경조건이 조성된 식물생장조절실에서 생장하였다.Seeds of Arabidopsis thaliana wild type (Columbia-0, Col0) and transgenic plants were sown at intervals of 3 × 3 mm. Seeds were surface sterilized in 5% sodium hypochlorite and 0.15% Triton-X 100 for 7 minutes, washed in distilled water, and then plated on MS plates (0.5× Murashige-Skoog salts, pH 5.7; 1.5% sucrose; and 0.6% agar). was bred in After germination and growth for 1 week under a light intensity of 110 μmolm -2 s -1 in the MS medium, transfer to a 22 ℃ chamber maintaining 65% humidity with a 16 h / 8 h day: night cycle and grow for 2 weeks. Arabidopsis thaliana transplanted into soil was grown in a plant growth control room with long-day conditions (16h light/8h dark, 70-90 uE m -2 sec -1 ) and environmental conditions of 22-23 ° C.

ABA, 염 및 건조 스트레스 처리ABA, salt and drying stress treatment

건조 스트레스는 식물체를 2 주간 생장시킨 후 사각 폿트에 상토를 채운 후 폿트에 옮겨담고, 1주간 정상 생장시킨 뒤, 14일간 급수를 중단하고, 7일간 재 급수하여 건조 스트레스에 노출시키고 생존율을 평가하였다.For dry stress, the plants were grown for 2 weeks, filled with soil in a square pot, transferred to the pot, allowed to grow normally for 1 week, stopped watering for 14 days, watered again for 7 days, exposed to drying stress, and the survival rate was evaluated. .

염 스트레스는 식물체를 0 mM, 75 mM, 100 mM 또는 125 mM의 NaCl을 첨가한 MS 배지에서 7일간 생장시킨 후, 식물체의 발아율과 뿌리 길이를 측정하였다.For salt stress, the plants were grown in MS medium supplemented with 0 mM, 75 mM, 100 mM or 125 mM NaCl for 7 days, and then the germination rate and root length of the plants were measured.

ABA 호르몬 처리는 식물체를 0 μM, 0.2 μM 또는 0.5 μM 농도의 ABA(SIGMA)를 함유한 MS 배지에서 6일 또는 10일간 생장시킨 후, 식물체의 발아율을 측정하였다.In the ABA hormone treatment, the plants were grown in MS medium containing 0 μM, 0.2 μM or 0.5 μM of ABA (SIGMA) for 6 or 10 days, and then the germination rate of the plants was measured.

ABA, 염 및 건조 스트레스 처리한 후 식물체로부터 조직을 샘플링한 후, 상기 조직을 액체질소에 냉동시켰다. 냉동된 조직은 막자사발에 마쇄한 후 총 RNA 추출하였다.Tissues were sampled from plants after treatment with ABA, salt and drying stress, and then the tissues were frozen in liquid nitrogen. The frozen tissues were ground in a mortar and total RNA was extracted.

RNA 추출 및 RT-PCRRNA extraction and RT-PCR

RNeasy kit(Qiagen, Valencia, CA, USA)를 사용하여 총 RNA를 분리하였다. 분리된 총 RNA에 DNase I(Qiagen, Valencia, CA, USA) 처리하여 게놈 DNA를 제거하였다. 총 RNA 2 ㎍(0.1 ㎍/㎕ 농도의 RNA을 20 ㎕ 사용)를 cDNA 합성 kit(Invitrogen, Carlsbad, CA, USA)를 사용하여 PCR을 통해 첫 번째 가닥 cDNA를 합성하였다. UP 서열을 이용하여 특이 프라이머를 설계하였다. ACTIN2를 대조군으로 사용하였다. RT-PCR 분석에 사용된 프라이머는 하기 표 1에 기입하였다.Total RNA was isolated using the RNeasy kit (Qiagen, Valencia, CA, USA). The isolated total RNA was treated with DNase I (Qiagen, Valencia, CA, USA) to remove genomic DNA. First-strand cDNA was synthesized from 2 μg of total RNA (20 μl of RNA at a concentration of 0.1 μg/μl) by PCR using a cDNA synthesis kit (Invitrogen, Carlsbad, CA, USA). Specific primers were designed using the UP sequence. ACTIN2 was used as a control. Primers used for RT-PCR analysis are listed in Table 1 below.

정량 RT-PCR(qRT-PCR) 분석을 위해 총 RNA 2 ㎍을 cDNA 합성 kit(Invitrogen, Carlsbad, CA, USA)를 사용하여 PCR을 통해 첫 번째 가닥 cDNA를 합성하였다. QuantiSpeed SYBR No-Rox Mix(PhileKorea, Seoul, Korea)를 다음과 같은 qRT-PCR을 위해 사용하였다. 50 ℃ 10분, 95 ℃ 2분, 40 주기, 95 ℃ 5초, 60 ℃ 30초의 조건으로 반복하였다. ACTIN2를 RNA 일반화에 사용하였다. 모든 시료의 상대적 발현 수준을 CFX 관리 프로그램(Bio-Rad, Hercules, CA, USA)을 사용하여 자동적으로 계산하고 세 번의 생물학적 전사를 수행하였다. qRT-PCR 분석에 사용된 프라이머는 표 1에 기입하였다. 합성된 PCR 산물은 전기영동에 의해 발현정도를 조사하였다.For quantitative RT-PCR (qRT-PCR) analysis, first-strand cDNA was synthesized from 2 μg of total RNA by PCR using a cDNA synthesis kit (Invitrogen, Carlsbad, CA, USA). QuantiSpeed SYBR No-Rox Mix (PhileKorea, Seoul, Korea) was used for the following qRT-PCR. Conditions of 50 ° C. for 10 minutes, 95 ° C. for 2 minutes, 40 cycles, 95 ° C. for 5 seconds, and 60 ° C. for 30 seconds were repeated. ACTIN2 was used for RNA generalization. The relative expression levels of all samples were automatically calculated using the CFX management program (Bio-Rad, Hercules, CA, USA) and biological transcription was performed three times. Primers used for qRT-PCR analysis are listed in Table 1. The synthesized PCR product was examined for expression level by electrophoresis.

프라이머 명칭Primer name 서열(5'-3')Sequence (5'-3') sgR_U6_KpnI-FsgR_U6_KpnI-F GTGGTACCCATTCGGAGTTTTTGTATCT (서열번호: 12)GTGGTACCCATTCGGAGTTTTTGTATCT (SEQ ID NO: 12) sgR_end_EcoRI-RsgR_end_EcoRI-R ACGAATTCGCCATTTGTCTGCAGAATTG (서열번호: 13)ACGAATTCGCCATTTGTCTGCAGAATTG (SEQ ID NO: 13) UP-FL-FUP-FL-F ATGCAAGTCGAAATCCCATCG
(서열번호: 14)
ATGCAAGTCGAAATCCCATCG
(SEQ ID NO: 14)
UP-FL-RUP-FL-R AATTCCATGGACTCTGAAGCCG
(서열번호: 15)
AATTCCATGGACTCTGAAGCCG
(SEQ ID NO: 15)
ACTIN2-RT-FACTIN2-RT-F TGGGATGAACCAGAAGGATG
(서열번호: 16)
TGGGATGAACCAGAAGGATG
(SEQ ID NO: 16)
ACTIN2-RT-RACTIN2-RT-R AAGAATACCTCTCTTGGATTGTGC
(서열번호: 17)
AAGAATACCTCTCTTGGATGTGC
(SEQ ID NO: 17)
qRT-FqRT-F GAAGTGGAGGAGAGATTACAAG
(서열번호: 18)
GAAGTGGAGGAGAGATTACAAG
(SEQ ID NO: 18)
qRT-RqRT-R AAGAGAAGGACGAGTGGCTA
(서열번호: 19)
AAGAGAAGGACGAGTGGCTA
(SEQ ID NO: 19)
ACTIN2-qRT-FACTIN2-qRT-F CGAGAAGAACTATGAATTACCC
(서열번호: 20)
CGAGAAGAACTATGAATTACCC
(SEQ ID NO: 20)
ACTIN2-qRT-RACTIN2-qRT-R GAGTTATAGGTTGTCTCGTGGA
(서열번호: 21)
GAGTTATAGGTTGTCTCGTGGA
(SEQ ID NO: 21)

지노타이핑(Genotyping)Genotyping

PCR 반응 산물과 이의 증류수 희석액을 5배 부피의 5nM Sytoㄾ 9 (InvitrogenTM)과 12.5 mM의 EDTA 및 5 mM의 Tris(pH 8.0)가 포함된 probe 용액과 섞어서 최종 PCR 산물의 희석배수가 6X 내지 96X가 되게 한 후 Lightcyclerㄾ 2.0 instrument(Roche Diagnostics)를 사용하여 온도반응을 실시하였다. 반응은 95℃ 5초간 변성시키고 60℃에서 1분간 상보적 나선간의 어닐링(annealing)을 유도한 뒤, 온도를 0.1℃/초로 점차 올리면서 형광을 측정하였다. 지노타이핑(Genotype)은 각 UP가 변성되는 온도에 기초하여 결정하였다.The PCR reaction product and its distilled water dilution were mixed with a probe solution containing 5 nM Sytoㄾ 9 (Invitrogen TM ), 12.5 mM EDTA, and 5 mM Tris (pH 8.0) in a 5-fold volume, and the dilution factor of the final PCR product was 6X to 6X. After setting the temperature to 96X, a temperature response was performed using a Lightcyclerㄾ 2.0 instrument (Roche Diagnostics). The reaction was denatured at 95° C. for 5 seconds and annealed between complementary helices was induced at 60° C. for 1 minute, and fluorescence was measured while gradually raising the temperature at 0.1° C./sec. Genotype was determined based on the temperature at which each UP was denatured.

실시예 1. CRISPR/Cas9 시스템을 이용한 UP 유전자 타겟 재조합 벡터 제작Example 1. Construction of UP gene targeting recombinant vector using CRISPR/Cas9 system

UP 유전자 sgRNA 선발UP gene sgRNA selection

CRISPR RGEN Tools 웹사이트(www.rgenome.net/Cas-designer)에서 동물의 GPS2 유전자의 동족체인 UP 유전자 서열을 이용하여 표적 염기서열(서열번호 4 또는 서열번호 5)에 특이적인 sgRNA를 선발하였다. 상기 sgRNA는 여러가지 조건들(GC contents, out of frame score, 및 게놈 서열내 mismatch number 등)을 반영하여 선발되었다.On the CRISPR RGEN Tools website (www.rgenome.net/Cas-designer), sgRNA specific to the target sequence (SEQ ID NO: 4 or SEQ ID NO: 5) was selected using the UP gene sequence, which is a homolog of the GPS2 gene of animals. The sgRNA was selected by reflecting various conditions (GC contents, out of frame score, mismatch number in genome sequence, etc.).

Guide oligonulceotides 제작Production of guide oligonulceotides

UP 유전자의 표적 서열을 토대로 아래와 같이 DNA 올리고(oligo)를 합성하였다.Based on the target sequence of the UP gene, a DNA oligo was synthesized as follows.

sgRNA-1 ; sgRNA-1;

정방향 올리고 1(Forward oligo1): GATT GGTGGCGATATCTATGTACAG (서열6)Forward oligo1: GATT GGTGGCGATATCTATGTACAG (SEQ ID NO: 6)

역방향 올리고 1(Reverse oligo1): AAAC CTGTACATAGATATCGCCAC C(서열7)Reverse oligo1: AAAC CTGTACATAGATATCGCCAC C (SEQ ID NO: 7)

sgRNA-2 ; sgRNA-2;

정방향 올리고 2(Forward oligo2): GATT GGTTGGTACTCACATGGAAGG (서열8)Forward oligo2: GATT GGTTGGTACTCACATGGAAGG (SEQ ID NO: 8)

역방향 올리고 2(Reverse oligo2): AAAC CCTTCCATGTGAGTACCAAC C(서열9)Reverse oligo2: AAAC CCTTCCATGTGAGTACCAAC C (SEQ ID NO:9)

상기 서열에서 볼드 및 밑줄 표시된 부분은 PAM 서열을 제외한 sgRNA에 해당하며 역방향 올리고는 정방향 올리고에 대한 역상보체(reverse complement)이다. 차후에 있는 결합(ligation)을 위하여 두 올리고(oligo) 앞 쪽에 어댑터(adaptor) 서열을 첨가하였다. The bold and underlined portions in the sequence correspond to sgRNAs excluding the PAM sequence, and the reverse oligo is the reverse complement to the forward oligo. Adapter sequences were added in front of the two oligos for subsequent ligation.

sgRNA-Cas9 플라스미드 제작Construction of sgRNA-Cas9 plasmid

1 ㎕ 정방향 올리고(100 μmol/L), 1 ㎕ 역방향 올리고(100 μmol/L), 1 ㎕ 10X T4 DNA 리가아제 완충액(ligase buffer), 6.5 ㎕ ddH20, 0.5 ㎕ T4 PNK(polynucleotide kinase)(10 U/㎕)(New England Biolab)를 섞어 열순환기(Thermocycler)(Biorad)에 37 ℃ 30분, 95 ℃ 5분동안 처리한 후 0.2 ℃/s에 25 ℃로 램프 다운(ramp down)시켜서 올리고(oligo) 쌍을 듀플렉스(duplex)가 되도록 인산화시켰다. 상술한 과정을 통해 제조된 올리고 듀플렉스(oligo duplex)는 1;250으로 희석시켰다. 0.5 ㎍ psgR-Cas9-At 벡터, 1 ㎕ BbsI(10 U/㎕)(New England Biolab) 1 ㎕ CIAP(Alkaline phosphatase, calf intestinal)(10 U/㎕)(New England Biolab), 4 ㎕ 10X NEBuffer 2.1, X ㎕ ddH20를 섞어 psgR-Cas9-At를 BbsI에 2시간 37 ℃ 반응을 시켜 절단된 벡터를 준비하였다. 절단된 벡터(10 ng), 1 ㎕ 1:250 희석된 올리고 듀플렉스(oligo duplex), 1 ㎕ 10X T4 DNA 리가아제 완충액(ligase buffer), 0.5 ㎕ T4 DNA 리가아제(400 U/㎕)(New England Biolab), ddH20를 섞어 16 ℃ 2시간동안 처리하여 올리고 듀플렉스(oligo duplex)와 BbsI에 의해 절단된 벡터를 연결시킨다. 해당 산물을 대장균(E.coli)에 형질전환(transformton)시킨 후, 미니프렙(mini-prep)을 해서 1X sgRNA1-Cas9 플라스미드와 1X sgRNA2-Cas9 플라스미드를 얻었다.1 μl forward oligo (100 μmol/L), 1 μl reverse oligo (100 μmol/L), 1 μl 10X T4 DNA ligase buffer, 6.5 μl ddH20, 0.5 μl T4 polynucleotide kinase (PNK) (10 U/μl) (New England Biolab) was mixed and treated in a thermocycler (Biorad) at 37 ° C for 30 minutes and at 95 ° C for 5 minutes, and then at 0.2 ° C / s. Oligo pairs were phosphorylated to duplex by ramping down to 25 °C. The oligo duplex prepared through the above process was diluted 1:250. 0.5 μg psgR-Cas9-At vector, 1 μlBbsI (10 U/μl) (New England Biolab) 1 μl Alkaline phosphatase, calf intestinal (CIAP) (10 U/μl) (New England Biolab), 4 μl 10X NEBuffer 2.1, X μl ddH20 to make psgR-Cas9-AtBbsI was reacted at 37 °C for 2 hours to prepare a cut vector. Digested vector (10 ng), 1 μl 1:250 diluted oligo duplex, 1 μl 10X T4 DNA ligase buffer, 0.5 μl T4 DNA ligase (400 U/μl) (New England Biolab), ddH20 and treated at 16 ° C for 2 hours to form oligo duplex andBbsThe vectors cut by I are concatenated. E. coli (E. coli), and mini-prep was performed to obtain 1X sgRNA1-Cas9 plasmid and 1X sgRNA2-Cas9 plasmid.

sgRNA1 및 sgRNA2의 공동발현 플라스미드 제작Construction of sgRNA1 and sgRNA2 co-expression plasmids

sgRNA1 및 sgRNA를 공동발현하는 플라스미드를 제작하기 위하여 우선, 하기 PCR을 통해 1X sgRNA2-Cas9 플라스미드로부터 sgRNA2를 증폭시켰다.To construct a plasmid co-expressing sgRNA1 and sgRNA, first, sgRNA2 was amplified from 1X sgRNA2-Cas9 plasmid through the following PCR.

AtU6-F-KpnI(서열 10)AtU6-F-KpnI (SEQ ID NO: 10)

: 5'-gtggtaccCATTCGGAGTTTTTGTATCTTGTTTC-3': 5'-gtggtaccCATTCGGAGTTTTTGTATCTTGTTTC-3'

sgR-R-EcoRI(서열 11)sgR-R-EcoRI (SEQ ID NO: 11)

: 5'-acgaattcacgaattcGCCATTTGTCTGCAGAATTGGC-3': 5'-acgaattcacgaattcGCCATTTGTCTGCAGAATTGGC-3'

0.4 ㎕ AtU6-F-KpnI(10 μmol/L), 0.4 ㎕ sgR-R-EcorI(10 μmol/L), 10 ㎕ 2X PCR Buffer for KOD FX, 5 ㎕ dNTP(2 mmol/l) 1 ㎕ 1X sgRNA2-Cas9 플라스미드 (10 ng), 0.5 ㎕ KOD FX DNA 중합효소(polymerase)(1 U/㎕)(Toyoba). 94 ℃ 2 분, (98 ℃ 10초, 68 ℃ 30초) x 35 사이클, 68 ℃ 5분, 12 ℃. PCR을 완료하고, PCR 산물을 전기영동으로 분리한 후, PCR clean-up system(Promega)을 통해 DNA를 추출하였다.0.4 μl AtU6-F-KpnI (10 μmol/L), 0.4 μl sgR-R-EcorI (10 μmol/L), 10 μl 2X PCR Buffer for KOD FX, 5 μl dNTP (2 mmol/l) 1 μl 1X sgRNA2 -Cas9 plasmid (10 ng), 0.5 μl KOD FX DNA polymerase (1 U/μl) (Toyoba). 94 °C 2 min, (98 °C 10 sec, 68 °C 30 sec) x 35 cycles, 68 °C 5 min, 12 °C. PCR was completed, PCR products were separated by electrophoresis, and DNA was extracted through a PCR clean-up system (Promega).

상술한 과정을 통해 회수한 sgRNA2의 PCR 산물(100 ng)과 1X sgRNA1-Cas9 (500 ng) 플라스미드를 결합(ligation)하기 위해, 3 ㎕ 10X NEB CutSmart 완충액, 0.5 ㎕ KpnI-HF(20 U/㎕)(New England Biolab), 0.5 ㎕ EcoRI-HF(20 U/㎕)(New England Biolab)에 37 ℃ 2 시간동안 반응시키고, 제한효소로 절단된 DNA를 전기영동으로 분리한 다음, PCR clean-up system(Promega)을 통해 DNA를 추출하였다. In order to ligation the PCR product (100 ng) of sgRNA2 recovered through the above process and 1X sgRNA1-Cas9 (500 ng) plasmid, 3 μl 10X NEB CutSmart buffer, 0.5 μl KpnI-HF (20 U/μl ) (New England Biolab), reacted with 0.5 μl EcoRI-HF (20 U/μl) (New England Biolab) at 37 ° C. for 2 hours, and separated the DNA digested with restriction enzymes by electrophoresis, followed by PCR clean-up DNA was extracted through the system (Promega).

제한효소로 절단된 sgRNA2(10 ng)와 1X sgRNA1-Cas9 플라스미드(10 ng)를 1.0 ㎕ 10X T4 DNA 리가아제 완충액, 0.5 ㎕ T4 DNA 리가아제(400 U/㎕)(New England Biolab)에 혼합하여, 16 ℃ 2시간동안 반응시켜 2X sgRNA-Cas9 플라스미드를 얻었다. 해당 산물을 대장균(E.coli)에 형질전환(transformton)시킨 후, 미니프렙(mini-prep)을 해서 2X sgRNA-Cas9 플라스미드를 증폭하여 얻었다.sgRNA2 (10 ng) cut with restriction enzyme and 1X sgRNA1-Cas9 plasmid (10 ng) were mixed with 1.0 μl 10X T4 DNA ligase buffer and 0.5 μl T4 DNA ligase (400 U/μl) (New England Biolab). , 2X sgRNA-Cas9 plasmid was obtained by reacting at 16 ℃ for 2 hours. After transforming the product into E.coli , mini-prep was performed to amplify the 2X sgRNA-Cas9 plasmid.

식물형질전환용 재조합 벡터의 제작Construction of recombinant vectors for plant transformation

식물 발현 벡터인 pCAMBIA1300 벡터(1 μg), 2X sgRNA-Cas9 플라스미드(1 μg)를 5 ㎕ 10X NEB CutSmart 완충액, 1 ㎕ HindIII-HF(20 U/㎕)(New England Biolab), 1 ㎕ EcoRI-HF(20 U/㎕)(New England Biolab)에 37 ℃ 2 시간 반응을 시키고, 제한효소로 절단된 DNA를 전기영동으로 분리한 다음, PCR clean-up system(Promega)을 통해 DNA를 추출하였다. 제한효소로 절단된 pCAMBIA1300 벡터(10 ng), 2X sgRNA-Cas9 플라스미드(20 ng), 1.0 ㎕ 10X T4 DNA 리가아제 완충액 및 0.5 ㎕ T4 DNA 리가아제(400 U/㎕)(New England Biolab)를 혼합하여, 16 ℃ 2시간동안 반응시켜 pCAMBIA1300 벡터에 sgRNA1-Cas9 및 sgRNA2-Cas9 유전자가 도입된 플라스미드를 제조하였다. 해당 산물을 대장균(E.coli)에 형질전환(transformton)시킨 후, 미니프렙(mini-prep)하여 pCAMBIA1300-2X sgRNA-Cas9 플라스미드를 증폭하여 얻었다.Plant expression vector, pCAMBIA1300 vector (1 μg), 2X sgRNA-Cas9 plasmid (1 μg) were mixed with 5 μl 10X NEB CutSmart buffer, 1 μl HindIII-HF (20 U/μl) (New England Biolab), 1 μl EcoRI-HF (20 U/μl) (New England Biolab) at 37° C. for 2 hours, and DNA cut with restriction enzyme was separated by electrophoresis, and DNA was extracted through a PCR clean-up system (Promega). Mix pCAMBIA1300 vector (10 ng) digested with restriction enzyme, 2X sgRNA-Cas9 plasmid (20 ng), 1.0 μl 10X T4 DNA ligase buffer and 0.5 μl T4 DNA ligase (400 U/μl) (New England Biolab) Then, the reaction was performed at 16° C. for 2 hours to prepare plasmids into which the sgRNA1-Cas9 and sgRNA2-Cas9 genes were introduced into the pCAMBIA1300 vector. After transforming the product into E.coli , mini-prep was obtained by amplifying the pCAMBIA1300-2X sgRNA-Cas9 plasmid.

실시예 2. 재조합 백터를 이용한 형질전환 식물체 제작Example 2. Production of transgenic plants using recombinant vectors

꽃 침지 방법 (floral dipping method)에 의해 아그로박테리움 튜메파시엔스 GV3101 (Agrobacteriumtumefaciens strain GV3101)을 이용하여 상기 실시예 1에서 제조한 pCAMBIA1300-2X sgRNA-Cas9 플라스미드를 애기장대에 형질전환시켰다.Arabidopsis thaliana was transformed with the pCAMBIA1300-2X sgRNA-Cas9 plasmid prepared in Example 1 using Agrobacterium tumefaciens strain GV3101 by the floral dipping method.

상기 형질전환 식물체의 종자는 2% 차아염소산나트륨으로 15분간 살균시키고 30 mg/l 하이그로마이신(hygromycin), 50 mg/l 카르베니실린(carbenicillin)이 첨가된 MS(Murashige and Skoog) 배지에 파종하였다. MS 배지(0.5× Murashige-Skoog salts, pH 5.7; 1.5% sucrose; 및 0.6% agar)에서 110 μmolm-2s-1의 빛 강도 하에서 4 주간 발아 및 생장시킨 T1 식물체는 흙으로 옮겨 심은 후, 장일조건(16 시간 빛/ 8시간 어둠) 하에 22 ℃에서 환경조건에서 2주간 성장시켰다.The seeds of the transgenic plants were sterilized with 2% sodium hypochlorite for 15 minutes and sown on MS (Murashige and Skoog) medium supplemented with 30 mg/l hygromycin and 50 mg/l carbenicillin. did T1 plants germinated and grown in MS medium (0.5× Murashige-Skoog salts, pH 5.7; 1.5% sucrose; and 0.6% agar) under a light intensity of 110 μmolm −2 s −1 for 4 weeks were transferred to soil and planted for a long day. It was grown for 2 weeks in environmental conditions at 22 ° C. under conditions (16 hours of light / 8 hours of darkness).

비교예 1. hos15 형질전환 식물체의 제작Comparative Example 1. Construction of hos15 Transgenic Plants

T-DNA 삽입 형질 전환 돌연변이체인 hos15-2(GK_785B10)은 Nottingham Arabidopsis Stock Centre(NASC)(.info)에서 구입하였다.The T-DNA insertion transformation mutant hos15-2 (GK_785B10) was purchased from Nottingham Arabidopsis Stock Center (NASC) (.info).

실험예 1. CRISPR/Cas9 시스템을 통한 형질전환 식물체의 전사유무 확인Experimental Example 1. Confirmation of transcription of transgenic plants through CRISPR/Cas9 system

실시예 2에서 CRISPR/Cas9 시스템으로 UP 유전자가 형질전환된 돌연변이체 후보군 11 개체를 확보하였다. 11개체 내에서 UP 유전자의 교정 여부를 지노타이핑 PCR 분석과 RT-PCR 분석으로 확인하여 5 개체를 선별하였다. 구체적으로 어댑터 프라이머를 디자인하여 구축된 sgRNA 발현 카세트가 제대로 인지될 경우, 원래 1745 bp의 길이가 CRISPR/Cas9 유전자 가위에 의해 편집되어 500 bp로 나타나게 되므로, 이 부분을 지노타이핑 및 RT-PCR을 통해 확인하였다. In Example 2, 11 mutant candidates in which the UP gene was transformed with the CRISPR/Cas9 system were obtained. In 11 individuals, UP gene correction was confirmed by genotyping PCR analysis and RT-PCR analysis, and 5 individuals were selected. Specifically, when the sgRNA expression cassette constructed by designing adapter primers is properly recognized, the length of the original 1745 bp is edited by CRISPR/Cas9 gene scissors to appear as 500 bp. Confirmed.

도 1은 UP 변이 대립 형질체에 크리스퍼 영역(빨간색)과 본 발명에 사용된 UP 프라이머를 도시한 도면이다. 도 2는 야생형(Columbia-0, Col0) 식물체(WT)와 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR)에 대한 지노타이핑(Genotyping) 분석 결과이고. 도 3은 야생형(Columbia-0, Col0) 식물체(WT)와 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR)에 대한 RT-PCR 분석 결과이며, 도 4는 야생형(Columbia-0, Col0) 식물체(WT)와 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR)에 대한 qRT-PCR 분석 결과이다. 이때, ACTIN은 RNA 함량의 대조군으로 사용하였다. UP-CRISPR_1, UP-CRISPR_4, UP-CRISPR_5, UP-CRISPR_9, UP-CRISPR_10, UP-CRISPR_11는 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR)의 개체들 중에서 첫 번째(#1), 네 번째(#4), 다섯 번째(#5), 아홉 번째(#9), 열 번째(#10) 및 열한번째(#11) 개체들을 의미한다.1 is a diagram showing a CRISPR region (red) in a UP mutant allele and a UP primer used in the present invention. Figure 2 is a genotyping (Genotyping) analysis results for wild-type (Columbia-0, Col0) plants (WT) and transgenic plants (UP-CRISPR) prepared from Example 2. Figure 3 shows the results of RT-PCR analysis of wild-type (Columbia-0, Col0) plants (WT) and transgenic plants (UP-CRISPR) prepared from Example 2, and Figure 4 is wild-type (Columbia-0, Col0) It is the qRT-PCR analysis result of the plant (WT) and the transgenic plant (UP-CRISPR) prepared from Example 2. At this time, ACTIN was used as a control for RNA content. UP-CRISPR_1, UP-CRISPR_4, UP-CRISPR_5, UP-CRISPR_9, UP-CRISPR_10, UP-CRISPR_11 are the first (#1), four among the individuals of the transgenic plant (UP-CRISPR) prepared in Example 2 The ninth (#4), fifth (#5), ninth (#9), tenth (#10), and eleventh (#11) entities.

도 2 내지 4를 살펴보면, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR) 중에서 1, 4, 5, 9, 10 번째 식물체에서 500 bp 때 밴드가 나오는 것을 확인할 수 있다. 이를 통해 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR) 중에서 5 개체에서 UP 유전자의 인델(Indel)을 확인할 수 있었다. Looking at Figures 2 to 4, it can be seen that the bands appear at 500 bp in the 1st, 4th, 5th, 9th, and 10th plants among the transgenic plants (UP-CRISPR) prepared in Example 2. Through this, it was possible to confirm the indel of the UP gene in 5 individuals among the transgenic plants (UP-CRISPR) prepared in Example 2.

도 3 및 도 4를 살펴보면, 형질전환 식물체(UP-CRISPR)(실시예 2)는 CRISPR/Cas9 시스템을 통해 야생형(Columbia-0, Col0) 식물체로부터 UP 유전자가 편집되어 넉아웃(knockout) 또는 넉다운(knockdown)되었음을 확인할 수 있다.3 and 4, the transgenic plant (UP-CRISPR) (Example 2) is knocked out or knocked down by editing the UP gene from wild type (Columbia-0, Col0) plants through the CRISPR / Cas9 system (knockdown) can be confirmed.

실험예 2. UP 유전자와 애기장대(Arabidopsis thaliana)(Experimental Example 2. UP gene and Arabidopsis thaliana ( Arabidopsis thalianaArabidopsis thaliana )의 발달에 대한 관련성) relevance to the development of

실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR) 중에서 1, 4, 5번째 식물체(T0)를 얻고, MS 배지에서 110 μmolm-2s-1의 빛 강도 하에서 생장시킨 후, 16 h/8 h 낮:밤의 주기를 가지고 65% 습도를 유지하는 22 ℃ 챔버로 옮겨 생장시켰다. 4일령의 식물체를 MS 배지에 이전시키고 하배축 성장을 7일 동안 모니터링하였다. 식물의 성장과 관련하여 PWR-HDA9-HOS15 복합체가 알려져 있으므로, 비교예 1로부터 제조된 hos15 형질전환 식물체는 비교군으로 사용하였고, 야생형(Columbia-0, Col0) 식물체는 대조군으로 사용하였다. 실험데이터는 3번 실험 후 평균과 표준오차를 나타내었다.The first, fourth, and fifth plants (T0) were obtained from the transgenic plants (UP-CRISPR) prepared in Example 2, and grown under a light intensity of 110 µmolm -2 s -1 in MS medium, followed by 16 h/8 h The cells were transferred to a 22° C. chamber maintained at 65% humidity with a day:night cycle and grown. Four-day-old plants were transferred to MS medium and hypocotyl growth was monitored for 7 days. Since the PWR-HDA9-HOS15 complex is known in relation to plant growth, the hos15 transgenic plants prepared in Comparative Example 1 were used as a comparison group, and wild-type (Columbia-0, Col0) plants were used as a control group. The experimental data showed the mean and standard error after 3 experiments.

실험의 통계분석을 위하여 대응표본 t-검정(paired t-test)을 사용하여 대조군 대비 평균수치 유의차를 확인하였으며, 0.05보다 낮은 p 값을 가질 경우에는 *로 표기하였다. For statistical analysis of the experiment, a paired t-test was used to confirm a significant difference in average values compared to the control group, and a p value lower than 0.05 was marked with *.

도 5는 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체 및 야생형(Columbia-0, Col0) 식물체를 7일 동안 성장시킨 묘목을 촬영한 사진이고, 도 6은 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체 및 야생형(Columbia-0, Col0) 식물체의 하배축 발아 길이를 측정하여 나타낸 그래프이고, 도 7은 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체 및 야생형(Columbia-0, Col0) 식물체의 뿌리 길이를 측정하여 나타낸 그래프이다.5 is a photograph of seedlings grown from a transgenic plant (UP-CRISPR) prepared in Example 2, a hos15 transgenic plant prepared from Comparative Example 1, and a wild-type (Columbia-0, Col0) plant for 7 days. 6 is a graph showing the measurement of hypocotyl germination length of transgenic plants prepared in Example 2 (UP-CRISPR), hos15 transgenic plants prepared from Comparative Example 1, and wild-type plants (Columbia-0, Col0), 7 is a graph showing root lengths of transgenic plants (UP-CRISPR) prepared in Example 2, hos15 transgenic plants prepared in Comparative Example 1, and wild-type (Columbia-0, Col0) plants.

도 5 내지 도 7을 살펴보면, CRISPR/Cas9 시스템을 통해 UP 유전자를 삽입-결실(Indel) 돌연변이를 유도한 실시예 2의 UP-CRISPR 식물체의 경우 대조군(Col-0) 보다 하배축(Hypocotyl) 발달이 느린 것을 알 수 있다. 반면 뿌리길이는 상기 세 그룹 간의 유의적인 차이가 나타나지 않았다. 상술한 결과를 통해 UP 유전자가 애기장대(Arabidopsis thaliana)의 성장 과정에 관여하며, UP 유전자의 발현이 억제되면 하배축 발달이 지연된다는 것을 확인하였다.Looking at Figures 5 to 7, in the case of the UP-CRISPR plant of Example 2 in which the UP gene insertion-deletion (Indel) mutation was induced through the CRISPR / Cas9 system, hypocotyl development was higher than that of the control group (Col-0) you can see it's slow On the other hand, there was no significant difference in root length between the three groups. Through the above results, it was confirmed that the UP gene is involved in the growth process of Arabidopsis thaliana , and the hypocotyl development is delayed when the expression of the UP gene is suppressed.

실험예 3. UP 유전자와 애기장대(Experimental Example 3. UP gene and Arabidopsis thaliana ( Arabidopsis thalianaArabidopsis thaliana )의 개화에 대한 관련성) relevance to the flowering of

애기장대(Arabidopsis thaliana)에서 PWR-HDA9-HOS15 co-repressor 복합체는 개화, 추위 그리고 가뭄 스트레스를 조절하는데 관여하는 것으로 밝혀졌으며, 특히 개화 조절 유전자인 AGL19, FT 및 GI의 발현을 조절하는 것으로 알려져 있다.In Arabidopsis thaliana , the PWR-HDA9-HOS15 co-repressor complex has been found to be involved in regulating flowering, cold and drought stress, and is known to regulate the expression of AGL19, FT and GI, especially flowering control genes. .

본 발명자들은 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR) 중에서 1, 4, 5, 9번째 식물체(T0), 야생형(Columbia-0, Col0) 식물체 및 hos15 형질전환 식물체 간의 개화시기 분석을 위해, 22℃~23℃의 LD(16 h light/8 h dark) 조건에서 성장한 식물체에 대해 수행하였다. 개화시기는 꽃자루의 높이가 3~5cm 정도일 때, 첫 꽃봉오리가 보일 때, 첫 꽃이 피었을 때 로제트와 꽃줄기 잎의 총수를 세어 측정하였다. The present inventors analyzed the flowering time between the 1st, 4th, 5th, and 9th plants (T0), wild-type (Columbia-0, Col0) plants and hos15 transgenic plants among the transgenic plants (UP-CRISPR) prepared in Example 2. For this purpose, it was performed on plants grown under LD (16 h light / 8 h dark) conditions of 22 ° C to 23 ° C. Flowering time was measured by counting the total number of rosettes and peduncle leaves when the height of the peduncle was about 3 to 5 cm, when the first flower bud was visible, and when the first flower bloomed.

도 8 및 도 9는 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체 및 야생형(Columbia-0, Col0) 식물체를 25일 동안 성장시킨 묘목을 촬영한 사진이고, 도 9는 장일 조건에서 성장시킨 것이다. 도 10은 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체 및 야생형(Columbia-0, Col0) 식물체를 25일 동안 성장시킨 묘목의 FT 유전자 발현을 qRT-PCR로 측정하여 나타낸 그래프이며, 도 11은 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR) 및 야생형(Columbia-0, Col0) 식물체의 장각을 촬영한 사진이다.8 and 9 are photographs of seedlings obtained by growing the transgenic plant (UP-CRISPR) prepared in Example 2, the hos15 transgenic plant prepared in Comparative Example 1, and the wild type (Columbia-0, Col0) plant for 25 days. This is a picture, and Figure 9 is grown under long-day conditions. 10 shows FT gene expression of seedlings grown for 25 days with transgenic plants (UP-CRISPR) prepared in Example 2, hos15 transgenic plants prepared in Comparative Example 1, and wild-type (Columbia-0, Col0) plants. It is a graph measured by qRT-PCR, and FIG. 11 is a photograph of the long angles of transgenic plants (UP-CRISPR) and wild-type (Columbia-0, Col0) plants prepared in Example 2.

도 8 및 9를 살펴보면, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR)들이 야생형(Columbia-0, Col0) 식물체 보다 이른 시기에 개화하는 것을 확인할 수 있다. 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR)는 hos15 형질전환 식물체와 유사한 개화시기를 갖는 것을 확인할 수 있다.Looking at Figures 8 and 9, it can be seen that the transgenic plants (UP-CRISPR) prepared in Example 2 bloom earlier than wild-type (Columbia-0, Col0) plants. It can be seen that the transgenic plant (UP-CRISPR) prepared in Example 2 has a flowering period similar to that of the hos15 transgenic plant.

도 10을 살펴보면, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR)들은 야생형(Columbia-0, Col0) 식물체보다 FT 유전자 발현이 높다는 것을 확인할 수 있다. 특히 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR)의 1번, 4번 개체는 hos15 형질전환 식물체보다 FT 유전자 발현이 증가한다는 것을 확인할 수 있다. Referring to FIG. 10, it can be seen that the transgenic plants (UP-CRISPR) prepared in Example 2 have higher FT gene expression than wild-type (Columbia-0, Col0) plants. In particular, it can be confirmed that the FT gene expression of individuals 1 and 4 of the transgenic plants prepared in Example 2 (UP-CRISPR) is higher than that of the hos15 transgenic plants.

상술한 결과를 통해 UP 유전자가 애기장대(Arabidopsis thaliana)의 개화 과정에 관여하며, PWR-HDA9-HOS15와 복합체를 이루어 타겟 유전자의 발현을 억제할 것으로 예측된다.Through the above results, the UP gene is involved in the flowering process of Arabidopsis thaliana , and is predicted to suppress the expression of the target gene by forming a complex with PWR-HDA9-HOS15.

도 11을 살펴보면, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR)들이 야생형(Columbia-0, Col0) 식물체에 비해 장각(siliques)의 말단부가 뭉툭한(blunt end) 표현형을 나타낸다.Referring to FIG. 11, the transgenic plants (UP-CRISPR) prepared in Example 2 show a blunt end phenotype compared to wild-type (Columbia-0, Col0) plants.

실험예 4. UP 유전자와 애기장대(Experimental Example 4. UP gene and Arabidopsis thaliana ( Arabidopsis thalianaArabidopsis thaliana )의 염 스트레스 저항성에 대한 관련성) to salt stress resistance

본 발명자들은 UP 유전자와 염 스트레스 관련성을 확인하기 위하여, 0, 75, 100, 125 mM의 NaCl 조건 하에서, 야생형(Columbia-0, Col0) 식물체, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체의 표현형 분석을 수행하였다.In order to confirm the relationship between the UP gene and salt stress, the present inventors under 0, 75, 100, and 125 mM NaCl conditions, wild-type (Columbia-0, Col0) plants, transgenic plants prepared from Example 2 (UP-CRISPR ), and phenotypic analysis of the hos15 transgenic plants prepared from Comparative Example 1 was performed.

도 12는 야생형(Columbia-0, Col0) 식물체, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체를 0 mM, 75 mM, 100 mM 또는 125 mM NaCl 첨가한 MS 배지에 7일간 생장시켰고, 종자 발아정도를 측정한 사진이다. 12 shows a wild-type (Columbia-0, Col0) plant, a transgenic plant prepared from Example 2 (UP-CRISPR), and a hos15 transgenic plant prepared from Comparative Example 1 in the presence of 0 mM, 75 mM, 100 mM, or 125 mM It was grown for 7 days in MS medium supplemented with NaCl, and the degree of seed germination was measured.

도 13은 야생형(Columbia-0, Col0) 식물체, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체를 0 mM 또는 150 mM NaCl 첨가한 MS 배지에 7일간 생장시킨 후, 묘목의 뿌리 길이를 측정한 사진이다. 13 shows wild-type (Columbia-0, Col0) plants, transgenic plants prepared in Example 2 (UP-CRISPR), and hos15 transformed plants prepared in Comparative Example 1 in MS medium supplemented with 0 mM or 150 mM NaCl. This is a photograph of the root length of the seedling after growing for 7 days.

도 12를 살펴보면, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR)들은 야생형(Columbia-0, Col0) 식물체 보다 고염 조건에서 민감하게 반응하여 종자의 발아율과 뿌리의 길이가 감소되는 것을 확인할 수 있다. 비교예 1로부터 제조된 hos15 형질전환 식물체도 고염 조건에서 발아율과 뿌리의 길이가 감소하는 것을 확인할 수 있다. 이 결과로 미루어 보아 UP 유전자는 PWR-HDA9-HOS15 복합체와 함께 염 스트레스를 받았을 때 일어나는 상호작용에 참여하는 것을 알 수 있다. UP 유전자는 염분 스트레스에 대한 양성 조절자 기능을 한다는 것을 확인할 수 있다. Referring to FIG. 12, it can be confirmed that the transgenic plants (UP-CRISPR) prepared in Example 2 respond more sensitively to high salt conditions than the wild-type (Columbia-0, Col0) plants, resulting in a decrease in seed germination rate and root length. there is. It can be confirmed that the germination rate and root length of the hos15 transgenic plant prepared in Comparative Example 1 also decreased under high salt conditions. From this result, it can be seen that the UP gene participates in the interaction that occurs when the PWR-HDA9-HOS15 complex is subjected to salt stress. It can be confirmed that the UP gene functions as a positive regulator for salt stress.

실험예 5. UP 유전자의 ABA 민감성 확인Experimental Example 5. Confirmation of ABA sensitivity of UP gene

UP 유전자의 생체 내 기능을 연구하기 위하여, ABA를 함유한 MS 배지에서 야생형(Columbia-0, Col0) 식물체, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체의 표현형 분석을 수행하였다.In order to study the in vivo function of the UP gene, wild-type (Columbia-0, Col0) plants in MS medium containing ABA, transgenic plants prepared from Example 2 (UP-CRISPR), and hos15 prepared from Comparative Example 1 Phenotypic analysis of transgenic plants was performed.

도 14는 ABA 처리 조건에서 야생형(Columbia-0, Col0) 식물체, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체의 발아율을 비교한 결과이다.14 is a result of comparing the germination rates of wild-type (Columbia-0, Col0) plants, transgenic plants (UP-CRISPR) prepared in Example 2, and hos15 transgenic plants prepared in Comparative Example 1 under ABA treatment conditions.

구체적으로 0 μM, 0.2 μM 또는 0.5 μM ABA를 함유한 MS 배지에서 야생형(Columbia-0, Col0) 식물체, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체를 발아시킨 결과, 도 14에 나타난 바와 같이, ABA를 처리하지 않은 경우에는 각 그룹간에 유의적인 차이가 없었으나, ABA 처리 후, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR)의 발아율은 야생형(Columbia-0, Col0) 식물체보다 ABA에 민감하게 반응을 하여 종자 발아율이 낮은 것을 확인할 수 있다.Specifically, in MS medium containing 0 μM, 0.2 μM or 0.5 μM ABA, the wild-type (Columbia-0, Col0) plant, the transgenic plant prepared from Example 2 (UP-CRISPR), and the hos15 trait prepared from Comparative Example 1 As a result of germination of the transformed plants, as shown in FIG. 14, there was no significant difference between each group when ABA was not treated, but after ABA treatment, the transgenic plants prepared in Example 2 (UP-CRISPR) The germination rate was more sensitive to ABA than wild-type (Columbia-0, Col0) plants, and it was confirmed that the seed germination rate was lower.

또한, 비교예 1로부터 제조된 hos15 형질전환 식물체도 야생형(Columbia-0, Col0) 식물체보다 종자 발아율이 낮은 것을 확인할 수 있는 바, UP 유전자는 식물의 발아기 및 성장 단계에서 ABA의 감수성에 영향을 미치며, PWR-HDA9-HOS15 복합체와 함께 양성 조절자로서 기능한다는 것을 확인할 수 있다.In addition, it can be seen that the seed germination rate of the hos15 transgenic plants prepared in Comparative Example 1 is lower than that of the wild-type (Columbia-0, Col0) plants. , it can be confirmed that it functions as a positive regulator together with the PWR-HDA9-HOS15 complex.

실험예 6. UP 유전자의 건조 스트레스 내성 확인Experimental Example 6. Confirmation of dry stress tolerance of UP gene

건조 스트레스에 대한 방어 반응에서 UP 유전자 기능을 확인하기 위하여, 야생형(Columbia-0, Col0) 식물체, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체를 3주간 생장시킨 후, 14일간 급수를 중단하고, 7일간 재급수하여 건조 스트레스에 노출시켰다.In order to confirm the function of the UP gene in the defense response to drying stress, wild-type (Columbia-0, Col0) plants, transgenic plants prepared from Example 2 (UP-CRISPR), and hos15 transgenic plants prepared from Comparative Example 1 After growing for 3 weeks, water supply was stopped for 14 days, and water was re-watered for 7 days and exposed to drying stress.

도 15는 건조 스트레스 조건에서, 야생형(Columbia-0, Col0) 식물체, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR), 비교예 1로부터 제조된 hos15 형질전환 식물체의 표현형을 비교한 결과이다.15 is a result of comparing the phenotypes of wild-type (Columbia-0, Col0) plants, transgenic plants (UP-CRISPR) prepared from Example 2, and hos15 transgenic plants prepared from Comparative Example 1 under dry stress conditions. .

도 15에 나타난 바와 같이, 충분한 급수(before drought stress) 조건 하에서는 각 그룹 사이에서 표현형 차이를 관찰하지 못하였으나, 건조 스트레스 이후(After drought stress), 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR)는 야생형(Columbia-0, Col0) 식물체보다 생존율이 현저히 높은 것을 확인할 수 있다.As shown in FIG. 15, no phenotypic difference was observed between each group under conditions of sufficient water supply (before drought stress), but after drought stress, the transgenic plants prepared from Example 2 (UP-CRISPR ) can be confirmed that the survival rate is significantly higher than that of wild-type (Columbia-0, Col0) plants.

야생형(Columbia-0, Col0) 식물체는 건조스트레스에 의해 24개체가 모두 사망하였으나, 실시예 2로부터 제조된 형질전환 식물체(UP-CRISPR)는 24 개체 중에서 20개체가 생존하는 것을 확인할 수 있다.Although all 24 wild-type (Columbia-0, Col0) plants died due to drying stress, 20 of the 24 transgenic plants (UP-CRISPR) prepared in Example 2 survived.

건조 스트레스 이후(After drought stress), 비교예 1로부터 제조된 hos15 형질전환 식물체 역시 높은 생존율을 갖는 것으로 확인되었다. 상기 결과를 종합하면 UP 유전자가 건조 스트레스에 대해 PWR-HDA9-HOS15 복합체와 함께 음성 조절자로서 기능하여, 가뭄 내성에 영향을 준다는 것을 확인할 수 있다.After drought stress, the hos15 transgenic plant prepared in Comparative Example 1 was also confirmed to have a high survival rate. Taken together, it can be confirmed that the UP gene functions as a negative regulator along with the PWR-HDA9-HOS15 complex for drought stress and affects drought tolerance.

<110> Konkuk University Industrial Cooperation Corp <120> UP gene from Arabidopsis thaliana regulating resistance to environment stress in plant and uses thereof <130> HPC10063 <160> 21 <170> KoPatentIn 3.0 <210> 1 <211> 1745 <212> PRT <213> Artificial Sequence <220> <223> UP Protein(Unknown Protein, AT3G47850) <400> 1 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1 5 10 15 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 20 25 30 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 35 40 45 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 50 55 60 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 65 70 75 80 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 85 90 95 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 100 105 110 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 115 120 125 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 130 135 140 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 145 150 155 160 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 165 170 175 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 180 185 190 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 195 200 205 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 210 215 220 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 225 230 235 240 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 245 250 255 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 260 265 270 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 275 280 285 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 290 295 300 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 305 310 315 320 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 325 330 335 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 340 345 350 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 355 360 365 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 370 375 380 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 385 390 395 400 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 405 410 415 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 420 425 430 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 435 440 445 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 450 455 460 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 465 470 475 480 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 485 490 495 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 500 505 510 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 515 520 525 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 530 535 540 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 545 550 555 560 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 565 570 575 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 580 585 590 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 595 600 605 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 610 615 620 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 625 630 635 640 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 645 650 655 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 660 665 670 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 675 680 685 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 690 695 700 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 705 710 715 720 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 725 730 735 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 740 745 750 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 755 760 765 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 770 775 780 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 785 790 795 800 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 805 810 815 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 820 825 830 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 835 840 845 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 850 855 860 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 865 870 875 880 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 885 890 895 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 900 905 910 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 915 920 925 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 930 935 940 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 945 950 955 960 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 965 970 975 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 980 985 990 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 995 1000 1005 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1010 1015 1020 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1025 1030 1035 1040 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1045 1050 1055 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1060 1065 1070 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1075 1080 1085 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1090 1095 1100 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1105 1110 1115 1120 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1125 1130 1135 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1140 1145 1150 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1155 1160 1165 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1170 1175 1180 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1185 1190 1195 1200 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1205 1210 1215 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1220 1225 1230 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1235 1240 1245 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1250 1255 1260 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1265 1270 1275 1280 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1285 1290 1295 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1300 1305 1310 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1315 1320 1325 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1330 1335 1340 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1345 1350 1355 1360 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1365 1370 1375 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1380 1385 1390 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1395 1400 1405 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1410 1415 1420 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1425 1430 1435 1440 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1445 1450 1455 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1460 1465 1470 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1475 1480 1485 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1490 1495 1500 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1505 1510 1515 1520 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1525 1530 1535 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1540 1545 1550 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1555 1560 1565 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1570 1575 1580 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1585 1590 1595 1600 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1605 1610 1615 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1620 1625 1630 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1635 1640 1645 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1650 1655 1660 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1665 1670 1675 1680 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1685 1690 1695 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1700 1705 1710 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1715 1720 1725 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1730 1735 1740 Ala 174 <210> 2 <211> 1059 <212> DNA <213> Artificial Sequence <220> <223> UP CDS (Unknown Protein, AT3G47850) <400> 2 atgcaagtcg aaatcccatc gccgtatgat cacggaagca gaaggcaacg gcgaattcga 60 cgaacggaag aaacccaaaa gcagaagaag atggtggcga tatctatgta cagaggcaac 120 cttcacaaag ttcccgacgt acctcgccgg tggataatgc ctgaccgtaa tctctctttc 180 aaggatttca aatctcttct tcatcgccgt aaaaaagccc tttctcgtct cccccttaac 240 cctaatttga accttagcgt caagactgag ttggttactg atcaggagaa tccaattctt 300 ccatctgaag cgaacggttc ttctgggaag cagaagctat ttgaggtaaa gagagaggag 360 atttgtggga atcgggttaa gggagatgag aacaacgaca gaggttttga aggagctcga 420 tcagacggtg gagatcgtcc cgggagagtg acggaatcaa aggaaaccga taatgtgcca 480 cacaagtatg cggccaagga ggaggagacg aatgaagcag ctgaaaaagt accaagcgag 540 acagagttaa aacggaaaga agtggaggag agattacaag ttttgaatgc aaagaaacac 600 aatctagtcc aagtgcttaa gcagatttta aatgctgagg aagaattgaa aagacgcagc 660 tacatgcaac aacaaggaac caccgtagcc actcgtcctt ctcttccact ccatgtggat 720 gtctcgaatg actcaggagg taatgttggt actcacatgg aaggcgggga aactgatgat 780 gcagcgaatc ataataatgc tcaaactcgt actctgcttc gactgtgtgg cgcttcttca 840 tcatctgaat ctcctctgag aagagcagca gccttgtcac aacacaatat ggttccacat 900 acttctcgat ggagcccgct cgttggtcct tctcaacccg gtcctgcagt cactgtttct 960 gcgtctggaa caaactacat tgcttcatct ccttcaccag cgggttttgg tggcacttct 1020 gttttcagag aatcacggct tcagagtcca tggaattag 1059 <210> 3 <211> 1745 <212> DNA <213> Artificial Sequence <220> <223> UP gDNA(Unknown Protein, AT3G47850) <400> 3 atgcaagtcg aaatcccatc gccgtatgat cacggaagca gaaggcaacg gcgaattcga 60 cgaacggaag aaacccaaaa gcagaagaag atggtggcga tatctatgta cagaggcaac 120 cttcacaaag ttcccgacgt acctcgccgg tggataatgc ctgaccgtaa tctctctttc 180 aaggatttca aatctcttct tcatcgccgt aaaaaagccc tttctcgtct cccccttaac 240 cctaatttga accttagcgt caagactgag ttggttactg atcaggagaa tccaattctt 300 ccatctgaag cgaacggttc ttctgggaag cagaagctat ttgaggtaaa gagagaggag 360 atttgtggga atcgggttaa gggagatgag aacaacgaca gaggttttga aggagctcga 420 tcagacggtg gagatcgtcc cgggagagtg acggaatcaa aggaaaccga taatgtgcca 480 cacaagtatg cggccaagga ggaggaggta tgtttgaatt tctttgatat taatctctat 540 gtgaccttcc cgatagaatt tgagtactac ttagctgagt taagtctaga atcgccatgc 600 tcattgagtt ttgtgaagta cataggaaga ttgggaaaga ttatgtcatt ttaggtgaat 660 ttactgaagt taagtggctg atctgttgaa ttgtagaata aacgttgtat aagcgaagcc 720 gccatggtca caagcagttt gattcattga tgtgtgtgct caagtagttt aagtcacgtt 780 gatagatgtt gtgaatttgt gatgcaacaa gtctattgat gaaacaatca ggcaggctgc 840 aatagagtta ccaattaggg aaccttgaag gcttaaatct cgtagttatt ttctgtgaag 900 ttgttttgtt tctctatagc tttgttgttt ttcgtttcgt gactgtattc tcttttctcg 960 aaacagacga atgaagcagc tgaaaaagta ccaagcgaga cagagttaaa acggaaagaa 1020 gtggaggaga gattacaagt tttgaatgca aagaaacaca atctagtcca agtgcttaag 1080 caggtcagtt cagtgtctgc ccttctctct ataaaggtgt ttcacctgta taccgattcc 1140 catttattga ggtaatcata ctcgtcaaat taactgatac gcagatttta aatgctgagg 1200 aagaattgaa aagacgcagc tacatgcaac aacaaggaac caccgtagcc actcgtcctt 1260 ctcttccact ccatgtggat gtctcgaatg actcaggagg taatgttggt actcacatgg 1320 aaggcgggga aactgatgat gcagcgaatc ataataatgc tcaaactcgt actctgcttc 1380 gactgtgtgg cgcttcttca tcatctgaat ctcctctgag aagagcagca gccttgtcac 1440 aacacaatat ggtaaatatt caatatcttc attttaaaca acaatataac caaactactt 1500 agaatctctt tggtcaatct ctgattttgc attcatatat gtatatatga tgattgattg 1560 ttgttgctgt ttatcaggtt ccacatactt ctcgatggag cccgctcgtt ggtccttctc 1620 aacccggtcc tgcagtcact gtttctgcgt ctggaacaaa ctacattgct tcatctcctt 1680 caccagcggg ttttggtggc acttctgttt tcagagaatc acggcttcag agtccatgga 1740 attag 1745 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> target sequence of UP gene_1 <400> 4 gtggcgatat ctatgtacag 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> target sequence of UP gene_2 <400> 5 gttggtactc acatggaagg 20 <210> 6 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Forward oligo of sgRNA_1 <400> 6 gattggtggc gatatctatg tacag 25 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Reverse oligo of sgRNA_1 <400> 7 aaacctgtac atagatatcg ccac 24 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Forward oligo of sgRNA_2 <400> 8 gattggttgg tactcacatg gaagg 25 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Reverse oligo of sgRNA_2 <400> 9 aaacccttcc atgtgagtac caacc 25 <210> 10 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> AtU6-F-KpnI <400> 10 gtggtaccca ttcggagttt ttgtatcttg tttc 34 <210> 11 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> sgR-R-EcoRI <400> 11 acgaattcac gaattcgcca tttgtctgca gaattggc 38 <210> 12 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> UP sgR_U6_KpnI-F <400> 12 gtggtaccca ttcggagttt ttgtatct 28 <210> 13 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> UP sgR_end_EcoRI-R <400> 13 acgaattcgc catttgtctg cagaattg 28 <210> 14 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> UP-FL-F <400> 14 atgcaagtcg aaatcccatc g 21 <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> UP-FL-R <400> 15 aattccatgg actctgaagc cg 22 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ACTIN2-RT-F <400> 16 tgggatgaac cagaaggatg 20 <210> 17 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> ACTIN2-RT-R <400> 17 aagaatacct ctcttggatt gtgc 24 <210> 18 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> qRT-F <400> 18 gaagtggagg agagattaca ag 22 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> qRT-R <400> 19 aagagaagga cgagtggcta 20 <210> 20 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> ACTIN2-qRT-F <400> 20 cgagaagaac tatgaattac cc 22 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> ACTIN2-qRT-R <400> 21 gagttatagg ttgtctcgtg ga 22 <110> Konkuk University Industrial Cooperation Corp <120> UP gene from Arabidopsis thaliana regulating resistance to environment stress in plant and uses its <130> HPC10063 <160> 21 <170> KoPatentIn 3.0 <210> 1 <211> 1745 <212> PRT <213> Artificial Sequence <220> <223> UP Protein (Unknown Protein, AT3G47850) <400> 1 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1 5 10 15 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 20 25 30 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 35 40 45 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 50 55 60 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 65 70 75 80 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 85 90 95 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 100 105 110 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 115 120 125 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 130 135 140 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 145 150 155 160 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 165 170 175 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 180 185 190 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 195 200 205 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 210 215 220 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 225 230 235 240 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 245 250 255 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 260 265 270 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 275 280 285 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 290 295 300 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 305 310 315 320 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 325 330 335 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 340 345 350 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 355 360 365 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 370 375 380 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 385 390 395 400 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 405 410 415 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 420 425 430 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 435 440 445 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 450 455 460 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 465 470 475 480 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 485 490 495 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 500 505 510 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 515 520 525 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 530 535 540 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 545 550 555 560 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 565 570 575 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 580 585 590 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 595 600 605 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 610 615 620 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 625 630 635 640 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 645 650 655 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 660 665 670 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 675 680 685 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 690 695 700 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 705 710 715 720 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 725 730 735 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 740 745 750 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 755 760 765 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 770 775 780 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 785 790 795 800 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 805 810 815 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 820 825 830 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 835 840 845 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 850 855 860 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 865 870 875 880 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 885 890 895 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 900 905 910 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 915 920 925 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 930 935 940 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 945 950 955 960 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 965 970 975 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 980 985 990 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 995 1000 1005 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1010 1015 1020 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1025 1030 1035 1040 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1045 1050 1055 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1060 1065 107 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1075 1080 1085 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1090 1095 1100 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1105 1110 1115 1120 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1125 1130 1135 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1140 1145 1150 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1155 1160 1165 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1170 1175 118 0 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1185 1190 1195 1200 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1205 1210 1215 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1220 1225 1230 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1235 1240 1245 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1250 1255 1260 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1265 1270 1275 1280 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1285 1290 1295 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1300 1305 1310 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1315 1320 1325 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1330 1335 1340 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1345 1350 1355 1360 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1365 1370 1375 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1380 1385 1390 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1395 1400 1405 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1410 1415 1420 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1425 1430 1435 1440 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1445 1450 1455 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1460 1465 1470 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1475 1480 1485 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1490 1495 1500 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1505 1510 1515 1520 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1525 1530 1535 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1540 1545 1550 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1555 1560 1565 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1570 1575 158 0 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1585 1590 1595 1600 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1605 1610 1615 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1620 1625 1630 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1635 1640 1645 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1650 1655 1660 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1665 1670 1675 1680 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1685 1690 1695 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1700 1705 1710 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1715 1720 1725 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala 1730 1735 1740 Ala 174 <210> 2 <210> 211> 1059 <212> DNA <213> Artificial Sequence <220> <223> UP CDS (Unknown Protein, AT3G47850) <400> 2 atgcaagtcg aaatcccatc gccgtatgat cacggaagca gaaggcaacg gcgaattcga 60 cgaacggaag aaacccaaaa gcagaagaag atggtggcga tatctatgta cagaggcaac 120 cttcacaaag ttcccgacgt acctcgccgg tggataatgc ctgaccgtaa tctctctttc 180 aaggatttca aatctcttct tcatcgccgt aaaaaagccc tttctcgtct cccccttaac 240 cctaatttga accttagcgt caagactgag ttggttactg atcaggagaa tccaattctt 300 ccatctgaag cgaacggttc ttctgggaag cagaagctat ttgaggtaaa gagagaggag 360 atttgtggga atcgggttaa gggagatgag aacaacgaca gaggttttga aggagctcga 420 tcagacggtg gagatcgtcc cgggagagtg acggaatcaa aggaaaccga taatgtgcca 480 cacaagtatg cggccaagga ggaggagacg aatgaagcag ctgaaaaagt accaagcgag 540 acagagttaa aacggaaaga agtggaggag agattacaag ttttgaatgc aaagaaacac 600 aatctagtcc aagtgcttaa gcagatttta aatgctgagg aagaattgaa aagacgcagc 660 tacatgcaac aacaaggaac caccgtagcc actcgtcctt ctcttccact ccatgtggat 720 gtctcgaatg actcaggagg taatgttggt actcacatgg aaggcgggga aactgatgat 780 gcagcgaatc ataataatgc tcaaactcgt actctgcttc gactgtgtgg cgcttcttca 840 tcatctgaat ctcctctgag aagagcagca gccttgtcac aacacaatat ggttccacat 900 acttctcgat ggagcccgct cgttggtc ct tctcaacccg gtcctgcagt cactgtttct 960 gcgtctggaa caaactacat tgcttcatct ccttcaccag cgggttttgg tggcacttct 1020 gttttcagag aatcacggct tcagagtcca tggaattag 1059 <210> 3 <211> 1745 <212> DNA <213> Artificial Sequence <220> <223> UP gDNA(Unknown Protein, AT3G47850) <400 > 3 atgcaagtcg aaatcccatc gccgtatgat cacggaagca gaaggcaacg gcgaattcga 60 cgaacggaag aaacccaaaa gcagaagaag atggtggcga tatctatgta cagaggcaac 120 cttcacaaag ttcccgacgt acctcgccgg tggataatgc ctgaccgtaa tctctctttc 180 aaggatttca aatctcttct tcatcgccgt aaaaaagccc tttctcgtct cccccttaac 240 cctaatttga accttagcgt caagactgag ttggttactg atcaggagaa tccaattctt 300 ccatctgaag cgaacggttc ttctgggaag cagaagctat ttgaggtaaa gagagaggag 360 atttgtggga atcgggttaa gggagatgag aacaacgaca gaggttttga aggagctcga 420 tcagacggtg gagatcgtcc cgggagagtg acggaatcaa aggaaaccga taatgtgcca 480 cacaagtatg cggccaagga ggaggaggta tgtttgaatt tctttgatat taatctctat 540 gtgaccttcc cgatagaatt tgagtactac ttagctgagt catagtag tgaag0catgtc tgaag0catgtc a ttgggaaaga ttatgtcatt ttaggtgaat 660 ttactgaagt taagtggctg atctgttgaa ttgtagaata aacgttgtat aagcgaagcc 720 gccatggtca caagcagttt gattcattga tgtgtgtgct caagtagttt aagtcacgtt 780 gatagatgtt gtgaatttgt gatgcaacaa gtctattgat gaaacaatca ggcaggctgc 840 aatagagtta ccaattaggg aaccttgaag gcttaaatct cgtagttatt ttctgtgaag 900 ttgttttgtt tctctatagc tttgttgttt ttcgtttcgt gactgtattc tcttttctcg 960 aaacagacga atgaagcagc tgaaaaagta ccaagcgaga cagagttaaa acggaaagaa 1020 gtggaggaga gattacaagt tttgaatgca aagaaacaca atctagtcca agtgcttaag 1080 caggtcagtt cagtgtctgc ccttctctct ataaaggtgt ttcacctgta taccgattcc 1140 catttattga ggtaatcata ctcgtcaaat taactgatac gcagatttta aatgctgagg 1200 aagaattgaa aagacgcagc tacatgcaac aacaaggaac caccgtagcc actcgtcctt 1260 ctcttccact ccatgtggat gtctcgaatg actcaggagg taatgttggt actcacatgg 1320 aaggcgggga aactgatgat gcagcgaatc ataataatgc tcaaactcgt actctgcttc 1380 gactgtgtgg cgcttcttca tcatctgaat ctcctctgag aagagcagca gccttgtcac 1440 aacacaatat ggtaaatatt caatatcttc attttaaaca acaatataac caaactactt 1500 agaatctctt tggtcaatct ctgattttgc attcatatat gtatatatga tgattgattg 1560 ttgttgctgt ttatcaggtt ccacatactt ctcgatggag cccgctcgtt ggtccttctc 1620 aacccggtcc tgcagtcact gtttctgcgt ctggaacaaa ctacattgct tcatctcctt 1680 caccagcggg ttttggtggc acttctgttt tcagagaatc acggcttcag agtccatgga 1740 attag 1745 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> target sequence of UP gene_1 <400> 4 gtggcgatat ctatgtacag 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> target sequence of UP gene_2 <400> 5 gttggtactc acatggaagg 20 <210> 6 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Forward oligo of sgRNA_1 <400> 6 gattggtggc gatatctatg tacag 25 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Reverse oligo of sgRNA_1 <400> 7 aaacctgtac atagatatcg ccac 24 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Forward oligo of sgRNA_2 <400> 8 gattggttgg tactcacatg gaagg 25 <210> 9 <211> 25 <212> DNA <213> Arti ficial Sequence <220> <223> Reverse oligo of sgRNA_2 <400> 9 aaacccttcc atgtgagtac caacc 25 <210> 10 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> AtU6-F-KpnI <400 > 10 gtggtaccca ttcggagttt ttgtatcttg tttc 34 <210> 11 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> sgR-R-EcoRI <400> 11 acgaattcac gaattcgcca tttgtctgca gaattgg21 1 2 <210> > 28 <212> DNA <213> Artificial Sequence <220> <223> UP sgR_U6_KpnI-F <400> 12 gtggtaccca ttcggagttt ttgtatct 28 <210> 13 <211> 28 <212> DNA <213> Artificial Sequence <220> < 223> UP sgR_end_EcoRI-R <400> 13 acgaattcgc catttgtctg cagaattg 28 <210> 14 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> UP-FL-F <400> 14 atgcaagtcg aaatcccatc g 21 <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> UP-FL-R <400> 15 aattccatgg actctgaagc cg 22 <210> 16 <211> 20 <212> DNA <213 > Artificial Sequence <220> <223> ACTIN2-RT-F <400> 16 tgggatgaac cagaaggatg 20 <210> 17 <211> 24 <212> DNA <213> Artificial Sequence <220> < 223> ACTIN2-RT-R <400> 17 aagaatacct ctcttggatt gtgc 24 <210> 18 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> qRT-F <400> 18 gaagtggagg agagattaca ag 22 < 210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> qRT-R <400> 19 aagagaagga cgagtggcta 20 <210> 20 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> ACTIN2-qRT-F <400> 20 cgagaagaac tatgaattac cc 22 <210> 21 <211> 22 <212> DNA <213 > Artificial Sequence <220> <223> ACTIN2-qRT-R<400> 21 gagttatagg ttgtctcgtg ga 22

Claims (13)

서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 발현을 조절하는 단계를 포함하는, 식물체의 성장, 개화 및 환경 스트레스에 대한 저항성을 조절하는 방법.A method for regulating the growth, flowering and resistance of a plant to environmental stress, comprising the step of regulating the expression of a gene encoding the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1. 제1항에 있어서,
상기 UP 단백질 코딩 유전자의 발현 조절은,
ⅰ) 상기 UP 단백질 코딩 유전자를 결손시켜 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진시키거나;
ⅱ) 상기 UP 단백질 코딩 유전자를 도입 및 과발현시켜 성장 촉진 및 염분 스트레스와 ABA 스트레스에 대한 저항성을 증진시키는 것;을 특징으로 하는 식물체의 성장, 개화 및 환경 스트레스에 대한 저항성을 조절하는 방법.
According to claim 1,
Regulating the expression of the UP protein coding gene,
i) deleting the UP protein coding gene to shorten the flowering period and enhance resistance to drying stress;
ii) introducing and overexpressing the UP protein coding gene to promote growth and enhance resistance to salt stress and ABA stress;
제2항에 있어서,
상기 UP 단백질 코딩 유전자의 과발현은 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850) 코딩 유전자를 포함하는 재조합 벡터를 이용하여 수행되는 것을 특징으로 하는 식물체의 성장, 개화 및 환경 스트레스에 대한 저항성을 조절하는 방법.
According to claim 2,
The overexpression of the UP protein coding gene is performed using a recombinant vector containing the UP protein (Unknown Protein, AT3G47850) coding gene represented by SEQ ID NO: 1, characterized in that the growth, flowering and resistance of plants to environmental stress how to regulate.
제2항에 있어서,
상기 UP 단백질 코딩 유전자의 결손은 VIGS(Virus-induced gene silencing), siRNA, shRNA, miRNA, 리보자임(ribozyme), PNA(peptide nucleic acids), 안티센스 올리고핵산, T-DNA 삽입 또는 유전체/유전자 교정(genome/gene editing) 시스템을 이용하여 수행되는 것을 특징으로 하는 식물체의 성장, 개화 및 환경 스트레스에 대한 저항성을 조절하는 방법.
According to claim 2,
The deletion of the UP protein coding gene is VIGS (Virus-induced gene silencing), siRNA, shRNA, miRNA, ribozyme (ribozyme), PNA (peptide nucleic acids), antisense oligonucleic acid, T-DNA insertion or genome / gene correction ( A method for controlling the growth, flowering, and resistance to environmental stress of a plant, characterized in that it is performed using a genome/gene editing) system.
제2항에 있어서,
상기 UP 단백질 코딩 유전자의 결손은, 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)와 엔도뉴클레아제(endonuclease) 단백질의 복합체(ribonucleoprotein); 또는 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제(endonuclease) 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 이용하는 것을 특징으로 하는 식물체의 성장, 개화 및 환경 스트레스에 대한 저항성을 조절하는 방법.
According to claim 2,
The deletion of the UP protein coding gene is a guide RNA specific to the target sequence of the coding gene of the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1 and a complex of endonuclease protein (ribonucleoprotein); Or a recombinant vector containing DNA encoding a guide RNA specific to the target nucleotide sequence of the coding gene of the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1 and a nucleic acid sequence encoding an endonuclease protein A method for regulating the growth, flowering and resistance to environmental stress of a plant, characterized by using ;.
제5항에 있어서,
상기 UP 단백질(Unknown Protein, AT3G47850) 코딩 유전자는 서열번호 2인 것을 특징으로 하는 식물체의 성장, 개화 및 환경 스트레스에 대한 저항성을 조절하는 방법.
According to claim 5,
The UP protein (Unknown Protein, AT3G47850) coding gene is a method for controlling the growth, flowering and resistance to environmental stress of plants, characterized in that SEQ ID NO: 2.
제2항에 있어서,
상기 엔도뉴클레아제(endonuclease) 단백질은 Cas9 단백질인 것을 특징으로 하는 식물체의 성장, 개화 및 환경 스트레스에 대한 저항성을 조절하는 방법.
According to claim 2,
The endonuclease (endonuclease) protein is a method for controlling the growth, flowering and resistance to environmental stress of the plant, characterized in that the Cas9 protein.
제1항에 있어서,
상기 식물체는 애기장대(Arabidopsis thaliana)인 것을 특징으로 하는 식물체의 성장, 개화 및 환경 스트레스에 대한 저항성을 조절하는 방법.
According to claim 1,
The plant is Arabidopsis thaliana Method for controlling the growth, flowering and resistance to environmental stress of the plant, characterized in that.
(a) 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)와 엔도뉴클레아제(endonuclease) 단백질의 복합체(ribonucleoprotein); 또는 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 식물세포에 도입하여 유전체를 교정하는 단계; 및
(b) 상기 유전체가 교정된 형질전환 식물체를 재분화하는 단계;를 포함하는 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진된 형질전환 식물체의 제조방법.
(a) a ribonucleoprotein complex of guide RNA and endonuclease protein specific to the target nucleotide sequence of the coding gene of UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1; Or a UP protein represented by SEQ ID NO: 1 (Unknown Protein, AT3G47850) Recombinant vector containing a DNA encoding a guide RNA specific to the target sequence of the coding gene and a nucleic acid sequence encoding an endonuclease protein; plant Correcting the genome by introducing into cells; and
(b) regenerating the transgenic plant in which the genome has been corrected; a method for producing a transgenic plant with improved resistance to drying stress and shortening of flowering period, comprising:
제9항에 있어서,
상기 식물체는 애기장대(Arabidopsis thaliana)인 것을 특징으로 하는 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진된 형질전환 식물체의 제조방법.
According to claim 9,
The plant is Arabidopsis thaliana Method for producing a transgenic plant with improved resistance to shortening of flowering time and drying stress, characterized in that.
제9항의 방법에 의해 제조된 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진된 형질전환 식물체.A transgenic plant with improved resistance to drying stress and reduced flowering time prepared by the method of claim 9. 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)와 엔도뉴클레아제(endonuclease) 단백질의 복합체(ribonucleoprotein); 또는 서열번호 1로 표시되는 UP 단백질(Unknown Protein, AT3G47850)의 코딩 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제(endonuclease) 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;을 유효성분으로 함유하는 식물체의 개화시기 단축 및 건조 스트레스에 대한 저항성을 증진시키는 유전체 교정용 조성물.UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1, a guide RNA specific to the target nucleotide sequence of the coding gene and an endonuclease protein complex (ribonucleoprotein); Or a recombinant vector containing DNA encoding a guide RNA specific to the target nucleotide sequence of the coding gene of the UP protein (Unknown Protein, AT3G47850) represented by SEQ ID NO: 1 and a nucleic acid sequence encoding an endonuclease protein A composition for genome correction that improves resistance to drying stress and shortens the flowering period of plants containing ; as an active ingredient. 제12항에 따른 조성물을 포함하는 개화시기 단축 및 건조 스트레스에 대한 저항성이 증진된 식물체를 제조하기 위한 키트.

A kit for preparing a plant containing the composition according to claim 12 with improved resistance to shortening of flowering period and drying stress.

KR1020210116716A 2021-09-02 2021-09-02 UP gene from Arabidopsis thaliana regulating resistance to environment stress in plant and uses thereof KR20230033830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210116716A KR20230033830A (en) 2021-09-02 2021-09-02 UP gene from Arabidopsis thaliana regulating resistance to environment stress in plant and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210116716A KR20230033830A (en) 2021-09-02 2021-09-02 UP gene from Arabidopsis thaliana regulating resistance to environment stress in plant and uses thereof

Publications (1)

Publication Number Publication Date
KR20230033830A true KR20230033830A (en) 2023-03-09

Family

ID=85511481

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210116716A KR20230033830A (en) 2021-09-02 2021-09-02 UP gene from Arabidopsis thaliana regulating resistance to environment stress in plant and uses thereof

Country Status (1)

Country Link
KR (1) KR20230033830A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210069839A (en) 2019-12-04 2021-06-14 대한민국(농촌진흥청장) EFG1 gene for regulating flowering date of plantbody and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210069839A (en) 2019-12-04 2021-06-14 대한민국(농촌진흥청장) EFG1 gene for regulating flowering date of plantbody and uses thereof

Similar Documents

Publication Publication Date Title
CN109153988B (en) Method for editing genome of plant
JP2015534834A (en) Transfer DNA transfer mediated by TAL
EP3456181A1 (en) Method for creating transformed plant
KR102113500B1 (en) Method for producing genome-edited Brassica rapa plant having late flowering trait by SOC1 gene editing and the plant thereof
CN116179589B (en) SlPRMT5 gene and application of protein thereof in regulation and control of tomato fruit yield
CN109423492B (en) Application of SlTOE1 gene in regulation and control of flowering time and yield of tomatoes
CN108715852B (en) Tomato fruit mature gene Sl0658 and application thereof
CN117106820A (en) Method for creating few lateral branches of tomatoes through genome editing and application of method
WO2023164553A2 (en) Compositions and methods for suppression of flowering in sugarcane and energycane
KR102547766B1 (en) Method for producing genome-edited Petunia plant with enhanced flower longevity by PhACO1 gene editing and genome-edited Petunia plant with enhanced flower longevity produced by the same method
CN107557384B (en) Genetic transformation system for inducing plant dwarfing and construction and application thereof
KR20200066967A (en) Method for producing genome-edited Brassica rapa plant having late flowering trait by FT gene editing and the plant thereof
CN110951771B (en) Chinese cymbidiummiR390aApplication in controlling plant root system development
KR20230033830A (en) UP gene from Arabidopsis thaliana regulating resistance to environment stress in plant and uses thereof
CN106086063B (en) RNAi vector constructed based on isocaudarner and application thereof
WO2021049388A1 (en) Plant modification method using axillary bud meristem
WO2022154115A1 (en) Method for producing transformed or genome-edited next-generation plant
WO2021070549A1 (en) Method for genome editing in wheat and use thereof
US20230026620A1 (en) Rop - deficient plants having high water use efficiency
CN116574714A (en) Tomato phospholipase SlPLD delta and application thereof in low-potassium stress resistance
CN117947080A (en) Application of NEST1 gene in regulation of salt tolerance of rice
CN115991756A (en) Method for improving tomato fruit yield and tomato fruit lycopene content under dim light condition
KR20230047549A (en) OsPUB7 gene from Oryza sativa for controlling drought stress tolerance of plant and uses thereof
CN118086370A (en) Application of transcription factor OsbZIP62 in negative regulation of rice seed vigor
KR20240072338A (en) OsHDSTART3 gene inducing leaf rolling and use thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal