KR20230018460A - 생물학적 제제를 위한 통제된 성장 시스템 - Google Patents
생물학적 제제를 위한 통제된 성장 시스템 Download PDFInfo
- Publication number
- KR20230018460A KR20230018460A KR1020227046026A KR20227046026A KR20230018460A KR 20230018460 A KR20230018460 A KR 20230018460A KR 1020227046026 A KR1020227046026 A KR 1020227046026A KR 20227046026 A KR20227046026 A KR 20227046026A KR 20230018460 A KR20230018460 A KR 20230018460A
- Authority
- KR
- South Korea
- Prior art keywords
- quality metric
- final quality
- biologic
- controlled growth
- predictive
- Prior art date
Links
- 229960000074 biopharmaceutical Drugs 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 106
- 238000013442 quality metrics Methods 0.000 claims abstract description 97
- 230000008569 process Effects 0.000 claims abstract description 87
- 239000003124 biologic agent Substances 0.000 claims abstract description 18
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 36
- 238000004458 analytical method Methods 0.000 claims description 31
- 238000004891 communication Methods 0.000 claims description 22
- 238000012549 training Methods 0.000 claims description 21
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 18
- 239000001569 carbon dioxide Substances 0.000 claims description 18
- 238000013527 convolutional neural network Methods 0.000 claims description 10
- 230000000977 initiatory effect Effects 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 3
- 238000012876 topography Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 12
- 238000010801 machine learning Methods 0.000 description 12
- 238000003860 storage Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 10
- 230000006870 function Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 241000233866 Fungi Species 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 241000218236 Cannabis Species 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 239000010985 leather Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000192700 Cyanobacteria Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003621 irrigation water Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G18/00—Cultivation of mushrooms
- A01G18/40—Cultivation of spawn
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G31/00—Soilless cultivation, e.g. hydroponics
- A01G31/02—Special apparatus therefor
- A01G31/04—Hydroponic culture on conveyors
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G18/00—Cultivation of mushrooms
- A01G18/60—Cultivation rooms; Equipment therefor
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G2/00—Vegetative propagation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G31/00—Soilless cultivation, e.g. hydroponics
- A01G31/02—Special apparatus therefor
- A01G31/06—Hydroponic culture on racks or in stacked containers
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
- A01G7/02—Treatment of plants with carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/08—Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/30—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
- C12M41/34—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/30—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
- C12M41/36—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/48—Automatic or computerized control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0205—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
- G05B13/024—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G31/00—Soilless cultivation, e.g. hydroponics
- A01G2031/006—Soilless cultivation, e.g. hydroponics with means for recycling the nutritive solution
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Environmental Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- General Physics & Mathematics (AREA)
- Mycology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Analytical Chemistry (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Botany (AREA)
- Automation & Control Theory (AREA)
- Tourism & Hospitality (AREA)
- Molecular Biology (AREA)
- Developmental Biology & Embryology (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Biophysics (AREA)
- Computing Systems (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Mathematical Physics (AREA)
Abstract
통제된 성장 시스템이 본원에 개시된다. 통제된 성장 시스템은 통제된 성장 환경과, 제어기와, 센서 및 컴퓨팅 시스템을 포함한다. 통제된 성장 환경은 생물학적 제제를 성장시키도록 구성된다. 제어기는 통제된 성장 환경과 통신한다. 제어기는 통제된 성장 환경의 공정 변수를 관리하도록 구성된다. 센서는 성장 과정 동안 통제된 성장 환경 내의 생물학적 제제를 모니터링하도록 구성된다. 컴퓨팅 시스템은 센서 및 제어기와 통신한다. 컴퓨팅 시스템은 생물학적 제제에 대한 원하는 최종 품질 메트릭을 달성하기 위한 동작을 수행하도록 프로그래밍된다.
Description
관련 출원에 대한 교차 참조
본 출원은 2020년 6월 3일 출원된 미국 출원 제63/034,027호의 우선권을 주장하며, 그 전체가 참조로 본원에 포함된다.
본 발명은 일반적으로 통제된 성장 환경 내에서의 생물학적 성장을 위한 시스템 및 방법에 관한 것이다.
생물학적 제제가 다양한 적용에 상당한 이점을 갖는 가능한 대안을 나타내는 많은 산업이 존재한다. 예를 들어, 실험실에서 재배되거나 제조된 균사체는 생태학적으로 더 친화적이고 안전한 가죽 생산, 생분해성 포장재 및 임시 건축 자재, 실험실에서 재배된 육류 대체품 등과 같은 다양한 용도를 갖는다. 마찬가지로, 대마초를 의학적 치료로 채택하는 빈도가 높아짐에 따라 대마초는 다양한 의료 혜택을 제공하는 것으로 나타났다.
실시형태에서, 통제된 성장 시스템이 본원에 개시된다. 통제된 성장 시스템은 제어기와, 센서, 및 컴퓨팅 시스템을 포함한다. 통제된 성장 환경은 생물학적 제제를 성장시키도록 구성된다. 제어기는 통제된 성장 환경의 공정 변수를 관리하도록 구성된다. 센서는 성장 과정 동안 통제된 성장 환경 내의 생물학적 제제를 모니터링하도록 구성된다. 컴퓨팅 시스템은 센서 및 제어기와 통신한다. 컴퓨팅 시스템은 동작을 수행하도록 프로그래밍된다. 동작은 통제된 성장 환경에 대한 초기 세트의 공정 변수를 제어기에 제공함으로써 성장 과정을 개시하는 단계를 포함한다. 동작은 성장 과정 동안 센서로부터 센서 데이터를 수신하는 단계를 더 포함한다. 센서 데이터는 적어도 생물학적 제제의 이미지를 포함한다. 동작은, 이미지를 기반으로 생물학적 제제에 대한 예측 최종 품질 메트릭(predicted final quality metric)을 생성하는 단계를 더 포함한다. 예측 최종 품질 메트릭은 생물학적 제제의 현재 상태를 기반으로 성장 과정의 끝에서의 생물학적 제제의 최종 상태를 나타낸다. 동작은 생물학적 제제에 대한 예측 최종 품질 메트릭이 표준 최종 품질 메트릭(canonical final quality metric)의 임계 범위 내에 있지 않은 것을 결정하는 단계를 더 포함한다. 동작은, 결정을 기반으로, 표준 최종 품질 메트릭을 달성하기 위해, 업데이트된 세트의 공정 변수를 생성하는 단계를 더 포함한다. 동작은 업데이트된 세트의 공정 변수를 제어기에 제공하는 단계를 더 포함한다.
일부 실시형태에서, 통제된 성장 환경 내에서 생물학적 제제의 성장을 제어하기 위한 방법이 본원에 개시된다. 컴퓨팅 시스템은 통제된 성장 환경의 제어기에 초기 세트의 공정 변수를 제공함으로써 통제된 성장 환경 내에서의 생물학적 제제에 대한 성장 과정을 개시한다. 컴퓨팅 시스템은 성장 과정 동안 통제된 성장 환경의 센서로부터 센서 데이터를 수신한다. 센서 데이터는 적어도 생물학적 제제의 이미지를 포함한다. 컴퓨팅 시스템은, 이미지를 기반으로 생물학적 제제에 대한 예측 최종 품질 메트릭을 생성한다. 예측 최종 품질 메트릭은 생물학적 제제의 현재 상태를 기반으로 성장 과정의 끝에서의 생물학적 제제의 최종 상태를 나타낸다. 컴퓨팅 시스템은 생물학적 제제에 대한 예측 최종 품질 메트릭이 표준 최종 품질 메트릭의 임계 범위 내에 있지 않은 것을 결정한다. 결정을 기반으로, 컴퓨팅 시스템은 표준 최종 품질 메트릭을 달성하기 위해, 업데이트된 세트의 공정 변수를 생성한다. 컴퓨팅 시스템은 업데이트된 세트의 공정 변수를 제어기에 제공한다.
일부 실시형태에서, 균사체를 위한 통제된 성장 시스템이 본원에 개시된다. 통제된 성장 시스템은 센서와 컴퓨팅 시스템을 포함한다. 센서는 성장 과정 동안 통제된 성장 환경 내의 균사체 시트를 모니터링하도록 구성된다. 컴퓨팅 시스템은 센서 및 통제된 성장 환경과 통신한다. 컴퓨팅 시스템은 동작을 수행하도록 프로그래밍된다. 동작은 통제된 성장 환경에 대한 초기 세트의 공정 변수를 통제된 성장 환경에 제공함으로써 성장 과정을 개시하는 단계를 포함한다. 동작은 성장 과정 동안 센서로부터 센서 데이터를 수신하는 단계를 더 포함한다. 센서 데이터는 적어도 균사체 시트의 이미지를 포함한다. 동작은, 이미지를 기반으로 균사체 시트에 대한 예측 최종 품질 메트릭을 생성하는 단계를 더 포함한다. 예측 최종 품질 메트릭은 균사체 시트의 현재 상태를 기반으로 성장 과정의 끝에서의 균사체 시트의 최종 상태를 나타낸다. 동작은 균사체 시트에 대한 예측 최종 품질 메트릭이 표준 최종 품질 메트릭의 임계 범위 내에 있지 않은 것을 결정하는 단계를 더 포함한다. 동작은, 결정을 기반으로, 표준 최종 품질 메트릭을 달성하기 위해, 업데이트된 세트의 공정 변수를 생성하는 단계를 더 포함한다. 동작은 업데이트된 세트의 공정 변수를 기반으로 통제된 성장 환경을 조정하는 단계를 더 포함한다.
본 개시의 위에서 언급한 및 다른 장점 및 특징이 달성될 수 있는 방식을 설명하기 위해, 위에서 간략하게 설명한 원리에 대한 보다 구체적인 설명이 첨부된 도면에 도시된 특정 실시형태를 참조하여 제공될 것이다. 이들 도면은 본 개시의 예시적인 실시형태만을 도시하고 따라서 그 범위를 제한하는 것으로 간주되지 않는다는 것을 이해하면서, 첨부된 도면을 사용하여 추가적인 특징 및 세부 사항과 함께 본원의 원리기 기술되고 설명된다, 도면에서:
도 1은 예시적인 실시형태에 따른 컴퓨팅 환경을 나타내는 블록도이다.
도 2는 예시적인 실시형태에 따른 컴퓨팅 환경을 나타내는 블록도이다.
도 3은 예시적인 실시형태에 따른 칼럼 트레이의 예시적인 칼럼 제어 요소를 도시한다.
도 4는 예시적인 실시형태에 따른 통제된 성장 환경 내에서 생물학적 제제를 성장시키는 방법을 예시하는 흐름도이다.
도 5A는 예시적인 실시형태에 따른 시스템 버스 컴퓨팅 시스템 아키텍처를 도시한다.
도 5B는 예시적인 실시형태에 따른 칩셋 아키텍처를 갖는 컴퓨터 시스템을 도시한다.
이해를 돕기 위해, 가능한 한 동일한 참조 번호를 사용하여 도면에 공통적인 동일한 요소를 지정했다. 하나의 실시형태에 개시된 요소들은 특별한 언급 없이도 다른 실시형태에서 유리하게 활용될 수 있을 것이다.
도 1은 예시적인 실시형태에 따른 컴퓨팅 환경을 나타내는 블록도이다.
도 2는 예시적인 실시형태에 따른 컴퓨팅 환경을 나타내는 블록도이다.
도 3은 예시적인 실시형태에 따른 칼럼 트레이의 예시적인 칼럼 제어 요소를 도시한다.
도 4는 예시적인 실시형태에 따른 통제된 성장 환경 내에서 생물학적 제제를 성장시키는 방법을 예시하는 흐름도이다.
도 5A는 예시적인 실시형태에 따른 시스템 버스 컴퓨팅 시스템 아키텍처를 도시한다.
도 5B는 예시적인 실시형태에 따른 칩셋 아키텍처를 갖는 컴퓨터 시스템을 도시한다.
이해를 돕기 위해, 가능한 한 동일한 참조 번호를 사용하여 도면에 공통적인 동일한 요소를 지정했다. 하나의 실시형태에 개시된 요소들은 특별한 언급 없이도 다른 실시형태에서 유리하게 활용될 수 있을 것이다.
본원에 제공된 하나 이상의 기술은 통제된 성장 시스템에 관한 것이다. 통제된 성장 시스템은 제어기와, 센서 및 컴퓨팅 시스템을 포함한다. 통제된 성장 환경은 생물학적 제제를 성장시키도록 구성된다. 제어기는 통제된 성장 환경의 공정 변수를 관리하도록 구성된다. 센서는 성장 과정 동안 통제된 성장 환경 내의 생물학적 제제를 모니터링하도록 구성된다. 컴퓨팅 시스템은 센서, 및 제어기와 통신한다. 컴퓨팅 시스템은 생물학적 제제에 대한 원하는 최종 품질 메트릭을 달성하기 위한 동작을 수행하도록 프로그래밍된다.
도 1은 예시적인 실시형태에 따른 컴퓨팅 환경(100)을 도시하는 블록도이다. 도시된 바와 같이, 컴퓨팅 환경(100)은 통제된 성장 환경(102)과, 컴퓨팅 시스템(104), 센서(106), 및 하나 이상의 통신 링크(105 및 115)를 통해 통신하는 제어기(108)를 포함할 수 있다.
일부 실시형태에서, 하나 이상의 통신 링크(105 및 115)는 유선 통신 링크일 수 있다. 일부 실시형태에서, 하나 이상의 통신 링크(105 및/또는 115)는 셀룰러 또는 와이파이 네트워크와 같은 인터넷을 통한 개별 연결을 포함하는 임의의 적합한 유형일 수 있다. 일부 실시형태에서, 통신 링크(105) 및/또는 통신 링크(115)는 무선 주파수 식별(RFID), 근거리 통신(NFC), 블루투스(Bluetooth™), 저에너지 블루투스(BLE), 와이파이(Wi-Fi™) 지그비(ZigBee™), 주변 후방 산란 통신(ambient backscatter communication, ABC) 프로토콜, USB, WAN 또는 LAN와 같은 직접 연결을 사용하여 단말기, 서비스 및 모바일 장치를 연결할 수 있다. 전송되는 정보는 개인 정보이거나 기밀 정보일 수 있으므로, 보안 문제는 이러한 유형의 연결 중 하나 이상이 암호화되거나 다른 방식으로 보호될 것을 필요로 할 수 있다. 그러나 일부 실시형태에서, 전송되는 정보는 덜 개인적일 수 있고, 따라서 보안보다는 편의를 위해 네트워크 연결이 선택될 수 있다.
통신 링크(105) 및/또는 통신 링크(115)는 데이터 또는 정보를 교환하기 위해 사용되는 임의의 유형의 컴퓨터 네트워킹 장치를 포함할 수 있다. 예를 들어, 통신 링크(105) 및/또는 통신 링크(115)는 인터넷, 사설 데이터망, 공중 통신망을 사용하는 가상 사설망 및/또는 컴퓨팅 환경(100)의 구성요소가 서로 간에 정보를 송수신할 수 있도록 하는 다른 적절한 연결(들)일 수 있다.
통제된 성장 환경(102)은 생물학적 제제(110)를 성장시키기 위한 성장 구조를 나타낼 수 있다. 예를 들어, 통제된 성장 환경(102)은 생물학적 제제(110)에 대한 최적의 성장 조건을 제공하고 및/또는 유지하도록 구성될 수 있다. 예시적인 생물학적 제제(110)는, 균사체, 대마초, 소비재, 조류, 대두, 시아노박테리아, DNA, 합성 단백질 등을 포함할 수 있지만, 이에 한정되지 않는다. 통제된 성장 환경(102)은 생물학적 제제(110)가 성장을 위한 적절한 조건을 제공받는 것을 보장할 수 있다. 예를 들어, 통제된 성장 환경(102)과 통신하는 제어기(108)는 통제된 성장 환경(102) 내에서 이상적인 또는 최적의 성장 환경을 유지하기 위해 하나 이상의 변수를 제어할 수 있다. 일부 실시형태에서, 제어기(108)는 온도, 습도, 광도, pH 수준, 이산화탄소 수준, 토양 질산염, 직접 관개 수량, 산소 수준, 환경 공기 유량 및 방향, 주변 소음 주파수 성분, 종자 패터닝 및 밀도, 수확 일정, 빛의 방향 등 중 하나 이상을 제어하고 및/또는 조절하도록 구성될 수 있다. 하나 이상의 변수를 제어함으로써, 제어기(108)는 원하는 최종 품질 메트릭을 달성하는 것을 도울 수 있다. 예를 들어, 제어기(108)는 생물학적 제제(110)의 원하는 성장 균일성을 달성하는 것을 도울 수 있다.
생물학적 제제(110)가 원하는 최종 품질 메트릭으로 진행하는지 여부를 결정하기 위해, 통제된 성장 환경(102)은 공정 제어 시스템을 활용할 수 있다. 예를 들어, 센서(106)는 통제된 성장 환경(102) 내에서 생물학적 제제(110)의 성장을 모니터링하도록 구성될 수 있다. 일부 실시형태에서, 센서(106)는 성장 과정의 다양한 단계에서 생물학적 제제(110)의 하나 이상의 이미지를 캡처하도록 구성된 이미징 장치(예를 들어, 카메라)를 포함할 수 있다. 일부 실시형태에서, 센서(106)는 성장 과정과 관련된 다양한 변수를 측정하기 위한 다양한 센서를 포함할 수 있다. 예를 들어, 센서(106)는 온도 센서, 습도 센서, 광도 센서, 이산화탄소 센서 등을 포함할 수 있지만 이에 한정되지 않는다. 센서(106)는 분석을 위해 컴퓨팅 시스템(104)에 하나 이상의 이미지 및/또는 하나 이상의 측정치를 제공하도록 구성될 수 있다.
컴퓨팅 시스템(104)은 하나 이상의 이미지 및/또는 하나 이상의 측정치를 분석하여 생물학적 제제(110)에 대한 최종 품질 메트릭을 예상하거나 예측하도록 구성될 수 있다. 예측 최종 품질 메트릭을 기반으로, 컴퓨팅 시스템(104)은 제어기로 하여금 통제된 성장 환경(102)의 공정 변수를 조정하도록 할 수 있다. 예를 들어, 예측 최종 품질 메트릭을 기반으로, 컴퓨팅 시스템(104)은 제어기(108)로 하여금 통제된 성장 환경(102)의 하나 이상의 부분의 온도, 습도, 광도, 이산화탄소 등 중 하나 이상을 조정하도록 할 수 있다.
도시된 바와 같이, 컴퓨팅 시스템(104)은 분석 모듈(112)을 포함할 수 있다. 분석 모듈(112)은 하나 이상의 소프트웨어 모듈로 구성될 수 있다. 하나 이상의 소프트웨어 모듈은 하나 이상의 알고리즘 단계를 구현하는 일련의 기계 명령(예를 들어, 프로그램 코드)에 해당하는, 매체(예를 들어, 컴퓨팅 시스템(104)의 메모리)에 저장된 코드 또는 명령의 모음일 수 있다. 이러한 기계 명령은 컴퓨팅 시스템(104)의 프로세서가 명령을 구현하기 위해 해석하는 실제 컴퓨터 코드일 수 있거나, 대안으로 실제 컴퓨터 코드를 얻기 위해 해석되는 명령의 더 높은 수준의 코딩일 수 있다. 하나 이상의 소프트웨어 모듈은 또한 하나 이상의 하드웨어 구성요소를 포함할 수 있다. 예시적인 알고리즘의 하나 이상의 양태는 명령의 결과로서가 아니라 하드웨어 구성요소(예를 들어, 회로) 자체에 의해 수행될 수 있다.
분석 모듈(112)은 센서(106)로부터 수신된 데이터를 분석하도록 구성될 수 있다. 예를 들어, 분석 모듈(112)은 센서(106)로부터 캡처된 하나 이상의 이미지를 분석하여 생물학적 제제(110)에 대한 최종 품질 메트릭을 예상하거나 예측하도록 구성될 수 있다. 최종 품질 메트릭은 생물학적 제제(110)가 통제된 성장 환경을 겪은 후의 생물학적 제제(110)의 최종 품질 속성을 대략적으로 나타낼 수 있다. 일부 실시형태에서, 최종 품질 메트릭은 균사체 시트의 성장에 걸친 균일성 수준에 해당할 수 있다. 일부 실시형태에서, 예시적인 최종 품질 메트릭은 균일성 수준으로 제한되지 않을 수 있고, 높이/형상/부피, 색상/조도, 화학적 조성, 가스 배출 조성, 인간 판단의 체계화(예를 들어, 사람이 생성한 라벨을 사용하는 식물의 분류), 위에서 언급한 품질 메트릭의 변화율, 위에서 언급한 메트릭의 집계 등 중 하나 이상을 포함할 수 있다. 일반적으로, 최종 품질 메트릭은 성장 과정 동안 직접 측정될 수 없는 메트릭이다. 대신에, 최종 품질 메트릭은 생물학적 제제(110)의 현재 상태 및 유사한 프로세스에 대한 분석 모듈(112)의 지식이 주어지면 추론되거나 예측된다. 이러한 분석을 사용하여, 관리자는 생물학적 제제(110)가 치명적인 오류를 경험했는지(즉, 분석을 기반으로, 생물학적 제제(110)가 원하는 최종 품질 메트릭을 달성할 수 없는지), 원하는 최종 품질 메트릭을 달성하기 위해 처리되어야 하는지(즉, 통제된 성장 환경(102)에 대해 조정이 필요한지), 또는 원하는 최종 품질 메트릭과 일치하지 않으며 공정 변수 조정이 필요한지 여부를 결정할 수 있다.
일부 실시형태에서, 분석 모듈(112)은 컴퓨터 비전 모듈(114)을 포함할 수 있다. 컴퓨터 비전 모듈(114)은 센서(106)에 의해 캡처된 하나 이상의 이미지를 분석하도록 구성될 수 있다. 분석된 이미지를 기반으로, 분석 모듈(112)은 생물학적 제제(110)에 대한 최종 품질 메트릭을 예측하거나 생성할 수 있다. 일부 실시형태에서, 하나 이상의 이미지를 분석하기 위해, 컴퓨터 비전 모듈(114)은 지형 분석 방법(topographic analysis approach)을 사용할 수 있다. 예를 들어, 컴퓨터 비전 모듈(114)은 센서(106)에 의해 캡처된 하나 이상의 이미지를 기반으로 3차원 포인트 클라우드(three-dimensional point cloud)의 알고리즘 분석을 활용할 수 있다. 이러한 분석은 분석 모듈(112)이 통제된 성장 환경(102)의 공정 변수에 대한 조정이 원하는 최종 품질 메트릭을 달성하는 데 필요한지 여부를 결정하는 데 도움이 될 수 있다.
일부 실시형태에서, 분석 모듈(112)은 기계 학습 모델(116)을 포함할 수 있다. 기계 학습 모델(116)은 생물학적 제제(110)의 최종 품질 메트릭을 예측하거나 예상하기 위해 센서(106)에 의해 캡처된 이미지를 분석하도록 훈련된 합성곱 신경망을 나타낼 수 있다. 일부 실시형태에서, 기계 학습 모델(116)은 훈련 과정을 겪을 수 있으며, 여기서 기계 학습 모델(116)은 생물학적 제제의 이미지 및 각각의 이미지에 대응하는 통제된 성장 환경(102)의 공정 변수를 포함하지만 이에 한정되지 않는 훈련 세트를 제공받는다. 이러한 방식으로, 기계 학습 모델(116)은 다양한 공정 변수가 성장 과정의 다양한 단계에서 생물학적 제제의 최종 품질 메트릭에 어떻게 영향을 미치는지 학습하도록 훈련될 수 있다. 이러한 방식으로, 분석 모듈(112)은, 통제된 성장 환경(102)이 생물학적 제제(110)에 대한 원하는 최종 품질 메트릭을 달성할 수 있도록, 통제된 성장 환경(102)의 공정 변수를 최적화하거나 조정하기 위해 기계 학습 모델(116)을 활용할 수 있다.
통제된 성장 환경(102)의 공정 변수가 원하는 품질 메트릭을 달성하기 위해 조정되어야 한다고 분석 모듈(112)이 결정하면, 분석 모듈(112)은 그에 따라 통제된 성장 환경(102)의 공정 변수를 조정하도록 제어기(108)에 지시할 수 있다. 이러한 방식으로, 컴퓨팅 환경(100)은, 통제된 성장 환경(102)이 원하는 최종 품질 메트릭을 달성할 수 있도록, 생물학적 제제(110)의 성장이 지속적으로 모니터링되고 조정되는 피드백 루프를 포함할 수 있다.
도 2는 예시적인 실시형태에 따른 컴퓨팅 환경(200)을 도시하는 블록도이다. 컴퓨팅 환경(200)은 컴퓨팅 환경(100)의 특정 사용 사례를 나타낼 수 있다. 예를 들어, 컴퓨팅 환경(200)은 균사체 시트를 성장시키기 위한 환경에 해당할 수 있다.
도시된 바와 같이, 컴퓨팅 환경(200)은 통제된 성장 환경(201)과, 균사체 시트(202)와, 칼럼 트레이(203)와, 공급 튜브 번들(204)과, 프로그램 가능한 매니폴드(205)와, 공급 튜브(206)와, 이산화탄소 공급 탱크(207)와, 이산화탄소 압력 조절기(208)와, 센서(210), 및 컴퓨팅 시스템(212)을 포함할 수 있다.
규정한 바와 같이, 컴퓨팅 환경(200)은 균사체 시트를 성장시키는 데 사용될 수 있다. 일반적으로 균사체(버섯에서의 균류와 같은 균류의 식물 부분)가 상당한 이점이 있는 가능한 대안이 되는 많은 산업이 존재한다. 예를 들어, 실험실에서 재배되거나 제조된 균사체의 용도는 생태학적으로 더 친화적이고 안전한 가죽 생산, 생분해성 포장재, 임시 건축 자재, 실험실에서 재배된 육류 대체품 등을 포함한다. 성장하는 균사체는, 균사체를 원하는 형태로 압축하거나, 균사체 섬유를 다른 공정에서 사용되거나 이와 함께 사용되는 혼합물로 그리드화(grid)하거나, 균사체의 매트(mat)에서 과도한 균사체를 물리적으로 형성하고 제거함으로써, 초기 혼합물을 정해진 틀에 도입함으로써 달성될 수 있다. 하나 이상의 실시형태에서, 초기 성장으로부터의 기형이 최종 산물로 전파되지 않도록, 균사체 시트를 정규화하기 위한 추가 처리 단계가 있을 수 있다. 컴퓨팅 환경(200)은, 균사체에 대한 원하는 최종 품질 메트릭이 달성될 수 있도록, 성장 과정에서 초기에 기형을 검출하거나 포착하고 이를 수정하기 위해 균사체의 성장을 모니터링하도록 구성될 수 있다.
도 2에 도시된 바와 같이, 균사체 시트(202)는 통제된 성장 환경(201) 내부의 칼럼 트레이(203) 상에서 성장할 수 있다. 칼럼 트레이(203)의 각각의 칼럼은 프로그램 가능한 매니폴드(205)에 의해 개별적으로 제어될 수 있다. 칼럼 트레이(203)의 각각의 칼럼은, 프로그램 가능한 매니폴드(205)에 의해 제어되는 바와 같이, 각각의 칼럼과 관련된 국부적 변동을 제어하기 위해 가스 혼합물을 공급받을 수 있다. 일부 실시형태에서, 매니폴드(205)는 컴퓨팅 시스템(212)으로부터 명령을 수신할 수 있다. 예를 들어, 컴퓨팅 시스템(212)은 균사체 시트(202)의 현재의 성장 상태뿐만 아니라, 각각의 칼럼의 가스 유량을 업데이트하기 위해 다른 관련 요인(예를 들어, 온도, 습도, 광도 등)을 분석하도록 구성된 분석 모듈(214)(분석 모듈(112)과 유사하게 구성됨)을 포함할 수 있다. 각각의 칼럼의 가스 유량을 조정하면, 균사체 시트(202) 전체의 성장에 비해 너무 많이 성장한(예를 들어, 너무 두꺼운 국부 영역) 또는 너무 적게 성장한(예를 들어, 너무 얇은 국부 영역) 영역일 수 있는 균사체 시트(202)의 영역을 처리할 수 있다. 일부 실시형태에서, 정의된 성장은 전체 시트에 대한 평균 또는 중간 성장을 기반으로 할 수 있다. 분석 모듈(214)은 하나 이상의 기계 학습 및/또는 컴퓨터 비전 접근법을 사용하여 균사체 상태의 성장 상태를 분석하도록 구성될 수 있다. 예를 들어, 기계 학습 모델(예를 들어, 합성곱 신경망)은 국부 영역에 대한 가스 유량의 영향에 대해 훈련될 수 있다. 다양한 성장 인자를 조작함으로써, 분석 모듈(214)은 원하는 최종 품질 메트릭, 예를 들어 균일한 균사체 시트를 달성하는 것을 도울 수 있다.
도시된 바와 같이, 균사체 시트(202)는 통제된 성장 환경(201)에 배치된 칼럼 트레이(203)의 상부에 의해 형성된 트레이로부터 성장할 수 있다. 통제된 성장 환경(201)은 칼럼 트레이(203)의 각각의 칼럼에 공급하기 위한 공급 튜브(204)를 포함할 수 있다. 공급 튜브(204) 공급 탱크(207)로부터의 이산화탄소의 전체 처리량을 제어하는 이산화탄소(CO2) 조절기(208)에 의해 공급될 수 있는 프로그램 가능한 매니폴드(205)에 결합될 수 있다.
일부 실시형태에서, 형성될 최종 제품, 즉 균사체 시트는 칼럼 트레이(203)로부터 성장할 수 있다. 칼럼 트레이(203)는, 이 장치의 주어진 구성이 임의의 길이 또는 너비의 시트를 생성할 수 있도록 임의의 크기로 조정될 수 있다.
도 3은 예시적인 실시형태에 따른 칼럼 트레이(203)의 예시적인 칼럼 제어 요소를 도시하고 있다. 위에서 규정한 바와 같이, 균사체 시트는 선택된 균류가 성장하기 위한 벌크 기질(bulk substrate) 및/또는 종균 혼합물(spawn mixture)을 함유하는 칼럼 트레이(203)로부터 성장할 수 있다. 일부 실시형태에서, 칼럼의 정확한 형상(예를 들어, 원통형, 직각 프리즘, 육각 프리즘 등) 및 크기는 다양할 수 있다. 칼럼의 구조에 따라, 균사체 시트(202)가 성장하기 위한 인접한 칼럼의 표면 영역 사이에 공간이 존재할 수도 있고 존재하지 않을 수도 있다. 일부 실시형태에서, 동일한 종의 균사체가 함께 성장하여 단일 유기체를 형성하는 것으로 알려져 있을 수 있다. 매트나 시트의 두께가 성장함에 따라 틈새 사이에 브리지가 형성될 수 있다. 칼럼 사이에 작은 틈새가 있는 경우, 이들 틈새는 전체 시트 구조에 천천히 영향을 덜 줄 수 있다.
도 3에 규정된 바와 같이, 사이에 공간이 있는 여러 칼럼이 있다. 도 3은 균사체가 성장하거나 함께 결합하여 칼럼 트레이(203)의 각각의 개별 칼럼(301) 위에 단일 균사체 시트(202)를 형성하는 방법을 규정할 수 있다.
칼럼 트레이(203)로부터의 각각의 칼럼(301)은 기부에서 일방향 밸브를 통해 단일 공급 튜브(204)에 연결될 수 있으며, 이 공급 튜브는 함께 묶여서 프로그램 가능한 매니폴드(205)에 부착될 수 있다. 프로그램 가능한 매니폴드(205)는 이산화탄소 공급 탱크(207)에 부착된 조절기(208)로부터의 튜브에 의해 공급받을 수 있다. 일부 실시형태에서, 이산화탄소 공급 탱크(207)는 통제된 성장 환경(201) 내부에 있을 수 있다. 일부 실시형태에서, 이산화탄소 공급 탱크(207)는 통제된 성장 환경(201) 외부에 있을 수 있다.
이산화탄소 공급원은 균사체 시트(202)의 성장률을 제어하는 예시적인 방법을 제공할 수 있다. 이 예를 위해 선택된 균류는 이산화탄소의 존재 하에 감소된 성장률을 나타내는 것일 수 있다. 본 기술 분야의 숙련자가 인식하는 바와 같이, 다른 가스 및 균류 조합이 본 기술에서 벗어나지 않고 사용될 수 있다. 압력 조절기(208)는 프로그램 가능한 매니폴드(205)에 대한 전체 유량을 제어할 수 있다. 일부 실시형태에서, 프로그램 가능한 매니폴드(205)는 다수의 상이한 가스 공급 탱크가 사용될 수 있도록 하고, 따라서 원하는 대로 가스를 혼합하는 능력을 제공할 수 있다.
칼럼 트레이(203)로부터의 각각의 칼럼(301)은 국부적 변동(302)을 포함할 수 있고 하나의 공급 튜브(304)에 연결될 수 있고, 따라서 유입 노즐을 통해 칼럼(301)에 공급할 수 있다. 칼럼(301)의 정확한 구조는 다양할 수 있지만, 각각의 칼럼(301)은 균사체 시트(202)가 성장할 수 있는 벌크 및 종균 기질 혼합물(303)을 포함할 수 있다. 칼럼(301)의 벽과 바닥이 폐쇄된 상태에서, 균류는 인접한 칼럼(301)의 상단 및 이들 사이에서 균사체 시트(202)를 형성하는 개방된 상부 층에서 균사체 층을 성장시킬 수 있다. 이들 칼럼(301)은 도 3에 도시된 바와 같이 서로에 대해 직접 인접하거나 분리될 수 있다. 균사체 시트(202)는 위로 성장할 수 있으며 칼럼(301) 사이의 모든 틈새를 덮을 수 있다.
무질서한 효과로 인해, 임의의 단일 칼럼(301)으로부터 영양분을 끌어들이는 균사체는 다른 것보다 더 빠르거나 느리게 성장할 수도 있고 그렇지 않을 수도 있다. 이와 같이, 일부 영역이 다른 영역보다 두껍거나 얇을 수 있는 국부적 변동이 균사체 시트(202)에 나타날 수 있고; 성장이 증가한 영역과 성장이 저하된 영역이 도 3에 도시되어 있다.
벌크 및 종균 기질 혼합물은 예를 들어 10-대-1 벌크-대-포자 또는 균사체가 균사체 시트(202)로 빠르게 발아하도록 하는 다른 비율로 시작할 수 있다. 벌크-대-종균 기질의 비율, 및 균류 종의 선택은 본원에 개시된 본 기술을 벗어나지 않고 다양할 수 있다. 이는 균사체 시트(202)가 초기 성장을 시작하는 위치일 수 있다. 구현형태에 따라, 벌크 및 종균 기질 혼합물은 성장할 각각의 새로운 균사체 시트(202)에 대해 교체될 필요가 있거나 필요하지 않을 수 있다.
일부 실시형태에서, 매니폴드(205)를 통해 흐르는 가스는 유입 노즐(305)을 통해 각각의 칼럼(301)에 직접 공급될 수 있다. 이는 각각의 칼럼(301)의 위치에 가스의 국부적인 구배 또는 농도를 제공할 수 있고, 따라서 각각의 칼럼(301) 위 또는 칼럼(301)에 있는 균사체 시트(202)가 공급 튜브를 통해 제공된 가스를 기반으로 더 빠르게 또는 더 느리게 성장하도록 제어될 수 있다.
일부 실시형태에서, 유입 노즐(305)의 구조는 누출 및 미립자 필터(306)의 존재 없이 가스 공급 튜브(304)가 칼럼(301)에 연결되는 것을 용이하게 할 수 있다. 미립자 필터(306)는 벌크 및 종균 기질 혼합물(303)이 공급 튜브(304) 및/또는 노즐(305)이 막히는 것을 방지하기 위해 사용될 수 있다. 미립자 필터(306)는 성장하는 물질을 가스 전달 시스템으로부터 격리함으로써 이를 달성할 수 있다.
도 4는 예시적인 실시형태에 따라 통제된 성장 환경 내에서 생물학적 제제를 성장시키는 방법(400)을 예시하는 흐름도이다. 예를 들어, 방법(400)은 컴퓨팅 환경(100) 내에서 구현되는 기능에 해당할 수 있다. 방법(400)은 단계 402에서 시작할 수 있다.
단계 402에서, 성장 과정이 개시될 수 있다. 예를 들어, 관리자는 통제된 성장 환경(201) 내에서 생물학적 제제(110)에 대한 성장 과정을 개시할 수 있다. 생물학적 제제(110)에 대한 성장 과정을 개시하는 단계는 컴퓨팅 시스템(104)이 제어기(108)에 초기 세트의 공정 변수를 전달하는 단계를 포함할 수 있다. 예를 들어, 컴퓨팅 시스템(104)은 통제된 성장 환경(201)의 하나 이상의 부분의 온도, 습도 수준, 광도, 물 빈도, 이산화탄소 수준을 포함하지만 이에 한정되지 않는 초기 세트의 공정 변수를 설정할 수 있다.
단계 404에서, 컴퓨팅 시스템(104)은 센서(106)로부터 센서 데이터를 수신할 수 있다. 예를 들어, 성장 과정 동안, 컴퓨팅 시스템(104)은 센서(106)로부터 센서 데이터를 주기적으로, 실시간으로, 또는 요구하면 언제든지 수신할 수 있다. 일부 실시형태에서, 센서 데이터는 센서(106)에 의해 캡처된 생물학적 제제(110)의 적어도 하나 이상의 이미지를 포함할 수 있다. 일부 실시형태에서, 센서 데이터는 온도 판독값, 습도 판독값, 광도 판독값, 이산화탄소 수준 판독값 등 중 하나 이상을 더 포함할 수 있다.
단계 406에서, 컴퓨팅 시스템(104)은 센서(106)에 의해 캡처된 생물학적 제제(110)의 하나 이상의 이미지를 적어도 기반으로 하여 생물학적 제제(110)에 대한 예측 최종 품질 메트릭을 생성할 수 있다. 예를 들어, 분석 모듈(112)은 센서(106)로부터 수신된 데이터를 분석하여, 생물학적 제제(110)의 현재 상태를 기반으로 예측 최종 품질 메트릭을 결정할 수 있다. 최종 품질 메트릭은 생물학적 제제(110)가 통제된 성장 환경을 겪은 후의 생물학적 제제(110)의 최종 품질 속성을 대략적으로 나타낼 수 있다. 일부 실시형태에서, 최종 품질 메트릭은 균사체 시트의 성장에 걸친 균일성 수준에 해당할 수 있다.
일부 실시형태에서, 예측 최종 품질 메트릭을 생성하기 위해, 분석 모듈(112)은 컴퓨터 비전 모듈(114)을 활용할 수 있다. 컴퓨터 비전 모듈(114)은 센서(106)에 의해 캡처된 하나 이상의 이미지를 분석하여 생물학적 제제(110)에 대한 최종 품질 메트릭을 예측하거나 생성할 수 있다. 일부 실시형태에서, 하나 이상의 이미지를 분석하기 위해, 컴퓨터 비전 모듈(114)은 지형 분석 방법을 사용할 수 있다. 예를 들어, 컴퓨터 비전 모듈(114)은 센서(106)에 의해 캡처된 하나 이상의 이미지를 기반으로 3차원 포인트 클라우드의 알고리즘 분석을 활용할 수 있다.
일부 실시형태에서, 예측 최종 품질 메트릭을 생성하기 위해, 분석 모듈(112)은 기계 학습 모델(116)을 활용할 수 있다. 기계 학습 모델(116)은 센서(106)에 의해 캡처된 이미지를 분석하여 생물학적 제제(110)의 최종 품질 메트릭을 예측하거나 예상할 수 있다. 예를 들어, 훈련 과정을 기반으로, 기계 학습 모델(116)은 현재 상태의 생물학적 제제(110) 및 현재의 공정 변수를 식별하여, 현재 성장 경로를 기반으로 최종 품질 메트릭을 결정할 수 있다.
단계 408에서, 컴퓨팅 시스템(104)은 예측 최종 품질 메트릭이 허용 가능한 값의 범위 내에 있는지 여부를 결정할 수 있다. 예를 들어, 컴퓨팅 시스템(104)은 예측 최종 품질 메트릭을 표준 최종 품질 메트릭과 비교하여 통제된 성장 환경(102)의 공정 변수가 조정될 필요가 있는지 여부를 결정할 수 있다. 단계 408에서 예측 최종 품질 메트릭이 허용 가능한 범위 내에 있다고 컴퓨팅 시스템(104)이 결정하면, 단계 410에서 성장 과정은 중단 없이 계속된다.
그러나, 단계 408에서 예측 최종 품질 메트릭이 허용 가능한 범위 내에 있지 않다고 컴퓨팅 시스템(104)이 결정하면, 단계 412에서 컴퓨팅 시스템(104)은 허용 가능한 범위 내에 속하는 성장을 달성하거나 유도하는 데 도움이 될 수 있는 통제된 성장 환경에 대한 새로운 세트의 공정 변수를 결정할 수 있다. 예를 들어, 분석 모듈(112)은 컴퓨터 비전 모듈(114) 및/또는 기계 학습 모델(116)로부터의 출력을 활용하여 통제된 성장 환경(102)의 공정 변수를 최적화하거나 조정할 수 있고, 따라서 통제된 성장 환경(102)은 생물학적 제제(110)에 대한 원하는 최종 품질 메트릭을 달성할 수 있다.
단계 414에서, 컴퓨팅 시스템(104)은 구현을 위해 제어기(108)에 업데이트된 공정 변수를 제공할 수 있다.
균사체 시트에 대한 것과 같은 일부 실시형태에서, 업데이트된 공정 변수는 칼럼 트레이(203) 내의 개별 칼럼(301)에 대한 이산화탄소의 유량을 포함할 수 있다. 이러한 방식으로, 컴퓨팅 시스템(104)은 균일한 균사체 시트(202)가 달성될 수 있도록 균사체 시트(202)에 걸친 성장률의 차이를 처리할 수 있다.
본 기술 분야의 숙련자가 인식하는 바와 같이, 상기 처리는 생물학적 제제(110)의 성장 주기 전체에 걸쳐 수행될 수 있다. 이러한 방식으로, 컴퓨팅 시스템(104)은 통제된 성장 환경(102)의 공정 변수를 지속적으로 조정하여 원하는 최종 품질 메트릭을 달성할 수 있다.
도 5A는 예시적인 실시형태에 따른 시스템 버스 컴퓨팅 시스템(500)의 구조를 도시하고 있다. 시스템(500)의 하나 이상의 구성요소는 버스(505)를 사용하여 서로 전기적으로 통신할 수 있다. 시스템(500)은 프로세서(예를 들어, 하나 이상의 CPU, GPU 또는 다른 유형의 프로세서)(510) 및 판독 전용 메모리(ROM)(520) 및 랜덤 액세스 메모리(RAM)(525)와 같은 시스템 메모리(515)를 포함하는 다양한 시스템 구성요소를 프로세서(510)에 결합시키는 시스템 버스(505)를 포함할 수 있다. 시스템(500)은, 프로세서(510)와 직접 연결되거나, 이에 근접하거나, 이의 일부로서 통합된 고속 메모리의 캐시를 포함할 수 있다. 시스템(500)은 프로세서(510)에 의한 빠른 액세스를 위해 메모리(515) 및/또는 저장 장치(530)로부터 캐시(512)로 데이터를 복사할 수 있다. 이러한 방식으로, 캐시(512)는 데이터를 기다리는 동안의 프로세서(510) 지연을 피하는 성능 향상을 제공할 수 있다. 이들 및 다른 모듈은 다양한 동작을 수행하도록 프로세서(510)를 제어하거나 제어하도록 구성될 수 있다. 다른 시스템 메모리(515)도 사용할 수 있다. 메모리(515)는 다양한 성능 특성을 갖는 다수의 다양한 유형의 메모리를 포함할 수 있다. 프로세서(510)는 단일 프로세서 또는 다수의 프로세서를 나타낼 수 있다. 프로세서(510)는, 프로세서(510)를 제어하도록 구성된, 저장 장치(530)에 저장된 서비스 1(532), 서비스 2(534) 및 서비스 3(536)과 같은 범용 프로세서 또는 하드웨어 모듈 또는 소프트웨어 모듈 및 소프트웨어 명령이 실제 프로세서 설계에 통합되는 특수 목적 프로세서 중 하나 이상을 포함할 수 있다. 프로세서(510)는 본질적으로 다수의 코어 또는 프로세서, 버스, 메모리 제어기, 캐시 등을 포함하는 완전히 자체 완비된 컴퓨팅 시스템일 수 있다. 다중 코어 프로세서는 대칭 또는 비대칭일 수 있다.
시스템(500)과의 사용자 상호작용을 가능하게 하기 위해, 입력 장치(545)는 음성용 마이크, 제스처 또는 그래픽 입력용 터치 감지 스크린, 키보드, 마우스, 모션 입력, 음성 등과 같은 임의의 수의 입력 메커니즘일 수 있다. 출력 장치(535)(예를 들어, 디스플레이)는 또한 본 기술 분야의 숙련자에게 알려진 다수의 출력 메커니즘 중 하나 이상일 수 있다. 경우에 따라, 다중 모드 시스템은 사용자가 시스템(500)과 통신하기 위해 여러 유형의 입력을 제공할 수 있도록 할 수 있다. 통신 인터페이스(540)는 일반적으로 사용자 입력 및 시스템 출력을 통제하고 관리할 수 있다. 특정 하드웨어 장치에서 작동하는 데 제한이 없고, 따라서 여기의 기본 기능은 개발될 때 개선된 하드웨어 또는 펌웨어 장치로 쉽게 대체될 수 있다.
저장 장치(530)는 비휘발성 메모리일 수 있고 자기 카세트, 플래시 메모리 카드, 반도체 메모리 장치, 디지털 다용도 디스크, 카트리지, 랜덤 액세스 메모리(RAM)(525), 판독 전용 메모리(ROM)(520) 및 이들의 하이브리드와 같이, 컴퓨터에 의해 액세스 가능한 데이터를 저장할 수 있는 하드 디스크 또는 다른 유형의 컴퓨터 판독 가능 매체일 수 있다.
저장 장치(530)는 프로세서(510)를 제어하기 위한 서비스(532, 534, 536)를 포함할 수 있다. 다른 하드웨어 또는 소프트웨어 모듈이 고려된다. 저장 장치(530)는 시스템 버스(505)에 연결될 수 있다. 일 양태에서, 특정 기능을 수행하는 하드웨어 모듈은, 기능을 수행하기 위해 프로세서(510), 버스(505), 디스플레이(535) 등과 같은 필요한 하드웨어 구성요소와 관련하여 컴퓨터 판독 가능 매체에 저장된 소프트웨어 구성요소를 포함할 수 있다.
도 5B는 예시적인 실시형태에 따른 칩셋 아키텍처를 갖는 컴퓨터 시스템(550)을 도시한다. 컴퓨터 시스템(550)은 개시된 기술을 구현하기 위해 사용될 수 있는 컴퓨터 하드웨어, 소프트웨어 및 펌웨어의 예일 수 있다. 시스템(550)은 식별된 계산을 수행하도록 구성된 소프트웨어, 펌웨어 및 하드웨어를 실행할 수 있는 임의의 수의 물리적 및/또는 논리적으로 구별되는 리소스를 나타내는 하나 이상의 프로세서(555)를 포함할 수 있다. 하나 이상의 프로세서(555)는 하나 이상의 프로세서(555)에 대한 입력 및 출력을 제어할 수 있는 칩셋(560)과 통신할 수 있다. 이 예에서, 칩셋(560)은 디스플레이와 같은 출력 장치(565)에 정보를 출력하고, 예를 들어 자기 매체 및 반도체 매체를 포함할 수 있는 저장 장치(570)에 대해 정보를 읽고 기록할 수 있다. 칩셋(560)은 또한 저장 장치(575)(예를 들어, RAM)에 대해 데이터를 읽고 기록할 수 있다. 다양한 사용자 인터페이스 구성요소(585)와 인터페이스하기 위한 브리지(580)는 칩셋(560)과 인터페이스하기 위해 제공될 수 있다. 이러한 사용자 인터페이스 구성요소(585)는 키보드, 마이크로폰, 터치 검출 및 처리 회로, 마우스와 같은 포인팅 장치 등을 포함할 수 있다. 일반적으로, 시스템(550)에 대한 입력은 기계가 생성하고 및/또는 인간이 생성한 다양한 소스 중 임의의 것에서 비롯될 수 있다.
칩셋(560)은 또한 다양한 물리적 인터페이스를 가질 수 있는 하나 이상의 통신 인터페이스(590)와 인터페이스할 수 있다. 이러한 통신 인터페이스는 유선 및 무선 근거리 통신망용, 광대역 무선 통신망용 및 개인 통신망용 인터페이스를 포함할 수 있다. 본원에 개시된 GUI를 생성, 디스플레이 및 사용하기 위한 방법의 일부 응용은 물리적 인터페이스를 통해 정렬된 데이터세트를 수신하는 단계를 포함하거나, 저장 장치(570 또는 575)에 저장된 데이터를 분석하는 하나 이상의 프로세서(555)에 의해 기계 자체에 의해 생성될 수 있다. 또한, 기계는 사용자 인터페이스 구성요소(585)를 통해 사용자로부터 입력을 수신하고, 하나 이상의 프로세서(555)를 사용하여 이러한 입력을 해석함으로써 브라우징 기능과 같은 적절한 기능을 실행할 수 있다.
예시적인 시스템(500 및 550)은 하나 이상의 프로세서(510)를 가질 수 있거나, 더 큰 처리 능력을 제공하기 위해 함께 네트워크화된 컴퓨팅 장치의 그룹 또는 클러스터의 일부일 수 있다는 것을 인식할 수 있을 것이다.
상기한 내용은 본원에 설명된 실시형태에 관한 것이지만, 그 기본 범위를 벗어나지 않으면서 다른 및 추가 실시형태가 고안될 수 있다. 예를 들어, 본 개시의 양태는 하드웨어 또는 소프트웨어, 또는 하드웨어와 소프트웨어의 조합으로 구현될 수 있다. 본원에 설명된 일 실시형태는 컴퓨터 시스템과 함께 사용하기 위한 프로그램 제품으로 구현될 수 있다. 프로그램 제품의 프로그램(들)은 실시형태의 기능(본원에 설명된 방법을 포함함)을 정의하고, 다양한 컴퓨터 판독 가능 저장 매체에 포함될 수 있다. 예시적인 컴퓨터 판독 가능 저장 매체는: (i) 정보가 영구적으로 저장되는 기록 불가능한 저장 매체(예를 들어, CD-ROM 드라이브로 판독 가능한 CD-ROM 디스크와 같은 컴퓨터 내의 판독 전용 메모리(ROM) 장치, 플래시 메모리, ROM 칩, 또는 임의의 유형의 반도체 비휘발성 메모리); 및 (ii) 변경 가능한 정보가 저장되는 기록 가능한 저장 매체(예를 들어, 디스켓 드라이브 또는 하드 디스크 드라이브 내의 플로피 디스크 또는 임의의 유형의 반도체 랜덤 액세스 메모리)를 포함하지만 이에 한정되지는 않는다. 이러한 컴퓨터 판독 가능 저장 매체는 개시된 실시형태의 기능을 지시하는 컴퓨터 판독 가능 명령을 운반할 때 본 개시의 실시형태이다.
앞의 예들은 예시적이며 제한적이지 않음을 본 기술 분야의 숙련자는 인정할 것이다. 이에 대한 모든 치환, 향상, 등가물 및 개선은 명세서를 읽고 도면을 연구할 때 본 기술 분야의 숙련자에게 자명한 것으로 본 개시의 진정한 사상 및 범위 내에 포함되기 위한 것이다. 따라서 다음의 첨부된 청구범위는 이러한 교시의 진정한 사상 및 범위에 속하는 모든 수정, 치환 및 등가물을 포함하기 위한 것이다.
Claims (20)
- 통제된 성장 시스템으로서, 통제된 성장 시스템은:
통제된 성장 환경의 공정 변수를 관리하도록 구성된 제어기와;
성장 과정 동안 통제된 성장 환경 내의 생물학적 제제를 모니터링하도록 구성된 센서; 및
센서 및 제어기와 통신하는 컴퓨팅 시스템을 포함하고, 컴퓨팅 시스템은:
통제된 성장 환경에 대한 초기 세트의 공정 변수를 제어기에 제공함으로써 성장 과정을 개시하는 단계와;
성장 과정 동안 센서로부터 센서 데이터를 수신하는 단계로서, 센서 데이터는 적어도 생물학적 제제의 이미지를 포함하는 단계와;
이미지를 기반으로 생물학적 제제에 대한 예측 최종 품질 메트릭을 생성하는 단계로서, 예측 최종 품질 메트릭은 생물학적 제제의 현재 상태를 기반으로 성장 과정의 끝에서의 생물학적 제제의 최종 상태를 나타내는, 단계와;
생물학적 제제에 대한 예측 최종 품질 메트릭이 표준 최종 품질 메트릭의 임계 범위 내에 있지 않은 것을 결정하는 단계와;
결정을 기반으로, 표준 최종 품질 메트릭을 달성하기 위해, 업데이트된 세트의 공정 변수를 생성하는 단계; 및
업데이트된 세트의 공정 변수를 제어기에 제공하는 단계를 포함하는 동작을 수행하도록 프로그래밍되는, 통제된 성장 시스템.
- 제 1 항에 있어서,
센서 데이터는 온도 판독값, 습도 판독값, 광도 판독값, 및 이산화탄소 수준 판독값 중 하나 이상을 더 포함하는, 통제된 성장 시스템.
- 제 1 항에 있어서,
이미지를 기반으로 생물학적 제제에 대한 예측 최종 품질 메트릭을 생성하는 단계는:
예측 최종 품질 메트릭을 생성하기 위해 생물학적 제제에 지형 분석 방법을 적용하는 단계를 포함하는, 통제된 성장 시스템.
- 제 1 항에 있어서,
이미지를 기반으로 생물학적 제제에 대한 예측 최종 품질 메트릭을 생성하는 단계는:
예측 최종 품질 메트릭을 생성하기 위해 생물학적 제제에 하나 이상의 컴퓨터 비전 기술을 적용하는 단계를 포함하는, 통제된 성장 시스템.
- 제 1 항에 있어서,
이미지를 기반으로 생물학적 제제에 대한 예측 최종 품질 메트릭을 생성하는 단계는:
합성곱 신경망에 이미지를 입력하는 단계; 및
생물학적 제제에 대한 예측 최종 품질 메트릭을 입력으로서 수신하는 단계를 포함하는, 통제된 성장 시스템.
- 제 5 항에 있어서,
표준 최종 품질 메트릭을 달성하기 위해, 업데이트된 세트의 공정 변수를 생성하는 단계는:
생물학적 제제의 현재 상태를 기반으로 표준 최종 품질 메트릭을 달성하기 위해, 합성곱 신경망으로부터, 업데이트된 세트의 공정 변수를 출력하는 단계를 포함하는, 통제된 성장 시스템.
- 제 5 항에 있어서,
훈련용 생물학적 제제의 훈련 이미지 및 훈련 이미지에 대응하는 통제된 성장 환경의 훈련 공정 변수를 포함하는 훈련 데이터 세트를 기반으로, 다양한 공정 변수가 성장의 다양한 단계에서 생물학적 제제의 최종 품질 메트릭에 어떻게 영향을 미치는지 학습하도록 합성곱 신경망을 훈련시키는 단계를 포함하는, 통제된 성장 시스템.
- 통제된 성장 환경 내에서 생물학적 제제의 성장을 제어하기 위한 방법으로서, 방법은:
컴퓨팅 시스템에 의해, 통제된 성장 환경의 제어기에 초기 세트의 공정 변수를 제공함으로써 통제된 성장 환경 내에서의 생물학적 제제에 대한 성장 과정을 개시하는 단계와;
컴퓨팅 시스템에 의해, 성장 과정 동안 통제된 성장 환경의 센서로부터 센서 데이터를 수신하는 단계로서, 센서 데이터는 적어도 생물학적 제제의 이미지를 포함하는 단계와;
컴퓨팅 시스템에 의해, 이미지를 기반으로 생물학적 제제에 대한 예측 최종 품질 메트릭을 생성하는 단계로서, 예측 최종 품질 메트릭은 생물학적 제제의 현재 상태를 기반으로 성장 과정의 끝에서의 생물학적 제제의 최종 상태를 나타내는, 단계와;
컴퓨팅 시스템에 의해, 생물학적 제제에 대한 예측 최종 품질 메트릭이 표준 최종 품질 메트릭의 임계 범위 내에 있지 않은 것을 결정하는 단계와;
결정을 기반으로, 컴퓨팅 시스템에 의해, 표준 최종 품질 메트릭을 달성하기 위해, 업데이트된 세트의 공정 변수를 생성하는 단계; 및
컴퓨팅 시스템에 의해, 업데이트된 세트의 공정 변수를 제어기에 제공하는 단계를 포함하는 방법.
- 제 8 항에 있어서,
센서 데이터는 온도 판독값, 습도 판독값, 광도 판독값, 및 이산화탄소 수준 판독값 중 하나 이상을 더 포함하는, 방법.
- 제 8 항에 있어서,
이미지를 기반으로 생물학적 제제에 대한 예측 최종 품질 메트릭을 생성하는 단계는:
예측 최종 품질 메트릭을 생성하기 위해 생물학적 제제에 지형 분석 방법을 적용하는 단계를 포함하는, 방법.
- 제 8 항에 있어서,
이미지를 기반으로 생물학적 제제에 대한 예측 최종 품질 메트릭을 생성하는 단계는:
예측 최종 품질 메트릭을 생성하기 위해 생물학적 제제에 하나 이상의 컴퓨터 비전 기술을 적용하는 단계를 포함하는, 방법.
- 제 8 항에 있어서,
이미지를 기반으로 생물학적 제제에 대한 예측 최종 품질 메트릭을 생성하는 단계는:
합성곱 신경망에 이미지를 입력하는 단계; 및
생물학적 제제에 대한 예측 최종 품질 메트릭을 입력으로서 수신하는 단계를 포함하는, 방법.
- 제 12 항에 있어서,
표준 최종 품질 메트릭을 달성하기 위해, 업데이트된 세트의 공정 변수를 생성하는 단계는:
생물학적 제제의 현재 상태를 기반으로 표준 최종 품질 메트릭을 달성하기 위해, 합성곱 신경망으로부터, 업데이트된 세트의 공정 변수를 출력하는 단계를 포함하는, 방법.
- 제 12 항에 있어서,
훈련용 생물학적 제제의 훈련 이미지 및 훈련 이미지에 대응하는 통제된 성장 환경의 훈련 공정 변수를 포함하는 훈련 데이터 세트를 기반으로, 다양한 공정 변수가 성장의 다양한 단계에서 생물학적 제제의 최종 품질 메트릭에 어떻게 영향을 미치는지 학습하도록 합성곱 신경망을 훈련시키는 단계를 포함하는, 방법.
- 균사체를 위한 통제된 성장 시스템으로서, 통제된 성장 시스템은:
성장 과정 동안 통제된 성장 환경 내의 균사체 시트를 모니터링하도록 구성된 센서; 및
센서 및 제어기와 통신하는 컴퓨팅 시스템을 포함하고, 컴퓨팅 시스템은:
통제된 성장 환경에 대한 초기 세트의 공정 변수를 통제된 성장 환경에 제공함으로써 성장 과정을 개시하는 단계와;
성장 과정 동안 센서로부터 센서 데이터를 수신하는 단계로서, 센서 데이터는 적어도 균사체 시트의 이미지를 포함하는 단계와;
이미지를 기반으로 균사체 시트에 대한 예측 최종 품질 메트릭을 생성하는 단계로서, 예측 최종 품질 메트릭은 균사체 시트의 현재 상태를 기반으로 성장 과정의 끝에서의 균사체 시트의 최종 상태를 나타내는, 단계와;
균사체 시트에 대한 예측 최종 품질 메트릭이 표준 최종 품질 메트릭의 임계 범위 내에 있지 않은 것을 결정하는 단계와;
결정을 기반으로, 표준 최종 품질 메트릭을 달성하기 위해, 업데이트된 세트의 공정 변수를 생성하는 단계; 및
업데이트된 세트의 공정 변수를 기반으로 통제된 성장 환경을 조정하는 단계를 포함하는 동작을 수행하도록 프로그래밍되는, 통제된 성장 시스템.
- 제 15 항에 있어서,
센서 데이터는 온도 판독값, 습도 판독값, 광도 판독값, 및 이산화탄소 수준 판독값 중 하나 이상을 더 포함하는, 통제된 성장 시스템.
- 제 15 항에 있어서,
이미지를 기반으로 균사체 시트에 대한 예측 최종 품질 메트릭을 생성하는 단계는:
예측 최종 품질 메트릭을 생성하기 위해 균사체 시트에 지형 분석 방법을 적용하는 단계를 포함하는, 통제된 성장 시스템.
- 제 15 항에 있어서,
이미지를 기반으로 균사체 시트에 대한 예측 최종 품질 메트릭을 생성하는 단계는:
예측 최종 품질 메트릭을 생성하기 위해 균사체 시트에 하나 이상의 컴퓨터 비전 기술을 적용하는 단계를 포함하는, 통제된 성장 시스템.
- 제 15 항에 있어서,
이미지를 기반으로 균사체 시트에 대한 예측 최종 품질 메트릭을 생성하는 단계는:
합성곱 신경망에 이미지를 입력하는 단계; 및
균사체 시트에 대한 예측 최종 품질 메트릭을 입력으로서 수신하는 단계를 포함하는, 통제된 성장 시스템.
- 제 19 항에 있어서,
훈련용 균사체 시트의 훈련 이미지 및 훈련 이미지에 대응하는 통제된 성장 환경의 훈련 공정 변수를 포함하는 훈련 데이터 세트를 기반으로, 다양한 공정 변수가 성장의 다양한 단계에서 균사체 시트의 최종 품질 메트릭에 어떻게 영향을 미치는지 학습하도록 합성곱 신경망을 훈련시키는 단계를 포함하는, 통제된 성장 시스템.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063034027P | 2020-06-03 | 2020-06-03 | |
US63/034,027 | 2020-06-03 | ||
PCT/US2021/035686 WO2021247852A1 (en) | 2020-06-03 | 2021-06-03 | Controlled growth system for biologicals |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20230018460A true KR20230018460A (ko) | 2023-02-07 |
Family
ID=78816451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227046026A KR20230018460A (ko) | 2020-06-03 | 2021-06-03 | 생물학적 제제를 위한 통제된 성장 시스템 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11889797B2 (ko) |
EP (1) | EP4161247A4 (ko) |
JP (1) | JP7537722B2 (ko) |
KR (1) | KR20230018460A (ko) |
CN (1) | CN115666225A (ko) |
WO (1) | WO2021247852A1 (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11100221B2 (en) | 2019-10-08 | 2021-08-24 | Nanotronics Imaging, Inc. | Dynamic monitoring and securing of factory processes, equipment and automated systems |
US20210192779A1 (en) * | 2019-11-06 | 2021-06-24 | Nanotronics Imaging, Inc. | Systems, Methods, and Media for Manufacturing Processes |
US11086988B1 (en) | 2020-02-28 | 2021-08-10 | Nanotronics Imaging, Inc. | Method, systems and apparatus for intelligently emulating factory control systems and simulating response data |
CN116720633B (zh) * | 2023-08-11 | 2023-10-27 | 安徽农业大学 | 一种食用菌育种生长参数寻优的方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6567537B1 (en) | 2000-01-13 | 2003-05-20 | Virginia Commonwealth University | Method to assess plant stress using two narrow red spectral bands |
US7617057B2 (en) * | 2005-12-21 | 2009-11-10 | Inst Technology Development | Expert system for controlling plant growth in a contained environment |
US9485917B2 (en) * | 2006-12-15 | 2016-11-08 | Ecovative Design, LLC | Method for producing grown materials and products made thereby |
EP3136836B1 (en) * | 2014-04-28 | 2020-12-30 | Vineland Research and Innovation Centre | Graze harvesting of mushrooms |
WO2018100917A1 (ja) | 2016-11-30 | 2018-06-07 | ソニー株式会社 | 情報処理装置、観察システム、情報処理方法及びプログラム |
WO2018101004A1 (ja) | 2016-12-01 | 2018-06-07 | 富士フイルム株式会社 | 細胞画像評価装置および細胞画像評価制御プログラム |
CN107330570A (zh) * | 2017-08-23 | 2017-11-07 | 成都烈风网络科技有限公司 | 一种利用物联网技术进行水稻干物质预测的系统 |
US10986789B1 (en) * | 2017-08-29 | 2021-04-27 | Alarm.Com Incorporated | System and method for sensor-assisted indoor gardening |
CN107515531B (zh) * | 2017-08-30 | 2021-01-26 | 京东方科技集团股份有限公司 | 一种植物工厂的智能控制方法及系统、智能监控系统 |
DE112018004960T5 (de) | 2017-10-26 | 2020-07-23 | Sony Corporation | Informationsverarbeitungseinrichtung, informationsverarbeitungsverfahren, programm und beobachtungssystem |
JP7394774B2 (ja) | 2017-11-14 | 2023-12-08 | エコベイティブ デザイン リミテッド ライアビリティ カンパニー | 空間の中に成長させた菌類学的バイオポリマーの高均質性 |
WO2019157598A1 (en) * | 2018-02-16 | 2019-08-22 | 9282181 Canada Inc. | System and method for growing plants and monitoring growth of plants |
CN111988985B (zh) * | 2018-02-20 | 2024-01-02 | 流利生物工程有限公司 | 受控农业系统和农业的方法 |
US11663414B2 (en) * | 2018-02-20 | 2023-05-30 | Fluence Bioengineering, Inc. | Controlled agricultural systems and methods of managing agricultural systems |
JPWO2020012616A1 (ja) | 2018-07-12 | 2021-08-02 | ソニーグループ株式会社 | 情報処理装置、情報処理方法、プログラム、及び情報処理システム |
US11833313B2 (en) | 2018-08-17 | 2023-12-05 | Hortau Inc. | Systems and methods for monitoring and regulating plant productivity |
US20210334657A1 (en) | 2018-09-08 | 2021-10-28 | Alpvision S.A. | Cognitive computing methods and systems based on bilogival neurol networks |
US11277981B2 (en) * | 2018-10-24 | 2022-03-22 | Mycoworks, Inc. | Monokaryon mycelial material and related method of production |
US20200157506A1 (en) | 2018-11-20 | 2020-05-21 | Ecovative Design Llc | Methods of Generating Mycelial Scaffolds and Applications Thereof |
CN110377961B (zh) * | 2019-06-25 | 2023-04-28 | 北京百度网讯科技有限公司 | 作物生长环境控制方法、装置、计算机设备及存储介质 |
JP7281133B2 (ja) * | 2019-07-04 | 2023-05-25 | オムロン株式会社 | 植物の栽培管理システム及び、植物の栽培管理装置 |
CN110503253A (zh) * | 2019-08-12 | 2019-11-26 | 北京环丁环保大数据研究院 | 一种种植环境自适应控制方法及装置 |
-
2021
- 2021-06-03 US US17/303,620 patent/US11889797B2/en active Active
- 2021-06-03 JP JP2022573678A patent/JP7537722B2/ja active Active
- 2021-06-03 EP EP21816945.6A patent/EP4161247A4/en active Pending
- 2021-06-03 CN CN202180035742.6A patent/CN115666225A/zh active Pending
- 2021-06-03 WO PCT/US2021/035686 patent/WO2021247852A1/en active Application Filing
- 2021-06-03 KR KR1020227046026A patent/KR20230018460A/ko unknown
Also Published As
Publication number | Publication date |
---|---|
CN115666225A (zh) | 2023-01-31 |
US11889797B2 (en) | 2024-02-06 |
EP4161247A1 (en) | 2023-04-12 |
JP2023528052A (ja) | 2023-07-03 |
US20210378190A1 (en) | 2021-12-09 |
JP7537722B2 (ja) | 2024-08-21 |
WO2021247852A1 (en) | 2021-12-09 |
EP4161247A4 (en) | 2024-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20230018460A (ko) | 생물학적 제제를 위한 통제된 성장 시스템 | |
Quinn et al. | Direct policy search for robust multi-objective management of deeply uncertain socio-ecological tipping points | |
Friedman et al. | Linking Stochastic Dynamics to Population Distribution:<? format?> An Analytical Framework of Gene Expression | |
Hopfensitz et al. | Attractors in Boolean networks: a tutorial | |
US20210265015A1 (en) | Hardware Execution and Acceleration of Artificial Intelligence-Based Base Caller | |
CN102831269A (zh) | 一种流程工业过程工艺参数的确定方法 | |
CN106796431A (zh) | 用于控制、检测、调节和/或分析生物、生物化学、化学和/或物理过程的系统、方法、计算机程序产品和用户接口 | |
CN107390753A (zh) | 基于物联网云平台的智能植物生长环境调节装置与方法 | |
Sharma et al. | Self balanced differential evolution | |
Ucinski et al. | Time-optimal path planning of moving sensors for parameter estimation of distributed systems | |
US11749380B2 (en) | Artificial intelligence-based many-to-many base calling | |
CN113435128B (zh) | 基于条件生成式对抗网络的油气藏产量预测方法及装置 | |
CN112052027A (zh) | 一种处理ai任务的方法及装置 | |
Olimpio et al. | Statistical dynamics of spatial-order formation by communicating cells | |
JP2021016359A (ja) | 情報処理装置、細胞培養システム、情報処理方法、及びコンピュータプログラム | |
Musa et al. | An intelligent plant dissease detection system for smart hydroponic using convolutional neural network | |
Wang et al. | Bi-objective scenario-guided swarm intelligent algorithms based on reinforcement learning for robust unrelated parallel machines scheduling with setup times | |
Vafashoar et al. | Cellular learning automata based bare bones PSO with maximum likelihood rotated mutations | |
EP3987520A1 (en) | Computer implemented method for generating a culture protocol for bio-manufacturing | |
CN100370453C (zh) | 稀土串级萃取分离组分含量软测量方法 | |
KR102273531B1 (ko) | 수소 연료 전지 기반의 순환식 재배 시스템 및 방법 | |
Choudhary et al. | DyMMM-LEAPS: An ML-based framework for modulating evenness and stability in synthetic microbial communities | |
Yao et al. | Topological clustering particle swarm optimizer based on adaptive resonance theory for multimodal multi-objective problems | |
Lux et al. | Automatic discovery of metagenomic structure | |
EP4442804A1 (en) | Systems and methods for optimizing a bioreactor for controlling growth of human stem cells |