KR20230012457A - 플라스마 처리 장치, 데이터 해석 장치 및 반도체 장치 제조 시스템 - Google Patents

플라스마 처리 장치, 데이터 해석 장치 및 반도체 장치 제조 시스템 Download PDF

Info

Publication number
KR20230012457A
KR20230012457A KR1020227029783A KR20227029783A KR20230012457A KR 20230012457 A KR20230012457 A KR 20230012457A KR 1020227029783 A KR1020227029783 A KR 1020227029783A KR 20227029783 A KR20227029783 A KR 20227029783A KR 20230012457 A KR20230012457 A KR 20230012457A
Authority
KR
South Korea
Prior art keywords
spectral
plasma
waveform
molecule
degree
Prior art date
Application number
KR1020227029783A
Other languages
English (en)
Other versions
KR102722616B1 (ko
Inventor
슌타 노사카
šœ타 노사카
다이스케 시라이시
아키라 가고시마
Original Assignee
주식회사 히타치하이테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 히타치하이테크 filed Critical 주식회사 히타치하이테크
Publication of KR20230012457A publication Critical patent/KR20230012457A/ko
Application granted granted Critical
Publication of KR102722616B1 publication Critical patent/KR102722616B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24585Other variables, e.g. energy, mass, velocity, time, temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

피크의 형상의 특징으로부터 적절한 원소를 할당할 수 있고, 고정밀도의 파장 동정을 행할 수 있는 플라스마 처리 장치, 데이터 해석 장치 및 반도체 장치 제조 시스템을 제공한다.
시료가 플라스마 처리되는 처리실과, 플라스마를 생성하기 위한 고주파 전력을 공급하는 고주파 전원과, 상기 시료가 재치되는 시료대를 구비하는 플라스마 처리 장치는, 모니터링된 플라스마의 발광의 스펙트럼 파형인 제 1 스펙트럼 파형과 제 2 스펙트럼 파형을 비교해서 구해진, 상기 제 1 스펙트럼 파형과 상기 제 2 스펙트럼 파형의 일치도를 기초로 상기 모니터링된 플라스마 중의 원소 또는 분자가 특정되는 분석부를 더 구비하며, 상기 제 2 스펙트럼 파형은, 상기 원소 또는 상기 분자에 대응하여 가중 계수가 곱해진 스펙트럼 파형이다.

Description

플라스마 처리 장치, 데이터 해석 장치 및 반도체 장치 제조 시스템
본 발명은, 플라스마 처리 장치, 데이터 해석 장치 및 반도체 장치 제조 시스템에 관한 것이다.
반도체 장치 등의 미세 형상을 얻기 위해, 처리실 내에서 생성한 플라스마에 의해, 웨이퍼를 에칭하는 에칭 장치 등의 플라스마 처리 장치가 알려져 있다.
플라스마에 의한 전리(電離) 현상은 발광 현상을 수반하기 때문에, 플라스마를 이용해서 처리를 행하는 에칭 장치에는, 분광기를 탑재하고, 플라스마가 발하는 광을 모니터링할 수 있도록 하고 있는 것이 있다. 플라스마가 발하는 광을 모니터링함으로써, 예를 들면 트러블 슈팅(trouble shooting) 등을 행할 수 있다. 분광기에서 계측된 데이터를 이하에서는, 발광 데이터라고 부른다.
발광 데이터는, 복수의 파장 및 시간에 있어서의 발광 강도의 값에 의해 구성되지만, 분광기에 의해 수집되는 파장 데이터의 개수는 수천에 이르기 때문에, 이 다수의 파장 데이터 중에서 분석 대상으로 하는 파장을 선택하는 것이 과제가 되고 있었다.
특허문헌 1에는, 플라스마의 발광 데이터로부터 에칭 처리의 분석에 이용하는 파장을 특정하는 것(파장 동정(波長同定)이라 함)을 실현하는 기술이 기재되어 있다. 파장 동정을 행하고 싶은 발광 스펙트럼에 대하여 이 종래 기술을 이용함으로써, 발광 데이터의 피크의 파장에 대응하는 원소를 동정할 수 있다.
또한, 특허문헌 2에는, 패턴 모델을 이용해서 발광 데이터의 피크에 할당할 수 있는 원소를 동정하는 방법이 기재되어 있다.
일본국 특허 제6088867호 명세서 일본국 특허 제2521406호 명세서
그러나, 특허문헌 1에 기재된 기술에서는, 발광 데이터의 스펙트럼 파형으로부터 추출한 피크의 파장과 피크의 강도만을 이용하고 있고, 피크의 형상에 대해 대상으로 하고 있지 않기 때문에, 피크의 파장에 잘못된 원소를 할당할 우려가 있다.
또한, 특허문헌 2에 기재된 기술에서는, 하나의 피크에 올바른 원소와, 잘못된 원소를 이중으로 할당하는 경우가 있다. 이 경우, 어느쪽이 올바른 원소인지는, 분석자의 경험으로부터 판단할 필요가 있고, 그 판단에 고심하는 것도 상정된다.
그래서, 본 발명은, 피크의 형상의 특징으로부터 적절한 원소 또는 분자를 할당할 수 있고, 고정밀도의 파장 동정을 행할 수 있는 플라스마 처리 장치, 데이터 해석 장치 및 반도체 장치 제조 시스템을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해서, 대표적인 본 발명에 따른 본 발명의 플라스마 처리 장치 하나는, 시료가 플라스마 처리되는 처리실과, 플라스마를 생성하기 위한 고주파 전력을 공급하는 고주파 전원과, 상기 시료가 재치되는 시료대를 구비하는 플라스마 처리 장치에 있어서,
모니터링된 플라스마의 발광의 스펙트럼 파형인 제 1 스펙트럼 파형과 제 2 스펙트럼 파형을 비교해서 구해진, 상기 제 1 스펙트럼 파형과 상기 제 2 스펙트럼 파형의 일치도를 기초로 상기 모니터링된 플라스마 중의 원소 또는 분자가 특정되는 분석부를 더 구비하고,
상기 제 2 스펙트럼 파형은, 상기 원소 또는 상기 분자에 대응하여 가중 계수가 곱해진 스펙트럼 파형인 것에 의해 달성된다.
또한, 대표적인 본 발명에 따른 본 발명의 데이터 해석 장치의 하나는,
모니터링된 플라스마의 발광의 스펙트럼 파형인 제 1 스펙트럼 파형과 제 2 스펙트럼 파형을 비교해서 구해진, 상기 제 1 스펙트럼 파형과 상기 제 2 스펙트럼 파형의 일치도를 기초로 상기 모니터링된 플라스마 중의 원소 또는 분자가 특정되는 분석부를 구비하고,
상기 제 2 스펙트럼 파형은, 플라스마 중의 원소 또는 분자에 대응하여 가중 계수가 곱해진 스펙트럼 파형인 것에 의해 달성된다.
또한, 대표적인 본 발명에 따른 본 발명의 반도체 장치 제조 시스템의 하나는, 네트워크를 통해 반도체 제조 장치에 접속되어, 플라스마 중의 원소 또는 분자를 특정하는 분석 처리가 실행되는 플랫폼를 구비하는 반도체 장치 제조 시스템에 있어서,
상기 분석 처리는,
모니터링된 플라스마의 발광의 스펙트럼 파형인 제 1 스펙트럼 파형과 제 2 스펙트럼 파형을 비교해서 구해진, 상기 제 1 스펙트럼 파형과 상기 제 2 스펙트럼 파형의 일치도를 기초로 상기 모니터링된 플라스마 중의 원소 또는 분자를 특정하는 스텝을 갖고,
상기 제 2 스펙트럼 파형은, 플라스마 중의 원소 또는 분자에 대응하여 가중 계수가 곱해진 스펙트럼 파형인 것에 의해 달성된다.
본 발명에 따르면, 피크의 형상의 특징으로부터 적절한 원소 또는 분자를 할당할 수 있고, 고정밀도의 파장 동정을 행할 수 있는 플라스마 처리 장치, 데이터 해석 장치 및 반도체 장치 제조 시스템을 제공할 수 있다.
상기한 것 이외의 과제, 구성 및 효과는, 이하의 실시형태의 설명에 의해 명백해진다.
도 1은 본 발명의 실시형태에 따른 플라스마 처리 장치의 구성의 개략을 나타내는 도면.
도 2는 본 발명의 실시형태에 따른 분석부를 나타내는 모식도.
도 3은 본 발명의 실시형태에 따른 스펙트럼 파형 데이터베이스 테이블 예를 나타내는 도면.
도 4는 본 발명의 실시형태에 따른 엘리먼트 파장 데이터베이스 테이블 예를 나타내는 도면.
도 5는 본 발명의 실시형태에 따른 전체의 처리 플로우를 나타내는 도면.
도 6은 본 발명의 실시형태에 따른 스펙트럼 파형 데이터베이스 작성의 처리 플로우를 나타내는 도면.
도 7은 본 발명의 실시형태에 따른 스펙트럼 파형 데이터베이스에 등록하는 스펙트럼 파형의 일례.
도 8은 본 발명의 실시형태에 따른 스펙트럼 파형 데이터베이스에 등록하는 스펙트럼 파형의 일례.
도 9는 본 발명의 실시형태에 따른 스펙트럼 파형 데이터베이스에 등록하는 스펙트럼 파형의 일례.
도 10은 본 발명의 실시형태에 따른 작업자 및 분석부의 처리 플로우를 나타내는 도면.
도 11은 Ar의 스펙트럼 파형의 일례.
도 12는 N2의 스펙트럼 파형의 일례.
도 13은 CO2의 스펙트럼 파형의 일례.
도 14는 해석 대상의 스펙트럼 파형과 데이터베이스의 스펙트럼 파형을 합성한 스펙트럼 파형과의 피팅 결과의 일례를 나타내는 도면.
도 15는 해석 대상의 스펙트럼 파형과 데이터베이스의 스펙트럼 파형을 합성한 스펙트럼 파형과의 피팅 결과의 일례를 나타내는 도면.
도 16은 본 발명의 실시형태에 따른 입력 화면을 나타내는 도면.
도 17은 본 발명의 실시형태에 따른 표시 화면을 나타내는 도면.
도 18은 본 발명의 다른 실시형태에 따른 분석부를 나타내는 모식도.
도 19는 본 발명의 다른 실시형태에 따른 작업자 및 분석부의 처리 플로우를 나타내는 도면.
이하, 본 발명의 실시형태를, 도면을 이용해서 설명한다. 또한, 본 명세서에 있어서, 원소 또는 분자를 엘리먼트라고 칭한다.
[실시형태 1]
도 1은 본 발명의 일 실시형태에 따른 플라스마 처리 장치(1)의 구성의 개략을 설명하는 모식도이다. 플라스마 처리 장치(1)는, 플라스마 처리가 행해지는 처리실(2)과, 이 처리실(2) 내에 공급되는 처리 가스의 공급량 및 속도를 조절하는 매스 플로우 컨트롤러(3)와, 처리실(2)에 공급된 처리 가스를 여기해서 플라스마를 생성하기 위한 고주파 전력을 공급하는 플라스마 생성용 고주파 전원(4)과, 처리실(2) 내의 가스를 배기하는 진공 펌프를 포함하는 배기 장치(5)를 구비한다. 또한, 처리실(2) 내의 플라스마가 생성되는 공간의 하방(下方)에는, 시료대(7)가 배치되어 있고, 시료대(7)의 상면에는, 처리 대상의 시료인 웨이퍼(6)가 얹어져서 유지되어 있다.
에칭 처리에 사용되는 처리 가스는, 매스 플로우 컨트롤러(3)를 통해 처리실(2) 내에 공급된다. 플라스마 생성용 고주파 전원(4)에 의해 공급된 소정의 주파수(예를 들면 2.45GHz)의 고주파 전력은, 처리실(2) 상방(上方)에 배치된 도파관 등의 전파 수단에 의해 처리실 내에 도입된다. 또한, 처리실(2)의 상방 및 측방의 외주(外周)에서 처리실(2)을 둘러싸서 배치된 자장 형성 수단(16)으로부터, 처리실(2) 내에 자계가 형성된다. 그 고주파 전력과 자계의 상호 작용에 의해 가스의 입자가 여기되어, 처리실(2) 내에 플라스마(8)가 생성된다.
시료대(7) 내부에는 도전체제의 전극이 배치되어 있고, 당해 전극에 바이어스용 고주파 전원(9)으로부터 공급되는 고주파 전력에 의해, 시료대(7) 또는 이것의 상면의 재치면 상에 유지된 웨이퍼(6)의 상면 상방에 바이어스 전계가 형성된다. 이 형성된 바이어스 전계에 의해 플라스마(8) 내의 하전 입자(이온)가 유인되어, 웨이퍼(6) 표면에 형성된 박막과 충돌한다. 이것에 의해 웨이퍼(6)의 표면이 활성화되어, 플라스마(8) 중의 반응성 입자와 막을 구성하는 재료의 화학적, 물리적 상호 작용이 촉진되어서, 대상막의 에칭 처리가 진행된다.
가변 컨덕턴스 밸브(11)가, 처리실(2) 내와 배기 장치(5) 사이를 연통하는 통로에 배치되어 있다. 가변 컨덕턴스 밸브(11)는, 수평 방향에 배치된 축 둘레를 회전하여, 통로의 개구 면적을 가변으로 조절하는 복수매의 판을 구비하는 밸브이다. 압력계(10)는, 처리실(2) 내의 압력을 측정한다. 압력계(10)로부터의 측정값은, 기준값과 비교되고, 그 비교 결과를 기초로, 가변 컨덕턴스 밸브(11)의 각도 위치가 변경되어, 컨덕턴스가 조정된다. 그것에 의해 배기 속도가 조정되어서, 처리실(2) 내의 압력은 처리에 적절한 값으로 유지된다.
플라스마에 의한 전리 현상은, 발광 현상을 수반한다. 플라스마 처리중에 생성되는 플라스마(8)의 발광은, 처리실(2)의 측벽의 벽부재에 배치된 투광성 부재에 의해 구성된 관찰창(12)을 통하여, 모니터인 분광기(13)에 의해 관측되어서 그 강도가 검출된다. 분광기(13)는, 노광 시간에 의해 발광 강도의 조정을 행할 수도 있다. 분광기(13)에 의해 검출된 플라스마(8)의 발광 강도에 관한 신호(발광 정보)는, 이것과 통신 가능하게 배치된 분석부(14)에 송신되어, 보존된다. 분석부(14)에서는, 분광기(13)로부터 취득한 스펙트럼 파형으로부터 파장 동정(波長同定)의 연산을 행하고, 그 결과를 표시부(15)에 송신한다. 분석부(14)의 상세를 후술의 도 2에서 설명한다. 표시부(15)에서는, 분석부(14)로부터 수신한 파장 동정의 결과를 표시한다. 또한, 분석부(14)는, 작업자가 입력 가능한 입력 장치로서, 예를 들면 표시부(15)에, 정보 표시와 입력이 가능한 터치 패널을 구비한다. 단, 터치 패널 대신에 키보드 등을 마련해도 된다.
도 2는, 분석부(14)의 개략을 설명하는 모식도이다. 데이터 해석 장치로서 기능하는 분석부(14)는, 스펙트럼 파형 데이터베이스(21)와, 스펙트럼 합성 연산부(22)와, 스펙트럼 보존부(23)와, 일치도 연산부(24)와, 엘리먼트 파장 데이터베이스(25)와, 파장 동정 연산부(26)를 갖는다.
스펙트럼 파형 데이터베이스(21)는, 분광기(13)에 의해 취득한 스펙트럼 파형을, 가스종과 에칭 재료마다 등록(기억)한다. 스펙트럼 파형 데이터베이스(21)의 등록예를, 도 3에 나타낸다.
스펙트럼 합성 연산부(22)는, 스펙트럼 파형 데이터베이스(21)에 보존된 하나 이상의 스펙트럼 파형에, 각각 가중 계수를 곱해서 하나의 스펙트럼 파형으로 합성하는 연산을 행한다.
스펙트럼 보존부(23)는, 분광기(13)에 의해 취득한, 해석 대상의 스펙트럼 파형을 보존한다.
일치도 연산부(24)는, 스펙트럼 합성 연산부(22)에 의해 연산된 합성 스펙트럼 파형과, 스펙트럼 보존부(23)에 보존된 해석 대상의 스펙트럼 파형을 비교하고, 일치도를 연산한다.
엘리먼트 파장 데이터베이스(25)는, 엘리먼트마다의 피크 파장을 갖는 데이터베이스이며, 엘리먼트 명(원소 또는 분자에 관한 정보)과 피크 파장이 대응지어져서 등록된다. 엘리먼트 파장 데이터베이스(25)의 등록예를, 도 4에 나타낸다.
파장 동정 연산부(26)는, 스펙트럼 합성 연산부(22)의 가중 계수와, 엘리먼트 파장 데이터베이스(25)의 피크 파장과 피크 강도를 이용하여, 피크 파장에 대응하는 엘리먼트를 동정하는 연산을 행한다.
도 3은, 스펙트럼 파형 데이터베이스(21)에 기억된 데이터의 일례를 나타내고 있다. 본 데이터베이스에 있어서, 가스종란(21a), 피에칭 재료란(21b), 엘리먼트란(21c), 파장마다의 발광 강도란(21d) 등의 각 필드가 대응지어져 있다.
가스종란(21a) 및 피에칭 재료란(21b)에는, 도 6에 나타내는 데이터베이스 작성 처리 시에 행해지는 플라스마 처리에서 사용된 가스종 및 피에칭 재료가 저장된다. 엘리먼트란(21c)에는, 가스종과 피에칭 재료에 포함될 가능성이 있는 엘리먼트의 일람이 저장된다. 파장마다의 발광 강도란(21d)에는, 가스종란(21a)과 피에칭 재료란(21b)에 등록된 조건으로 행하여진 플라스마 처리에 있어서, 분광기(13)에 의해 취득된 발광 스펙트럼이 저장된다. 가스종란(21a)과 피에칭 재료란(21b)과 엘리먼트란(21c)과 파장마다의 발광 강도란(21d)에 대하여, 도 6의 스텝 608에서 등록 처리가 행하여진다.
도 4는, 엘리먼트 파장 데이터베이스(25)의 예이다. 본 데이터베이스에 있어서, 엘리먼트란(25a), 파장란(25b) 등의 각 필드가 대응지어져 있다.
엘리먼트란(25a)에는, 가스와 피에칭 재료에 포함될 가능성이 있는 엘리먼트가 저장된다. 파장란(25b)에는, 엘리먼트란(25a)의 엘리먼트가 발하는 광의 파장이 저장된다.
도 5는, 본 실시형태에 따른 전체의 처리 플로우를 나타내는 도면이다. 도 5에 의거하는 동작은, 이하의 스텝과 같다.
(스텝 501)
미리 가스종 및 피에칭 재료마다 플라스마 처리(에칭 처리)를 행하고, 기준이 되는 스펙트럼 파형 데이터베이스(21)를 작성한다. 스펙트럼 파형 데이터베이스(21)의 작성 처리의 상세는, 도 6을 참조하여 후술한다.
(스텝 502)
해석 대상으로 하는 임의의 플라스마 처리가 행하여졌을 때, 분석부(14)는, 분광기(13)에 의해 해석 대상의 스펙트럼 파형 A(제 1 스펙트럼 파형이라고도 함)를 취득하고, 스펙트럼 보존부(23)에 보존한다.
(스텝 503)
스텝 502에서 취득한 해석 대상의 스펙트럼 파형에 대하여, 분석부(14)는 파장 동정 처리를 행한다. 분석부에 있어서의 파장 동정 처리의 상세는, 도 10을 참조하여 후술한다.
(스텝 504)
분석부(14)는, 스텝 503에서 얻은 파장 동정의 결과를 표시부(15)에 송신하고, 표시부(15)는, 표시 화면에 엘리먼트 명과 피크 파장과 엘리먼트마다의 기여도를 표시한다. 기여도는, 추출된 피크 파장의 발광 강도에 차지하는 각각의 엘리먼트의 크기를 나타내는 지표이다. 도 17에, 표시예의 일례를 나타낸다.
도 6은, 도 5에 나타내는 전체의 처리 플로우의 스텝 501의 상세를 플로우화해서 나타내는 도면이다. 이 처리 플로우를 가스종 및 피에칭 재료마다 행함으로써, 데이터베이스를 작성한다. 도 6에 의거하는 동작은 이하와 같다.
(스텝 601)
분광기(13)에 있어서, 플라스마의 발광을 계측하기 위해 설정된 n개의 노광 시간(t1∼tn)마다, n개의 암전류 파형 C1∼Cn을 취득한다. 여기에서, 노광 시간은 t1<t2<…<tn으로 한다. 암전류 파형은, 플라스마 처리 장치(1)에서 플라스마 처리를 실시하고 있지 않을 때에 취득한다.
(스텝 602)
스텝 601에서 설정된 n개의 노광 시간마다, n개의 스펙트럼 파형 D1∼Dn을 취득한다. 스펙트럼 파형은, 플라스마 처리 장치(1)에서, 플라스마 처리를 실시하고 있을 때에 취득한다.
(스텝 603)
스텝 601에서 설정된 노광 시간마다, 스텝 602에서 취득한 스펙트럼 파형 D1∼Dn으로부터, 스텝 601에서 취득한 암전류 파형 C1∼Cn을 뺀 스펙트럼 파형 E1∼En을 계산한다.
(스텝 604)
스텝 605에서 스텝 607까지의 반복 횟수의 초기값 i를 1로 한다.
(스텝 605)
스텝 603에서 계산한, 노광 시간이 최대인 스펙트럼 파형 En 중에 오버 스케일되어 있는 파장이 없으면, 스텝 608로 이행한다. 그 이외의 경우는 스텝 606으로 이행한다. 오버 스케일은, 예를 들면 분광기(13)의 성능에 의해 정해진다.
(스텝 606)
스텝 605에서, 오버 스케일되어 있었던 파장과, 그 이웃한 파장의 발광 강도를 모두, 스펙트럼 파형 En보다 노광 시간이 짧은 측정에서 얻어진 스펙트럼 파형 En-i의 발광 강도에, tn/tn-i를 곱하여 스케일 조정을 행한 값으로 대체하는 것에 의해, 새로운 스펙트럼 파형(제 3 스펙트럼 파형이라고도 함) En을 작성한다. 여기에서는, 오버 스케일된 스펙트럼 파형보다 노광 시간이 짧은 스펙트럼 파형의 노광 시간에 의해, 오버 스케일된 스펙트럼 파형의 노광 시간을 나눈 값을, 오버 스케일된 스펙트럼 파형보다 노광 시간이 짧은 스펙트럼 파형에 곱하는 연산이 행하여진다.
(스텝 607)
반복 횟수 i에 1을 가산해서 스텝 605로 이행하고, 오버 스케일되어 있는 파장이 없어지면, 스텝 608로 이행한다.
(스텝 608)
플라스마 처리에 사용한 가스종을 가스종란(21a)에, 플라스마 처리에 사용한 피에칭 재료를 피에칭 재료란(21b)에, 플라스마 처리에 사용한 가스종 및 피에칭 재료에 포함되는 엘리먼트를 엘리먼트란(21c)에, 스텝 605 내지 스텝 607에서 작성한 스펙트럼 파형 En을 스펙트럼 파형 Bn으로서 파장마다의 발광 강도란(21d)에 등록한다.
여기에서, 스텝 605 내지 스텝 607의 수순을, 구체예를 들어서 설명한다. 도 7은, 노광 시간을 t1로 한 스펙트럼 파형 E1, 도 8은 노광 시간을 t2로 한 스펙트럼 파형 E2, 도 9는 노광 시간을 t3으로 한 스펙트럼 파형 E3의 예이다. 이 예에서는 노광 시간을 3개로 했지만, 2개 이상이면 노광 시간은 몇 개여도 된다.
스텝 605에 있어서, 도 9에 나타내는 스펙트럼 파형 E3의 810㎚ 부근이 오버 스케일되어 있다고 판단되었을 때는, 다음 스텝 606으로 이행한다.
스텝 606에서는, 오버 스케일된 810㎚ 부근의 발광 강도를 E2로부터 추출하고, t3/t2을 곱해서 대체하는 것에 의해 새로운 스펙트럼 파형 E3을 작성하고, 다음 스텝 607로부터 스텝 605으로 되돌아간다.
만약에, 상기 스텝 606에서 작성한 스펙트럼 파형 E3도 오버 스케일되어 있다면, 같은 처리를 스펙트럼 파형 E1에서 행한다. 이렇게 하여, 새로운 스펙트럼 파형 E3이 오버 스케일되지 않게 될 때까지, 스텝 605 내지 스텝 607을 반복한다.
도 10은, 도 5에 나타내는 전체의 처리 플로우의 스텝 503의 상세를 플로우화해서 나타내는 도면이다. 분석부(14)는 이하의 동작으로 파장을 동정한다. 또한, 표시부(15)의 터치 패널에는, 도 16에 나타내는 입력 화면이 표시되어, 작업자가, 표시된 화면을 보면서 정보의 입력이 가능해지고 있다.
(스텝 1001)
작업자는, 도 16에 나타내는 입력 화면에서, 스텝 502에서 취득한 스펙트럼 파형 A에 포함되는 가스를 가스종란(1601)으로부터 선택하고, 그것에 대응하는 해석 대상란(1602)에 「○」를 입력한다. 이것에 의해 분석부(14)에, 해석 대상란(1602)에 「○」가 입력된 가스가 선택되었다는 취지의 정보가 전달된다.
마찬가지로 작업자는, 피에칭 재료를 피에칭 재료란(1603)으로부터 선택하고, 그것에 대응하는 해석 대상란(1604)에 「○」를 입력한다. 이것에 의해 분석부(14)에, 해석 대상란(1604)에 「○」가 입력된 피에칭 재료가 선택되었다는 취지의 정보가 전달된다. 단, 피에칭 재료의 선택은 반드시 필요하지는 않다. 선택 후, 작업자는 「해석 결과를 표시함」 버튼(1605)을 누를 수 있다. 이것에 의해 분석부(14)에, 작업자의 입력이 완료했다는 취지의 정보가 전달된다.
(스텝 1002)
작업자의 입력이 완료했다는 취지의 정보가 분석부(14)에 전달되면, 분석부(14)는, 스펙트럼 파형 데이터베이스(21)로부터, 스텝 1001에서 선택한 가스종을 가스종란(21a)에, 스텝 1001에서 선택한 피에칭 재료를 피에칭 재료란(21b)에 포함하는, 모든 등록된 파장마다의 발광 강도란(21d)으로부터 데이터를 추출하고, 스펙트럼 합성 연산부(22)에 송신한다.
(스텝 1003)
그 다음에, 분석부(14)는, 스펙트럼 합성 연산부(22)에 의해, 스텝 1002에서 추출한 스펙트럼 파형에, 각각 원소 또는 분자에 대응하여 가중 계수를 곱해 합성해서 스펙트럼 파형 B(제 2 스펙트럼 파형이라고도 함)를 작성한다. 예를 들면, 스펙트럼 파형 B는, 이하의 수학식 1로 계산된다. 여기에서, B는 합성된 스펙트럼 파형, n은 합성하는 스펙트럼 파형의 개수, Bj는 j번째의 스펙트럼 파형, wj는 j번째의 스펙트럼 파형에 곱하는 가중 계수를 나타낸다. 또한, 여기에서는 가중 계수 wj는 스펙트럼 파형 전체에서 같은 값으로 했을 경우의 식을 나타내고 있지만, 파장마다 서로 다른 값으로 해도 된다.
Figure pct00001
(스텝 1004)
또한, 분석부(14)는, 일치도 연산부(24)에 의해, 스텝 502에서 취득한 스펙트럼 파형 A와, 스텝 1003에서 작성한 스펙트럼 파형 B를 비교하고, 일치도를 연산한다. 예를 들면, 일치도는, 이하와 같은 수학식 2로 계산한다. 여기에서, M은 일치도의 값, m은 스펙트럼 파형의 파장의 개수, Ak 및 Bk는 스펙트럼 파형 A 및 스펙트럼 파형 B의 k번째의 파장의 발광 강도를 나타낸다. M의 값이 작을수록, 스펙트럼 파형 A와 스펙트럼 파형 B가 일치하고 있음을 알 수 있다.
Figure pct00002
(스텝 1005)
스텝 1004에서 연산한 일치도의 값 M이 임계값 이상일 경우에는, 스펙트럼 파형 A와 스펙트럼 파형 B가 충분히 일치하고 있지 않음을 나타내기 때문에, 스텝 1006으로 이행하고, 분석부(14)는 스펙트럼 파형 B의 처리를 행한다.
(스텝 1006)
분석부(14)는, 스펙트럼 합성 연산부(22)에 의해, 스펙트럼 파형 B를 구성하는 각 스펙트럼 파형의 가중 계수를 변경하여, 새로운 스펙트럼 파형 B를 작성한다. 여기에서, 가중 계수는 일치도의 값 M이 작아지도록, 예를 들면 구배법(勾配法) 등을 이용하여 변경한다.
그 후, 스텝 1004으로 이행하고, 분석부(14)는, 새로운 스펙트럼 파형 B를 이용하여, 일치도의 값 M을 재계산하고, 계속되는 스텝 1005에서 일치도의 값 M과 임계값을 비교한다. 재계산한 일치도의 값 M이 임계값 이상일 경우, 스텝 1006으로 이행하고, 분석부(14)는, 새로운 스펙트럼 파형 B를 계산함과 동시에, 스텝 1004, 1005에서 동일한 처리를 행한다. 한편, 스텝 1005에서 일치도의 값 M이 임계값보다 작을 경우, 플로우는 스텝 1007로 이행한다.
(스텝 1007)
분석부(14)는, 파장 동정 연산부(26)에 의해, 엘리먼트 파장 데이터베이스(25)로부터, 스펙트럼 파형 B를 구성하는 파형의 엘리먼트란(21c)의 데이터를 포함하는 등록된 피크 파장을 취득하고, 피크 파장과, 그 근방의 파장의 발광 강도를 스펙트럼 파형 데이터베이스(21)의 파장마다의 발광 강도란(21d)으로부터 데이터를 취득한다. 취득 후, 분석부(14)는, 피크 파장의 발광 강도와 파형의 가중 계수를 이용하여 기여도를 계산하고, 엘리먼트 명과 피크 파장과 기여도를 출력해서 표시부(15)에 송신한다. 엘리먼트 명과 피크 파장과 기여도는, 분석 대상이 되는 플라스마 처리에 있어서 사용된 가스종 및 피에칭 재료에 관한 정보이며, 엘리먼트 명과 기여도가 피크 파장마다 표시부(15)에서 표시된다. 이러한 정보에 의해, 분석 대상이 되는 플라스마 처리에 있어서 사용된 가스종이나 피에칭 재료의 엘리먼트 명을 특정할 수 있다.
예를 들면, 도 17의 표시예에 있어서, 피크 파장이 294.9㎚인 피크 파형에서는, N2의 기여도는 95%이며, CO2의 기여도는 5%이다. 또한, 피크 파장이 750.7㎚인 피크 파형에서는, Ar의 기여도는 80%이며, N2의 기여도는 20%이다. 또한, 피크 파장이 811.0㎚인 피크 파형에서는, Ar의 기여도는 100%이다. 즉, 해석 대상의 플라스마 처리가 행하여진 처리실 내에는, 입력한 가스종 이외에, CO2 및 N2이 포함되어 있는 것을 알 수 있다.
예를 들면, 기여도는 이하와 같은 수학식 3으로 계산된다. 여기에서, C는 기여도, w는 가중 계수, p는 피크 파장 근방의 파장의 개수, Wl은 l번째의 파장, Il은 l번째의 파장의 발광 강도를 나타낸다.
Figure pct00003
또한, 기여도의 계산과 함께, 수학식 2에 나타내는 일치도의 값 M의 계산을 피크 파형(피크 파장과 그 근방의 파장)마다 행하고, 일치도의 값 M이 낮은 피크 파형을 동정 결과로부터 제외하는 것에 의해, 동정의 정밀도를 향상시켜도 된다.
도 14는, 해석 대상의 스펙트럼 파형과 데이터베이스의 스펙트럼 파형을 합성한 스펙트럼 파형과의 피팅 결과의 일례를 나타내는 도면이다. 도면 중의 실선은, Ar+N2+CO2의 혼합 가스의 스펙트럼 파형이며, 도면 중의 파선은, 도 11에 나타내는 Ar의 스펙트럼 파형과, 도 12에 나타내는 N2의 스펙트럼 파형과, 도 13에 나타내는 CO2의 스펙트럼 파형에 각각 가중 계수를 곱해 합성한 파형이다.
도 11, 도 12, 도 13의 스펙트럼 파형은, 각각 도 14의 실선에 의해 나타내는 스펙트럼의 특징을 갖고 있으며, 도 14의 실선과 파선은, 비교적 양호하게 피팅되어 있다고 말할 수 있다.
단, 도 14의 실선과 파선에 있어서, 380㎚ 내지 390㎚ 부근에 일치하지 않는 피크가 존재한다. 이것은 CN의 피크이며, N2와 CO2를 혼합한 플라스마에서는 생성되는 물질이지만, N2만의 플라스마나 CO2만의 플라스마에서는 생성되지 않는 물질이다. 그 때문에, 단독 가스만으로 작성한 스펙트럼 파형 데이터베이스(21)에는, CN의 피크를 가지는 파형은 존재하지 않는다. 그래서, 동정 정밀도 향상을 목적으로 해서, 일치하지 않는 피크를 취출하고, 새롭게 CN의 파형으로서 스펙트럼 파형 데이터베이스(21)에 등록해도 된다.
도 15는, 도 14의 파선에 의해 나타내는 스펙트럼을 Cl2와 CF4의 스펙트럼 파형을 합성한 스펙트럼 파형으로 했을 경우의 피팅 결과를 나타내는 도면이다. 도 15의 실선은, 도 14와 마찬가지로 Ar+N2+CO2의 혼합 가스의 스펙트럼 파형이기 때문에, 본래는 가스종으로서 Ar, N2, CO2를 선택해야 하지만, 대신에 Cl2, CF4를 선택했을 경우의 예이다. 이 경우, 가중치를 조정해도 스펙트럼 파형은 피팅되지 않기 때문에, 본 실시형태를 이용하는 것에 의해 잘못된 파장 동정을 억제할 수 있다.
[실시형태 2]
본 실시형태는, 작업자가 엘리먼트를 선택하는 대신에, 도 18에 나타내는 바와 같이, 분석부(14)에 엘리먼트 선택부(1801)를 마련해서 자동적으로 엘리먼트를 선택하는 것이다. 따라서, 본 실시형태에서는 도 16의 입력 화면은 불필요하게 된다.
엘리먼트 선택부(1801)는, 일치도 연산부(24)의 연산 결과를 참조하여, 결과가 양호하게 되도록 엘리먼트를 선택할 수 있다. 예를 들면 엘리먼트 선택부(1801)에 딥 러닝 기능을 갖게 함으로써, 전체 데이터를 처리하지 않더라도, 최적의 엘리먼트를 선택하는 것이 가능하게 된다.
도 19는, 본 실시형태에 있어서의 분석부(14)의 처리 플로우를 나타내는 도면이다. 도 10의 처리 플로우와 다른 스텝만, 이하에 나타낸다.
(스텝 1001)
스텝 502에서 취득한 스펙트럼 파형 A에 포함되는 가스종 및 피에칭 재료를 엘리먼트 선택부(1801)가 선택한다.
(스텝 1901)
스텝 1004에서 계산한 일치도의 변화량이 소정값 이하인 경우, 스텝 1001로 이행하여, 분석부(14)는 엘리먼트를 재차 다시 선택한다. 그 후, 일치도의 변화량이 소정값을 초과할 때까지, 분석부(14)는 동일한 처리를 행한다.
이와 같이, 본 실시형태의 분석부(14)에 따르면, 엘리먼트의 선택을 자동적으로 행함으로써 작업자의 작업 부담을 저감하고, 엘리먼트 선택 실수 등의 인위적 미스(miss)를 막을 수 있기 때문에, 파장 동정의 정밀도를 향상시킬 수 있다.
또한, 본 발명은 상기한 실시형태에 한정되는 것이 아니고, 다양한 변형예가 포함된다. 예를 들면, 상기한 실시형태는 본 발명을 이해하기 쉽게 설명하기 위해서 상세하게 설명한 것이며, 반드시 설명한 모든 구성을 구비하는 것에 한정되는 것이 아니다. 또한, 어떤 실시형태의 구성의 일부를 다른 실시형태의 구성으로 대체하는 것이 가능하며, 또한, 어떤 실시형태의 구성에 다른 실시형태의 구성을 더하는 것도 가능하다. 또한, 각 실시형태의 구성의 일부에 대해서, 다른 구성의 추가·삭제·치환을 하는 것이 가능하다.
또한, 설명한 실시형태의 응용예로서, 반도체 제조 장치를 포함하는 라인을 운용 관리하는 애플리케이션을 플랫폼 상에서 실행하는 반도체 장치 제조 시스템을 생각할 수 있다. 이 경우, 적어도 분석부(14)의 분석 처리 기능을 플랫폼 상의 애플리케이션으로서 처리를 실행시키는 것에 의해, 상기 반도체 장치 제조 시스템에 있어서 본 실시형태를 적용하는 것이 가능해진다.
또한, 상기의 각 구성, 기능, 처리부, 처리 수단 등은, 그들의 일부 또는 전부를, 예를 들면 프로세서가 각각의 기능을 실현하는 프로그램을 실행하는 것에 의해 소프트웨어로 실현해도 된다. 각 기능을 실현하는 프로그램, 테이블, 파일 등의 정보는, 메모리나, 하드 디스크, SSD(Solid State Drive) 등의 기록 장치, 또는, IC 카드, SD 카드, DVD 등의 기록 매체에 둘 수 있다.
1…플라스마 처리 장치
2…처리실
3…매스 플로우 컨트롤러
4…플라스마 생성용 고주파 전원
5…배기 장치
6…웨이퍼
7…시료대
8…플라스마
9…바이어스용 고주파 전원
10…압력계
11…가변 컨덕턴스 밸브
12…관찰창
13…분광기
14…분석부
15…표시부
21…스펙트럼 파형 데이터베이스
22…스펙트럼 합성 연산부
23…스펙트럼 보존부
24…일치도 연산부
25…엘리먼트 파장 데이터베이스(원소 또는 분자 파장 데이터베이스)
26…파장 동정 연산부
1601…가스종란
1602…해석 대상란
1603…피에칭 재료란
1604…해석 대상란
1605…버튼
1801…엘리먼트 선택부(원소 또는 분자 선택부)

Claims (10)

  1. 시료가 플라스마 처리되는 처리실과, 플라스마를 생성하기 위한 고주파 전력을 공급하는 고주파 전원과, 상기 시료가 재치(載置)되는 시료대를 구비하는 플라스마 처리 장치에 있어서,
    모니터링된 플라스마의 발광의 스펙트럼 파형인 제 1 스펙트럼 파형과 제 2 스펙트럼 파형을 비교해서 구해진, 상기 제 1 스펙트럼 파형과 상기 제 2 스펙트럼 파형의 일치도를 기초로 상기 모니터링된 플라스마 중의 원소 또는 분자가 특정되는 분석부를 더 구비하고,
    상기 제 2 스펙트럼 파형은, 상기 원소 또는 상기 분자에 대응하여 가중 계수가 곱해진 스펙트럼 파형인 것을 특징으로 하는 플라스마 처리 장치.
  2. 제 1 항에 있어서,
    상기 분석부에 의해, 상기 일치도가 임계값보다 작을 경우, 상기 원소 또는 상기 분자에 관한 정보가 출력되는 것을 특징으로 하는 플라스마 처리 장치.
  3. 제 1 항에 있어서,
    상기 분석부에 의해, 상기 일치도가 작아지도록 상기 가중 계수가 조정되는 것을 특징으로 하는 플라스마 처리 장치.
  4. 제 1 항에 있어서,
    상기 일치도가 임계값보다 작을 경우, 상기 분석부에 의해, 상기 제 2 스펙트럼 파형의 피크 파장이 추출됨과 동시에 상기 추출된 피크 파장의 발광 강도와 가중 계수를 기초로 기여도가 연산되며,
    상기 기여도는, 상기 추출된 피크 파장의 발광 강도에 차지하는 각각의 상기 원소 또는 각각의 상기 분자의 크기를 나타내는 지표인 것을 특징으로 하는 플라스마 처리 장치.
  5. 제 4 항에 있어서,
    상기 원소 또는 상기 분자와 상기 기여도가 상기 피크 파장마다 표시되는 표시부를 더 구비하는 것을 특징으로 하는 플라스마 처리 장치.
  6. 제 1 항에 있어서,
    모니터링된 상기 플라스마의 발광의 데이터를 출력하고 상기 플라스마의 발광의 강도를 노광 시간에 의해 조정하는 분광기를 더 구비하며,
    상기 제 2 스펙트럼 파형의 일부의 파장에 있어서의 발광 강도가 오버 스케일되어 있을 경우, 상기 분석부에 의해, 상기 오버 스케일된 제 2 스펙트럼 파형이 제 3 스펙트럼 파형으로 교체되고,
    상기 제 3 스펙트럼 파형은, 상기 오버 스케일된 제 2 스펙트럼 파형보다 상기 노광 시간이 짧은 상기 제 2 스펙트럼 파형이 연산된 스펙트럼 파형이며,
    상기 연산은, 상기 오버 스케일된 제 2 스펙트럼 파형보다 상기 노광 시간이 짧은 상기 제 2 스펙트럼 파형의 노광 시간에 의해, 상기 오버 스케일된 제 2 스펙트럼 파형의 노광 시간을 나눈 값을, 상기 오버 스케일된 제 2 스펙트럼 파형보다 상기 노광 시간이 짧은 상기 제 2 스펙트럼 파형에 곱하는 연산인 것을 특징으로 하는 플라스마 처리 장치.
  7. 제 1 항에 있어서,
    상기 분석부는, 상기 일치도를 기초로 원소 또는 분자가 선택되는 엘리먼트 선택부를 구비하는 것을 특징으로 하는 플라스마 처리 장치.
  8. 모니터링된 플라스마의 발광의 스펙트럼 파형인 제 1 스펙트럼 파형과 제 2 스펙트럼 파형을 비교해서 구해진, 상기 제 1 스펙트럼 파형과 상기 제 2 스펙트럼 파형의 일치도를 기초로 상기 모니터링된 플라스마 중의 원소 또는 분자가 특정되는 분석부를 구비하며,
    상기 제 2 스펙트럼 파형은, 플라스마 중의 원소 또는 분자에 대응하여 가중 계수가 곱해진 스펙트럼 파형인 것을 특징으로 하는 데이터 해석 장치.
  9. 네트워크를 통해 반도체 제조 장치에 접속되어, 플라스마 중의 원소 또는 분자를 특정하는 분석 처리가 실행되는 플랫폼를 구비하는 반도체 장치 제조 시스템에 있어서,
    상기 분석 처리는,
    모니터링된 플라스마의 발광의 스펙트럼 파형인 제 1 스펙트럼 파형과 제 2 스펙트럼 파형을 비교해서 구해진, 상기 제 1 스펙트럼 파형과 상기 제 2 스펙트럼 파형의 일치도를 기초로 상기 모니터링된 플라스마 중의 원소 또는 분자를 특정하는 스텝을 갖고,
    상기 제 2 스펙트럼 파형은, 플라스마 중의 원소 또는 분자에 대응하여 가중 계수가 곱해진 스펙트럼 파형인 것을 특징으로 하는 반도체 장치 제조 시스템.
  10. 제 9 항에 있어서,
    상기 분석 처리는, 상기 플랫폼에 구비된 애플리케이션으로서 실행되는 것을 특징으로 하는 반도체 장치 제조 시스템.
KR1020227029783A 2021-07-14 플라스마 처리 장치, 데이터 해석 장치 및 반도체 장치 제조 시스템 KR102722616B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026384 WO2023286180A1 (ja) 2021-07-14 2021-07-14 プラズマ処理装置、データ解析装置及び半導体装置製造システム

Publications (2)

Publication Number Publication Date
KR20230012457A true KR20230012457A (ko) 2023-01-26
KR102722616B1 KR102722616B1 (ko) 2024-10-29

Family

ID=

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2521406B2 (ja) 1992-08-25 1996-08-07 インターナショナル・ビジネス・マシーンズ・コーポレイション 半導体製造装置の自動操作方法及びシステム
JP6088867B2 (ja) 2013-03-15 2017-03-01 株式会社日立ハイテクノロジーズ プラズマ処理装置及び分析装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2521406B2 (ja) 1992-08-25 1996-08-07 インターナショナル・ビジネス・マシーンズ・コーポレイション 半導体製造装置の自動操作方法及びシステム
JP6088867B2 (ja) 2013-03-15 2017-03-01 株式会社日立ハイテクノロジーズ プラズマ処理装置及び分析装置

Also Published As

Publication number Publication date
TW202318476A (zh) 2023-05-01
WO2023286180A1 (ja) 2023-01-19
CN116157901A (zh) 2023-05-23
JP7288553B1 (ja) 2023-06-07
US20240203712A1 (en) 2024-06-20
TWI844054B (zh) 2024-06-01
JPWO2023286180A1 (ko) 2023-01-19

Similar Documents

Publication Publication Date Title
KR101571928B1 (ko) 분석 방법, 분석 장치 및 에칭 처리 시스템
JP5150620B2 (ja) 提案構造解析処理の実行可能性を判断する方法
CN105590829B (zh) 用于校准电子倍增器中增益的系统和方法
JP2018152000A (ja) 分析データ解析装置及び分析データ解析方法
KR101580232B1 (ko) 에칭 장치의 데이터 해석 방법 및 에칭 방법 및 그 장치
JP6813033B2 (ja) 分析データ解析方法および分析データ解析装置
KR101495621B1 (ko) 플라즈마 장치 및 분석 장치
JP2017032591A (ja) 信号分析装置、信号分析方法及びコンピュータプログラム
US20210048794A1 (en) Information processing device, program, process treatment executing device, and information processing system
JP6173851B2 (ja) 分析方法およびプラズマエッチング装置
Quici et al. Selecting and modelling remnant AGNs with limited spectral coverage
JP2018508015A (ja) 分光計の非ランダム固定パターンを最小化するシステム及び方法
KR20230012457A (ko) 플라스마 처리 장치, 데이터 해석 장치 및 반도체 장치 제조 시스템
KR102722616B1 (ko) 플라스마 처리 장치, 데이터 해석 장치 및 반도체 장치 제조 시스템
JP2019531479A (ja) 測定対象のサンプルの組成を正確に定量化するためのシステムおよび方法
JP2018014403A (ja) プラズマ処理装置及びプラズマ処理データを解析する解析方法
JP2015132916A (ja) 装置制御システム、装置制御方法、および装置制御プログラム
CN117529668B (zh) 用于提供训练数据以使得神经网络能够分析nmr测量中的信号的系统和方法
Naumann et al. Multivariate optimisation of simultaneous multi-element analysis by furnace atomic non-thermal excitation spectrometry (FANES)
JP2006138755A (ja) 危険物探知装置および危険物探知方法
CN105092554B (zh) 一种基于等离子体的元素含量测量方法及装置
JP2022137541A (ja) データ分析装置、方法及びプログラム
JP2019536037A (ja) 一組のガスに対応する一組の質量電荷比を求めるためのシステムおよび方法
GB2508556A (en) Signal analyzing apparatus, signal analyzing method, and computer program

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right