KR20230001090A - Carbon fibers-reinforced epoxy composites with graphene oxide/graphitic nanofibers composites and manufacturing method thereof - Google Patents

Carbon fibers-reinforced epoxy composites with graphene oxide/graphitic nanofibers composites and manufacturing method thereof Download PDF

Info

Publication number
KR20230001090A
KR20230001090A KR1020210083572A KR20210083572A KR20230001090A KR 20230001090 A KR20230001090 A KR 20230001090A KR 1020210083572 A KR1020210083572 A KR 1020210083572A KR 20210083572 A KR20210083572 A KR 20210083572A KR 20230001090 A KR20230001090 A KR 20230001090A
Authority
KR
South Korea
Prior art keywords
gnfs
hours
graphene oxide
carbon fiber
hour
Prior art date
Application number
KR1020210083572A
Other languages
Korean (ko)
Other versions
KR102496995B1 (en
Inventor
박수진
김성황
김윤섭
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020210083572A priority Critical patent/KR102496995B1/en
Publication of KR20230001090A publication Critical patent/KR20230001090A/en
Application granted granted Critical
Publication of KR102496995B1 publication Critical patent/KR102496995B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The present invention provides a manufacturing method of a carbon fiber reinforced epoxy composite material reinforced with GO-GNFs, which comprises the steps of (1) performing ozone treatment of graphite nanofibers (GNFs); (2) surface-modifying the GNFs; (3) washing the GNFs with tetrahydrofuran (THF); (4) compounding the tetrahydrofuran with graphene oxide (GO); (5) removing remaining graphite nanofibers or graphene oxide residues followed by washing and drying; (6) mixing the graphene oxide/graphite nanofiber composite with an epoxy resin; (7) stabilizing the mixture of the graphene oxide/graphite nanofiber composite and the epoxy resin; (8) adding 4,4'-diaminodiphenylmethane (DDM) as a curing agent to the epoxy resin mixture to proceed with a curing reaction; (9) stabilizing the mixture in a vacuum oven; and (10) impregnating the carbon fibers with the mixture of a graphene oxide/graphite nanofiber composite, the epoxy resin, and the curing agent and curing the mixture through a hot press.

Description

그래핀산화물/흑연나노섬유 복합체로 강화된 탄소섬유 강화 에폭시 복합소재 및 그 제조방법{CARBON FIBERS-REINFORCED EPOXY COMPOSITES WITH GRAPHENE OXIDE/GRAPHITIC NANOFIBERS COMPOSITES AND MANUFACTURING METHOD THEREOF}Carbon fiber reinforced epoxy composite material reinforced with graphene oxide/graphite nanofiber composite and method for manufacturing the same

본 발명은 그래핀산화물(Graphene Oxide; GO)과 흑연나노섬유(Graphitic Nnofibers; GNFs)를 복합화한 그래핀산화물/흑연나노섬유(GO-GNF) 복합체로 강화된 탄소섬유(Carbon Fibers; CFs) 강화 에폭시 복합재료 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 탄소섬유 강화 에폭시 복합재료의 계면 특성 및 기계적 강도가 향상된 GO-GNF로 강화된 탄소섬유 강화 에폭시 복합재료 및 그 제조방법에 관한 것이다.The present invention is to reinforce carbon fibers (CFs) reinforced with a graphene oxide/graphite nanofiber (GO-GNF) composite in which graphene oxide (GO) and graphite nanofibers (GNFs) are combined. It relates to an epoxy composite material and a manufacturing method thereof, and more particularly, to a carbon fiber reinforced epoxy composite material reinforced with GO-GNF having improved interfacial properties and mechanical strength of the carbon fiber reinforced epoxy composite material and a manufacturing method thereof.

분자 내에 epoxy group(C-O-C)을 두 개 이상 가지고 있는 에폭시는 탄소섬유와 경화시켜 단단하며 용해되지 않는 CFRPs(Carbon fibers-reinforced polymer composites) 소재로 제조할 수 있다. 에폭시의 높은 인장 탄성률, 접착 특성, 내화학성, 구조적 안정성 등의 특성과 탄소섬유의 고강도, 저 비중 및 부식에 대한 강한 내 화학성 때문에 탄소섬유로 강화된 고분자 복합체의 좋은 대안으로 대두되고 있으며, 우주항공, 선박, 자동차 부품, 해양장비, 전기전자 산업 등에 적용되고 있다. 그러나 탄소 섬유는 구조적 결함과 화학적으로 불활성인 표면 때문에 에폭시 매트릭스 내부에서 낮은 계면 접착력을 나타낸다. 이 문제는 계면 특성 및 기계적 강도를 저하시켜 다양한 현대 산업 분야에서 제한이 될 수 있다.Epoxy, which has two or more epoxy groups (C-O-C) in its molecule, can be cured with carbon fibers to produce hard, insoluble carbon fibers-reinforced polymer composites (CFRPs). Due to the high tensile modulus, adhesive properties, chemical resistance, and structural stability of epoxy and the high strength, low specific gravity, and strong chemical resistance of carbon fiber, it is emerging as a good alternative to polymer composites reinforced with carbon fiber. , ships, automobile parts, marine equipment, electric and electronic industries, etc. However, carbon fibers exhibit poor interfacial adhesion within the epoxy matrix due to structural defects and chemically inert surfaces. This problem deteriorates interfacial properties and mechanical strength, which can be a limitation in various modern industrial fields.

한편, 최근 이러한 계면 특성 및 기계적 강도를 향상시키기 위해 다른 고분자나 탄소소재, 나노 사이즈의 입자를 복합하는 등의 방법을 도입한 연구들이 확인되고 있다.On the other hand, recently, studies introducing methods such as combining other polymers, carbon materials, and nano-sized particles in order to improve these interface properties and mechanical strength have been confirmed.

다양한 필러소재들 중 탄소소재는 에폭시 기지에 복합되어 계면 특성 및 기계적 강도를 월등히 향상시킬 수 있다. 다양한 탄소소재 중 흑연나노섬유(GNFs)는 나노 스케일의 우수한 특성을 마이크로 스케일로 전달할 수 있는 기능성을 제공한다. 그러나 GNFs는 본질적으로 소수성 물질이며 입자사이에 van der Waals 힘으로 인해 에폭시 매트릭스 내에서 계면상호작용과 관련하여 GNFs가 자체적으로 응집되는 어려움이 있다. 흑연나노섬유의 구조는 Basal plane 및 Prismatic surfaces 구조로 형성되어 있으며, 이 중 Prismatic surfaces는 basal plane보다 활성이 높아 그래핀산화물(GO)과 복합화를 통해 문제를 해결할 수 있다.Among various filler materials, carbon materials can be combined with an epoxy matrix to significantly improve interfacial properties and mechanical strength. Among various carbon materials, graphite nanofibers (GNFs) provide functionality that can deliver the excellent properties of the nanoscale to the microscale. However, GNFs are inherently hydrophobic, and there is difficulty in self-aggregation of GNFs in relation to interfacial interactions within the epoxy matrix due to van der Waals forces between particles. The structure of graphite nanofibers is formed with basal plane and prismatic surfaces structures, and among them, prismatic surfaces are more active than basal planes, so problems can be solved through composite with graphene oxide (GO).

GO은 에폭시 기지에 복합되어 계면 특성 및 기계적 강도를 월등히 향상시킬 수 있다. 에폭시 수지와의 상호작용을 촉진하기 위해 GO의 작용기 -OH, -C=O, -COOH 와 같은 산소 함유 관능기는 에폭시 매트릭스 내에서의 계면 접착력을 향상시킨다. 특히, GO는 GNFs의 응집되는 문제를 해결할 수 있으며, 다른 탄소소재와 복합체를 형성하여 탄소섬유 강화 에폭시 복합재료의 기계적 특성 및 열전도도를 매우 향상시킨 연구사례가 등장하고 있다. GO can significantly improve interfacial properties and mechanical strength by being composited with an epoxy matrix. Oxygen-containing functional groups such as -OH, -C=O, and -COOH of GO enhance the interfacial adhesion within the epoxy matrix to promote interaction with the epoxy resin. In particular, GO can solve the problem of aggregation of GNFs, and there are research cases that greatly improve the mechanical properties and thermal conductivity of carbon fiber reinforced epoxy composites by forming composites with other carbon materials.

본 발명의 목적은, 계면 특성 및 기계적 강도가 향상된 탄소 섬유 강화 에폭시 복합소재를 제공하는데 있어서, 그래핀산화물/흑연나노섬유 복합체를 사용하여 계면 특성 및 기계적 강도가 향상된 그래핀산화물/흑연나노섬유 복합체로 강화된 탄소섬유 강화 에폭시 복합소재 및 제조방법을 제공하는데 있다.An object of the present invention is to provide a carbon fiber reinforced epoxy composite material having improved interfacial properties and mechanical strength, using a graphene oxide/graphite nanofiber composite having improved interfacial properties and mechanical strength, a graphene oxide/graphite nanofiber composite. To provide a carbon fiber reinforced epoxy composite material and manufacturing method.

상기 목적을 달성하기 위하여, 본 발명은 계면 특성 및 기계적 강도가 향상된 탄소 섬유 강화 에폭시 복합소재 및 제조 방법을 제공한다.In order to achieve the above object, the present invention provides a carbon fiber reinforced epoxy composite material and manufacturing method with improved interfacial properties and mechanical strength.

본 발명의 GO-GNF로 강화된 탄소섬유 강화 에폭시 복합소재의 제조방법은 (1) 건식 오존발생기를 사용하여 흑연나노섬유 표면을 개질하는 단계; (2) 오존처리 이후, 표면개질에 사용되는 SOCl2(Thionyl chloride) 용액을 사용하여 SN2 치환 반응하는 단계; (3) 치환 반응 이후, 가수분해 방지를 위해 THF(Tetrahydrofuran)으로 세척하는 단계; (4) 세척 이후, 그래핀 산화물과 복합체를 형성하기 위해 그래핀 산화물/흑연나노섬유를 복합화하는 단계; (5) 잔류하는 박편을 제거하기 위해 에탄올과 증류수를 사용하여 세척하고 건조하는 단계; (6) 상기 방법으로 제조된 그래핀 산화물/흑연나노섬유 복합체를 유기용매를 이용하여 에폭시 수지를 혼합하는 단계; (7) 상기 제조된 혼합물을 안정화하는 단계; (8) 경화제를 첨가하여 혼합하는 단계; (9) 상기 제조된 혼합물을 진공 오븐에서 안정화하는 단계; 상기 제조된 혼합물을 탄소섬유와 함침하여 핫프레스로 경화시켜 그래핀 산화물/흑연나노섬유로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하는 (10) 단계를 포함하는 GO-GNF로 강화된 탄소섬유 강화 에폭시 복합소재를 제조방법을 제공한다. 더욱 상세하게는, 상기 (8) 단계에서 에폭시 수지는 100g, 경화제로서 4,4’-diaminodiphenylmethane는 에폭시 수지에 대한 당량비로 34g에서 36g, GO-GNF 0.3g에서 1.0g 그리고 상기 (10) 단계에서 탄소섬유는 50g인 것을 포함할 수 있다.The method for manufacturing a carbon fiber reinforced epoxy composite material reinforced with GO-GNF of the present invention includes the steps of (1) modifying the surface of graphite nanofibers using a dry ozone generator; (2) after ozone treatment, using a SOCl 2 (Thionyl chloride) solution used for surface modification to perform a S N 2 substitution reaction; (3) washing with THF (Tetrahydrofuran) to prevent hydrolysis after the substitution reaction; (4) after washing, combining graphene oxide/graphite nanofibers to form a composite with graphene oxide; (5) washing with ethanol and distilled water and drying to remove residual flakes; (6) mixing the graphene oxide/graphite nanofiber composite prepared by the above method with an epoxy resin using an organic solvent; (7) stabilizing the prepared mixture; (8) adding and mixing a curing agent; (9) stabilizing the prepared mixture in a vacuum oven; Carbon fiber reinforced with GO-GNF comprising the step (10) of preparing a carbon fiber reinforced epoxy composite material reinforced with graphene oxide/graphite nanofibers by impregnating the prepared mixture with carbon fibers and curing by hot pressing. Provides a method for manufacturing an epoxy composite material. More specifically, in step (8), 100 g of epoxy resin, 4,4'-diaminodiphenylmethane as a curing agent, 34 g to 36 g in equivalent ratio to the epoxy resin, GO-GNF 0.3 g to 1.0 g, and in step (10) The carbon fibers may include those of 50 g.

본 발명에 따르면, GO-GNFs를 필러로 사용하여 에폭시 수지에 첨가함으로써, GO-GNFs의 많은 산소함유 관능기가 열경화성 수지인 에폭시 수지와의 강한 계면 상호작용 및 접착력을 이끌어내어, 계면 특성 및 기계적 강도가 향상된 탄소섬유 강화 에폭시 복합소재가 제조되는 효과가 있다.According to the present invention, by adding GO-GNFs as a filler to an epoxy resin, many oxygen-containing functional groups of GO-GNFs lead to strong interfacial interaction and adhesive force with the thermosetting epoxy resin, resulting in interfacial properties and mechanical strength. There is an effect that an improved carbon fiber reinforced epoxy composite material is manufactured.

도 1은 본 발명의 일 실시예에 따른 GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합소재와 비교예의 표면 에너지 및 향상정도의 비교 그래프이다
도 2는 본 발명의 일 실시예에 따른 GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합소재와 비교예의 층간전단강도(ILSS) 및 향상정도의 비교 그래프이다.
도 3은 본 발명의 일 실시예에 따른 GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합소재와 비교예의 파괴인성 및 향상정도의 비교 그래프이다.
도 4는 본 발명에서 제조한 GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합소재의 실시예 3, 비교예 3 및 비교예 7의 파괴인성 측정 후 파단면의 SEM 사진이다.
1 is a comparison graph of the surface energy and improvement degree of a carbon fiber reinforced epoxy composite material reinforced with GO-GNFs according to an embodiment of the present invention and a comparative example.
Figure 2 is a comparative graph of interlaminar shear strength (ILSS) and improvement degree of a carbon fiber reinforced epoxy composite material reinforced with GO-GNFs according to an embodiment of the present invention and a comparative example.
3 is a comparative graph of the fracture toughness and degree of improvement of a carbon fiber reinforced epoxy composite material reinforced with GO-GNFs according to an embodiment of the present invention and a comparative example.
Figure 4 is a SEM picture of the fracture surface after measuring the fracture toughness of Example 3, Comparative Example 3 and Comparative Example 7 of the carbon fiber-reinforced epoxy composite material reinforced with GO-GNFs prepared in the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 유형에 따르는 GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합소재의 제조방법은 1) 건식 오존발생기를 사용하여 흑연나노섬유 표면을 개질하는 단계; (2) 오존처리 이후, 표면개질로 사용되는 SOCl2(Thionyl chloride)용액을 사용하여 SN2 치환 반응 단계; (3) 치환반응 이후, 가수분해 방지를 위해 THF(Tetrahydrofuran)으로 세척하는 단계; (4) 세척 이후, 그래핀 산화물과 복합체를 형성하기 위해 그래핀 산화물/흑연나노섬유 복합화하는 단계; (5) 잔류하는 박편을 제거하기 위해 에탄올과 증류수를 사용하여 세척하고 건조하는 단계; (6) 상기방법으로 제조된 그래핀 산화물/흑연나노섬유 복합체를 유기용매를 이용하여 에폭시 수지를 혼합하는 단계; (7) 상기 제조된 혼합물의 안정화하는 단계; (8) 경화제를 첨가하여 혼합하는 단계; (9) 상기 제조된 혼합물을 진공 오븐에서 안정화하는 단계; 상기 (6) 단계, (7) 단계, (8) 단계에서 제조된 에폭시 혼합물을 탄소섬유와 함침하여 핫프레스로 경화시켜 그래핀 산화물/흑연나노섬유로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하는 (10) 단계를 포함하는 GO-GNF로 강화된 탄소섬유 강화 에폭시 복합소재를 제조방법을 제공한다. A method for manufacturing a carbon fiber reinforced epoxy composite material reinforced with GO-GNFs according to one type of the present invention includes: 1) modifying the surface of graphite nanofibers using a dry ozone generator; (2) after ozone treatment, using SOCl 2 (Thionyl chloride) solution used for surface modification, SN 2 substitution reaction step; (3) washing with THF (Tetrahydrofuran) to prevent hydrolysis after the substitution reaction; (4) after washing, combining graphene oxide/graphite nanofibers to form a composite with graphene oxide; (5) washing with ethanol and distilled water and drying to remove residual flakes; (6) mixing the graphene oxide/graphite nanofiber composite prepared by the above method with an epoxy resin using an organic solvent; (7) stabilizing the prepared mixture; (8) adding and mixing a curing agent; (9) stabilizing the prepared mixture in a vacuum oven; The epoxy mixture prepared in steps (6), (7), and (8) is impregnated with carbon fiber and cured by hot pressing to prepare a carbon fiber reinforced epoxy composite material reinforced with graphene oxide / graphite nanofibers (10) Provides a method for manufacturing a carbon fiber reinforced epoxy composite material reinforced with GO-GNF.

더욱 상세하게는, 상기 (8) 단계에서 에폭시는 100g, 경화제로서 4,4’-diaminodiphenylmethane는 에폭시 수지에 대한 당량비로 34g에서 36g, GO-GNF 0.3g에서 1.0g 그리고 상기 (10) 단계에서 탄소섬유는 50g인 것을 포함할 수 있다.More specifically, in step (8), 100 g of epoxy, 4,4'-diaminodiphenylmethane as a curing agent, 34 g to 36 g in equivalent ratio to the epoxy resin, GO-GNF 0.3 g to 1.0 g, and carbon in step (10) Fibers may include those that are 50 g.

본 발명의 일 측면에 따른 GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합소재는 에폭시 매트릭스에 GO-GNFs가 첨가되어 얻어진다.A carbon fiber reinforced epoxy composite material reinforced with GO-GNFs according to an aspect of the present invention is obtained by adding GO-GNFs to an epoxy matrix.

본 발명의 제조과정을 상세히 살펴보면, (1) 오존발생기(Ozonizer, Ozone Tech Co. Lab II, Korea)를 오존가스 유량 0.1에서 0.8 l/min 속도와 압력 0.01에서 0.08 MPa 조건에서 1에서 10시간 동안 흑연나노섬유를 개질하였다. Looking at the manufacturing process of the present invention in detail, (1) an ozone generator (Ozone Tech Co. Lab II, Korea) was used at an ozone gas flow rate of 0.1 to 0.8 l/min and a pressure of 0.01 to 0.08 MPa for 1 to 10 hours. Graphite nanofibers were modified.

(2) 상기 (1) 단계에서 오존처리 이후, 표면개질로 사용되는 100mL에서 500mL의 SOCl2 (Thionyl chloride)용액을 사용하여 10℃에서 50℃의 온도범위에서 가열 유지시키고 1시간에서 4시간 동안 반응시켜 SN2 치환반응을 진행하는 것이 바람직하다. (2) After ozone treatment in step (1), 100 mL to 500 mL of SOCl 2 (Thionyl chloride) solution used for surface modification was heated and maintained in the temperature range of 10 ° C to 50 ° C for 1 hour to 4 hours. It is preferable to proceed with the S N 2 substitution reaction by reacting.

(3) 상기 (2) 단계에서 치환반응 이후, 가수분해 방지를 위해 100mL에서 500mL의 THF로 세척하고 60℃의 진공오븐에서 1시간에서 12시간 동안 건조하였다. 가수분해반응이 진행될 경우, 흑연나노섬유 표면에 산소함유 관능기 유지가 어려워 그래핀 산화물과 복합화를 진행할 수 없다.(3) After the substitution reaction in step (2), the mixture was washed with 100 mL to 500 mL of THF to prevent hydrolysis and dried in a vacuum oven at 60 °C for 1 to 12 hours. When the hydrolysis reaction proceeds, it is difficult to maintain the oxygen-containing functional groups on the surface of the graphite nanofibers, so it is impossible to proceed with the composite with graphene oxide.

(4) 상기 (3) 단계에서 THF 세척 및 건조 이후, 10℃에서 70℃의 온도범위에서 1시간에서 4시간 동안 흑연나노섬유와 그래핀 산화물을 반응시켜 복합화를 진행하였다. (4) After THF washing and drying in step (3), composite was performed by reacting graphite nanofibers with graphene oxide for 1 hour to 4 hours at a temperature range of 10 ° C to 70 ° C.

(5) 상기 (4) 단계에서 그래핀 산화물/흑연나노섬유 복합체를 에탄올 100mL에서 500mL와 증류수 100mL에서 500mL를 사용하여 세척하고 60℃의 진공오븐에서 1시간에서 12시간 동안 건조하여 그래핀 산화물/흑연나노섬유 복합체를 수득하였다. (5) In step (4), the graphene oxide/graphite nanofiber composite was washed with 500 mL of 100 mL of ethanol and 500 mL of 100 mL of distilled water, and dried in a vacuum oven at 60 ° C for 1 to 12 hours to graphene oxide / A graphite nanofiber composite was obtained.

상기 (5) 단계의 세척 및 건조 프로세스의 경우, 그래핀 산화물/흑연나노섬유 복합체로 형성이 안된 잔류하는 그래핀 산화물 및 흑연나노섬유 제거가 필수적이다. In the case of the washing and drying process of step (5), it is essential to remove remaining graphene oxide and graphite nanofibers that have not been formed into a graphene oxide/graphite nanofiber composite.

(6) 상기 (5) 단계에서 그래핀 산화물/흑연나노섬유 복합체를 유기용매를 이용하여 에폭시 수지와 혼합하였다. 이 과정을 살펴보면, 아세톤(C3H6O) 50mL에서 200mL에 에폭시 수지 대비 0.3g에서 1.0g GO-GNFs를 첨가한 뒤, 10℃에서 50℃의 온도범위에서 1시간에서 2시간 동안 초음파 처리를 진행한다. 상기 반응이 끝난 GO-GNFs 혼합물에 에폭시 수지를 넣은 뒤 30℃에서 65℃의 범위에서 가열하여 유지시키고 1시간에서 4시간 동안 교반한다.(6) In step (5), the graphene oxide/graphite nanofiber composite was mixed with an epoxy resin using an organic solvent. Looking at this process, 0.3 g to 1.0 g of GO-GNFs compared to epoxy resin was added to 50 mL to 200 mL of acetone (C 3 H 6 O), followed by sonication for 1 to 2 hours at a temperature range of 10 ° C to 50 ° C. proceed with After adding an epoxy resin to the GO-GNFs mixture after the reaction, it was maintained by heating in the range of 30 ° C to 65 ° C and stirred for 1 hour to 4 hours.

상기 (6) 단계에서 제조된 에폭시 혼합물을 사용하여 (7) 단계의 안정화 하는 단계를 진행하였다. 제조된 에폭시 혼합물은 유기용매를 100℃에서 150℃의 온도범위에서 4시간에서 10시간 동안 제거하는 것이 바람직하다. 유기용매가 잔류할 경우, 경화반응에서 기포가 형성되기 때문에 필수적으로 제거 해야한다. 이 기포는 계면 특성 및 기계적 특성을 저하시킨다.The stabilization step of step (7) was performed using the epoxy mixture prepared in step (6). It is preferable to remove the organic solvent from the prepared epoxy mixture at a temperature range of 100 ° C to 150 ° C for 4 to 10 hours. If the organic solvent remains, it must be removed because bubbles are formed in the curing reaction. These bubbles deteriorate the interface properties and mechanical properties.

(8) 상기 (7) 단계에서 유기용매가 제거된 에폭시 혼합물에 경화제를 첨가하여 혼합하는 단계를 진행하였다. 이 과정에서 경화제로서 4,4’-diaminodiphenylmethane를 에폭시 수지에 대한 당량비 첨가하여 20℃에서 70℃ 온도 범위에서 1에서 5시간 동안 반응시킨다. 에폭시 수지의 경화반응에서 경화제를 에폭시 수지 2관능성 당량비에 맞게 첨가해야 한다. 보다 구체적으로는, 에폭시 수지 100중량% 대비 경화제를 34중량% 내지 36중량% 첨가한다. 경화제를 당량비 초과하여 첨가할 경우, 가교 밀도가 높아져 취성 특성으로 인해 기계적 특성이 저하된다. 경화제를 당량비 미만으로 첨가할 경우, 3차원 망목구조 형성이 제한적이며, 가교밀도가 낮아 기계적 특성이 저하된다.(8) A step of mixing by adding a curing agent to the epoxy mixture from which the organic solvent was removed in step (7) was performed. In this process, 4,4'-diaminodiphenylmethane as a curing agent is added in an equivalent ratio to the epoxy resin and reacted at a temperature range of 20 ℃ to 70 ℃ for 1 to 5 hours. In the curing reaction of the epoxy resin, the curing agent should be added according to the equivalent ratio of difunctionality of the epoxy resin. More specifically, 34% to 36% by weight of the curing agent based on 100% by weight of the epoxy resin is added. When the curing agent is added in excess of the equivalent ratio, the crosslinking density is increased and the mechanical properties are deteriorated due to brittleness. When the curing agent is added in an equivalent ratio, the formation of a three-dimensional network structure is limited, and the mechanical properties are deteriorated due to the low crosslinking density.

(9) 상기 (8) 단계에서 경화반응 중인 에폭시 혼합물을 진공 오븐에서 안정화하는 단계는 에폭시 수지에 경화제가 첨가되어 화학적 반응으로 인해 기포가 생기는 문제로 진공 오븐에서 감암 하에 10℃에서 60℃ 온도 범위에서 1시간에서 3시간 동안 기포를 제거하는 것이 바람직하다. 앞서 설명한 바와 같이 경화과정에서 발생한 기포는 최종적으로 제조된 에폭시 복합재료 내에 기공 (Void)을 형성하여 계면, 열전도도 및 기계적 강도를 저하시킬 수 있다.(9) The step of stabilizing the epoxy mixture during the curing reaction in the vacuum oven in step (8) is a problem in which a curing agent is added to the epoxy resin and bubbles are generated due to a chemical reaction, and the temperature range is 10 ° C to 60 ° C under vacuum in a vacuum oven. It is preferable to remove air bubbles from 1 hour to 3 hours. As described above, bubbles generated during the curing process may form pores (voids) in the finally prepared epoxy composite material, thereby reducing the interface, thermal conductivity, and mechanical strength.

(10) 상기 (9) 단계에서 안정화가 끝난 에폭시 혼합물을 핫 프레스를 사용하여 1단계는 60℃에서 90℃ 온도 범위에서 1시간에서 2시간 (안정화단계), 2단계는 90℃에서 125℃ 온도 범위에서 1에서 2시간 (가경화단계), 3단계는 140℃에서 170℃ 온도 범위에서 1시간에서 2시간 (경화단계)으로 총 3단계로 3시간에서 6시간 경화시켜 GO-GNFs로 강화된 에폭시 복합소재를 제조하였다. (10) 단계에서 3가지 경화과정을 안 할 경우, 기공을 형성하여 계면 특성 및 기계적 강도를 저하가 일어날 수 있으며, 또한, 경화온도가 110℃ 미만일 경우에는 완전히 경화되지 않으며, 170℃ 이상일 경우에는 에폭시 수지가 일부 분해되어 물성저하를 초래한다. (10) Using a hot press, the epoxy mixture stabilized in step (9) is heated for 1 hour to 2 hours (stabilization step) in the temperature range of 60 ° C to 90 ° C in the first step, and 90 ° C to 125 ° C in the second step. In the range of 1 to 2 hours (temporary curing step), the third step is 1 hour to 2 hours (curing step) in the temperature range of 140 ° C to 170 ° C. Epoxy composites were prepared. If the three curing processes are not performed in step (10), pores may be formed and interface properties and mechanical strength may be deteriorated. In addition, if the curing temperature is less than 110 ° C, it is not completely cured, and if the curing temperature is higher than 170 ° C, Part of the epoxy resin is decomposed, resulting in deterioration of physical properties.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예 1.Example 1.

오존발생기(Ozonizer, Ozone Tech Co. Lab II, Korea)를 이용하여 오존가스 유량 0.1에서 0.8 l/min 속도와 압력 0.01에서 0.08 MPa 조건에서 1에서 10시간 동안 흑연나노섬유를 개질하였다. 오존처리 이후, 표면개질에 사용되는 100mL에서 500mL의 SOCl2(Thionyl chloride) 용액을 사용하여 10℃에서 50℃의 온도범위에서 가열 유지시키고, 1시간에서 4시간 동안 반응시켜 SN2 치환반응을 진행하였다. 치환반응 이후, 가수분해 방지를 위해 100mL에서 500mL의 THF로 세척하고 60℃의 진공오븐에서 1시간에서 12시간 동안 건조하였다. 그 다음 10℃에서 70℃의 온도범위에서 1시간에서 4시간 동안 흑연나노섬유와 그래핀 산화물을 반응시켜 복합화를 진행하였다. 이후 에탄올 100mL에서 500mL와 증류수 100mL에서 500mL를 사용하여 세척하고 60℃의 진공오븐에서 1시간에서 12시간 동안 건조하여 그래핀 산화물/흑연나노섬유 복합체를 제조하였다.Using an ozone generator (Ozone Tech Co. Lab II, Korea), the graphite nanofibers were modified for 1 to 10 hours at an ozone gas flow rate of 0.1 to 0.8 l/min and a pressure of 0.01 to 0.08 MPa. After ozone treatment, 100 mL to 500 mL of SOCl 2 (Thionyl chloride) solution used for surface modification is heated and maintained in the temperature range of 10 ° C to 50 ° C, and reacted for 1 hour to 4 hours to perform the SN 2 substitution reaction. proceeded. After the substitution reaction, to prevent hydrolysis, the mixture was washed with 100 mL to 500 mL of THF and dried in a vacuum oven at 60 °C for 1 hour to 12 hours. Then, composite was performed by reacting graphite nanofibers and graphene oxide for 1 hour to 4 hours at a temperature range of 10 ° C to 70 ° C. Thereafter, it was washed using 500 mL of 100 mL of ethanol and 500 mL of 100 mL of distilled water, and dried in a vacuum oven at 60 ° C for 1 hour to 12 hours to prepare a graphene oxide / graphite nanofiber composite.

그 다음 유기용매로서 아세톤(C3H6O) 50mL에서 200mL에 에폭시 수지 100중량% 대비 0.3중량%의 그래핀 산화물/흑연나노섬유 복합체를 첨가한 뒤, 10℃에서 50℃의 온도범위에서 1시간에서 2시간 동안 초음파 처리를 진행한다. 상기 반응이 끝난 그래핀 산화물/흑연나노섬유 혼합물에 에폭시 수지 100g을 넣은 뒤 30℃에서 65℃의 범위에서 가열하여 유지시키고 1시간에서 4시간 동안 교반한다. 그다음 유기용매를 제거하기 위해 100℃에서 150℃의 온도범위에서 4시간에서 10시간 동안 제거하였다. 그다음, 그래핀 산화물/흑연나노섬유 복합체와 에폭시 수지 혼합물에 경화제로서 DDM(4,4’-diaminodiphenylmethane)를 2관능성 에폭시 수지에 대한 당량비로서 에폭시 수지 100중량% 대비 34중량%에서 36중량%를 첨가하여 20℃에서 70℃ 온도 범위에서 1시간에서 5시간 동안 반응시켰다. 이후, 진공 오븐에서 감압 하에 10℃에서 60℃ 온도 범위에서 1시간에서 3시간 동안 기포를 제거하였다. 그 다음, 핫 프레스에서 경화과정을 진행하는데 1단계는 60℃에서 90℃ 온도 범위에서 1시간에서 2시간, 2단계는 90℃에서 125℃ 온도 범위에서 1시간에서 2시간, 3단계는 140℃에서 170℃ 온도 범위에서 1시간에서 2시간으로 총 3단계로 3시간에서 6시간 경화시켜 그래핀 산화물/흑연나노섬유 복합체로 강화된 에폭시 복합소재를 제조하였다.Then, as an organic solvent, acetone (C 3 H 6 O) was added to 50 mL to 200 mL of 0.3% by weight of graphene oxide / graphite nanofiber composite relative to 100% by weight of epoxy resin, and then 1 Sonication was carried out for 2 h. After adding 100 g of epoxy resin to the graphene oxide/graphite nanofiber mixture after the reaction, the mixture was heated and maintained in the range of 30° C. to 65° C. and stirred for 1 hour to 4 hours. Then, it was removed for 4 hours to 10 hours at a temperature range of 100 ℃ to 150 ℃ to remove the organic solvent. Then, DDM (4,4'-diaminodiphenylmethane) as a curing agent in the graphene oxide/graphite nanofiber composite and the epoxy resin mixture was added at an equivalent ratio of 34 to 36% by weight relative to 100% by weight of the epoxy resin as an equivalent ratio to the bifunctional epoxy resin. It was added and reacted for 1 hour to 5 hours at a temperature range of 20 ° C to 70 ° C. Thereafter, air bubbles were removed in a vacuum oven at a temperature range of 10° C. to 60° C. for 1 hour to 3 hours under reduced pressure. Then, a hardening process is performed in a hot press. The first step is 1 to 2 hours in the temperature range of 60 ° C to 90 ° C, the second step is 1 to 2 hours in the temperature range of 90 ° C to 125 ° C, and the third step is 140 ° C In the temperature range of 170 ° C., the epoxy composite material reinforced with the graphene oxide / graphite nanofiber composite was prepared by curing for 3 hours to 6 hours in a total of 3 steps from 1 hour to 2 hours.

실시예 2.Example 2.

상기 실시예 1과 동일하게 과정을 실시하되, GO-GNFs의 함량을 0.5중량%로 하여 GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.A carbon fiber reinforced epoxy composite material reinforced with GO-GNFs was prepared by performing the same process as in Example 1, but with the content of GO-GNFs being 0.5% by weight.

실시예 3.Example 3.

상기 실시예 1과 동일하게 과정을 실시하되, GO-GNFs의 함량을 0.8중량%로 하여 GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.A carbon fiber-reinforced epoxy composite material reinforced with GO-GNFs was prepared by performing the same process as in Example 1, but with the content of GO-GNFs being 0.8% by weight.

실시예 4.Example 4.

상기 실시예 1과 동일하게 과정을 실시하되, GO-GNFs의 함량을 1.0중량%로 하여 GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.A carbon fiber-reinforced epoxy composite material reinforced with GO-GNFs was prepared by performing the same process as in Example 1, but with the content of GO-GNFs being 1.0% by weight.

비교예 1.Comparative Example 1.

흑연나노섬유(GNFs)를 유기용매를 이용하여 에폭시 수지와 혼합하였다. 구체적으로는, 유기용매로서 아세톤(C3H6O) 50 mL에서 200 mL에 에폭시 수지 100중량% 대비 0.3중량%의 GFs를 넣은 뒤, 10℃에서 50℃의 온도범위에서 1시간에서 2시간 동안 초음파 처리를 하였다. 반응이 끝난 GNFs 혼합물에 에폭시 수지 100g을 넣은 뒤 30에서 65℃의 온도범위에서 가열하여 유지시키고 1시간에서 4시간 동안 교반한다. 그 다음, 유기용매를 100℃에서 150℃의 온도범위에서 4시간에서 10시간 동안 제거하였다. 그다음, 잔류하는 GNFs와 에폭시 수지에 경화제로서 DDM(4,4’-diaminodiphenylmethane)를 에폭시 수지에 대한 당량비로서 에폭시 수지 100중량% 대비 34중량%에서 36중량%를 첨가하여 20℃에서 70℃ 온도 범위에서 1시간에서 5시간 동안 반응시켰다. 이후, 진공 오븐에서 감압 하에 45℃에서 65℃ 온도 범위에서 1시간에서 3시간 동안 기포를 제거하였다. 그다음 금형에 탄소섬유를 수작업으로 함침 후, 핫 프레스에서 1단계는 60℃에서 90℃ 온도 범위에서 1시간에서 2시간, 2단계는 90℃에서 125℃ 온도 범위에서 1시간에서 2시간, 3단계는 140℃에서 170℃ 온도 범위에서 1시간에서 2시간으로 총 3단계로 3시간에서 6시간 경화시켜 GNFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.Graphite nanofibers (GNFs) were mixed with an epoxy resin using an organic solvent. Specifically, after adding 0.3% by weight of GFs relative to 100% by weight of epoxy resin in 50 mL to 200 mL of acetone (C 3 H 6 O) as an organic solvent, 1 to 2 hours at a temperature range of 10 ° C to 50 ° C during sonication. After adding 100 g of epoxy resin to the GNFs mixture after the reaction, it was heated and maintained at a temperature range of 30 to 65 ° C and stirred for 1 hour to 4 hours. Then, the organic solvent was removed for 4 hours to 10 hours at a temperature range of 100 ℃ to 150 ℃. Then, DDM (4,4'-diaminodiphenylmethane) as a curing agent to the remaining GNFs and epoxy resin was added in an equivalent ratio of 34% to 36% by weight relative to 100% by weight of the epoxy resin, and the temperature range was 20 ° C to 70 ° C. reacted for 1 hour to 5 hours. Thereafter, air bubbles were removed in a vacuum oven at a temperature range of 45° C. to 65° C. for 1 hour to 3 hours under reduced pressure. Then, after manually impregnating the mold with carbon fiber, the first step in the hot press is 1 hour to 2 hours in the temperature range of 60 ° C to 90 ° C, and the second step is 1 hour to 2 hours in the temperature range of 90 ° C to 125 ° C. prepared a carbon fiber-reinforced epoxy composite material reinforced with GNFs by curing for 3 to 6 hours in a total of three steps, from 1 hour to 2 hours at a temperature range of 140 ° C to 170 ° C.

비교예 2.Comparative Example 2.

상기 비교예 1과 동일하게 과정을 실시하되, GNFs의 함량을 0.5중량%로 하여 GNFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.A carbon fiber-reinforced epoxy composite material reinforced with GNFs was prepared by performing the same process as in Comparative Example 1, but using a GNFs content of 0.5% by weight.

비교예 3.Comparative Example 3.

상기 비교예 1과 동일하게 과정을 실시하되, GNFs의 함량을 0.8중량%로 하여 GNFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.The process was carried out in the same manner as in Comparative Example 1, but the content of GNFs was 0.8% by weight to prepare a carbon fiber reinforced epoxy composite material reinforced with GNFs.

비교예 4.Comparative Example 4.

상기 비교예 1과 동일하게 과정을 실시하되, GNFs의 함량을 1.0중량%로 하여 GNFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.The process was carried out in the same manner as in Comparative Example 1, but the content of GNFs was 1.0% by weight to prepare a carbon fiber reinforced epoxy composite material reinforced with GNFs.

비교예 5.Comparative Example 5.

오존발생기(Ozonizer, Ozone Tech Co. Lab II, Korea)를 이용하여 오존가스 유량 0.1에서 0.8 l/min 속도와 압력 0.01에서 0.08 MPa 조건에서 1에서 10시간 동안 흑연나노섬유를 개질하였다. 그 다음 유기용매로서 아세톤 (C3H6O) 50mL에서 200mL에 에폭시 수지 100중량% 대비 0.3중량%의 오존처리된 흑연나노섬유(Ozone-treated Graphene Nano Fibers; OGNFs)를 첨가한 뒤, 10℃에서 50℃의 온도범위에서 1시간에서 2시간 동안 초음파 처리를 진행한다. 상기 반응이 끝난 OGNFs 혼합물에 에폭시 수지 100g을 넣은 뒤 30℃에서 65℃의 범위에서 가열하여 유지시키고 1시간에서 4시간 동안 교반한다. 그 다음 유기용매를 제거하기 위해 100℃에서 150℃의 온도범위에서 4시간에서 10시간 동안 제거하였다. 그다음, 잔류하는 OGNFs와 에폭시 수지 혼합물에 경화제로서 DDM(4,4’-diaminodiphenylmethane)를 2관능성 에폭시 수지에 대한 당량비로서 에폭시 수지 100중량% 대비 34중량%에서 36중량%를 첨가하여 20℃에서 70℃ 온도 범위에서 1시간에서 5시간 동안 반응시켰다. 이후, 진공 오븐에서 감압 하에 10℃에서 60℃ 온도 범위에서 1시간에서 3시간 동안 기포를 제거하였다. 그다음, 핫 프레스에서 경화과정을 진행하는데 1단계는 60℃에서 90℃ 온도 범위에서 1시간에서 2시간, 2단계는 90℃에서 125℃ 온도 범위에서 1시간에서 2시간, 3단계는 140℃에서 170℃ 온도 범위에서 1시간에서 2시간으로 총 3단계로 3시간에서 6시간 경화시켜 OGNFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.Using an ozone generator (Ozone Tech Co. Lab II, Korea), the graphite nanofibers were modified for 1 to 10 hours at an ozone gas flow rate of 0.1 to 0.8 l/min and a pressure of 0.01 to 0.08 MPa. Then, 0.3% by weight of ozone-treated Graphene Nano Fibers (OGNFs) was added to 50mL to 200mL of acetone (C 3 H 6 O) as an organic solvent, compared to 100% by weight of epoxy resin, and then heated at 10 ° C. ultrasonic treatment for 1 to 2 hours in the temperature range of 50 ° C. After adding 100 g of epoxy resin to the OGNFs mixture after the reaction, the mixture was heated and maintained in the range of 30 ° C to 65 ° C and stirred for 1 hour to 4 hours. Then, in order to remove the organic solvent, it was removed for 4 to 10 hours at a temperature range of 100 ° C to 150 ° C. Then, DDM (4,4'-diaminodiphenylmethane) as a curing agent to the remaining OGNFs and epoxy resin mixture was added in an equivalent ratio of 34 to 36% by weight relative to 100% by weight of the epoxy resin as an equivalent ratio to the bifunctional epoxy resin at 20 ° C. It was reacted for 1 hour to 5 hours in the temperature range of 70 ℃. Thereafter, air bubbles were removed in a vacuum oven at a temperature range of 10° C. to 60° C. for 1 hour to 3 hours under reduced pressure. Then, a hardening process is performed in a hot press. The first step is 1 hour to 2 hours in the temperature range of 60 ° C to 90 ° C, the second step is 1 hour to 2 hours in the temperature range of 90 ° C to 125 ° C, and the third step is 140 ° C. A carbon fiber-reinforced epoxy composite material reinforced with OGNFs was prepared by curing for 3 to 6 hours in a total of three steps, from 1 hour to 2 hours at a temperature of 170 ° C.

비교예 6.Comparative Example 6.

상기 비교예 5과 동일하게 과정을 실시하되, OGNFs의 함량을 0.5중량%로 하여 OGNFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.The process was carried out in the same manner as in Comparative Example 5, but the content of OGNFs was 0.5% by weight to prepare a carbon fiber reinforced epoxy composite material reinforced with OGNFs.

비교예 7.Comparative Example 7.

상기 비교예 5과 동일하게 과정을 실시하되, OGNFs의 함량을 0.8중량%로 하여 OGNFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.The process was carried out in the same manner as in Comparative Example 5, but the content of OGNFs was 0.8% by weight to prepare a carbon fiber reinforced epoxy composite material reinforced with OGNFs.

비교예 8.Comparative Example 8.

상기 비교예 5과 동일하게 과정을 실시하되, OGNFs의 함량을 1.0중량%로 하여 OGNFs로 강화된 탄소섬유 강화 에폭시 복합소재를 제조하였다.The process was carried out in the same manner as in Comparative Example 5, but the content of OGNFs was 1.0% by weight to prepare a carbon fiber reinforced epoxy composite material reinforced with OGNFs.

측정예 1. 본 발명에서 제조한 GO-GNFs, GNFs 및 OGNFs로 강화된 탄소섬유 강화 에폭시 복합소재 표면자유에너지 시험Measurement Example 1. Surface free energy test of carbon fiber reinforced epoxy composite material reinforced with GO-GNFs, GNFs and OGNFs prepared in the present invention

표면 자유 에너지는 Rame-Hart 고니 오 미터 (Phoenix 300 Plus, SEO Co.)를 사용하여 3가지 표준 습윤액 (증류수, 디요오도 메탄, 에틸렌 글리콜)에 대한 GO-GNFs, GNFs 및 OGNFs로 강화된 탄소 섬유 강화 에폭시 복합소재의 접촉각을 측정하여 시험하였다. Surface free energies were measured using a Rame-Hart goniometer (Phoenix 300 Plus, SEO Co.) enriched with GO-GNFs, GNFs and OGNFs for three standard wetting solutions (distilled water, diiodomethane, ethylene glycol). The contact angle of the carbon fiber reinforced epoxy composite was measured and tested.

측정예 2. 본 발명에서 제조한 GO-GNFs, GNFs 및 OGNFs로 강화된 탄소섬유 강화 에폭시 복합소재 ILSS 시험Measurement Example 2. ILSS test of carbon fiber reinforced epoxy composite material reinforced with GO-GNFs, GNFs and OGNFs prepared in the present invention

ILSS 시험은 만능재료시험기(Lloyd LR5k)를 사용하여 GO-GNFs, GNFs 및 OGNFs로 강화된 탄소섬유 강화 에폭시 복합소재를 ASTM D-2344에 따라 시편을 제조한 후 short-beam 3포인트 굽힘시험 방법으로 측정하였다. In the ILSS test, carbon fiber reinforced epoxy composite materials reinforced with GO-GNFs, GNFs, and OGNFs were prepared according to ASTM D-2344 using a universal testing machine (Lloyd LR5k), and then tested using a short-beam 3-point bending test method. measured.

측정예 3. 본 발명에서 제조한 GO-GNFs, GNFs 및 OGNFs로 강화된 탄소섬유 강화 에폭시 복합소재 파괴인성 시험Measurement Example 3. Fracture toughness test of carbon fiber reinforced epoxy composites reinforced with GO-GNFs, GNFs and OGNFs prepared in the present invention

파괴인성 시험은 만능재료시험기(Lloyd LR5k)를 사용하여 GO-GNFs, GNFs 및 OGNFs로 강화된 탄소섬유 강화 에폭시 복합소재를 ASTM E399에 따라 시편을 제조한 후 3포인트 굽힘시험 방법으로 측정하였다.For the fracture toughness test, specimens were prepared according to ASTM E399 for carbon fiber reinforced epoxy composite materials reinforced with GO-GNFs, GNFs, and OGNFs using a universal testing machine (Lloyd LR5k), and then measured by a 3-point bending test method.

측정예 4. 본 발명에서 제조한 GO-GNFs, GNFs 및 OGNFs로 강화된 탄소섬유 강화 에폭시 복합소재 파괴인성 시험 후 파단면 관찰Measurement Example 4. Observation of fracture surface after fracture toughness test of carbon fiber reinforced epoxy composite material reinforced with GO-GNFs, GNFs and OGNFs prepared in the present invention

본 발명에서 scanning electron microscopy (SEM, SU 8010, Hitachi, Ltd., Japan)을 사용하여 제조된 GO-GNFs, GNFs 및 OGNFs로 강화된 탄소섬유 강화 에폭시 복합소재의 구조를 변화시켰는지 관찰하였다.In the present invention, scanning electron microscopy (SEM, SU 8010, Hitachi, Ltd., Japan) was used to observe whether the structure of carbon fiber reinforced epoxy composites reinforced with GO-GNFs, GNFs, and OGNFs was changed.

본 발명에 따른 GO-GNFs, GNFs 및 OGNFs로 강화된 탄소섬유 강화 에폭시 복합소재의 제조조건을 아래 표 1에 나타내고, 제조된 복합재료의 표면에너지, ILSS, 파괴인성 및 향상정도, 수치값을 표 2에 나타낸다. The manufacturing conditions of the carbon fiber reinforced epoxy composite material reinforced with GO-GNFs, GNFs and OGNFs according to the present invention are shown in Table 1 below, and the surface energy, ILSS, fracture toughness and improvement degree, and numerical values of the manufactured composite material are shown in Table 1 below. shown in 2.

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.In the above, specific parts of the present invention have been described in detail, for those skilled in the art, it is clear that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (11)

(1) 건식 오존 발생기를 사용하여 흑연나노섬유(Graphitic Nanofibers; GNFs)를 오존처리하는 단계;
(2) 상기 (1) 단계에서 오존처리된 흑연나노섬유를 SOCl2(Thionyl chloride) 용액을 사용하여 SN2 치환반응을 통해 표면 개질하는 단계;
(3) 상기 (2) 단계에서 표면 개질된 흑연나노섬유의 가수분해 방지를 위해 THF(Tetrahydrofuran)으로 세척하는 단계;
(4) 상기 (3) 단계에서 제조된 흑연나노섬유를 그래핀 산화물(Graphene Oxide; GO)과 복합화하는 단계;
(5) 상기 (4) 단계에서 제조된 그래핀산화물/흑연나노섬유 복합체(GO-GNF) 이외 잔류하는 흑연나노섬유 또는 그래핀 산화물 잔여물을 제거하고 에탄올과 증류수로 세척 및 건조하는 단계;
(6) 상기 (5) 단계에서 제조된 그래핀산화물/흑연나노섬유 복합체를 유기용매로서 acetone을 이용하여 에폭시 수지와 혼합하는 단계;
(7) 상기 (6) 단계에서 제조된 그래핀산화물/흑연나노섬유 복합체 및 에폭시 수지의 혼합물을 안정화하는 단계;
(8) 상기 (7) 단계에서 제조된 에폭시 수지 혼합물에 경화제로서 DDM(4,4‘-diaminodiphenylmethane)를 첨가하여 경화반응 진행하는 단계;
(9) 상기 (8) 단계에서 제조된 혼합물을 진공오븐에서 안정화하는 단계;
(10) 상기 (9) 단계에서 제조된 그래핀산화물/흑연나노섬유 복합체, 에폭시 수지 및 경화제의 혼합물을 탄소섬유와 함침하여 핫프레스를 통해 경화하는 단계; 를 포함하는, GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합재료의 제조방법.
(1) ozonating graphite nanofibers (GNFs) using a dry ozone generator;
(2) surface-modifying the ozone-treated graphite nanofibers in step (1) through a S N 2 substitution reaction using SOCl 2 (Thionyl chloride) solution;
(3) washing with THF (Tetrahydrofuran) to prevent hydrolysis of the graphite nanofibers surface-modified in step (2);
(4) combining the graphite nanofibers prepared in step (3) with graphene oxide (GO);
(5) removing remaining graphite nanofibers or graphene oxide residues other than the graphene oxide/graphite nanofiber composite (GO-GNF) prepared in step (4), washing with ethanol and distilled water, and drying;
(6) mixing the graphene oxide/graphite nanofiber composite prepared in step (5) with an epoxy resin using acetone as an organic solvent;
(7) stabilizing the mixture of the graphene oxide/graphite nanofiber composite prepared in step (6) and the epoxy resin;
(8) performing a curing reaction by adding DDM (4,4'-diaminodiphenylmethane) as a curing agent to the epoxy resin mixture prepared in step (7);
(9) stabilizing the mixture prepared in step (8) in a vacuum oven;
(10) impregnating the mixture of the graphene oxide/graphite nanofiber composite prepared in step (9), an epoxy resin, and a curing agent with carbon fibers and hardening through hot pressing; Method for producing a carbon fiber reinforced epoxy composite material reinforced with GO-GNFs comprising a.
제 1 항에 있어서,
상기 (1) 단계에서, 건식 오존발생기를 사용하여 오존가스 유량을 0.1 l/min에서 0.8 l/min, 그리고 압력을 0.01 MPa에서 0.08 MPa 조건에서 1시간에서 10시간 동안 흑연나노섬유를 오존처리하는, GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합재료의 제조방법.
According to claim 1,
In step (1), using a dry ozone generator, ozonating the graphite nanofibers for 1 hour to 10 hours under the conditions of an ozone gas flow rate of 0.1 l/min to 0.8 l/min and a pressure of 0.01 MPa to 0.08 MPa , Manufacturing Method of Carbon Fiber Reinforced Epoxy Composites Reinforced with GO-GNFs.
제 1 항에 있어서,
상기 (2) 단계에서, 오존처리된 흑연나노섬유에 100mL에서 500mL의 SOCl2를 첨가하여 10℃에서 50℃의 온도범위에서 가열 유지시키고 1시간에서 4시간 동안 반응시켜 SN2 치환반응을 유도하는, GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합재료의 제조방법.
According to claim 1,
In step (2), 100 mL to 500 mL of SOCl 2 was added to the ozonated graphite nanofibers, heated and maintained at a temperature range of 10 ° C to 50 ° C, and reacted for 1 hour to 4 hours to induce a SN 2 substitution reaction. Method for manufacturing a carbon fiber reinforced epoxy composite material reinforced with GO-GNFs.
제 1 항에 있어서,
상기 (3) 단계에서, 100mL에서 500mL의 THF로 세척하고 10℃에서 60℃의 진공오븐에서 1시간에서 12시간 동안 건조시키는, GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합재료의 제조방법.
According to claim 1,
In step (3), washing with 100 mL to 500 mL of THF and drying in a vacuum oven at 10 ° C to 60 ° C for 1 hour to 12 hours, Method for producing a carbon fiber reinforced epoxy composite material reinforced with GO-GNFs.
제 1 항에 있어서,
상기 (4) 단계에서, 표면 개질된 흑연나노섬유와 그래핀산화물을 10℃에서 70℃의 온도범위에서 1시간에서 4시간 동안 반응시키는, GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합재료의 제조방법.
According to claim 1,
In step (4), the surface-modified graphite nanofibers and graphene oxide are reacted at a temperature range of 10 ° C to 70 ° C for 1 hour to 4 hours, manufacturing a carbon fiber reinforced epoxy composite material reinforced with GO-GNFs. method.
제 1 항에 있어서,
상기 (5) 단계에서, 그래핀산화물/흑연나노섬유 복합체에 에탄올 100mL에서 500mL와 증류수 100mL에서 500mL를 사용하여 1시간에서 4시간 동안 세척하고 10℃에서 60℃ 온도 범위로 진공오븐에서 1시간에서 12시간 동안 건조하는, GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합재료의 제조방법.
According to claim 1,
In step (5), the graphene oxide/graphite nanofiber composite was washed with 100 mL to 500 mL of ethanol and 100 mL to 500 mL of distilled water for 1 hour to 4 hours, and then washed in a vacuum oven at a temperature range of 10 ° C to 60 ° C for 1 hour to 500 mL. Drying for 12 hours, manufacturing method of carbon fiber reinforced epoxy composite material reinforced with GO-GNFs.
제 1 항에 있어서,
상기 (6) 단계에서, 아세톤(C3H6O) 50mL에서 200mL에 에폭시 수지 100중량% 대비 0.3중량%에서 1.0중량%의 그래핀산화물/흑연나노섬유 복합체를 첨가한 다음, 10℃에서 40℃ 온도 범위로 1시간에서 2시간 동안 초음파 처리를 진행하여 상기 반응이 끝난 혼합물에 에폭시 수지를 넣은 뒤 30℃에서 65℃의 온도 범위로 가열하여 유지 시키고 이후 1시간에서 4시간 동안 교반하는, GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합재료의 제조방법.
According to claim 1,
In step (6), 0.3% to 1.0% by weight of the graphene oxide/graphite nanofiber composite was added to 50mL to 200mL of acetone (C 3 H 6 O) relative to 100% by weight of the epoxy resin, and then 40 °C at 10 °C. After ultrasonic treatment is carried out for 1 hour to 2 hours at a temperature range of ℃, the epoxy resin is added to the reaction mixture, and then heated and maintained at a temperature range of 30 ℃ to 65 ℃, followed by stirring for 1 hour to 4 hours, GO - Manufacturing method of carbon fiber reinforced epoxy composite material reinforced with GNFs.
제 1 항에 있어서,
상기 (7) 단계에서, 그래핀산화물/흑연나노섬유 복합체와 에폭시 수지에 있는 유기용매인 아세톤을 100℃에서 150℃ 온도 범위로 4시간에서 10시간 동안 제거하여 안정화하는, GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합재료의 제조방법.
According to claim 1,
In step (7), the graphene oxide/graphite nanofiber composite and the organic solvent acetone in the epoxy resin are removed for 4 to 10 hours in the temperature range of 100 ° C to 150 ° C for 4 hours to 10 hours to stabilize, reinforced with GO-GNFs. Manufacturing method of carbon fiber reinforced epoxy composite material.
제 1 항에 있어서,
상기 (8) 단계에서, 안정화된 그래핀산화물/흑연나노섬유 복합체와 에폭시 수지의 혼합물에 경화제로서 DDM(4,4’-diaminodiphenylmethane)를 에폭시 수지에 대한 당량비로 첨가하여 20℃에서 70℃ 온도 범위로 1시간에서 5시간 동안 반응시키는, GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합재료의 제조방법.
According to claim 1,
In step (8), DDM (4,4'-diaminodiphenylmethane) as a curing agent is added in an equivalent ratio to the epoxy resin to the mixture of the stabilized graphene oxide/graphite nanofiber composite and the epoxy resin, and the temperature ranges from 20 ° C to 70 ° C. Method for producing a carbon fiber reinforced epoxy composite material reinforced with GO-GNFs, which is reacted for 1 hour to 5 hours with
제 1 항에 있어서,
상기 (9) 단계에서, 그래핀산화물/흑연나노섬유 복합체, 에폭시 수지 및 경화제의 혼합물을 진공오븐에서 감압 하에 10℃에서 60℃ 온도 범위로 1시간에서 3시간 동안 기포를 제거하여 안정화하는, GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합재료의 제조방법.
According to claim 1,
In step (9), the mixture of the graphene oxide/graphite nanofiber composite, the epoxy resin, and the curing agent is stabilized by removing bubbles in a vacuum oven at a temperature range of 10 ° C to 60 ° C for 1 hour to 3 hours under reduced pressure, GO. - Manufacturing method of carbon fiber reinforced epoxy composite material reinforced with GNFs.
제 1 항에 있어서,
상기 (10) 단계에서, 안정화된 그래핀산화물/흑연나노섬유 복합체, 에폭시 수지 및 경화제의 혼합물과 탄소섬유를 금형에 수작업으로 함침시킨 다음 핫 프레스에서 60℃에서 90℃ 온도 범위로 1시간에서 2시간 경화, 이어서 90℃에서 125℃ 온도 범위로 1시간에서 2시간 경화, 이어서 140℃에서 170℃ 온도 범위로 1시간에서 2시간 경화시키는, GO-GNFs로 강화된 탄소섬유 강화 에폭시 복합재료의 제조방법.
According to claim 1,
In the above step (10), the mixture of the stabilized graphene oxide/graphite nanofiber composite, epoxy resin and curing agent and carbon fibers are manually impregnated into the mold, and then hot press in the temperature range of 60 ° C to 90 ° C for 1 hour to 2 hours. Preparation of carbon fiber reinforced epoxy composites reinforced with GO-GNFs, curing time, followed by curing at a temperature range of 90 ° C to 125 ° C for 1 hour to 2 hours, followed by curing at a temperature range of 140 ° C to 170 ° C for 1 hour to 2 hours method.
KR1020210083572A 2021-06-28 2021-06-28 Carbon fibers-reinforced epoxy composites with graphene oxide/graphitic nanofibers composites and manufacturing method thereof KR102496995B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210083572A KR102496995B1 (en) 2021-06-28 2021-06-28 Carbon fibers-reinforced epoxy composites with graphene oxide/graphitic nanofibers composites and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210083572A KR102496995B1 (en) 2021-06-28 2021-06-28 Carbon fibers-reinforced epoxy composites with graphene oxide/graphitic nanofibers composites and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20230001090A true KR20230001090A (en) 2023-01-04
KR102496995B1 KR102496995B1 (en) 2023-02-09

Family

ID=84925295

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210083572A KR102496995B1 (en) 2021-06-28 2021-06-28 Carbon fibers-reinforced epoxy composites with graphene oxide/graphitic nanofibers composites and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102496995B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180045796A (en) * 2016-10-26 2018-05-04 주식회사 스탠다드그래핀 Carbon fiber prepreg or carbon fiber - reinforced plastic, and materials including the same
KR20200032536A (en) * 2018-09-18 2020-03-26 인하대학교 산학협력단 Manufacturing method of basalt fiber-reinforced epoxy composites with natural graphite flakes intrduced
KR20200086123A (en) * 2019-01-08 2020-07-16 인하대학교 산학협력단 Basalt fiber reinforced epoxy composites reinforced with ozone treated single-walled carbon nanotubes and method for manufacturing the same
KR102214478B1 (en) * 2019-09-09 2021-02-09 인하대학교 산학협력단 Carbon fiber-reinforced epoxy composites with ozone-treated carbon blacks and manufacturing method.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180045796A (en) * 2016-10-26 2018-05-04 주식회사 스탠다드그래핀 Carbon fiber prepreg or carbon fiber - reinforced plastic, and materials including the same
KR20200032536A (en) * 2018-09-18 2020-03-26 인하대학교 산학협력단 Manufacturing method of basalt fiber-reinforced epoxy composites with natural graphite flakes intrduced
KR20200086123A (en) * 2019-01-08 2020-07-16 인하대학교 산학협력단 Basalt fiber reinforced epoxy composites reinforced with ozone treated single-walled carbon nanotubes and method for manufacturing the same
KR102214478B1 (en) * 2019-09-09 2021-02-09 인하대학교 산학협력단 Carbon fiber-reinforced epoxy composites with ozone-treated carbon blacks and manufacturing method.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
비특허문헌 *

Also Published As

Publication number Publication date
KR102496995B1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
Qiu et al. High micromechanical interlocking graphene oxide/carboxymethyl cellulose composite architectures for enhancing the interface adhesion between carbon fiber and epoxy
Liu et al. A biomimetic approach to improve the dispersibility, interfacial interactions and toughening effects of carbon nanofibers in epoxy composites
KR102185383B1 (en) Basalt fiber reinforced epoxy composites reinforced with ozone treated single-walled carbon nanotubes and method for manufacturing the same
KR100895696B1 (en) A Method for Preparation of Silicone Rubber/Carbon Nanotube Composites with Electrical Insulating Properties
Chou et al. Preparation of CFRP with modified MWCNT to improve the mechanical properties and torsional fatigue of epoxy/polybenzoxazine copolymer
Zhou et al. Enhanced mechanical properties of epoxy nanocomposites based on graphite oxide with amine-rich surface
JP4951478B2 (en) Method for producing carbon nanotube-containing matrix resin
Pilawka et al. Epoxy composites with carbon nanotubes
KR20200032536A (en) Manufacturing method of basalt fiber-reinforced epoxy composites with natural graphite flakes intrduced
Jeong et al. Preparation, structure and properties of poly (p-phenylene benzobisoxazole) composite fibers reinforced with graphene
Yao et al. Improved interfacial properties of carbon fiber/epoxy composites through graphene oxide-assisted deposition of carbon nanotubes on carbon fiber surface
KR102214478B1 (en) Carbon fiber-reinforced epoxy composites with ozone-treated carbon blacks and manufacturing method.
Visco et al. Cure rate and mechanical properties of a DGEBF epoxy resin modified with carbon nanotubes
Yan et al. Effect of graphene oxide with different exfoliation levels on the mechanical properties of epoxy nanocomposites
KR101029734B1 (en) The method of preparing electroconductive polymer composite containing oxyfluorinated grahene
Awan et al. Study of interfacial properties of carbon fiber epoxy matrix composites containing graphene nanoplatelets
KR102496995B1 (en) Carbon fibers-reinforced epoxy composites with graphene oxide/graphitic nanofibers composites and manufacturing method thereof
Nosheen et al. Synthesis and characterization of polypyrrole and graphene/polypyrrole/epoxy composites
KR102008760B1 (en) Epoxy nanocomposite reinforced with graphene oxide decorated with nanodiamond nanocluster and method for manufacturing thereof
KR102404145B1 (en) Basalt fiber-reinforced epoxy composites with graphene oxide and method for manufacturing the same
KR20230106323A (en) Epoxy composite material reinforced with dry-ozoneized basalt fiber and its manufacturing method
KR102496991B1 (en) Carbon fiber-reinforced epoxy composites with ozone-treated graphitic nanofibers and manuacutring method thereof
KR20190087232A (en) Polyketone-hybrid carbon filler based composite with enhanced mechanical properties and thermal stability and process of preparing the same
KR102578206B1 (en) Epoxy-based composites with amino-functional graphitic nanofibers and menufacturing method thereof
Liu et al. Hyperbranched polyamide modified graphene oxide-reinforced polyurethane nanocomposites with enhanced mechanical properties

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right