JP4951478B2 - Method for producing carbon nanotube-containing matrix resin - Google Patents

Method for producing carbon nanotube-containing matrix resin Download PDF

Info

Publication number
JP4951478B2
JP4951478B2 JP2007312740A JP2007312740A JP4951478B2 JP 4951478 B2 JP4951478 B2 JP 4951478B2 JP 2007312740 A JP2007312740 A JP 2007312740A JP 2007312740 A JP2007312740 A JP 2007312740A JP 4951478 B2 JP4951478 B2 JP 4951478B2
Authority
JP
Japan
Prior art keywords
epoxy resin
solvent
matrix resin
carbon nanotube
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007312740A
Other languages
Japanese (ja)
Other versions
JP2009138032A (en
Inventor
陽平 三輪
学 金子
隆司 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2007312740A priority Critical patent/JP4951478B2/en
Publication of JP2009138032A publication Critical patent/JP2009138032A/en
Application granted granted Critical
Publication of JP4951478B2 publication Critical patent/JP4951478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a matrix resin for a fiber-reinforced composite material which has carbon nano tubes finely dispersed therein. <P>SOLUTION: Provided is a manufacturing method of the matrix resin for a prepreg which is carried out in the order of the processes shown in the following: (1) to obtain a carbon nano tube dispersion (d) containing a conductive polymer (a), a solvent (b) and carbon nano tubes (c); (2) to add the carbon nano tube dispersion (d) into an epoxy resin (e) and obtain an epoxy resin composition (f) containing the carbon nano tubes; and (3) to treat the epoxy resin composition (f) under the pressure condition of &le;10k Pa to render the solvent (b) 1 wt.% or less and then add a curing agent (g) for the epoxy resin to obtain the matrix resin for the fiber-reinforced composite material. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、カーボンナノチューブ含有マトリクス樹脂の製造方法に関する。本発明は、より詳細には、繊維強化複合材料のための、カーボンナノチューブを含有するマトリクス樹脂の製造方法に関する。   The present invention relates to a method for producing a carbon nanotube-containing matrix resin. More particularly, the present invention relates to a method for producing a matrix resin containing carbon nanotubes for a fiber-reinforced composite material.

カーボンナノチューブが1991年に飯島等によってはじめて発見されて以来、その物性評価、機能解明が行われており、その応用に関する研究開発も盛んに実施されている。しかしながら、カーボンナノチューブは、絡まった状態で製造され、樹脂に混合した場合にカーボンナノチューブは凝集し、カーボンナノチューブ本来の特性が発揮できないという問題がある。   Since carbon nanotubes were first discovered by Iijima et al. In 1991, their physical properties have been evaluated and their functions have been elucidated, and research and development related to their applications have been actively conducted. However, carbon nanotubes are produced in an entangled state, and when mixed with a resin, the carbon nanotubes aggregate and there is a problem that the original characteristics of the carbon nanotubes cannot be exhibited.

この為、カーボンナノチューブを物理的に処理したり、化学的に修飾したりして、水、有機溶剤、含水有機溶媒等の溶媒に均一に分散又は溶解する試みがなされており、溶媒中に分散されたマスターバッチとして用いる方法が知られている。   For this reason, attempts have been made to uniformly disperse or dissolve carbon nanotubes in water, organic solvents, water-containing organic solvents, etc. by physically treating them or chemically modifying them. A method of using the prepared master batch is known.

特許文献1(特開2007−119318号公報)は縮合多環多核芳香族樹脂トカーボンナノチューブとの混合物を、炭素繊維に混合して炭素化した炭素繊維強化炭素複合材料を開示している。具体的には、まず、カーボンナノチューブをα−メチルナフタレンに添加し、超音波で処理して分散処理する。この分散液に重合単量体と、触媒を添加し、重合を行い、ナノチューブと縮合多環多核芳香族樹脂との複合体樹脂を形成し、さらにこれをクロロホルムなどの溶媒に溶解した溶液に、ポリアクリロニトリル系炭素繊維を含浸させる。これを加熱成形した後に焼成して、複合体樹脂を全体的に炭素化することで、炭素繊維で強化した炭素複合材料が得られる。   Patent Document 1 (Japanese Patent Laid-Open No. 2007-119318) discloses a carbon fiber reinforced carbon composite material obtained by mixing a carbon fiber with a mixture of a condensed polycyclic polynuclear aromatic resin and carbon nanotubes. Specifically, first, carbon nanotubes are added to α-methylnaphthalene and subjected to dispersion treatment by ultrasonic treatment. To this dispersion, a polymerization monomer and a catalyst are added, polymerization is performed, a composite resin of nanotubes and a condensed polycyclic polynuclear aromatic resin is formed, and this is further dissolved in a solvent such as chloroform. Impregnated with polyacrylonitrile-based carbon fiber. This is heat-molded and then fired to carbonize the composite resin as a whole, thereby obtaining a carbon composite material reinforced with carbon fibers.

一方、上述の特殊な繊維強化複合材料のほか、一般的な繊維強化複合材料(以下、FRPと略記する。)は、軽量かつ高強度、高剛性の特徴を生かして、スポーツ・レジャー用途から自動車や航空機等の産業用途まで、幅広く用いられている。特に、産業用途の自動車や鉄道車両、航空機などは、近年ますます軽量化が要求されており、FRPの使用が拡大している。これらのFRPは強化繊維に未硬化の熱硬化性マトリクス樹脂を含浸させたのち、加熱等により樹脂を硬化させて得られる。   On the other hand, in addition to the above-mentioned special fiber reinforced composite materials, general fiber reinforced composite materials (hereinafter abbreviated as FRP) are used in sports / leisure applications for automobiles by taking advantage of their light weight, high strength and high rigidity. Widely used in industrial applications such as aircraft and aircraft. In particular, automobiles, railway vehicles, airplanes, and the like for industrial use are increasingly required to be lighter in recent years, and the use of FRP is expanding. These FRPs are obtained by impregnating reinforcing fibers with an uncured thermosetting matrix resin and then curing the resin by heating or the like.

マトリクス樹脂組成物を強化繊維に含浸させる時には、アセトンやメチルエチルケトン等の溶剤中に溶解して粘度を下げ、強化繊維に含浸した後、加熱等によって脱溶剤する方法がよく用いられる。   When the reinforcing fiber is impregnated with the matrix resin composition, a method of dissolving in a solvent such as acetone or methyl ethyl ketone to lower the viscosity, impregnating the reinforcing fiber, and then removing the solvent by heating or the like is often used.

カーボンナノチューブをマトリクス樹脂中に含むFRPは、繊維方向以外の補強効果、あるいは伝熱性や導電性の向上に期待が持たれ、研究が行われている。前述のようにカーボンナノチューブは、水、有機溶剤、含水有機溶媒等の溶媒中に分散されたマスターバッチとして提供されており、これをマトリクス樹脂と混合し溶剤を含んだ状態で強化繊維に含浸し、カーボンナノチューブを含んだFRPを製造する方法が知られている。
ただし、カーボンナノチューブを含んだFRPを製造する場合は、カーボンナノチューブを分散させるための溶媒として沸点の高い極性溶媒が用いられるため、溶剤を完全に揮発させることは困難である。溶剤を揮発させるのに必要な高い温度をかけると、マトリクス樹脂であるエポキシ樹脂は硬化してしまう。
FRP containing carbon nanotubes in a matrix resin is expected to have a reinforcing effect other than the fiber direction, or to improve heat conductivity and conductivity, and has been studied. As described above, the carbon nanotubes are provided as a master batch dispersed in a solvent such as water, an organic solvent, or a water-containing organic solvent. The carbon nanotubes are mixed with a matrix resin and impregnated into a reinforcing fiber in a state containing the solvent. A method for producing FRP containing carbon nanotubes is known.
However, when manufacturing FRP containing carbon nanotubes, a polar solvent having a high boiling point is used as a solvent for dispersing the carbon nanotubes, so that it is difficult to completely volatilize the solvent. When a high temperature necessary for volatilizing the solvent is applied, the epoxy resin as the matrix resin is cured.

上述の方法に対して、溶剤を用いずにマトリクス樹脂を加温し、粘度を下げた状態で強化繊維に含浸することによりFRPを得る方法がある。この方法では溶剤を用いないため製造現場において揮発成分の排気装置が必要なく、環境負荷も軽くて済むという利点がある。しかしながら溶媒を含まない樹脂中へカーボンナノチューブを直接混合するとカーボンナノチューブは凝集し、カーボンナノチューブ本来の特性が発揮できない。   In contrast to the above-described method, there is a method of obtaining FRP by heating a matrix resin without using a solvent and impregnating reinforcing fibers in a state where the viscosity is lowered. Since this method does not use a solvent, there is an advantage that an exhaust device for volatile components is not required at the manufacturing site and the environmental load is light. However, when carbon nanotubes are directly mixed into a resin that does not contain a solvent, the carbon nanotubes aggregate, and the original characteristics of the carbon nanotubes cannot be exhibited.

特開2007−119318号公報JP 2007-119318 A

従って、本発明の課題は、カーボンナノチューブがマトリクス樹脂中に良好に分散された状態で存在し、カーボンナノチューブが添加剤として期待できる効果を十分に発揮しうるプリプレグを提供することである。   Accordingly, an object of the present invention is to provide a prepreg in which carbon nanotubes are present in a well dispersed state in a matrix resin and the carbon nanotubes can sufficiently exhibit the effects that can be expected as an additive.

本発明は、硬化剤を含まないエポキシ樹脂中に、溶媒で分散したカーボンナノチューブ分散液を導入して、カーボンナノチューブを分散させた後、樹脂中の溶媒を取り除き、しかる後にエポキシ樹脂用硬化剤を混合することを特徴とする繊維強化複合材料用マトリクス樹脂の製造方法である。   The present invention introduces a carbon nanotube dispersion liquid dispersed in a solvent into an epoxy resin containing no curing agent, disperses the carbon nanotubes, removes the solvent in the resin, and then adds a curing agent for the epoxy resin. It is a manufacturing method of the matrix resin for fiber reinforced composite materials characterized by mixing.

すなわち、本発明は、1つの態様において、次に示す工程の順に実施されるプリプレグ用マトリクス樹脂の製造方法である。
(1)導電性ポリマー(a)、溶媒(b)およびカーボンナノチューブ(c)を含有するカーボンナノチューブ分散液(d)を得る、
(2)エポキシ樹脂(e)に前記カーボンナノチューブ分散液(d)を加え、カーボンナノチューブ含有エポキシ樹脂組成物(f)を得る、
(3)前記エポキシ樹脂組成物(f)を10kPa以下の圧力条件下で処理して、溶媒(b)を1wt%以下とした後にエポキシ樹脂用硬化剤(g)を添加し、繊維強化複合材料用マトリクス樹脂を得る。
That is, this invention is the manufacturing method of the matrix resin for prepregs implemented in order of the following process in one aspect.
(1) Obtaining a carbon nanotube dispersion (d) containing a conductive polymer (a), a solvent (b) and a carbon nanotube (c).
(2) The carbon nanotube dispersion (d) is added to the epoxy resin (e) to obtain a carbon nanotube-containing epoxy resin composition (f).
(3) The epoxy resin composition (f) is treated under a pressure condition of 10 kPa or less, the solvent (b) is adjusted to 1 wt% or less, and then the epoxy resin curing agent (g) is added, and the fiber reinforced composite material A matrix resin is obtained.

また、本発明において、導電性ポリマー(a)はポリアニリンスルホン酸アンモニウム塩であることが好ましい。溶媒(b)はN,N’−ジメチルアセトアミドであることが好ましい。エポキシ樹脂(e)の粘度は50℃において5〜104ポイズの範囲にあることが好ましい。 In the present invention, the conductive polymer (a) is preferably polyaniline sulfonic acid ammonium salt. The solvent (b) is preferably N, N′-dimethylacetamide. The viscosity of the epoxy resin (e) is preferably in the range of 5 to 10 4 poise at 50 ° C.

本発明の製造方法で得られた繊維強化複合材料用マトリクス樹脂はカーボンナノチューブが適切に樹脂中に分散されている。そのため、最終の繊維強化複合材料は、強化繊維の繊維方向以外においても機械的性質や伝熱性、導電性に優れたものとなることができる。   In the matrix resin for fiber-reinforced composite material obtained by the production method of the present invention, carbon nanotubes are appropriately dispersed in the resin. Therefore, the final fiber-reinforced composite material can be excellent in mechanical properties, heat conductivity, and conductivity even in directions other than the fiber direction of the reinforcing fibers.

本発明において、導電性ポリマー(a)、溶媒(b)およびカーボンナノチューブ(c)を含むカーボンナノチューブ分散液(d)が用いられる。   In the present invention, a carbon nanotube dispersion liquid (d) containing a conductive polymer (a), a solvent (b) and a carbon nanotube (c) is used.

導電性ポリマー(a)は、繊維強化複合材料に導電性を付与し、カーボンナノチューブがエポキシ樹脂に分散することを可能にする。導電性ポリマー(a)としては特に限定はされないが、アニオン基を持つポリマーのアンモニウム塩が好ましい。前記アンモニウム塩のアンモニウムイオンの置換基としては水素、炭素数1〜24のアルキル、アリールまたはアラルキル基、フェニル基、ベンジル基、アルコキシ基、アミノ基、アミド基が挙げられる。アニオン基を持つポリマーのアニオン基としてはスルホン酸基、カルボキシ基等が挙げられる。好ましくはスルホン酸基である。導電性ポリマー(a)はポリアニリンスルホン酸アンモニウム塩であることが好ましい。導電性ポリマー(a)の量は、限定されない。   The conductive polymer (a) imparts conductivity to the fiber reinforced composite material and allows the carbon nanotubes to be dispersed in the epoxy resin. The conductive polymer (a) is not particularly limited, but an ammonium salt of a polymer having an anionic group is preferable. Examples of the substituent of the ammonium ion of the ammonium salt include hydrogen, alkyl having 1 to 24 carbon atoms, aryl or aralkyl group, phenyl group, benzyl group, alkoxy group, amino group, and amide group. Examples of the anion group of the polymer having an anion group include a sulfonic acid group and a carboxy group. A sulfonic acid group is preferred. The conductive polymer (a) is preferably a polyaniline sulfonic acid ammonium salt. The amount of the conductive polymer (a) is not limited.

溶媒(b)はカーボンナノチューブを分散させ、その凝集を抑制する。溶媒(b)としては、メタノール、エタノール、イソプロピルアルコール、プロピルアルコール、ブタノール等のアルコール類;アセトン、メチルエチルケトン、エチルイソブチルケトン、メチルイソブチルケトン等のケトン類;エチレングリコール、エチレングリコールメチルエーテル、エチレングリコールモノ−n−プロピルエーテル等のエチレングリコール類;プロピレングリコール、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコールブチルエーテル、プロピレングリコールプロピルエーテル等のプロピレングリコール類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類;N−メチルピロリドン、 N−エチルピロリドン等のピロリドン類;ジメチルスルオキシド、γ−ブチロラクトン、乳酸メチル、乳酸エチル、β−メトキシイソ酪酸メチル、α−ヒドロキシイソ酪酸メチル等のヒドロキシエステル類等;アニリン、N−メチルアニリン等のアニリン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素、m−クレゾール、アセトニトリル、テトラハイドロフラン等が挙げられる。好ましくはアミド類である。さらに好ましくはN,N’−ジメチルアセトアミドである。   The solvent (b) disperses the carbon nanotubes and suppresses their aggregation. As the solvent (b), alcohols such as methanol, ethanol, isopropyl alcohol, propyl alcohol, butanol; ketones such as acetone, methyl ethyl ketone, ethyl isobutyl ketone, methyl isobutyl ketone; ethylene glycol, ethylene glycol methyl ether, ethylene glycol mono Ethylene glycols such as n-propyl ether; propylene glycols such as propylene glycol, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol butyl ether, propylene glycol propyl ether; N, N-dimethylformamide, N, N-dimethyl Amides such as acetamide; Pyrrolidones such as N-methylpyrrolidone and N-ethylpyrrolidone; Dimethyls Hydroxyl esters such as hydroxide, γ-butyrolactone, methyl lactate, ethyl lactate, methyl β-methoxyisobutyrate, methyl α-hydroxyisobutyrate, etc .; anilines such as aniline, N-methylaniline, and fragrances such as benzene, toluene, xylene Group hydrocarbon, m-cresol, acetonitrile, tetrahydrofuran and the like. Amides are preferred. More preferred is N, N′-dimethylacetamide.

上述の成分を含むカーボンナノチューブ分散液(d)にエポキシ樹脂(e)を加え、カーボンナノチューブ含有エポキシ樹脂組成物(f)を得る。カーボンナノチューブが分散された樹脂はチキソトロピー性が高く、応力がかからない状態での形態保持性が高いため、通常のホットメルト法に用いる樹脂より低い粘度が好ましく、本発明のエポキシ樹脂(e)の粘度としては50℃において5〜104ポイズの範囲にあるが好ましい。このエポキシ樹脂組成物(f)を10kPa以下の圧力条件下で処理して溶媒(b)を1wt%以下とした後に、エポキシ樹脂用硬化剤(g)を添加し、繊維強化複合材料用マトリクス樹脂を得る。予めエポキシ樹脂用硬化剤(g)を添加してしまうと、溶媒(b)を揮発させるためにマトリクス樹脂を加熱すると硬化してしまう一方、硬化しない範囲内に加熱を抑えると溶媒(b)を完全に取り除くことが困難であるからである。マトリクス樹脂中に溶媒(b)が残存していると硬化物およびそれからなるFRPの物性が低下する。本発明では、エポキシ樹脂硬化剤(g)の添加前に、加熱による溶媒(b)の除去を行うので、十分な溶媒除去が可能であり、最終的に得られるFRPの物性が良好になる。 An epoxy resin (e) is added to the carbon nanotube dispersion liquid (d) containing the above-mentioned components to obtain a carbon nanotube-containing epoxy resin composition (f). Since the resin in which the carbon nanotubes are dispersed has high thixotropic properties and high shape retention in a state where no stress is applied, a viscosity lower than that of a resin used in a normal hot melt method is preferable. The viscosity of the epoxy resin (e) of the present invention Is preferably in the range of 5 to 10 4 poise at 50 ° C. After treating this epoxy resin composition (f) under a pressure condition of 10 kPa or less to make the solvent (b) 1 wt% or less, a curing agent for epoxy resin (g) is added, and a matrix resin for fiber-reinforced composite material Get. If the epoxy resin curing agent (g) is added in advance, the matrix resin will be cured when heated in order to volatilize the solvent (b), while if the heating is suppressed within a range where it does not cure, the solvent (b) will be removed. This is because it is difficult to remove completely. If the solvent (b) remains in the matrix resin, the physical properties of the cured product and the FRP comprising the cured product will deteriorate. In the present invention, since the solvent (b) is removed by heating before the addition of the epoxy resin curing agent (g), sufficient solvent removal is possible, and the physical properties of the finally obtained FRP are improved.

以下、実施例により本発明をより具体的に説明する。
<カーボンナノチューブ分散液の合成>
2−アミノアニソール−4−スルホン酸100mmolを25℃で4mol/Lのトリエチルアミン水溶液に攪拌溶解し、これにペルオキソ二硫酸アンモニウム100mmolの水溶液を滴下した。滴下終了後、25℃で12時間更に攪拌した後に反応生成物を濾別洗浄後乾燥し、ポリマー粉末15gを得た。このポリマー粉末5gを水95gに攪拌溶解し、水溶性導電性ポリマー水溶液を調製した。得られた水溶性導電性ポリマー水溶液に塩化ベンザルコニウム10gを水95gに攪拌溶解した塩化ベンザルコニウム水溶液を滴下した。滴下終了後、25℃で1時間更に攪拌した後に反応生成物を濾別洗浄後乾燥し、スルホン酸基のアンモニウム塩を有する導電性ポリマー10gを得た。このアンモニウム塩を有する導電性ポリマー1質量部、カーボンナノチューブ(ILJIN社製、CVD法により製造された多層カーボンナノチューブ)0.4質量部をN,N−ジメチルアセトアミド100質量部に室温にて超音波照射しながら混合してカーボンナノチューブ分散液を調製した。
Hereinafter, the present invention will be described more specifically with reference to examples.
<Synthesis of carbon nanotube dispersion>
100 mmol of 2-aminoanisole-4-sulfonic acid was stirred and dissolved in a 4 mol / L triethylamine aqueous solution at 25 ° C., and an aqueous solution of 100 mmol ammonium peroxodisulfate was added dropwise thereto. After completion of the dropping, the mixture was further stirred at 25 ° C. for 12 hours, and then the reaction product was filtered, washed and dried to obtain 15 g of polymer powder. 5 g of this polymer powder was stirred and dissolved in 95 g of water to prepare a water-soluble conductive polymer aqueous solution. Benzalkonium chloride aqueous solution obtained by stirring and dissolving 10 g of benzalkonium chloride in 95 g of water was added dropwise to the obtained water-soluble conductive polymer aqueous solution. After completion of the dropwise addition, the mixture was further stirred at 25 ° C. for 1 hour, and then the reaction product was filtered, washed, and dried to obtain 10 g of a conductive polymer having an ammonium salt of a sulfonic acid group. 1 part by mass of the conductive polymer having an ammonium salt and 0.4 parts by mass of carbon nanotubes (multi-walled carbon nanotubes manufactured by ILJIN, manufactured by the CVD method) were ultrasonicated at room temperature to 100 parts by mass of N, N-dimethylacetamide at room temperature. A carbon nanotube dispersion was prepared by mixing while irradiating.

<エポキシ樹脂組成物の調製>
フラスコに上記カーボンナノチューブ分散液180gとジャパンエポキシレジン株式会社製ビスフェノールA型液状エポキシ樹脂jER828(50℃における粘度10ポイズ)58gを混合し、5kPa減圧下130℃にて2時間加熱してN,N−ジメチルアセトアミドを溜去した。フラスコを室温まで冷却した後、ジャパンエポキシレジン株式会社製ジシアンジアミドおよび保土ヶ谷化学工業株式会社製3、4−ジクロロフェニル−N,N−ジメチル尿素を加え、60℃にて均一になるまで撹拌混合してカーボンナノチューブ含有エポキシ樹脂組成物(A−1)を得た。
<Preparation of epoxy resin composition>
180 g of the above carbon nanotube dispersion and 58 g of bisphenol A type liquid epoxy resin jER828 (viscosity of 10 poise at 50 ° C.) manufactured by Japan Epoxy Resin Co., Ltd. were mixed in a flask and heated at 130 ° C. for 2 hours under a reduced pressure of 5 kPa. -Dimethylacetamide was distilled off. After cooling the flask to room temperature, dicyandiamide manufactured by Japan Epoxy Resin Co., Ltd. and 3,4-dichlorophenyl-N, N-dimethylurea manufactured by Hodogaya Chemical Industry Co., Ltd. were added, and the mixture was stirred and mixed at 60 ° C. until uniform. A nanotube-containing epoxy resin composition (A-1) was obtained.

<繊維強化プラスチックの作成>
三菱レイヨン製炭素繊維TR50S12Lの簾織りクロス(目付300g/m2)に対し、エポキシ樹脂組成物(A−1)を1プライあたりの樹脂目付け133g/m2となるようにハンドレイアップ法にて均一に含浸させた。これを8プライ積層し、オートクレーブにて500kPa、130℃にて1hr加熱硬化することによりカーボンナノチューブ含有繊維強化プラスチック(B−1)を得た。
<Making fiber reinforced plastic>
Mitsubishi Rayon carbon fiber TR50S12L cloth weave cloth (300 g / m 2 basis weight) epoxy resin composition (A-1) by hand lay-up method so that the resin basis weight per ply is 133 g / m 2 It was impregnated uniformly. This was laminated in 8 plies and heat cured at 500 kPa and 130 ° C. for 1 hr in an autoclave to obtain a carbon nanotube-containing fiber reinforced plastic (B-1).

<比較例>
<エポキシ樹脂組成物の調製>
フラスコに実施例と同様にして得たカーボンナノチューブ分散液180gとジャパンエポキシレジン株式会社製ビスフェノールA型液状エポキシ樹脂jER828(130℃における粘度20センチポイズ)58gと、ジャパンエポキシレジン株式会社製ジシアンジアミドおよび保土ヶ谷化学工業株式会社製3、4−ジクロロフェニル−N,N−ジメチル尿素を加え、60℃にて均一になるまで撹拌混合した。5kPa減圧下80℃にて3時間加熱してN,N−ジメチルアセトアミドを溜去して、カーボンナノチューブ含有エポキシ樹脂組成物(A−2)を得た。
<Comparative example>
<Preparation of epoxy resin composition>
180 g of the carbon nanotube dispersion liquid obtained in the same manner as in Example, 58 g of bisphenol A type liquid epoxy resin jER828 (viscosity of 20 centipoise at 130 ° C.) manufactured by Japan Epoxy Resin Co., Ltd., dicyandiamide and Hodogaya Chemical Co., Ltd., Japan Epoxy Resin Co., Ltd. 3,4-Dichlorophenyl-N, N-dimethylurea manufactured by Kogyo Co., Ltd. was added and mixed with stirring until uniform at 60 ° C. N, N-dimethylacetamide was distilled off by heating at 80 ° C. under reduced pressure of 5 kPa for 3 hours to obtain a carbon nanotube-containing epoxy resin composition (A-2).

<繊維強化プラスチックの作成>
実施例と同様にして、エポキシ樹脂組成物(A−2)からカーボンナノチューブ含有FRP(B−2)を得た。
<Making fiber reinforced plastic>
In the same manner as in Examples, carbon nanotube-containing FRP (B-2) was obtained from the epoxy resin composition (A-2).

<90°曲げ弾性率の測定>
得られた繊維強化プラスチックの繊維方向を0°、積層面内の繊維と直行する方向を90°と定義する。2mm厚の繊維強化プラスチック板の90°方向を長手に60mm×12mmに切り分け、クロスヘッドスピード2mm/min、サポートおよびノーズ圧子の曲率R=3.2、試験片厚みとサポートスパンの比L/D=16として、ASTM D790に準拠して3点曲げ試験を行い、弾性率を算出した。本発明の実施例により得られた繊維強化プラスチック(B−1)は、比較例で得られた(B−2)より高い弾性率を示した。結果を表1に示す。
<Measurement of 90 ° flexural modulus>
The fiber direction of the obtained fiber reinforced plastic is defined as 0 °, and the direction perpendicular to the fibers in the laminated surface is defined as 90 °. The 90 ° direction of a 2 mm thick fiber reinforced plastic plate is cut into a length of 60 mm × 12 mm, the crosshead speed is 2 mm / min, the curvature of the support and nose indenter R = 3.2, the ratio of the specimen thickness to the support span L / D = 16, a three-point bending test was performed in accordance with ASTM D790, and the elastic modulus was calculated. The fiber reinforced plastic (B-1) obtained by the Example of this invention showed the higher elasticity modulus than (B-2) obtained by the comparative example. The results are shown in Table 1.

<90°表面抵抗率の測定>
得られた繊維強化プラスチックを40mm×40mmにカットし、一方の面をマスキングテープで絶縁し、他方の面から繊維方向と平行にアルミニウム製電極2枚を電極間距離15mmとなるよう配置した。これらを3N・mのトルクとなるようネジで押し当てた。2枚の電極間の電気抵抗値を測定し、その値と試験片の厚みおよび電極間距離40mmから体積抵抗率を算出した。本発明の実施例により得られた繊維強化プラスチック(B−1)は、比較例で得られた(B−2)より低い抵抗率を示した。結果を表1に示す。
<Measurement of 90 ° surface resistivity>
The obtained fiber reinforced plastic was cut into 40 mm × 40 mm, one surface was insulated with a masking tape, and two aluminum electrodes were arranged parallel to the fiber direction from the other surface so that the distance between the electrodes was 15 mm. These were pressed with screws so as to have a torque of 3 N · m. The electrical resistance value between the two electrodes was measured, and the volume resistivity was calculated from the value, the thickness of the test piece, and the distance between the electrodes of 40 mm. The fiber reinforced plastic (B-1) obtained by the Example of this invention showed the resistivity lower than (B-2) obtained by the comparative example. The results are shown in Table 1.

<90°体積抵抗率の測定>
得られた繊維強化プラスチックを40mm×40mmにカットし、繊維方向と平行になるようアルミニウム製電極を両方の端面から1N・mのトルクとなるようネジで押し当て、両側の電極間の電気抵抗値を測定した。その値と試験片の厚みおよび電極間距離40mmから体積抵抗率を算出した。本発明の実施例により得られた繊維強化プラスチック(B−1)は、比較例で得られた(B−2)より低い抵抗率を示した。結果を表1に示す。
<Measurement of 90 ° volume resistivity>
The obtained fiber reinforced plastic is cut into 40 mm x 40 mm, and the aluminum electrode is pressed with a screw so that the torque is 1 N · m from both end faces in parallel with the fiber direction, and the electrical resistance value between the electrodes on both sides Was measured. The volume resistivity was calculated from the value, the thickness of the test piece, and the distance between the electrodes of 40 mm. The fiber reinforced plastic (B-1) obtained by the Example of this invention showed the resistivity lower than (B-2) obtained by the comparative example. The results are shown in Table 1.

Figure 0004951478
Figure 0004951478

本発明の方法により製造された繊維強化複合材料用マトリクス樹脂を用いれば、補強剤の繊維方向以外における剛性を向上することが可能であり、また、補強材の繊維方向以外の導電性を向上することが可能である。したがって、帯電防止性能が必要な各種電子部品への応用が期待される。   If the matrix resin for fiber-reinforced composite material produced by the method of the present invention is used, it is possible to improve the rigidity of the reinforcing agent in the direction other than the fiber direction, and improve the conductivity of the reinforcing material in the direction other than the fiber direction. It is possible. Therefore, application to various electronic parts that require antistatic performance is expected.

Claims (4)

次に示す工程の順に実施される繊維強化複合材料用マトリクス樹脂の製造方法
(1)導電性ポリマー(a)、溶媒(b)およびカーボンナノチューブ(c)を含有するカーボンナノチューブ分散液(d)を得る、
(2)エポキシ樹脂(e)に前記カーボンナノチューブ分散液(d)を加え、カーボンナノチューブ含有エポキシ樹脂組成物(f)を得る、
(3)前記エポキシ樹脂組成物(f)を10kPa以下の圧力条件下で処理し、溶媒(b)を1wt%以下とした後にエポキシ樹脂用硬化剤(g)を添加してプリプレグ用マトリクス樹脂を得る。
(1) A carbon nanotube dispersion liquid (d) containing a conductive polymer (a), a solvent (b) and a carbon nanotube (c) is performed in the order of the following steps. obtain,
(2) The carbon nanotube dispersion (d) is added to the epoxy resin (e) to obtain a carbon nanotube-containing epoxy resin composition (f).
(3) The epoxy resin composition (f) is treated under a pressure condition of 10 kPa or less, the solvent (b) is adjusted to 1 wt% or less, and then the epoxy resin curing agent (g) is added to form a prepreg matrix resin. obtain.
前記導電性ポリマー(a)がポリアニリンスルホン酸アンモニウム塩である、請求項1に記載の繊維強化複合材料用マトリクス樹脂の製造方法。   The manufacturing method of the matrix resin for fiber reinforced composite materials of Claim 1 whose said conductive polymer (a) is polyaniline sulfonic-acid ammonium salt. 前記溶媒(b)がN,N’−ジメチルアセトアミドである、請求項1または2に記載の繊維強化複合材料用マトリクス樹脂の製造方法。   The method for producing a matrix resin for a fiber-reinforced composite material according to claim 1 or 2, wherein the solvent (b) is N, N'-dimethylacetamide. 前記エポキシ樹脂(e)の粘度が50℃において5〜104ポイズの範囲にある、請求項1から3のいずれか1項に記載の繊維強化複合材料用マトリクス樹脂の製造方法。 The method for producing a matrix resin for a fiber-reinforced composite material according to any one of claims 1 to 3, wherein the viscosity of the epoxy resin (e) is in the range of 5 to 10 4 poise at 50 ° C.
JP2007312740A 2007-12-03 2007-12-03 Method for producing carbon nanotube-containing matrix resin Active JP4951478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007312740A JP4951478B2 (en) 2007-12-03 2007-12-03 Method for producing carbon nanotube-containing matrix resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007312740A JP4951478B2 (en) 2007-12-03 2007-12-03 Method for producing carbon nanotube-containing matrix resin

Publications (2)

Publication Number Publication Date
JP2009138032A JP2009138032A (en) 2009-06-25
JP4951478B2 true JP4951478B2 (en) 2012-06-13

Family

ID=40868974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007312740A Active JP4951478B2 (en) 2007-12-03 2007-12-03 Method for producing carbon nanotube-containing matrix resin

Country Status (1)

Country Link
JP (1) JP4951478B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552904B2 (en) * 2010-05-28 2014-07-16 三菱レイヨン株式会社 Method for producing nanocarbon-containing fiber and nanocarbon structure fiber, and nanocarbon-containing fiber and nanocarbon structure fiber obtained by these methods
CN101955631B (en) * 2010-09-17 2012-05-30 中国民航大学 Preparation method of polyaniline modified multi-wall carbon canotube/epoxy resin composite material
US10102939B2 (en) * 2013-01-28 2018-10-16 The Boeing Company Conductive fiber reinforced polymer composition
WO2015030154A1 (en) * 2013-08-30 2015-03-05 住友理工株式会社 Conductive shaft, conductive roll for office automation device employing same, and method for fabrication of conductive shaft
JP2015117442A (en) * 2013-12-18 2015-06-25 三菱レイヨン株式会社 Reinforcing fiber woven fabric and method for producing the same
JP7124390B2 (en) * 2018-03-30 2022-08-24 三菱ケミカル株式会社 Conductive prepreg, composite material and composite laminate using the same
CN113845754B (en) * 2021-09-30 2022-07-08 广东博汇新材料科技有限公司 Preparation method of epoxy resin electronic and electric insulating material
CN115418078A (en) * 2022-09-20 2022-12-02 江苏绿材谷新材料科技发展有限公司 Preparation method of high-durability carbon nanotube modified fiber reinforced composite material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2368932B1 (en) * 2003-06-16 2014-01-15 William Marsh Rice University Fabrication of carbon nanotube reinforced polymer composites
JP2005089738A (en) * 2003-08-12 2005-04-07 Toray Ind Inc Carbon nanotube dispersion solution and carbon nanotube dispersion material
JP5019152B2 (en) * 2004-01-20 2012-09-05 独立行政法人産業技術総合研究所 Carbon nanotube-dispersed polyimide composition
JP4689261B2 (en) * 2004-03-01 2011-05-25 三菱レイヨン株式会社 Carbon nanotube-containing composition, composite having coating film made thereof, and method for producing them
JP4515798B2 (en) * 2004-03-24 2010-08-04 本田技研工業株式会社 Method for producing carbon nanotube reinforced composite material
JP5076319B2 (en) * 2005-08-19 2012-11-21 東レ株式会社 Carbon nanotube dispersion
JP2007126637A (en) * 2005-10-03 2007-05-24 Toray Ind Inc Resin composition, cured product of resin, prepreg and fiber-reinforced composite material

Also Published As

Publication number Publication date
JP2009138032A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP4951478B2 (en) Method for producing carbon nanotube-containing matrix resin
Garg et al. Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites
Vu et al. Effect of micro/nano white bamboo fibrils on physical characteristics of epoxy resin reinforced composites
Cheng et al. Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites
Moaseri et al. Improvements in mechanical properties of carbon fiber-reinforced epoxy composites: a microwave-assisted approach in functionalization of carbon fiber via diamines
KR101321099B1 (en) Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same
CN107057283B (en) A kind of carbon fiber enhancement resin base composite material and preparation method thereof
JP6163958B2 (en) Epoxy resin composition, fiber reinforced composite material and molded article
JP2004538353A (en) Method of forming conductive polymer nanocomposites and materials produced thereby
JP2009167369A (en) Resin composition containing carbon nanotube, cured substance, molded body, and method for producing resin composition containing carbon nanotube
EP3237514A2 (en) Graphite exfoliation in resin
KR101415255B1 (en) Post-treatment method of carbon nanotube fibers to enhance mechanical property
Yao et al. Fracture toughness enhancement of epoxy resin reinforced with graphene nanoplatelets and carbon nanotubes
JP2010202727A (en) Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same
JP5015469B2 (en) Heat resistant resin composition and process for producing the same
JP2007332234A (en) Master batch and epoxy resin composition
Wu et al. Preparation and characterization of polyamide composites with modified graphite powders
JP2009256534A (en) Polymer electrolyte composition having excellent mechanical characteristics and dimensional stability, and method for manufacturing the same
Ding et al. Functional graphene nanoflakes/cyanate/epoxy nanocomposites: mechanical, dielectric and thermal properties
JP2010174073A (en) Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same
KR20130036114A (en) A method for preparing carbon nano tube reinforced polypropylene
Panda et al. Enhanced properties of UPE/ESOA partially bio-nanocomposites reinforced with chitosan functionalized graphene nanoplatelets: an innovative approach
JP4346936B2 (en) Vapor grown carbon fiber-containing prepreg and method for producing the same
Shanmugharaj et al. Physical properties of phenol-anchored multiwall carbon nanotube/epoxy nanocomposite
KR102496995B1 (en) Carbon fibers-reinforced epoxy composites with graphene oxide/graphitic nanofibers composites and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4951478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250