KR20220164267A - 3족 질화물 반도체 발광구조를 제조하는 방법 - Google Patents

3족 질화물 반도체 발광구조를 제조하는 방법 Download PDF

Info

Publication number
KR20220164267A
KR20220164267A KR1020210072816A KR20210072816A KR20220164267A KR 20220164267 A KR20220164267 A KR 20220164267A KR 1020210072816 A KR1020210072816 A KR 1020210072816A KR 20210072816 A KR20210072816 A KR 20210072816A KR 20220164267 A KR20220164267 A KR 20220164267A
Authority
KR
South Korea
Prior art keywords
light emitting
layer
semiconductor light
emitting structure
gan
Prior art date
Application number
KR1020210072816A
Other languages
English (en)
Inventor
황성민
최형규
김두수
허성운
문성주
조인성
임원택
Original Assignee
주식회사 소프트에피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 소프트에피 filed Critical 주식회사 소프트에피
Priority to KR1020210072816A priority Critical patent/KR20220164267A/ko
Publication of KR20220164267A publication Critical patent/KR20220164267A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

본 개시는 전체적으로 3족 질화물 반도체 발광구조를 제조하는 방법에 관한 것으로, 특히 적절한 장벽층을 통해 발광파장을 장파장 측으로 이동시킬 수 있는 3족 질화물 반도체(Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물) 발광구조를 제조하는 방법에 관한 것이다.

Description

3족 질화물 반도체 발광구조를 제조하는 방법{METHOD OF MANUFACTURING A III-NITRIDE SEMICONDUCTOR LIGHT EMITTING STRUCTURE}
본 개시(Disclosure)는 전체적으로 3족 질화물 반도체 발광구조를 제조하는 방법에 관한 것으로, 특히 적절한 장벽층을 통해 발광파장을 장파장 측으로 이동시킬 수 있는 3족 질화물 반도체 발광구조를 제조하는 방법에 관한 것이다. 여기서, 3족 질화물 반도체는 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물로 이루어진다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).
현재 상용의 적색 발광 반도체 발광소자(예: LED, LD)는 AlGaInP계 화합물 반도체를 이용하여 제조되지만, 최근에 3족 질화물 반도체인 InGaN을 활성 영역으로 하는 3족 질화물 반도체 발광구조를 이용하여 황색(yellow), 앰버(amber), 오렌지(oranger), 적색(red) 및 적외선(infrared)을 발광하는 것이 검토되고 있다.
도 1은 종래의 적색 발광 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 성장 기판(10; 예: 패턴화된 C면 사파이어 기판(PSS)), 버퍼 영역(20; 예: 씨앗층(저온 성장된 GaN) 위에 형성되는 un-doped GaN(2㎛)), n측 컨택 영역(30; 예: Si-doped GaN(2~8㎛)과 Si-doped Al0.03Ga0.97N(1㎛)), 초격자(superlattice) 영역(31; 예: 15주기의 GaN(6nm)/In0.08Ga0.92N(2nm)), 15nm 두께의 Si-doped GaN(32), In의 함량이 적은 양자우물구조(41: 예: In0.2Ga0.8N(2nm)로 된 양자우물과 GaN(2nm)/Al0.13Ga0.87N(18nm)/GaN(3nm)으로 된 장벽층), 적색 발광 활성 영역(42; 예: InGaN(2.5nm)으로 된 양자우물-AlN(1.2nm)/GaN(2nm)/Al0.13Ga0.87N(18nm)/GaN(3nm)으로 된 장벽층-InGaN(2.5nm)으로 된 양자우물-AlN(1.2nm)/GaN(23nm)으로 된 장벽층), 15nm 두께의 GaN 층(43), p측 영역(50; 예: Mg-doped GaN(100nm)과 p+-GaN:Mg(10nm)), 전류 확산 전극(60; 예: ITO), 제1 전극(70; 예: Cr/Ni/Au) 그리고 제2 전극(80; 예: Cr/Ni/Au)을 포함한다(논문: 633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress; Applied Physics Letters, April 2020).
또한 미국 등록특허공보 US10,396,240호에도 InGaN 활성 영역을 이용하는 적색 발광 반도체 발광소자가 제시되어 있다.
이에 대하여 '발명을 실시하기 위한 구체적인 내용'의 후단에 기술한다.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 3족 질화물 반도체 발광구조를 제조하는 방법이 제공된다.
이에 대하여 '발명을 실시하기 위한 구체적인 내용'의 후단에 기술한다.
도 1은 종래의 적색 발광 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,
도 2는 본 개시에 따른 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,
도 3은 본 개시에 따른 반도체 발광구조의 일 예를 나타내는 도면,
도 4는 본 개시에 따른 반도체 발광구조의 또 다른 예를 나타내는 도면,
도 5는 본 개시에 따른 반도체 발광구조의 또 다른 예를 나타내는 도면,
도 6은 본 개시에 따른 실험 결과의 일 예를 나타내는 도면,
도 7은 본 개시에 따른 실험 결과의 또 다른 예를 나타내는 도면,
도 8은 본 개시에 따른 실험 결과의 또 다른 예를 나타내는 도면,
도 9는 본 개시에 따른 실험 결과의 또 다른 예를 나타내는 도면,
도 10은 본 개시에 따른 실험 결과의 또 다른 예를 나타내는 도면,
도 11은 본 개시와 관련된 반도체 발광소자를 밴드갭 에너지의 관점에서 설명하는 도면,
도 12 및 도 14는 본 개시에 따른 실험 결과의 또 다른 예를 나타내는 도면.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).
도 2는 본 개시에 따른 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 성장 기판(10), 버퍼 영역(20), n측 컨택 영역(30), 초격자 영역(31), 반도체 발광구조 또는 활성 영역(42), 전자 차단층(51; EBL), p측 컨택 영역(52), 전류 확산 전극(60), 제1 전극(70) 그리고 제2 전극(80)을 포함한다.
성장 기판(10)은 사파이어 기판, Si(111) 기판 등이 사용될 수 있으며, 특히 패턴화된 C면 사파이어 기판(C-face PSS)이 적용될 수 있고, 동종 기판 및 이종 기판 등 특별히 제한되지 않는다.
버퍼 영역(20)은 씨앗층 위에 형성된 un-doped GaN으로 이루어질 수 있으며, 성장 조건(MOVCD법 기준)으로 950℃~1100℃의 온도, 1~4㎛의 두께, 100~400mbar의 압력, H2 분위기가 이용될 수 있다.
n측 컨택 영역(30)은 Si-doped GaN으로 이루어질 수 있으며, 성장 조건으로 1000℃~1100℃의 온도, 1~4㎛의 두께, 100~400mbar의 압력, H2 분위기가 이용될 수 있다.
초격자 영역(31)은 전류확산을 향상하기 위해 일반적인 성장 조건을 이용하여 InaGa1-aN/InbGa1-bN (0<a<1, 0≤b<1, a>b)가 반복 15주기) 적층된 초격자 구조이며, Al이 추가되는 것은 배제하지 않고, n형 도펀트(예: Si)로 도핑될 수 있으며, 반복의 과정에서 조성이 약간씩 변경될 수 있음은 물론이다.
전자 차단층(51)은 Mg-doped AlGaN으로 이루어질 수 있으며, 성장 조건으로 900℃의 온도, 10~40nm의 두께, 50~100mbar의 압력, H2 분위기가 이용될 수 있다.
p측 컨택 영역(52) 또한 일반적인 성장조건을 이용하여 Mg-doped GaN으로 형성될 수 있다.
전류 확산 전극(60)으로 ITO와 같은 TCO(Tranparent Conductive Oxide)가 이용될 수 있으며, 이에 제한되는 것은 아니다.
제1 전극(70) 및 제2 전극(80)으로 Cr/Ni/Au가 사용될 수 있다.
도 2에 제시된 예에 사용된 구조는 종래에 3족 질화물 반도체를 이용하여 청색 및 녹색을 발광하는 반도체 발광소자를 만드는데 이용되는 아주 보편적인 구조이며, 청색 및 녹색을 발광하는데 이용되는 3족 질화물 반도체 발광소자에 사용되는 구조라면 특별한 제한없이 사용될 수 있다. 제시된 형태가 래터럴 칩 형태이지만, 플립 칩 형태 및 수직형 칩 형태가 사용될 수 있음은 물론이다.
도 3은 본 개시에 따른 반도체 발광구조의 일 예를 나타내는 도면으로서, 도 3(a)에는 기존의 녹색 발광 3족 질화물 반도체 발광구조가 제시되어 있으며, 도 3(b)에는 본 개시에 따른 3족 질화물 반도체 발광구조가 제시되어 있다. 설명을 위해, 2개의 양자우물이 제시되어 있다.
도 3(a)에 제시된 반도체 발광구조는 IncGa1-cN으로 된 양자우물(QW)과 AldGaeIn1-d-eN(0≤d≤1, 0≤e≤1; 예: GaN)으로 된 장벽층(배리어)을 사용한다. In의 함량 c는 반도체 발광구조가 발광하는 피크파장에 따라 달라질 수 있으며, 청색을 발광하는 경우에, c가 0.1의 값을 가질 수 있고, 녹색을 발광하는 경우에, c가 0.2의 값을 가질 수 있다. 장벽층으로 InGaN, AlGaN, AlGaInN 등을 사용할 수 있지만, 일반적으로 GaN이 이용된다.
본 개시에 따른 반도체 발광구조는 이미 상용화되고 안정적으로 구현되어 있는 도 3(a)에 제시된 반도체 발광구조에, 도 3(b)에 도시된 것과 같은 장벽층 구조를 도입함으로써, 장파장의 빛을 발광할 수 있다는 것을 보여준다. 따라서 본 개시에 따른 반도체 발광구조를 활용함으로써, 도 1에 제시된 다량의 In을 함유하는 InGaN 활성 영역을 이용할 때의 문제점을 극복할 수 있게 되며, 또한 제조된 반도체 발광소자의 구동 과정에서 발생하던 문제점을 극복할 수 있게 된다.
제1(x), 제2(x) 제1(x), 제2(o) 제1(o), 제2(x) 제1(o), 제2(o)
파장(Wp,nm) 530 (녹색) 560 580 625 (적색)
광량(정성적 평가) 밝음 약함 보통 보통
표 1에 도시된 바와 같이, ① 양자우물의 양측에 본 개시에 따른 제1 층(1) 및 제2 층(2)을 모두 구비하지 않은 경우에 530nm 파장의 빛을 밝게 발광하였으며, ② 양자우물에 본 개시에 따른 제2 층(2)만을 구비하는 경우에 560nm 파장의 빛을 약하게 발광하였고, ③ 양자우물에 본 개시에 따른 제1 층(1)만을 구비하는 경우에 580nm 파장의 빛을 보통으로 발광하였으며, ④ 양자우물의 양측에 본 개시에 따른 제1 층(1) 및 제2 층(2)을 모두 구비하는 경우에 625nm 파장의 빛을 보통으로 발광하였음을 확인할 수 있었다.
도 4는 본 개시에 따른 반도체 발광구조의 또 다른 예를 나타내는 도면으로서, 도 4(a)는 양자우물의 형성 과정에서 In의 분포가 균일하게 공급된 예를 나타내고, 도 4(b)는 양자우물의 형성 과정에서 In의 분포가 그레이딩(감소하다가 증가되는 형태)되도록 공급된 예를 나타낸다. 각각의 양자우물에 동일한 총량의 In이 공급되었을 때, 도 4(b)에 제시된 예가 더 밝은 빛을 보였다.
도 5는 본 개시에 따른 반도체 발광구조의 또 다른 예를 나타내는 도면으로서, 라스트 배리어(반도체 발광구조에서 p측에 가장 가깝게 위치하는 배리어)의 물질 구성을 GaN에서 GaN보다 밴드갭 에너지가 낮은 물질(예: InGaN)로 변경함으로써, 반도체 발광구조의 발광 파장을 더 길게 할 수 있다는 것을 확인하였다. 예를 들어, In/(In+Ga)의 비를 적절히 조절(예: 0.05, 0.10; 여기서 비는 성장중 기체상태에서 MO 소스(TEGa(TriEthyl Ga), TMIn(TriMethyl In), TMAl(TriMethyl Al)) 간의 분자수 비율)하였더니 625nm 파장을 발광하던 반도체 발광구조가 635nm 파장을 발광하는 반도체 발광구조로 변경됨을 확인할 수 있었다.
도 6은 본 개시에 따른 실험 결과의 일 예를 나타내는 도면으로서, 상단 좌측에 제1 층(1) 및 제2 층(2) 모두가 없는 경우(녹색), 상단 중간에 제2 층(2)만 있는 경우(노란색), 상단 우측에 제1 층(1)만 있는 경우(오렌지), 하단 좌측에 제1 층(1) 및 제2 층(2) 모두가 있는 경우(적색), 하단 중간에 도 5에 제시된 예의 경우(더 적색), 하단 우측에 제1 층(1) 및 제2 층(2)에 Al/(Al+Ga)의 비율이 0.95인 AlfGa1-fN를 사용한 경우(파란색)를 나타내었다.
실험에는 GaN 장벽층(4nm)과 In/(In+Ga)의 비율이 0.56인 IncGa1-cN 우물층(2.5nm)이 사용되었으며, 구체적으로 2개의 양자우물을 사용하여, GaN 장벽층(4nm)-IncGa1-cN 우물층(2.5nm)-GaN 장벽층(4nm)-IncGa1-cN 우물층(2.5nm)-GaN 장벽층(8nm)이 기존 구조로 사용되었다. 실험의 제약으로 1~4개의 양자우물을 사용해보았으며, 광 특성에 큰 변화는 없었다. 제1 층(1)과 제2 층(2)으로는 Al/(Al+Ga)의 비율이 0.85인 AlfGa1-fN(2nm)를 사용하였다.
우물층(양자우물)은 670℃의 온도에서 TMGa, TMIn을 사용하여 2.5nm의 두께로 성장시켰으며, 장벽층은 770℃의 온도에서 GaN을 4nm의 두께로 성장시켰다. n측에 첫번 째로 위치하는 제1 층(1)은 제1 장벽층(n측에 위치하는 첫번 째 장벽층)의 성장 직후, 제1 장벽층과 동일 조건에서 TMAl과 TMGa를 이용하여 Al/(Al+Ga)의 비율이 0.85인 AlfGa1-fN를 2nm 정도의 두께로 성장시켰다. 제1 양자우물(n측에 위치하는 첫번 째 우물층)의 성장 직후 n측에 위치하는 제2 층(2)은 50s 동안 온도를 올리며 TMGa와 TMAl을 사용하여 0.3nm의 두께로 성장시켰으며, 이후 장벽층과 동일한 성장 조건에서 나머지 1.7nm를 성장시키고, GaN 장벽층을 성장시켰다. p측에 위치하는 제1 층(1) 및 제2 층(2)도 마찬가지의 방식으로 성장시켰으며, 제1 층(1) 및 제2 층(2) 모두를 구비하는 경우에 반도체 발광구조(42)는 초격자 영역(31)의 마지막 GaN(1.5nm)-GaN 장벽층(4nm)-AlfGa1-fN(2nm) 제1 층(1)-IncGa1-cN 우물층(2.5nm)-AlfGa1-fN(2nm) 제2 층(2)-GaN 장벽층(4nm)-AfGa1-fN(2nm) 제1 층(1)-IncGa1-cN 우물층(2.5nm)-AlfGa1-fN(2nm) 제2 층(2)-GaN 장벽층(8nm)-전자 차단층(51)의 구조를 가진다. 도 5에 제시된 반도체 발광구조의 경우에 마지막 장벽층(전자 차단층(51)에 인접한 장벽층)이 IngGa1-gN 장벽층(4nm)-GaN 장벽층(4nm)의 구조를 가질 수 있다.
도 6에 도시된 바와 같이, 주어진 반도체 발광구조에서 제1 층(1) 및/또는 제2 층(2)을 도입하여 발광 파장을 긴 쪽으로 이동시킬 수 있다는 것을 알 수 있다. 그러나 이러한 현상은 도 6의 하단 우측에 제시된 바와 같이, 제1 층(1) 및 제2 층(2)의 Al 농도가 임계점을 지나면 파장이 원래 반도체 발광구조가 발광하던 파장보다 더 짧은 쪽으로 이동한다는 것을 알 수 있었다.
표 2에 기존에 사용되던 초격자 영역(31)의 성장 조건의 일 예를 정리하였다. 전술한 바와 같이, 본 개시에서 조성은 성장중 기체상태에서 MO 소스(TEGa(TriEthyl Ga), TMIn(TriMethyl In), TMAl(TriMethyl Al)) 간의 분자수 비율로 표시된다.
성장온도 조성 두께
InaGa1-aN (초격자 영역(31)) 720℃ In/(In+Ga) = 0.55 1.5nm
InbGa1-bN (초격자 영역(31)) 780℃ b = 0 (GaN) 1.5nm
여기서, 초격자 영역(31)은 도핑될 수 있으며, 전체적으로 도핑되거나, 부분적으로 도핑될 수 있다. 예를 들어, 장벽층인 InbGa1-bN (초격자 영역(31))만을 5x1018/cm3 정도로 Si 도핑하거나, 짝수 번째 장벽층만을 도핑하거나, 홀수 번째 장벽층만을 도핑할 수 있다.
표 3에 기존에 사용되던 반도체 발광구조 또는 활성 영역(42)의 성장 조건의 일 예를 정리하였다.
성장온도 조성 두께
AldGaeIn1-d-eN 장벽층 (반도체 발광구조 (42)) 770℃ d = 0, e = 1 (GaN) 4nm
IncGa1-cN 우물층 (반도체 발광구조(42)) 670℃ In/(In+Ga) = 0.56 2.5nm
AldGaeIn1-d-eN 장벽층 (반도체 발광구조(42)) 770℃ d = 0, e = 1 (GaN) 4nm
IncGa1-cN 우물층 (반도체 발광구조(42)) 670℃ In/(In+Ga) = 0.56 2.5nm
AldGaeIn1-d-eN 장벽층 (반도체 발광구조 (42)) 770℃ d = 0, e = 1 (GaN) 8nm
표 4에 본 개시에 따른 반도체 발광구조 또는 활성 영역(42)에 사용된 성장 조건의 일 예를 정리하였다.
성장온도 조성 두께
AldGaeIn1-d-eN 장벽층 (반도체 발광구조 (42)) 770℃ d = 0, e = 1 (GaN) 4nm
AlfGa1-fN 제1 층(1) 770℃ Al/(Al+Ga) = 0.85 2nm
IncGa1-cN 우물층 (반도체 발광구조(42)) 670℃ In/(In+Ga) = 0.56 2.5nm
AlfGa1-fN 제2 층 (2) 770℃ Al/(Al+Ga) = 0.85 2nm
AldGaeIn1-d-eN 장벽층 (반도체 발광구조 (42)) 770℃ d = 0, e = 1 (GaN) 4nm
AlfGa1-fN 제1 층(2) 770℃ Al/(Al+Ga) = 0.85 2nm
IncGa1-cN 우물층 (반도체 발광구조(42)) 670℃ In/(In+Ga) = 0.56 2.5nm
AlfGa1-fN 제2 층 (2) 770℃ Al/(Al+Ga) = 0.85 2nm
AldGaeIn1-d-eN 장벽층 (반도체 발광구조 (42)) 770℃ d = 0, e = 1 (GaN) 8nm
표 5에 도 5에 따른 반도체 발광구조 또는 활성 영역(42)에 사용된 성장 조건의 일 예를 정리하였다.
성장온도 조성 두께
AldGaeIn1-d-eN 장벽층 (반도체 발광구조 (42)) 770℃ d = 0, e = 1 (GaN) 4nm
AlfGa1-fN 제1 층(1) 770℃ Al/(Al+Ga) = 0.85 2nm
IncGa1-cN 우물층 (반도체 발광구조(42)) 670℃ In/(In+Ga) = 0.56 2.5nm
AlfGa1-fN 제2 층 (2) 770℃ Al/(Al+Ga) = 0.85 2nm
AldGaeIn1-d-eN 장벽층 (반도체 발광구조 (42)) 770℃ d = 0, e = 1 (GaN) 4nm
AlfGa1-fN 제1 층(2) 770℃ Al/(Al+Ga) = 0.85 2nm
IncGa1-cN 우물층 (반도체 발광구조(42)) 670℃ In/(In+Ga) = 0.56 2.5nm
AlfGa1-fN 제2 층 (2) 770℃ Al/(Al+Ga) = 0.85 2nm
IngGa1-gN 장벽층 (반도체 발광구조(42)) 770℃ In/(In+Ga) = 0.01 4nm
AldGaeIn1-d-eN 장벽층 (반도체 발광구조 (42 770℃ d = 0, e = 1 (GaN) 4nm
도 7은 본 개시에 따른 실험 결과의 또 다른 예를 나타내는 도면으로서, Al의 조성에 따른 발광 파장의 변화를 나타내었다. 좌측에 Al/(Al+Ga)의 비가 0.25일 때 발광(노란색)을, 중간에 Al/(Al+Ga)의 비가 0.75일 때 발광(적색)을, 우측에 Al/(Al+Ga)의 비가 0.95일 때 발광(파란색)을 나타냈었다. 도 6의 실험에 사용된 반도체 발광구조의 기준으로 20% 이상의 Al 조성일 때 유의미한 파장의 변화를 유도하였으며, Al 90% 이상의 어떤 값에서 파장이 다시 짧아지는 변화를 보인다는 것을 알 수 있다.
도 8은 본 개시에 따른 실험 결과의 또 다른 예를 나타내는 도면으로서, 제1 층(1) 및 제2 층(2)의 두께 변화에 따른 광량 변화를 나타내었다. 도 6에 제시된 구조를 사용할 때, 대략 2nm 인근에서 최대치를 보이고, 5nm가 되면 값이 급격히 떨어짐을 알 수 있으며, 0.5-4nm의 값을 사용할 수 있을 것이다.
도 9는 본 개시에 따른 실험 결과의 또 다른 예를 나타내는 도면으로서, 좌측에 도 4(a)에 제시된 반도체 발광구조를 사용할 때의 결과값, 우측에 도 4(b)에 제시된 반도체 발광구조를 사용할 때의 결과값을 나타내었다. 우측의 예가 더 밝고 더 붉은 빛을 띤다는 것을 알 수 있다.
도 10은 본 개시에 따른 실험 결과의 또 다른 예를 나타내는 도면으로서, 전류에 따른 파장 변화 정도를 확인해보았다. 기존 대량 In을 사용하는 InGaN 적색 LED와 달리(전류량이 늘어나면 급격히 파장이 짧아짐), 전류량이 늘어나도 파장 Shift가 적다는 것을 알 수 있다.
도 11은 본 개시와 관련된 반도체 발광소자를 밴드갭 에너지의 관점에서 설명하는 도면으로서, (a)에 종래의 반도체 발광소자를 나타내었고, (b)에 도 2에 제시된 반도체 발광소자를 나타내었으며, (c)에 (b)에 제시된 구조에서 초격자 영역(31)에 반도체 발광구조(42)의 장벽층 형태를 적용한 반도체 발광소자를 나타내었다.
표 6에 도 11(c)에 제시된 반도체 발광소자에 사용된 성장 조건의 일 예를 정리하였다.
성장온도 조성 두께
AlgGa1-gN 제3 층(3) 780℃ Al/(Al+Ga) = 0.50 0.8nm
InaGa1-aN (초격자 영역(31)) 720℃ In/(In+Ga) = 0.55 1.5nm
AlgGa1-gN 제4 층(4)) 780℃ Al/(Al+Ga) = 0.50 0.8nm
InbGa1-bN (초격자 영역(31)) 780℃ b = 0 (GaN) 1.5nm
: : : :
<<15 주기>>
: : : :
AlgGa1-gN 제3 층(3) 780℃ Al/(Al+Ga) = 0.50 0.8nm
InaGa1-aN (초격자 영역(31)) 720℃ In/(In+Ga) = 0.55 1.5nm
AlgGa1-gN 제4 층(4)) 780℃ Al/(Al+Ga) = 0.50 0.8nm
InbGa1-bN (초격자 영역(31)) 780℃ b = 0 (GaN) 1.5nm
AldGaeIn1-d-eN 장벽층 (반도체 발광구조 (42)) 770℃ d = 0, e = 1 (GaN) 4nm
AlfGa1-fN 제1 층(1) 770℃ Al/(Al+Ga) = 0.85 2nm
IncGa1-cN 우물층 (반도체 발광구조(42)) 670℃ In/(In+Ga) = 0.56 2.5nm
AlfGa1-fN 제2 층 (2) 770℃ Al/(Al+Ga) = 0.85 2nm
AldGaeIn1-d-eN 장벽층 (반도체 발광구조 (42)) 770℃ d = 0, e = 1 (GaN) 4nm
AlfGa1-fN 제1 층(2) 770℃ Al/(Al+Ga) = 0.85 2nm
IncGa1-cN 우물층 (반도체 발광구조(42)) 670℃ In/(In+Ga) = 0.56 2.5nm
AlfGa1-fN 제2 층 (2) 770℃ Al/(Al+Ga) = 0.85 2nm
AldGaeIn1-d-eN 장벽층 (반도체 발광구조 (42)) 770℃ d = 0, e = 1 (GaN) 8nm
도 12 및 도 14는 본 개시에 따른 실험 결과의 또 다른 예를 나타내는 도면으로서, 도 12는 도 11(c)에 제시된 반도체 발광소자에 대한 실험 결과를 나타내는 도면으로서, 도 11(b)에 제시된 반도체 발광소자에서 초격자 영역(31)을 제외하고 모든 성장 조건을 동일하게 두었을 때의 결과이며, 도 7의 우측에 제시된 소자와 마찬가지로 다시 파장이 짧은 파장으로 이동하는 결과를 나타냈다. 이는 도 11(c)에 제시된 초격자 영역(31) 즉, 초격자 영역(31)에 도입된 제3 층(3) 및 제4 층(4) 구조가 반도체 발광구조(42)의 우물층에 주입되는 In의 양을 증가시키는 역할을 하는 것으로 판단된다. 여기서, 제1 층(1)과 제2 층(2)에 사용되는 Al/(Al+Ga)의 비를 0.85에서 0.45으로 낮추었더니 도 13에 제시된 바와 같이, 붉은 색(635nm의 발광 파장)의 빛이 도 11(b)에 제시된 반도체 발광소자에 비해 2배 이상이 발광되는 것을 확인하였다. 도 14에는 제3 층(3) 및 제4 층(4)의 유무에 따른 초격자 영역(31)의 PL 측정결과가 나타나 있으며, 제3 층(3) 및 제4 층(4)을 구비할 때 PL 피크가 445nm에서 535nm로 장파장 측에서 큰 폭 이동한 것을 보여준다.
제1 층(1), 제2 층(2), 제3 층(3), 제4 층(4), 성장 기판(11), 버퍼 영역(21), n측 컨택 영역(30), 초격자 영역(31), 반도체 발광구조(42), 전자 차단층(51; EBL) p측 컨택 영역(52), 전류 확산 전극(60), 제1 전극(70), 제2 전극(80)

Claims (1)

  1. 3족 질화물 반도체 발광구조를 제조하는 방법.
KR1020210072816A 2021-06-04 2021-06-04 3족 질화물 반도체 발광구조를 제조하는 방법 KR20220164267A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210072816A KR20220164267A (ko) 2021-06-04 2021-06-04 3족 질화물 반도체 발광구조를 제조하는 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210072816A KR20220164267A (ko) 2021-06-04 2021-06-04 3족 질화물 반도체 발광구조를 제조하는 방법

Publications (1)

Publication Number Publication Date
KR20220164267A true KR20220164267A (ko) 2022-12-13

Family

ID=84439075

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210072816A KR20220164267A (ko) 2021-06-04 2021-06-04 3족 질화물 반도체 발광구조를 제조하는 방법

Country Status (1)

Country Link
KR (1) KR20220164267A (ko)

Similar Documents

Publication Publication Date Title
CN108028300B (zh) 氮化物半导体发光元件
US8829490B2 (en) Semiconductor light emitting device and method for manufacturing the same
US7462876B2 (en) Nitride semiconductor light emitting device
EP2325902B1 (en) Light emitting diode having a modulation doping layer
US9048387B2 (en) Light-emitting device with improved light extraction efficiency
CN101821861B (zh) 不含磷的基于氮化物的红和白发光二极管的制造
CN102439740B (zh) 发光器件
EP1976031A2 (en) Light emitting diode having well and/or barrier layers with superlattice structure
US10559718B2 (en) Light-emitting device having plural recesses in layers
TWI623112B (zh) Nitride semiconductor light-emitting element
CN107004743B (zh) 半导体发光元件
JP2006237281A (ja) 半導体装置の製造方法
JP2001028458A (ja) 発光素子
KR100780212B1 (ko) 질화물 반도체 소자
TW201338197A (zh) 具有漸變含量之電洞穿隧層之發光元件
JP2016178173A (ja) 発光素子およびその製造方法
CN105789392A (zh) GaN基LED外延结构及其制造方法
CN108400205B (zh) 氮化物半导体发光元件的制造方法
KR100979701B1 (ko) 변조도핑층을 갖는 발광 다이오드
CN214477522U (zh) 发光二极管
KR20220164267A (ko) 3족 질화물 반도체 발광구조를 제조하는 방법
KR20220164268A (ko) 3족 질화물 반도체 발광구조를 제조하는 방법
KR20220153340A (ko) 3족 질화물 반도체 발광구조를 제조하는 방법
CN108598235B (zh) GaN基LED结构及其制备方法
KR101648948B1 (ko) 신뢰성 있는 발광 다이오드 및 그것을 제조하는 방법