KR20220151144A - Methods for treatment of refractory wastewater to simultaneously remove organic pollutants and ammonia nitrogen - Google Patents

Methods for treatment of refractory wastewater to simultaneously remove organic pollutants and ammonia nitrogen Download PDF

Info

Publication number
KR20220151144A
KR20220151144A KR1020220141487A KR20220141487A KR20220151144A KR 20220151144 A KR20220151144 A KR 20220151144A KR 1020220141487 A KR1020220141487 A KR 1020220141487A KR 20220141487 A KR20220141487 A KR 20220141487A KR 20220151144 A KR20220151144 A KR 20220151144A
Authority
KR
South Korea
Prior art keywords
oxidizing agent
chlorine
ammonia nitrogen
organic contaminants
wastewater
Prior art date
Application number
KR1020220141487A
Other languages
Korean (ko)
Other versions
KR102585985B1 (en
Inventor
현준택
이승현
신현수
김정식
Original Assignee
(주) 테크윈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 테크윈 filed Critical (주) 테크윈
Priority to KR1020220141487A priority Critical patent/KR102585985B1/en
Publication of KR20220151144A publication Critical patent/KR20220151144A/en
Application granted granted Critical
Publication of KR102585985B1 publication Critical patent/KR102585985B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/586Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing ammoniacal nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

The present invention relates to a non-degradable wastewater treatment method for simultaneously removing organic contaminants and ammonia nitrogen. More specifically, the non-degradable wastewater treatment method comprises: an oxidizing agent introducing step of introducing a chlorine-based oxidizing agent into non-degradable wastewater; and an oxidizing agent activating step of activating the chlorine-based oxidizing agent introduced into the non-degradable wastewater through the oxidizing agent introducing step. The non-degradable wastewater treatment method performed through the steps simultaneously removes organic contaminants and ammonia nitrogen contained in non-degradable wastewater with high efficiency.

Description

유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법 {METHODS FOR TREATMENT OF REFRACTORY WASTEWATER TO SIMULTANEOUSLY REMOVE ORGANIC POLLUTANTS AND AMMONIA NITROGEN}Non-degradable wastewater treatment method that simultaneously removes organic contaminants and ammonia nitrogen

본 발명은 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법에 관한 것으로, 더욱 상세하게는 염소계 산화제를 사용하여 난분해성 폐수 내에 함유된 유기오염물(Total Organic Carbon, TOC) 및 암모니아성 질소(Ammonia Nitrogen, NH3-N)를 높은 효율로 동시 제거하는 난분해성 폐수 처리 방법에 관한 것이다.The present invention relates to a non-degradable wastewater treatment method for simultaneously removing organic contaminants and ammonia nitrogen, and more particularly, to a method for treating organic pollutants (Total Organic Carbon, TOC) and ammonia nitrogen contained in non-degradable wastewater using a chlorine-based oxidizing agent. (Ammonia Nitrogen, NH 3 -N) with high efficiency.

원자력발전소 2차 계통수의 pH 조정제로 사용되는 에탄올아민[NH2CH2CH2OH]은 기존의 pH 조정제인 암모니아 대비 낮은 휘발성과 높은 염기성으로 적은 양의 주입만으로도 pH 조정이 가능하고 장치의 부식관리 측면에 유리한 효과가 검증된 안정한 유기화합물이다. 다만, 환경적으로 보면, 에탄올아민은 화학식[NH2CH2CH2OH] 상 유기탄소(C)와 질소(N)를 포함하고 있어 수계 유입 시 유기오염물과 암모니아성 질소의 농도를 동시에 증가시키는 오염 물질이며, 기존의 폐수처리 설비로는 제거하기 어려운 난분해성 물질로 알려져 있다. Ethanolamine [NH 2 CH 2 CH 2 OH], which is used as a pH adjuster for secondary system water of nuclear power plants, has low volatility and high basicity compared to ammonia, a conventional pH adjuster, enabling pH adjustment with only a small amount of injection and corrosion control of devices It is a stable organic compound whose beneficial effect on the side has been verified. However, from an environmental point of view, ethanolamine contains organic carbon (C) and nitrogen (N) in its chemical formula [NH 2 CH 2 CH 2 OH], which simultaneously increases the concentration of organic pollutants and ammonia nitrogen when introduced into the water system. It is a contaminant and is known as a difficult-to-decompose material that is difficult to remove with existing wastewater treatment facilities.

이러한 난분해성 오염물질을 제거하기 위해서는 산화전위가 높은 수산화 라디칼(Hydroxyl Radical, OH·), 황산 라디칼(Sulfate Radical, SO4 ) 등의 강력한 산화제가 필요하다.In order to remove these non-degradable contaminants, strong oxidizing agents such as hydroxyl radicals (OH·) and sulfate radicals (SO 4 ) having high oxidation potential are required.

일반적으로 사용되는 대표적인 산화제들의 산화전위를 아래 표 1에 나타내었다.The oxidation potentials of representative oxidizing agents commonly used are shown in Table 1 below.

Figure pat00001
Figure pat00001

수산화 라디칼을 생성시키는 대표적 방법에는 펜톤산화법이 있다. 펜톤산화법은 2가 철 이온과 과산화수소를 반응시켜 수산화 라디칼을 생성하는 방법으로, 철 이온 주입에 따른 다량의 슬러지 발생과 고가의 과산화수소를 다량 주입함으로 경제성이 떨어지는 단점이 있다. 또한 산성 조건에서만 오염물질의 처리가 가능하여 정밀한 pH 관리가 필요하다.A representative method for generating hydroxyl radicals is the Fenton oxidation method. The Fenton oxidation method is a method of generating hydroxyl radicals by reacting divalent iron ions with hydrogen peroxide, and has disadvantages in that a large amount of sludge is generated due to iron ion implantation and economical efficiency is low because a large amount of expensive hydrogen peroxide is injected. In addition, it is possible to treat contaminants only under acidic conditions, so precise pH management is required.

Fe2+ + H2O2 → Fe2+ + OH· + OH- (1)Fe 2+ + H 2 O 2 → Fe 2+ + OH + OH - (1)

황산 라디칼은 과황산(Persulfate, S2O8 2- 및 SO5 2-) 음이온을 활성화시켜 생성할 수 있다. 과황산을 활성화시키기 위해선 가열, 자외선 조사, 금속 촉매 투입 등의 과정이 필요하고, 과황산을 포함하는 대표적 화합물인 과황산나트륨(Sodium Persulfate, Na2S2O8), 과황산암모늄(Ammonium Persulfate, (NH4)2S2O8), 과황산칼륨(Potassium Persulfate, K2S2O8) 및 포타슘퍼옥시모노설페이트(Patassium Peroxymonosulfate, KHSO5)는 상대적으로 고가의 산화제들 이다.Sulfuric acid radicals can be generated by activating persulfate (S 2 O 8 2- and SO 5 2- ) anions. In order to activate persulfuric acid, processes such as heating, ultraviolet irradiation, and metal catalyst injection are required . (NH 4 ) 2 S 2 O 8 ), potassium persulfate (K 2 S 2 O 8 ) and potassium peroxymonosulfate (KHSO 5 ) are relatively expensive oxidizing agents.

S2O8 2- + heat → 2SO4 (2)S 2 O 8 2- + heat → 2SO 4 - (2)

S2O8 2- + UV → SO4 + SO4 2- (3)S 2 O 8 2- + UV → SO 4 - + SO 4 2- (3)

S2O8 2- + Fe2+ → SO4 + Fe3+ + SO4 2- (4)S 2 O 8 2- + Fe 2+ → SO 4 - + Fe 3+ + SO 4 2- (4)

염소계 산화제는 전세계에서 보편적으로 널리 사용되는 가정용 살균 소독제이며, 수영장 소독과 정수 처리 등에 사용되는 산화제이다. 또한 폐수에 포함된 암모니아성 질소를 처리하는 대표적 폐수 처리 공정인 파과점 염소주입법(Breakpoint Chlorination)에 사용된다. Chlorine-based oxidizing agent is a household sterilization disinfectant widely used worldwide, and is an oxidizing agent used for swimming pool disinfection and water treatment. It is also used in Breakpoint Chlorination, a representative wastewater treatment process that treats ammonia nitrogen contained in wastewater.

NH4 + + 1.5HOCl → 0.5N2 + 1.5H2O + 2.5H+ + 1.5Cl- (5)NH 4 + + 1.5HOCl → 0.5N 2 + 1.5H 2 O + 2.5H + + 1.5Cl - (5)

차아염소산나트륨은 소금(NaCl)을 전기분해하거나 염소 가스(Cl2)와 가성소다(NaOH)를 저온 냉각법으로 반응시켜 제조한다.Sodium hypochlorite is produced by electrolysis of salt (NaCl) or by reacting chlorine gas (Cl 2 ) and caustic soda (NaOH) by a low-temperature cooling method.

2NaCl + 2H2O → Cl2 + 2NaOH + H2 (6)2NaCl + 2H 2 O → Cl 2 + 2NaOH + H 2 (6)

Cl2 + 2NaOH → NaOCl + NaCl + H2O (7)Cl 2 + 2NaOH → NaOCl + NaCl + H 2 O (7)

일반적으로 널리 사용되는 염소계 산화제는 산화력이 낮아 난분해성 유기물질을 처리하기에는 적합하지 않은 것으로 알려져 있다. 그러나, 본 발명자는 염소계 산화제의 산화력을 높이기 위해 다수의 실험을 수행하였고, 실험을 통하여 염소계 산화제의 활성화 방법으로 가열 및 자외선 조사, 촉매 투입의 방법을 도출하여 본 발명을 완성하였다.Generally, it is known that widely used chlorine-based oxidizing agents are not suitable for treating non-decomposable organic materials due to their low oxidizing power. However, the present inventors performed a number of experiments to increase the oxidizing power of the chlorine-based oxidizing agent, and through the experiments, as a method of activating the chlorine-based oxidizing agent, the present invention was completed by deriving a method of heating, ultraviolet irradiation, and catalyst input.

일반적으로 염소계 산화제는, 특히 차아염소산나트륨은 안정성 및 산화력의 유지를 위해 낮은 온도에서 보관하고 열원으로부터 멀리하도록 권장하고 있다. 대한민국 등록특허 제10-2058319 에는, 차아염소산나트륨은 화학적으로 불안정한 물질로 보관 기간과 온도에 따라 농도가 떨어지는 것으로 개시되어 있다. 또한, OxyChem 사의 차아염소산나트륨 핸드북에는, 온도는 차아염소산 용액의 안정성에 영향을 미치고, 온도가 높을수록 분해 속도가 증가하므로 용액을 열로부터 멀리하도록 명시되어 있다. 온도에 따른 분해속도는 15% 차아염소산나트륨의 경우, 25℃ 보다 40℃에서 5배 더 빠르게 분해되는 것으로 기록되어 있다. 유럽연합(EU) 규정 No. 528/2012 에는 유효염소 농도가 10%(w/w)인 차아염소산나트륨 수용액의 온도 별 반감기로 15℃에서 800일, 25℃에서 220일, 60℃에서 3.5일, 100℃에서 0.079일로, 온도가 증가할수록 안정성은 급격히 감소되는 것으로 기록되어 있다.In general, chlorine-based oxidizing agents, especially sodium hypochlorite, are recommended to be stored at low temperatures and away from heat sources to maintain stability and oxidizing power. Korean Registered Patent No. 10-2058319 discloses that sodium hypochlorite is a chemically unstable substance and its concentration decreases depending on the storage period and temperature. Also, in the handbook of sodium hypochlorite from OxyChem, it is stated that the temperature affects the stability of the hypochlorous acid solution, and that the higher the temperature, the higher the decomposition rate, so keep the solution away from heat. The decomposition rate as a function of temperature has been recorded to decompose 5 times faster at 40°C than at 25°C for 15% sodium hypochlorite. European Union Regulation No. 528/2012, the half-life of sodium hypochlorite aqueous solution with an effective chlorine concentration of 10% (w/w) by temperature was 800 days at 15 ° C, 220 days at 25 ° C, 3.5 days at 60 ° C, and 0.079 days at 100 ° C. It is recorded that the stability decreases rapidly as .

또한, 차아염소산나트륨 용액에 포함된 다량의 염소 이온은 금속의 부식을 유발하고 환경오염을 야기하는 원인 물질이다. 이에 차아염소산나트륨 내 함유된 염소이온의 농도를 낮춘 저식염 차아염소산나트륨(Low Salt Sodium Hypochlorite) 제품들이 출시되고 있다. 염소이온의 농도를 낮춘 저식염 차아염소산나트륨이라 함은 차아염소산나트륨 수용액 내 염화나트륨의 함량이 4.0 중량% 이하의 것을 말한다. 대한민국 공개특허 제10-2015-0076089호에는 차아염소산나트륨 농도가 30 내지 40 질량%인 차아염소산나트륨 수용액 내 염소 이온의 농도는 1.5 질량% 이하, 염화나트륨의 농도는 5.0 질량% 이하인 저식염 차아염소산나트륨의 제조방법이 기술되어 있다.In addition, a large amount of chlorine ions contained in the sodium hypochlorite solution is a causative material that causes metal corrosion and environmental pollution. Accordingly, low salt sodium hypochlorite products with reduced concentration of chlorine ions in sodium hypochlorite are being released. Low table salt sodium hypochlorite with reduced concentration of chlorine ions refers to those in which the sodium chloride content in sodium hypochlorite aqueous solution is 4.0% by weight or less. Korean Patent Laid-open Publication No. 10-2015-0076089 discloses sodium hypochlorite having a sodium hypochlorite concentration of 30 to 40% by mass, the concentration of chlorine ion is 1.5% by mass or less, and the concentration of sodium chloride is 5.0% by mass or less of sodium hypochlorite. The manufacturing method is described.

본 발명의 목적은 난분해성 폐수 내에 함유된 유기오염물과 암모니아성 질소를 높은 효율로 제거하는 난분해성 폐수 처리 방법을 제공하는 것이다.An object of the present invention is to provide a non-degradable wastewater treatment method for removing organic contaminants and ammonia nitrogen contained in non-degradable wastewater with high efficiency.

본 발명의 목적은 난분해성 폐수에 염소계 산화제를 투입하는 산화제투입단계 및 상기 산화제투입단계를 통해 산화제가 투입된 난분해성 폐수를 활성화하는 산화제활성화단계;로 이루어지는 것을 특징으로 하는 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법을 제공함에 의해 달성된다.An object of the present invention is an oxidizing agent inputting step of introducing a chlorine-based oxidizing agent into non-degradable wastewater and an oxidizing agent activation step of activating the non-degradable wastewater into which the oxidizing agent is introduced through the oxidizing agent inputting step; This is achieved by providing a method for treating recalcitrant wastewater with simultaneous removal.

본 발명의 바람직한 특징에 따르면, 상기 산화제투입단계는 난분해성 폐수에 함유된 유기오염물 100 중량부 대비 염소계 산화제 500 내지 10000 중량부를 투입하여 이루어지는 것으로 한다.According to a preferred feature of the present invention, the step of introducing the oxidizing agent is made by adding 500 to 10,000 parts by weight of a chlorine-based oxidizing agent based on 100 parts by weight of organic contaminants contained in the recalcitrant wastewater.

본 발명의 더 바람직한 특징에 따르면, 상기 산화제투입단계는 난분해성 폐수에 함유된 유기오염물 100 중량부 대비 염소계 산화제 1000 내지 7000 중량부를 투입하여 이루어지는 것으로 한다.According to a more preferred feature of the present invention, the step of introducing the oxidizing agent is made by adding 1000 to 7000 parts by weight of a chlorine-based oxidizing agent based on 100 parts by weight of organic contaminants contained in the recalcitrant wastewater.

본 발명의 더욱 바람직한 특징에 따르면, 상기 산화제활성화단계는 염소계 산화제를 활성화하여 활성화 라디칼로 전환하는 반응속도를 증가시켜 산화 반응을 극대화하는 반응 촉진 단계인 것으로 한다.According to a more preferred feature of the present invention, the oxidizing agent activation step is a reaction promoting step of maximizing the oxidation reaction by increasing the reaction rate of activating the chlorine-based oxidizing agent and converting it into activated radicals.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 염소계 산화제는 염소, 차아염소산염, 염소를 포함하는 알칼리 금속 및 알칼리 토금속으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지며, 상기 차아염소산염은 차아염소산나트륨, 차아염소산칼륨 및 차아염소산칼슘으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것으로 한다.According to a more preferred feature of the present invention, the chlorine-based oxidizing agent is made of at least one selected from the group consisting of chlorine, hypochlorite, alkali metals and alkaline earth metals containing chlorine, and the hypochlorite is sodium hypochlorite, potassium hypochlorite and at least one selected from the group consisting of calcium hypochlorite.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 염소계 산화제는 염소 이온을 포함하는 금속염의 함량이 1 내지 12 중량%인 것으로 한다.According to a further preferred feature of the present invention, the chlorine-based oxidizing agent is that the content of the metal salt containing chlorine ions is 1 to 12% by weight.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 산화제활성화단계는 가열, 자외선 조사 및 촉매 투입으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것으로 한다.According to a more preferred feature of the present invention, the oxidizing agent activation step is to consist of at least one selected from the group consisting of heating, ultraviolet irradiation and catalyst input.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 촉매는 금속촉매 및 킬레이트 금속 촉매로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것으로 한다.According to a further preferred feature of the present invention, the catalyst is made of at least one selected from the group consisting of metal catalysts and chelate metal catalysts.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 가열은 50℃ 내지 끓는점(Boiling point) 이하의 온도로 10 내지 100분 동안 이루어지는 것으로 한다.According to a more preferred feature of the present invention, the heating is to be performed at a temperature of 50 ° C. to a boiling point or less for 10 to 100 minutes.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 산화제투입단계 이전에는 상기 난분해성 폐수에 pH 조정제를 투입하여 난분해성 폐수의 pH를 4 내지 13으로 조절하는 pH조절단계가 더 진행되는 것으로 한다.According to a more preferred feature of the present invention, a pH adjustment step of adjusting the pH of the recalcitrant wastewater to 4 to 13 by adding a pH adjuster to the recalcitrant wastewater is further performed prior to the inputting of the oxidizing agent.

본 발명에 따른 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법은 난분해성 폐수 내에 함유된 유기오염물과 암모니아성 질소를 높은 효율로 동시에 제거하는 탁월한 효과를 나타낸다.The non-degradable wastewater treatment method for simultaneously removing organic contaminants and ammonia nitrogen according to the present invention shows an excellent effect of simultaneously removing organic contaminants and ammonia nitrogen contained in non-degradable wastewater with high efficiency.

도 1은 본 발명의 일 실시예에 따른 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법을 나타낸 순서도이다.
도 2는 본 발명의 다른 실시예에 따른 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법을 나타낸 순서도이다.
도 3은 본 발명의 실시예에서 사용되는 장비를 촬영하여 나타낸 사진이다.
1 is a flowchart illustrating a method for treating recalcitrant wastewater for simultaneously removing organic contaminants and ammonia nitrogen according to an embodiment of the present invention.
2 is a flow chart showing a method for treating recalcitrant wastewater in which organic contaminants and ammonia nitrogen are simultaneously removed according to another embodiment of the present invention.
Figure 3 is a photograph showing the equipment used in the embodiment of the present invention taken.

이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.Hereinafter, a preferred embodiment of the present invention and the physical properties of each component will be described in detail, but this is to be explained in detail so that a person having ordinary knowledge in the art to which the present invention belongs can easily practice the invention, This is not meant to limit the technical spirit and scope of the present invention.

본 발명에 따른 난분해성 폐수의 처리방법은 화학식에 유기탄소(C)와 질소(N)을 포함하여 유기오염물 및 암모니아성 질소의 농도를 동시에 증가시키는 난분해성 오염물질인 에탄올아민이 함유된 난분해성 폐수에 염소계 산화제를 투입하는 산화제투입단계(S101) 및 상기 산화제투입단계(S101)를 통해 에탄올아민이 함유된 난분해성 폐수에 투입된 염소계 산화제를 활성화하는 산화제활성화단계(S102)로 이루어진다.The treatment method of non-degradable wastewater according to the present invention includes organic carbon (C) and nitrogen (N) in the chemical formula and contains ethanolamine, a non-degradable pollutant that simultaneously increases the concentration of organic contaminants and ammonia nitrogen. It consists of an oxidizing agent inputting step (S101) of introducing a chlorine-based oxidizing agent into the wastewater and an oxidizing agent activating step (S102) of activating the chlorine-based oxidizing agent introduced into the ethanolamine-containing recalcitrant wastewater through the oxidizing agent inputting step (S101).

상기 산화제투입단계(S101)는 에탄올아민이 함유된 난분해성 폐수에 염소계 산화제를 투입하는 단계로, 에탄올아민이 함유된 난분해성 폐수의 유기오염물 100 중량부 대비 염소계 산화제 500 내지 10000 중량부를 투입하여 이루어지며, 더욱 바람직하게는 에탄올아민이 함유된 난분해성 폐수의 유기오염물 100 중량부 대비 염소계 산화제 1000 내지 7000 중량부를 투입하여 이루어진다.The oxidizing agent input step (S101) is a step of injecting a chlorine-based oxidizing agent into the ethanolamine-containing non-decomposable wastewater, which is made by injecting 500 to 10,000 parts by weight of the chlorine-based oxidizing agent based on 100 parts by weight of organic contaminants in the ethanolamine-containing non-degradable wastewater. More preferably, 1000 to 7000 parts by weight of a chlorine-based oxidizing agent is added to 100 parts by weight of organic contaminants in non-degradable wastewater containing ethanolamine.

상기 염소계 산화제는 염소, 차아염소산염, 염소를 포함하는 알칼리 금속 및 알칼리 토금속으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지며, 상기 차아염소산염은 차아염소산나트륨, 차아염소산칼륨 및 차아염소산칼슘으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것이 바람직하다.The chlorine-based oxidizing agent is composed of at least one selected from the group consisting of chlorine, hypochlorite, alkali metals and alkaline earth metals containing chlorine, and the hypochlorite is one selected from the group consisting of sodium hypochlorite, potassium hypochlorite and calcium hypochlorite. It is preferable to consist of the above.

상기 염소계 산화제의 함량이 500 중량부 미만이면 상기 난분해성 폐수에 함유된 유기오염물과 암모니아성 질소의 제거효과가 저하되며, 상기 염소계 산화제의 함량이 10000 중량부를 초과하게 되면 상기의 효과는 크게 향상되지 않으면서 난분해성 폐수가 다시 염소계 산화제로 오염되는 문제점이 발생한다.If the content of the chlorine-based oxidizing agent is less than 500 parts by weight, the effect of removing organic contaminants and ammonia nitrogen contained in the recalcitrant wastewater is reduced, and if the content of the chlorine-based oxidizing agent exceeds 10,000 parts by weight, the effect is not greatly improved. However, there is a problem that the non-decomposable wastewater is again contaminated with chlorine-based oxidizing agents.

또한, 상기 염소계 산화제는 염소 이온을 포함하는 금속염의 함량이 1 내지 12 중량%인 것을 사용하는 것이 바람직하고, 염소 이온을 포함하는 금속염의 함량이 12 중량%를 초과하는 것을 사용해도 무관하나, 염소 이온에 의한 장치 부식과 환경오염 문제를 고려하여 염소 이온 함량이 낮은 것을 사용하는 것이 더욱 더 바람직하다.In addition, the chlorine-based oxidizing agent is preferably used with a metal salt content of 1 to 12% by weight containing chlorine ions, and even if the content of metal salt containing chlorine ions exceeds 12% by weight, it does not matter. Considering the problems of device corrosion and environmental pollution caused by ions, it is more preferable to use those having a low content of chlorine ions.

상기 산화제활성화단계(S102)는 상기 산화제투입단계(S101)를 통해 난분해성 폐수에 투입된 염소계 산화제를 활성화하는 단계로, 상기 산화제투입단계(S101)를 통해 산화제가 투입된 난분해성 폐수에 가열, 자외선 조사 및 촉매 투입의 활성화 방법 중에서 선택된 하나 이상을 적용하여 산화제를 활성화하는데, 이때, 상기 가열은 50℃ 내지 끓는점(Boiling Point)의 온도로 10 내지 100분 동안 이루어지는 것이 바람직하며, 상기 촉매는 금속촉매 및 킬레이트 금속 촉매로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것이 바람직하다. The oxidizing agent activation step (S102) is a step of activating the chlorine-based oxidizing agent introduced into the recalcitrant wastewater through the oxidizing agent inputting step (S101), and heating and ultraviolet irradiation to the recalcitrant wastewater into which the oxidizing agent is introduced through the oxidizing agent inputting step (S101). And the oxidizing agent is activated by applying at least one selected from the activation method of adding the catalyst. At this time, the heating is preferably performed at a temperature of 50 ° C. to boiling point for 10 to 100 minutes, and the catalyst is a metal catalyst and It is preferably composed of at least one selected from the group consisting of chelate metal catalysts.

이때, 상기 산화제활성화단계(S102)에서 가열을 진행하는 경우 가열 온도가 50℃ 미만이거나 가열시간이 10분 미만이면 난분해성 폐수에 함유된 유기오염물의 제거효과가 저하되며, 상기 가열단계(S103)의 온도가 끓는점을 초과하거나 가열시간이 100분을 초과하게 되면 상기의 효과는 크게 향상되지 않으면서 에너지 효율성 측면에서 바람직하지 못하다.At this time, when the heating is performed in the oxidizing agent activation step (S102), if the heating temperature is less than 50 ° C or the heating time is less than 10 minutes, the removal effect of organic contaminants contained in the recalcitrant wastewater is reduced, and the heating step (S103) If the temperature exceeds the boiling point or the heating time exceeds 100 minutes, the above effect is not greatly improved and is not desirable in terms of energy efficiency.

또한, 상기 산화제활성화단계(S102)에서 염소계 산화제의 활성화 방법 중 가열은, 일반적으로는 염소계 산화제의 안정성과 산화력을 급격하게 감소시키는 원인이나, 본 특허에서는 난분해성 폐수의 유기오염물 및 암모니아성 질소를 동시 제거하는 염소계 산화제의 활성화 방법으로 사용된다.In addition, heating among the methods of activating the chlorine-based oxidizing agent in the oxidizing agent activation step (S102) is generally a cause of rapidly reducing the stability and oxidizing power of the chlorine-based oxidizing agent, but in this patent, organic contaminants and ammonia nitrogen in recalcitrant wastewater are removed. It is used as an activation method for chlorine-based oxidizing agents that simultaneously remove it.

상기 산화제투입단계(S101) 이전에는 상기 난분해성 폐수에 pH 조정제를 투입하여 난분해성 폐수의 pH를 4 내지 13으로 조절하는 pH조절단계(S100)가 더 진행될 수도 있는데, 상기와 같이 pH조절단계(S100)를 통해 pH 조정제가 투입되어 난분해성 폐수의 pH가 4 내지 13으로 조절되면, 난분해성 폐수에 함유된 유기오염물과 암모니아성 질소의 제거효과가 더욱 향상된다. 다만, pH 조정제는 난분해성 폐수를 처리하는 현장 상황과 처리 공정의 구성, 사용되는 염소계 산화제의 종류에 따라서 투입 여부를 결정하는 것이 바람직하다.Prior to the oxidizing agent input step (S101), a pH adjusting step (S100) of adjusting the pH of the recalcitrant wastewater to 4 to 13 by adding a pH adjuster to the recalcitrant wastewater may be further performed. As described above, the pH control step ( When the pH of the non-degradable wastewater is adjusted to 4 to 13 by introducing a pH adjuster through S100), the removal effect of organic contaminants and ammonia nitrogen contained in the non-degradable wastewater is further improved. However, it is preferable to determine whether to add the pH adjuster according to the on-site conditions of treating the non-degradable wastewater, the configuration of the treatment process, and the type of chlorine-based oxidizing agent used.

이하에서는, 본 발명에 따른 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법 및 그 처리 방법으로 처리된 난분해성 폐수의 유기오염물과 암모니아성 질소의 동시 제거 효과를 실시예를 들어 설명하기로 한다.Hereinafter, a non-degradable wastewater treatment method for simultaneously removing organic contaminants and ammonia nitrogen according to the present invention and the effect of simultaneous removal of organic contaminants and ammonia nitrogen in non-degradable wastewater treated by the treatment method will be described with examples. do it with

실시예 및 비교예에서 사용한 난분해성 폐수로는 에탄올아민과 탈이온수를 혼합하여 제조한 모의 폐수를 사용하였고, 염소계 산화제로는 차아염소산나트륨(NaOCl)을 사용하였다. 상기 제조된 난분해성 폐수의 pH 조정제로는 황산(Sulfuric Acid, H2SO4) 및 수산화나트륨(Sodium Hydroxide, NaOH)을 사용하였다. 다만, 난분해성 폐수의 pH 조정제로 황산 및 수산화나트륨을 한정하는 것은 아니다. 본 실시예는 아래 도 3에 나타낸 것처럼, 용액의 온도 조절 및 교반이 가능한 히팅맨틀(Heating Mantel)과 가열시 용액의 증발을 최소화할 수 있는 이중자켓 코일냉각관을 장착한 장치를 사용하여 진행하였다.As the non-degradable wastewater used in Examples and Comparative Examples, simulated wastewater prepared by mixing ethanolamine and deionized water was used, and sodium hypochlorite (NaOCl) was used as a chlorine-based oxidizing agent. Sulfuric acid (H 2 SO 4 ) and sodium hydroxide (NaOH) were used as pH adjusting agents for the prepared non-degradable wastewater. However, sulfuric acid and sodium hydroxide are not limited to pH adjusters of non-degradable wastewater. As shown in FIG. 3 below, this embodiment was carried out using a device equipped with a heating mantel capable of temperature control and stirring of the solution and a double-jacketed coil cooling tube capable of minimizing evaporation of the solution during heating. .

가열 반응 종료 후에는 즉시 수냉 방식으로 급랭하여 용액의 온도를 상온까지 낮추어 실험 시 설정한 반응 시간이 유지되도록 하였으며, 최종적으로 유기오염물과 암모니아성 질소의 제거율은 산화제 투입 전과 후의 TOC 및 TN 농도를 분석하여 확인하였다.After the heating reaction was completed, the temperature of the solution was quenched by water cooling immediately to lower the temperature of the solution to room temperature to maintain the reaction time set during the experiment. Finally, the removal rate of organic contaminants and ammonia nitrogen was analyzed by TOC and TN concentrations before and after the introduction of the oxidizing agent. and confirmed.

<실시예 1><Example 1>

상기와 같이 제조된 모의 폐수에 pH 조정제를 투입하여 pH를 7로 조정하였다. 다음으로 pH가 조정된 폐수에 차아염소산나트륨을 투입하였다. 이때 차아염소산나트륨은 에탄올아민으로 제조한 모의 폐수 내 유기오염물(TOC) 100 중량부 대비 2000 중량부가 되도록 투입하였다. 차아염소산나트륨이 첨가된 폐수 용액 100mL를 3구 플라스크에 담고 히팅맨틀에 삽입한 후 가열하였다. 용액의 온도는 50℃, 70℃, 90℃, 100℃ 가 되도록 설정하였으며, 설정된 온도 도달 후 20분간 온도를 유지하였다. 가열 반응 종료 후 상기와 같이 온도를 상온까지 낮춘 후 TOC, TN 농도를 분석하였다.The pH was adjusted to 7 by adding a pH adjuster to the simulated wastewater prepared as described above. Next, sodium hypochlorite was added to the pH-adjusted wastewater. At this time, sodium hypochlorite was added in an amount of 2000 parts by weight relative to 100 parts by weight of organic pollutants (TOC) in simulated wastewater prepared with ethanolamine. 100 mL of the wastewater solution to which sodium hypochlorite was added was placed in a three-necked flask, inserted into a heating mantle, and then heated. The temperature of the solution was set to be 50 ℃, 70 ℃, 90 ℃, 100 ℃, and the temperature was maintained for 20 minutes after reaching the set temperature. After the completion of the heating reaction, the temperature was lowered to room temperature as described above, and then TOC and TN concentrations were analyzed.

<비교예 1><Comparative Example 1>

상기 실시예 1과 동일하게 진행하되, 산화제인 차아염소산나트륨 대신 과황산나트륨(Sodium Persulfate, Na2S2O8)를 사용하였고, 에탄올아민으로 제조한 모의 폐수 내 유기오염물(TOC) 100 중량부 대비 6000 중량부가 되도록 투입하고, 용액의 온도는 90℃로 설정하였다. 상기와 같이 처리한 처리수의 TOC, TN 농도를 분석하였다.Proceed in the same manner as in Example 1, but sodium persulfate (Na 2 S 2 O 8 ) was used instead of sodium hypochlorite as an oxidizing agent, compared to 100 parts by weight of organic pollutants (TOC) in simulated wastewater prepared with ethanolamine It was added so as to be 6000 parts by weight, and the temperature of the solution was set to 90 ° C. The TOC and TN concentrations of the treated water as described above were analyzed.

상기 실시예 1과 비교예 1의 테스트 결과를 아래 표 2에 나타내었다.The test results of Example 1 and Comparative Example 1 are shown in Table 2 below.

Figure pat00002
Figure pat00002

상기 표 2에 나타낸 것처럼, 실시예 1의 결과를 보면 가열온도가 20℃에서 100℃로 상승되면 TOC 제거율은 42%에서 95%로 대폭 상승하는 것으로 나타났다. 실시예 1의 TOC 제거율 결과를 비교예 1과 비교하면, 90℃ 이상의 가열온도에선 거의 유사한 TOC 제거율을 보이는 것으로 확인되었다.As shown in Table 2, the results of Example 1 showed that the TOC removal rate increased significantly from 42% to 95% when the heating temperature was increased from 20 ° C to 100 ° C. Comparing the TOC removal rate result of Example 1 with Comparative Example 1, it was confirmed that the TOC removal rate was almost similar at a heating temperature of 90° C. or higher.

또한, TN 제거율을 비교하면, 비교예 1의 TN 제거율은 약 11%로, 암모니아성 질소가 거의 제거되지 않은 반면, 실시예 1의 TN 제거율은 20℃에서는 약 74%를, 50℃ 이상의 온도에서는 평균 84%의 높은 암모니아성 질소 제거율을 나타내었다. 이는 차아염소산나트륨 투입과 동시에 폐수에 포함된 암모니아성 질소가 빠른 시간 내에 높은 효율로 제거된 것이다.In addition, comparing the TN removal rate, the TN removal rate of Comparative Example 1 was about 11%, and ammonia nitrogen was hardly removed, whereas the TN removal rate of Example 1 was about 74% at 20 ° C. and at a temperature of 50 ° C. or higher It showed a high ammonia nitrogen removal rate of 84% on average. This means that ammonia nitrogen contained in the wastewater is removed with high efficiency in a short time at the same time as sodium hypochlorite is introduced.

결과적으로, 실시예 1은 우수한 TOC 및 TN 제거율을 나타내었다. As a result, Example 1 showed excellent TOC and TN removal rates.

<실시예 2><Example 2>

상기와 같이 제조된 모의 폐수에 pH 조정제를 투입하여 pH를 7로 조정한 다음 pH가 조정된 폐수에 차아염소산나트륨을 투입하였다. 다만 차아염소산나트륨의 투입량은 에탄올아민으로 제조한 모의 폐수 내 유기오염물(TOC) 100 중량부 대비 1500, 2000, 2500, 3000 중량부가 되도록 각각 투입하였다. 차아염소산나트륨이 첨가된 폐수 용액 100mL를 3구 플라스크에 담고 히팅맨틀에 삽입한 후 가열하였다. 용액의 온도가 90℃가 되도록 설정하였으며, 설정된 온도 도달 후 20분간 온도를 유지하였다. 가열 반응 종료 후 상기와 같이 온도를 상온까지 낮춘 후 TOC, TN 농도를 분석하였다. 상기 실시예 2의 결과는 표 3에 나타내었다.A pH adjusting agent was added to the simulated wastewater prepared as described above to adjust the pH to 7, and then sodium hypochlorite was added to the pH-adjusted wastewater. However, the amount of sodium hypochlorite added was 1500, 2000, 2500, and 3000 parts by weight, respectively, relative to 100 parts by weight of organic pollutants (TOC) in simulated wastewater prepared with ethanolamine. 100 mL of the wastewater solution to which sodium hypochlorite was added was placed in a three-necked flask, inserted into a heating mantle, and then heated. The temperature of the solution was set to 90 °C, and the temperature was maintained for 20 minutes after reaching the set temperature. After the completion of the heating reaction, the temperature was lowered to room temperature as described above, and then TOC and TN concentrations were analyzed. The results of Example 2 are shown in Table 3.

Figure pat00003
Figure pat00003

상기 표 3에 나타낸 것처럼, 실시예 2의 결과를 보면, 폐수 내 유기오염물 대비 산화제의 투입량이 증가할수록 TOC 제거율도 상승하는 경향을 보였다. 다만, 산화제 투입량이 2000 중량부(20배) 이상부터는 TOC 제거율의 상승폭이 낮아지는 것으로 나타났다. TN 제거율은 평균 84.89%로, 산화제 투입량의 증가와 무관하게 유사한 제거율을 보였다.As shown in Table 3, in the results of Example 2, the TOC removal rate tended to increase as the input amount of the oxidizing agent compared to the organic pollutants in the wastewater increased. However, from 2000 parts by weight (20 times) or more of the amount of the oxidizing agent, the increase in the TOC removal rate was found to be low. The average TN removal rate was 84.89%, showing a similar removal rate regardless of the increase in the amount of oxidizing agent.

따라서, 본 발명에 따른 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법은 난분해성 폐수 내에 함유된 유기오염물과 암모니아성 질소를 높은 효율로 동시에 제거하는 효과를 나타낸다.Therefore, the non-degradable wastewater treatment method for simultaneously removing organic contaminants and ammonia nitrogen according to the present invention exhibits an effect of simultaneously removing organic contaminants and ammonia nitrogen contained in non-degradable wastewater with high efficiency.

S100 ; pH조절단계
S101 ; 산화제투입단계
S102 ; 산화제활성화단계
S100; pH adjustment step
S101; Oxidant input step
S102; Oxidant activation step

Claims (10)

난분해성 폐수에 염소계 산화제를 투입하는 산화제투입단계; 및
상기 산화제투입단계를 통해 난분해성 폐수에 투입된 염소계 산화제를 활성화하는 산화제활성화단계;로 이루어지는 것을 특징으로 하는 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법.
An oxidizing agent inputting step of injecting a chlorine-based oxidizing agent into the recalcitrant wastewater; and
An oxidizing agent activation step of activating the chlorine-based oxidizing agent introduced into the recalcitrant wastewater through the oxidizing agent input step; a recalcitrant wastewater treatment method for simultaneously removing organic contaminants and ammonia nitrogen.
제1항에 있어서,
상기 산화제투입단계는 난분해성 폐수에 함유된 유기오염물 100 중량부 대비 염소계 산화제 500 내지 10000 중량부를 투입하여 이루어지는 것을 특징으로 하는 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법.
According to claim 1,
The oxidizing agent input step is a non-degradable wastewater treatment method for simultaneously removing organic contaminants and ammonia nitrogen, characterized in that by adding 500 to 10,000 parts by weight of a chlorine-based oxidizing agent based on 100 parts by weight of organic contaminants contained in the non-degradable wastewater.
제2항에 있어서,
상기 산화제투입단계는 난분해성 폐수에 함유된 유기오염물 100 중량부 대비 염소계 산화제 1000 내지 7000 중량부를 투입하여 이루어지는 것을 특징으로 하는 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법.
According to claim 2,
The oxidizing agent input step is a non-degradable wastewater treatment method for simultaneously removing organic contaminants and ammonia nitrogen, characterized in that by adding 1000 to 7000 parts by weight of a chlorine-based oxidizing agent based on 100 parts by weight of organic contaminants contained in the non-degradable wastewater.
제1항 내지 제3중 어느 한 항에 있어서,
상기 염소계 산화제는 염소, 차아염소산염, 염소를 포함하는 알칼리 금속 및 알칼리 토금속으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지며,
상기 차아염소산염은 차아염소산나트륨, 차아염소산칼륨 및 차아염소산칼슘으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것을 특징으로 하는 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법.
According to any one of claims 1 to 3,
The chlorine-based oxidizing agent is composed of at least one selected from the group consisting of chlorine, hypochlorite, alkali metals and alkaline earth metals including chlorine,
The hypochlorite is a recalcitrant wastewater treatment method for simultaneously removing organic contaminants and ammonia nitrogen, characterized in that consisting of at least one selected from the group consisting of sodium hypochlorite, potassium hypochlorite and calcium hypochlorite.
제1항에 있어서,
상기 염소계 산화제는 염소 이온을 포함하는 금속염의 함량이 1 내지 12 중량%인 것을 특징으로 하는 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법.
According to claim 1,
The chlorine-based oxidizing agent is a recalcitrant wastewater treatment method for simultaneously removing organic contaminants and ammonia nitrogen, characterized in that the content of metal salt containing chlorine ions is 1 to 12% by weight.
제1항에 있어서,
상기 산화제활성화단계는 염소계 산화제를 활성화하여 활성화 라디칼로 전환하는 반응속도를 증가시켜 산화 반응을 극대화하는 반응 촉진 단계인 것을 특징으로 하는 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법.
According to claim 1,
The oxidizing agent activation step is a reaction promoting step of maximizing the oxidation reaction by increasing the reaction rate of activating the chlorine-based oxidizing agent and converting it into activated radicals.
제6항에 있어서,
상기 산화제활성화단계는 가열, 자외선 조사 및 촉매 투입으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것을 특징으로 하는 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법.
According to claim 6,
The oxidizer activation step is a recalcitrant wastewater treatment method for simultaneously removing organic contaminants and ammonia nitrogen, characterized in that consisting of at least one selected from the group consisting of heating, ultraviolet irradiation and catalyst input.
제7항에 있어서,
상기 가열은 50℃ 내지 끓는점(Boiling point)의 온도로 10 내지 100분 동안 이루어지는 것을 특징으로 하는 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법.
According to claim 7,
The heating is a recalcitrant wastewater treatment method for simultaneously removing organic contaminants and ammonia nitrogen, characterized in that for 10 to 100 minutes at a temperature of 50 ℃ to boiling point (Boiling point).
제7항에 있어서,
상기 촉매는 금속촉매 및 킬레이트 금속 촉매로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것을 특징으로 하는 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법.
According to claim 7,
The catalyst is a recalcitrant wastewater treatment method for simultaneously removing organic contaminants and ammonia nitrogen, characterized in that consisting of at least one selected from the group consisting of a metal catalyst and a chelate metal catalyst.
제1항에 있어서,
상기 산화제투입단계 이전에는 상기 난분해성 폐수에 pH 조정제를 투입하여 난분해성 폐수의 pH를 4 내지 13으로 조절하는 pH조절단계가 더 진행되는 것을 특징으로 하는 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법.
According to claim 1,
Prior to the oxidizing agent input step, a pH adjusting step of adjusting the pH of the non-degradable wastewater to 4 to 13 by adding a pH adjuster to the non-degradable wastewater is further performed. Degradable wastewater treatment methods.
KR1020220141487A 2021-02-22 2022-10-28 Methods for treatment of refractory wastewater to simultaneously remove organic pollutants and ammonia nitrogen KR102585985B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220141487A KR102585985B1 (en) 2021-02-22 2022-10-28 Methods for treatment of refractory wastewater to simultaneously remove organic pollutants and ammonia nitrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210023601A KR102462490B1 (en) 2021-02-22 2021-02-22 Methods for treatment of refractory wastewater to simultaneously remove organic pollutants and ammonia nitrogen
KR1020220141487A KR102585985B1 (en) 2021-02-22 2022-10-28 Methods for treatment of refractory wastewater to simultaneously remove organic pollutants and ammonia nitrogen

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020210023601A Division KR102462490B1 (en) 2021-02-22 2021-02-22 Methods for treatment of refractory wastewater to simultaneously remove organic pollutants and ammonia nitrogen

Publications (2)

Publication Number Publication Date
KR20220151144A true KR20220151144A (en) 2022-11-14
KR102585985B1 KR102585985B1 (en) 2023-10-06

Family

ID=82931438

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020210023601A KR102462490B1 (en) 2021-02-22 2021-02-22 Methods for treatment of refractory wastewater to simultaneously remove organic pollutants and ammonia nitrogen
KR1020220141487A KR102585985B1 (en) 2021-02-22 2022-10-28 Methods for treatment of refractory wastewater to simultaneously remove organic pollutants and ammonia nitrogen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020210023601A KR102462490B1 (en) 2021-02-22 2021-02-22 Methods for treatment of refractory wastewater to simultaneously remove organic pollutants and ammonia nitrogen

Country Status (2)

Country Link
KR (2) KR102462490B1 (en)
WO (1) WO2022177172A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276881A (en) * 1996-02-13 1997-10-28 Kurita Water Ind Ltd Treatment of nitrogen compound-containing water
JPH10272478A (en) * 1997-03-31 1998-10-13 Kansai Electric Power Co Inc:The Treatment of waste water containing ethanol amine
KR20180075367A (en) * 2016-12-26 2018-07-04 (주) 테크윈 AN APPARATUS FOR REMOVING VOCs USING DUST SCRUBBER WITH UV LAMP AND ELECTROLYSIS DEVICE
KR20190128477A (en) * 2018-05-08 2019-11-18 광주과학기술원 Non-biodegradable amine waste water treatment method and apparatus of chloramine forming and uv-photolysis

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201708538VA (en) * 2015-04-30 2017-11-29 Organo Corp Method for treating ammoniacal nitrogen-containing wastewater and ammoniacal nitrogen decomposer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276881A (en) * 1996-02-13 1997-10-28 Kurita Water Ind Ltd Treatment of nitrogen compound-containing water
JPH10272478A (en) * 1997-03-31 1998-10-13 Kansai Electric Power Co Inc:The Treatment of waste water containing ethanol amine
KR20180075367A (en) * 2016-12-26 2018-07-04 (주) 테크윈 AN APPARATUS FOR REMOVING VOCs USING DUST SCRUBBER WITH UV LAMP AND ELECTROLYSIS DEVICE
KR20190128477A (en) * 2018-05-08 2019-11-18 광주과학기술원 Non-biodegradable amine waste water treatment method and apparatus of chloramine forming and uv-photolysis

Also Published As

Publication number Publication date
WO2022177172A1 (en) 2022-08-25
KR102585985B1 (en) 2023-10-06
KR102462490B1 (en) 2022-11-03
KR20220120008A (en) 2022-08-30

Similar Documents

Publication Publication Date Title
RU2117639C1 (en) Method of purification of sewage
KR20190057265A (en) Treatment ystem of wastewater and method using the same
MXPA03008146A (en) Methods of treating water using combinations of chlorine dioxide, chlorine and ammonia.
JP7065819B2 (en) Radioactive waste treatment method
KR20100057847A (en) Bactericidal/algicidal method
CN105967384A (en) Method for controlling generation of iodo-trihalomethanes in drinking water
CN106670222A (en) Method for treating organochlorine-pesticide-contaminated soil through activated persulfate oxidization
CN101492193B (en) Method for treating wastewater containing methanal and methanoic acid
US7008543B2 (en) Use of chlorine dioxide and ozone for control of disinfection by-products in water supplies
KR102585985B1 (en) Methods for treatment of refractory wastewater to simultaneously remove organic pollutants and ammonia nitrogen
US4029557A (en) Treatment of water containing cyanide
JP6146499B2 (en) Treatment of ammonia-containing wastewater
JP2012076058A (en) Method for treating wastewater containing persistent substance
JPH07100466A (en) Method for treating waste water
KR102469415B1 (en) Mixed oxidizer for hardly decomposable wastewater treatment and wastewater treatment method using the oxidizer
KR102256404B1 (en) Method for treating decontamination liquid waste
KR20150026993A (en) method of treating tap water and manufacturing advanced oxidizing treated water using chlorine and UV-ray
JP5215199B2 (en) Method and apparatus for treating persistent organic compounds
JP5334148B2 (en) Wastewater treatment method
KR102006328B1 (en) Method of preparation of drug cleaning fluids for removing TVOCs and odour-causing substances
KR20210052340A (en) Fenton oxidation system, and a method for the oxidative degradation of organic pollutants using the same
JP4553326B1 (en) Method for decomposing and removing 1,4-dioxane contained in an aquatic medium at a low concentration
CN108658329A (en) A kind of compound reverse osmosis thick water treatment method based on ozone oxidation
JPH0952092A (en) Treatment of waste water
AU2021105358A4 (en) A COMPOSITION FOR pH CONTROL

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)