KR20220142473A - Laminated structure and manufacturing method of the laminated structure - Google Patents

Laminated structure and manufacturing method of the laminated structure Download PDF

Info

Publication number
KR20220142473A
KR20220142473A KR1020227031412A KR20227031412A KR20220142473A KR 20220142473 A KR20220142473 A KR 20220142473A KR 1020227031412 A KR1020227031412 A KR 1020227031412A KR 20227031412 A KR20227031412 A KR 20227031412A KR 20220142473 A KR20220142473 A KR 20220142473A
Authority
KR
South Korea
Prior art keywords
titanium layer
layer
titanium
plane
laminated structure
Prior art date
Application number
KR1020227031412A
Other languages
Korean (ko)
Inventor
유스케 우지하라
마사후미 와카이
준조 스카와
Original Assignee
가부시키가이샤 알박
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 알박 filed Critical 가부시키가이샤 알박
Publication of KR20220142473A publication Critical patent/KR20220142473A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate

Abstract

강한 굴곡 내성을 갖는 적층 구조체 및 적층 구조체의 제조 방법을 제공한다. 제 1 티타늄층(L1), 알루미늄층(L2), 제 2 티타늄층(L3)을 순차적으로 적층한 본 발명의 적층 구조체(LS)는, 제 1 티타늄층 및 제 2 티타늄층 각각이 X선 회절 측정에 의한 밀러 지수에서 (002)면 및 (100)면에 회절 피크를 갖는 결정 구조를 가지며, (002)면에서의 회절 피크의 반치폭은 1.0 deg 이하이고, (100)면에서의 회절 피크의 반치폭은 0.6 deg 이하이다.Provided are a laminate structure having strong bending resistance and a method for manufacturing the laminate structure. In the laminated structure LS of the present invention in which a first titanium layer (L1), an aluminum layer (L2), and a second titanium layer (L3) are sequentially stacked, each of the first titanium layer and the second titanium layer is X-ray diffraction It has a crystal structure having diffraction peaks on the (002) plane and (100) plane in the Miller index by measurement, and the half width of the diffraction peak on the (002) plane is 1.0 deg or less, and that of the diffraction peak on the (100) plane The full width at half maximum is 0.6 deg or less.

Description

적층 구조체 및 적층 구조체의 제조 방법Laminated structure and manufacturing method of the laminated structure

본 발명은 제 1 티타늄층, 알루미늄층, 제 2 티타늄층을 순차적으로 적층한 적층 구조체 및 적층 구조체의 제조 방법에 관한 것이다.The present invention relates to a laminate structure in which a first titanium layer, an aluminum layer, and a second titanium layer are sequentially stacked, and a method for manufacturing the laminate structure.

이러한 종류의 적층 구조체는, 디스플레이, 스마트 폰이나 전자 종이 등의 전자 디바이스에서, 스위칭 소자(박막 트랜지스터)의 소스/드레인 전극으로서 이용된다(예를 들면, 특허문헌 1 참조). 한편, 근래 들어 가요성을 갖는 전자 디바이스가 개발됨에 따라, 비교적 경도가 높은 티타늄층을 갖는 적층 구조체에 대해, 높은 굴곡 내성이 요구되고 있다.This kind of laminated structure is used as a source/drain electrode of a switching element (thin film transistor) in an electronic device such as a display, a smart phone, or an electronic paper (for example, refer to Patent Document 1). On the other hand, as electronic devices having flexibility have been developed in recent years, high bending resistance is required for a laminate structure having a titanium layer having relatively high hardness.

일반적으로 적층 구조체의 티타늄층이나 알루미늄층은, 진공 분위기에서 스퍼터링법에 의해 일관되게 성막된다(예를 들면, 특허문헌 1 참조). 일례로, 티타늄층이나 알루미늄층의 성막 시, 티타늄제 타겟 또는 알루미늄제 타겟과 기재를 대향 배치한 진공 챔버 내부를 소정의 압력까지 진공 배기한 다음, 진공 챔버 내로 희가스(예를 들면, 아르곤 가스)를 도입하고, 타겟에 음의 전위를 가지는 직류 전력을 투입하여 플라즈마를 형성하고, 플라즈마 중에서 전리된 희가스의 이온에 의해 타겟을 스퍼터링하고, 타겟에서 비산된 스퍼터 입자를 기재에 부착 및 퇴적시켜, 원하는 막 두께(예를 들면, 제 1 티타늄층을 50 nm, 알루미늄층을 500 nm, 제 2 티타늄층을 50 nm)로 티타늄층이나 알루미늄층을 성막한다. 이 때, 타겟에 투입되는 전력, 희가스의 가스 도입량이나 성막 중 진공 챔버 내의 전체 압력 등의 각종 스퍼터 조건은, 생산성이나 막 두께 분포를 고려하여 설정된다(예를 들면, 투입 전력 20 ~ 40 kW, 전체 압력 0.2 ~ 1.0 Pa).Generally, the titanium layer and aluminum layer of a laminated structure are consistently formed into a film by the sputtering method in a vacuum atmosphere (for example, refer patent document 1). For example, when the titanium layer or the aluminum layer is formed, the inside of the vacuum chamber in which the titanium target or the aluminum target and the substrate are disposed to face each other is evacuated to a predetermined pressure, and then a rare gas (for example, argon gas) is evacuated into the vacuum chamber. By introducing a DC power having a negative potential to the target to form a plasma, sputtering the target by ions of a rare gas ionized in the plasma, and attaching and depositing the sputtered particles scattered from the target to the substrate, A titanium layer or an aluminum layer is formed with a film thickness (eg, 50 nm for the first titanium layer, 500 nm for the aluminum layer, and 50 nm for the second titanium layer). At this time, various sputtering conditions such as electric power input to the target, gas introduction amount of rare gas, and total pressure in the vacuum chamber during film formation are set in consideration of productivity and film thickness distribution (for example, input electric power 20 to 40 kW, total pressure 0.2 to 1.0 Pa).

적층 구조체의 굴곡 내성을 확인하기 위해, 소정 형상의 시험 기재를 사용하여 시험 기재 표면에 제 1 티타늄층, 알루미늄층, 제 2 티타늄층을 소정의 스퍼터 조건에서 순차적으로 적층한 후, 시험 기재로부터 박리한 적층 구조체에 대해 인장 시험을 실시한 결과, 5%의 신장량(elongation)을 부여하기 위해 필요한 인장 하중을 가하는 것만으로도, 적층 구조체가 두 배 이상 신장되는 것을 알아냈다. 또한 인장 시험 후의 적층 구조체의 표면(즉, 티타늄층 표면) 상태를 관찰한 결과, 티타늄층에 두께 방향으로 뻗어나간 크랙이 다수 발생된 것을 확인하였다. 따라서, 본 발명자들은 예의 연구를 거듭하여, 비교적 작은 결정립이 막 두께 방향으로 정렬되어 결정립계가 그 막 두께 방향으로 뻗어나가듯이 연결된 결정 구조를 가진다는 것과, 성막 시에 티타늄층 내로 혼입된 질소 분자나 산소 분자 등의 불순물에 의해 결정립계에 단단해서 부서지는 질화 티탄이나 산화 티탄 등의 티탄 화합물이 형성되어 있으면, 강한 굴곡 내성을 갖는 적층 구조체를 얻을 수 없다는 것을 알아냈다.In order to confirm the bending resistance of the laminated structure, a first titanium layer, an aluminum layer, and a second titanium layer are sequentially laminated on the surface of the test substrate using a test substrate having a predetermined shape under predetermined sputtering conditions, and then peeled from the test substrate As a result of performing a tensile test on one laminated structure, it was found that the laminated structure more than doubled simply by applying a tensile load necessary to impart an elongation of 5%. In addition, as a result of observing the state of the surface (that is, the surface of the titanium layer) of the laminate structure after the tensile test, it was confirmed that a number of cracks extending in the thickness direction were generated in the titanium layer. Therefore, the inventors of the present inventors have studied diligently to ensure that relatively small crystal grains are aligned in the film thickness direction and have a crystal structure connected such that grain boundaries extend in the film thickness direction, and that nitrogen molecules incorporated into the titanium layer at the time of film formation or It has been found that a laminated structure having strong bending resistance cannot be obtained when a hard and brittle titanium compound such as titanium nitride or titanium oxide is formed at the grain boundary due to impurities such as molecular oxygen.

특허문헌 1: 일본특허공개공보 제 2015-177105호Patent Document 1: Japanese Patent Application Laid-Open No. 2015-177105

본 발명은 위의 지견을 바탕으로 이루어진 것으로, 강한 굴곡 내성을 갖는 적층 구조체 및 적층 구조체의 제조 방법을 제공하는 것을 그 과제로 한다.The present invention has been made based on the above knowledge, and an object thereof is to provide a laminate structure having strong bending resistance and a method for manufacturing the laminate structure.

위 과제를 해결하기 위해, 제 1 티타늄층, 알루미늄층, 제 2 티타늄층을 순차적으로 적층한 본 발명에 따른 적층 구조체는, 제 1 티타늄층 및 제 2 티타늄층 각각이, X선 회절 측정에 의한 밀러 지수에서 (002)면 및 (100)면에 회절 피크를 가지는 결정 구조를 가지며, (002)면에서의 회절 피크의 반치폭이 1.0 deg 이하이고, (100)면에서의 회절 피크의 반치폭이 0.6 deg 이하인 것을 특징으로 한다. 이 경우, 상기 알루미늄층은 X선 회절 측정에 의한 밀러 지수에서 (111)면에 회절 피크를 갖는 결정 구조를 갖는 것이 바람직하다.In order to solve the above problem, in the laminated structure according to the present invention in which a first titanium layer, an aluminum layer, and a second titanium layer are sequentially stacked, each of the first titanium layer and the second titanium layer is measured by X-ray diffraction measurement. It has a crystal structure having diffraction peaks on the (002) plane and (100) plane in the Miller index, the diffraction peak at the (002) plane has a full width at half maximum of 1.0 deg or less, and the half width of the diffraction peak at the (100) plane is 0.6 deg or less. In this case, the aluminum layer preferably has a crystal structure having a diffraction peak on the (111) plane in the Miller index by X-ray diffraction measurement.

또한 상기 과제를 해결하기 위해, 제 1 티타늄층, 알루미늄층, 제 2 티타늄층을 순차적으로 적층한 적층 구조체를 제조하는 본 발명에 따른 적층 구조체의 제조 방법은, 스퍼터링법으로 기재 상에 제 1 티타늄층을 성막하는 제 1 공정과, 제 1 티타늄층 상에 알루미늄층을 성막하는 제 2 공정과, 알루미늄층 상에 제 2 티타늄층을 성막하는 제 3 공정을 포함하며, 제 1 공정 및 제 3 공정 각각은, 질소 가스의 분압이 3.0×10-4 Pa 이하, 산소 가스의 분압이 9.0×10-5 Pa 이하, 수증기 가스의 분압이 8.0×10-4 Pa 이하, 수소 가스의 분압이 5.0×10-5 Pa 이하에 각각 도달할 때까지, 티타늄제 타겟과 기재가 배치된 진공 챔버 내부를 진공 배기하는 진공 배기 공정과, 진공 챔버 내의 전체 압력이 0.2 Pa ~ 0.5 Pa의 범위로 유지되도록 희가스를 도입하고, 티타늄제 타겟에 소정의 전력을 투입하여 3 nm/sec ~ 5 nm/sec의 범위의 성막 속도로 제 1 티타늄층 및 제 2 티타늄층을 성막하는 성막 공정을 추가로 포함하는 것을 특징으로 한다. 이 경우, 상기 제 2 공정은, 알루미늄제 타겟과 기재가 배치된 진공 챔버 내의 전체 압력이 0.2 Pa ~ 0.5 Pa의 범위로 유지되도록 희가스를 도입하고, 알루미늄제 타겟에 소정의 전력을 투입하여 7 nm/sec ~ 10 nm/sec의 범위의 성막 속도로 알루미늄층을 성막하는 성막 공정을 추가로 포함하는 것이 바람직하다.In addition, in order to solve the above problem, the method for manufacturing a laminated structure according to the present invention for manufacturing a laminated structure in which a first titanium layer, an aluminum layer, and a second titanium layer are sequentially laminated is a first titanium on a substrate by a sputtering method. a first step of forming a layer, a second step of forming an aluminum layer on the first titanium layer, and a third step of forming a second titanium layer on the aluminum layer, the first step and the third step The partial pressure of nitrogen gas is 3.0×10 -4 Pa or less, the partial pressure of oxygen gas is 9.0×10 -5 Pa or less, the partial pressure of water vapor gas is 8.0×10 -4 Pa or less, and the partial pressure of hydrogen gas is 5.0×10, respectively. A vacuum evacuation process of evacuating the inside of the vacuum chamber in which the titanium target and the substrate are arranged until each reaches -5 Pa or less, and introducing a noble gas so that the total pressure in the vacuum chamber is maintained in the range of 0.2 Pa to 0.5 Pa and inputting a predetermined electric power to the titanium target and further comprising a film forming process of forming the first titanium layer and the second titanium layer at a film forming rate in the range of 3 nm/sec to 5 nm/sec. . In this case, in the second step, a rare gas is introduced so that the total pressure in the vacuum chamber in which the aluminum target and the base material are disposed is maintained in the range of 0.2 Pa to 0.5 Pa, and a predetermined electric power is applied to the aluminum target to 7 nm It is preferable to further include a film forming step of forming an aluminum layer into a film at a film forming rate in the range of /sec to 10 nm/sec.

위에 따르면 진공 분위기에서 진공 챔버 내로 제 1 티타늄층, 알루미늄층, 제 2 티타늄층을 스퍼터링법에 의해 성막하기에 앞서, 진공 챔버 내를 불순물 가스(예를 들면, 질소 가스, 산소 가스, 수증기 가스, 수소 가스)의 분압이 소정의 값 이하에 도달할 때까지 진공 배기함으로써, 제 1 티타늄층 및 제 2 티타늄층 각각의 결정립계에, 질화 티탄이나 산화 티탄과 같은 티탄 화합물이 형성되는 것을 가능한 한 억제할 수 있다. 그리고, 제 1 티타늄층 및 제 2 티타늄층 각각의 성막 시 그 성막 속도를 3 nm/sec ~ 5 nm/sec의 범위 내로 하면, 제 1 티타늄층 및 제 2 티타늄층 각각이, 입경이 큰 결정립이 그 막 두께 방향으로 불균일하게 겹쳐져 결정립계가 막 두께 방향으로 연결되지 않는 결정 구조를 가지도록 할 수 있다.According to the above, impurity gas (eg, nitrogen gas, oxygen gas, water vapor gas, By evacuating until the partial pressure of hydrogen gas) reaches a predetermined value or less, the formation of titanium compounds such as titanium nitride and titanium oxide at the grain boundaries of the first and second titanium layers, respectively, can be suppressed as much as possible. can And, when the film formation rate of each of the first titanium layer and the second titanium layer is set within the range of 3 nm/sec to 5 nm/sec, the first titanium layer and the second titanium layer each have crystal grains having large particle diameters. It can be made to have a crystal structure in which the grain boundaries are not connected in the film thickness direction by overlapping non-uniformly in the film thickness direction.

위와 같이 하여 성막한 티타늄층을 X선 회절한 결과, (002)면에서의 회절 피크와 (100)면에서의 회절 피크가 확인되었으며, (002)면에서의 회절 피크에 대한 (100)면에서의 회절 피크의 강도비는 0.20 이상이었다. 이 때, (002)면에서의 회절 피크의 반치폭은 1.0 deg 이하였고, (100)면에서의 회절 피크의 반치폭은 0.6 deg 이하였으며, 이로부터 상기 회절 패턴을 가진다면, 제 1 티타늄층 및 제 2 티타늄층 각각의 결정립계에 티타늄 화합물이 형성되는 것을 억제할 수 있으며, 입경이 큰 결정립이 그 막 두께 방향으로 불균일하게 겹쳐져 결정립계가 연결되지 않는 결정 구조를 가지게 됨을 알았다. 그리고 위와 같은 적층 구조체에 대한 인장 시험에서 5% 또는 10%의 신장량을 부여하는데 필요한 인장 하중을 가하더라도, 적층 구조체의 신장량은 10% 이내로 억제되며, 게다가 인장 시험 후 적층 구조체의 표면을 관찰했을 때에도 크랙이 발생하지 않은 것을 확인하였다. 따라서 본 발명에 따른 적층 구조체는 기존 예의 것에 비해 강한 굴곡 내성을 갖는다.As a result of X-ray diffraction of the titanium layer formed as described above, a diffraction peak on the (002) plane and a diffraction peak on the (100) plane were confirmed, and the diffraction peak on the (002) plane was The intensity ratio of the diffraction peaks was 0.20 or more. At this time, the half width of the diffraction peak on the (002) plane was 1.0 deg or less, and the half width of the diffraction peak on the (100) plane was 0.6 deg or less. 2 It was found that the formation of a titanium compound at the grain boundaries of each titanium layer can be suppressed, and crystal grains with large grain sizes overlap non-uniformly in the film thickness direction to have a crystal structure in which the grain boundaries are not connected. And even when a tensile load necessary to give an elongation of 5% or 10% is applied in the tensile test for the above-described laminated structure, the elongation of the laminated structure is suppressed to within 10%, and furthermore, even when the surface of the laminated structure is observed after the tensile test It was confirmed that no cracks occurred. Therefore, the laminated structure according to the present invention has strong bending resistance compared to that of the conventional example.

도 1은 본 발명의 실시형태에 따른 적층 구조체를 모식적으로 설명하는 도면이다.
도 2는 본 발명의 실시형태에 따른 적층 구조체의 제조 방법을 실시하는 스퍼터링 장치를 모식적으로 설명하는 도면이다.
도 3은 도 2에 나타낸 성막 챔버(Pc1)를 모식적으로 설명하는 도면이다.
도 4는 본 발명의 효과를 확인하는 실험 결과를 나타낸 그래프이다.
도 5(a) ~ (c)는 비교 실험 1 ~ 비교 실험 3에서 성막한 티타늄층의 결정 구조를 모식적으로 설명하는 도면이다.
BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining typically the laminated structure which concerns on embodiment of this invention.
It is a figure explaining typically the sputtering apparatus which implements the manufacturing method of the laminated structure which concerns on embodiment of this invention.
3 : is a figure explaining typically the film-forming chamber Pc1 shown in FIG.
4 is a graph showing the experimental results confirming the effect of the present invention.
5(a) to (c) are diagrams schematically illustrating the crystal structure of a titanium layer formed in Comparative Experiment 1 to Comparative Experiment 3;

이하에서, 도면을 참조하여 본 발명에 따른 적층 구조체 및 적층 구조체의 제조 방법의 실시형태를 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of the manufacturing method of the laminated structure and laminated structure which concerns on this invention with reference to drawings is described.

도 1에 도시한 것처럼 본 실시형태에 따른 적층 구조체(LS)는, 기재(Sw)를 예를 들면, 유리 기판(Sg)의 표면에 폴리이미드 필름(Pf)이 부착된 것으로 하여(유리 기판(Sg)과 폴리이미드 필름(Pf)의 계면에서 박리 가능), 기재(Sw) 표면에 진공 분위기에서 스퍼터링 법에 의해 일관되게 순차적으로 성막(적층)되는 제 1 티타늄층(L1)과, 알루미늄층(L2)과, 제 2 티타늄층(L3)을 포함한다.As shown in Fig. 1 , in the laminated structure LS according to the present embodiment, the polyimide film Pf is adhered to the surface of the glass substrate Sg using the substrate Sw (glass substrate ( Sg) and the polyimide film (Pf) can be peeled off at the interface), the first titanium layer (L1) and the aluminum layer ( L2) and a second titanium layer L3.

도 2에 도시한 것처럼 상기 적층 구조체(LS)의 성막 시 이용할 수 있는 스퍼터링 장치(Sm)는, 이른바 클러스터 툴 방식의 것으로, 반송 로봇(R)을 갖는 중앙의 반송 챔버(Tc)를 포함하며, 반송 챔버(Tc) 주위에 게이트 밸브(Gv)를 통해 로드 록 챔버(Lc)와, 제 1 티타늄층(L1)을 성막하는 진공 챔버(이하, ‘성막 챔버’)(Pc1)와, 알루미늄층(L2)을 성막하는 성막 챔버(Pc2)와, 제 2 티타늄층(L3)을 성막하는 성막 챔버(Pc3)가 각각 연결된다. 성막 챔버(Pc1, Pc2, Pc3) 내에는, 사용되는 타겟을 제외하고는 동일한 구조 부품이 설치되므로, 도 3을 참조하여 성막 챔버(Pc1)를 예로 들어 설명하면, 성막 챔버(Pc1)에는, 터보 분자 펌프나 로터리 펌프 등으로 구성된 진공 펌프 유닛(Pu)과 통하는 배기관(11)이 접속되어, 성막 챔버(Pc1)를 소정의 진공도(예를 들면, 1×10-6 Pa)까지 진공 배기할 수 있다. 진공 챔버(Pc1)의 측벽에는 질량 유량계(12)가 설치된 가스관(13)이 접속되어, 유량이 제어된 희가스(예를 들면, 아르곤 가스)를 성막 챔버(Pc1) 내로 도입할 수 있다. 성막 챔버(Pc1)의 상부에는, 티타늄제 타겟(2)(성막 챔버(Pc2)에서는 알루미늄제 타겟)이 기재(Sw)를 바라보는 자세로 배치되며, 그 위쪽으로 공지의 자석 유닛(3)이 배치된다.As shown in FIG. 2, the sputtering apparatus Sm that can be used during film formation of the laminated structure LS is of a so-called cluster tool method, and includes a central transfer chamber Tc having a transfer robot R, A load lock chamber Lc through a gate valve Gv around the transfer chamber Tc, a vacuum chamber for forming a first titanium layer L1 (hereinafter referred to as a 'film formation chamber') Pc1, and an aluminum layer ( A film forming chamber Pc2 for forming a film L2 and a film forming chamber Pc3 for forming the second titanium layer L3 are respectively connected. Since the same structural parts are installed in the deposition chambers Pc1, Pc2, and Pc3 except for the target used, referring to FIG. 3 , taking the deposition chamber Pc1 as an example, the deposition chamber Pc1 has a turbo An exhaust pipe 11 communicating with a vacuum pump unit Pu composed of a molecular pump or a rotary pump is connected, and the film formation chamber Pc1 can be evacuated to a predetermined vacuum degree (eg, 1×10 -6 Pa). have. A gas pipe 13 provided with a mass flow meter 12 is connected to the side wall of the vacuum chamber Pc1 to introduce a rare gas (for example, argon gas) with a controlled flow rate into the film formation chamber Pc1. In the upper part of the film-forming chamber Pc1, a titanium target 2 (a target made of aluminum in the film-forming chamber Pc2) is arranged in a posture facing the base material Sw, and a well-known magnet unit 3 is located above it. are placed

티타늄제 타겟(2)으로는 순도가 99.9% 이상인 것을 이용하며, 또한 알루미늄제 타겟으로는 순도가 99.99% 이상인 것을 이용한다. 타겟(2)에는, 스퍼터 전원(Ps)으로부터 출력이 접속되어, 음의 전위를 갖는 직류 전력을 타겟(2)에 투입할 수 있다. 성막 챔버(Pc1)의 하부에는, 타겟(2)과 대향하도록 스테이지(4)가 배치되어 기재(Sw)를 설치할 수 있다. 성막 챔버(Pc1)에는, 그 내부의 전체 압력과 불순물 가스(예를 들면, 질소 가스, 산소 가스, 수증기 가스, 수소 가스)의 분압을 측정하는 측정기(5)가 설치된다. 이러한 측정기(5)로는 전리 진공계나 질량 분석계와 같은 공지의 것을 이용할 수 있으므로, 이 이상의 설명은 생략한다. 아래에 스퍼터링 장치(Sm)에 의한 적층 구조체(LS)의 제조 방법을 구체적으로 설명한다.As the target 2 made of titanium, a target having a purity of 99.9% or more is used, and as the target made of aluminum, a target having a purity of 99.99% or more is used. An output is connected to the target 2 from the sputtering power supply Ps, and direct current power having a negative potential can be supplied to the target 2 . In the lower part of the film-forming chamber Pc1, the stage 4 is arrange|positioned so that the target 2 may oppose, and the base material Sw can be installed. In the film formation chamber Pc1, a measuring device 5 for measuring the total pressure therein and the partial pressure of the impurity gas (eg, nitrogen gas, oxygen gas, water vapor gas, hydrogen gas) is provided. As such a measuring instrument 5, a well-known one such as an ionization vacuum meter or a mass spectrometer can be used, and therefore the above description is omitted. Below, the manufacturing method of the laminated structure LS by sputtering apparatus Sm is demonstrated concretely.

대기 분위기의 로드 록 챔버(Lc)에 기재(Sw)를 투입하고, 로드 록 챔버(Lc)를 진공 배기한 후, 반송 로봇(R)에 의해 기재(Sw)를 성막 챔버(Pc1)로 반송한다. 참고로 로드 록 챔버(Lc)로 기재(Sw)를 투입하기에 앞서, 반송 챔버(Tc) 및 각 성막 챔버(Pc1, Pc2, Pc3)는 미리 소정의 압력(1×10-3 Pa)까지 진공 배기되어, 대기 상태(standby state)에 있다. 기재(Sw)가 성막 챔버(Pc1)의 스테이지(4) 위에 설치되면, 계속해서 진공 배기하여 질량 분석계(5)로 측정되는 질소 가스의 분압이 3.0×10-4 Pa 이하, 산소 가스의 분압이 9.0×10-5 Pa 이하, 수증기 가스의 분압이 8.0×10-4 Pa 이하, 수소 가스의 분압이 5.0×10-5 Pa 이하가 될 때까지 성막 챔버(Pc1) 내를 진공 배기한다(제 1 공정의 진공 배기 공정).After the base material Sw is put into the load lock chamber Lc of an atmospheric atmosphere and the load lock chamber Lc is evacuated, the base material Sw is conveyed to the film-forming chamber Pc1 by the conveyance robot R. . For reference, before introducing the substrate Sw into the load lock chamber Lc, the transfer chamber Tc and each of the film formation chambers Pc1, Pc2, and Pc3 are vacuumed to a predetermined pressure (1×10 -3 Pa) in advance. It is exhausted and is in a standby state. When the substrate Sw is installed on the stage 4 of the film formation chamber Pc1, it is continuously evacuated so that the partial pressure of the nitrogen gas measured by the mass spectrometer 5 is 3.0×10 -4 Pa or less, and the partial pressure of the oxygen gas is The inside of the film-forming chamber Pc1 is evacuated until the partial pressure of 9.0×10 -5 Pa or less, the partial pressure of the water vapor gas becomes 8.0×10 -4 Pa or less, and the partial pressure of the hydrogen gas becomes 5.0×10 -5 Pa or less (first evacuation process of the process).

다음으로 각 가스의 분압이 각각 소정의 값 이하가 되면, 진공 배기된 성막 챔버(Pc1) 내로, 그 전체 압력이 0.2 Pa ~ 0.5 Pa의 범위로 유지되도록 아르곤 가스를 도입하고, 스퍼터 전원(Ps)으로부터 타겟(2)에 음의 전위를 갖는 직류 전력을 20 kW ~ 30 kW 투입한다. 그러면 성막 챔버(Pc1) 내에 플라즈마가 형성된다. 플라즈마에서 전리된 아르곤 가스의 이온에 의해 타겟(2)이 스퍼터링된다. 이로 인해 타겟(2)에서 비산된 스퍼터 입자가 기재(Sw)의 성막면(폴리이미드 필름(Pf))에 부착 및 퇴적되어 기재(Sw) 상에 제 1 티타늄층(L1)이 3 nm/sec ~ 5 nm/sec의 성막 속도로 성막된다(제 1 공정에서의 성막 공정). 이 때, 스퍼터링 시간을 적절히 설정함으로써 제 1 티타늄층(L1)은 예를 들면, 10 nm ~ 50 nm의 막 두께를 가진다.Next, when the partial pressure of each gas becomes equal to or less than a predetermined value, argon gas is introduced into the evacuated film formation chamber Pc1 so that the total pressure is maintained in the range of 0.2 Pa to 0.5 Pa, and sputtering power Ps 20 kW to 30 kW of DC power having a negative potential is input to the target 2 from the Then, plasma is formed in the film-forming chamber Pc1. The target 2 is sputtered by ions of argon gas ionized in the plasma. Due to this, the sputtered particles scattered from the target 2 are attached and deposited on the film-forming surface (polyimide film Pf) of the substrate Sw, so that the first titanium layer L1 on the substrate Sw is 3 nm/sec A film is formed at a film formation rate of ˜5 nm/sec (film formation step in the first step). At this time, by appropriately setting the sputtering time, the first titanium layer L1 has a film thickness of, for example, 10 nm to 50 nm.

제 1 공정이 종료되면, 기재(Sw)를 성막 챔버(Pc2)로 반송하여 제 1 공정과 마찬가지로 진공 배기 공정을 실시한다. 각 가스의 분압이 각각 소정의 값 이하가 되면, 진공 배기된 성막 챔버(Pc2) 내로, 그 전체 압력이 0.2 Pa ~ 0.5 Pa의 범위로 유지되도록 아르곤 가스를 도입하고, 스퍼터 전원(Ps)으로부터 알루미늄제 타겟(2)으로 음의 전위를 갖는 직류 전력을 30 kW ~ 40 kW 투입한다. 그러면 성막 챔버(Pc2) 내에 플라즈마가 형성되며, 타겟(2)에서 비산된 스퍼터 입자가 제 1 티타늄층(L1)의 표면에 부착 및 퇴적되어 제 1 티타늄층(L1) 위에 알루미늄층(L2)이 7 ㎚/sec ~ 10 nm/sec의 성막 속도로 성막된다(제 2 공정에서의 성막 공정). 이 때, 스퍼터링 시간을 적절히 제어함으로써 알루미늄층(L2)은, 예를 들면, 200 nm ~ 800 nm의 막 두께를 가진다.When a 1st process is complete|finished, the base material Sw will be conveyed to film-forming chamber Pc2, and an evacuation process will be implemented similarly to a 1st process. When the partial pressure of each gas becomes equal to or less than a predetermined value, argon gas is introduced into the evacuated film formation chamber Pc2 so that the total pressure is maintained in the range of 0.2 Pa to 0.5 Pa, and aluminum is supplied from the sputtering power source Ps. 30 kW to 40 kW of DC power having a negative potential is input to the first target 2 . Then, plasma is formed in the deposition chamber (Pc2), the sputtered particles scattered from the target (2) are attached and deposited on the surface of the first titanium layer (L1), the aluminum layer (L2) on the first titanium layer (L1) It forms into a film at the film-forming rate of 7 nm/sec - 10 nm/sec (film-forming process in 2nd process). At this time, by appropriately controlling the sputtering time, the aluminum layer L2 has a film thickness of, for example, 200 nm to 800 nm.

제 2 공정이 종료되면, 기재(Sw)를 성막 챔버(Pc3)로 반송하여, 제 1 공정과 마찬가지로 진공 배기 공정을 실시한다. 각 가스의 분압이 각각 소정의 값 이하가 되면, 제 1 공정과 동일한 스퍼터 조건에서, 알루미늄층(L2) 위에 제 2 티타늄층(L3)이 3 ㎚/sec ~ 5 ㎚/sec의 성막 속도로 성막된다(제 3 공정에서의 성막 공정). 이 때, 스퍼터링 시간을 적절히 제어하여, 제 2 티타늄층(L3)의 막 두께를 제 1 티타늄층(L1)과 동일한 막 두께(예를 들면, 10 ~ 50 nm)로 한다.When a 2nd process is complete|finished, the base material Sw will be conveyed to film-forming chamber Pc3, and an evacuation process will be implemented similarly to a 1st process. When the partial pressure of each gas is equal to or less than a predetermined value, the second titanium layer L3 is formed on the aluminum layer L2 at a deposition rate of 3 nm/sec to 5 nm/sec under the same sputtering conditions as in the first process. (the film-forming process in a 3rd process). At this time, the sputtering time is appropriately controlled so that the thickness of the second titanium layer L3 is the same as that of the first titanium layer L1 (for example, 10 to 50 nm).

위에서 설명한대로 적층 구조체(LS)를 제조하면, 각 티타늄층(L1, L3)의 내부로 불순물이 들어가는 것을 가능한 한 억제할 수 있어, 결정립계(Cf)에 질화티탄이나 산화티탄과 같은 티탄 화합물이 형성되는 것을 억제할 수 있다(도 1에서 1점 쇄선으로 두른 부분 참조). 나아가, 각 티타늄층(L1, L3)을 3 nm/sec ~ 5 nm/sec의 범위의 성막 속도로 성막함으로써, 결정립(Cg)의 입경이 기존 예보다 커지게 되며, 또한 이들 결정립(Cg)이 그 막 두께 방향으로 불균일하게 겹쳐져, 그 결과로서 결정립계(Cf)가 막 두께 방향으로 연결되지 않는 결정 구조를 가지도록 할 수 있다(도 1 참조). 덧붙여, 이러한 티타늄층(L1, L3)의 X선 회절을 측정한 결과, (002)면에서의 회절 피크와, (100)면에서의 회절 피크가 확인되었으며, (002)면에서의 회절 피크에 대한 (100)면에서의 회절 피크의 강도비는 0.20 이상이었다. 이 때, (002)면에서의 회절 피크의 반치폭은 1.0 deg 이하였고, (100)면에서의 회절 피크의 반치폭은 0.6 deg 이하였다.When the laminate structure LS is manufactured as described above, it is possible to suppress as much as possible impurities from entering the inside of each titanium layer L1 and L3, and a titanium compound such as titanium nitride or titanium oxide is formed at the grain boundary Cf. can be suppressed (refer to the portion enclosed by the dashed-dotted line in FIG. 1). Furthermore, by forming each titanium layer (L1, L3) at a film formation rate in the range of 3 nm/sec to 5 nm/sec, the grain size of the crystal grains (Cg) becomes larger than that of the conventional example, and these crystal grains (Cg) are It overlaps non-uniformly in the film thickness direction, and as a result, it is possible to have a crystal structure in which the grain boundaries Cf are not connected in the film thickness direction (see Fig. 1). In addition, as a result of measuring the X-ray diffraction of these titanium layers (L1, L3), a diffraction peak on the (002) plane and a diffraction peak on the (100) plane were confirmed, and the diffraction peak on the (002) plane was The intensity ratio of the diffraction peaks on the (100) plane was 0.20 or more. At this time, the half width of the diffraction peak on the (002) plane was 1.0 deg or less, and the half width of the diffraction peak on the (100) plane was 0.6 deg or less.

계속해서 상기 효과를 확인하기 위해 상기 스퍼터링 장치(Sm)를 이용하여 다음의 실험을 실시하였다.Subsequently, the following experiment was performed using the sputtering device (Sm) in order to confirm the effect.

발명 실험에서는, 유리 기판(Sg) 윗면에 폴리이미드 필름(Pf)이 부착된 기재(Sw)를 성막 챔버(Pc1)의 스테이지(4) 위에 설치한 후, 질량 분석계(5)로 측정되는 질소 가스의 분압이 1.0×10-4 Pa, 산소 가스의 분압이 8.0×10-5 Pa, 수증기 가스의 분압이 5.0×10-4 Pa, 수소 가스의 분압이 5.0×10-5 Pa이 될 때까지 진공 배기했다(제 1 공정의 진공 배기 공정). 이 때, 진공 챔버(Pc1) 내의 전체 압력은 7.3×10-4 Pa이었다. 진공 배기 공정 후, 진공 챔버(Pc1) 내의 전체 압력이 0.3 Pa로 유지되도록 아르곤 가스를 유량 120 sccm으로 진공 챔버(Pc1) 내로 도입하고, 이와 더불어 타겟(2)에 직류 전력을 20 ~ 30 kW 투입하여 티타늄제 타겟(2)을 스퍼터링하여, 3 nm/sec의 성막 속도로 기재(Sw) 표면에 제 1 티타늄층(L1)을 50 nm의 막 두께로 성막했다(제 1 공정의 성막 공정). 성막한 제 1 티타늄층(L1)의 X선 회절을 측정한 결과를 도 4에 실선으로 나타냈다. 표 1도 참조하면, 회절각(2θ) 38° ~ 39° 부근에서 (002)면에서의 회절 피크가 확인되고, 회절각 35° ~ 36° 부근에서 (100)면에서의 회절 피크가 확인되며, (002)면에서의 회절 피크에 대한 (100)면에서의 회절 피크의 강도비는 0.25, (002)면에서의 회절 피크의 반치폭은 0.5 deg, (100)면에서의 회절 피크의 반치폭은 0.6 deg이었다. 제 1 공정 후, 기재(Sw)를 성막 챔버(Pc2)로 반송하여, 제 1 공정과 동일하게 진공 배기 공정을 실시한 다음, 성막 챔버(Pc2)의 전체 압력이 0.3 Pa로 유지되도록 아르곤 가스를 유량 120 sccm으로 성막 챔버(Pc2) 내로 도입하고, 이와 더불어 알루미늄제 타겟(2)에 직류 전력을 35 ~ 40 kW 투입하여 타겟(2)을 스퍼터링하여, 7 nm/sec의 성막 속도로 제 1 티타늄층(L1) 위에 알루미늄층(L2)을 500 nm의 막 두께로 성막했다. 성막한 알루미늄층(L2)의 X선 회절을 측정한 결과, 회절각(2θ) 38° ~ 39° 부근에서 (111)면에서의 회절 피크가 확인되었다. 제 2 공정 후, 기재(Sw)를 성막 챔버(Pc3)로 반송하여, 제 1 공정과 동일하게 진공 배기 공정을 실시한 다음, 제 1 공정과 동일한 성막 조건에서 3 nm/sec의 성막 속도로 알루미늄층(L2) 위에 제 2 티타늄층(L3)을 50 nm의 막 두께로 성막하여 적층 구조체(LS)를 얻었다. 성막한 제 2 티타늄층(L3)의 X선 회절을 측정한 결과, 제 1 티타늄층(L1)과 동일한 회절 패턴(도 4 참조)을 얻을 수 있었다. 그리고, 이렇게 하여 얻어진 적층 구조체(LS)의 굴곡 내성을 확인하기 위해, 공지의 형상(폭 5 ㎜, 길이 20 ㎜, 두께 0.02 ㎜)을 갖는 시험 기재(폴리이미드 필름(Pf))를 유리 기판(Sg) 위에 형성하고, 시험 기재 표면에 앞서 말한 스퍼터 조건에서 제 1 티타늄층(L1), 알루미늄층(L2), 제 2 티타늄층(L3)을 순차적으로 적층한 후, 유리 기판(Sg)과 폴리이미드 필름(Pf)의 계면으로부터 박리하여 얻은 적층 구조체(LS)에 대해, 인장 시험기(ORIENTEC사의 ‘STA-1150’)를 사용하여 인장 시험(인장 속도 0.5 mm/min)을 실시한 결과, 5%, 10%의 신장량을 부여하는데 필요한 인장 하중을 가하더라도, 적층 구조체의 신장량이 10% 이내(5%, 8%)로 억제되는 것을 확인하였다. 또 5%, 10%의 신장량을 부여하는 인장 하중을 가했을 때의 저항(R)을 저항 측정기(ADVANTEST사의 ‘AD7461A’)를 사용하여 각각 측정하고, 인장 하중을 가하지 않았을 때의 저항(R0)에 대한 저항 상승률(=(R-R0)/R0)을 구한 결과, 10% 이내(5%, 8%)로 억제할 수 있다는 것을 확인하였다. 또한, 인장 시험 후의 적층 구조체(LS)의 표면 상태를 시판 현미경(Microscope)을 사용하여 관찰한 결과, 크랙이 발생하지 않았음을 확인하였다. 이들 결과로부터, 본 발명 실험에서 얻어진 적층 구조체(LS)는, 기존 예의 것에 비해 강한 굴곡 내성을 가진다는 것을 알 수 있었다.In the invention experiment, a substrate Sw having a polyimide film Pf attached to the upper surface of the glass substrate Sg is installed on the stage 4 of the film formation chamber Pc1, and then nitrogen gas measured with a mass spectrometer 5 vacuum until the partial pressure of is 1.0×10 -4 Pa, the partial pressure of oxygen gas is 8.0×10 -5 Pa, the partial pressure of water vapor gas is 5.0×10 -4 Pa, and the partial pressure of hydrogen gas is 5.0×10 -5 Pa It evacuated (evacuation process of 1st process). At this time, the total pressure in the vacuum chamber Pc1 was 7.3×10 −4 Pa. After the vacuum evacuation process, argon gas is introduced into the vacuum chamber Pc1 at a flow rate of 120 sccm so that the total pressure in the vacuum chamber Pc1 is maintained at 0.3 Pa, and 20 ~ 30 kW of DC power is input to the target 2 together with this Thus, a titanium target 2 was sputtered, and a first titanium layer L1 was formed to a film thickness of 50 nm on the surface of the substrate Sw at a film formation rate of 3 nm/sec (film formation step in the first step). The result of X-ray diffraction measurement of the formed first titanium layer L1 is shown by a solid line in FIG. 4 . Referring to Table 1, the diffraction peak at the (002) plane is confirmed near the diffraction angle (2θ) 38° to 39°, and the diffraction peak at the (100) plane is confirmed near the diffraction angle 35° to 36°. , the intensity ratio of the diffraction peak on the (100) plane to the diffraction peak on the (002) plane is 0.25, the half width of the diffraction peak on the (002) plane is 0.5 deg, and the half width of the diffraction peak on the (100) plane is 0.6 deg. After the first process, the substrate Sw is transferred to the film formation chamber Pc2, and the evacuation process is performed in the same manner as in the first process, and then the flow rate of argon gas is maintained so that the total pressure of the film formation chamber Pc2 is maintained at 0.3 Pa. Introduced into the deposition chamber (Pc2) at 120 sccm, 35 to 40 kW of DC power is applied to the aluminum target 2 to sputter the target 2, and the first titanium layer is formed at a deposition rate of 7 nm/sec. On (L1), an aluminum layer (L2) was formed to a film thickness of 500 nm. As a result of measuring X-ray diffraction of the formed aluminum layer L2, a diffraction peak on the (111) plane was confirmed at a diffraction angle (2θ) around 38° to 39°. After the second process, the base material Sw is transferred to the film formation chamber Pc3, the evacuation process is performed in the same manner as in the first process, and then the aluminum layer is formed at a film formation rate of 3 nm/sec under the same film formation conditions as in the first process. A second titanium layer (L3) was formed on (L2) to a film thickness of 50 nm to obtain a laminated structure (LS). As a result of measuring X-ray diffraction of the formed second titanium layer L3, the same diffraction pattern as that of the first titanium layer L1 (refer to FIG. 4 ) was obtained. Then, in order to confirm the bending resistance of the laminated structure LS obtained in this way, a test substrate (polyimide film (Pf)) having a known shape (width 5 mm, length 20 mm, thickness 0.02 mm) was applied to a glass substrate ( After forming on Sg) and sequentially stacking a first titanium layer (L1), an aluminum layer (L2), and a second titanium layer (L3) on the surface of the test substrate under the aforementioned sputtering conditions, the glass substrate (Sg) and the polyi The laminated structure (LS) obtained by peeling from the interface of the mid film (Pf) was subjected to a tensile test (tensile rate of 0.5 mm/min) using a tensile testing machine ('STA-1150' manufactured by ORIENTEC). As a result, 5%, It was confirmed that the elongation amount of the laminated structure was suppressed to within 10% (5%, 8%) even when a tensile load necessary to impart an elongation of 10% was applied. In addition, the resistance (R) when a tensile load giving 5% and 10% elongation is applied using a resistance measuring instrument ('AD7461A', manufactured by ADVANTEST), respectively, and the resistance (R0) when no tensile load is applied As a result of obtaining the resistance increase rate (=(R-R0)/R0), it was confirmed that it could be suppressed within 10% (5%, 8%). In addition, as a result of observing the surface state of the laminated structure LS after the tensile test using a commercially available microscope (Microscope), it was confirmed that cracks did not occur. From these results, it turned out that the laminated structure LS obtained by the experiment of this invention has strong bending resistance compared with the thing of the existing example.

[표 1][Table 1]

Figure pct00001
Figure pct00001

다음으로, 상기 발명 실험과 비교하기 위해 아래와 같이 비교 실험을 실시했다. 비교 실험 1에서는, 제 1 공정 및 제 3 공정의 각 성막 공정에서 성막 챔버(Pc1) 내의 전체 압력을 0.6 Pa로 유지하여 성막 속도를 2 nm/sec로 한 점을 제외하고는, 상기 발명 실험과 동일한 방법으로 적층 구조체(LS)를 얻었다. 상기 발명 실험과 동일한 조건에서 인장 시험을 실시한 결과, 적층 구조체(LS)의 신장량이 두 배 이상이 됨을 확인하였다. 또한, 상기 발명 실험과 동일하게 저항 상승률을 구한 결과, 30%, 400%였다. 또한, 상기 발명 실험과 동일하게 인장 시험 후의 적층 구조체(LS)의 표면 상태를 관찰한 결과, 크랙이 발생하여 백색화된 것이 확인되었다. 이들 결과로부터, 본 비교 실험 1에서 얻어진 적층 구조체(LS)는 약한 굴곡 내성을 갖는다는 것을 알 수 있었다. 덧붙여 본 비교 실험 1에서 성막된 제 1 티타늄층(L1)의 X선 회절을 측정한 결과, 도 4에 파선으로 도시한 것처럼, (100)면에서의 회절 피크는 확인되지 않았고, (002)면에서의 회절 피크만이 확인되었으며, (002)면에서의 회절 피크의 반치폭은 0.9 deg이었다. 이와 같은 회절 패턴을 갖는 경우, 도 5(a)에 도시한 것처럼 작은 결정립(Cg)이 막 두께 방향으로 정렬되어 결정립계(Cf)가 그 막 두께 방향으로 뻗어나가듯이 연결된 결정 구조를 갖는다는 것을 미루어 짐작할 수 있다.Next, in order to compare with the above invention experiment, a comparative experiment was conducted as follows. In Comparative Experiment 1, in each of the film formation steps of the first process and the third process, the total pressure in the film formation chamber Pc1 was maintained at 0.6 Pa and the film formation rate was 2 nm/sec, except that A laminated structure (LS) was obtained in the same manner. As a result of performing a tensile test under the same conditions as in the experiment of the invention, it was confirmed that the elongation amount of the laminated structure LS was more than doubled. In addition, as a result of obtaining the resistance increase rate in the same manner as in the above invention experiment, it was 30% and 400%. In addition, as a result of observing the surface state of the laminated structure LS after the tensile test in the same manner as in the above invention experiment, it was confirmed that cracks occurred and whitened. From these results, it was found that the laminated structure LS obtained in Comparative Experiment 1 had weak bending resistance. Incidentally, as a result of measuring the X-ray diffraction of the first titanium layer (L1) formed in Comparative Experiment 1, as shown by a broken line in FIG. 4, a diffraction peak at the (100) plane was not confirmed, and the (002) plane Only the diffraction peak at was confirmed, and the half width of the diffraction peak at the (002) plane was 0.9 deg. In the case of having such a diffraction pattern, as shown in FIG. can guess

또 비교 실험 2에서는, 제 1 공정 및 제 3 공정 각각에서 진공 배기 공정을 실시하지 않는 점(성막 공정만을 실시하는 점)을 제외하고는 위 발명 실험과 동일한 방법으로 적층 구조체(LS)를 얻었다. 즉, 진공 챔버(Pc1) 내의 전체 압력이 소정의 진공도(2.8×10-3 Pa)에 도달하면, 불순물 가스의 분압과 관계없이 진공 챔버(Pc1) 내로 희가스를 도입했다. 이 때의 불순물 가스의 분압을 측정한 결과, 질소 가스의 분압이 5.0×10-4 Pa, 산소 가스의 분압이 2.0×10-4 Pa, 수증기 가스의 분압이 2.0 ×10-3 Pa, 수소 가스의 분압이 5.0×10-5 Pa로, 수소 가스 이외에는 기준치를 밑돌았다. 상기 발명 실험과 동일한 조건에서 인장 시험을 실시한 결과, 적층 구조체(LS)의 신장량이 두 배 이상이 됨을 확인하였다. 또한, 상기 발명 실험과 동일하게 저항 상승률을 구한 결과, 비교 실험 1보다 더욱 나쁜 120%, 650%였다. 또한, 상기 발명 실험과 동일하게 인장 시험 후의 적층 구조체(LS)의 표면 상태를 관찰한 결과, 크랙이 발생하여 백색화된 것이 확인되었다. 이들 결과로부터, 본 비교 실험 2에서 얻어진 적층 구조체(LS)는 약한 굴곡 내성을 갖는다는 것을 알 수 있었다. 덧붙여, 성막한 제 1 티타늄층(L1)의 X선 회절을 측정한 결과, (002)면에서의 회절 피크뿐만 아니라 (100)면에서의 회절 피크가 관찰되었으나, (002)면에서의 회절 피크에 대한 (100)면에서의 회절 피크의 강도비는 0.20보다 작은 0.11이었다. 또한, (100)면에서의 회절 피크의 반치폭은 0.6 deg보다 큰 0.7 deg이었다. 이러한 회절 패턴을 갖는 경우, 도 5(b)에 도시한 것처럼 결정립계(Cf)에 질화 티타늄 및 산화 티타늄과 같은 티타늄 화합물(Im)이 형성된다는 것을 미루어 짐작할 수 있다.In Comparative Experiment 2, a laminated structure LS was obtained in the same manner as in the above invention experiment, except that the vacuum evacuation process was not performed in each of the first process and the third process (only the film forming process was performed). That is, when the total pressure in the vacuum chamber Pc1 reached a predetermined vacuum degree (2.8 x 10 -3 Pa), the noble gas was introduced into the vacuum chamber Pc1 irrespective of the partial pressure of the impurity gas. As a result of measuring the partial pressure of the impurity gas at this time, the partial pressure of the nitrogen gas was 5.0 × 10 -4 Pa, the partial pressure of the oxygen gas was 2.0 × 10 -4 Pa, the partial pressure of the water vapor gas was 2.0 × 10 -3 Pa, and the partial pressure of the hydrogen gas The partial pressure was 5.0×10 -5 Pa, which was below the standard value except for hydrogen gas. As a result of performing a tensile test under the same conditions as in the experiment of the invention, it was confirmed that the elongation amount of the laminated structure LS was more than doubled. In addition, as a result of obtaining the resistance increase rate in the same manner as in the experiment of the invention, it was 120% and 650%, which were worse than those of Comparative Experiment 1. In addition, as a result of observing the surface state of the laminated structure LS after the tensile test in the same manner as in the above invention experiment, it was confirmed that cracks occurred and whitened. From these results, it was found that the laminated structure LS obtained in Comparative Experiment 2 had weak bending resistance. Incidentally, as a result of measuring the X-ray diffraction of the formed first titanium layer L1, not only a diffraction peak on the (002) plane but also a diffraction peak on the (100) plane was observed, but a diffraction peak on the (002) plane was observed. The intensity ratio of the diffraction peak in the (100) plane to α was 0.11, which was less than 0.20. In addition, the half width of the diffraction peak in the (100) plane was 0.7 deg, which is larger than 0.6 deg. In the case of having such a diffraction pattern, it can be inferred that a titanium compound (Im) such as titanium nitride and titanium oxide is formed at the grain boundary (Cf) as shown in FIG. 5( b ).

또한 비교 실험 3에서는, 제 1 공정 및 제 3 공정 각각의 성막 시 성막 챔버(Pc1, Pc3) 내의 전체 압력을 0.6 Pa로 유지하여 성막 속도를 2 nm/sec로 하고, 제 1 공정 및 제 3 공정 각각에서 진공 배기 공정을 실시하지 않는 점(성막 공정만을 실시하는 점)을 제외하고는 상기 발명 실험과 동일한 방법으로 적층 구조체(LS)를 얻었다. 상기 발명 실험과 동일한 조건에서 인장 시험을 실시한 결과, 적층 구조체(LS)의 신장량이 두 배 이상이 됨을 확인하였다. 또한 상기 발명 실험과 동일하게 저항 상승률을 구한 결과, 비교 실험 2보다도 나쁜 300%, 900%였다. 또한, 상기 발명 실험과 동일하게 인장 시험 후의 적층 구조체(LS)의 표면 상태를 관찰한 결과, 크랙이 발생하여 백색화된 것이 확인되었다. 이들 결과로부터, 본 비교 실험 3에서 얻어진 적층 구조체(LS)는, 상기 비교 실험 1, 2보다도 약한 굴곡 내성을 갖는다는 것을 알 수 있었다. 덧붙여, 본 비교 실험 3에서 성막된 제 1 티타늄층(L1)의 X선 회절을 측정한 결과, (100)면에서의 회절 피크는 확인되지 않았고, (002)면에서의 회절 피크만이 확인되었으며, (002)면에서의 회절 피크의 반치폭은 0.8 deg이었다. 이와 같은 회절 패턴을 갖는 경우, 도 5(c)에 도시한 것처럼 작은 결정립(Cg)이 막 두께 방향으로 정렬되어 결정립계(Cf)가 그 막 두께 방향으로 뻗어나가듯이 연결된 결정 구조를 가지며, 또한 그 결정립계(Cf)에 티탄 화합물(Im)이 형성된다는 것을 미루어 짐작할 수 있다.Also, in Comparative Experiment 3, the film formation rate was 2 nm/sec by maintaining the total pressure in the film formation chambers Pc1 and Pc3 at 0.6 Pa during film formation in each of the first process and the third process, and the first process and the third process A laminated structure LS was obtained in the same manner as in the above invention experiment, except that the vacuum evacuation process was not performed in each case (only the film forming process was performed). As a result of performing a tensile test under the same conditions as in the experiment of the invention, it was confirmed that the elongation amount of the laminated structure LS was more than doubled. Moreover, as a result of calculating|requiring the resistance increase rate similarly to the said invention experiment, it was 300% and 900% worse than the comparative experiment 2. In addition, as a result of observing the surface state of the laminated structure LS after the tensile test in the same manner as in the above invention experiment, it was confirmed that cracks occurred and whitened. These results showed that the laminated structure LS obtained in this comparative experiment 3 had bending resistance weaker than the said comparative experiments 1 and 2. In addition, as a result of measuring the X-ray diffraction of the first titanium layer (L1) formed in this comparative experiment 3, the diffraction peak at the (100) plane was not confirmed, and only the diffraction peak at the (002) plane was confirmed. , the half width of the diffraction peak on the (002) plane was 0.8 deg. In the case of having such a diffraction pattern, as shown in Fig. 5(c), small crystal grains (Cg) are aligned in the film thickness direction, and the crystal grain boundary (Cf) has a connected crystal structure as it extends in the film thickness direction. It can be inferred from the fact that the titanium compound (Im) is formed at the grain boundary (Cf).

위와 같이 본 발명의 실시형태에 대해 설명했으나, 본 발명의 기술 사상의 범위를 벗어나지 않는 한 여러 가지로 변형할 수 있다. 상기 실시형태에서는, 적층 구조체(LS)로서 제 1 티타늄층(L1), 알루미늄층(L2), 제3 티타늄층(L3)을 적층한 것을 예로 들어 설명했으나, 제3 티타늄층(L3) 위에 추가로 질화 티타늄층이 적층된 것에 대해서도 본 발명을 적용할 수 있다.Although the embodiment of the present invention has been described above, various modifications may be made without departing from the scope of the technical spirit of the present invention. In the above embodiment, as the laminate structure LS, the first titanium layer L1 , the aluminum layer L2 , and the third titanium layer L3 were laminated as an example, but additionally on the third titanium layer L3 . The present invention can also be applied to a case in which a titanium nitride layer is laminated.

또한 상기 실시형태에서는, 성막 챔버(Pc1, Pc2, Pc3) 사이에서 기재(Sw)를 인시츄(in-situ)로 반송하고, 진공 분위기에서 제 1 티타늄층(L1), 알루미늄층(L2), 제 2 티타늄층(L3)을 일관되게 성막하는 경우를 예로 들어 설명했으나, 이에 한정되지는 않으며, 제 1 티타늄층(L1) 및 제 2 티타늄층(L3)과 알루미늄층(L2)을 다른 스퍼터링 장치로 실시하는 경우에도 본 발명을 적용할 수 있다. 또한, 제 1 티타늄층(L1)과 제 2 티타늄층(L3)은 동일한 성막 챔버에서 성막될 수도 있다.Further, in the above embodiment, the substrate Sw is transported in-situ between the film formation chambers Pc1, Pc2, and Pc3, and the first titanium layer L1, the aluminum layer L2, A case in which the second titanium layer (L3) is consistently formed as an example has been described, but the present invention is not limited thereto, and the first titanium layer (L1), the second titanium layer (L3), and the aluminum layer (L2) are formed by different sputtering apparatuses. The present invention can also be applied when carrying out Also, the first titanium layer L1 and the second titanium layer L3 may be formed in the same deposition chamber.

LS… 적층 구조체
L1… 제 1 티타늄층
L2… 알루미늄층
L3… 제 2 티타늄층
Sw… 기재
Pc1, Pc2, Pc3… 성막 챔버(진공 챔버)
2… 타겟
LS… laminated structure
L1… first titanium layer
L2… aluminum layer
L3… second titanium layer
Sw… write
Pc1, Pc2, Pc3... Film formation chamber (vacuum chamber)
2… target

Claims (4)

제 1 티타늄층, 알루미늄층, 제 2 티타늄층을 순차적으로 적층한 적층 구조체에서,
상기 제 1 티타늄층 및 상기 제 2 티타늄층 각각이, X선 회절 측정에 의한 밀러 지수(Miller index)에서 (002)면 및 (100)면에 회절 피크를 가지는 결정 구조를 가지며, 상기 (002)면에서의 회절 피크의 반치폭이 1.0 deg 이하이고, 상기 (100)면에서의 회절 피크의 반치폭은 0.6 deg 이하인 것을 특징으로 하는, 적층 구조체.
In a laminated structure in which a first titanium layer, an aluminum layer, and a second titanium layer are sequentially stacked,
Each of the first titanium layer and the second titanium layer has a crystal structure having diffraction peaks on the (002) plane and the (100) plane in Miller index by X-ray diffraction measurement, and the (002) A layered structure, characterized in that the half width of the diffraction peak in the plane is 1.0 deg or less, and the half width of the diffraction peak in the (100) plane is 0.6 deg or less.
청구항 1항에 있어서,
상기 알루미늄층은, 상기 X선 회절 측정에 의한 밀러 지수에서 (111)면에 회절 피크를 갖는 결정 구조를 갖는 것을 특징으로하는, 적층 구조체.
The method according to claim 1,
The aluminum layer, characterized in that it has a crystal structure having a diffraction peak on the (111) plane in the Miller index by the X-ray diffraction measurement, the laminate structure.
제 1 티타늄층, 알루미늄층, 제 2 티타늄층을 순차적으로 적층한 적층 구조체의 제조 방법에서,
스퍼터링법으로, 기재 상에 상기 제 1 티타늄층을 성막하는 제 1 공정과, 상기 제 1 티타늄층 상에 상기 알루미늄층을 성막하는 제 2 공정과, 상기 알루미늄층 상에 상기 제 2 티타늄층을 성막하는 제 3 공정을 포함하며,
상기 제 1 공정 및 상기 제 3 공정 각각은, 질소 가스의 분압이 3.0×10-4 Pa 이하, 산소 가스의 분압이 9.0×10-5 Pa 이하, 수증기 가스의 분압이 8.0×10-4 Pa 이하, 수소 가스의 분압이 5.0×10-5 Pa 이하에 각각 도달할 때까지, 티타늄제 타겟과 상기 기재가 배치된 진공 챔버 내부를 진공 배기하는 진공 배기 공정과, 상기 진공 챔버 내의 전체 압력이 0.2 Pa ~ 0.5 Pa의 범위로 유지되도록 희가스를 도입하고, 상기 티타늄제 타겟에 소정의 전력을 투입하여 3 nm/sec ~ 5 nm/sec의 범위의 성막 속도로 상기 제 1 티타늄층 및 상기 제 2 티타늄층을 성막하는 성막 공정을 추가로 포함하는 것을 특징으로 하는, 적층 구조체의 제조 방법.
In the method for manufacturing a laminated structure in which a first titanium layer, an aluminum layer, and a second titanium layer are sequentially stacked,
A sputtering method includes a first step of forming the first titanium layer on a substrate, a second step of forming the aluminum layer on the first titanium layer, and depositing the second titanium layer on the aluminum layer. It includes a third process of
In each of the first step and the third step, the partial pressure of nitrogen gas is 3.0×10 -4 Pa or less, the partial pressure of oxygen gas is 9.0×10 -5 Pa or less, and the partial pressure of water vapor gas is 8.0×10 -4 Pa or less , an evacuation step of evacuating the inside of the vacuum chamber in which the titanium target and the base material are disposed until the partial pressure of hydrogen gas reaches 5.0×10 -5 Pa or less, respectively, and the total pressure in the vacuum chamber is 0.2 Pa The first titanium layer and the second titanium layer are introduced at a deposition rate in the range of 3 nm/sec to 5 nm/sec by introducing a rare gas so as to be maintained in the range of 0.5 Pa, and applying a predetermined electric power to the titanium target. A method for manufacturing a laminated structure, characterized in that it further comprises a film forming step of forming a film.
청구항 3항에 있어서,
상기 제 2 공정은, 알루미늄제 타겟과 상기 기재가 배치된 상기 진공 챔버 내의 전체 압력이 0.2 Pa ~ 0.5 Pa의 범위로 유지되도록 상기 희가스를 도입하고, 상기 알루미늄제 타겟에 소정의 전력을 투입하여 7 nm/sec ~ 10 nm/sec의 범위의 성막 속도로 상기 알루미늄층을 성막하는 성막 공정을 추가로 포함하는 것을 특징으로 하는, 적층 구조체의 제조 방법.
4. The method of claim 3,
In the second step, the rare gas is introduced so that the total pressure in the vacuum chamber in which the aluminum target and the base material are disposed is maintained in the range of 0.2 Pa to 0.5 Pa, and a predetermined electric power is applied to the aluminum target 7 The method for manufacturing a laminated structure, characterized in that it further comprises a film forming step of forming the aluminum layer into a film at a film forming rate in the range of nm/sec to 10 nm/sec.
KR1020227031412A 2020-09-16 2021-06-11 Laminated structure and manufacturing method of the laminated structure KR20220142473A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2020-155773 2020-09-16
JP2020155773 2020-09-16
PCT/JP2021/022329 WO2022059277A1 (en) 2020-09-16 2021-06-11 Laminated structure, and method for manufacturing laminated structure

Publications (1)

Publication Number Publication Date
KR20220142473A true KR20220142473A (en) 2022-10-21

Family

ID=80776754

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227031412A KR20220142473A (en) 2020-09-16 2021-06-11 Laminated structure and manufacturing method of the laminated structure

Country Status (5)

Country Link
JP (1) JP7196372B2 (en)
KR (1) KR20220142473A (en)
CN (1) CN116056884A (en)
TW (1) TWI808439B (en)
WO (1) WO2022059277A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015177105A (en) 2014-03-17 2015-10-05 株式会社ジャパンディスプレイ Display device and method of manufacturing display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2805663B2 (en) * 1991-02-19 1998-09-30 ソニー株式会社 Wiring formation method
TW335504B (en) * 1996-07-09 1998-07-01 Applied Materials Inc A method for providing full-face high density plasma deposition
JPH10223632A (en) * 1997-02-04 1998-08-21 Nippon Steel Corp Semiconductor device
JP4264719B2 (en) 2003-09-10 2009-05-20 丸大食品株式会社 Food container
JP2012164940A (en) * 2011-02-09 2012-08-30 Rohm Co Ltd Semiconductor device and manufacturing method of the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015177105A (en) 2014-03-17 2015-10-05 株式会社ジャパンディスプレイ Display device and method of manufacturing display device

Also Published As

Publication number Publication date
TWI808439B (en) 2023-07-11
CN116056884A (en) 2023-05-02
WO2022059277A1 (en) 2022-03-24
JPWO2022059277A1 (en) 2022-03-24
TW202216436A (en) 2022-05-01
JP7196372B2 (en) 2022-12-26

Similar Documents

Publication Publication Date Title
US9051655B2 (en) Boron ionization for aluminum oxide etch enhancement
US10896821B2 (en) Asymmetric wafer bow compensation by physical vapor deposition
KR101894613B1 (en) Plasma etching method
US9779958B2 (en) Method of, and apparatus for, forming hard mask
US9938616B2 (en) Physical vapor deposition of low-stress nitrogen-doped tungsten films
US20150107769A1 (en) Hard mask and method of manufacturing the same
US20210005425A1 (en) Atomic layer etching and smoothing of refractory metals and other high surface binding energy materials
US20170004995A1 (en) Film Forming Apparatus and Film Forming Method
US10577689B2 (en) Sputtering showerhead
KR102205227B1 (en) Boron-based film forming method and boron-based film apparatus
KR20100024416A (en) Filming method, and treating system
KR20220142473A (en) Laminated structure and manufacturing method of the laminated structure
CN107710391B (en) Method for etching multilayer film
KR101252126B1 (en) Electronic component manufacturing method including step of embedding metal film
TWI489531B (en) Manufacture method and electrode structure of electronic parts
CN115172163A (en) Plasma etching method
JP5265309B2 (en) Sputtering method
KR100886989B1 (en) Method for forming ti film and computer readable storage medium
JP4734864B2 (en) Sputtering method
WO2020132175A1 (en) Methods of cleaning an oxide layer in a film stack to eliminate arcing during downstream processing
JPH08144059A (en) Continuous film forming device and continuous film formation