KR20220117742A - Hangover Treatment Composition Which Comprises Aldehyde Dehydrogenase and Glutathione - Google Patents

Hangover Treatment Composition Which Comprises Aldehyde Dehydrogenase and Glutathione Download PDF

Info

Publication number
KR20220117742A
KR20220117742A KR1020210021437A KR20210021437A KR20220117742A KR 20220117742 A KR20220117742 A KR 20220117742A KR 1020210021437 A KR1020210021437 A KR 1020210021437A KR 20210021437 A KR20210021437 A KR 20210021437A KR 20220117742 A KR20220117742 A KR 20220117742A
Authority
KR
South Korea
Prior art keywords
saccharomyces cerevisiae
glutathione
hangover
aldh
acetaldehyde
Prior art date
Application number
KR1020210021437A
Other languages
Korean (ko)
Other versions
KR102460589B1 (en
Inventor
권흥택
Original Assignee
주식회사 피코엔텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 피코엔텍 filed Critical 주식회사 피코엔텍
Priority to KR1020210021437A priority Critical patent/KR102460589B1/en
Publication of KR20220117742A publication Critical patent/KR20220117742A/en
Application granted granted Critical
Publication of KR102460589B1 publication Critical patent/KR102460589B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/06Tripeptides
    • A61K38/063Glutathione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/334Foods, ingredients or supplements having a functional effect on health treating the effects of consuming alcohol, narcotics or other addictive behavior, e.g. treating hangover or reducing blood alcohol levels
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/30Other Organic compounds
    • A23V2250/31Glutathione
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/76Yeasts
    • A23V2250/762Saccharomyces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

The present invention relates to a hangover relief composition containing dry powder, lysate or extract of yeast producing glutathione and acetaldehyde dehydrogenase. More specifically, the present invention relates to a hangover relief composition containing dry powder, lysate or extract of Saccharomyces cerevisiae Kwon P-1 KCTC 13925BP, Saccharomyces cerevisiae Kwon P-2 KCTC14122BP, and Saccharomyces cerevisiae Kwon P-3 KCTC14123BP yeasts which simultaneously produce glutathione and acetaldehyde dehydrogenase.

Description

글루타치온과 알데히드탈수소효소를 함유하는 숙취해소제{Hangover Treatment Composition Which Comprises Aldehyde Dehydrogenase and Glutathione} Hangover Treatment Composition Which Comprises Aldehyde Dehydrogenase and Glutathione

본 발명은 글루타치온(GSH)과 알데히드탈수소효소(이하, ALDH)를 함유하는 숙취해소제에 관한 것이다. 보다 구체적으로, 본 발명은 사카로마이세스 세레비지에(Saccharomyces cerevisiae Kwon P-1 KCTC 13925BP)와 사카로마이세스 세레비지에 Kwon P-2 KCTC14122BP 또는 사카로마이세스 세레비지에 Kwon P-3 KCTC14123BP 효모로부터 유래하는 글루타치온과 알데히드 탈수소효소를 동시에 함유하는 숙취해소제에 대한 것이다.The present invention relates to a hangover reliever containing glutathione (GSH) and aldehyde dehydrogenase (hereinafter, ALDH). More specifically, the present invention Saccharomyces cerevisiae Kwon P-1 KCTC 13925BP and Saccharomyces cerevisiae Kwon P-2 KCTC14122BP or Saccharomyces cerevisiae Kwon P-3 KCTC14123BP It is about a hangover reliever containing glutathione derived from yeast and aldehyde dehydrogenase at the same time.

술은 인류 역사와 함께 하는 기호식품이지만, 과도한 음주는 신체적, 정신적인 불쾌감을 느끼는 숙취에 이르고, 메스꺼움, 구토, 현기증, 갈증, 무기력, 졸음, 두통을 야기하며, 뇌신경계에 비정상(Alcohol Use Disorder, AUD)(Shao-Cheng Wang et al, 2020)을 유도하고, 심각한 중독증세(Alcohol Addiction)와 정신적 공황장애까지 발생시키는 사회 문제로 대두되고 있다.(최송식 2013).Alcohol is a favorite food with human history, but excessive drinking leads to a hangover that causes physical and mental discomfort, nausea, vomiting, dizziness, thirst, lethargy, drowsiness, headache, and abnormalities in the brain and nervous system (Alcohol Use Disorder). , AUD) (Shao-Cheng Wang et al, 2020) is emerging as a social problem that induces severe alcohol addiction and even mental panic disorder (Choi Song-sik 2013).

술을 마시면 알콜은 구강에서 5%, 위에서 10-15%, 작은 창자에서 80%흡수되어 혈액으로 유입되고, 폐에서 2 내지 4%, 신장에서 2 내지 4%, 땀으로 2 내지 6%, 간에서 90%가 분해된다. Alcohol is absorbed 5% from the oral cavity, 10-15% from the stomach, 80% from the small intestine and enters the bloodstream, 2-4% from the lungs, 2-4% from the kidneys, 2-6% from sweat, and the liver. 90% is decomposed in

간에서 알콜 분해는, 알콜 탈수소효소(Alcohol dehydrogenase, ADH)에 의해서 산화되어 아세트 알데하이드(Acetaldehyde)로 전환되고, 다시 알데하이드 탈수소효소 (Aldehyde dehydrogenase, ALDH)에 의해서 산화되어 무독화된다. Alcohol dehydrogenase in the liver is oxidized by alcohol dehydrogenase (ADH), converted to acetaldehyde, and again oxidized and detoxified by aldehyde dehydrogenase (ALDH).

그런데, 알데하이드 탈수소효소가 부족하거나 유전적으로 알데하이드 탈수소효소의 대립유전자(ALDH2*2)를 가진 아시안인의 15% 내지 50%의 사람들은 음주 시 생기는 아세트알데하이드를 분해하지 못하여, 얼굴이 붉어지는 알콜 홍조 증후군(Alcohol Flushing Syndrome)(Brooks, P. J. et al. 2009)현상이 나타나고, 아세트알데하이드 축적으로 인하여 알콜 중독증이나 간 질환에 걸릴 확률이 높은 것으로 보고(Larson,H.N et al, 2007)되고 있다. 아세트 알데하이드가 분해되지 못하고 인체에 잔류하여, 알콜성 간염(Alcohol hepatitis)나 간경화(liver cirrhosis)로 인한 사망과 장애를 야기하고 있다.(Gilpin, N.W.et al,2008)However, 15% to 50% of Asians who lack aldehyde dehydrogenase or genetically have an aldehyde dehydrogenase allele (ALDH2*2) are unable to break down acetaldehyde that occurs when drinking alcohol, resulting in blushing alcohol. Syndrome (Alcohol Flushing Syndrome) (Brooks, PJ et al . 2009) appears, and is reported to have a high probability of getting alcoholism or liver disease due to acetaldehyde accumulation (Larson, HN et al , 2007). Acetaldehyde is not decomposed and remains in the human body, causing death and disability due to alcoholic hepatitis or liver cirrhosis (Gilpin, NW. et al , 2008).

한편, 알코올 섭취에 의한 생성되는 체내 알데하이드(Aldehyde)의 과량 잔존은 심혈관계 질환, 당뇨, 신경퇴행성 질환, 상부 소화 및 호흡기관암, 방사선 피부염, 판코니 빈혈, 말초신경손상, 염증, 골다공증 및 노화와 같은 산화 작용에 기인한 질병을 초래한다고 보고된 바 있다(Chen et al. 2014). On the other hand, excessive residual of aldehydes in the body produced by alcohol intake is associated with cardiovascular diseases, diabetes, neurodegenerative diseases, upper digestive and respiratory tract cancer, radiation dermatitis, Fanconi's anemia, peripheral nerve damage, inflammation, osteoporosis and aging. It has been reported to cause diseases due to the same oxidation (Chen et al . 2014).

또한, 음주로 인한 사회경제적 손실규모가 대부분의 국가에서 GDP 대비 약 0.5-2.7%에 이르는 것 보고되고 있고 우리나라 경우, 2000년 한해 음주로 인한 사회경제비용이 14조 9,352억 원으로 추정되었으며 그 중 질병, 사고, 숙취에 의한 생산성 감소 및 손실액이 6조 2,845억 원으로 추정된다는 보고가 있다(정우진 et al. 2006). In addition, it is reported that the amount of socioeconomic loss due to drinking amounts to about 0.5-2.7% of GDP in most countries. There is a report that the loss of productivity due to illness, accident, and hangover is estimated to be 6.28 trillion won (Woojin Jung et al. 2006).

이러한 사회적 문제를 해결하기 위하여 에탄올의 독성을 경감시키거나 독성의 발현을 저해할 수 있는 많은 물질에 대한 연구와 실험이 진행되고 있으며, 그 결과물은 다양한 건강보조식품 관련 제품으로 개발되고 있다. 체내로 유입된 알코올은 위장 또는 소장에서 흡수되어 혈관 내로 들어가서 간장으로 옮겨져서 분해되고 해독된다. In order to solve these social problems, research and experiments on many substances that can reduce the toxicity of ethanol or inhibit the expression of toxicity are in progress, and the results are being developed into various health supplement-related products. Alcohol introduced into the body is absorbed in the stomach or small intestine, enters the blood vessels, is transported to the liver, and is decomposed and detoxified.

간세포에 존재하는 알코올 탈수소효소(ADH, Alcohol Dehydrogenase)가 알콜을 먼저 아세트알데히드(Acetaldehyde)로 산화시키면, 아세트알데히드는 다시 간세포에 있는 아세트알데히드 탈수소효소(ALDH, ALdehyde DeHydrogenase)에 의해 아세트산(Acetate)으로 분해되어 전신의 근육이나 지방조직으로 옮겨져 최종적으로는 탄산가스와 물로 분해된다. 에탄올의 최초 대사산물인 아세트알데하이드는 에탄올에 비해 반응성이 매우 높고 독성이 강하여 숙취 및 알코올성 간 장애의 주요 원인이 된다. Alcohol dehydrogenase (ADH) present in hepatocytes first oxidizes alcohol to acetaldehyde, and acetaldehyde is converted back to acetic acid (Acetate) by acetaldehyde dehydrogenase (ALDH, ALdehyde DeHydrogenase) in hepatocytes. It is decomposed and transferred to muscle or adipose tissue throughout the body, where it is finally decomposed into carbon dioxide and water. Acetaldehyde, the first metabolite of ethanol, is highly reactive and more toxic than ethanol, and is the main cause of hangover and alcoholic liver disorders.

인체에 존재하는 알데하이드 탈수소효소는 19가지 종류가 보고된 바 있으며(Marchitti et al. 2007, 2008), 이 중 미토콘드리아에 주로 존재하는 아세트알데하이드 탈수소효소2 (Acetaldehyde Dehydrogenase2)는 효소공학적으로 분석한 결과, 아세트알데하이드를 효소의 기질로 분석했을 때 다른 종류의 알데하이드를 기질로 사용했을 때 보다 가장 낮은 Km 값(~0.2 μM)을 나타내어, 알콜에서 유래된 아세트알데하이드를 가장 잘 산화시켜서 제거하는 것으로 평가된다. 19 types of aldehyde dehydrogenase present in the human body have been reported (Marchitti et al . 2007, 2008), and among them, acetaldehyde dehydrogenase2, which is mainly present in mitochondria, was analyzed by enzymatic engineering, When acetaldehyde was analyzed as a substrate for the enzyme, it showed the lowest Km value (~0.2 μM) compared to when other types of aldehydes were used as substrates, so it is evaluated that acetaldehyde derived from alcohol is best oxidized and removed.

생체 내 에탄올 대사에서 생성된 숙취 원인 물질인 아세트알데하이드를 아세트산으로 가장 효과적으로 전환함으로 알데하이드를 제거하는 것을 인체 건강에 매우 중요하다(Eriksson et al. 1977). 또한 아세트알데하이드 탈수소효소2는 아세트알데하이드 뿐만 아니라 지방족 알데하이드, 방향족 알데하이드, 폴리사이클릭 알데하이드와 같은 알데하이드의 대사과정에도 이용되어 체내 독성물질을 제거한다(Klyosov et al. 1996). It is very important for human health to remove aldehyde by most effectively converting acetaldehyde, which is a hangover-causing substance produced in ethanol metabolism in vivo, into acetic acid (Eriksson et al . 1977). In addition, acetaldehyde dehydrogenase 2 is used not only in acetaldehyde but also in the metabolism of aldehydes such as aliphatic aldehydes, aromatic aldehydes, and polycyclic aldehydes to remove toxic substances from the body (Klyosov et al. 1996).

대표적인 예로 산화적 스트레스 과정에서 발생되는 산화 알데하이드 물질인 4-hydroxy-2-nonenal(4-HNE)과 malondialdehyde(MDA)을 제거하고, 담배 연기와 자동차 매연에서 발생하는 아크로레인(acrolein)을 제거하는 역할을 한다(Chen et al. 2010, Yoval-Sanchez et al. 2012). 인체내 아세트알테하이드 탈수소효소2 효소의 발현이 적거나 이 효소의 487번째 아미노산 잔기가 글루타민산에서 라이신으로 변이된 사람은 얼굴이 붉어지는 홍조현상을 보이는 등, 적은 양의 알코올에도 민감한 반응을 보일 뿐만 아니라 전환을 못하기 때문에 음주시 혈중 아세트알데하이드의 농도가 높다(Yoshida et al. 1984). As a representative example, it removes 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA), which are oxidized aldehyde substances generated during oxidative stress, and acrolein generated from cigarette smoke and automobile exhaust. role (Chen et al . 2010, Yoval-Sanchez et al. 2012). People who have low expression of acetaldehyde dehydrogenase 2 enzyme in the human body or whose amino acid residue 487 of this enzyme is mutated from glutamic acid to lysine show a reddening and flushing phenomenon, and are sensitive to even a small amount of alcohol. However, the concentration of acetaldehyde in the blood is high when drinking alcohol because it cannot be converted (Yoshida et al. 1984).

특히 아세트알데하이드 탈수소효소2의 동형 접합체인 ALDH2-2를 가지고 있는 경우 음주에 취약하다고 알려져 있으며, 이러한 유전적 변이는 서양인에게는 거의 나타나지 않지만, 한국인, 중국인, 일본인에게서는 전체 인구의 50%에서 발견되고 있다.(Brooks et al. 2009)In particular, if you have ALDH2-2, a homozygous for acetaldehyde dehydrogenase 2, you are known to be vulnerable to drinking, and this genetic mutation is rarely seen in Westerners, but in Koreans, Chinese, and Japanese, it is found in 50% of the total population. . (Brooks et al. 2009)

알데하이드 탈수소효소2에 대한 연구개발은 의료용 목적으로 체내 알데하이드 탈수소효소 2의 촉진제 및 억제제에 대한 연구가 활발히 연구됨으로써 알데하이드 탈수소효소 2의 중요성이 강조되고 있지만(Budas et al. 2009, Chen et al. 2014, M.zel et al. 2018), 알데하이드 탈수소효소2의 과량 생산 미생물 육종이나 대량 생산 기술 개발에 대한 연구는 아직 부족한 실정이다. As for R&D on aldehyde dehydrogenase 2, research on promoters and inhibitors of aldehyde dehydrogenase 2 in the body has been actively studied for medical purposes, highlighting the importance of aldehyde dehydrogenase 2 (Budas et al. 2009, Chen et al. 2014). , M.zel et al. 2018), studies on the development of microbial breeding or mass production technology for overproduction of aldehyde dehydrogenase 2 are still lacking.

알데하이드 탈수소효2를 과량으로 생산하는 균주의 개발은, 대장균(E. coli)을 숙주로 한 단백질 발현 시스템을 이용하여 인간형 알데하이드 탈수소효소1과2 단백질을 발현시키고, 이중 30%정도가 활성이 있는 가용성 형태의 효소로 발현하여, 2 내지4 mg/L의 단백질을 생산하는 것으로 보고된 바 있으며(Zheng et al. 1993), 쥐(Rat) 알데하이드 탈수소효소2의 경우 95%가 활성이 있는 가용성 단백질로 발현되었으나, 1 내지 2 mg/L의 매우 적은 단백질을 생산한 것으로 보고되었다(Jeng et al. 1991). The development of a strain that produces an excess of aldehyde dehydrogenase 2 is to express human-type aldehyde dehydrogenase 1 and 2 proteins using a protein expression system using E. coli as a host, of which about 30% are active. It has been reported to produce 2 to 4 mg/L of protein by expression as a soluble form of enzyme (Zheng et al. 1993), and in the case of Rat aldehyde dehydrogenase 2, 95% of the active soluble protein was expressed, but it was reported that very little protein of 1 to 2 mg/L was produced (Jeng et al. 1991).

그러나, 법적 제한이 작아서 활용이 용이한 돌연변이 방법을 이용한 아세트알데하이드 탈수소효소2의 생산량을 증가시킨 사례는 보고되지 아니하고 있다. 따라서 아세트알테하이드 탈수소효소2의 사용 범위 확대를 위해 돌연변이 방법에 의한 고활성 알데하이드 탈수소효소2를 가진 미생물을 개발이 시급히 요구된다.However, there have been no reports of cases of increasing the production of acetaldehyde dehydrogenase 2 using a mutagenesis method that is easy to use due to small legal restrictions. Therefore, there is an urgent need to develop microorganisms with high activity aldehyde dehydrogenase 2 by mutagenesis to expand the range of use of acetaldehyde dehydrogenase 2.

체내에 흡수된 에탄올은 아세트알데하이드로 산화되는 과정에는 ADH(alcohol dehydrogenase) 효소가 작용하며, 알코올 산화로 생성된 아세트알데하이드의 분해/산화 과정에는 ALDH(aldehyde dehydrogenase)라는 효소가 작용하여 체외로 탄산가스, 물로 분해되어 배출된다. Ethanol absorbed in the body is oxidized to acetaldehyde by the enzyme ADH (alcohol dehydrogenase), and in the process of decomposition/oxidation of acetaldehyde produced by alcohol oxidation, an enzyme called ALDH (aldehyde dehydrogenase) acts to release carbon dioxide from the body. , it is decomposed into water and discharged.

ALDH는 비단 Acetaldehyde만 분해하는 것만 아니고, 인체에 산화스트레스를 가하는 Nonenal(4-hydroxy-2-nonenal), HNE (4-hydroxy -trans-2-nonenal), Malondialdehyde, DOPAL (3,4-dihydroxy-phenylacetaldehyde), DOPEGAL (3,4-dihydroxy-phenylglycolaldehyde), 5-HIAL (5-hydroxy indole -acetaldehyde), Retinaldehyde(Arnold SL et al, 2015)등도 분해한다. ALDH not only decomposes Acetaldehyde, but also Nonenal (4-hydroxy-2-nonenal), HNE (4-hydroxy -trans-2-nonenal), Malondialdehyde, DOPAL (3,4-dihydroxy- It also decomposes phenylacetaldehyde), DOPEGAL (3,4-dihydroxy-phenylglycolaldehyde), 5-HIAL (5-hydroxy indole-acetaldehyde), and Retinaldehyde (Arnold SL et al , 2015).

이러한 다양한 종류의 알데히드들은 인체 내 DNA를 파괴하고(Garaycoechea, JI et al, 2018), 세포의 중요한 에너지 생성기관인 미토콘드리아를 비정상(Mitochondrial dysfunction) (Gomes, KM et al, 2014)화 하여 심각한 질병을 야기한다. These various types of aldehydes destroy DNA in the human body (Garaycoechea, JI et al , 2018), and cause serious diseases by making mitochondria, an important energy-producing organ of cells, abnormal (Mitochondrial dysfunction) (Gomes, KM et al , 2014). do.

이러한 다양한 알데하이드 들의 분해를 위해서는 주로 효모인 Saccharomyces유래의 ALDH가 많이 사용된다. 효모의 유전체 Genome Database에 따르면, Saccharomyces속에는 약 6가지 종류의 ALDH(Datta S. et al, 2017)가 알려지고 있다. For the decomposition of these various aldehydes, ALDH from Saccharomyces , a yeast, is mainly used. According to the genome genome database of yeast, about six types of ALDH (Datta S. et al , 2017) are known in the genus Saccharomyces .

이들 중 ALDH2는 조효소 NAD의 결합 부위가 구조적으로 인간 ALDH와 유사(Mukhopadhyay,A. et al, 2013)하고, NAD를 조효소로 사용하고 미토콘드리아에서 작용할 뿐만 아니라, 효모에서는 미토콘드리아 이외의 세포질(Cytoplasm)에서도 작용한다. 효소의 특이역가(Specific activity)도 효모ALDH(yALDH)는 인간 ALDH(hALDH)에 비해서 20배 이상(M.-F.Wang et al,2009) 높게 나타나서 인체에 사용시 높은 효과를 기대할 수 있다. Among them, ALDH2 is structurally similar to human ALDH in the binding site of the coenzyme NAD (Mukhopadhyay, A. et al , 2013), uses NAD as a coenzyme, and acts in the mitochondria. In yeast, it also acts in the cytoplasm other than the mitochondria. works As for the specific activity of the enzyme, yeast ALDH ( y ALDH) is more than 20 times higher than that of human ALDH ( h ALDH) (M.-F. Wang et al , 2009), so a high effect can be expected when used in the human body. .

쌀에서 고체 배양하여 생산하는 종래의 쌀 유래 효모ALDH는 정제가 용이하다는 장점은 있지만, ALDH 생산 수율이 낮아서 숙취해소제 상업적 대량 생산에 한계가 있었다. 이러한 문제점을 개선하기 위하여 쌀 유래 효모ALDH를 대량으로 생산할 수 있는 방법이 등장하였다. ALDH유전자 확보하여 재조합 효모를 만들기 위한 방법이 대한민국 공개특허 제10-2005-0052664(PCT/EP2003/01049)에 기재되어 있다. Conventional rice-derived yeast ALDH produced by solid culture in rice has the advantage of being easy to purify, but there is a limit to the commercial mass production of hangover relievers due to the low ALDH production yield. In order to improve this problem, a method for mass production of rice-derived yeast ALDH has emerged. A method for producing recombinant yeast by securing the ALDH gene is described in Korean Patent Laid-Open No. 10-2005-0052664 (PCT/EP2003/01049).

효모 유래의 알데하이드탈수소효소 유전자(ALDH gene)의 재조합에 대한 기술은 특허번호 제10-1664814호에 기재되어 있다. 알콜을 산화하는 ADH효소의 유전자 재조합에 의한 생산 방법은 특허 출원 제10-2020-0045978호에 기재되어 있다. A technique for recombination of yeast-derived aldehyde dehydrogenase gene (ALDH gene) is described in Patent No. 10-1664814. A method for producing an ADH enzyme that oxidizes alcohol by genetic recombination is described in Patent Application No. 10-2020-0045978.

한편, 알코올 섭취로 인한 숙취의 예방, 숙취의 해소 및 간 손상을 방어하기 위해, 다양한 건강식품 소재로 인체내에 ALDH효소를 활성화시키는 활성제(Activator)를 개발하려는 다양한 노력도 진행되고 있다.(US 10,406,126 B2(2019), US Pub.NO US2020/0237716 A1(2020)). On the other hand, various efforts are being made to develop an activator that activates the ALDH enzyme in the human body with various health food materials to prevent hangover caused by alcohol intake, relieve hangover, and prevent liver damage. (US 10,406,126) B2 (2019), US Pub. NO US2020/0237716 A1 (2020)).

국내에서는 활성화제로서 천궁, 감초, 갈근, 진피, 헛개 등의 생약 제제 등의 단독 또는 혼합하여 제조하는 한방 추출물(한국특허출원10-2020-0142768)이 알려져 있다. In Korea, as an activator, herbal extracts (Korean Patent Application No. 10-2020-0142768) prepared alone or in combination with herbal preparations such as chrysanthemum, licorice, galgeun, dermis, and Heotgae are known.

또한, 국내 등록특허 제10-0696589호에는 황태, 헛개나무, 겨우살이 추출물 및 칡성분을 함유하는 숙취 해소 조성물이 기재되어 있고, 국내 공개특허 제10-2012-0123860호에는 울금, 오리나무, 헛개나무 과병, 가시오가피 농축액, 미배아 대두발효 추출물, 밀크씨슬 및 글루타치온를 포함하는 숙취해소 조성물을 제공하여 환원제 글루타치온을 사용을 공개하고 있다. In addition, Korean Patent Registration No. 10-0696589 discloses a hangover relieving composition containing Hwangtae, Heotgae tree, mistletoe extract and arrowroot ingredients, and Korean Patent Publication No. 10-2012-0123860 discloses turmeric, alder, and Heotgae tree. It discloses the use of glutathione as a reducing agent by providing a hangover relieving composition comprising a gwabyeong, a spiny hornwort concentrate, an unfermented soybean ferment extract, milk thistle and glutathione.

그러나, 지금까지 특허 기술의 대부분은 숙취 예방보다는 숙취 해소에 더 중점을 두고 있고, 숙취 해소 효과가 미미한 경우가 많았다. 따라서, 당업계에는 숙취 현상의 근원적인 문제인 아세트알데하이드를 직접 빠르게 해독할 수 있는 ALDH를 함유하는 숙취 해소 조성물 개발의 필요성이 대두되고 있다. However, most of the patented technologies so far have focused more on relieving hangover than preventing hangover, and in many cases the effect of relieving hangover is insignificant. Therefore, there is a need in the art to develop a hangover relief composition containing ALDH that can directly and quickly detoxify acetaldehyde, which is the root problem of a hangover phenomenon.

본 발명자는 체내에서 신속하게 작용하여 알코올과 알데하이드를 빠르게 분해하고, 나아가 인체 대사 과정에서 생성되는 활성산소(ROS)인 다양한 ROS를 유발하는 알데하이드 산물들을 신속하게 분해하며, 그 효과가 인체 내에서 지속되어 숙취뿐만 아니라 인체 생리 기능의 보호에 기여할 수 있는 글루타치온과 ALDH를 함유하는 숙취해소용 조성물을 개발하게 되었다. The present inventor rapidly decomposes alcohol and aldehyde by acting quickly in the body, and further rapidly decomposes aldehyde products that cause various ROS, which are reactive oxygen species (ROS) generated during human metabolism, and the effect is sustained in the human body. As a result, a hangover relieving composition containing glutathione and ALDH, which can contribute to the protection of human physiological functions as well as a hangover, was developed.

본 발명에서는 ALDH효소와 글루타치온의 함량이 충분히 포함 되어 체내 알데하이드류 독소 제거 효과가 빠르고 지속적인 효능을 보장할 수 있는 신규 숙취해소 조성물을 제공하는 것을 목적으로 한다. 본 발명에 따른 숙취 해소 조성물은 소화기관내 알데하이드 독성제거 활성뿐만 아니라, 인체 내 다양한 내임성 알데하이드 독성제거 활성을 유지한다. An object of the present invention is to provide a novel hangover relieving composition that contains sufficient amounts of ALDH enzyme and glutathione, so that the effect of removing aldehyde toxins from the body is fast and continuous. The hangover relieving composition according to the present invention maintains a variety of tolerable aldehyde detoxification activity in the human body as well as aldehyde detoxification activity in the digestive system.

한편, 글루타치온(Glutathione, γ-L-glutamyl-L-cysteinylglycine, GSH)은 세포에 존재하는 생리활성물질로서 글루타메이트(glutamate), 시스테인(cystein), 글라이신(glycine)의 세가지 아미노산으로 구성된 트리펩타이드이며, 동물, 식물 및 미생물의 세포내에서 0.1 내지 10mM의 농도로 존재하며, 세포의 총 비단백질성 활성분의 90% 이상을 차지하고 있다. On the other hand, Glutathione (γ-L-glutamyl-L-cysteinylglycine, GSH) is a physiologically active substance present in cells and is a tripeptide composed of three amino acids: glutamate, cysteine, and glycine, It is present in the cells of animals, plants and microorganisms at a concentration of 0.1 to 10 mM, and accounts for more than 90% of the total non-proteinaceous activity of the cells.

생체 내에서 글루타치온(glutathione)은 백혈구 생성을 통한 면역 활성 증가를 야기함으로써 중요한 항바이러스제의 역할을 하는 것으로 알려져 있으며, GST (glutathione S-transferase)의 기질로 작용하여 생체에 해로운 비생체물질(xenobiotics)과 같은 독성물질을 콘쥬게이션(Conjugation) 형태로 결합하여 해독 작용에 중요한 역할을 한다. In vivo, glutathione is known to play an important role as an antiviral agent by causing an increase in immune activity through the generation of white blood cells, and acts as a substrate for GST (glutathione S-transferase) and is harmful to the living body (xenobiotics) It plays an important role in detoxification by combining toxic substances such as conjugation in the form of conjugation.

또한 글루타치온은 세포 내에서 산화작용으로 세포막, 핵산과 세포구조들을 손상시켜 괴사시키는 것을 막아주고, 노화의 원인인 활성 산소 종(Reactive oxygen species, ROS)의 독성을 완화시켜 주는 역할을 한다. 이때 활성 산소 종은 다양한 생체 대사작용에서 형성되며, 슈퍼옥사이드(superoxide), 과산화물(peroxide), 하이드록시 라디칼(hydroxyl radical)등이 포함되고, 물질의 생체 대사산물로 생성되는 내인성 활성 산소 종과 담배, 방사능 등의 외인성 활성 산소 종으로 구분할 수 있다. In addition, glutathione prevents necrosis by damaging cell membranes, nucleic acids and cellular structures through oxidation within the cell, and plays a role in alleviating the toxicity of reactive oxygen species (ROS), the cause of aging. At this time, reactive oxygen species are formed in various biological metabolism, and include superoxide, peroxide, hydroxyl radical, etc., endogenous reactive oxygen species produced as biological metabolites of substances and tobacco , radioactive and other exogenous reactive oxygen species.

활성 산소 종에 기인한 산화적 스트레스는 인지기능에 손상을 줄 수 있고(Liu et al. 2002), 정자의 DNA를 파괴하여 남성 불임의 원인이 되며(Wright et al. 2014), 세포단백질, 지질 및 핵산을 손상시켜 암을 유발할 수 있고, 생리적 기능을 저하시켜 각종 질병과 노화의 원인 인자로 작용한다. 따라서 우리 몸은 질병예방, 면역 증진, 노화방지 등의 역할을 하는 항산화제가 매우 중요하며, 세포 내에서 항산화 역할을 하는 글루타치온의 기능은 효소학, 약물학, 치료, 독물학, 내분비학 및 미생물학을 포함하는 많은 의학 분야에서 주목받고 있다. Oxidative stress caused by reactive oxygen species can impair cognitive function (Liu et al . 2002) and cause male infertility by destroying sperm DNA (Wright et al . 2014), cellular proteins, lipids And it can cause cancer by damaging nucleic acids, and acts as a causative factor of various diseases and aging by lowering physiological functions. Therefore, antioxidants that play a role in disease prevention, immunity enhancement, and anti-aging are very important in our body, and the function of glutathione as an antioxidant in cells is important in many fields including enzymology, pharmacology, therapy, toxicology, endocrinology and microbiology. It is attracting attention in the medical field.

이러한 글루타치온은 기본적으로 체내에서 합성되지만, 질병발생, 면역력 약화, 노화등 비정상적인 상태가 진행될수록 인체 내 절대적 함량이 적어져서 건강을 악화시킨다. 따라서 외부에서 공급되는 글루타치온은 세포내 활성 산소 종을 제거하여 건강을 유지하고 노화를 늦출 수 있다. 이러한 글루타치온의 인체내 생리 활성 요인에 의하여 현재 글루타치온은 식품, 화장품, 사료 및 의약품 용도로 사용되고 있으며 점점 사용량이 증가하고 있는 추세이다. Glutathione is basically synthesized in the body, but as abnormal conditions such as disease outbreaks, weakened immunity, and aging progress, the absolute content of glutathione in the human body decreases and deteriorates health. Therefore, glutathione supplied from the outside can remove intracellular reactive oxygen species to maintain health and slow aging. Due to the physiologically active factors of glutathione in the human body, glutathione is currently being used for food, cosmetics, feed, and pharmaceuticals, and its usage is gradually increasing.

한편, 글루타치온의 생산은 현재 식용 가능한 미생물을 이용하여 생산하지만 미생물이 생산할 수 있는 글루타치온의 고유한 함량은 매우 낮아 돌연변이 및 재조합 기술로 미생물의 글루타치온 함량을 증대 시켜 이를 이용한 발효 기법에 의하여 고함량 글루타치온 생산균주로 대량으로 생산하는 연구가 활발하게 진행되고 있다. On the other hand, the production of glutathione is currently produced using edible microorganisms, but the intrinsic content of glutathione that microorganisms can produce is very low. Research on mass production with strains is being actively conducted.

따라서 글루타치온 고함량 균주 개발은 경제적 가치를 높이는 근원적인 소재를 개발하는 것으로 글루타치온을 건강식품, 의약품, 사료등 광범위하게 사용할 수 있게 하는 시장 경합력을 가질 수 있게 해준다. Therefore, the development of a strain with a high glutathione content is to develop a fundamental material that increases economic value, and it enables the market to have competitive power to use glutathione in a wide range of health foods, medicines and feeds.

그러나 유전자 재조합 기술에 의한 균주 개발은 현재 이슈가 되고 있는 GMO 에 대한 여러 가지 문제로부터 자유로울 수가 없어서 그 사용범위가 제한된다. 그러나 돌연변이 기술에 의한 성능 개량 균주는 상대적으로 제한이 적어서 여러 가지 용도로 개발하기 비교적 용이하다. 따라서 돌연변이 기술을 이용한 고함량의 글루타치온 생산 균주 육종 기술이 식품이나 약품의 유효성분으로 사용되는 글루타치온 생산에 적합하다. However, strain development by genetic recombination technology cannot be free from the various problems of GMO, which are currently an issue, so the scope of its use is limited. However, the performance-improved strain by mutation technology has relatively few limitations, so it is relatively easy to develop for various uses. Therefore, the breeding technology for strains producing high content of glutathione using mutagenesis technology is suitable for the production of glutathione used as an active ingredient in food or drugs.

그러나 이상에서 살펴본 바와 같이, 인체내에 축적되는 여러 유해물질 중 특히 활성산소 종이나 다양한 알데히드류 들과 같은 화학물질을 제거하기 위해서는 글루타치온과 알데히드 탈수소효소를 동시에 사용하면 효율성이 높지만, 현재까지 글루타치온과 알데히드 탈수소효소를 동시에 대량 생산하는 균주는 상업화되지 아니하였다. However, as described above, in order to remove chemicals such as reactive oxygen species and various aldehydes among various harmful substances accumulated in the human body, using glutathione and aldehyde dehydrogenase at the same time is effective, but so far, glutathione and aldehyde A strain that simultaneously produces a large amount of dehydrogenase has not been commercialized.

본 발명의 숙취해소제 조성물을 제조하기 위하여, 알데히드 탈수소효소와 글루타치온을 동시에 고효율로 생산할 수 있는 균주를 1차 화학 돌연변이 방법을 사용하여 돌연 변이주를 만들고, 2차 선택 요소(Selection factor)적응(Adaptation) 변이주를 선발하여 개발하였다. In order to prepare the hangover cure composition of the present invention, a strain capable of producing aldehyde dehydrogenase and glutathione at the same time with high efficiency is made a mutant strain using a primary chemical mutation method, and a secondary selection factor is adapted (Adaptation). ) mutants were selected and developed.

글루타치온과 아세트알테하이드 탈수소효소 2를 동시에 과량 생산하는 돌연변이 균주는 식품, 건강식품, 사료. 화장품 및 의약용사용에 문제가 없는 GRAS (Generally Recognized As Safe)로 보고되고 있고, 생산 효율은 낮지만 글루타치온과 알데하이드 탈수소효소를 모두 생산하는 균주로 이미 알려진 야생 사카로마이세스 세레비지애(Saccharomyces cerevisiae)를 선발하여 사용하였다. Mutant strains that simultaneously produce excessive amounts of glutathione and acetaldehyde dehydrogenase 2 are used in food, health food, and feed. Wild Saccharomyces cerevisiae is reported as GRAS (Generally Recognized As Safe) with no problems for cosmetic and medicinal use, and is known as a strain that produces both glutathione and aldehyde dehydrogenase although production efficiency is low. ) was selected and used.

이렇게 돌연변이를 통하여 글루타치온의 생산 능력이 증가되고, 동시에 알데하이드 탈수소효소 생산 능력도 증가된 새로운 개량 균주인 사카로마이세스 세레비지애 속(Saccharomyces cerevisiae sp.)을 제조하고, 이러한 균주 건조분말, 용해물(lysate) 또는 ALDH함유 추출물을 제조하여, 본 발명의 숙취해소제를 완성하게 되었다. Through this mutation, the production capacity of glutathione is increased, and at the same time, the genus Saccharomyces cerevisiae sp., which is a new improved strain with increased aldehyde dehydrogenase production capacity, was prepared, and the dry powder, lysate of this strain (lysate) or ALDH-containing extract was prepared to complete the hangover reliever of the present invention.

본 발명의 숙취해소제 조성물의 유효성분은 한국 특허 출원 제10-2020-0019858호에 상세하게 기재되어 있고, 국제기탁기관(KCTC)에 기탁되어있는 Saccharomyces cerevisiae Kwon P-1(KCTC13925BP), Saccharomyces cerevisiae Kwon P-2(KCTC14122BP) 또는 Saccharomyces cerevisiae Kwon P-3(KCTC14123BP)의 건조 분말, 용해물(lysate) 또는 ALDH함유 추출물이다.The active ingredient of the hangover remedy composition of the present invention is described in detail in Korean Patent Application No. 10-2020-0019858, and Saccharomyces cerevisiae Kwon P-1 (KCTC13925BP), Saccharomyces cerevisiae , which have been deposited with the International Depositary Organization (KCTC) Dry powder, lysate, or ALDH-containing extract of Kwon P-2 (KCTC14122BP) or Saccharomyces cerevisiae Kwon P-3 (KCTC14123BP).

본 발명자는 돌연변이에 의한 ALDH 생산능이 높고 글루타치온 생산 능력도 높은 사카로마이세스 세레비지애 Kwon P-1(Saccharomyces cerevisiae Kwon P-1, 기탁번호:KCTC13925BP)등의 3종의 균주를 단독으로 또는 혼합사용하여 1차 액상 발효 단계를 진행한 다음에, 액상 발효 산물을 쌀 발효분말에 가하여 2차 고상 발효를 진행하는 단계를 포함하는 2단계 공정으로, ALDH의 생산수율을 획기적으로 상승시키는 새로운 발효 공정을 발명하였다. The present inventors have a high ALDH production ability by mutation and a high glutathione production ability Saccharomyces cerevisiae Kwon P-1 ( Saccharomyces cerevisiae Kwon P-1, accession number: KCTC13925BP), such as three strains alone or mixed A new fermentation process that dramatically increases the production yield of ALDH in a two-step process that includes performing the first liquid fermentation step using invented.

또한, 본 발명의 새로운 발효 공정에서는 사카로마이세스 세레비지애 Kwon P-1(기탁번호:KCTC13925BP)등의 3종 균주들 중 하나 또는 이들의 혼합 균주를 사용하여 1차 액상 발효 단계와 2차 고상 발효 단계를 진행하여, 강력한 환원제인 글루타치온(Glutathione)과 ALDH 효소를 동시에 높은 수율로 생산할 수 있는 발효 공정을 완성할 수 있었다.In addition, in the new fermentation process of the present invention, one of three strains such as Saccharomyces cerevisiae Kwon P-1 (Accession No.: KCTC13925BP) or a mixture thereof is used in the first liquid fermentation step and the second By proceeding with the solid-state fermentation step, it was possible to complete a fermentation process capable of simultaneously producing glutathione and ALDH enzymes, which are powerful reducing agents, in high yield.

1. 한국 특허 출원 제10-2020-0019858호 “글루타치온과 알데하이드탈수소효소를 생산하는 사카로마이세스 세레비지에 권피1,2,3”1. Korean Patent Application No. 10-2020-0019858 “Saccharomyces cerevisiae winding 1,2,3 producing glutathione and aldehyde dehydrogenase” 2. 한국특허 출원 공개 제10-2005-00526642. Korean Patent Application Publication No. 10-2005-0052664 3. 한국특허 제10-1664814호3. Korean Patent No. 10-1664814 4. 한국 특허 공개 제10-2020-0045978호4. Korean Patent Publication No. 10-2020-0045978 5. United States Patent 10,406,126 B2 ALDH2 ACTIVATOR5. United States Patent 10,406,126 B2 ALDH2 ACTIVATOR 6. United States Patent Application US2020/0237716 A16. United States Patent Application US2020/0237716 A1 7. 한국특허 공개 제10-2020-01427687. Korean Patent Publication No. 10-2020-0142768 8. 한국 등록특허 제10-0696589호8. Korean Patent Registration No. 10-0696589 9. 한국 특허출원 공개 제10-2012-0123860호9. Korean Patent Application Publication No. 10-2012-0123860

1. Gilpin, N.W.; Koob, G.F. Neurobiology of alcohol dependence: Focus on motivational mechanisms. AlcoholRes. Health ,2008, 31, 185.1. Gilpin, N.W.; Koob, G. F. Neurobiology of alcohol dependence: Focus on motivational mechanisms. AlcoholRes. Health, 2008, 31, 185. 2. Shao-Cheng Wang et al, Alcohol Addiction, Gut Microbiota, and Alcoholism Treatment: A Review. Int. J. Mol. Sci. 2020, 21, 64132. Shao-Cheng Wang et al, Alcohol Addiction, Gut Microbiota, and Alcoholism Treatment: A Review. Int. J. Mol. Sci. 2020, 21, 6413 3. 최송식, 한국사회에서 알콜중독자의 재발예방전략에 관한 연구, 한국민족문화 48호, 2013, 307-348 3. Song-Sik Choi, A Study on the Relapse Prevention Strategies of Alcoholics in Korean Society, Korean National Culture No. 48, 2013, 307-348 4. Arnold SL, Kent T, Hogarth CA, Schlatt S, Prasad B, Haenisch M, Walsh T, Muller CH, Griswold MD, Amory JK, et al. Importance of ALDH1A enzymes in determining human testicular retinoic acid concentrations. J Lipid Res. 2015, 56: 342-357.4. Arnold SL, Kent T, Hogarth CA, Schlatt S, Prasad B, Haenisch M, Walsh T, Muller CH, Griswold MD, Amory JK, et al. Importance of ALDH1A enzymes in determining human testicular retinoic acid concentrations. J Lipid Res. 2015, 56: 342-357. 5. Garaycoechea J.I. , G.P. Crossan, F. Langevin., Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells, Nature , 553 ,2018, 171e1775. Garaycoechea J.I. , G.P. Crossan, F. Langevin., Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells, Nature, 553 ,2018, 171e177 6. Gomes K.M. , J.C. Campos, L.R. Bechara, et al., Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodeling, Cardiovasc. Res. 103 ,2014, 498e508.6. Gomes K.M. , J.C. Campos, L. R. Bechara, et al., Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodeling, Cardiovasc. Res. 103,2014, 498e508. 7. Datta,S., Annapure,U.S. and Timson, D. J.,Different specificities of two aldehyde dehydrogenases from Saccharomyces cerevisiae var . boulardii, Bioscience Reports ,2017, 37 BSR201605297. Datta, S., Annapure, U.S. and Timson, D. J., Different specificities of two aldehyde dehydrogenases from Saccharomyces cerevisiae var. boulardii, Bioscience Reports, 2017, 37 BSR20160529 8. Brooks, P. J., Enoch, M. A., Goldman, D., Li, T. K., & Yokoyama, A., The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS medicine, 2009, 6(3), e1000050.8. Brooks, P. J., Enoch, M. A., Goldman, D., Li, T. K., & Yokoyama, A., The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS medicine, 2009, 6(3), e1000050. 9. Larson, H.N., Zhou, J., Chen, Z. et al., Structural and functional consequences of coenzyme binding to the inactive Asian variant of mitochondrial aldehyde dehydrogenase: Roles of residues 475 and 487, J. Biol. Chem. Vol. 282,2007 pp. 12940-12950.9. Larson, H.N., Zhou, J., Chen, Z. et al., Structural and functional consequences of coenzyme binding to the inactive Asian variant of mitochondrial aldehyde dehydrogenase: Roles of residues 475 and 487, J. Biol. Chem. Vol. 282,2007 pp. 12940-12950. 10. M.-F Wang et al., Chemico-Biological Interrations 178, 2009, 36-3910. M.-F Wang et al., Chemico-Biological Interrations 178, 2009, 36-39 11. Budas, G. R., Disatnik, M. H., & Mochly-Rosen, D. (2009). Aldehyde dehydrogenase 2 in cardiac protection: a new therapeutic target. Trends in cardiovascular medicine, 19(5), 158-164.11. Budas, G. R., Disatnik, M. H., & Mochly-Rosen, D. (2009). Aldehyde dehydrogenase 2 in cardiac protection: a new therapeutic target. Trends in cardiovascular medicine, 19(5), 158-164. 12. Chen, C. H., Ferreira, J. C. B., Gross, E. R., & Mochly-Rosen, D. (2014). Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiological reviews, 94(1), 1-34.12. Chen, C. H., Ferreira, J. C. B., Gross, E. R., & Mochly-Rosen, D. (2014). Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiological reviews, 94(1), 1-34. Eriksson, C. J. (1977). Acetaldehyde metabolism in vivo during ethanol oxidation. Advances in experimental medicine and biology, 85, 319-341. Eriksson, C. J. (1977). Acetaldehyde metabolism in vivo during ethanol oxidation. Advances in experimental medicine and biology, 85, 319-341. Hamad, G.M., Taha, T.H., Alshehri, A.M. & Hafez, E.E., (2018). Enhancement of the Glutathione Production by Mutated Yeast Strains and its Potential as Food Supplement and Preservative. Res. J. Microbiol., 13: 28-36. Hamad, G. M., Taha, T. H., Alshehri, A. M. & Hafez, E.E., (2018). Enhancement of the Glutathione Production by Mutated Yeast Strains and its Potential as Food Supplement and Preservative. Res. J. Microbiol., 13: 28-36. Jeng, J., & Weiner, H. (1991). Purification and characterization of catalytically active precursor of rat liver mitochondrial aldehyde dehydrogenase expressed in Escherichia coli. Archives of biochemistry and biophysics, 289(1), 214-222. Jeng, J., & Weiner, H. (1991). Purification and characterization of catalytically active precursor of rat liver mitochondrial aldehyde dehydrogenase expressed in Escherichia coli. Archives of biochemistry and biophysics, 289(1), 214-222. 16. Klyosov, A. A., Rashkovetsky, L. G., Tahir, M. K., & Keung, W. M. (1996-1). Possible role of liver cytosolic and mitochondrial aldehyde dehydrogenases in acetaldehyde metabolism. Biochemistry, 35(14), 4445-4456.16. Klyosov, A. A., Rashkovetsky, L. G., Tahir, M. K., & Keung, W. M. (1996-1). Possible role of liver cytosolic and mitochondrial aldehyde dehydrogenases in acetaldehyde metabolism. Biochemistry, 35(14), 4445-4456. Klyosov, A. A. (1996-2). Kinetics and specificity of human liver aldehyde dehydrogenases toward aliphatic, aromatic, and fused polycyclic aldehydes. Biochemistry, 35(14), 4457-4467. Klyosov, A. A. (1996-2). Kinetics and specificity of human liver aldehyde dehydrogenases toward aliphatic, aromatic, and fused polycyclic aldehydes. Biochemistry, 35(14), 4457-4467. Liu, J., Head, E., Gharib, A. M., Yuan, W., Ingersoll, R. T., Hagen, T. M., & Ames, B. N. (2002). Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: Partial reversal by feeding acetyl-L-carnitine and/or R-α-lipoic acid. Proc. Natl. Acad. Sci., 99(4), 2356-2361. Liu, J., Head, E., Gharib, A. M., Yuan, W., Ingersoll, R. T., Hagen, T. M., & Ames, B. N. (2002). Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: Partial reversal by feeding acetyl-L-carnitine and/or R-α-lipoic acid. Proc. Natl. Acad. Sci., 99(4), 2356-2361. Marchitti, S. A., Deitrich, R. A., & Vasiliou, V. (2007). Neurotoxicity and metabolism of the catecholamine-derived 3, 4-dihydroxyphenyla cetaldehyde and 3, 4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacological reviews, 59(2), 125-150. Marchitti, S. A., Deitrich, R. A., & Vasiliou, V. (2007). Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenyla cetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacological reviews, 59(2), 125-150. Marchitti, S. A., Brocker, C., Stagos, D., & Vasiliou, V. (2008). Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert opinion on drug metabolism & toxicology, 4(6), 697-720. Marchitti, S. A., Brocker, C., Stagos, D., & Vasiliou, V. (2008). Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert opinion on drug metabolism & toxicology, 4(6), 697-720. Najafi, MBH, & Pezechki, P. (2013) Bacterial mutation; types, mechanisms and mutant detection methods: a review. European Scientific Journal, 4 Najafi, MBH, & Pezechki, P. (2013) Bacterial mutation; types, mechanisms and mutant detection methods: a review. European Scientific Journal, 4 Ohtake, Y., Satou, A., & Yabuuchi, S. (1990). Isolation and Characterization of Glutathione Biosynthesis-deficient Mutants in Saccharomyces cerevisiae. Agric. Biol. Chem., 54(12), 3145-3150. Ohtake, Y., Satou, A., & Yabuuchi, S. (1990). Isolation and Characterization of Glutathione Biosynthesis-deficient Mutants in Saccharomyces cerevisiae. Agric. Biol. Chem., 54(12), 3145-3150. Wright, C., Milne, S., & Leeson, H. (2014). Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod. BioMed. Online, 28(6), 684-703. Wright, C., Milne, S., & Leeson, H. (2014). Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod. BioMed. Online, 28(6), 684-703. Yoshida, A., Huang, I. Y., & Ikawa, M. (1984). Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proceedings of the National Academy of Sciences, 81(1), 258-261. Yoshida, A., Huang, I. Y., & Ikawa, M. (1984). Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proceedings of the National Academy of Sciences, 81(1), 258-261.

본 발명의 목적은 야생 사카로마이시스 세레비지에 효모를 돌연변이시켜서 글루타치온과 알데하이드 탈수소효소 2의 동시 생산 능력을 증가시키는 돌연변이 사카로마이시스 세레비지에 효모의 건조분말, 용해물(lysate) 또는 ALDH함유 추출물을 유효성분으로서 함유하는 숙취해소제 조성물을 제공하는 것이다.It is an object of the present invention to mutate yeast in wild Saccharomyces cerevisiae to increase the simultaneous production capacity of glutathione and aldehyde dehydrogenase 2 To provide a hangover relief composition containing as an active ingredient.

본 발명의 또 다른 목적은 글루타치온과 알데하이드 탈수소효소 2 를 동시에 생산하는 사카로마이시스 세레비지에 KwonP-1 (Saccharomyces cerevisiae KwonP-1: KCTC13925BP), KCTC14122BP(Saccharomyces cerevisiae KwonP-2) 또는 KCTC14123BP(Saccharomyces cerevisiae KwonP-2) 돌연변이 효모의 건조분말, 용해물(lysate) 또는 ALDH함유 추출물을 유효성분으로서 함유하는 숙취해소제조성물을 제공하는 것이다.Another object of the present invention is Saccharomyces cerevisiae KwonP-1 ( Saccharomyces cerevisiae KwonP-1: KCTC13925BP), KCTC14122BP ( Saccharomyces cerevisiae KwonP-2) or KCTC14123BP ( Saccharomyces cerevisiae KwonP-2) that simultaneously produces glutathione and aldehyde dehydrogenase 2 -2) To provide a hangover relieving composition containing the dry powder, lysate, or ALDH-containing extract of mutant yeast as an active ingredient.

본 발명의 또 다른 목적은 글루타치온과 알데하이드 탈수소효소 2 를 동시에 생산하는 사카로마이시스 세레비지에 KwonP-1 (Saccharomyces cerevisiae KwonP-1: KCTC13925BP), KCTC14122BP(Saccharomyces cerevisiae KwonP-2) 또는 KCTC14123BP(Saccharomyces cerevisiae KwonP-2) 효모를 액상 배양하는 단계, 상기 액상 배양물을 쌀에 가하여 고상 배양하는 단계의 2단계 공정으로 생산하는 방법을 제공하는 것이다. Another object of the present invention is Saccharomyces cerevisiae KwonP-1 ( Saccharomyces cerevisiae KwonP-1: KCTC13925BP), KCTC14122BP ( Saccharomyces cerevisiae KwonP-2) or KCTC14123BP ( Saccharomyces cerevisiae KwonP-2) that simultaneously produces glutathione and aldehyde dehydrogenase 2 -2) It is to provide a method for producing in a two-step process of culturing yeast in a liquid phase, adding the liquid culture to rice and culturing in a solid phase.

본 발명의 또 다른 목적은 글루타치온과 알데하이드 탈수소효소 2 를 동시에 생산하는 사카로마이시스 세레비지에 KwonP-1 (Saccharomyces cerevisiae KwonP-1: KCTC13925BP), KCTC14122BP(Saccharomyces cerevisiae KwonP-2) 또는 KCTC14123BP(Saccharomyces cerevisiae KwonP-2) 효모를 액상 배양하는 단계, 상기 액상 배양물을 쌀에 가하여 고상 배양하는 단계의 2단계 공정으로 생산된 효모의 건조분말, 용해물(lysate) 또는 ALDH함유 추출물을 유효성분으로서 함유하는 숙취해소제조성물을 제공하는 것이다.Another object of the present invention is Saccharomyces cerevisiae KwonP-1 ( Saccharomyces cerevisiae KwonP-1: KCTC13925BP), KCTC14122BP ( Saccharomyces cerevisiae KwonP-2) or KCTC14123BP ( Saccharomyces cerevisiae KwonP-2) that simultaneously produces glutathione and aldehyde dehydrogenase 2 -2) A hangover containing dry powder, lysate, or ALDH-containing extract of yeast produced in a two-step process of culturing the yeast in liquid phase, adding the liquid culture to rice and culturing the solid phase as an active ingredient It is to provide a dissolving composition.

이상과 같은 본 발명의 목적을 달성하기 위하여, 야생 효모를 돌연변이 시킨 후, 다시 글루타치온을 과량 생산하는 균주는 메틸글라이옥살 적응 변이주, 알데하이드 탈수소효소 과량 생산 균주 선발은 라이신 적응 변이주 선발 방법으로 하여, 최종적으로 글루타치온과 알데하이드 탈수소효소를 동시에 과량으로 생산하는 사카로마이세스 세레비지에를 선발하였다. In order to achieve the object of the present invention as described above, after mutating wild yeast, the strain producing an excess of glutathione is a methylglyoxal-adapted mutant, and the selection of an aldehyde dehydrogenase excess producing strain is a lysine-adapted mutant selection method, Finally, Saccharomyces cerevisiae, which simultaneously produces excessive amounts of glutathione and aldehyde dehydrogenase, was selected.

대량으로 배양시킨 사카로마이세스 세레비지애 KwonP-1(수탁번호 KCTC13925BP)를 다시 쌀에 접종하여 고상발효를 진행시켜 글루타치온 및 아세트 알데하이드 탈수소효소를 과량 생산하는 사카로마이세스 세레비지애 균주를 2단계 공정에서 좀 더 대규모로 배양시킨 다음에, 균주의 건조 분말, 용해물 또는 추출 분말을 함유하는 본 발명의 숙취해소 조성물을 제조하였다.Saccharomyces cerevisiae strain that produces excess glutathione and acetaldehyde dehydrogenase by inoculating rice with Saccharomyces cerevisiae KwonP-1 (accession number KCTC13925BP) cultured in large quantities again and proceeding with solid-phase fermentation 2 After culturing on a larger scale in the step process, the hangover relieving composition of the present invention containing the dry powder, lysate or extract powder of the strain was prepared.

도 1은 본 발명의 조성물 투여에 따른 실험 동물의 혈중 아세트알데히드 함량 변화를 나타낸 그래프이다.
도 2는 본 발명의 조성물 투여에 따른 실험 동물의 혈중 아세트알데히드 함량 변화를 나타낸 그래프이다.
1 is a graph showing changes in blood acetaldehyde content of experimental animals according to administration of a composition of the present invention.
2 is a graph showing changes in blood acetaldehyde content of experimental animals according to administration of the composition of the present invention.

이하, 다음의 실시예들을 통하여 본 발명의 구성 및 효과를 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다. 이하, 실시예를 통하여 본 발명의 구성 및 효과를 더욱 상세히 설명하고자 한다. 이하의 실시예들은 오로지 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들 실시 예에 의해 한정되는 것은 아니다. Hereinafter, the configuration and effects of the present invention will be described in more detail through the following examples. These examples are only for illustrating the present invention, and the scope of the present invention is not limited by these examples. Hereinafter, the configuration and effects of the present invention will be described in more detail through examples. The following examples are only for illustrating the present invention, and the scope of the present invention is not limited by these examples.

글루타치온과 ALDH를 함유하는 본 발명의 효모 용해물 준비glutathione and Preparation of Yeast Lysates of the Invention Containing ALDH

실시예1-1: 글루타치온과 ALDH 함유 사카로마이세스세레비지에 효모 발효 과정 Example 1-1: Saccharomyces cerevisiae yeast fermentation process containing glutathione and ALDH

ALDH 함유 사카로마이세스세레비지에 효모의 종균을 200 mL flask에 YPD 배지(효모추출물, 펩톤, 글루코즈 함유 배지)를 사용하여 160 rpm, 30℃ 조건의 인큐베이터에서 24시간 동안 발효하여 배양했으며, 본 배양은 5 L 발효기 (Marado-05D-PS, CNS, Korea)을 통하여 72 시간 동안 진행하였다. 배양 종료 후 고속원심분리기(Supra R22, Hanil, Korea)를 이용하여 효모를 원심분리하였다. The ALDH-containing Saccharomyces cerevisiae yeast seed was fermented and cultured for 24 hours in an incubator at 160 rpm and 30° C. using YPD medium (yeast extract, peptone, and glucose containing medium) in a 200 mL flask. The culture was carried out for 72 hours through a 5 L fermenter (Marado-05D-PS, CNS, Korea). After completion of the culture, the yeast was centrifuged using a high-speed centrifuge (Supra R22, Hanil, Korea).

실시예1-2: 글루타치온과 ALDH 함유 효모 용해물 준비 과정Example 1-2: Preparation of yeast lysate containing glutathione and ALDH

원심분리된 ALDH 함유 효모를 초저온냉동고(CLN-52U, Nihon freezer, Japan)에서 2일간 냉동시킨 후 동결건조기(FDU-7006, Operon, Korea)로 2일간 동결건조를 진행하였다. 동결건조된 효모 파우더 3 g에 단백질분해효소억제제(A32955, Thermo fisher, USA)를 넣은 50 mL 인산완충식염수(phosphate-buffered saline, PBS)에 녹인 후, 0.5 mm 세포파쇄용유리구슬 (11079105, Biospec) 10 g을 넣고 비드호모나게이저(Mixer Mill MM400, Retsch, Germany)로 2분씩 총 3번에 걸쳐 효모 파쇄시켰다. 고속원심분리기(Supra R22, Hanil, Korea)를 이용하여 원심분리한 후 상등액만 분리하여 동결건조기(FDU-7006, Operon, Korea)로 2일간 동결건조를 진행하였다. The centrifuged ALDH-containing yeast was frozen in a cryogenic freezer (CLN-52U, Nihon freezer, Japan) for 2 days, and then freeze-dried for 2 days in a freeze dryer (FDU-7006, Operon, Korea). After dissolving 3 g of lyophilized yeast powder in 50 mL phosphate-buffered saline (PBS) containing a protease inhibitor (A32955, Thermo fisher, USA), 0.5 mm glass beads for cell disruption (11079105, Biospec) 10 g was put into the bead homogenizer (Mixer Mill MM400, Retsch, Germany) for 2 minutes a total of 3 times to disrupt the yeast. After centrifugation using a high-speed centrifuge (Supra R22, Hanil, Korea), only the supernatant was separated and freeze-dried for 2 days with a freeze dryer (FDU-7006, Operon, Korea).

2단계 발효공정에 의한 싸카로마이세스 세레비지에 균주의 대량 생산 Mass production of Saccharomyces cerevisiae strain by two-step fermentation process

사카로마이시스 세레비지애 KwonP-1 (Saccharomyces cerevisiae KwonP-1) 균주(KCTC13925BP)를 2% 펩톤, 1% 효모 추출물, 2% 글루코스가 포함된 YPD 배지에 접종하여 30℃에서 배양하여 OD600nm 값이 50이 될 때까지 발효조(Fermentor, 코바이오텍)에서 200rpm, 1 vvm조건에서 발효시켰다. 배양액을 membrane filter를 사용하여 균체를 회수하였다. Saccharomyces cerevisiae KwonP-1 ( Saccharomyces cerevisiae KwonP-1) strain (KCTC13925BP) was inoculated in YPD medium containing 2% peptone, 1% yeast extract, and 2% glucose and cultured at 30 ° C to increase the OD value of 600nm . It was fermented at 200 rpm, 1 vvm in a fermentor (Fermentor, Cobiotech) until it reached 50. Cells were recovered from the culture solution using a membrane filter.

회수된 균체를 이미 멸균된 쌀 발효 분말에 10%의 비율로 혼합하여 수분함량을 60%로 조정하여 고체상에서 30℃에서 2일 고체 배양한 후 50℃에서 건조하여 최종 수분함량이 7%로 맞추어 효모발효 쌀 발효 분말을 제조하였다. The recovered cells are mixed with the already sterilized rice fermented powder at a ratio of 10%, the moisture content is adjusted to 60%, and the solid phase is cultured for 2 days at 30°C and then dried at 50°C to adjust the final moisture content to 7%. Yeast fermented rice fermented powder was prepared.

이렇게 제조된 본 발명의 발효 조성물은 최대 ALDH 600unit/g함유하였다. 현재까지 알려진 야생형 싸카로마이세스 세레비지애 효모 균주에 의한 쌀 발효 분말이 일반적으로 ALDH를 2unit/g정도 함유하고 있음을 감안하면, 본 발명의 발효 조성물의 ALDH함량이 약300배 증가하였음을 확인하였다. The fermentation composition of the present invention thus prepared contained a maximum of 600 units/g of ALDH. Considering that the rice fermented powder by the wild-type Saccharomyces cerevisiae yeast strain known to date generally contains about 2unit/g of ALDH, it was confirmed that the ALDH content of the fermented composition of the present invention was increased by about 300 times. did.

표1에 본 발명의 2단 발효 공정에 의해 제조된 본 발명의 조성물(1 내지 4)이 5분간 나타내는 아세트알데히드 분해능력을 평가한 결과를 나타내었다. Table 1 shows the results of evaluating the acetaldehyde decomposition ability of the compositions (1 to 4) of the present invention prepared by the two-stage fermentation process of the present invention for 5 minutes.

  반응시간(m)Reaction time (m) NADPH(mM)NADPH (mM) 현탁액vol.(ml)Suspension vol. (ml) Unit/g powderUnit/g powder AverageAverage 1One 55 1.732 1.732 0.20 0.20 693.0693.0 681.4681.4 1One 55 1.675 1.675 0.20 0.20 669.8669.8 22 55 1.722 1.722 0.20 0.20 688.9688.9 682.2682.2 22 55 1.689 1.689 0.20 0.20 675.6675.6 33 55 1.770 1.770 0.20 0.20 707.9707.9 702.1702.1 33 55 1.741 1.741 0.20 0.20 696.3696.3 44 55 1.639 1.639 0.20 0.20 655.8655.8 665.7665.7 44 55 1.689 1.689 0.20 0.20 675.6675.6

이렇게 제조된 본 발명의 발효 조성물 건조 분쇄 분말에 ALDH 조효소인 NAD를 효소 활성제로 첨가하고, 구연산, 스테아린산 마그네슘, DL메치오닌, 비타민C와 유산균(Lactobacillus plantium 107/g), 산화아연, 이산화규소를 첨가하여 본 발명의 숙취 해소제를 제조하였다. NAD, an ALDH coenzyme, was added as an enzyme activator to the dry pulverized powder of the fermentation composition of the present invention prepared in this way, and citric acid, magnesium stearate, DL methionine, vitamin C and lactic acid bacteria ( Lactobacillus plantium 10 7 /g), zinc oxide, and silicon dioxide were added. Added to prepare a hangover reliever of the present invention.

본 발명의 숙취 해소제의 동물 실험을 통하여, 알콜 섭취 후 혈액 내 아세트 알데하이드 농도를 측정하여 종래의 숙취해소제에 비해서 본 발명의 숙취 해소제가 혈액내 아세트알데히드 농도를 현저하게 빠르게 감소시키는 결과를 확인하였다. Through animal testing of the hangover reliever of the present invention, the concentration of acetaldehyde in the blood was measured after alcohol intake to confirm the result that the hangover reliever of the present invention significantly and rapidly reduced the concentration of acetaldehyde in the blood compared to the conventional hangover reliever did.

또한 본 발명의 숙취 해소제에 대한 인체 임상시험을 위하여, 임상시험 자진 지원자를 유전체 검사를 통해, 알데하이드를 분해하는 ALDH2 유전자 보유군인 실험군과와 유전적으로 알데히드 분해 능력이 부족한 ALDH2*2변이 유전자 보유군 실험군으로 나누어 진행하였다. In addition, for human clinical trials of the hangover reliever of the present invention, voluntary clinical trial volunteers were subjected to a genomic test to the experimental group, which is a group with the ALDH2 gene that degrades aldehyde, and the group with the ALDH2*2 mutant gene, which is genetically deficient in the ability to degrade aldehydes. The experiment was divided into experimental groups.

15시간 동안 인체 숙취해소 효과 확인 실험을 진행한 결과, ALDH2 보유 실험군과 ALDH2*2유전자 변이 실험군에서 모두 유의성 있는 알데히드 분해능력 차이를 확인 하였다. 본 발명의 숙취 해소제는 2개의 실험군에서 모두 효율적으로 아세트알데하이드를 제거할 수 있었다. 특히, 알데하이드를 분해하기 어려운 ALDH 2*2유전자 변이 실험군에서도 효율적으로 알데하이드를 제거하여, ALDH 및 Glutathione의 함량 보강에 기인하는 본 발명의 숙취 해소제의 알데히드 분해와 숙취해소 효과를 확인하였다. As a result of the experiment to confirm the effect of human hangover relieving for 15 hours, significant differences in aldehyde degradation ability were confirmed in both the ALDH2 retention test group and the ALDH2*2 gene mutation test group. The hangover reliever of the present invention was able to efficiently remove acetaldehyde in both experimental groups. In particular, the aldehyde decomposition and hangover relieving effect of the hangover reliever of the present invention due to the reinforcement of the contents of ALDH and Glutathione was confirmed by efficiently removing the aldehyde even in the ALDH 2*2 gene mutation test group, which is difficult to degrade aldehyde.

본 발명의 조성물의 숙취 해소 효과 측정Measurement of hangover relief effect of the composition of the present invention

실시예 3-1: 혈중 acetaldehyde 경시적 변화 동물 시험 Example 3-1: Animal test for changes over time of acetaldehyde in blood

에탄올 투여 이후 혈중 acetaldehyde 경시적 변화에 대한 동물 시험결과를 표2에 나타내었다. Table 2 shows the animal test results for the temporal change of acetaldehyde in blood after ethanol administration.

혈중 아세트알데히드 (mg/L)Blood Acetaldehyde (mg/L)   0hr0hr 1hr1hr 3hr3hr 5hr5hr 8hr8hr 대조군control 00 0.030.03 0.020.02 0.030.03 0.020.02 에탄올 투여군Ethanol administration group 00 0.520.52 0.490.49 0.30.3 0.190.19 에탄올과 본 조성물 73mg/kg 투여군Ethanol and the composition administered at 73 mg/kg 00 0.480.48 0.330.33 0.230.23 0.180.18 에탄올과 본 조성물 220mg/kg 투여군Ethanol and the composition 220mg/kg administered group 00 0.460.46 0.240.24 0.220.22 0.120.12

혈중 알데히드 누적량 동물 실험 결과 (mg/L·hr)를 표3에 나타내었다. Table 3 shows the results (mg/L·hr) of the cumulative amount of aldehydes in the blood.

  혈중 아세트알데히드 누적량Accumulated amount of acetaldehyde in the blood 감소율decrease rate 대조군control 0.260.26   에탄올 투여군Ethanol administration group 2.572.57   에탄올과 본 조성물 73mg/kg 투여군Ethanol and the composition administered at 73 mg/kg 22 -22%-22% 에탄올과 본 조성물 220mg/kg 투여군 Ethanol and the composition 220mg/kg administered group 1.271.27 -51%-51%

실시예 3-2: 인체 임상 실험 자원자의 혈중 에탄올과 아세트알데히드 분석Example 3-2: Analysis of ethanol and acetaldehyde in blood of human clinical trial volunteers

임체임상 시험 자원자를 일회 음주시 평균적으로 알코올 도수 20도 기준 소주을 마실수 있는 건강한 20대에서 40대 사이의 성인 남성 43명을 대상자를 선발하고, 총 4주에 걸쳐 매주 한차례 금요일 저녁 17시에서 임상 진행 병원에 입소 다음날 8시 총 15시간동안, 합숙을 통해 임상 진행 하였으며 임상과정에 개인사정 등을 이유로 총 23명이 최종적으로 임상을 마쳤다. Clinical trial volunteers were selected from 43 healthy adult males in their 20s and 40s who can drink soju based on an average alcohol content of 20 degrees at a time of drinking, and the clinical trial was conducted once a week on Friday evenings at 17:00 for a total of 4 weeks. The clinical trial was carried out through a camp for 15 hours the day after entering the hospital at 8 am, and a total of 23 patients finally completed the clinical trial due to personal circumstances during the clinical process.

합숙 첫째날, 소주 10잔 복용후 시간대별 혈중 알코올 대사 즉 알코올 농도 변화 및 아세트알데히드 농도변화를 측정하였고, 합숙 둘째날 본 발명의 조성물 73mg/kg 복용후 30분 뒤 소주 10잔 복용후 혈중 알코올 대사 변화량 측정하였고, 합숙 둘째날 본 발명의 조성물 220mg/kg 복용후 30분 뒤 소주 10잔 복용후 혈중 알코올 대사 변화량을 측정하였다. On the first day of the camp, after taking 10 glasses of soju, blood alcohol metabolism, that is, changes in alcohol concentration and acetaldehyde concentration by time period, were measured, and on the second day of the camp, the amount of change in blood alcohol metabolism after taking 73 mg/kg of the composition of the present invention 30 minutes after taking 10 glasses of soju On the second day of the camp, after taking 220 mg/kg of the composition of the present invention, 30 minutes after taking 10 glasses of soju, the amount of change in blood alcohol metabolism was measured.

본 발명의 2단 발효 건조 분말이 500mg/day 및 발효쌀분말 1500mg 함유된 조성물 복용군에서, 숙취의 원인 물질이자 체내 강력한 발암물질인 Acetaldehyde의 혈중 농도가 알코올 단독 투여군 대비 용량의존적으로 유의미하게 감소 하였다. 또한 혈중 알코올 잔류량 또한 본 발명의 조성물 투여 용량의존적으로 유의미하게 감소 하였다. In the group taking the composition containing 500 mg/day of the double-fermented dry powder of the present invention and 1500 mg of fermented rice powder, the blood concentration of Acetaldehyde, which is a causative agent of hangover and a strong carcinogen in the body, was significantly reduced in a dose-dependent manner compared to the group administered with alcohol alone. . In addition, the residual amount of blood alcohol was also significantly reduced in a dose-dependent manner with the composition of the present invention.

인체 인상 시험 자원자의 혈중 알코올 농도 감소를 표4에 나타내었다. Table 4 shows the decrease in blood alcohol concentration of volunteers in the human impression test.

  알콜 누적량
(g·hr/dL)
alcohol accumulation
(g hr/dL)
알콜감소량
(%)
alcohol reduction
(%)
감소율decrease rate 최고치 Cmax
(g/L)
peak Cmax
(g/L)
알코올 단독 투여군Alcohol alone group 30.85230.852 100%100%   7.5837.583 에탄올과 조성물 73mg/kg 투여군Ethanol and composition 73mg/kg administration group 29.69329.693 96.2%96.2% -3.8%-3.8% 5.5485.548 에탄올과 조성물 220mg/kg 투여군Ethanol and composition 220mg/kg administration group 25.27125.271 85.7%85.7% -14.9%-14.9% 4.184.18

인체 인상 시험 자원자의 혈중 아세트알데히드 잔류량 감소를 표5에 나타내었다 Table 5 shows the decrease in the residual amount of acetaldehyde in the blood of human impression test volunteers.

  혈중 아세트알데히드 잔류량
(mg·hr/dL)
Residual amount of acetaldehyde in blood
(mg hr/dL)
잔류량 감소
(%)
Residue reduction
(%)
감소율decrease rate 최고치
Cmax
(mg/dL)
high
Cmax
(mg/dL)
에탄올 투여군Ethanol administration group 13.0213.02 100%100%   1.651.65 에탄올과 조성물 73mg/kg 투여군Ethanol and composition 73mg/kg administration group 9.399.39 72.1%72.1% -27.9%-27.9% 1.21.2 에탄올과 조성물 220mg/kg 투여군Ethanol and composition 220mg/kg administration group 5.225.22 68.0%68.0% -32.0%-32.0% 1.31.3

실시예 3-4: ALDH유전자 변이 여부에 따른 에탄올과 아세트알데히드 변화 확인Example 3-4: Confirmation of changes in ethanol and acetaldehyde according to ALDH gene mutation

임체임상 시험 자원자의 모집을 위해 일회 음주시 평균적으로 알코올 도수 20도 기준 소주을 마실수 있고 건강한 20대에서 40대 사이의 성인 남서 43명을 대상자를 선발하였다. 총 4주에 걸쳐 매주 한차례 금요일 저녁 17시에서 임상 진행 병원에 입소 다음날 8시 총 15시간동안 합숙을 통해 임상 진행 하였으며, 임상심험 과정에서 개인사정 등을 이유로 총 23명만이 최종적으로 임상을 마쳤다. For the recruitment of clinical trial volunteers, 43 male and female adults in their 20s and 40s who can drink soju with an average alcohol content of 20 degrees per drink were selected. For a total of 4 weeks, the clinical trial was conducted once a week from 17:00 on Friday evening to 8:00 am on the next day after admission to the hospital. During the clinical trial, only 23 patients completed the clinical trial for a total of 15 hours due to personal circumstances.

이중 약 22명의 알코올 대사과련 유전자 검사에 참여 실험 및 정보활용 동의를 받아, 총 22명의 생체내 알코올 대사에 관여된 ADH1B(Alcohol dehydrogenase 1B), ALDH2(Aldehyde dehydrogenase 2), CPY2E1 P450 3가지 유전체 검사를 통하여, 숙취의 원인 물질이자 체내 강력한 발암물질인 Acetaldehyde의 혈중 농도가 알코올 단독 투여군 대비 ALDH2 비변이군 및 ALDH2*2 변이군 모두에서 용량의존적으로 감소함을 확인하였다. Of these, about 22 of them participated in the genetic test related to alcohol metabolism, and with the consent of the experiment and information use, a total of 22 people involved in alcohol metabolism in vivo, including ADH1B (Alcohol dehydrogenase 1B), ALDH2 (Aldehyde dehydrogenase 2), and CPY2E1 P450, 3 types of genome tests were performed. Through this, it was confirmed that the blood concentration of Acetaldehyde, which is a causative agent of hangover and a strong carcinogen in the body, decreased in a dose-dependent manner in both the ALDH2 non-mutant group and the ALDH2*2 mutant group compared to the alcohol-only group.

ALDH2*2 유전자 변이군의 경우 소량의 음주에도 매우 높은 혈중 아세트알데히드 농도를 나타내는 것것으로 알려져 있으며, 통상적인 숙취해소 음료나 기존 방식의 숙취해소 식품 및 의약품을 통해 혈중 알데히드 감소 효과가 관찰되거나 보고된 적이 없었다. 그러나 본 발명의 숙취해소 조성물 투여의 경우에는 ALDH2*2 유전자 변이군의 혈중 Acetaldehyde의 감소 효과는 매우 주목할 만한 결과이다. The ALDH2*2 gene mutation group is known to exhibit a very high blood acetaldehyde concentration even with a small amount of alcohol. never had However, in the case of administration of the hangover relieving composition of the present invention, the effect of reducing blood Acetaldehyde in the ALDH2*2 gene mutant group is very remarkable.

정상ALDH유전자 보유군과 ALDH유전자 변이군의 알콜량(g hr/L)측정치를 표6에 나타내었다. Table 6 shows the alcohol content (g hr/L) of the normal ALDH gene-bearing group and the ALDH gene mutant group.

ALDH유전자 변이군ALDH gene variants 정상ALDH유전자 보유군group with normal ALDH gene 에탄올 투여군Ethanol administration group 42.5542.55 28.1328.13 에탄올과 조성물 73mg/kg 투여군Ethanol and composition 73mg/kg administration group 36.1336.13 29.8629.86 에탄올과 조성물 220mg/kg 투여군Ethanol and composition 220mg/kg administration group 40.8740.87 24.9424.94

정상ALDH유전자 보유군과 ALDH유전자 변이군의 혈중 아세트알데히드 함량 평균(g hr/L)을 표7에 나타내었다. Table 7 shows the average blood acetaldehyde content (g hr/L) of the normal ALDH gene-bearing group and the ALDH gene mutant group.

ALDH유전자 변이군ALDH gene variants 정상ALDH유전자 보유군group with normal ALDH gene 에탄올 투여군Ethanol administration group 10.5610.56 13.4713.47 에탄올과 조성물 73mg/kg 투여군Ethanol and composition 73mg/kg administration group 8.788.78 7.577.57 에탄올과 조성물 220mg/kg 투여군Ethanol and composition 220mg/kg administration group 8.438.43 3.923.92

본 발명의 숙취해소 조성물의 독성 시험Toxicity test of the hangover relieving composition of the present invention

실시예 4-1. 실험 동물의 준비Example 4-1. Preparation of laboratory animals

실험동물은 암컷, 수컷 ICR 마우스(7 주령)를 분양받아 7일간 순화시켰으며 순화 기간 중 일반증상을 관찰하여 건강한 동물만 시험에 사용하였다. 사료와 물은 자유 섭취시켰고 경구투여 전날 평균 체중 약 20g을 기준으로 각 군별 암,수 5수씩 총 10수가 되도록 군 분리를 진행하였다. As experimental animals, female and male ICR mice (7 weeks old) were received and acclimatized for 7 days, and only healthy animals were used for the test by observing general symptoms during the acclimatization period. Feed and water were ingested ad libitum, and group separation was performed so that there were 5 males and 5 females in each group based on an average body weight of about 20 g the day before oral administration.

실시예 4-2 본 발명의 숙취해소 조성물의 투여 Example 4-2 Administration of the hangover relieving composition of the present invention

시험 물질은 본 발명의 GSH와 ALDH를 함유하는 효모 용해물의 함량을 기준으로 실험동물의 투여용량이 각 0, 750, 3000, 5000mg/Kg이 되도록 생리식염수에 녹여 제조하였다. 투여 용량의 기준은 식약처의 Korea national Toxicology Program(KNTP) 독성 시험 매뉴얼을 준수하였으며, KNTP 매뉴얼에서 가이드하는 적용 최대 용량 5000mg/Kg을 본 실험의 최대 농도로 적용하였다. 각 군별로 준비된 시료를 시험동물에 대하여 각 1회 경구투여를 실시하였으며, 정상군(G1)의 경우 생리식염수를 투여하였다. The test substance was prepared by dissolving in physiological saline so that the doses of the test animals were 0, 750, 3000, and 5000 mg/Kg, respectively, based on the content of the yeast lysate containing GSH and ALDH of the present invention. The standard of administration dose complied with the Korea National Toxicology Program (KNTP) toxicity test manual of the Ministry of Food and Drug Safety, and the maximum applied dose 5000mg/Kg guided by the KNTP manual was applied as the maximum concentration of this experiment. Samples prepared for each group were orally administered once to each test animal, and physiological saline was administered to the normal group (G1).

실시예 4-3. 관찰 및 부검 Example 4-3. Observation and autopsy

모든 시험군의 동물에 대하여 입수일부터 부검일까지 매일 1회 이상 증상관찰을 실시하였으며, 경구투여 후 7일 동안 증상을 관찰하였다. 증상 관찰 종류 후, 부검을 진행하였고 부검 시 육안으로 각 장기에 대한 변화를 관찰하였다. For all the animals in the test group, symptoms were observed at least once a day from the date of acquisition to the day of autopsy, and symptoms were observed for 7 days after oral administration. After the type of symptom observation, an autopsy was performed, and changes in each organ were visually observed at the time of autopsy.

본 발명의 GSH와 ALDH를 함유하는 효모 용해물을 마우스를 사용하여 단회투여독성 시험을 실시한 결과, 5000mg/kg까지의 농도에서 7일간 사망예를 관찰할 수 없었으며, 체중증가, 사료 섭취량 등의 특이점을 발견할 수 없었다. 또한 관찰 종료 후 진행한 부검 결과에서도 특이한 소견은 발견되지 아니하였다. As a result of a single-dose toxicity test using the yeast lysate containing GSH and ALDH of the present invention in mice, no deaths were observed for 7 days at a concentration of up to 5000 mg/kg, weight gain, feed intake, etc. No singularity could be found. Also, no unusual findings were found in the autopsy results after the observation was completed.

한국생명공학연구원Korea Institute of Bioscience and Biotechnology KCTC13925BPKCTC13925BP 2019082220190822 한국생명공학연구원Korea Institute of Bioscience and Biotechnology KCTC14122BPKCTC14122BP 2020013020200130 한국생명공학연구원Korea Institute of Bioscience and Biotechnology KCTC14123BPKCTC14123BP 2020013020200130

Claims (5)

글루타치온과 알데히드탈수소효소를 함유하는 숙취해소 조성물. A hangover relieving composition containing glutathione and aldehyde dehydrogenase. 제1항에 있어서, 글루타치온과 알데히드탈수소 효소가, 사카로마이세스 세레비지에 효모, 사카로마이세스 세레비지에 Kwon P-1 KCTC13925BP, 사카로마이세스 세레비지에 Kwon P-2 KCTC14122BP 그리고 사카로마이세스 세레비지에 Kwon P-3 KCTC14123BP로 이루어진 군에서 선택되는 어느 하나 또는 이들의 혼합으로부터 유래되는 것임을 특징으로 하는, 숙취해소 조성물.The method according to claim 1, wherein the glutathione and aldehyde dehydrogenase are Saccharomyces cerevisiae yeast, Saccharomyces cerevisiae Kwon P-1 KCTC13925BP, Saccharomyces cerevisiae Kwon P-2 KCTC14122BP and Saccharomyces. Myces cerevisiae Kwon P-3 KCTC14123BP Any one selected from the group consisting of, or a hangover relieving composition, characterized in that derived from a mixture thereof. 사카로마이세스 세레비지애 균주를 액상 배지에서 배양하는 제1단계와, 상기 제1단계에서 배양된 사카로마이세스 세레비지애 균주를 다시 고상 배지에서 추가로 배양하는 제2단계를 포함하는, 사카로마이세스 세레비지애 균주 대량 배양 방법.A first step of culturing the Saccharomyces cerevisiae strain in a liquid medium, and a second step of further culturing the Saccharomyces cerevisiae strain cultured in the first step in a solid medium again, Saccharomyces cerevisiae strain mass culture method. 제3항의 방법에 있어서, 상기 고상 배지가 쌀, 보리, 밀, 옥수수, 콩으로 이루어진 군에서 선택되는 어느 하나 또는 이들의 혼합인 것임을 특징으로 하는, 사카로마이세스 세레비지애 균주 대량 배양 방법. The method of claim 3, wherein the solid medium is any one selected from the group consisting of rice, barley, wheat, corn, and soybeans, or a mixture thereof, Saccharomyces cerevisiae strain mass culture method. 제3항 또는 제4항의 방법에 있어서, 상기 사카로마이세스 세레비지애 균주가 사카로마이세스 세레비지에 Kwon P-1(KCTC13925BP), 사카로마이세스 세레비지에 Kwon P-2 (KCTC14122BP) 그리고 사카로마이세스 세레비지에 Kwon P-3 KCTC14123BP으로 이루어진 군에서 선태되는 것임을 특징으로 하는, 대량 배양 방법.

The method of claim 3 or 4, wherein the Saccharomyces cerevisiae strain is Saccharomyces cerevisiae Kwon P-1 (KCTC13925BP), Saccharomyces cerevisiae Kwon P-2 (KCTC14122BP) And Saccharomyces cerevisiae Kwon P-3 KCTC14123BP, characterized in that selected from the group consisting of, mass culture method.

KR1020210021437A 2021-02-17 2021-02-17 Hangover Treatment Composition Which Comprises Aldehyde Dehydrogenase and Glutathione KR102460589B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210021437A KR102460589B1 (en) 2021-02-17 2021-02-17 Hangover Treatment Composition Which Comprises Aldehyde Dehydrogenase and Glutathione

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210021437A KR102460589B1 (en) 2021-02-17 2021-02-17 Hangover Treatment Composition Which Comprises Aldehyde Dehydrogenase and Glutathione

Publications (2)

Publication Number Publication Date
KR20220117742A true KR20220117742A (en) 2022-08-24
KR102460589B1 KR102460589B1 (en) 2022-10-28

Family

ID=83111652

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210021437A KR102460589B1 (en) 2021-02-17 2021-02-17 Hangover Treatment Composition Which Comprises Aldehyde Dehydrogenase and Glutathione

Country Status (1)

Country Link
KR (1) KR102460589B1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050052664A (en) 2002-09-27 2005-06-03 디에스엠 아이피 어셋츠 비.브이. Aldehyde dehydrogenase gene
KR100696589B1 (en) 2005-06-01 2007-03-19 김종배 Composition comprising the extract of Theragra chalcogramma, Hovenia dulcis and Viscum album var. coloratum and catechins of Pueraria thunbergiana for treating or alleviating hangover syndrom and protecting liver
KR20120123860A (en) 2011-05-02 2012-11-12 보해양조주식회사 Composition for relieving hangover or improving liver function
KR101298096B1 (en) * 2011-05-12 2013-08-20 (주)창조바이오텍 Yeast Strain Expressing Glutathione Highly and Use thereof
KR20150129266A (en) * 2014-05-09 2015-11-19 씨제이제일제당 (주) A microorganism having enhanced productivity of lactic acid and a process for producing lactic acid using the same
KR101664814B1 (en) 2015-10-30 2016-10-11 전북대학교산학협력단 A recombinant vector, a recombinant yeast containing vector, and a producing method of aldehyde dehydrogenase 6 using the yeast
KR20170046540A (en) * 2015-10-21 2017-05-02 주식회사 피코엔텍 Composition for preventing and relieving Hangover
WO2018207949A1 (en) * 2017-05-12 2018-11-15 学校法人東京理科大学 Medicinal composition comprising sugar chain modifying enzyme and method for curing dendritic cell immunoreceptor-related disease using medicinal composition
KR20200045978A (en) 2018-10-23 2020-05-06 한국생명공학연구원 A Novel Alcohol Dehydrogenase and Mutants thereof, and A Method for Preparing Aldehyde Compounds Using The Same
KR20200142768A (en) 2019-06-13 2020-12-23 (주)제월당 Composition for hangover cure conprising oriental herbal extract

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050052664A (en) 2002-09-27 2005-06-03 디에스엠 아이피 어셋츠 비.브이. Aldehyde dehydrogenase gene
KR100696589B1 (en) 2005-06-01 2007-03-19 김종배 Composition comprising the extract of Theragra chalcogramma, Hovenia dulcis and Viscum album var. coloratum and catechins of Pueraria thunbergiana for treating or alleviating hangover syndrom and protecting liver
KR20120123860A (en) 2011-05-02 2012-11-12 보해양조주식회사 Composition for relieving hangover or improving liver function
KR101298096B1 (en) * 2011-05-12 2013-08-20 (주)창조바이오텍 Yeast Strain Expressing Glutathione Highly and Use thereof
KR20150129266A (en) * 2014-05-09 2015-11-19 씨제이제일제당 (주) A microorganism having enhanced productivity of lactic acid and a process for producing lactic acid using the same
KR20170046540A (en) * 2015-10-21 2017-05-02 주식회사 피코엔텍 Composition for preventing and relieving Hangover
KR101664814B1 (en) 2015-10-30 2016-10-11 전북대학교산학협력단 A recombinant vector, a recombinant yeast containing vector, and a producing method of aldehyde dehydrogenase 6 using the yeast
WO2018207949A1 (en) * 2017-05-12 2018-11-15 学校法人東京理科大学 Medicinal composition comprising sugar chain modifying enzyme and method for curing dendritic cell immunoreceptor-related disease using medicinal composition
KR20200045978A (en) 2018-10-23 2020-05-06 한국생명공학연구원 A Novel Alcohol Dehydrogenase and Mutants thereof, and A Method for Preparing Aldehyde Compounds Using The Same
KR20200142768A (en) 2019-06-13 2020-12-23 (주)제월당 Composition for hangover cure conprising oriental herbal extract

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
1. Gilpin, N.W.; Koob, G.F. Neurobiology of alcohol dependence: Focus on motivational mechanisms. AlcoholRes. Health ,2008, 31, 185.
1. 한국 특허 출원 제10-2020-0019858호 "글루타치온과 알데하이드탈수소효소를 생산하는 사카로마이세스 세레비지에 권피1,2,3"
10. M.-F Wang et al., Chemico-Biological Interrations 178, 2009, 36-39
11. Budas, G. R., Disatnik, M. H., & Mochly-Rosen, D. (2009). Aldehyde dehydrogenase 2 in cardiac protection: a new therapeutic target. Trends in cardiovascular medicine, 19(5), 158-164.
12. Chen, C. H., Ferreira, J. C. B., Gross, E. R., & Mochly-Rosen, D. (2014). Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiological reviews, 94(1), 1-34.
16. Klyosov, A. A., Rashkovetsky, L. G., Tahir, M. K., & Keung, W. M. (1996-1). Possible role of liver cytosolic and mitochondrial aldehyde dehydrogenases in acetaldehyde metabolism. Biochemistry, 35(14), 4445-4456.
2. Shao-Cheng Wang et al, Alcohol Addiction, Gut Microbiota, and Alcoholism Treatment: A Review. Int. J. Mol. Sci. 2020, 21, 6413
3. 최송식, 한국사회에서 알콜중독자의 재발예방전략에 관한 연구, 한국민족문화 48호, 2013, 307-348
4. Arnold SL, Kent T, Hogarth CA, Schlatt S, Prasad B, Haenisch M, Walsh T, Muller CH, Griswold MD, Amory JK, et al. Importance of ALDH1A enzymes in determining human testicular retinoic acid concentrations. J Lipid Res. 2015, 56: 342-357.
5. Garaycoechea J.I. , G.P. Crossan, F. Langevin., Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells, Nature , 553 ,2018, 171e177
5. United States Patent 10,406,126 B2 ALDH2 ACTIVATOR
6. Gomes K.M. , J.C. Campos, L.R. Bechara, et al., Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodeling, Cardiovasc. Res. 103 ,2014, 498e508.
6. United States Patent Application US2020/0237716 A1
7. Datta,S., Annapure,U.S. and Timson, D. J.,Different specificities of two aldehyde dehydrogenases from Saccharomyces cerevisiae var . boulardii, Bioscience Reports ,2017, 37 BSR20160529
8. Brooks, P. J., Enoch, M. A., Goldman, D., Li, T. K., & Yokoyama, A., The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS medicine, 2009, 6(3), e1000050.
9. Larson, H.N., Zhou, J., Chen, Z. et al., Structural and functional consequences of coenzyme binding to the inactive Asian variant of mitochondrial aldehyde dehydrogenase: Roles of residues 475 and 487, J. Biol. Chem. Vol. 282,2007 pp. 12940-12950.
ADVANCES IN DERMATOLOGY AND ALLERGOLOGY / POSTEPY DERMATOL ALERGOL 제34권 제5호, 405_417쪽, 2017년 10월 31일. *
Eriksson, C. J. (1977). Acetaldehyde metabolism in vivo during ethanol oxidation. Advances in experimental medicine and biology, 85, 319-341.
Hamad, G.M., Taha, T.H., Alshehri, A.M. & Hafez, E.E., (2018). Enhancement of the Glutathione Production by Mutated Yeast Strains and its Potential as Food Supplement and Preservative. Res. J. Microbiol., 13: 28-36.
IMMUNOLOGY 제156권 제1호, 47_55쪽, 2018년 11월 02일. *
Jeng, J., & Weiner, H. (1991). Purification and characterization of catalytically active precursor of rat liver mitochondrial aldehyde dehydrogenase expressed in Escherichia coli. Archives of biochemistry and biophysics, 289(1), 214-222.
Klyosov, A. A. (1996-2). Kinetics and specificity of human liver aldehyde dehydrogenases toward aliphatic, aromatic, and fused polycyclic aldehydes. Biochemistry, 35(14), 4457-4467.
Liu, J., Head, E., Gharib, A. M., Yuan, W., Ingersoll, R. T., Hagen, T. M., & Ames, B. N. (2002). Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: Partial reversal by feeding acetyl-L-carnitine and/or R-α-lipoic acid. Proc. Natl. Acad. Sci., 99(4), 2356-2361.
Marchitti, S. A., Brocker, C., Stagos, D., & Vasiliou, V. (2008). Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert opinion on drug metabolism & toxicology, 4(6), 697-720.
Marchitti, S. A., Deitrich, R. A., & Vasiliou, V. (2007). Neurotoxicity and metabolism of the catecholamine-derived 3, 4-dihydroxyphenyla cetaldehyde and 3, 4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacological reviews, 59(2), 125-150.
Najafi, MBH, & Pezechki, P. (2013) Bacterial mutation; types, mechanisms and mutant detection methods: a review. European Scientific Journal, 4
Ohtake, Y., Satou, A., & Yabuuchi, S. (1990). Isolation and Characterization of Glutathione Biosynthesis-deficient Mutants in Saccharomyces cerevisiae. Agric. Biol. Chem., 54(12), 3145-3150.
Wright, C., Milne, S., & Leeson, H. (2014). Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod. BioMed. Online, 28(6), 684-703.
Yoshida, A., Huang, I. Y., & Ikawa, M. (1984). Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proceedings of the National Academy of Sciences, 81(1), 258-261.

Also Published As

Publication number Publication date
KR102460589B1 (en) 2022-10-28

Similar Documents

Publication Publication Date Title
CN115087726A (en) Hangover relief agent containing glutathione and aldehyde dehydrogenase
EP3592374B1 (en) Compositions of superoxide dismutase from bacillus amyloliquefaciens gf423 strain for providing antioxidant and anti-inflammatory activities or preventing or treating hyperlipidemia
CN115381860B (en) Composition for protecting alcoholic liver injury and preparation method and application thereof
KR20140120285A (en) Smilax china leaf fermented with Aspergillus species and Extract of the same
CN114377113A (en) Dual enzyme composition for preventing, treating and/or alleviating hangover and related symptoms thereof
US20230051207A1 (en) Hangover reliever containing glutathione and aldehyde dehydrogenase
KR20170046540A (en) Composition for preventing and relieving Hangover
KR101407980B1 (en) Products containing Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 having improving hyperinsulinemia, hyperglycemia and hypertriglyceridemia as effective component
KR102460589B1 (en) Hangover Treatment Composition Which Comprises Aldehyde Dehydrogenase and Glutathione
CN117264840A (en) Lactobacillus brevis XY8 and application thereof in preparation of food and medicine for resisting aging and improving gout
KR100988923B1 (en) Composition for alleviation of alcohol-induced hangover comprising lactic acid bacteria fermented Ssangwhatang
WO2011059311A2 (en) Production of natural ubiquinone and ubiquinol by extraction from palm plant
JPH07285881A (en) Excitometabolic agent for alcohol
CN117721033B (en) Lactobacillus mucilaginosus KS6 and application thereof in preparation of anti-inflammatory and sleep-aiding foods and medicines
CN117384788B (en) Saliva combined lactobacillus SM4 and application thereof in preparation of whitening and cholesterol lowering foods and medicines
CN111939236B (en) Plant extracts for the preparation of a composition for activating acetaldehyde dehydrogenase in a subject
US20230148308A1 (en) Dual-enzyme composition for preventing, treating and/or alleviating veisalgia and symptoms associated therewith
LeBlanc et al. Beneficial effects of microorganisms isolated from papaya
CN111686236B (en) Capsule for dispelling effects of alcohol, protecting liver and protecting brain
EP4356757A1 (en) Microbial method for reproducing the human urolithin metabotypes in vitro and in vivo
EP3357541B1 (en) Methylsulfonylmethane composition for reducing blood alcohol content
JP2010059139A (en) Dehydroascorbic acid reductase activity promoter, and composition containing the same
CN114887041A (en) Dual enzyme composition for preventing, treating and/or alleviating hangover and its related symptoms
CN116178494A (en) Anti-alcohol polypeptide
KR20220109664A (en) Bacillus licheniformis having the effect of preventing or improving for skin inflammation and uses thereof

Legal Events

Date Code Title Description
AMND Amendment
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant