KR20220100491A - Pharmaceutical composition for preventing or treating gram-negative bacteria infectious diseases and antibacterial adjuvant for inhibiting resistance to antimicrobial agents - Google Patents

Pharmaceutical composition for preventing or treating gram-negative bacteria infectious diseases and antibacterial adjuvant for inhibiting resistance to antimicrobial agents Download PDF

Info

Publication number
KR20220100491A
KR20220100491A KR1020210063877A KR20210063877A KR20220100491A KR 20220100491 A KR20220100491 A KR 20220100491A KR 1020210063877 A KR1020210063877 A KR 1020210063877A KR 20210063877 A KR20210063877 A KR 20210063877A KR 20220100491 A KR20220100491 A KR 20220100491A
Authority
KR
South Korea
Prior art keywords
gram
negative bacteria
mcr
pharmaceutical composition
nzb
Prior art date
Application number
KR1020210063877A
Other languages
Korean (ko)
Inventor
김광선
조혜진
아타누나스카
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of KR20220100491A publication Critical patent/KR20220100491A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/143Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/42Phosphorus; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Abstract

The present invention relates to a composition for preventing or treating Gram-negative bacteria comprising a nanocomposite, in which nickel-doped zinc oxide and black phosphorus nanosheets are conjugated, and an antibacterial agent as active components. The nanocomposite, in which the nickel-doped zinc oxide and black phosphorus nanosheets are conjugated, acts specifically on Gram-negative bacteria containing the mcr-1 gene to neutralize positive charges on the surface of the bacteria and promote interaction with polymyxin to inhibit resistance to polymyxin. Also, the specific antibacterial activity against Gram-negative bacteria expressing the Mcr-1 gene is confirmed by increasing the antimicrobial sensitivity even with low-dose polymyxin treatment. Thus, the nanocomposite can be provided as an antibacterial adjuvant for inhibiting resistance to Gram-negative bacteria antimicrobial agents, and can be provided as a pharmaceutical composition for treating Gram-negative bacteria infections through combined treatment with a polymyxin-based antibacterial agent.

Description

그람음성균 감염성 질환 예방 또는 치료용 약학조성물 및 항균제 내성 억제용 항균보조제{Pharmaceutical composition for preventing or treating gram-negative bacteria infectious diseases and antibacterial adjuvant for inhibiting resistance to antimicrobial agents}Pharmaceutical composition for preventing or treating gram-negative bacteria infectious diseases and antibacterial adjuvant for inhibiting resistance to antimicrobial agents

본 발명은 니켈이 도핑된 산화아연과 흑린 나노시트가 콘쥬게이션된 나노복합체; 및 항균제를 유효성분으로 함유하는 그람음성균 감염성 질환 예방 또는 치료용 조성물에 관한 것이다.The present invention relates to a nanocomposite in which nickel-doped zinc oxide and black phosphorus nanosheets are conjugated; And it relates to a composition for preventing or treating a Gram-negative bacterial infectious disease containing an antibacterial agent as an active ingredient.

다제내성 (MDR) 그람음성균에 의한 감염은 심각한 글로벌 사망 부담과 증가된 사망률을 초래한다. 의료 환경에서 그람음성균은 폐렴, 혈류 감염, 상처 또는 수술 부위 감염, 수막염 등의 감염을 일으키며, 특히 중환자실 (ICU)의 환자는 이러한 감염 위험이 높다. 현재 이용 가능한 항생제에 대한 그람음성균의 빠른 내성과 환경적 압력을 견디는 타고난 능력은 다제내성 그람음성균 감염을 예방하거나 치료하기 위한 주요 관심사이다. 수평적 유전자 전달은 약물 내성을 전파하기 위해 하나의 세균에서 상호작용하는 다른 세균으로 유전 물질을 교환하는 주요 전략으로 알려졌다. 그러나 MDR 내성균 제어를 위해 효과적인 항균제가 부족하여 MDR 그람음성균 감염을 통제하기 위해 기존에 사용되었나, 세포독성을 유발하였던 마지막 수단 (last-resort) 항생제인 폴리믹신 (폴리믹신 B 및 콜리스틴)을 포함한 최후의 수단 항생제를 다시 사용하는 상황에 직면하였다.Infection with multidrug-resistant (MDR) Gram-negative bacteria results in a severe global mortality burden and increased mortality. In the medical environment, Gram-negative bacteria cause infections such as pneumonia, bloodstream infections, wound or surgical site infections, and meningitis, and patients in the intensive care unit (ICU) are particularly at high risk of these infections. The rapid resistance of Gram-negative bacteria to currently available antibiotics and their innate ability to withstand environmental pressures is a major concern for preventing or treating multidrug-resistant Gram-negative infections. Horizontal gene transfer is known as a major strategy for exchanging genetic material from one bacterium to another interacting bacterium to propagate drug resistance. However, due to the lack of effective antibacterial agents for controlling MDR-resistant bacteria, it was previously used to control MDR gram-negative bacteria infection. As a last resort, we are faced with the re-use of antibiotics.

마지막 수단 항생제인 폴리믹신은 포스포 에탄올 아민 (pEtN) 잔기와 4-아미노-4-데옥시-1로 지질 A를 변형하는 EptA 및 ArnT에 의한 폴리믹신 내성 위험에도 불구하고 MDR 그람음성균 감염 치료에서 광범위하게 사용되고 있다. 다행히 2015년까지 폴리믹신에 대한 자연 내성 균주는 확인되지 않았으나, EptA 계열에 포함되는 단백질의 종류인 Mcr-1을 암호화하는 콜리스틴 내성 유도 유전자 (mcr-1)가 이동형 형태로 전이 가능한 폴리믹신 내성의 출현이 확인됨에 따라 MDR 그람음성균 감염에 대한 최후의 수단인 폴리믹신의 사용을 위협했다. EptA를 사용하여 세균 표면의 지질 다당류 (LPS)에 대한 지질 A 변형은 일부 그람음성균의 표면의 음성 전하를 감소시킨다. 이것은 세균의 표면과 폴리믹신 사이의 양전하 반발을 통해 양전하를 띤 폴리믹신에 대한 내성을 부여하여, 세균 내부로의 폴리믹신 혼입을 감소시킨다. 따라서 이러한 내성 메커니즘을 제어하기 위한 새로운 세대의 항생제, 억제제, 대체 물질 또는 치료제의 개발이 필요한 실정이다.Polymyxin, a last resort antibiotic, has been used in the treatment of MDR Gram-negative bacterial infections despite the risk of polymyxin resistance by EptA and ArnT, which transform lipid A with phosphoethanolamine (pEtN) residues and 4-amino-4-deoxy-1. It is used extensively. Fortunately, no strains naturally resistant to polymyxin were identified until 2015, but polymyxin resistance in which the colistin resistance-inducing gene (mcr-1) encoding Mcr-1, a type of protein included in the EptA family, can be transferred to a mobile form was confirmed, threatening the use of polymyxin as a last resort for infection with MDR gram-negative bacteria. Lipid A modification to lipopolysaccharide (LPS) on the bacterial surface using EptA reduces the negative charge on the surface of some Gram-negative bacteria. This imparts resistance to positively charged polymyxin through positive charge repulsion between the bacterial surface and polymyxin, thereby reducing polymyxin incorporation into the bacteria. Therefore, there is a need for the development of a new generation of antibiotics, inhibitors, alternative substances or therapeutic agents to control this resistance mechanism.

대한민국 공개특허 제10-2017-0032689호 (2017.03.23. 공개)Republic of Korea Patent Publication No. 10-2017-0032689 (published on March 23, 2017)

본 발명은 그람음성균 감염 치료제인 폴리믹신 항균제의 내성 문제를 해결하고, 그람음성균에 대한 항균제의 감수성을 증가를 위해 니켈이 도핑된 산화아연과 흑린이 결합된 나노복합체를 항균보조제로 제공하며, 상기 나노복합체와 항균제의 병용처리를 통하여 폴리믹신 내성을 나타내는 그람음성균에 대한 항균용 약학조성물을 제공하고자 한다.The present invention provides a nanocomposite in which nickel-doped zinc oxide and black phosphorus are combined as an antimicrobial adjuvant to solve the problem of resistance to polymyxin antibacterial agent, which is a treatment for gram-negative bacteria, and to increase the sensitivity of the antibacterial agent to gram-negative bacteria, An object of the present invention is to provide an antibacterial pharmaceutical composition for Gram-negative bacteria that exhibit polymyxin resistance through combined treatment of a nanocomposite and an antibacterial agent.

본 발명은 니켈이 도핑된 산화아연과 흑린 나노시트가 콘쥬게이션된 나노복합체; 및 항균제를 유효성분으로 함유하는 그람음성균 감염성 질환 예방 또는 치료용 약학조성물을 제공한다.The present invention relates to a nanocomposite in which nickel-doped zinc oxide and black phosphorus nanosheets are conjugated; And it provides a pharmaceutical composition for preventing or treating Gram-negative bacterial infectious diseases containing an antibacterial agent as an active ingredient.

또한, 본 발명은 니켈이 도핑된 산화아연과 흑린 나노시트가 콘쥬게이션된 나노복합체를 유효성분으로 함유하는 그람음성균 항균제 내성 억제용 항균보조제를 제공한다.In addition, the present invention provides an antimicrobial adjuvant for inhibiting resistance to gram-negative bacteria antibacterial agents containing a nanocomposite in which nickel-doped zinc oxide and black phosphorus nanosheets are conjugated as an active ingredient.

본 발명에 따르면, 니켈이 도핑된 산화아연과 흑린 나노시트가 콘쥬게이션된 나노복합체는 mcr-1 유전자를 함유하여 표면에 양전하를 나타내는 그람음성균에 특이적으로 작용하여, 세균 표면의 전하를 중화시켜 폴리믹신 상호작용을 증진시킴으로서 폴리믹신에 대한 내성을 억제하고, 저용량의 폴리믹신 처리에도 항균제 감수성을 증가시키는 결과를 확인함에 따라, 상기 나노복합체는 그람음성균 항균제 내성 억제용 항균보조제로 제공될 수 있으며, 폴리믹신계 항균제와 병용처리를 통하여 그람음성균 감염치료를 위한 약학조성물로 제공될 수 있다.According to the present invention, the nanocomposite in which nickel-doped zinc oxide and black phosphorus nanosheets are conjugated acts specifically on Gram-negative bacteria containing the mcr-1 gene and exhibiting a positive charge on the surface, thereby neutralizing the charge on the surface of the bacteria. As the result of suppressing resistance to polymyxin by promoting polymyxin interaction and increasing antimicrobial sensitivity even with low-dose polymyxin treatment was confirmed, the nanocomposite may be provided as an antimicrobial adjuvant for suppressing resistance to antibacterial agents against gram-negative bacteria, , it can be provided as a pharmaceutical composition for the treatment of gram-negative bacterial infections through combination treatment with polymyxin-based antibacterial agents.

도 1은 나노복합체의 결정상 및 원소 조성 및 원자 상태를 확인한 결과로, 도 1a는 ZO, NZO 및 NZB XRD 패턴과 NZB 나노복합체의 XPS 스펙트럼 분석 결과이며, 도 1b는 Zn 2p 피크이며, 도 1c는 Ni 2p 피크의 가우스 피팅 곡선이며, 도 1d는 P 2p 코어 피크이다.
도 2는 NZB 샘플의 형태 및 미세 구조를 확인한 결과로, 도 2a는 TEM 이미지이며, 도 2b는 HRTEM 이미지이며, 도 2c는 NZB 샘플의 아연에 대한 원소 매핑 이미지이며, 도 2d는 산소에 대한 원소 매핑 이미지이며, 도 2e는 Ni에 대한 원소 매핑 이미지이며, 도 2f는 P 요소에 대한 원소 매핑 이미지이다.
도 3은 NCCP16283의 형태 변화를 확인한 결과로, 도 3a는 대조군이며, 도 3b는 폴리믹신 B (PolB) (0.4 μg/mL)이 처리된 NCCP16283의 형태 변화를 확인한 결과이며, 도 3c는 NZB (125 μg/mL)이 처리된 NCCP16283의 형태 변화를 확인한 결과이며, 도 3d는 NZB (0.2 μg/mL)와 PolB (62.5 μg/mL)이 처리된 NCCP16283의 형태 변화를 확인한 결과로, 이미지는 n = 5의 대표 중 하나이다.
도 4는 나노 물질과 대장균의 표면 전하를 확인한 결과로, 도 4a는 BP, NZO 및 NZB의 제타 전위를 확인한 결과이며, 도 4b는 NZB 처리하지 않은 대장균 균주인 BW25113 및 NCCP16283에서 NZB의 제타 전위를 측정한 결과이며, BP, NZO 및 NZB 농도는 125 μg/mL로 결과는 n = 5 ± 표준 편차의 평균을 나타낸다 (P <0.05).
도 5는 10 및 25 μg/mL 농도의 NZB를 HEK293 (인간 배아 신장) 세포에 처리한 후 확인된 ZO, NZO 및 NZB 노출에 의한 세포독성 (WST 분석)을 확인한 결과로, 도 5a는 24 시간 후 세포독성을 확인한 결과이며, 도 5b는 48 시간 후 세포독성을 확인한 결과이며, 오차 막대는 표준 편차 (SD)를 나타낸다. P <0.05.
1 is a result of confirming the crystal phase, elemental composition, and atomic state of the nanocomposite, FIG. 1a is an XPS spectrum analysis result of ZO, NZO and NZB XRD patterns and NZB nanocomposite, FIG. 1b is a Zn 2p peak, FIG. 1c is Gaussian fitting curve of Ni 2p peak, Figure 1d is P 2p core peak.
2 is a result of confirming the shape and microstructure of the NZB sample, FIG. 2a is a TEM image, FIG. 2b is an HRTEM image, FIG. 2c is an element mapping image for zinc of the NZB sample, and FIG. 2d is an element for oxygen It is a mapping image, FIG. 2E is an elemental mapping image for Ni, and FIG. 2F is an elemental mapping image for P element.
Figure 3 is a result of confirming the change in the shape of NCCP16283, Figure 3a is a control, Figure 3b is a result of confirming the change in the shape of NCCP16283 treated with polymyxin B (PolB) (0.4 μg / mL), Figure 3c is NZB ( 125 μg/mL) is the result of confirming the change in the shape of NCCP16283 treated, and Figure 3d is the result of confirming the change in the shape of NCCP16283 treated with NZB (0.2 μg/mL) and PolB (62.5 μg/mL), the image is n = one of the representatives of 5.
Figure 4 is the result of confirming the surface charge of the nanomaterial and E. coli, Figure 4a is the result of confirming the zeta potential of BP, NZO and NZB, Figure 4b is the zeta potential of NZB in E. coli strains BW25113 and NCCP16283 that are not treated with NZB These are the measured results, and the BP, NZO and NZB concentrations are 125 μg/mL, and the result represents the average of n = 5 ± standard deviation (P <0.05).
Figure 5 is the result of confirming the cytotoxicity (WST analysis) by ZO, NZO and NZB exposure confirmed after treatment of NZB at a concentration of 10 and 25 μg / mL to HEK293 (human embryonic kidney) cells, Figure 5a is 24 hours After confirming the cytotoxicity, Figure 5b is the result of confirming the cytotoxicity after 48 hours, the error bar indicates the standard deviation (SD). P <0.05.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 발명자들은 니켈이 도핑된 산화아연과 흑린 나노시트가 콘쥬게이션된 나노복합체는 mcr-1 유전자를 함유하며 표면에 양전하를 나타내는 그람음성균에 특이적으로 작용하여 세균 표면의 전하를 중화시켜 세균-폴리믹신 상호작용을 증진시켜 폴리믹신에 대한 내성을 억제하고, 저용량의 폴리믹신 처리에도 항균제 감수성을 증가시키는 효과를 확인하여 본 발명을 완성하였다.The inventors of the present invention found that the nanocomposite in which nickel-doped zinc oxide and black phosphorus nanosheets are conjugated contains the mcr-1 gene and acts specifically on Gram-negative bacteria that have a positive charge on the surface to neutralize the charge on the surface of the bacteria. - The present invention was completed by confirming the effect of suppressing resistance to polymyxin by enhancing the polymyxin interaction, and increasing the antimicrobial sensitivity even in a low-dose polymyxin treatment.

본 발명은 니켈이 도핑된 산화아연과 흑린 나노시트가 콘쥬게이션된 나노복합체; 및 항균제를 유효성분으로 함유하는 그람음성균 감염성 질환 예방 또는 치료용 약학조성물을 제공할 수 있다.The present invention relates to a nanocomposite in which nickel-doped zinc oxide and black phosphorus nanosheets are conjugated; And it can provide a pharmaceutical composition for preventing or treating Gram-negative bacterial infectious disease containing an antibacterial agent as an active ingredient.

상기 그람음성균은 mcr-1 유전자를 발현하는 것일 수 있다. The gram-negative bacteria may express the mcr-1 gene.

상기 mcr-1 유전자는 그람음성균 표면의 전하를 양성으로 전환하여 양전하를 나타내는 폴리믹신계 항균제에 대한 약물 내성을 유도하는 것일 수 있다.The mcr-1 gene may be to induce drug resistance to the polymyxin-based antibacterial agent exhibiting a positive charge by converting the charge on the surface of the Gram-negative bacteria to a positive charge.

상기 그람음성균은 슈도모나스 속 (Pseudomonas sp.), 살모넬라 속 (Salmonella sp.), 알칼리제네스 속 (Alcaligenes sp.), 이질균 속(Shigella sp.), 폐렴균 속(Pneumonia sp.), 비브리오균 속 (Vibrio sp.), 나이제리아균 속 (Neisseria sp.) 및 대장균 (Escherichia coli)으로 이루어진 군에서 선택되는 것일 수 있으나, 이에 제한되는 것은 아니다.The Gram-negative bacteria are Pseudomonas sp., Salmonella sp., Alcaligenes sp., Shigella sp., Pneumonia sp., Vibrio. sp.), may be selected from the group consisting of Neisseria sp. and Escherichia coli, but is not limited thereto.

상기 나노복합체는 mcr-1 유전자에 의해 양전하를 나타내는 그람음성균 표면의 전하를 중화시켜 항균제의 내성을 억제하고, 항균제 감수성을 증가시키는 것일 수 있다.The nanocomposite may be to neutralize the charge on the surface of Gram-negative bacteria exhibiting a positive charge by the mcr-1 gene, thereby suppressing the resistance of the antimicrobial agent and increasing the antimicrobial sensitivity.

본 발명의 실시예에 따르면, 본 발명의 나노복합체는 음전하를 나타내는 나노 시트인 흑린 (BP)이 mcr-1 유전자를 포함하는 대장균 균주를 포함하여 양전하를 나타내는 그람음성균과 더욱 효과적으로 상호 작용할 것으로 예상됨에 따라, Mcr-1 단백질이 발현된 대장균에 대한 NZB 결합이 양전하를 나타내는 항생제 폴리믹신 B (PolB)의 항균 효과를 증가시킬 것으로 예상하고, 이를 확인하기 위해, 대장균 균주 BW25113, pQE60-mcr-1의 BW25113, 폴리믹신 내성 균주 (NCCP) 및 NDM-1 MDR 균주와 함께 PolB와 NZB 간의 체커 보드 분석을 수행하여 NZB의 폴리믹신 B에 대한 약물 병용 효과를 확인하였다. According to an embodiment of the present invention, in the nanocomposite of the present invention, black phosphorus (BP), which is a negatively charged nanosheet, is expected to interact more effectively with gram-negative bacteria exhibiting a positive charge, including E. coli strains containing the mcr-1 gene. Accordingly, it is expected that the NZB binding to E. coli in which the Mcr-1 protein is expressed will increase the antibacterial effect of the antibiotic polymyxin B (PolB) exhibiting a positive charge, and to confirm this, E. coli strain BW25113, pQE60-mcr-1 BW25113, polymyxin-resistant strain (NCCP), and NDM-1 MDR strain together with a checker board analysis between PolB and NZB was performed to confirm the drug combination effect of NZB on polymyxin B.

그 결과, 표 2의 FICI 값과 같이 NZB 대 PolB는 mcr-1 유전자 발현 대장균에 대해 최대 시너지 효능 (FICINZB/PolB = 0.175-0.225)을 나타냈으나, NDM-1을 포함한 다른 그람음성균 균주에 대해서는 상기 효과가 나타나지 않는 것을 확인하였다 (FICINZB/PolB = 2).As a result, as shown in the FICI values in Table 2, NZB vs. PolB showed the maximum synergistic effect (FICI NZB/PolB = 0.175-0.225) against mcr-1 gene-expressing E. coli, but it was It was confirmed that the above effect did not appear for this (FICI NZB/PolB = 2).

상기 결과로부터 PolB에 대한 NZB의 항균 활성 증진 효과는 Mcr-1 발현 대장균에 특이적임을 확인할 수 있었다.From the above results, it was confirmed that the antimicrobial activity enhancing effect of NZB on PolB was specific to Mcr-1 expressing E. coli.

상기 항균제는 폴리믹신 B 및 콜리스틴으로 이루어진 폴리믹신 계열 항균제로 이루어진 군에서 하나 또는 둘 이상 선택되는 것일 수 있다.The antibacterial agent may be one or two or more selected from the group consisting of polymyxin-based antibacterial agents consisting of polymyxin B and colistin.

상기 나노복합체는 약학조성물 총 100 중량부에 대하여, 0.652 내지 2.5 중량부로 함유되는 것일 수 있다.The nanocomposite may be contained in an amount of 0.652 to 2.5 parts by weight based on 100 parts by weight of the total pharmaceutical composition.

상기 항균제는 약학조성물 총 100 중량부에 대하여, 0.08 내지 0.64 중량부로 함유되는 것일 수 있다.The antimicrobial agent may be contained in an amount of 0.08 to 0.64 parts by weight based on 100 parts by weight of the total pharmaceutical composition.

상기 그람음성균 감염성 질환은 피부감염, 폐렴, 패혈증, 장염, 크론병, 궤양성 대장염, 심내막염, 수막염, 외이도염, 중이염, 골수염, 요로감염, 기도감염 및 창상감염으로 이루어진 군에서 선택되는 것일 수 있다.The gram-negative bacterial infectious disease may be selected from the group consisting of skin infections, pneumonia, sepsis, enteritis, Crohn's disease, ulcerative colitis, endocarditis, meningitis, otitis externa, otitis media, osteomyelitis, urinary tract infection, respiratory tract infection, and wound infection.

본 발명의 한 구체예에서, 상기 니켈이 도핑된 산화아연과 흑린 나노시트가 결합된 나노복합체; 및 항균제를 유효성분으로 함유하는 그람음성균 감염성 질환 예방 또는 치료용 약학조성물은 통상적인 방법에 따라 주사제, 과립제, 산제, 정제, 환제, 캡슐제, 좌제, 겔, 현탁제, 유제, 점적제 또는 액제로 이루어진 군에서 선택된 어느 하나의 제형을 사용할 수 있다.In one embodiment of the present invention, the nickel-doped zinc oxide and black phosphorus nanosheets are combined nanocomposite; And the pharmaceutical composition for preventing or treating Gram-negative bacterial infectious disease containing an antibacterial agent as an active ingredient is an injection, granule, powder, tablet, pill, capsule, suppository, gel, suspension, emulsion, drop or solution according to a conventional method. Any one formulation selected from the group consisting of can be used.

본 발명의 다른 구체예에서, 상기 약학조성물은 약학조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제, 붕해제, 감미제, 피복제, 팽창제, 활택제, 향미제, 항산화제, 완충액, 정균제, 희석제, 분산제, 계면활성제, 결합제 및 윤활제로 이루어진 군에서 선택되는 하나 이상의 첨가제를 추가로 포함할 수 있다.In another embodiment of the present invention, the pharmaceutical composition is a suitable carrier, excipient, disintegrant, sweetener, coating agent, swelling agent, lubricant, flavoring agent, antioxidant, buffer, bacteriostatic agent, diluent commonly used in the preparation of pharmaceutical compositions. , may further include one or more additives selected from the group consisting of dispersants, surfactants, binders and lubricants.

구체적으로 담체, 부형제 및 희석제는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 사용할 수 있으며, 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 조성물에 적어도 하나 이상의 부형제, 예를 들면, 전분, 칼슘카보네이트, 수크로스 또는 락토오스, 젤라틴 등을 섞어 조제할 수 있다. 또한 단순한 부형제 이외에 마그네슘 스티레이트, 탈크 같은 윤활제들도 사용할 수 있다. 경구를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 있으며 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제 등이 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기재로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.Specifically, carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline Cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil can be used, and solid preparations for oral administration include tablets, pills, powders, granules, and capsules. agent and the like, and these solid preparations may be prepared by mixing at least one excipient, for example, starch, calcium carbonate, sucrose or lactose, gelatin, and the like in the composition. In addition to simple excipients, lubricants such as magnesium stearate and talc can also be used. Liquid formulations for oral use include suspensions, solutions, emulsions, syrups, and the like, and various excipients, for example, wetting agents, sweeteners, fragrances, preservatives, etc. in addition to water and liquid paraffin, which are commonly used simple diluents, may be included. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, suppositories, and the like. Non-aqueous solvents and suspending agents include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate. As the base material for the suppository, witepsol, macrogol, tween 61, cacao butter, laurin, glycerogelatin, and the like can be used.

본 발명의 일실시예에 따르면 상기 약학 조성물은 정맥내, 동맥내, 복강내, 근육내, 흉골내, 경피, 비측내, 흡입, 국소, 직장, 경구, 안구내 또는 피내 경로를 통해 통상적인 방식으로 대상체로 투여할 수 있다.According to an embodiment of the present invention, the pharmaceutical composition is administered in a conventional manner via intravenous, intraarterial, intraperitoneal, intramuscular, intrasternal, transdermal, intranasal, inhalational, topical, rectal, oral, intraocular or intradermal routes. can be administered to the subject.

상기 나노복합체 및 항균제의 바람직한 투여량은 대상체의 상태 및 체중, 질환의 종류 및 정도, 약물 형태, 투여경로 및 기간에 따라 달라질 수 있으며 당업자에 의해 적절하게 선택될 수 있다. 본 발명의 일실시예에 따르면 이에 제한되는 것은 아니지만 1일 투여량이 0.01 내지 200 mg/kg, 구체적으로는 0.1 내지 200 mg/kg, 보다 구체적으로는 0.1 내지 100 mg/kg 일 수 있다. 투여는 하루에 한 번 투여할 수도 있고 수회로 나누어 투여할 수도 있으며, 이에 의해 본 발명의 범위가 제한되는 것은 아니다.Preferred dosages of the nanocomposite and the antimicrobial agent may vary depending on the condition and weight of the subject, the type and extent of the disease, the drug form, the route and duration of administration, and may be appropriately selected by those skilled in the art. According to an embodiment of the present invention, although not limited thereto, the daily dose may be 0.01 to 200 mg/kg, specifically 0.1 to 200 mg/kg, and more specifically 0.1 to 100 mg/kg. Administration may be administered once a day or may be administered in several divided doses, thereby not limiting the scope of the present invention.

본 발명에 있어서, 상기 '대상체'는 인간을 포함하는 포유동물일 수 있으나, 이들 예에 한정되는 것은 아니다.In the present invention, the 'subject' may be a mammal including a human, but is not limited to these examples.

본 발명은 니켈이 도핑된 산화아연과 흑린 나노시트가 콘쥬게이션된 나노복합체를 유효성분으로 함유하는 그람음성균 항균제 내성 억제용 항균보조제를 제공할 수 있다.The present invention can provide an antimicrobial adjuvant for suppressing resistance to gram-negative bacteria antibacterial agents containing a nanocomposite in which nickel-doped zinc oxide and black phosphorus nanosheets are conjugated as an active ingredient.

상기 그람음성균은 mcr-1 유전자를 함유하며, 상기 mcr-1 유전자가 발현하는 Mcr-1 단백질에 의해 세균 표면에 양전하를 나타내는 것일 수 있다.The gram-negative bacteria may contain an mcr-1 gene, and may exhibit a positive charge on the bacterial surface by the Mcr-1 protein expressed by the mcr-1 gene.

상기 항균제는 폴리믹신 B 및 콜리스틴으로 이루어진 폴리믹신 계열 항균제로 이루어진 군에서 하나 또는 둘 이상 선택되는 것일 수 있다.The antibacterial agent may be one or two or more selected from the group consisting of polymyxin-based antibacterial agents consisting of polymyxin B and colistin.

상기 그람음성균은 슈도모나스 속 (Pseudomonas sp.), 살모넬라 속 (Salmonella sp.), 알칼리제네스 속 (Alcaligenes sp.), 이질균 속(Shigella sp.), 폐렴균 속(Pneumonia sp.), 비브리오균 속 (Vibrio sp.), 나이제리아균 속 (Neisseria sp.) 및 대장균 (Escherichia coli)으로 이루어진 군에서 선택되는 것일 수 있다.The Gram-negative bacteria are Pseudomonas sp., Salmonella sp., Alcaligenes sp., Shigella sp., Pneumonia sp., Vibrio. sp.), may be selected from the group consisting of Neisseria sp. and Escherichia coli.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, to help the understanding of the present invention, examples will be described in detail. However, the following examples are merely illustrative of the content of the present invention, and the scope of the present invention is not limited to the following examples. The embodiments of the present invention are provided to more completely explain the present invention to those of ordinary skill in the art.

<실험예><Experimental example>

하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.The following experimental examples are intended to provide experimental examples commonly applied to each embodiment according to the present invention.

1. Mcr-1 단백질 과량 발현 플라스미드의 제조1. Preparation of Mcr-1 protein overexpression plasmid

Mcr-1 단백질 과량 발현 플라스미드를 준비하기 위해 Mcr-1 단백질 인코딩 유전자의 DNA 서열을 NCBI 단백질 데이터베이스 (GenBank ID : ASK04346.1)에서 확보하고, GenSmartTM Codon Optimization (GenScript, NJ, USA)의 프로그램을 활용하여 단백질 발현을 위한 코돈을 최적화하였다. 최적화된 DNA 서열 (표 S2)을 합성하고 BamHI / BglII로 선형화된 pQE60 (Qiagen, CA, USA)으로 서브 클로닝하였다. 서브 클로닝된 플라스미드 DNA는 프라이머 pQE30-F 및 -R을 프라이머로 사용한 콜로니 PCR과 DNA 시퀀싱 분석으로 최종 확인하였다. 확보된 Mcr-1 단백질 과량 발현 플라스미드는 추가 실험을 위해 BW25113 균주로 형질 전환하였다.To prepare the Mcr-1 protein overexpression plasmid, the DNA sequence of the Mcr-1 protein encoding gene was obtained from the NCBI protein database (GenBank ID: ASK04346.1), and the program of GenSmartTM Codon Optimization (GenScript, NJ, USA) was utilized. to optimize codons for protein expression. The optimized DNA sequence (Table S2) was synthesized and subcloned into pQE60 (Qiagen, CA, USA) linearized with BamHI/BglII. The subcloned plasmid DNA was finally confirmed by colony PCR and DNA sequencing analysis using primers pQE30-F and -R as primers. The obtained Mcr-1 protein overexpression plasmid was transformed into BW25113 strain for further experiments.

2. X 선 회절 (XRD) 확인2. X-ray diffraction (XRD) confirmation

니켈 필터링된 Cu Kα 방사원 (λ = 1.5406 A)이 장착된 X 선 회절계 (DAVINCI 디자인의 D8 Advance, Billerica, Bruker, MA, USA)를 사용하였으며 X 선 회절 (XRD) 패턴을 확인하기 위해, 2θ 범위 5 - 80 °의 ZO, NZO 및 NZB 샘플을 준비하였다. 대표적인 NZB 샘플의 미세 구조는 투과 전자현미경 (TEM; Bruker Nano GmbH)을 통해 평가되었으며, 이와 관련하여 탄소 코팅된 300 메쉬 Cu 그리드가 사용되었다. 또한, 대표적인 NZB 샘플에서 원소의 결합 에너지 및 화학적 상태는200 ~ 200의 결합에너지 범위에서 Axis Supra 스캐닝 X 선 광전자 분광법 (XPS) 마이크로 프로브 표면 분석 시스템 (Kratos Analytical, Manchester, UK)을 사용하여 확인하였으며, 1,200eV. 284.5 eV에서 C 1s 피크 위치는 결합에너지 기준으로 사용되었다.An X-ray diffractometer (D8 Advance, Billerica, Bruker, MA, USA, DAVINCI design) equipped with a nickel-filtered Cu Kα radiation source (λ = 1.5406 A) was used and to confirm the X-ray diffraction (XRD) pattern, 2θ ZO, NZO and NZB samples in the range 5 - 80 ° were prepared. The microstructure of a representative NZB sample was evaluated by transmission electron microscopy (TEM; Bruker Nano GmbH), in which a carbon-coated 300 mesh Cu grid was used. In addition, the binding energy and chemical state of the element in the representative NZB sample was confirmed using the Axis Supra scanning X-ray photoelectron spectroscopy (XPS) microprobe surface analysis system (Kratos Analytical, Manchester, UK) in the binding energy range of 200 to 200. , 1,200 eV. The C 1s peak position at 284.5 eV was used as the binding energy reference.

3. 제타 전위 측정3. Zeta Potential Measurement

제타 전위 (밀리 볼트, mV)는 Smoluchowski 방정식 ζ = μη / ε를 사용하여 1 mM NaCl에서 25 ℃에서 전기 영동 이동도 μ에서 결정된다. 여기서 η는 중간 점도이고, ε는 BP의 중간 유전 상수이다. DW의 NZO 및 NZB 또는 대장균 현탁액은 제조사의 지침에 따라 Nanopartica SZ-100 (Horiba Scientific)으로 측정되었다. BW25113 및 NCCP16283 대장균 균주를 NZB (125 μg / mL)의 최소 억제 농도 (MIC) 처리 유무에 관계없이 밤새 배양하고 OD600 = 0.5로 희석하였다. 이후 12,000rpm에서 2 분간 원심분리하여 세포 배양 침전물을 수득하고 인산 완충 식염수 (PBS)로 3 회 세척한 후 DW 1 mL에 재현탁하여 제타 전위를 측정하였다. 각 샘플에 대해 표시된 제타 전위 값은 최소 5 회 측정 ± 표준 편차의 평균이다 (P <0.05).The zeta potential (millivolt, mV) is determined from the electrophoretic mobility μ at 25 °C in 1 mM NaCl using the Smoluchowski equation ζ = μη/ε. where η is the medium viscosity and ε is the medium dielectric constant of BP. NZO and NZB or E. coli suspensions in DW were measured with a Nanopartica SZ-100 (Horiba Scientific) according to the manufacturer's instructions. BW25113 and NCCP16283 E. coli strains were cultured overnight with or without a minimal inhibitory concentration (MIC) treatment of NZB (125 μg/mL) and diluted to OD 600 = 0.5. Thereafter, the cell culture precipitate was obtained by centrifugation at 12,000 rpm for 2 minutes, washed three times with phosphate buffered saline (PBS), and resuspended in 1 mL of DW to measure the zeta potential. The zeta potential values shown for each sample are the mean of at least 5 measurements ± standard deviation (P < 0.05).

4. 박테리아 생장 조건, 사용 균주 및 플라스미드4. Bacterial growth conditions, strains used and plasmids

사용된 균주 및 플라스미드는 표 1과 같다. 균주를 Luria-Bertani (LB) 배지 또는 항생제가 있거나 없는 한천 플레이트에서 배양하였다. Keio (E. coli K-12 in-frame, single-gene knockout mutants) 컬렉션은 k1 및 유전자 특이적 프라이머를 사용한 콜로니 PCR을 수행하여 표적 유전자의 결실을 검증한 후 사용하였으며, 제조사의 프로토콜에 따른 Quick-Taq HS(Toyobo, Japan) 염료 혼합하여 사용하였다.The strains and plasmids used are shown in Table 1. The strains were cultured on Luria-Bertani (LB) medium or agar plates with or without antibiotics. The Keio (E. coli K-12 in-frame, single-gene knockout mutants) collection was used after verifying the deletion of the target gene by performing colony PCR using k1 and gene-specific primers. -Taq HS (Toyobo, Japan) dye was mixed and used.

균주 및 플라스미드strains and plasmids 정보Information BW25113BW25113 Wild-typewild-type Keio-arnTKeio-arnT arnT mutantarnT mutant Keio-eptAKeio-eptA eptA mutanteptA mutant NCCP16283NCCP16283 E. coli isolate, mcr-1E. coli isolate, mcr-1 NCCP16284NCCP16284 E. coli isolate, mcr-1E. coli isolate, mcr-1 BAA-2471BAA-2471 E. coli isolate, NDM-1, β-lactamase-1E. coli isolate, NDM-1, β-lactamase-1 BAA-2340BAA-2340 E. coli isolate, NDM-1, β-lactamase-1E. coli isolate, NDM-1, β-lactamase-1 KS70001 KS7000 1 BW25113, pQE60BW25113, pQE60 KS80002 KS8000 2 BW25113, pQE60-mcr-1BW25113, pQE60-mcr-1 NCCP16285NCCP16285 Klebsiella isolate, mcr-1Klebsiella isolate, mcr-1 ATCC19606ATCC19606 Acinetobacter baumanniiAcinetobacter baumannii ATCC27853ATCC27853 Pseudomonas aeruginosaPseudomonas aeruginosa pQE60pQE60 pQE60 plasmidpQE60 plasmid pQE60-mcr-1pQE60-mcr-1 mcr-1 containing pQE60 plasmidmcr-1 containing pQE60 plasmid

* KS70001 및 KS80002은 BW25113 균주에 pQE60 또는 pQE60-mcr-1 플라스미드를 포함.* KS7000 1 and KS8000 2 contain pQE60 or pQE60-mcr-1 plasmids in BW25113 strain.

* 약어: PolB, 폴리믹신 B; NZB, 흑색 인을 함유한 니켈 도핑된 산화 아연; FICI, 분획 억제농도 지수/지수; NDM-1, 뉴델리메탈로-1; β-lactamase-1, β-락타마제-1; mcr-1: 콜리스틴 내성유도 유전자.* Abbreviations: PolB, polymyxin B; NZB, nickel doped zinc oxide with black phosphorus; FICI, fraction inhibitory concentration index/index; NDM-1, New Delhi Metallo-1; β-lactamase-1, β-lactamase-1; mcr-1: colistin resistance induction gene.

5. Mcr-1 단백질의 발현 분석5. Expression analysis of Mcr-1 protein

pQE60-mcr-1 플라스미드로부터의 Mcr-1 단백질 발현을 진행한 후 단백질 추출액을 SDS-PAGE 겔 전기 영동 및 웨스턴 블롯팅을 수행하여 발현 여부를 확인하였다. 먼저, Mcr-1 단백질 발현을 확인하기 위해 12% Mini-PROTEAN Stain-free TGX Precast 겔 (Bio-Rad, CA, USA)에서 단백질 추출액을 전기 영동한 후 히스티딘 태그 (His-tag, Sino Biological, PA, USA) 및 Clarity™ 웨스턴 ECL 기질 (Bio-Rad)에 대한 항체를 사용하여 히스티딘 태그 되어있는 Mcr-1 단백질에 대한 웨스턴 블롯팅을 수행하였다. 이미지 분석은 ChemiDocMP (Bio-Rad)와 Image Lab (Ver.6.1.0, Bio-Rad)을 사용하여 수행되었으며, n = 3의 대표 중 하나가 표시되었다.After the expression of Mcr-1 protein from the pQE60-mcr-1 plasmid, expression of the protein extract was confirmed by performing SDS-PAGE gel electrophoresis and Western blotting. First, to confirm Mcr-1 protein expression, the protein extract was electrophoresed on a 12% Mini-PROTEAN Stain-free TGX Precast gel (Bio-Rad, CA, USA), followed by histidine tag (His-tag, Sino Biological, PA). , USA) and Clarity™ Western ECL substrate (Bio-Rad) was used to perform Western blotting for histidine-tagged Mcr-1 protein. Image analysis was performed using ChemiDocMP (Bio-Rad) and Image Lab (Ver.6.1.0, Bio-Rad), with one of the representatives of n = 3 indicated.

6. 시험용 그람음성균 준비6. Preparation of Gram-negative bacteria for testing

항균 활성 및 항균 작용에 의한 세균의 형태학적 특성 조사에 사용된 세균은 다음과 같이 준비하였다. 먼저, 그람음성균 콜로니를 항생제가 있거나 없는 LB 한천 플레이트에 도말하고 SensititreTM Nephelometer (Thermo Fisher Scientific, MA, USA)를 사용하여 0.5 McFarland 탁도 표준의 광학 밀도로 DW에 재현탁하였다. 개별 세균 배양액을 1,000 배 희석하여 SensititreTM 양이온 조정 Mueller-Hinton 배지에 접종하였다.The bacteria used to investigate the morphological characteristics of bacteria by antibacterial activity and antibacterial action were prepared as follows. First, Gram-negative bacterial colonies were plated on LB agar plates with or without antibiotics and resuspended in DW using a Sensititre Nephelometer (Thermo Fisher Scientific, MA, USA) to an optical density of 0.5 McFarland turbidity standard. Individual bacterial cultures were diluted 1,000-fold and inoculated in Sensititre cation-conditioned Mueller-Hinton medium.

7. 항균활성 확인7. Confirmation of antibacterial activity

대조군과 함께 하기와 같이 항균 샘플을 4 개의 그룹으로 나누고 표시된 농도 범위에서 준비하였다. (1) NFW (비처리 대조군), (2) NZB (0-250 μg/mL), (3) PolB (Polymyxin B, Sigma-Aldrich, 0-3.2 μg/mL) 및 (4) NZB (0-250 μg/mL)/PolB (0-3.2 μg/mL) 혼합물. The antibacterial samples were divided into 4 groups and prepared in the indicated concentration range as follows together with the control group. (1) NFW (untreated control), (2) NZB (0-250 μg/mL), (3) PolB (Polymyxin B, Sigma-Aldrich, 0-3.2 μg/mL) and (4) NZB (0- 250 μg/mL)/PolB (0-3.2 μg/mL) mixture.

상기 항생제의 항균 활성을 확인하기 위해, 준비된 그람음성균 (섹션 2.4.5.)을 대조군, PolB, NZB 및 NZB PolB가 포함된 96-well 플레이트에 분주하고 흔들림 없이 37℃에서 16 시간 동안 배양하였다. 분수 억제 농도 지수/지수 (FICI)로서 최소 억제 농도 (MIC) 및 시너지효과는 체커 보드 분석을 사용하여 결정되었으며, [the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections, Clin Infect Dis. 40 (2005) 1333-1341.]에 설명과 같이 해석되었다. NZB와 PolB의 시너지 평가를 위해 최소한 세 번의 반복실험이 수행되었다.In order to confirm the antibacterial activity of the antibiotic, prepared Gram-negative bacteria (section 2.4.5.) were dispensed into 96-well plates containing control, PolB, NZB and NZB PolB, and cultured at 37° C. for 16 hours without shaking. Minimum inhibitory concentration (MIC) and synergy as fractional inhibitory concentration index/index (FICI) were determined using checker board analysis [the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections, Clin Infect Dis . 40 (2005) 1333-1341.] was interpreted as described. At least three replicates were performed to evaluate the synergy between NZB and PolB.

8. 세균의 형태학적 특성8. Morphological Characteristics of Bacteria

세균의 물질 처리에 따른 형태학적 변화를 확인하기 위해, 체커 보드 분석을 수행하였다. 대조군, PolB, NZB 및 NZB/PolB의 sub-MIC에서 얻은 4 개의 샘플을 10,000×g에서 1 분 동안 원심분리하였다. 생성된 세균 배양 침전물을 2% 포름알데히드 및 1% 글루타르알데히드를 함유하는 500 μL PBS에 재현탁하고 5 분 동안 원심분리하였다. 최종 세균 배양 침전물을 2 회 세척하고 1 mL DW에 재현탁시켰다. 현탁액에서 5 μL 분취량을 수집하고 실리콘 웨이퍼 (5 × 5 mm, 남강 하이테크 (주), 성남, 한국)에 증착하여 실온에서 건조시켰다. 다목적 텅스텐 열 이온 방출 주사 전자현미경 (SEM) 시스템 (TESCAN, 프랑스 Fuveau)인 VEGA3을 사용하여 제조사의 프로토콜에 따라 건조된 웨이퍼를 분석하였다.In order to confirm the morphological change according to the material treatment of the bacteria, checker board analysis was performed. Four samples from the control, PolB, NZB and sub-MIC of NZB/PolB were centrifuged at 10,000×g for 1 min. The resulting bacterial culture precipitate was resuspended in 500 μL PBS containing 2% formaldehyde and 1% glutaraldehyde and centrifuged for 5 minutes. The final bacterial culture precipitate was washed twice and resuspended in 1 mL DW. A 5 μL aliquot from the suspension was collected and deposited on a silicon wafer (5 × 5 mm, Namgang Hi-Tech Co., Ltd., Seongnam, Korea) and dried at room temperature. The dried wafers were analyzed using a VEGA3, a versatile tungsten thermionic emission scanning electron microscope (SEM) system (TESCAN, Fuveau, France) according to the manufacturer's protocol.

9. 세포독성 분석 및 형태학적 변화 확인9. Cytotoxicity analysis and morphological change confirmation

American Type Culture Collection (Manassas, VA, USA)의 HEK293 세포는 5% CO2에서 37℃에서 10% 태아소혈청과 함께 RPMI1640에서 유지되었다. 세포 생존율은 비색 WST 분석 (Ez-Cytox; DoGenBio, Seoul, Korea)으로 확인되었다. 세포를 well-당 5,000개 세포의 밀도로 96-well 플레이트에 접종하고 24 시간 동안 배양하였다.HEK293 cells from the American Type Culture Collection (Manassas, VA, USA) were maintained in RPMI1640 with 10% fetal bovine serum at 37°C in 5% CO 2 . Cell viability was confirmed by colorimetric WST analysis (Ez-Cytox; DoGenBio, Seoul, Korea). Cells were seeded in 96-well plates at a density of 5,000 cells per well and incubated for 24 hours.

그 후, 세포를 0.1% 디메틸 설폭 사이드에서 10-200 μg/mL 농도의 NZB 샘플 존재하에 24 또는 48 시간 동안 추가 배양한 후 WST 시약 (배지 부피의 1/10)을 첨가하여 세포 배양한 후 형성된 포르 마잔 염료의 양을 분광 광도계 마이크로 플레이트 리더 (BMG LABTECH GmbH, Ortenber, Germany)를 사용하여 450 nm에서 흡광도를 확인하였다. 상기 샘플로 처리된 HCT-15 세포의 형태는 위상차 현미경 (Leica DM IL LED; Leica, Wetzlar, Germany)을 사용하여 이미지화하였다.Thereafter, the cells were further cultured in 0.1% dimethyl sulfoxide in the presence of a NZB sample at a concentration of 10-200 μg/mL for 24 or 48 hours, followed by the addition of WST reagent (1/10 of the medium volume) to form the cells. The amount of formazan dye was checked for absorbance at 450 nm using a spectrophotometer microplate reader (BMG LABTECH GmbH, Ortenber, Germany). The morphology of HCT-15 cells treated with the sample was imaged using a phase contrast microscope (Leica DM IL LED; Leica, Wetzlar, Germany).

<실시예 1> 나노복합체 합성<Example 1> Synthesis of nanocomposite

1. Ni 도핑된 ZnO 나노 입자 (NZO)의 합성1. Synthesis of Ni-Doped ZnO Nanoparticles (NZO)

5 원자 퍼센트 (at %) (Zn2+와 관련하여) ZnO 기반 NP를 보유한 NZO는 이전 연구[B. Mehrad, N. M. Clark, G. G. Zhanel, J. P. Lynch, Chest. 147 (2015) 1413-1421.]에서 설명한대로 합성되었다.NZO with 5 atomic percent (at %) ZnO-based NPs (with respect to Zn 2+ ) was found in a previous study [B. Mehrad, NM Clark, GG Zhanel, JP Lynch, Chest. 147 (2015) 1413-1421.] was synthesized as described.

2. BP 나노 시트 및 Ni 도핑된 ZnO-BP (NZB) 나노복합체 합성2. Synthesis of BP nanosheets and Ni-doped ZnO-BP (NZB) nanocomposites

2-1. 흑린 (black phosphorus, BP) 나노 시트 합성2-1. Synthesis of black phosphorus (BP) nanosheets

이전에 보고된 방법 [Horizontal gene transfer mediatedbacterial antibiotic resistance, Front. Microbiol. 10 (2019) 1933.]의 벌크 BP 결정을 사용하여 BP 나노 시트를 합성하였다. 상기 합성 과정에는 초음파 처리를 통한 수성 박리 과정이 수행되었다. 먼저, 2.0 g의 NaOH를 N-메틸-2-피롤리돈 (NMP) 용매 60 mL에 5 분 동안 수욕 초음파 처리하에 첨가하였다. 이어서 원심분리 후 상층액을 수집하였다. 그 후, 벌크 BP 결정 (25 mg)을 NMP 함유한 포화 NaOH 용액에 첨가하였다. 생성된 현탁액을 20℃ 미만으로 온도가 유지된 얼음 욕조 초음파기를 사용하여 8 시간 동안 초음파 처리하였다. 그 후, 박리되지 않은 BP 결정을 2,000 rpm에서 15 분 동안 원심분리하여 분리하였다. 상층액을 후속적으로 수집하고 13,000 rpm에서 10 분 동안 다시 원심분리하였다. 마지막으로 원심분리 과정에서 수집된 BP 나노 시트를 물에 분산시키고 추가 사용을 위해 4 ℃에 보관하였다.A previously reported method [Horizontal gene transfer mediated bacterial antibiotic resistance, Front. Microbiol. 10 (2019) 1933.] was used to synthesize BP nanosheets. In the synthesis process, an aqueous exfoliation process through ultrasonication was performed. First, 2.0 g of NaOH was added to 60 mL of N-methyl-2-pyrrolidone (NMP) solvent for 5 minutes under water bath sonication. Then, after centrifugation, the supernatant was collected. Then bulk BP crystals (25 mg) were added to a saturated NaOH solution containing NMP. The resulting suspension was sonicated for 8 hours using an ice bath sonicator maintained at a temperature below 20°C. Thereafter, the unexfoliated BP crystals were separated by centrifugation at 2,000 rpm for 15 minutes. The supernatant was subsequently collected and centrifuged again at 13,000 rpm for 10 min. Finally, the BP nanosheets collected in the centrifugation process were dispersed in water and stored at 4 °C for further use.

2-2. NZB 나노복합체 합성2-2. NZB Nanocomposite Synthesis

5 μL의 준비된 BP 나노 시트 (2 mg/mL)를 합성된 NZO 100 mg이 용해되어 있는 탈이온수 (DW) 40 mL에 첨가하고 10 분 동안 계속 교반하였다. 그 후, 혼합물을 10 분 동안 초음파 처리한 후 혼합물을 연속 교반하면서 6 시간 동안 저장한 후 샘플을 원심분리로 수집하고 60℃에서 6 시간 동안 진공 건조하였다.5 μL of the prepared BP nanosheets (2 mg/mL) was added to 40 mL of deionized water (DW) in which 100 mg of synthesized NZO was dissolved, and stirring was continued for 10 minutes. Thereafter, the mixture was sonicated for 10 minutes and then the mixture was stored for 6 hours with continuous stirring, after which the samples were collected by centrifugation and vacuum dried at 60° C. for 6 hours.

<실시예 2> 나노복합체 특성 확인<Example 2> Confirmation of nanocomposite properties

1. 상 구성 확인1. Check the phase configuration

실시예 1에서 제조된 NZO 및 NZB 샘플과 ZO의 결정상을 XRD를 사용하여 확인하였다.The NZO and NZB samples prepared in Example 1 and the crystalline phases of ZO were confirmed using XRD.

그 결과, 도 1a와 같이 합성된 ZO, NZO 및 NZB의 XRD 반사 피크는 육각형 ZO (h-ZO) 구조 (JCPDS 36-1451)와 일치하였다. 그러나 약 16.78 ° 및 52.38 °에서 NZB 샘플의 일부 추가 피크가 확인되었다. 상기 피크는 BP의 (020) 및 (060) 격자 평면에 기인할 수 있다. As a result, the XRD reflection peaks of ZO, NZO and NZB synthesized as shown in FIG. 1a were consistent with the hexagonal ZO (h-ZO) structure (JCPDS 36-1451). However, some additional peaks in the NZB sample were identified at around 16.78° and 52.38°. The peak can be attributed to the (020) and (060) lattice planes of BP.

상기 결과로부터 액체 초음파 처리 후 불순물 없이 박리된 BP 나노 시트가 여전히 사방 정계 시스템에 있음이 확인됨에 따라 NZB 나노복합체가 성공적으로 형성된 것이 확인되었다.From the above results, as it was confirmed that the BP nanosheets exfoliated without impurities after liquid sonication were still in the orthorhombic system, it was confirmed that the NZB nanocomposite was successfully formed.

2. XPS (X-ray photoelectron spectroscopy) 확인2. XPS (X-ray photoelectron spectroscopy) confirmation

대표적인 NZB 샘플의 원소 조성과 원자가 상태를 XPS로 확인하였다.The elemental composition and valence state of a representative NZB sample were confirmed by XPS.

Zn 2p (도 1b) 및 Ni 2p (도 1c)의 결합 에너지 신호가 도 1b 내지 도 1d와 같이 확인되었으며, 도 1d 및 도 1b와 같이 P 2p 및 Zn 2p는 각각 1,021.9 및 1,045.0 eV에서 두 개의 강한 피크가 검출되었으며, 이는 각각 Zn 2p3/2 및 Zn 2p1/2 상태의 결합 에너지에 할당되었다. 또한 계산된 Zn 2p3/2와 Zn 2p1/2 사이의 결합 에너지 차이는 ~ 23.1 eV로 Zn2+ 아연의 원자가 상태를 확인하였다. The binding energy signals of Zn 2p (Fig. 1b) and Ni 2p (Fig. 1c) were confirmed as in Figs. A peak was detected, which was assigned to the binding energy of the Zn 2p 3/2 and Zn 2p 1/2 states, respectively. Also, the calculated difference in binding energy between Zn 2p 3/2 and Zn 2p 1/2 was ~23.1 eV, confirming the valence state of Zn 2+ zinc.

또한, 도 1c는 Ni 2p의 가우스 피팅 결합 에너지 곡선으로, 두 개의 주요 피크는 각각 Ni 2p3/2 및 Ni 2p1/2 상태의 결합 에너지를 나타내는 약 856.2 및 873.5 eV에 집중되어 있었다. 마찬가지로 Ni 2p3/2와 Ni 2p1/2 상태 사이의 계산된 에너지 차이는 17.3eV로 NiO (18.4eV)와 상당한 차이를 나타내는 것이 확인됨에 따라, NZB에 존재하는 Ni는 NiO와 상이한 것이 확인되었다. 1c is a Gaussian-fitting binding energy curve of Ni 2p, and the two main peaks were concentrated at about 856.2 and 873.5 eV, respectively, indicating the binding energies of the Ni 2p 3/2 and Ni 2p 1/2 states. Similarly, it was confirmed that the calculated energy difference between the Ni 2p 3/2 and Ni 2p 1/2 states was 17.3 eV, which showed a significant difference from NiO (18.4 eV), so that Ni present in NZB was different from NiO. .

또한, 도 1d에서 확인된 P 2p 피크의 결합 에너지는 앞서 발표된 다른 보고의 데이터와 일치하는 것으로 확인되었다.In addition, the binding energy of the P 2p peak identified in FIG. 1d was confirmed to be consistent with the data of other reports previously published.

상기 XPS 결과 및 XRD 결과로부터 NZB 나노복합체의 성공적인 형성이 확인되었다.The successful formation of the NZB nanocomposite was confirmed from the XPS and XRD results.

3. 나노복합체의 형태 및 미세 구조 확인3. Confirmation of morphology and microstructure of nanocomposites

대표적인 NZB의 형태와 미세 구조가 도 2와 같이 확인되었다.The morphology and microstructure of a representative NZB was confirmed as shown in FIG. 2 .

도 2a는 NZO 나노 입자가 BP 나노 시트에 분포된 NZB 나노 입자의 TEM 이미지이며, 도 2b는 NZB의 고해상도 TEM (HRTEM) 이미지로, 도 2b의 삽입은 도 2b의 표시된 영역에서 확대된 버전으로 면간 거리가 0.25 인 별개의 격자 무늬는 ZO의 (101) 평면에 해당된다. 또한 대표적인 NZB 샘플의 원소 매핑 이미지인 도 2c, 도 2d, 도 2e 및 도 2f와 같이 각각 Zn, O, Ni 및 P 원소가 좋은 분포를 나타내는 것이 확인되었다.Fig. 2a is a TEM image of NZB nanoparticles in which NZO nanoparticles are distributed on BP nanosheets, Fig. 2b is a high-resolution TEM (HRTEM) image of NZB, and the inset of Fig. 2b is an enlarged version in the indicated area of Fig. 2b, interplanar. A distinct grid with a distance of 0.25 corresponds to the (101) plane of the ZO. In addition, it was confirmed that Zn, O, Ni, and P elements exhibit good distribution, respectively, as shown in Figs. 2c, 2d, 2e, and 2f, which are elemental mapping images of representative NZB samples.

상기 TEM 및 HRTEM 이미지와 원소 매핑 결과로부터 NZB 나노복합체의 형성이 성공적으로 이루어진 것을 확인할 수 있었다.From the TEM and HRTEM images and elemental mapping results, it was confirmed that the NZB nanocomposite was successfully formed.

<실시예 3> 항균활성 확인<Example 3> Confirmation of antibacterial activity

1. 대장균 균주에 대한 NZB의 항균 활성 확인1. Confirmation of antibacterial activity of NZB against E. coli strains

먼저, 표준, NCCP 내성균주 및 NDM-1 MDR 대장균 균주에 대한 폴리믹신 B (PolB)의 MIC로서 항균 활성을 확인하였다. First, the antibacterial activity was confirmed as the MIC of polymyxin B (PolB) against the standard, NCCP-resistant strains and NDM-1 MDR E. coli strains.

그 결과, 표 2와 같이 대조군 벡터 및 NDM-1을 함유하는 대장균 균주가 존재하거나 존재하지 않는 조건에서 BW25113에 대한 MIC 값이 0.8 μg/mL로 확인됨에 따라, 사용된 NDM-1을 함유하는 대장균 균주는 여전히 PolB에 취약한 것이 확인되었다. As a result, as shown in Table 2, the MIC value for BW25113 was confirmed to be 0.8 μg/mL in the condition in which the E. coli strain containing the control vector and NDM-1 was present or not, E. coli containing the used NDM-1 It was confirmed that the strain was still susceptible to PolB.

한편, mcr-1 유전자를 이동성 요소로 포함하는 NCCP 내성균주는 BW25113 균주에 비해 PolB (MIC = 3.2 μg / mL)에 4 배 더 높은 내성을 나타내었다. 이러한 내성균주는 여러 개의 내성 유전자를 가질 수 있으므로 항생제 감수성에 대한 효과를 확인하기 어렵다. 이에 따라서 Mcr-1 단백질만을 발현할 수 있는 발현 벡터를 대장균에서 최대로 발현되도록 코돈 최적화 후 C-말단 6 × 히스티딘 태그 (Histidine tag)로 Mcr-1 단백질 코딩 영역에 대한 DNA 서열을 합성하여 제조한 플라스미드 pQE60, pQE60-mcr-1을 제작하였다. On the other hand, the NCCP-resistant strain containing the mcr-1 gene as a mobile element showed 4-fold higher resistance to PolB (MIC = 3.2 μg/mL) compared to the BW25113 strain. Since these resistant strains may have multiple resistance genes, it is difficult to determine the effect on antibiotic susceptibility. Accordingly, an expression vector capable of expressing only Mcr-1 protein was codon-optimized to maximize expression in Escherichia coli, followed by synthesizing the DNA sequence for the Mcr-1 protein coding region with a C-terminal 6 × histidine tag. Plasmids pQE60 and pQE60-mcr-1 were constructed.

제작된 플라스미드를 대장균 균주 BW25113에 형질전환하여 PolB 감수성에 대한 Mcr-1 단백질 효과를 평가하는 데 사용하였다. isopropyl β-d-1-thiogalactopyranoside를 활용하여 대장균에서 Mcr-1을 발현시키고 6 × 히스티딘 태그에 대한 항체를 사용하여 웨스턴 블롯 분석으로 확인한 결과, Mcr-1 단백질이 제대로 발현되는 것을 확인하였다. The constructed plasmid was transformed into E. coli strain BW25113 and used to evaluate the effect of Mcr-1 protein on PolB sensitivity. Mcr-1 was expressed in E. coli using isopropyl β-d-1-thiogalactopyranoside, and as a result of Western blot analysis using an antibody against 6 × histidine tag, it was confirmed that Mcr-1 protein was properly expressed.

또한, 상기 균주의 MIC 분석을 추가로 수행한 결과, Mcr-1 단백질 과발현이 NCCP 내성균주에서 PolB (MIC = 3.2 μg/mL)에 대한 내성을 증가시키는 것으로 나타났다. 상기 결과로부터 NCCP 내성균주의 PolB 내성이 Mcr-1 단백질 발현에서 비롯되었음이 확인되었으며, 이러한 시스템을 통하여 다중 치료에서 Mcr-1의 역할을 평가할 수 있다.In addition, as a result of further MIC analysis of the strain, it was found that Mcr-1 protein overexpression increases resistance to PolB (MIC = 3.2 μg/mL) in the NCCP-resistant strain. From the above results, it was confirmed that the PolB resistance of the NCCP-resistant strain originated from Mcr-1 protein expression, and the role of Mcr-1 in multiple treatments can be evaluated through this system.

한편, MIC 분석을 수행하여 대장균에 대한 나노복합체의 항균 활성을 추가로 확인한 결과, 표 2와 같이 실험에 사용된 모든 그람음성균에 대해 BP, NZO 및 NZB의 MIC 값이 각각 > 500, 200 및 200 μg/mL인 것으로 나타났다.On the other hand, as a result of further confirming the antimicrobial activity of the nanocomposite against E. coli by performing MIC analysis, the MIC values of BP, NZO and NZB for all Gram-negative bacteria used in the experiment were > 500, 200 and 200, respectively, as shown in Table 2 μg/mL.

상기 결과로부터 NZB가 항균 활성을 나타내지만 균주 특징을 구별할 수는 없음이 확인되었으며, NZB의 항균 활성은 BP가 아닌 NZO에 의해 나타나는 것을 확인할 수 있었다.From the above results, it was confirmed that NZB exhibits antibacterial activity, but it was not possible to distinguish the strain characteristics, and it was confirmed that the antibacterial activity of NZB was indicated by NZO, not BP.

Strainstrain MonotherapyMonotherapy Synergistic combinationSynergistic combination MIC (μg/mL)MIC (μg/mL) MIC (μg/mL)MIC (μg/mL) Maximum FICIMaximum FICI NZB/PolBNZB/PolB PolBPolB NZBNZB PolBPolB Fold change to MonotherapyFold change to Monotherapy NZBNZB Fold change to MonotherapyFold change to Monotherapy BW25113BW25113 0.80.8 250250 0.80.8 1One 250250 1One 22 NCCP16283NCCP16283 3.23.2 250250 0.40.4 88 2525 1010 0.2250.225 NCCP16284NCCP16284 3.23.2 250250 0.40.4 88 2525 1010 0.2250.225 BAA-2471BAA-2471 0.80.8 250250 0.40.4 22 125125 22 1One BAA-2340BAA-2340 0.80.8 250250 0.40.4 22 125125 22 1One KS7000KS7000 1One 0.80.8 250250 0.40.4 22 125125 22 1One KS8000KS8000 22 6.46.4 250250 0.80.8 88 12.512.5 2020 0.1750.175

* KS70001 및 KS80002은 BW25113 균주에 pQE60 또는 pQE60-mcr-1 플라스미드를 포함.* KS7000 1 and KS8000 2 contain pQE60 or pQE60-mcr-1 plasmids in BW25113 strain.

* 약어: PolB, 폴리믹신 B; NZB, 흑색 인을 함유한 니켈 도핑된 산화 아연; FICI, 분획 억제농도 지수/지수.* Abbreviations: PolB, polymyxin B; NZB, nickel doped zinc oxide with black phosphorus; FICI, fraction inhibitory concentration index/index.

2. NZB와 PolB의 시너지 효과 확인2. Confirmation of synergy between NZB and PolB

음전하를 나타내는 나노 시트인 BP는 mcr-1을 포함하고 있는 대장균을 포함하여 양전하를 나타내는 세포와 더욱 효과적으로 상호 작용할 것으로 예상됨에 따라, mcr-1 발현된 대장균에 대한 NZB 결합이 양전하를 나타내는 항생제인 PolB와의 상승 작용을 증가시킬 것으로 예상되었다.BP, which is a negatively charged nanosheet, is expected to interact more effectively with positively charged cells, including E. coli containing mcr-1. Therefore, NZB binding to mcr-1 expressing E. coli is positively charged, antibiotic PolB It was expected to increase the synergism with

이를 확인하기 위해, 대장균 균주 BW25113, pQE60-mcr-1의 BW25113, NCCP 내성균주 및 NDM-1 MDR 균주와 함께 PolB와 NZB 간의 체커 보드 분석을 수행하여 NZB의 시너지 효과를 확인하였다. To confirm this, checker board analysis between PolB and NZB was performed with E. coli strain BW25113, BW25113 of pQE60-mcr-1, NCCP-resistant strain, and NDM-1 MDR strain to confirm the synergistic effect of NZB.

표 2의 FICI 값을 참고하면 NZB 대 PolB는 mcr-1 유전자를 함유하는 대장균 균주에 대해 최대 시너지 효과 (FICINZB/PolB = 0.175-0.225)를 나타냈으며, NDM-1을 포함한 다른 균주에 대해서는 나타나지 않는 것을 확인하였다 (FICINZB/PolB = 2).Referring to the FICI values in Table 2, NZB versus PolB showed the greatest synergistic effect (FICI NZB/PolB = 0.175-0.225) against the E. coli strain containing the mcr-1 gene, and did not appear for other strains including NDM-1. It was confirmed that not (FICI NZB/PolB = 2).

상기 결과로부터 PolB에 대한 NZB의 효능 증진은 Mcr-1 단백질이 발현되는 대장균 균주에 특이적인 것을 확인할 수 있었다.From the above results, it was confirmed that the enhancement of the efficacy of NZB for PolB was specific to the E. coli strain expressing the Mcr-1 protein.

폴리믹신 내성은 주로 세균 표면에 고정된 지질 A의 구조적 개조에서 발생하는 것으로 알려져 있으며, Mcr-1 단백질 발현 균주에서는 ArnT 및 EptA 변형이 관찰되었다. 이에 따라, PolB에 대한 NZB의 상승 작용을 위해 ArnT 또는 EptA 작용 억제가 필요한지를 확인하기 위해, arnT 또는 eptA의 전체 돌연변이 (Keio collections [Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Mol. Syst. Biol. 2 (2006) 2006.0008.])를 사용하여 PolB로 NZB의 체커 보드 분석을 수행하였다. Polymyxin resistance is known to arise mainly from the structural remodeling of lipid A anchored to the bacterial surface, and ArnT and EptA modifications were observed in Mcr-1 protein-expressing strains. Accordingly, to determine whether inhibition of ArnT or EptA action is required for NZB synergy to PolB, whole mutants of arnT or eptA (Keio collections [Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants] : The Keio collection, Mol. Syst. Biol. 2 (2006) 2006.0008.]) was used to perform checker board analysis of NZB with PolB.

그 결과, keio-arnT 및 -eptA에 대한 PolB 및 NZB의 MIC가 BW25113과 동일하게 나타나는 것이 확인되었으며 (MIC = 0.8 μg / mL), keio-arnT 및 -eptA 균주에 대해 NCCP16283와 유사한 항균 효능 증진이 나타나는 것을 확인할 수 있었다.As a result, it was confirmed that the MICs of PolB and NZB against keio-arnT and -eptA were the same as those of BW25113 (MIC = 0.8 μg / mL), and antibacterial efficacy similar to that of NCCP16283 against keio-arnT and -eptA strains was confirmed. could be seen to appear.

상기 결과로부터 ArnT 또는 EptA 발현 억제가 대장균에서 폴리믹신 B에 대한 NZB의 상승 작용을 유도하기에 적합한 것을 확인할 수 있었다.From the above results, it was confirmed that suppression of ArnT or EptA expression was suitable for inducing a synergistic action of NZB on polymyxin B in E. coli.

<실시예 4> 세균의 형태학적 특성 확인<Example 4> Confirmation of morphological characteristics of bacteria

PolB, NZO, NZB 및 NZB/PolB 병용처리의 항균 특성을 확인하기 위해, SEM을 사용하여 다양한 처리 조건하에서 세균의 형태학적 분석 (NCCP16283: mcr-1이 함유된 내성 균주)을 수행하였다. To confirm the antibacterial properties of PolB, NZO, NZB and NZB/PolB combination treatment, morphological analysis of bacteria (NCCP16283: resistant strain containing mcr-1) was performed under various treatment conditions using SEM.

그 결과, 도 3a와 같이 처리되지 않은 대장균은 매끄러운 표면과 정상적인 길이를 가진 전형적인 세균의 형태를 나타내었다. 반면, 도 3b, 도 3c 및 도 3d와 같이 PolB, NZB 및 NZB/PolB이 처리된 세균은 세포막 파괴가 확인되었다. 특히, NCCP16283은 PolB 처리와 비교하여 NZB 및 NZB/PolB가 처리된 세균의 형태가 정상 세균의 형태와 크게 차이가 나는 것이 확인되었다. As a result, the untreated E. coli as shown in FIG. 3A showed a typical bacterial shape with a smooth surface and a normal length. On the other hand, cell membrane disruption was confirmed in the bacteria treated with PolB, NZB and NZB/PolB as shown in FIGS. 3b, 3c and 3d. In particular, in NCCP16283, it was confirmed that the morphology of NZB and NZB/PolB-treated bacteria was significantly different from that of normal bacteria compared to PolB-treated.

상기 결과로부터 NZB가 세균 사멸에서 다른 작용 기전을 나타내며, 표 1과 같이 더 많은 다제내성 세균 집단을 사멸시키기 위한 NZB의 PolB에 대한 시너지 효과를 나타내는 것을 확인할 수 있었다.From the above results, it was confirmed that NZB exhibits a different mechanism of action in bacterial killing, and as shown in Table 1, NZB exhibits a synergistic effect on PolB to kill more multidrug-resistant bacterial populations.

<실시예 5> NZB의 작용 메커니즘 확인 (세균 LPS에 대한 중화 전하)<Example 5> Confirmation of action mechanism of NZB (neutralizing charge on bacterial LPS)

대장균은 일반적으로 LPS 성분에 있는 음전하 지질 A로 인해 표면에 음전하를 나타내는 것으로 알려져 있다. 그러나 Mcr-1 단백질 변형은 ArnT 및 EptA를 변형하여 전체적인 지질 A 구조의 변형이 발생하고, 이로 인해 대장균의 표면의 전하를 음성에서 양성을 나타내도록 변형시킨다. NZB는 음전하를 나타내는 나노복합체이기 때문에 NZB와 mcr-1 유전자를 포함하여 표면이 변형된 대장균 사이의 전하 중화는 세균이 양전하를 나타내는 폴리믹신 B (PolB)에 의해 공격을 받기 쉬울 것으로 예상되었다.Escherichia coli is generally known to exhibit a negative charge on the surface due to the negatively charged lipid A in the LPS component. However, Mcr-1 protein modification modifies ArnT and EptA, resulting in modification of the overall lipid A structure, thereby changing the surface charge of E. coli from negative to positive. Since NZB is a negatively charged nanocomposite, it was expected that charge neutralization between NZB and E. coli with a surface modified including the mcr-1 gene would make bacteria susceptible to attack by positively charged polymyxin B (PolB).

상기 가설을 확인하기 위해 BP, NZO 및 NZB 샘플의 제타 전위를 측정하였다.To confirm this hypothesis, the zeta potentials of BP, NZO and NZB samples were measured.

그 결과 도 4a를 참고하면, BP, NZO 및 NZB의 값은 각각 -30.8, +11.2 및 -41.2 mV 였다. NZO가 양전하를 나타냄에도 불구하고 NZO의 통합으로 BP 자체에 비해 NZB에서 음전하를 나타내는 BP가 증가하는 것을 확인하였다. 이러한 음전하의 증가는 Li+ 통합이 BP의 음전하를 증가시킨 이전 보고서에서 확인되었다 [Negatively charged 2D black phosphorus for highly efficient covalent functionalization, Mater. Chem. Front. 2 (2018) 1700-1706.].As a result, referring to FIG. 4a, the values of BP, NZO and NZB were -30.8, +11.2 and -41.2 mV, respectively. It was confirmed that the BP representing the negative charge in NZB was increased compared to the BP itself due to the integration of NZO, although NZO exhibited a positive charge. This increase in negative charge was confirmed in a previous report in which Li + incorporation increased the negative charge of BP [Negatively charged 2D black phosphorus for highly efficient covalent functionalization, Mater. Chem. Front. 2 (2018) 1700-1706.].

또한, 대장균 균주 BW25113 및 NCCP16283의 표면의 전하가 MIC 이하 농도 (125 μg/mL)인 NZB 처리에 의해 변경되는지 여부를 추가로 확인하였다. In addition, it was further confirmed whether the surface charge of E. coli strains BW25113 and NCCP16283 was changed by NZB treatment with a sub-MIC concentration (125 μg/mL).

그 결과, 도 4b와 같이 BW25113 및 NCCP16283과 NZB 조합의 제타 전위는 각각 -56.9 및 -73.7 mV로 확인되었다. 한편 NZB가 없는 BW25113 및 NCCP16283의 제타 전위는 각각 -63.9 및 -51.4mV 였다. As a result, as shown in FIG. 4b, the zeta potentials of the combination of BW25113 and NCCP16283 with NZB were confirmed to be -56.9 and -73.7 mV, respectively. On the other hand, the zeta potentials of BW25113 and NCCP16283 without NZB were -63.9 and -51.4 mV, respectively.

상기 결과로부터 표면에 더 많은 음전하를 가진 그람음성균은 음전하를 나타내는 NZB와 상대적으로 낮은 상호 작용 효과를 나타내는 것으로 확인되었다. 따라서 Mcr-1 단백질에 의해 변형된 그람음성균은 표면에서 음전하가 감소하고 NZB와 더 많이 상호 작용하여 도 3d와 같이 세균 표면에 변형을 유발하는 것이 확인되었으며, NZB 처리된 대장균의 표면에 polB가 매우 쉽게 침투하여 PolB의 시너지 효과를 유발하는 것이 확인되었다.From the above results, it was confirmed that Gram-negative bacteria having more negative charges on the surface showed a relatively low interaction effect with NZB showing negative charges. Therefore, it was confirmed that Gram-negative bacteria modified by Mcr-1 protein reduced negative charge on the surface and interacted more with NZB to induce modification on the bacterial surface as shown in FIG. 3d. It was confirmed that it easily penetrates and induces a synergistic effect of PolB.

<실시예 6> NZB의 세포독성<Example 6> Cytotoxicity of NZB

NZB의 시험관 내 세포독성을 확인하기 위해, 다양한 농도의 NZB가 처리된 HEK293 세포 (인간 배아 신장 세포)에 대한 WST 분석을 수행하였다. FICINZB/PolB = 0.175-0.225인 NZB와 PolB 간의 시너지 효과에 대한 최저 농도를 결정하기 위해, 다양한 범위의 NZB와 PolB를 사용하여 추가 체커 보드 분석을 수행하였다. To confirm the in vitro cytotoxicity of NZB, WST analysis was performed on HEK293 cells (human embryonic kidney cells) treated with various concentrations of NZB. To determine the lowest concentration for a synergistic effect between NZB and PolB with FICI NZB/PolB = 0.175-0.225, additional checker board analyzes were performed using a range of NZB and PolB.

그 결과, 도 5와 같이 시너지 작용 농도인 12.5 μg/mL에서는 세포독성이 나타나지 않는 것이 확인되었다.As a result, it was confirmed that cytotoxicity did not appear at the synergistic concentration of 12.5 μg/mL as shown in FIG. 5 .

상기 결과로부터 PolB와 NZB 나노복합체의 시너지 작용 농도는 생체 적합하며, 폴리믹신 내성 세균 감염의 치료에 효과적임이 확인되었다.From the above results, it was confirmed that the synergistic concentration of PolB and NZB nanocomposite was biocompatible and effective in the treatment of polymyxin-resistant bacterial infection.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those of ordinary skill in the art, it is clear that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (12)

니켈이 도핑된 산화아연과 흑린 나노시트가 콘쥬게이션된 나노복합체; 및 항균제를 유효성분으로 함유하는 그람음성균 감염성 질환 예방 또는 치료용 약학조성물. a nanocomposite in which nickel-doped zinc oxide and black phosphorus nanosheets are conjugated; And a pharmaceutical composition for preventing or treating Gram-negative bacterial infectious disease containing an antibacterial agent as an active ingredient. 청구항 1에 있어서, 상기 그람음성균은 mcr-1 유전자를 함유하여 Mcr-1 단백질을 발현하는 것을 특징으로 하는 그람음성균 감염성 질환 예방 또는 치료용 약학조성물. The pharmaceutical composition for preventing or treating Gram-negative infectious diseases according to claim 1, wherein the Gram-negative bacteria contain the mcr-1 gene and express Mcr-1 protein. 청구항 1에 있어서, 상기 그람음성균은 슈도모나스 속 (Pseudomonas sp.), 살모넬라 속 (Salmonella sp.), 알칼리제네스 속 (Alcaligenes sp.), 이질균 속(Shigella sp.), 폐렴균 속(Pneumonia sp.), 비브리오균 속 (Vibrio sp.), 나이제리아균 속 (Neisseria sp.) 및 대장균 (Escherichia coli)으로 이루어진 군에서 선택되는 것을 특징으로 하는 그람음성균 감염성 질환 예방 또는 치료용 약학조성물. The method according to claim 1, wherein the Gram-negative bacteria are Pseudomonas sp., Salmonella sp., Alcaligenes sp., Shigella sp., Pneumonia sp., Gram-negative bacterial infectious disease prevention or treatment pharmaceutical composition, characterized in that selected from the group consisting of Vibrio sp., Neisseria sp. and Escherichia coli. 청구항 1에 있어서, 상기 나노복합체는 mcr-1 유전자가 발현하는 단백질에 의해 양전하를 나타내는 그람음성균 표면의 전하를 중화시켜 항균제의 내성을 억제하고, 항균제 감수성을 증가시키는 것을 특징으로 하는 그람음성균 감염성 질환 예방 또는 치료용 약학조성물. The gram-negative bacterial infectious disease according to claim 1, wherein the nanocomposite neutralizes the charge on the surface of the gram-negative bacteria showing a positive charge by the protein expressed by the mcr-1 gene, thereby suppressing the resistance to the antibacterial agent and increasing the antibacterial agent sensitivity. A pharmaceutical composition for prophylaxis or treatment. 청구항 1에 있어서, 상기 항균제는 폴리믹신 B 및 콜리스틴으로 이루어진 폴리믹신 계열 항균제로 이루어진 군에서 하나 또는 둘 이상 선택되는 것을 특징으로 하는 그람음성균 감염성 질환 예방 또는 치료용 약학조성물. The pharmaceutical composition for preventing or treating Gram-negative bacterial infectious diseases according to claim 1, wherein the antibacterial agent is one or more selected from the group consisting of polymyxin-based antibacterial agents consisting of polymyxin B and colistin. 청구항 1에 있어서, 상기 나노복합체는 약학조성물 총 100 중량부에 대하여, 0.625 내지 2.5 중량부로 함유되는 것을 특징으로 하는 그람음성균 감염성 질환 예방 또는 치료용 약학조성물. The pharmaceutical composition for preventing or treating Gram-negative bacterial infectious diseases according to claim 1, wherein the nanocomposite is contained in an amount of 0.625 to 2.5 parts by weight based on 100 parts by weight of the total pharmaceutical composition. 청구항 1에 있어서, 상기 항균제는 약학조성물 총 100 중량부에 대하여, 0.08 내지 0.64 중량부로 함유되는 것을 특징으로 하는 그람음성균 감염성 질환 예방 또는 치료용 약학조성물. The pharmaceutical composition according to claim 1, wherein the antibacterial agent is contained in an amount of 0.08 to 0.64 parts by weight based on 100 parts by weight of the total pharmaceutical composition. 청구항 1에 있어서, 상기 그람음성균 감염성 질환은 피부감염, 폐렴, 패혈증, 장염, 크론병, 궤양성 대장염, 심내막염, 수막염, 외이도염, 중이염, 골수염, 요로감염, 기도감염 및 창상감염으로 이루어진 군에서 선택되는 것을 특징으로 하는 그람음성균 감염성 질환 예방 또는 치료용 약학조성물. The method according to claim 1, wherein the gram-negative bacterial infectious disease is selected from the group consisting of skin infection, pneumonia, sepsis, enteritis, Crohn's disease, ulcerative colitis, endocarditis, meningitis, otitis externa, otitis media, osteomyelitis, urinary tract infection, airway infection and wound infection. Gram-negative bacterial infectious disease prevention or treatment pharmaceutical composition, characterized in that. 니켈이 도핑된 산화아연과 흑린 나노시트가 결합된 나노복합체를 유효성분으로 함유하는 그람음성균 항균제 내성 억제용 항균보조제.An antimicrobial adjuvant for suppressing resistance to gram-negative bacteria antibacterial agents containing a nanocomposite in which nickel-doped zinc oxide and black phosphorus nanosheets are combined as an active ingredient. 청구항 9에 있어서, 상기 그람음성균은 mcr-1 유전자를 함유하며, 상기 mcr-1 유전자가 발현하는 Mcr-1 단백질에 의해 세균 표면에 양전하를 나타내는 것을 특징으로 하는 그람음성균 항생제 내성 억제용 항균보조제.The antimicrobial adjuvant for suppressing antibiotic resistance of Gram-negative bacteria according to claim 9, wherein the Gram-negative bacteria contain a mcr-1 gene, and exhibit a positive charge on the bacterial surface by the Mcr-1 protein expressed by the mcr-1 gene. 청구항 9에 있어서, 상기 항균제는 폴리믹신 B 및 콜리스틴으로 이루어진 폴리믹신 계열 항균제로 이루어진 군에서 하나 또는 둘 이상 선택되는 것을 특징으로 하는 그람음성균 항생제 내성 억제용 항균보조제.The antimicrobial adjuvant for inhibiting antibiotic resistance of Gram-negative bacteria according to claim 9, wherein the antibacterial agent is one or more selected from the group consisting of polymyxin-based antibacterial agents consisting of polymyxin B and colistin. 청구항 9에 있어서, 상기 그람음성균은 슈도모나스 속 (Pseudomonas sp.), 살모넬라 속 (Salmonella sp.), 알칼리제네스 속 (Alcaligenes sp.), 이질균 속(Shigella sp.), 폐렴균 속(Pneumonia sp.), 비브리오균 속 (Vibrio sp.), 나이제리아균 속 (Neisseria sp.) 및 대장균 (Escherichia coli)으로 이루어진 군에서 선택되는 것을 특징으로 하는 그람음성균 항생제 내성 억제용 항균보조제.The method according to claim 9, wherein the Gram-negative bacteria are Pseudomonas sp., Salmonella sp., Alcaligenes sp., Shigella sp., Pneumonia sp., Antibacterial adjuvant for inhibiting antibiotic resistance of Gram-negative bacteria, characterized in that selected from the group consisting of Vibrio sp., Neisseria sp. and Escherichia coli.
KR1020210063877A 2021-01-08 2021-05-18 Pharmaceutical composition for preventing or treating gram-negative bacteria infectious diseases and antibacterial adjuvant for inhibiting resistance to antimicrobial agents KR20220100491A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210002544 2021-01-08
KR1020210002544 2021-01-08

Publications (1)

Publication Number Publication Date
KR20220100491A true KR20220100491A (en) 2022-07-15

Family

ID=82400986

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210063877A KR20220100491A (en) 2021-01-08 2021-05-18 Pharmaceutical composition for preventing or treating gram-negative bacteria infectious diseases and antibacterial adjuvant for inhibiting resistance to antimicrobial agents

Country Status (1)

Country Link
KR (1) KR20220100491A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170032689A (en) 2015-09-15 2017-03-23 조선대학교산학협력단 Novel antimicrobial peptide derived from myxinidin peptide and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170032689A (en) 2015-09-15 2017-03-23 조선대학교산학협력단 Novel antimicrobial peptide derived from myxinidin peptide and uses thereof

Similar Documents

Publication Publication Date Title
Kulshrestha et al. Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach
KR101955636B1 (en) A composition comprising an antibiotic and a dispersant or anti-adhesive agent
Adwan et al. Antibacterial activities of some plant extracts alone and in combination with different antimicrobials against multidrug–resistant Pseudomonas aeruginosa strains
US10039812B2 (en) Therapeutic for treating clostridium difficile infection
Reyes-Torres et al. Synthesis of CuO and ZnO nanoparticles by a novel green route: Antimicrobial activity, cytotoxic effects and their synergism with ampicillin
JP7386905B2 (en) Romo1-derived antibacterial peptide and its variants
JP6157514B2 (en) Antibacterial peptide
Jiang et al. The pH-responsive property of antimicrobial peptide GH12 enhances its anticaries effects at acidic pH
KR20220100491A (en) Pharmaceutical composition for preventing or treating gram-negative bacteria infectious diseases and antibacterial adjuvant for inhibiting resistance to antimicrobial agents
KR101770664B1 (en) Melittin-Polyethylene Glycol Conjugates and Pharmaceutical Composition Comprising the Same
EA014512B1 (en) Bactericidal composition
Ma et al. A cascade nanozyme with antimicrobial effects against nontypeable Haemophilus influenzae
AU2015362155B2 (en) Antibacterial composition containing ADK protein as active ingredient, or composition for preventing or treating septicemia
Chen et al. Effects of bovine lactoferrin hydrolysate on the in vitro antimicrobial susceptibility of Escherichia coli strains isolated from baby pigs
KR102054378B1 (en) Antimicrobial composition comprising Bdellovibrio bacteriovorus and violacein
Khleifat et al. Antibacterial activity of silver nanoparticles synthesized by aspergillus flavusand its synergistic effect with antibiotics
CN103251611A (en) Application of Aspeverin in preparation of anti-bacteria medicines
US11369628B2 (en) Cranberry-derived compositions for potentiating antibiotic efficacy against bacterial persistence
TWI394578B (en) New use of antimicrobial peptides
US11124605B2 (en) Antimicrobial alpha-helical cationic polypeptides
CN110997004A (en) Method for disrupting and preventing the formation of bacterial biofilms using insect antimicrobial peptide complexes
Reda et al. The synthesis of calcium doped zinc oxide ceramic nanoparticles via sol–gel effective against the emerging multidrug-resistant Candida auris
WO2023027240A1 (en) Impatiens balsamina-derived anti-bacterial peptide and anti-bacterial composition containing same
BR102015028254A2 (en) synthetic peptide and its use as an antimicrobial
Dalirsaber Jalali et al. Antimicrobial and cytotoxicity effect of Synthesized Ag-doped ZnO nanoparticles against Listeria monocytogenes isolated from traditional Cheese

Legal Events

Date Code Title Description
E902 Notification of reason for refusal