KR20220098695A - 증가된 재료 증착 속도를 갖는 금속 액적 토출 3차원(3d) 물체 프린터 - Google Patents

증가된 재료 증착 속도를 갖는 금속 액적 토출 3차원(3d) 물체 프린터 Download PDF

Info

Publication number
KR20220098695A
KR20220098695A KR1020220000840A KR20220000840A KR20220098695A KR 20220098695 A KR20220098695 A KR 20220098695A KR 1020220000840 A KR1020220000840 A KR 1020220000840A KR 20220000840 A KR20220000840 A KR 20220000840A KR 20220098695 A KR20220098695 A KR 20220098695A
Authority
KR
South Korea
Prior art keywords
orifices
orifice plate
platform
ejector head
droplets
Prior art date
Application number
KR1020220000840A
Other languages
English (en)
Inventor
코미어 데니스
에스. 바데샤 산토크
삼비 바런
Original Assignee
제록스 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제록스 코포레이션 filed Critical 제록스 코포레이션
Publication of KR20220098695A publication Critical patent/KR20220098695A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • B22F12/33Platforms or substrates translatory in the deposition plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)

Abstract

3차원(3D) 물체 프린터는 토출기 헤드의 오리피스 플레이트 내의 복수의 오리피스들에 유체적으로 연결된 단일 노즐을 갖는 토출기 헤드를 갖는다. 단일 노즐을 통한 재료의 토출은 복수의 오리피스들을 통해 동시에 방출된다. 일 실시예에서, 오리피스들 중 일부는 오리피스 플레이트의 평면에 대한 법선에 대해 소정 각도로 배향된다. 프린터의 작동을 위한 기계 준비 명령어들을 생성하는 프린터의 스플라이서(splicer)는 표면 상으로 토출된 액적들에 대한 목표 액적 간격을 달성하기 위해, 오리피스 플레이트와 액적들이 토출되는 표면 사이의 스탠드오프(standoff) 거리를 식별한다. 이러한 방식으로, 토출 빈도를 상당히 증가시키는 것을 필요로 하거나 프린터에 다수의 토출기 헤드들을 통합하도록 요구하지 않고 층 내의 구조물에 대한 재료 밀도가 달성될 수 있다.

Description

증가된 재료 증착 속도를 갖는 금속 액적 토출 3차원(3D) 물체 프린터{METAL DROP EJECTING THREE-DIMENSIONAL (3D) OBJECT PRINTER HAVING AN INCREASED MATERIAL DEPOSITION RATE}
본 발명은 3차원(3D) 물체 프린터들에 사용되는 용융 금속 토출기(ejector)들에 관한 것으로, 보다 상세하게는, 이러한 시스템들에 사용되는 토출기들에 관한 것이다.
적층 제조(additive manufacturing)로 또한 알려진 3차원 인쇄는 사실상 임의의 형상의 디지털 모델로부터 3차원 입체 물체(solid object)를 제조하는 공정이다. 많은 3차원 인쇄 기술들은 적층 제조 디바이스가 이전에 증착된 층들 위에 부품의 연속적인 층들을 형성하는 적층 공정을 사용한다. 이들 기술들 중 일부는 광중합체들 또는 탄성중합체들과 같은 UV-경화성 재료들을 토출하는 토출기들을 사용한다. 프린터는 전형적으로 하나 이상의 압출기(extruder)들을 작동시켜 플라스틱 재료의 연속적인 층들을 형성하며, 이들은 다양한 형상들 및 구조들을 갖는 3차원의 인쇄된 물체를 형성한다. 3차원의 인쇄된 물체의 각각의 층이 형성된 후에, 플라스틱 재료는 UV 경화되고 경질화되어 이러한 층을 3차원의 인쇄된 물체의 아래에 놓인 층에 접합시킨다. 이러한 적층 제조 방법은 절삭 또는 드릴링과 같은 제거 공정(subtractive process)에 의한 피가공물로부터의 재료의 제거에 주로 의존하는 전통적인 물체-형성 기술들과 구별가능하다.
최근에, 하나 이상의 토출기들로부터 용융 금속의 액적들을 토출하여 3D 물체들을 형성하는 일부 3D 물체 프린터들이 개발되었다. 이들 프린터들은 와이어 또는 펠릿(pellet)들의 롤과 같은 고체 금속의 공급원을 가지며, 고체 금속은 가열 챔버 내로 공급되고 그 곳에서 용융되어 용융 금속이 토출기의 챔버 내로 유동한다. 챔버는 비절연된 전기 와이어가 둘레에 감싸지는 비전도성 재료로 제조된다. 전류가 전도체를 통과하여 전자기장을 생성하며, 이는 챔버의 노즐에서의 용융 금속의 메니스커스(meniscus)가 챔버 내의 용융 금속으로부터 분리되고 노즐로부터 추진되게 한다. 토출기의 노즐 반대편에 있는 플랫폼은 액추에이터들을 작동시키는 제어기에 의해 플랫폼의 평면에 평행한 X-Y 평면 내에서 이동되며 따라서 토출된 금속 액적들이 플랫폼 상에 물체의 금속 층들을 형성하고, 또 다른 액추에이터가 제어기에 의해 작동되어 토출기 또는 플랫폼의 위치를 수직 또는 Z 방향으로 변경하여, 형성되는 금속 물체의 최상부 층과 토출기 사이에 일정한 거리를 유지한다. 이러한 유형의 금속 액적 토출 프린터는 또한 자기 유체역학적(magnetohydrodynamic) 프린터로 알려져 있다.
대부분의 금속 액적 토출 프린터들은 약 50 ㎐ 내지 약 1 ㎑ 범위의 토출 빈도에서 작동하고 약 50 μm의 직경을 갖는 액적들을 토출하는 단일 토출기를 갖는다. 이러한 발사(firing) 빈도 범위 및 액적 크기는, 열가소성 또는 다른 공지된 재료들로 제조되는 물체들을 형성하는 데 필요한 시간에 비해 금속 물체들을 형성하는 데 필요한 시간을 연장시킨다. 일부 금속 액적 토출 프린터들은 하나 이상의 토출기 헤드들을 갖지만, 다수의 토출기 헤드들을 제공하는 것은 비용이 많이 들고 시스템을 더 복잡하게 만들고 일부 시스템들에서는 다루기 힘들게 만든다. 다른 금속 액적 토출 프린터들은 공통 매니폴드에 유체적으로 결합된 하나 초과의 노즐을 갖는 토출기 헤드들을 갖는다. 노즐들의 개수가 토출기 헤드의 재료 증착 속도를 상당히 증가시키기에 충분한 경우, 토출된 액적들은 동시에 랜딩(land)되어 서로 중첩되는 경향이 있다. 이러한 경향은 금속의 퍼들(puddle)을 초래하고 특징부 한정 등과 같은 문제를 야기한다. 중첩 및 중첩에 수반되는 문제들을 방지하기 위해 노즐들이 적절하게 이격되는 경우, 결과적인 스와스(swath)의 크기가 그러한 시스템들에 의해 현재 생산되는 많은 물체 구성들에 비해 너무 크다. 용융 금속의 스와스들 또는 리본들의 치수들을 과도하게 증가시키지 않으면서 더 높은 효과적인 용융 금속 증착 속도들을 제공하도록 금속 액적 토출 프린터를 작동시킬 수 있는 것이 유익할 것이다.
새로운 재료 액적 토출기 헤드는 토출기 헤드에 의해 생성된 스와스들의 크기를 과도하게 증가시키지 않으면서 이전에 알려진 것들보다 더 빠른 증착 속도들을 제공한다. 재료 토출기 헤드는 재료를 토출하도록 구성된 단일 노즐, 및 복수의 오리피스들을 갖는 오리피스 플레이트를 포함하며, 복수의 오리피스들은 단일 노즐에 유체적으로 연결되며, 따라서 단일 노즐로부터 토출된 재료가 복수의 오리피스들로부터 액적들로서 동시에 방출된다.
새로운 3차원(3D) 물체 프린터는 토출기 헤드에 의해 생성된 스와스들의 크기를 과도하게 증가시키지 않으면서 이전에 알려진 것들보다 더 빠른 증착 속도들을 제공하는 토출기 헤드를 포함한다. 3D 물체 프린터는 단일 노즐을 갖는 토출기 헤드 - 토출기 헤드는 단일 노즐을 통해 재료를 토출하도록 구성됨 -, 복수의 오리피스들을 갖는 오리피스 플레이트 - 복수의 오리피스들은 토출기 헤드의 단일 노즐에 유체적으로 연결되며, 따라서 단일 노즐로부터 토출된 재료가 복수의 오리피스들로부터 액적들로서 동시에 방출됨 -, 오리피스 플레이트 반대편에 위치되는 플랫폼, 플랫폼과 토출기 헤드 중 적어도 하나에 작동가능하게 연결되는 적어도 하나의 액추에이터 - 적어도 하나의 액추에이터는 플랫폼과 토출기 헤드를 서로에 대해 이동시키도록 구성됨 -, 및 토출기 헤드 및 적어도 하나의 액추에이터에 작동가능하게 연결된 제어기를 포함한다. 제어기는 목표 액적 간격을 달성하기 위해 적어도 하나의 액추에이터 및 토출기 헤드를 작동시키는 기계 준비 명령어들을 생성하고, 적어도 하나의 액추에이터를 작동시켜 토출기 헤드와 플랫폼을 서로에 대해 이동시키고, 노즐과 복수의 오리피스들을 통해 재료를 토출하도록 토출기 헤드를 작동시켜 적어도 2개의 오리피스들로부터 토출된 액적들이 플랫폼 상에, 또는 목표 액적 간격에서 플랫폼 상에 형성되는 물체의 표면 상에 목표 액적 간격을 달성하도록 구성된다.
토출기 헤드에 의해 생성된 스와스들의 크기를 과도하게 증가시키지 않으면서 이전에 알려진 것들보다 더 빠른 증착 속도들을 제공하는 토출기 헤드를 갖는 3D 물체 프린터의 전술된 양태들 및 다른 특징들이 첨부 도면들과 관련하여 취해진 아래 기술에서 설명된다.
도 1은 토출기 헤드에 의해 생성된 스와스들의 크기를 과도하게 증가시키지 않으면서 이전에 알려진 것들보다 더 빠른 증착 속도들을 제공하는 토출기 헤드를 포함하는 3D 물체 프린터를 도시한다.
도 2a는 도 1의 시스템에 사용되는 토출기 헤드의 저면도이고, 도 2b는 도 2a의 토출기 헤드의 측면도이다.
도 3a는 도 2a의 토출기 헤드의 단일 토출 사이클에 의해 생성된 액적 패턴의 예시이고, 도 3b는 도 2a의 토출기 헤드를 패턴의 액적들 사이의 거리만큼 이동시키고, 이어서 액적들의 제1 세트 사이의 공간에서 액적들의 제2 세트를 토출함으로써 생성된 결과적인 패턴이다.
도 4a 및 도 4b는 오리피스 플레이트와 인쇄되는 표면 사이의 스탠드오프(stand-off) 거리의 효과를 도시한다.
도 5a는 도 1의 시스템에서 사용될 수 있는 토출기 헤드에 대한 대안적인 노즐 배열에 의해 형성된 액적 패턴을 도시하고, 도 5b는 도 5a에 도시된 다수의 액적 패턴들에 의해 생성된 이중 행(row) 재료 액적 패턴을 도시한다.
도 6은 목표 액적 간격을 달성하기 위해 스탠드오프 거리가 어떻게 식별되는지를 도시한다.
도 7은 상이한 액적 중첩들로부터 형성될 수 있는 상이한 구조물들을 도시한다.
도 8은 액적의 중첩이 없이 형성될 수 있는 구조물을 도시한다.
도 9는 도 1의 프린터에서 기계 준비 명령어들을 생성하기 위해 슬라이서 프로그램에 의해 사용되는 프로세스의 흐름도이다.
본 명세서에 개시된 시스템 및 그의 작동에 대한 환경뿐만 아니라 디바이스 및 그의 작동에 대한 상세 사항의 전반적인 이해를 위해 도면들이 참조된다. 도면들에서, 동일한 도면 부호들이 동일한 요소들을 나타낸다.
도 1은 토출기 헤드에 의해 생성된 스와스들의 크기를 과도하게 증가시키지 않으면서 이전에 알려진 것들보다 더 빠른 증착 속도들을 제공하는 용융 금속 3D 물체 프린터(100)의 일 실시예를 도시한다. 이 실시예에서, 용융된 벌크 금속의 다수의 액적들이 각각의 토출 사이클 동안 복수의 오리피스들에 유체적으로 연결된 단일 노즐을 갖는 토출기 헤드(104)로부터 동시에 토출된다. 새로운 토출기 헤드 및 새로운 토출기 헤드를 이용하는 슬라이서가 도 1의 금속 액적 토출 시스템을 참조하여 아래에서 논의되지만, 토출기 헤드 및 슬라이서에서 구현된 원리들은 열가소성 재료 액적들을 토출하는 것들과 같은 다른 3D 물체 프린터들에 사용될 수 있다. 도 1의 프린터에 의해 토출된 액적들은 플랫폼(112) 상에서 물체(108)의 층들에 대한 스와스들을 형성한다. 본 문서에서 사용되는 바와 같이, 용어 "토출 사이클"은 연결된 오리피스들에 분포되는 노즐을 통한 단일 토출을 의미한다. 본 문서에 사용되는 바와 같이, 용어 "벌크 금속"은 응집체 형태로 이용가능한 전도성 금속, 예컨대 통상적으로 이용가능한 게이지(gauge)의 와이어, 통상적으로 이용가능한 직경의 로드(rod), 또는 매크로 크기 규모들의 펠릿들을 의미한다. 금속 와이어(130)와 같은 벌크 금속 공급원(160)이 토출기 헤드 내로 공급되고 용융되어 토출기 헤드 내의 챔버에 용융 금속을 제공한다. 불활성 가스 공급부(164)는 토출기 헤드 내의 금속 산화물의 형성을 방지하기 위해 가스 공급 튜브(144)를 통해 토출기 헤드(104) 내의 용융 금속 챔버에 아르곤과 같은 불활성 가스(168)의 압력 조절식 공급원을 제공한다.
토출기 헤드(104)는 각각 한 쌍의 수직으로 배향된 부재들(120A, 120B) 내의 z-축 트랙들(116A, 116B) 내에 이동가능하게 장착된다. 부재들(120A, 120B)은 일 단부에서 프레임(124)의 일 면에 연결되고, 다른 단부에서 수평 부재(128)에 의해 서로 연결된다. 액추에이터(132)가 수평 부재(128)에 장착되고 토출기 헤드(104)에 작동가능하게 연결되어 z-축 트랙들(116A, 166B)을 따라 토출기 헤드를 이동시킨다. 액추에이터(132)는 토출기 헤드(104)의 노즐(도 1에 도시되지 않음)과 플랫폼(112) 상의 물체(108)의 최상부 표면 사이의 거리를 유지하도록 제어기(136)에 의해 작동된다.
프레임(124)에는 플랫폼(112)의 이동을 위한 신뢰성 있고 견고한 지지를 제공하기 위해 화강암 또는 다른 튼튼한 재료로 형성될 수 있는 평면 부재(140)가 장착된다. 플랫폼(112)은 X-축 트랙들(144A, 144B)에 부착되고, 따라서 플랫폼(112)은 도면에 도시된 바와 같이 X-축을 따라 양방향으로 이동할 수 있다. X-축 트랙들(144A, 144B)은 스테이지(148)에 부착되고, 스테이지(148)는 Y-축 트랙들(152A, 152B)에 부착되며, 따라서 스테이지(148)는 도면에 도시된 바와 같이 Y-축을 따라 양방향으로 이동할 수 있다. 액추에이터(122A)는 플랫폼(112)에 작동가능하게 연결되고, 액추에이터(122B)는 스테이지(148)에 작동가능하게 연결된다. 제어기(136)는 액추에이터들(122A, 122B)을 작동시켜 X-축을 따라 플랫폼을 이동시키고 Y-축을 따라 스테이지(148)를 이동시켜, 토출기 헤드(104) 반대편에 있는 X-Y 평면 내에서 플랫폼을 이동시킨다. 용융 금속(156)의 액적들이 플랫폼(112)을 향해 토출될 때에 플랫폼(112)의 이러한 X-Y 평면 이동을 수행하는 것은 물체(108) 상에 용융 금속 액적들의 스와스를 형성한다. 제어기(136)는 또한 물체 상에서의 다른 구조물들의 형성을 용이하게 하기 위해 액추에이터(132)를 작동시켜 기재 상의 가장 최근에 형성된 층과 토출기 헤드(104) 사이의 수직 거리를 조절한다. 용융 금속 3D 물체 프린터(100)가 수직 배향으로 작동되는 것으로 도 1에 도시되어 있지만, 다른 대안적인 배향들이 채용될 수 있다. 또한, 도 1에 도시된 실시예는 X-Y 평면 내에서 이동하는 플랫폼을 가지며, 토출기 헤드가 Z-축을 따라 이동하지만, 다른 배열들이 가능하다. 예를 들어, 토출기 헤드(104)는 X-Y 평면 내에서 그리고 Z-축을 따라 이동하도록 구성될 수 있다.
제어기(136)는 프로그래밍된 명령어들을 실행하는 하나 이상의 범용 또는 특수 프로그래밍가능 프로세서들로 구현될 수 있다. 프로그래밍된 기능들을 수행하는 데 필요한 명령어들 및 데이터는 프로세서들 또는 제어기들과 연관된 메모리에 저장될 수 있다. 프로세서들, 그들의 메모리들, 및 인터페이스 회로부는 전술된 작동들뿐만 아니라 후술되는 작동들을 수행하도록 제어기들을 구성한다. 이들 구성요소들은 인쇄 회로 카드 상에 제공되거나, ASIC(application specific integrated circuit) 내의 회로로서 제공될 수 있다. 회로들 각각이 별개의 프로세서로 구현될 수 있거나, 다수의 회로들이 동일한 프로세서 상에 구현될 수 있다. 대안적으로, 회로들은 VLSI(very large scale integrated) 회로들 내에 제공되는 별개의 구성요소들 또는 회로들로 구현될 수 있다. 또한, 본 명세서에 기술된 회로들은 프로세서들, ASIC들, 별개의 구성요소들, 또는 VLSI 회로들의 조합으로 구현될 수 있다. 금속 물체 형성 동안, 생성될 구조물에 대한 이미지 데이터가, 토출기 헤드(104)로 출력되는 토출기 헤드 제어 신호들의 처리 및 생성을 위해 스캐닝 시스템 또는 온라인 또는 워크 스테이션 연결 중 어느 하나로부터 제어기(136)를 위한 프로세서 또는 프로세서들로 전송된다.
용융 금속 3D 물체 프린터(100)의 제어기(136)는 금속 물체 제조를 위해 프린터를 제어하기 위해 외부 공급원들로부터의 데이터를 필요로 한다. 일반적으로, 형성될 물체의 3차원 모델 또는 다른 디지털 데이터 모델이 제어기(136)에 작동가능하게 연결된 메모리에 저장되고, 제어기가 디지털 데이터 모델이 저장되는 원격 데이터베이스에 서버 등을 통해 액세스할 수 있거나, 또는 디지털 데이터 모델이 저장된 컴퓨터 판독가능 매체가 제어기(136)에 액세스를 위해 선택적으로 결합될 수 있다. 이러한 3차원 모델 또는 다른 디지털 데이터 모델은, 프린터(100)의 구성요소들을 작동시키고 모델에 대응하는 금속 물체를 형성하도록 공지의 방식으로 제어기(136)에 의해 실행되기 위한 기계-준비 명령어들을 생성하기 위해 제어기에 의해 사용될 수 있다. 기계-준비 명령어들의 생성은, 디바이스의 CAD 모델이 STL 데이터 모델 또는 다른 다각형 메시 또는 다른 중간 표현으로 변환되는 경우에서와 같이 중간 모델들의 생성을 포함할 수 있으며, 이는 이어서 프린터에 의한 디바이스의 제조를 위한 g-코드와 같은 기계 명령어들을 생성하도록 프로세싱될 수 있다. 본 명세서에 사용되는 바와 같이, 용어 "기계-준비 명령어들"은 컴퓨터, 마이크로프로세서, 또는 제어기에 의해 실행되어 3D 금속 물체 적층 제조 시스템의 구성요소들을 작동시켜 플랫폼(112) 상에 금속 물체들을 형성하는 컴퓨터 언어 명령들을 의미한다. 제어기(136)는 토출기 헤드(104)로부터의 용융 금속 액적들의 토출, 스테이지(148) 및 플랫폼(112)의 위치설정뿐만 아니라 플랫폼(112) 상의 물체(108)의 최상부 층과 토출기 헤드(102) 사이의 거리를 제어하기 위해 기계-준비 명령어들을 실행한다. 도 1의 프린터(100)의 제어기(136)에 의해 실행되는 슬라이서는 프린터(100)와 함께 사용되는 기계 준비 명령어들의 생성에 대해 아래에서 설명되는 바와 같이 목표 액적 간격들을 달성하기 위해 다중-오리피스 플레이트를 이용하는 스탠드오프 거리들을 식별하도록 수정되었다.
토출기 헤드(104)의 저면도가 도 2a에 도시되어 있다. 노즐(206)을 9개의 오리피스들(208)을 갖는 오리피스 플레이트(204)가 커버하고 있으며, 따라서 노즐(206)로의 용융 금속의 토출은 각각의 토출 사이클 동안 용융 금속의 9개의 액적들을 생성한다. 각각의 오리피스가 오리피스 플레이트(204)에 수직이고 대략적인 직경이 500 μm였다면, 9개의 별개의 액적들이 기재 상에 동시에 랜딩될 것이다. 적절한 크기의 오리피스 간격으로, 인접한 액적들은 플랫폼(112)의 X 및 Y 차원들에서 중첩되지 않는다. 토출기 헤드와 플랫폼을 X 방향으로 서로에 대해 이동시킴으로써, 토출기 헤드는 행을 이루는 이전에 토출된 액적들 사이에 후속 패턴의 액적들을 토출하고, 이어서 토출기 헤드와 플랫폼을 Y 방향으로 서로에 대해 이동시킴으로써, 열(column)을 이루는 이전에 토출된 액적들 사이에 다른 후속 패턴의 액적들을 토출하도록 위치될 수 있다. 원래의 패턴을 채우는 것을 완료하려면 또 다른 X 방향 시프트가 발생해야 한다.
별개의 액적들의 패턴을 채우기 위해 많은 이동들이 필요하지 않도록 하면서, 단일 노즐에 대한 오리피스 배열로 가능해진 증가된 재료 분포의 이점을 얻으려면, 오리피스 플레이트(204)의 일 실시예에서 오리피스들(212)의 중심 열의 왼쪽에 있는 오리피스들은 이들 오리피스들로부터 토출된 용융 금속 액적들이 중심 열의 오리피스에 의해 토출된 액적을 향해 수렴하도록 각을 이룬다. 또한, 그러한 동일한 실시예에서 오리피스들(212)의 중심 열의 우측에 있는 노즐들은 이러한 오리피스들로부터 토출된 용융 금속 액적들이 중심 열 내의 오리피스들에 의해 토출된 액적을 향해 수렴하도록 각을 이룬다. 오리피스들의 이러한 구성이 도 2b의 측면도에 도시되어 있다. 이러한 구성에 의해 토출된 액적들은 단일 차원에서만 중첩되고, 도 3a에 도시된 바와 같이 플랫폼의 다른 차원에서 서로 분리된 3개의 액적들의 3개의 행들을 각각 형성한다. 행들 사이의 간격은 오리피스 플레이트(204)에 대한 법선에 대한 오리피스들의 종축들의 각도의 함수이다. 오리피스 열들의 방향으로의 토출기 헤드와 플랫폼 사이의 후속하는 상대적 이동은 도 3b의 평면도에 도시된 바와 같이 행들의 제1 세트에서 행들 사이에 랜딩되는 3개의 액적 행들의 제2 세트를 생성한다.
또한, 행 내의 액적들 사이의 중첩은 오리피스 플레이트와 액적들이 토출되고 있는 표면 사이의 스탠드오프 거리의 함수이다. 본 문서에서 사용되는 바와 같이, 용어 "스탠드오프 거리"는 액적들이 토출될 때, 오리피스 플레이트와 토출된 액적들이 토출되는 표면 사이의 거리를 의미한다. 각진 오리피스들을 갖는 오리피스 플레이트(204)와 인쇄되는 표면 사이의 스탠드오프 거리가 상대적으로 가까울 때, 액적들은 도 4a에 도시된 바와 같이 합체되지 않지만, 도 4b에 도시된 바와 같이 스탠드오프 거리들이 증가할 때, 액적들은 인쇄되는 표면 상에서 합체된다. 따라서, 오리피스 면판과 금속 액적들을 수용하는 표면 사이의 스탠드오프 거리를 조절함으로써, 액적들의 간격은 이미지가 확대경으로 초점에 맞춰지고 그에서 벗어나는 방식과 유사한 방식으로 조절될 수 있다. 따라서, 행 내의 금속 액적들의 밀도와 행들 사이의 간격은 층 내에서 목표 액적 간격을 달성하도록 변경될 수 있다. 본 문서에서 사용되는 바와 같이, 용어 "목표 액적 간격"은 액적들이 지향되는 물체 또는 플랫폼 상의 인접한 토출된 액적들의 중심들 사이의 미리 결정된 거리를 의미한다. 액적들이 지향되는 물체 또는 플랫폼 상의 인접한 토출된 액적들의 중심들 사이의 미리 결정된 거리는 또한 본 문서에서 "액적 간격"으로 불린다. 목표 액적 간격은 층 내의 구조물에 대한 목표 재료 밀도를 달성하기 위해 물체에 대한 층 데이터로부터 결정된다.
또한 도 3a 및 도 3b에서 볼 수 있는 바와 같이, 제1 인쇄 패턴을 채우기 위해 단지 하나의 상대 이동만이 필요하다. 이러한 이점을 얻는 대신 9개의 비경사 노즐들에 의해 형성된 패턴보다 더 좁은 스와스를 잃는 것으로 보이지만, 더 좁은 스와스는 패턴을 완전히 채우기 위해 더 많은 이동들이 필요한 더 넓은 패턴보다 층 내의 더 많은 시나리오들에서 9개의 노즐들 모두를 통한 토출을 가능하게 한다. 다른 실시예에서, 오리피스 플레이트(204) 내의 오리피스들은 오리피스 플레이트의 평면에 대한 법선과 평행하지만, 플레이트 내의 인접한 오리피스들 사이의 간격은 도 2a 및 도 2b의 오리피스들과 함께 사용되는 것보다 감소된다. 이러한 오리피스 구성은 오리피스 플레이트를 통해 토출된 인접한 액적들이 액적들이 지향되는 표면 상에 중첩되고, 오리피스 플레이트와 그 표면 사이의 스탠드오프 거리에 관계없이 합체되도록 한다.
다른 실시예에서, 액추에이터들 중 하나는 플랫폼(112)에 작동가능하게 연결되어 플랫폼 표면의 평면에 대한 법선을 중심으로 플랫폼을 회전시켜, 행 세트들의 배향을 이전에 인쇄된 행 세트들의 배향으로 조절하여 층 주연부 내에 윤곽(contour)들 및 채움(infill) 영역들을 생성한다. 다른 실시예에서, 오리피스들은 비선형 구성으로 배열될 수 있다. 본 문서에서 사용되는 바와 같이, 단어 "비선형"은 오리피스들의 열들에 직교하는 오리피스들의 행들 이외의 오리피스들의 배열을 의미한다. 예를 들어, 3개의 오리피스들의 세트가 삼각형 패턴으로 배열될 수 있고 도 5a에 도시된 부분적으로 중첩되는 삼각형 패턴을 생성할 수 있다. 삼각형 패턴 내의 3개의 오리피스들의 각도들은 오리피스들로부터 방출된 액적들을 삼각형 패턴의 중심을 향해 지향시켜 도 5a에 도시된 패턴을 생성하도록 배향된다. 전술된 바와 같이, 스탠드오프 거리를 변경하는 것은 동시에 토출된 금속 액적들 사이의 중첩량을 조절하는 데 사용될 수도 있다. 플랫폼과 토출기 헤드 사이의 상대적 이동은 후속적인 토출기 헤드 발사에 대한 시작 및 정지 위치들이 스태거링되도록(staggered) 결정하는 데 사용된다. 도 5b에 도시된 패턴은 도 5a에 도시된 패턴의 이중 행 인쇄에 의해 생성된다.
위에서 논의된 토출기 헤드 실시예들의 오리피스 플레이트 내의 오리피스들은 플랫폼(112)의 X 축 및 Y 축에 대해 적절한 각도들로 기계가공된다. 슬라이서가 물체의 디지털 데이터 모델을 수신하고, 물체를 제조하기 위해 프린터의 구성요소들을 작동시키기 위한 기계 준비 명령어들을 생성할 때, 슬라이서는 각각의 물체 층의 형성에 필요한 스탠드오프 거리들, 토출 빈도들, 및 공구 경로 이동들을 결정한다. 도 6은 목표 액적 간격을 달성하기 위해 스탠드오프 거리들을 결정하기 위한 파라미터들을 도시한다. 임의의 주어진 오리피스 구성에 대해, 오리피스들 사이의 거리(d o ) 및 수평 평면에 대한 오리피스들의 축들의 각도(α)는 공지되어 있다. 원하는 중심-대-중심 액적 간격(d s )을 달성하기 위해, 노즐 면판과 기재 사이의 스탠드오프 거리(d h )는 다음과 같이 계산된다:
Figure pat00001
d h 를 증가 또는 감소시킴으로써, 액적 간격은 액적들이 중첩되거나 중첩되지 않도록 조절될 수 있다. 일 실시예에서, 오리피스로부터 토출된 액적들의 직경은 오리피스 직경의 +/- 50 μm 이내이다. 기재 상에 액적들이 랜딩될 때, 이들은 전형적으로 어느 정도 확산된다. 500 μm 직경 오리피스들을 갖는 노즐의 경우, 액적 직경들은 전형적으로 오리피스 직경의 +/- 50 μm 이내일 것이다. 연속 트레이스를 형성하기 위해 부분적으로 중첩되는 액적들의 행이 목표이면, 도 7에 도시된 바와 같이, 액적들 사이의 중첩 비율(액적 직경의 퍼센트로 취함)은 원하는 효과를 달성하도록 제어될 수 있다. 중첩이 목표가 아닌 구조물들, 예를 들어 용이하게 제거될 수 있는 저밀도 다공성 구조물 또는 약한 구조물인 경우, 도 8에 도시된 바와 같이, 일련의 분리된 액적들이 생성될 수 있다. 다시, 스탠드오프 거리는 이들 격리된 액적들을 생성하기 위해 위에서 설명된 바와 같이 식별된다. 일단 기계 준비 명령어들이 생성되면, 이들은 프린터의 제어기에 의해 실행되어 액추에이터들을 작동시켜 토출기 헤드를 프로그래밍된 스탠드오프 거리에 위치시키고, 토출기 헤드 및 플랫폼을 서로에 대해 이동시키면서, 프로그래밍된 빈도로 용융 금속 액적들을 토출하여 금속 물체에 구조물들을 형성하는 전자기 신호들을 생성한다. 각진 오리피스들의 사용, 그리고 토출기 헤드를 약 200 ㎐ 내지 약 2000 ㎐의 범위의 공지된 빈도들에서 작동시키는 것은 토출 빈도를 상당히 증가시키는 것을 필요로 하거나 시스템이 다수의 자기유체역학적(MHD) 토출기 헤드들을 통합하도록 요구하지 않고 이전에 알려진 것들보다 시스템(100)의 재료 증착 속도를 증가시킨다. 따라서, 더 높은 토출 빈도들 및 다른 MHD 토출기들의 추가로 인해 불가피했던 시스템 복잡성 및 비용의 실질적인 증가 없이, 단일 노즐 토출기에 비해 최대 9배의 더 높은 재료 증착 속도가 가능하다.
도 1에 도시된 프린터를 작동시키기 위한 프로세스가 도 9에 도시되어 있다. 프로세스의 설명에서, 프로세스가 어떤 작업 또는 기능을 수행하고 있다는 진술은, 제어기 또는 범용 프로세서가, 그 작업 또는 기능을 수행하도록 프린터 내의 하나 이상의 구성요소들을 작동시키기 위해 또는 데이터를 조작하기 위해 제어기 또는 프로세서에 작동가능하게 연결된 비일시적 컴퓨터 판독가능 저장 매체에 저장된 프로그래밍된 명령어들을 실행하는 것을 지칭한다. 위에 언급된 제어기(136)는 그러한 제어기 또는 프로세서일 수 있다. 대안적으로, 제어기는 하나 초과의 프로세서 및 연관된 회로와 구성요소들로 구현될 수 있으며, 이들 각각은 본 명세서에 기술된 하나 이상의 작업들 또는 기능들을 형성하도록 구성된다. 또한, 방법의 단계들은 도면에 도시된 순서 또는 처리가 설명되는 순서에 관계없이 임의의 실현가능한 시간 순서로 수행될 수 있다.
도 9는 프린터(100)가 다중 오리피스 플레이트(204) 및 오리피스들이 위치되는 각도들을 이용하게 하기 위한 기계 준비 명령어들을 생성하는 프로세스(900)의 흐름도이다. 프로세스는 디지털 데이터 모델이 수신되는 것으로 시작된다(블록 904). 디지털 데이터 모델은 생성될 물체의 층들을 식별하기 위해 공지된 방식으로 슬라이스된다(블록 908). 층들 내의 구조물들에 대해 목표 액적 간격들이 식별되고(블록 912), 공구 경로들, 스탠드오프 거리들, 토출기 헤드 빈도들, 및 토출기 헤드/플랫폼 속도들이 각각의 층을 형성하는 기계 준비 명령어들에 대해 식별된다(블록 916). 기계 준비 명령어들은 식별된 파라미터들을 사용하여 생성되고, 제어기에 의한 차후의 실행을 위해 메모리에 저장된다(블록 920). 이들 명령어들은 프린터의 구성요소들을 작동시키고 물체를 형성하도록 실행된다(블록 924).
위에 개시된 것과 다른 특징들 및 기능들, 또는 이들의 대안의 변형들이 바람직하게는 많은 다른 상이한 시스템들, 응용들 또는 방법들로 조합될 수 있는 것이 인식될 것이다. 다양한 현재 예측되지 않거나 예상되지 않는 대안들, 수정들, 변형들 또는 개선들이 당업자에 의해 후속하여 이루어질 수 있고, 이는 또한 하기 청구범위에 의해 포함되도록 의도된다.

Claims (21)

  1. 3D 물체 프린터로서,
    단일 노즐을 갖는 토출기 헤드 - 상기 토출기 헤드는 상기 단일 노즐을 통해 재료를 토출하도록 구성됨 -;
    복수의 오리피스들을 갖는 오리피스 플레이트 - 상기 복수의 오리피스들은 상기 토출기 헤드의 상기 단일 노즐에 유체적으로 연결되며, 따라서 상기 단일 노즐로부터 토출된 재료가 상기 복수의 오리피스들로부터 액적들로서 동시에 방출됨 -;
    상기 오리피스 플레이트 반대편에 위치되는 플랫폼;
    상기 플랫폼과 상기 토출기 헤드 중 적어도 하나에 작동가능하게 연결되는 적어도 하나의 액추에이터 - 상기 적어도 하나의 액추에이터는 상기 플랫폼과 상기 토출기 헤드를 서로에 대해 이동시키도록 구성됨 -; 및
    상기 토출기 헤드 및 상기 적어도 하나의 액추에이터에 작동가능하게 연결된 제어기를 포함하며, 상기 제어기는:
    목표 액적 간격을 달성하기 위해 상기 적어도 하나의 액추에이터 및 상기 토출기 헤드를 작동시키는 기계 준비 명령어들을 생성하고;
    상기 적어도 하나의 액추에이터를 작동시켜 상기 토출기 헤드와 상기 플랫폼을 서로에 대해 이동시키고;
    상기 노즐과 상기 복수의 오리피스들을 통해 재료를 토출하도록 상기 토출기 헤드를 작동시켜 적어도 2개의 오리피스들로부터 토출된 액적들이 상기 플랫폼 상에, 또는 상기 목표 액적 간격에서 상기 플랫폼 상에 형성되는 물체의 표면 상에 상기 목표 액적 간격을 달성하도록 구성되는, 3D 물체 프린터.
  2. 제1항에 있어서, 상기 복수의 오리피스들의 각각의 오리피스는 상기 오리피스 플레이트에 대한 법선에 평행하고, 인접한 오리피스들은 인접한 오리피스들로들부터의 액적들이 상기 플랫폼 상에서 또는 상기 플랫폼 상의 상기 물체의 상기 표면 상에서 서로 접촉할 수 있게 하는 거리만큼 분리되는, 3D 물체 프린터.
  3. 제2항에 있어서, 상기 복수의 오리피스들은 상기 오리피스 플레이트에서 서로 직교하는 행(row)들 및 열(column)들로 배열되는, 3D 물체 프린터.
  4. 제1항에 있어서, 상기 복수의 오리피스들 중의 적어도 2개의 오리피스들은 상기 플랫폼과 상기 오리피스 플레이트 사이의 법선에 평행하지 않은 각도로 배향되는, 3D 물체 프린터.
  5. 제4항에 있어서, 상기 제어기는:
    상기 오리피스 플레이트와 상기 플랫폼 상의 상기 물체의 상기 표면 또는 상기 플랫폼 사이의 스탠드오프(stand-off) 거리를 식별하고;
    상기 적어도 하나의 액추에이터를 작동시켜 상기 오리피스 플레이트를 상기 플랫폼 또는 상기 플랫폼 상의 상기 물체의 상기 표면으로부터 상기 스탠드오프 거리로 분리하기 위한 상기 기계 준비 명령어들의 일부분을 생성하도록 추가로 구성되는, 3D 물체 프린터.
  6. 제5항에 있어서, 상기 복수의 오리피스들은 상기 오리피스 플레이트에서 서로 직교하는 행들 및 열들로 배열되는, 3D 물체 프린터.
  7. 제6항에 있어서, 오리피스들의 제1 그룹은 제2 열에 배열된 오리피스들의 제2 그룹과 제3 열에 배열된 오리피스들의 제3 그룹 사이에 위치된 제1 열에 배열되며, 상기 오리피스들의 제1 그룹의 상기 오리피스들은 상기 플랫폼과 상기 오리피스 플레이트 사이의 상기 법선에 평행한 각도로 배향되고, 상기 오리피스들의 제2 그룹의 상기 오리피스들은 상기 플랫폼과 상기 오리피스 플레이트 사이의 상기 법선에 평행하지 않은 제1 각도로 배향되고, 상기 오리피스들의 제3 그룹은 상기 플랫폼과 상기 오리피스 플레이트 사이의 상기 법선에 평행하지 않은 제2 각도로 배향되는, 장치.
  8. 제7항에 있어서, 상기 제1 각도는 상기 제2 각도와 동일하지만, 상기 플랫폼과 상기 오리피스 플레이트 사이의 상기 법선에 대해 상기 제2 각도에 대해 반대 방향인, 장치.
  9. 제1항에 있어서, 상기 복수의 오리피스들은 비선형 구성으로 배열되는, 장치.
  10. 제9항에 있어서, 상기 비선형 구성은 삼각형 구성인, 장치.
  11. 제10항에 있어서, 상기 삼각형 구성으로 배열된 상기 오리피스들은 상기 오리피스들을 통해 토출된 상기 액적들을 상기 삼각형 패턴의 중심을 향해 지향시키도록 배향되는, 장치.
  12. 3D 물체 프린터를 위한 토출기 헤드로서,
    재료를 토출하도록 구성된 단일 노즐; 및
    복수의 오리피스들을 갖는 오리피스 플레이트를 포함하며, 상기 복수의 오리피스들은 상기 단일 노즐에 유체적으로 연결되며, 따라서 상기 단일 노즐로부터 토출된 재료가 상기 복수의 오리피스들로부터 액적들로서 동시에 방출되는, 토출기 헤드.
  13. 제12항에 있어서, 상기 복수의 오리피스들의 각각의 오리피스는 상기 오리피스 플레이트에 대한 법선에 평행하고, 인접한 오리피스들은, 상기 액적들이 표면 상으로 토출될 때 인접한 오리피스들로부터의 액적들이 목표 액적 간격을 달성할 수 있게 하는 거리만큼 분리되는, 토출기 헤드.
  14. 제13항에 있어서, 상기 복수의 오리피스들은 상기 오리피스 플레이트에서 서로 직교하는 행들 및 열들로 배열되는, 토출기 헤드.
  15. 제12항에 있어서, 상기 복수의 오리피스들 중의 적어도 2개의 오리피스들은 상기 오리피스 플레이트에 대한 법선에 평행하지 않은 각도로 배향되는, 프린터.
  16. 제15항에 있어서, 상기 복수의 오리피스들은 상기 오리피스 플레이트에서 서로 직교하는 행들 및 열들로 배열되는, 프린터.
  17. 제16항에 있어서, 오리피스들의 제1 그룹은 제2 열에 배열된 오리피스들의 제2 그룹과 제3 열에 배열된 오리피스들의 제3 그룹 사이에 위치된 제1 열에 배열되며, 상기 오리피스들의 제1 그룹의 상기 오리피스들은 상기 오리피스 플레이트에 대한 상기 법선에 평행한 각도로 배향되고, 상기 오리피스들의 제2 그룹의 상기 오리피스들은 상기 오리피스 플레이트에 대한 상기 법선에 평행하지 않은 제1 각도로 배향되고, 상기 오리피스들의 제3 그룹은 상기 오리피스 플레이트에 대한 상기 법선에 평행하지 않은 제2 각도로 배향되는, 장치.
  18. 제17항에 있어서, 상기 제1 각도는 상기 제2 각도와 동일하지만, 상기 오리피스 플레이트에 대한 상기 법선에 대해 상기 제2 각도에 대해 반대 방향인, 장치.
  19. 제11항에 있어서, 상기 복수의 오리피스들은 비선형 구성으로 배열되는, 장치.
  20. 제19항에 있어서, 상기 비선형 구성은 삼각형 구성인, 장치.
  21. 제20항에 있어서, 상기 삼각형 구성으로 배열된 상기 오리피스들은 상기 오리피스들을 통해 토출된 상기 액적들을 상기 삼각형 패턴의 중심을 향해 지향시키도록 배향되는, 장치.
KR1020220000840A 2021-01-04 2022-01-04 증가된 재료 증착 속도를 갖는 금속 액적 토출 3차원(3d) 물체 프린터 KR20220098695A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/140,954 2021-01-04
US17/140,954 US11904388B2 (en) 2021-01-04 2021-01-04 Metal drop ejecting three-dimensional (3D) object printer having an increased material deposition rate

Publications (1)

Publication Number Publication Date
KR20220098695A true KR20220098695A (ko) 2022-07-12

Family

ID=79231023

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220000840A KR20220098695A (ko) 2021-01-04 2022-01-04 증가된 재료 증착 속도를 갖는 금속 액적 토출 3차원(3d) 물체 프린터

Country Status (5)

Country Link
US (2) US11904388B2 (ko)
EP (1) EP4023369B1 (ko)
JP (1) JP2022105475A (ko)
KR (1) KR20220098695A (ko)
CN (1) CN114713856A (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11794255B2 (en) * 2021-01-27 2023-10-24 Xerox Corporation Method and apparatus for forming overhang structures with a metal drop ejecting three-dimensional (3D) object printer
CN115431524B (zh) * 2022-08-26 2023-05-12 南京航空航天大学 用于熔融沉积增材制造的自动调平装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552824B2 (ja) 2005-01-25 2010-09-29 セイコーエプソン株式会社 印刷装置、印刷装置制御プログラム及び印刷装置制御方法、並びに印刷用データ生成装置、印刷用データ生成プログラム及び印刷用データ生成方法
US8109608B2 (en) 2007-10-04 2012-02-07 Lexmark International, Inc. Micro-fluid ejection head and stress relieved orifice plate therefor
US20110043555A1 (en) 2009-08-20 2011-02-24 Yonglin Xie Drop ejection method through multi-lobed nozzle
WO2014149761A2 (en) 2013-03-15 2014-09-25 Persimmon Technologies Corporation System and method for making a structured magnetic material with integrated particle insulation
WO2014153535A2 (en) 2013-03-22 2014-09-25 Gregory Thomas Mark Three dimensional printing
US10343349B2 (en) 2014-03-30 2019-07-09 Stanley Korn System, method and apparatus for 3D printing
US10315247B2 (en) 2015-09-24 2019-06-11 Markforged, Inc. Molten metal jetting for additive manufacturing
DE102015223540A1 (de) 2015-11-27 2017-06-01 Robert Bosch Gmbh 3D-Drucker mit Druckkopf ohne bewegliche Teile
JP2017119359A (ja) * 2015-12-28 2017-07-06 セイコーエプソン株式会社 液体吐出装置および液体吐出方法
WO2018044869A1 (en) 2016-08-29 2018-03-08 Katon Andrew Nozzle technology for ultra-variable manufacturing systems
US10953598B2 (en) 2016-11-04 2021-03-23 Continuous Composites Inc. Additive manufacturing system having vibrating nozzle
GB2566740B (en) 2017-09-26 2021-07-14 Linx Printing Tech Pigment dispersal in an ink jet printer
US11235382B2 (en) 2019-10-28 2022-02-01 Xerox Corporation Method for supporting three dimensional (3D) printed features

Also Published As

Publication number Publication date
US20220212265A1 (en) 2022-07-07
CN114713856A (zh) 2022-07-08
EP4023369B1 (en) 2024-04-24
JP2022105475A (ja) 2022-07-14
US20240131594A1 (en) 2024-04-25
US11904388B2 (en) 2024-02-20
EP4023369A1 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
US20240131594A1 (en) Metal drop ejecting three-dimensional (3d) object printer having an increased material deposition rate
CN110997286B (zh) 提供控制数据的方法和装置以及增材式制造方法和设备
KR20220169910A (ko) 금속 액적 토출 3차원(3d) 물체 프린터 및 금속 지지 구조체를 형성하기 위한 작동 방법
CN112589098A (zh) 用于操作喷射三维(3d)物体打印机的金属滴以补偿液滴尺寸变化的方法和系统
US11673198B2 (en) System and method for reducing drop placement errors at perimeter features on an object in a three-dimensional (3D) object printer
US11760028B2 (en) System and method for calibrating lag time in a three-dimensional object printer
US20220226888A1 (en) Method and system for operating a metal drop ejecting three-dimensional (3d) object printer to shorten object formation time
US20230309241A1 (en) Method for operating a metal drop ejecting three-dimensional (3d) object printer to form vias in printed circuit boards with conductive metal
KR20220108727A (ko) 금속 액적 토출 3차원(3d) 물체 프린터로 오버행 구조체를 형성하기 위한 방법 및 장치
EP3878581A1 (en) Method and system for operating a modular heater to improve layer bonding in a metal drop ejecting three-dimensional (3d) object printer
US11701712B2 (en) System and method for reducing drop placement errors at perimeter features on an object in a three-dimensional (3D) object printer
KR20230073110A (ko) 금속 액적 토출 3차원(3d) 물체 프린터 및 프린터를 작동시키기 위한 개선 방법
EP4035804A1 (en) System and method for improved infilling of part interiors in objects formed by additive manufacturing systems
US11890674B2 (en) Metal drop ejecting three-dimensional (3D) object printer and method of operation for forming support structures in 3D metal objects
US20230373007A1 (en) Method and apparatus for forming overhanging structures in additive manufactured parts that have an improved surface roughness
JP2023033137A (ja) 金属滴吐出三次元(3d)物体プリンタ及び金属支持構造を形成するための動作方法
CN117337222A (zh) 附加制造装置及附加制造方法