KR20220094261A - 히스티딘에 의한 피드백 억제가 감소된 atp-prt 변이체 및 이를 발현하는 히스티딘 생산 균주 - Google Patents

히스티딘에 의한 피드백 억제가 감소된 atp-prt 변이체 및 이를 발현하는 히스티딘 생산 균주 Download PDF

Info

Publication number
KR20220094261A
KR20220094261A KR1020200184686A KR20200184686A KR20220094261A KR 20220094261 A KR20220094261 A KR 20220094261A KR 1020200184686 A KR1020200184686 A KR 1020200184686A KR 20200184686 A KR20200184686 A KR 20200184686A KR 20220094261 A KR20220094261 A KR 20220094261A
Authority
KR
South Korea
Prior art keywords
leu
hisg
arg
glu
ala
Prior art date
Application number
KR1020200184686A
Other languages
English (en)
Inventor
한종윤
양철민
김용수
조영일
Original Assignee
대상 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대상 주식회사 filed Critical 대상 주식회사
Priority to KR1020200184686A priority Critical patent/KR20220094261A/ko
Priority to EP21915387.1A priority patent/EP4269575A1/en
Priority to JP2023539353A priority patent/JP2024501039A/ja
Priority to PCT/KR2021/005246 priority patent/WO2022145588A1/ko
Priority to CN202180088150.0A priority patent/CN116783290A/zh
Priority to US18/269,694 priority patent/US20240060104A1/en
Publication of KR20220094261A publication Critical patent/KR20220094261A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/24Proline; Hydroxyproline; Histidine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/02Pentosyltransferases (2.4.2)
    • C12Y204/02017ATP phosphoribosyltransferase (2.4.2.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 히스티딘에 의한 피드백 억제가 감소된 대장균 hisG 유래 ATP-포스포리보실전이효소의 변이체 및 이를 발현하는 균주에 대한 것으로, 높은 히스티딘 농도에서도 활성을 유지하므로 히스티딘 생산을 증가시킬 수 있다.

Description

히스티딘에 의한 피드백 억제가 감소된 ATP-PRT 변이체 및 이를 발현하는 히스티딘 생산 균주{ATP-PRT variant with reduced feedback inhibition by histidine and histidine-producing strain expressing the same}
본 발명은 히스티딘에 의한 피드백 억제가 감소된 ATP-PRT 변이체 및 이를 발현하는 히스티딘 생산 균주에 관한 것이다.
ATP-포스포리보실전이효소(ATP-phosphoribsyltransferase, 이하 ATP-PRT로 지칭할 수 있다)는 박테리아, 진균, 또는 식물에서 히스티딘의 생합성의 첫번째 단계를 촉매한다.
L-히스티딘의 농도가 일정 이상 존재하는 환경에서, ATP-포스포리보실전이효소(ATP-phosphoribsyltransferase)의 활성은 히스티딘에 의해 피드백 억제되므로 히스티딘 생산량을 일정 수준 이상으로 증가시키기 어렵다.
따라서 미생물의 히스티딘 생산량 증가를 위해 히스티딘 저항성이 증가된 ATP-PRT 변이체가 필요하다. 그러나. 대장균의 hisG 유전자에서 발현되는 ATP-PRT의 히스티딘 피드백 억제를 감소시킬 수 있는 변이체는 알려진 바가 없다.
대한민국 공개공보 제10-2017-0098205호(2017.08.02)
일 구체예에 따르면, 히스티딘에 의한 피드백 억제가 감소된 ATP-포스포리보실전이효소 변이체를 제공한다.
일 양상은 서열번호 1의 아미노산 서열로 이루어지는 ATP-포스포리보실전이효소에서, 288번째 위치한 세린이 프롤린으로 치환된 ATP-포스포리보실전이효소 변이체를 제공한다.
상기 서열번호 1 아미노산 서열은 대장균의 야생형 hisG로부터 발현된 ATP-포스포리보실전이효소의 서열이다. ATP-포스포리보실전이효소는 ATP-PRT로 지칭할 수 있다. ATP-PRT는 히스티딘 생합성의 첫번째 단계인 1-(5-phospho-D-ribosyl)-ATP + diphosphate ↔ ATP + 5-phospho-alpha-D-ribose 1-diphosphate 반응을 촉매한다. 본원에서 상기 ATP-포스포리보실전이효소는 “hisG”와 혼용될 수 있다.
일 구체예에 따르면, 상기 ATP-포스포리보실전이효소는 대장균(E. coli)의 hisG 유전자로부터 발현된 것일 수 있다.
일 구체예에 따르면 상기 변이체는 히스티딘에 의한 피드백 억제가 감소할 수 있다. 일 실시예에 따르면 S288P 변이를 포함하는 ATP-PRT가 도입된 균주는 야생형보다 히스티딘 생산량이 증가하였다.
일 구체예에 따르면, 상기 변이체는 (a) 250번째 위치한 아르기닌이 히스티딘으로 치환; (b) 232번째에 위치한 히스티딘(histidine, H)이 라이신(lysine, K) 또는 트레오닌(threonine, T)으로 치환; (c) 252번째 위치한 트레오닌이 알라닌, 루신, 글라이신, 발린, 또는 이소루신으로 치환; (d) 271번째 위치한 글루타민산이 라이신으로 치환 중 하나 이상을 더 포함할 수 있다. 일 실시예에 따르면, 288번째 세린 변이 외에 상기 (a) 내지 (d)의 변이를 더 포함하면 히스티딘 생산량이 증가함을 확인하였다.
상기 변이체는 히스티딘 농도 5mM 내지 25mM에서도 활성을 가질 수 있다.
다른 양상은 상기 ATP-포스포리보실전이효소 변이체를 암호화하는 폴리뉴클레오티드, 또는 이를 포함하는 벡터를 제공한다. 상기 벡터는 플라스미드 또는 파지(phage)일 수 있다.
다른 양상은 상기 ATP-포스포리보실전이효소 변이체를 발현하는 형질전환 균주를 제공한다. 상기 형질전환 균주는ATP-포스포리보실전이효소 변이체를 암호화하는 폴리뉴클레오티드, 또는 이를 포함하는 벡터를 도입한 균주일 수 있다. 상기 균주는 히스티딘의 농도가 증가하여도 ATP-포스포리보실전이효소의 활성을 유지하므로 히스티딘 생산량이 증가할 수 있다.
상기 ATP-포스포리보실전이효소 변이체를 발현하는 균주는 히스티딘의 생산이 약 22 내지 92% 증가할 수 있다.
상기 형질전환은 공지된 방법으로 실시할 수 있으며, 예를 들면 전기 천공 방법(van der Rest et al., Appl. Microbiol. Biotechnol., 52, 541-545, 1999) 등에 의해 실시될 수 있다.
일 구체예에 따르면 상기 균주는 에스케리키아(Escherichia)속 균주일 수 있고, 구체적으로는 에스케리치아 콜라이(Escherichia coli), 에스케리치아 알베르티(Escherichia albertii), 에스케리치아 블라태(Escherichia blattae), 에스케리치아 퍼구소니(Escherichia fergusonii)(Escherichia hermannii) 또는 에스케리치아 불네리스 (Escherichia vulneris) 균주일 수 있다.
또 다른 양상은 상기 형질전환 균주를 배양하는 단계를 포함하는 히스티딘 생산방법을 제공한다. 상기 히스티딘 생산방법은 상기 형질전환 균주를 배지에서 배양하는 단계; 상기 균주 또는 배지로부터 히스티딘을 회수하는 단계를 포함할 수 있다.
상기 배지는 탄소원, 질소원 및 무기염류를 포함할 수 있다. 상기 탄소원은 예를 들어, 포도당, 설탕, 구연산염, 과당, 젖당, 엿당 또는 당밀과 같은 당 및 탄수화물; 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방; 팔미트산, 스테아린산, 리놀레산과 같은 지방산; 글리세롤; 에탄올과 같은 알코올; 아세트산과 같은 유기산이 포함될 수 있으나, 특별히 한정되는 것은 아니며, 개별적으로 또는 혼합물로서 사용될 수 있다. 바람직하게는, 상기 대장균 변이주의 배지는 포도당을 포함하는 것일 수 있다. 상기 질소원은 예를 들면, 펩톤, 육류 추출물, 효모 추출물, 건조된 효모, 옥수수 침지액, 대두 케이크, 우레아, 티오우레아, 암모늄염, 질산염 및 기타 유기 또는 무기 질소를 포함하는 화합물이 사용될 수 있으나, 특별히 한정되는 것은 아니다. 또한, 상기 무기염류는 마그네슘, 망간, 칼륨, 칼슘, 철, 아연, 코발트 등을 사용할 수 있으며 이에 한정되는 것은 아니다.
또한 배지의 pH를 조절하기 위해 수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용할 수 있다. 또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있고, 호기 상태를 유지하기 위해 배지 내로 산소 또는 산소-함유 기체(예, 공기)를 주입할 수 있다.
상기 배양은 미생물을 인공적으로 조절한 환경에서 생육시키는 것을 의미하며, 당업계에 널리 알려진 배양방법으로 수행할 수 있다. 배양시 온도는 20 내지 45 ℃일 수 있으며, 10 내지 200시간 배양할 수 있으나 이에 한정되는 것은 아니다.
상기 히스티딘을 회수하는 단계는 당업계에 잘 알려진 다양한 방법을 사용할 수 있다. 예를 들면, 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화, 또는 HPLC를 사용할 수 있으나 이에 한정되는 것은 아니다.
일 구체예에 따른 ATP-포스포리보실전이효소 변이체는 높은 농도의 히스티딘 환경에서도 활성을 유지할 수 있다.
일 구체예에 따른 ATP-포스포리보실전이효소 변이체를 발현하는 균주는 히스티딘 생산량을 증가시킬 수 있다.
도 1은 대장균 유래 hisG_WT 및 이들의 변이체(hisG_SDM4, hisG_SDM7)의 히스티딘 농도에 따른 효소 활성 변화를 확인한 결과이다.
도 2는 hisG 6량체와 히스티딘의 결합 방식을 컴퓨터 시뮬레이션한 결과를 나타낸 것이다. hisG의 H232, S288, T252, R250, A248, E271, E240이 히스티딘과 상호작용함을 나타낸다.
이하 하나 이상의 구체예를 실시예를 통해 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: TRA(1,2,4-triazole-3-alanine) 저항성을 갖는 돌연변이주 선별
L-히스티딘에 의한 음성 피드백이 둔화된 변이주를 제작하기 위해 화학적 돌연변이 유도제인 N-methyl-N'-nitro-N-nitrosoguanidine (NTG)를 사용하여 L-히스티딘의 유도체인 1,2,4-트리아졸-3-알라닌(TRA)에 대한 내성 변이주를 제작하였다.
E. coli MG1655(KCTC14419BP)를 LB 배지에서 16시간 배양(37℃, 200rpm)하였다. 배양 후 4500rpm에서 10 분간 원심분리하고 saline/TM buffer로 현탁하였다. 세포에 buffer를 넣어 재현탁한 후, NTG 100㎍/ml을 첨가하여 37℃, 200rpm 에서 30분간 변이를 유도하였다.
상기 변이 유도 과정을 반복한 후, 세포를 3 ml D.W로 현탁하고 이를 평판배지(plate medium)(조성: 포도당 8%, 인산일수소나트륨 0.6%, 황산암모늄 0.2%, 황산마그네슘 0.02%, 질산칼슘 0.001%, 황산철 10ppm, TRA 1%)에 도말하여 37℃ 2일간 1차 배양하였다. 단일 군락을 형성한 균주를 분리하고 이를 TRA 1%가 첨가된 평판배지에서 1차 배양과 동일하게 2차 배양하여 변이주를 선별하였다.
선별한 변이주들을 0%, 0.5%, 1.0%, 또는 2.0% TRA가 첨가된 평판배지에서의 생육도(세포수 증가)를 측정하여, TRA에 대한 내성도를 비교하였다. (하기 표 1 참고)
생육도
TRA 농도 MG1655 H-1 H-2
0% ++++ ++++ ++++
0.5% ++ +++ +++
1.0% - + ++
2.0% - - +
실시예 2: TRA 저항성 돌연변이주의 ATP-PRT 효소 아미노산 서열 분석
TRA에 대한 내성이 증가한 돌연변이주 H-1 및 H-2의 ATP-PRT(ATP-phosphoribosyltransferase, hisG) 효소의 아미노산 서열을 비교 분석하였다. 서열분석은 마크로젠(macrogen)사에 의뢰하여 진행하였으며, 하기 표 2의 프라이머를 사용하여 서열을 확인하였다.
서열번호 Primer nucleotide (5’-3’)
9 hisGW_CF AGTTCATTGTACAATGATGAGCG
10 hisGW_CR AGCCGCCAGGAATATACAAC
확인결과, ATP-PRT 효소의 C-말단 부분에 위치한 아미노산들 일부가 치환된 것을 확인하였다.
또한 분자간 결합 방식(mode) 예측 프로그램을 이용하여 E.coli 유래 hisG 6량체(hexamer)의 히스티딘 분자와 도킹(docking)시 3차원 구조를 분석하고, 도킹 분석 결과를 토대로 E.coli hisG로부터 발현된 ATP-PRT의 히스티딘 진입 및 결합부위에 위치하는 아미노산을 분석하였다. 시뮬레이션 결과 hisG의 H232, S288, T252, R250, A248, E271, E240이 히스티딘과 상호작용할 가능성이 높은 것으로 나타났다. (도 2 참고)
상기 TRA 내성 증가 돌연변이주의 ATP-PRT(hisG) 아미노산 변이 및 도킹 분석 결과에 기초하여, 히스티딘에 의한 음성 피드백이 감소되어 히스티딘 생산이 증가할 가능성이 높은 아미노산의 변이체 14종(H232T, H232E, H232K, E240K, A248F, R250H, R250E, T252A, T252L, T252P, T252Q, E271K, S288K, 및 S288P)을 후보로 선정하였다.
실시예 3: 하나의 변이를 갖는 ATP-PRT 변이체 발현 균주 제작 및 이의 히스티딘 생산성 평가
점 돌연변이가 도입된 hisG_H232K를 E. coli DS9H 균주의 크로모좀에 도입하기 위해 원스텝 불화성화 방법을 이용하였다 (Warner et al., PNAS, 6:6640-6645(2000)). 먼저 homologous recombination을 위한 hisG 유전자의 앞쪽과 뒤쪽 단편을 얻기 위해, E. coli DS9H genomic DNA를 주형으로 하여 프라이머 쌍 hisG_HF-F/hisG_HF-R, hisG_HR-F/hisG_HR-R을 사용하여 hisG_HF와 hisG_HR 단편을 각각 증폭하였다. 그리고 카나마이신 항생제 마커와 FRT가 포함된 카세트를 얻기 위해, pKD13 플라스미드로부터 FR(hisG)-F/FR(hisG)-R을 사용해 증폭하여 카세트 단편을 얻었다. 마지막으로 hisG_H232K를 얻기 위해서, E. coli DS9H genomic DNA로부터 hisG+FR-F/232K-R, 232K-F/hisG+HR-R 프라이머 쌍을 각각 사용하여 두 개의 단편을 얻었다. 얻은 두 개의 단편을 다시 hisG+FR-F/hisG+HR-R 프라이머를 사용하여 하나의 단편으로 연결시켜 hisG_H232K 단편을 얻었다. 최종적으로 증폭한 이 4개의 PCR 단편들을 주형으로 사용하여 hisG_HF-F/hisG_HR-R 프라이머 쌍으로 overlapping PCR을 이용하여 하나의 단편으로 연결시켰다. 하나로 연결된 DNA 단편을 pKD46 플라스미드를 가지고 있는 E. coli DS9H 균주에 전기청공법으로 도입하였다. 이후 카나마이신 내성을 보이는 세포주들을 대상으로 hisGW-CF/hisGW-CR 프라이머를 사용해 PCR을 수행하여 hisG_H232K가 도입된 균주들을 확인하였다. 도입이 확인된 균주들을 대상으로 항생제 내성 유전자인 카나마이신 마커를 제거하는 과정을 수행하였다. hisG_H232K 도입이 확인된 균주에 pCP20 플라스미드를 도입하여 FLP 재조합을 유도한 후, 항생제(카나마이신) 첨가 및 미첨가된 LB 평판배지들에서 각각 생장 여부를 통해 항생제 제거 여부를 확인하였다. 항생제가 제거된 균주들은 LB 평판배지에 서 생장을 하지만, 항생제(카나마이신)가 첨가된 LB 평판배지에서는 생장하지 못함을 이용하여 확인하였다. 그리고 최종적으로 hisGW-CF/hisGW-CR 프라이머 쌍을 사용하여 서열을 확인하였다. 상기 방법과 동일한 방법으로 hisG_H232T, hisG_R250H, hisG_T252A, hisG_T252L, hisG_E271K, hisG_S288P, hisG_H232E, hisG_240K, hisG_A248F, hisG_R250E, hisG_T252P, hisG_T252Q, 및 hisG_S288K를 E. coli DS9H 균주에 각각 도입하였다.
상기 실험에 사용한 프라이머들은 하기 표 3과 같다.
서열번호 Primer nucleotide (5’-3’)
9 hisGW-CF AGTTCATTGTACAATGATGAGCG
10 hisGW-CR AGCCGCCAGGAATATACAAC
11 232K-R TTTCATCATGATGTATTTTGATTCGCGC
12 232K-F GCGCGAATCAAAATACATCATGATGAAA
13 232E-R TTCCATCATGATGTATTTTGATTCGCGC
14 232E-F GCGCGAATCAAAATACATCATGATGGAA
15 240K-R TTTATCCAGACGTTCGGTCGGT
16 240K-F ACCGACCGAACGTCTGGATAAA
17 248F-R GAAACCTGGCAGCAGGGCGA
18 248F-F TCGCCCTGCTGCCAGGTTTC
19 252A-R CCCGCCAGCGGCAGAATCGC
20 252A-F GCGATTCTGCCGCTGGCGGG
21 250H-R CCGCCAGCGGCAGAATAGTTGGATG
22 250H-F CATCCAACTATTCTGCCGCTGGCGG
23 250E-R CCGCCAGCGGCAGAATAGTTGGTTC
24 250E-F GAACCAACTATTCTGCCGCTGGCGG
25 252L-R CCGCCAGCGGCAGAATCAATGGGCG
26 252L-F CGCCCATTGATTCTGCCGCTGGCGG
27 252P-R CCGCCAGCGGCAGAATCGGTGGGCG
28 252P-F CGCCCACCGATTCTGCCGCTGGCGG
29 252Q-R CCGCCAGCGGCAGAATCTGTGGGCG
30 252Q-F CGCCCACAGATTCTGCCGCTGGCGG
31 271K-R TTTGCTGCTGACCATGTGCA
32 271K-F TGCACATGGTCAGCAGCAAA
33 288P-R CGGACTGGCACCCAGCGCTTTCA
34 288P-F TGAAAGCGCTGGGTGCCAGTCCG
35 288K-R CTTACTGGCACCCAGCGCTTTCA
36 288K-F TGAAAGCGCTGGGTGCCAGTAAG
37 232T-R TGTCATCATGATGTATTTTGATTCGCGC
38 232T-F GCGCGAATCAAAATACATCATGATGACA
39 hisG_HF-F GCTCATTCATTAAACAAATCCATTGC
40 hisG_HF-R TTTGTTATTCCTCTTTAAACCTGTC
41 FR(hisG)-F GTTTAAAGAGGAATAACAAAGTGTAGGCTGGAGCTGCTTC
42 FR(hisG)-R CCAGATCAATTCGCGCTAACTCTGTCAAACATGAGAATTAA
43 hisG+FR-F TTAATTCTCATGTTTGACAGAGTTAGCGCGAATTGATCTGG
44 hisG+HR-R TGTGTTAAAGCTCATGGCGATCACTCCATCATCTTCTCAATCG
45 hisG_HR-F TCGCCATGAGCTTTAACACAA
46 hisG_HR-R AGTGTGGAAGGTTTCAATATTCTT
하기 표 4에 따르면, hisG_H232K 또는 hisG_H232T을 도입한 균주는 대조군보다 히스티딘 생산이 약 22% 내지 26% 정도 증가하였다. hisG_T252A 또는 T252L을 도입한 균주는 대조군보다 히스티딘 생산이 약 35% 내지 39%정도 증가하였다. hisG_E271K도입 균주는 대조군보다 히스티딘 생산이 약 34% 증가하였다. 특히 hisG_S288P 도입 균주는 대조군보다 히스티딘 생산이 약 46% 증가하였고, hisG_R250H 도입 균주는 대조군보다 히스티딘 생산이 약 67% 증가하여 가장 증가폭이 높았다.
그러나 H232E, E240K, 및 A248F 변이체는 히스티딘의 생산량이 오히려 감소하고 R250E, T252P, T252Q, 및 S288K 변이체는 히스티딘의 생산량이 유의하게 증가하지 않았다.
균주명 L-histidine (%) 배양시간(hr) 히스티딘 생산량
DS9H 0.78 72 -
DS9H_△hisG::hisG_H232K 0.95 72 증가
DS9H_△hisG::hisG_H232T 0.99 72 증가
DS9H_△hisG::hisG_R250H 1.31 72 증가
DS9H_△hisG::hisG_T252A 1.06 72 증가
DS9H_△hisG::hisG_T252L 1.09 72 증가
DS9H_△hisG::hisG_E271K 1.05 72 증가
DS9H_△hisG::hisG_S288P 1.14 72 증가
DS9H_△hisG::hisG_H232E 0.74 72 감소
DS9H_△hisG::hisG_E240K 0.69 72 감소
DS9H_△hisG::hisG_A248F 0.65 72 감소
DS9H_△hisG::hisG_R250E 0.82 72 유의한 변화없음
DS9H_△hisG::hisG_T252P 0.79 72 유의한 변화없음
DS9H_△hisG::hisG_T252Q 0.77 72 유의한 변화없음
DS9H_△hisG::hisG_S288K 0.80 72 유의한 변화없음
상기 결과에 따르면, 상기 7종 (H232T, H232K, R250H, T252A, T252L, E271K, 및 S288P)의 변이체들은 히스티딘 생산이 증가하였으며, 이는 히스티딘에 의한 피드백 억제(feedback inhibition)가 감소하기 때문으로 생각된다. 이하 이들 변이를 조합하여 히스티딘의 생산을 더욱 향상시킬 수 있는지 확인하였다.
실시예 4: hisG_SDM4(H232K, T252A, E271K, 및 S288P)가 도입된 플라스미드 제작
overlapping PCR을 실시하여 대장균 hisG 유래 ATP-PRT 효소에서 H232K, T252A, E271K, 및 S288P 의 아미노산이 치환된 변이체를 발현할 수 있는 플라스미드를 제작하였다. 먼저 프라이머 hisG-F/232K-R, 232K-F/252A-R, 252A-F/hisG-R 3쌍의 프라이머를 사용하여 pfu premix(bioneer)로 유전자를 각각 증폭하였다. 그리고 증폭한 3개의 fragment들을 각각 template로 사용하여 hisG-F/hisG-R 프라이머쌍으로 한번 더 PCR을 진행하여 3개의 fragment를 하나의 단편으로 연결하였다(이하 SDM3 fragment로 지칭할 수 있다). 그리고 SDM3 fragment 및 pTRC99A plasmid를 각각 EcoRI 및 HindIII(NEB)로 제한효소 처리하고 T4 ligase를 사용하여 pTRC99A 플라스미드에 SDM3 fragment를 도입하였다.(pTRC99A-hisG_SDM3) pTRC99A-hisG_SDM3 template 및 hisG-F/271K-R2 프라이머쌍으로 PCR을 진행하여 H232K, T252A, E271K, 및 S288P 4개의 변이가 도입된 SDM4 fragment를 획득하였다.
그리고 SDM4 fragment 및 pTRC99A-hisG_SDM3 플라스미드를 각각 EcoRI과 AfeI(NEB)으로 제한효소 처리하고 T4 ligase (Takara)를 사용하여 pTRC99A-hisG_SDM4를 구축하였다. 최종적으로 hisG-CF/hisG-CR 프라이머쌍을 사용하여 서열을 확인하였다. (하기 표 5 참조) H232K, T252A, E271K, 및 S288P 변이를 포함하는 ATP-PRT 변이체를 hisG_SDM4으로 명명하였다.
서열번호 Primer nucleotide (5’-3’)
47 hisG-F ATATGAATTCATGACAGACAACACTCGTTTACG
48 hisG-R ATATAAGCTTTCACTCCATCATCTTCTCAATCGGCAGGACCAGAATCGG
11 232K-R TTTCATCATGATGTATTTTGATTCGCGC
12 232K-F GCGCGAATCAAAATACATCATGATGAAA
19 252A-R CCCGCCAGCGGCAGAATCGC
20 252A-F GCGATTCTGCCGCTGGCGGG
49 271K-R2 ATATAGCGCTTTCAGTTTTTCCATGGTTTCCCAGAACAGGGTTTT
50 hisG-CF ATATTCTGAAATGAGCTGTTGACAA
51 hisG-CR TACTGCCGCCAGGCAAATTC
실시예 5: hisG_SDM7(H232T, R250H, T252L, E271K, 및 S288P)가 도입된 플라스미드 제작
hisG_SDM4 효소의 아미노산 서열 일부를 다른 아미노산으로 치환한 hisG_SDM7를 제작하고, 이를 plasmid에 도입하였다. pTRC99A-hisG_SDM4를 template로 사용하고, 232번째 아미노산을 T로, 250번째 아미노산을 H로, 252번째 아미노산을 L로 치환하였으며, 두 개의 변이(E271K 및 S288P)는 그대로 유지하였다. (hisG_WT과 비교하면, hisG_SDM7의 변이 위치는 H232T, R250H, T252L, E271K, 및 S288P 이다)
먼저 프라이머 hisG-F/232T-R, 232T-F/250H+252L-R, 250H+252L-F/hisG-R 3쌍의 프라이머를 사용하여 pfu premix(bioneer)로 유전자를 각각 증폭하였다. 그리고 증폭한 3개의 fragment들을 각각 template로 사용하여 hisG-F/hisG-R 프라이머쌍으로 한번 더 PCR을 진행하여 3개의 fragment를 하나의 단편으로 연결시켰다. 그리고 PCR fragment와 pTRC99A plasmid를 각각 EcoRI과 HindIII (NEB)로 절단하고 T4 ligase (Takara)로 연결하여 pTRC99A-hisG_SDM7를 제작하였다. 최종적으로 hisG-CF/hisG-CR 프라이머를 사용하여 서열을 확인하였다. (하기 표 6 참고) H232T, R250H, T252L. E271K, 및 S288P 변이를 포함하는 ATP-PRT 변이체는 hisG_SDM7으로 명명하였다.
서열번호 Primer nucleotide (5’-3’)
47 hisG-F ATATGAATTCATGACAGACAACACTCGTTTACG
48 hisG-R ATATAAGCTTTCACTCCATCATCTTCTCAATCGGCAGGACCAGAATCGG
37 232T-R TGTCATCATGATGTATTTTGATTCGCGC
38 232T-F GCGCGAATCAAAATACATCATGATGACA
50 hisG-CF ATATTCTGAAATGAGCTGTTGACAA
51 hisG-CR TACTGCCGCCAGGCAAATTC
52 250H+252L-R CCGCCAGCGGCAGAATCAATGGATG
53 250H+252L-F CATCCATTGATTCTGCCGCTGGCGG
실시예 6: hisG_SDM4 또는 hisG_SDM7 유전자가 도입된 변이주 제작
6-1. hisG_SDM4 유전자가 도입된 변이주 제작
hisG_SDM4를 E. coli DS9H 균주의 크로모좀에 도입하기 위해 원스텝 불활성화 방법을 이용하였다 (Warner et al., PNAS, 6:6640-6645(2000)). 먼저 homologous recombination을 위한 hisG 유전자의 앞쪽과 뒤쪽 단편을 얻기 위해, E. coli DS9H genomic DNA를 주형으로 하여 프라이머쌍 hisG_HF-F/hisG_HF-R, hisG_HR-F/hisG_HR-R을 사용하여 hisG_HF와 hisG_HR 단편을 각각 증폭하였다. 그리고 카나마이신 항생제 마커와 FRT가 포함된 카세트를 얻기 위해, pKD13 플라스미드로부터 FR(hisG)-F/FR(hisG)-R을 사용하여 증폭하여 카세트 단편을 얻었다. 마지막으로 hisG_SDM4를 얻기 위해서, pTRC99A-hisG_SDM4 플라스미드로부터 hisG+FR-F/hisG+HR-R 프라이머를 사용하여 hisG_SDM4 단편을 얻었다. 최종적으로 증폭한 이 4개의 PCR 단편들을 주형으로 사용하여 hisG_HF-F/hisG_HR-R 프라이머 쌍으로 overlapping PCR을 이용하여 하나의 단편으로 연결시켰다. 하나로 연결된 DNA 단편을 pKD46 플라스미드를 가지고 있는 E. coli DS9H 균주에 전기천공법으로 도입하였다. 이후 카나마이신 내성을 보이는 세포주들을 대상으로 hisGW-CF/hisGW-CR 프라이머를 사용하여 PCR을 수행하여 hisG_SDM4가 도입된 균주들을 확인하였다. 도입이 확인된 균주들을 대상으로 항생제 내성 유전자인 카나마이신 마커를 제거하는 과정을 수행하였다. hisG_SDM4 도입이 확인된 균주에 pCP20 플라스미드를 도입하여 FLP 재조합을 유도한 후, 항생제(카나마이신) 첨가 및 미첨가된 LB 평판배지들에서 각각 생장 여부를 통해 항생제 제거 여부를 확인하였다. 항생제가 제거된 균주들은 LB 평판배지에서 생장하지만, 항생제(카나마이신)가 첨가된 LB 평판배지에서는 생장하지 못함을 이용하여 확인하였다. 그리고 최종적으로 hisGW-CF/hisGW-CR 프라이머 쌍을 사용하여 서열을 확인하였다. 실험에 사용된 프라이머는 하기 표 7에 기재되어 있다.
서열번호 Primer nucleotide (5’-3’)
39 hisG_HF-F GCTCATTCATTAAACAAATCCATTGC
40 hisG_HF-R TTTGTTATTCCTCTTTAAACCTGTC
41 FR(hisG)-F GTTTAAAGAGGAATAACAAA GTGTAGGCTGGAGCTGCTTC
42 FR(hisG)-R CCAGATCAATTCGCGCTAACTCTGTCAAACATGAGAATTAA
43 hisG+FR-F TTAATTCTCATGTTTGACAGAGTTAGCGCGAATTGATCTGG
44 hisG+HR-R TGTGTTAAAGCTCATGGCGATCACTCCATCATCTTCTCAATCG
45 hisG_HR-F TCGCCATGAGCTTTAACACAA
46 hisG_HR-R AGTGTGGAAGGTTTCAATATTCTT
9 hisGW-CF AGTTCATTGTACAATGATGAGCG
10 hisGW-CR AGCCGCCAGGAATATACAAC
6-2. hisG_SDM7 유전자가 도입된 변이주 제작
hisG_SDM7를 E.coli DS9H 균주의 크로모좀에 도입하기 위해 원스텝 불화성화 방법을 이용하였다 (Warner et al., PNAS, 6:6640-6645(2000)). 먼저 homologous recombination을 위한 hisG 유전자의 앞쪽과 뒤쪽 단편을 얻기 위해, E. coli DS9H genomic DNA를 주형으로 하여 프라이머쌍 hisG_HF-F/hisG_HF-R, hisG_HR-F/hisG_HR-R을 사용하여 hisG_HF와 hisG_HR 단편을 각각 증폭하였다. 그리고 카나마이신 항생제 마커와 FRT가 포함된 카세트를 얻기 위해, pKD13 플라스미드로부터 FR(hisG)-F/FR(hisG)-R을 사용하여 증폭하여 카세트 단편을 얻었다. 마지막으로 hisG_SDM7를 얻기 위해서, pTRC99A-hisG_SDM7 플라스미드로부터 hisG+FR-F/hisG+HR-R 프라이머를 사용하여 hisG_SDM7 단편을 얻었다. 최종적으로 증폭한 이 4개의 PCR 단편들을 주형으로 사용하여 hisG_HF-F/hisG_HR-R 프라이머 쌍으로 overlapping PCR을 이용하여 하나의 단편으로 연결시켰다. 하나로 연결된 DNA 단편을 pKD46 플라스미드를 가지고 있는 E. coli DS9H 균주에 전기청공법으로 도입하였다. 이후 카나마이신 내성을 보이는 세포주들을 대상으로 hisGW-CF/hisGW-CR 프라이머를 사용해 PCR을 수행하여 hisG_SDM7가 도입된 균주들을 확인하였다. 도입이 확인된 균주들을 대상으로 항생제 내성 유전자인 카나마이신 마커를 제거하는 과정을 수행하였다. hisG_SDM7 도입이 확인된 균주에 pCP20 플라스미드를 도입하여 FLP 재조합을 유도한 후, 항생제(카나마이신) 첨가 및 미첨가된 LB 평판배지들에서 각각 생장 여부를 통해 항생제 제거 여부를 확인하였다. 항생제가 제거된 균주들은 LB 평판배지에 서 생장을 하지만, 항생제(카나마이신)가 첨가된 LB 평판배지에서는 생장하지 못함을 이용하여 확인하였다. 그리고 최종적으로 hisGW-CF/hisGW-CR 프라이머 쌍을 사용하여 서열을 확인하였다. hisG_SDM7 유전자가 도입된 변이주 제작에 사용된 프라이머 서열은 상기 표 6과 동일하다.
실시예 7: hisG_SDM4 또는 hisG_SDM7 유전자로부터 발현된 변이효소의 히스티딘 음성 피드백 저항성 측정
ATP-PRT 야생형(hisG_WT), ATP-PRT 변이체(hisG_SDM4 및 hisG_SDM7)의 히스티딘에 의한 음성 피드백 저항성을 비교하였다.
LB배지를 500ml 플라스크에 50ml씩 분주하고 DS9H, DS9H_△hisG::hisG_SDM4, 또는 DS9H_△hisG::hisG_SDM7 3개 균주를 1%씩 접종하였다. 배양 조건은 30℃, 180rpm으로 하였다. OD600이 0.6일때 1mM IPTG (최종농도)로 ATP-PRT 발현을 유도하고 4시간 정도 추가 배양을 실시하였다. 배양 후 수득한 세포를 sonication하고 원심분리하였다. 수득한 상등액을 ATP phosphoribosyltransferase 활성 평가에 사용하였다. 효소 활성을 평가하기 위한 반응 조건은 기존 문헌을 참조하여 진행하였다. (Microb Cell Fact. 2018. Mar.17:42) 상층액을 단백질 정량하여 농도를 일치시켰으며, 하기 표 8의 반응조성으로 반응물들을 섞은 후 효소 활성을 측정하였다.
성분 농도
Tris-HCl (pH 8.1) 100 mM
염화칼륨 100 mM
염화마그네슘 10 mM
ATP 5 mM
PRPP 1 mM
pyrophosphatase 10mU
ATP phosphoribosyltransferase 500 nM
histidine 0 mM, 0.5 mM, 1 mM, 5 mM, 10 mM, 25 mM, 50 mM
특히 히스티딘에 의한 활성 억제 저항성을 확인하기 위해, 히스티딘의 농도를 각각 0 mM, 0.5 mM, 1 mM, 5 mM, 10 mM, 25 mM, 50 mM 농도로 하였다. 활성측정은 30℃에서 UV 파장 290 nm으로 2분 간격으로 30 분 동안 측정하였다.
도 1에 따르면, hisG_WT 효소는 히스티딘 농도 5 mM 부터 ATP-PRT 활성이 급격히 저하되었다. 그러나 hisG_SDM4 (H232K, T252A, E271K, S288P)은 히스티딘 농도 25 mM 부터 효소 활성이 저하되었다. 또한 hisG_SDM7 (H232T R250H T252L E271K S288P)는 hisG_SDM4과 유사하게 히스티딘 농도 25 mM 부터 효소 활성이 저하되었으나, 각각의 히스티딘 농도에서 효소 활성은 hisG_SDM4보다 증가하였다. 결과적으로 hisG_SDM7이 히스티딘에 의한 활성 억제에 대해 저항성이 가장 우수하였다.
실시예 8: ATP-PRT 변이 효소 발현 균주들의 히스티딘 생산성 평가
hisG_SDM4 또는 hisG_SDM7이 도입된 균주들의 히스티딘 생산성을 확인하였다. 하기 표 9의 조성에 따른 배지를 각각의 플라스크에 10ml씩 분주하고, DS9H, DS9H_△hisG::hisG_SDM4, 또는 DS9H_△hisG::hisG_SDM7 균주를 1%씩 접종하고 34℃, 200rpm의 조건으로 72시간 배양하였다. 배양 후 각각의 플라스크의 히스티딘 생산량을 비교 분석하였다.
성분 농도
포도당 8%
황산마그네슘 0.1%
황산암모늄 2.0%
MSG 0.1%
일인산칼륨 0.1%
효모추출물 0.1%
황산칼륨 0.02%
티아민-HCl 20 ppm
니코틴산 10 ppm
황산철 5 ppm
황산아연 5 ppm
황산망간 5 ppm
탄산칼슘 (별도멸균) 5.0%
hisG_SDM4 발현 균주는 대조군보다 히스티딘 생산량이 약 53% 정도 증가하였으며, hisG_SDM7 발현 균주는 대조군보다 히스티딘 생산량이 약 92%정도 증가하였다. (표 10 참고)
균주명 L-histidine (%) 배양시간(hr)
DS9H 0.78 72
DS9H_△hisG::hisG_SDM4
(H232K, T252A, E271K, S288P)
1.20 72
DS9H_△hisG::hisG_SDM7(H232T, R250H, T252L, E271K, S288P) 1.50 72
상기 결과에 따르면 hisG_SDM4 또는 hisG_SDM7는 his_WT보다 히스티딘에 의한 피드백 억제(feedback inhibition)가 감소하여 히스티딘 생산성이 증가한 것으로 생각된다. 특히 hisG_SDM4 발현 균주보다 hisG_SDM7 발현 균주의 히스티딘 생산성이 더 높았다.
또한 상기 표 4 및 표 8의 결과를 종합하면, 대장균 유래 hisG의 232, 250, 252, 271, 및 288번 위치의 아미노산 중 어느 하나를 변이시키는 경우 히스티딘의 생산량이 증가하였고, 복수개를 변이시키는 경우 하나를 변이시키는 경우보다 히스티딘의 생산량을 더 증가하였다.
[수탁번호]
기탁기관명: 한국생명공학연구원
수탁번호: KCTC14419BP
수탁일자: 20201228
<110> Daesang Corporation <120> ATP-PRT variant with reduced feedback inhibition by histidine and histidine-producing strain expressing the same <130> PN200368 <160> 53 <170> KoPatentIn 3.0 <210> 1 <211> 299 <212> PRT <213> Artificial Sequence <220> <223> hisG_WT <400> 1 Met Thr Asp Asn Thr Arg Leu Arg Ile Ala Met Gln Lys Ser Gly Arg 1 5 10 15 Leu Ser Asp Asp Ser Arg Glu Leu Leu Ala Arg Cys Gly Ile Lys Ile 20 25 30 Asn Leu His Thr Gln Arg Leu Ile Ala Met Ala Glu Asn Met Pro Ile 35 40 45 Asp Ile Leu Arg Val Arg Asp Asp Asp Ile Pro Gly Leu Val Met Asp 50 55 60 Gly Val Val Asp Leu Gly Ile Ile Gly Glu Asn Val Leu Glu Glu Glu 65 70 75 80 Leu Leu Asn Arg Arg Ala Gln Gly Glu Asp Pro Arg Tyr Phe Thr Leu 85 90 95 Arg Arg Leu Asp Phe Gly Gly Cys Arg Leu Ser Leu Ala Thr Pro Val 100 105 110 Asp Glu Ala Trp Asp Gly Pro Leu Ser Leu Asn Gly Lys Arg Ile Ala 115 120 125 Thr Ser Tyr Pro His Leu Leu Lys Arg Tyr Leu Asp Gln Lys Gly Ile 130 135 140 Ser Phe Lys Ser Cys Leu Leu Asn Gly Ser Val Glu Val Ala Pro Arg 145 150 155 160 Ala Gly Leu Ala Asp Ala Ile Cys Asp Leu Val Ser Thr Gly Ala Thr 165 170 175 Leu Glu Ala Asn Gly Leu Arg Glu Val Glu Val Ile Tyr Arg Ser Lys 180 185 190 Ala Cys Leu Ile Gln Arg Asp Gly Glu Met Glu Glu Ser Lys Gln Gln 195 200 205 Leu Ile Asp Lys Leu Leu Thr Arg Ile Gln Gly Val Ile Gln Ala Arg 210 215 220 Glu Ser Lys Tyr Ile Met Met His Ala Pro Thr Glu Arg Leu Asp Glu 225 230 235 240 Val Ile Ala Leu Leu Pro Gly Ala Glu Arg Pro Thr Ile Leu Pro Leu 245 250 255 Ala Gly Asp Gln Gln Arg Val Ala Met His Met Val Ser Ser Glu Thr 260 265 270 Leu Phe Trp Glu Thr Met Glu Lys Leu Lys Ala Leu Gly Ala Ser Ser 275 280 285 Ile Leu Val Leu Pro Ile Glu Lys Met Met Glu 290 295 <210> 2 <211> 299 <212> PRT <213> Artificial Sequence <220> <223> hisG_H232K/T <220> <221> VARIANT <222> (232) <223> Xaa (232) = K or T <400> 2 Met Thr Asp Asn Thr Arg Leu Arg Ile Ala Met Gln Lys Ser Gly Arg 1 5 10 15 Leu Ser Asp Asp Ser Arg Glu Leu Leu Ala Arg Cys Gly Ile Lys Ile 20 25 30 Asn Leu His Thr Gln Arg Leu Ile Ala Met Ala Glu Asn Met Pro Ile 35 40 45 Asp Ile Leu Arg Val Arg Asp Asp Asp Ile Pro Gly Leu Val Met Asp 50 55 60 Gly Val Val Asp Leu Gly Ile Ile Gly Glu Asn Val Leu Glu Glu Glu 65 70 75 80 Leu Leu Asn Arg Arg Ala Gln Gly Glu Asp Pro Arg Tyr Phe Thr Leu 85 90 95 Arg Arg Leu Asp Phe Gly Gly Cys Arg Leu Ser Leu Ala Thr Pro Val 100 105 110 Asp Glu Ala Trp Asp Gly Pro Leu Ser Leu Asn Gly Lys Arg Ile Ala 115 120 125 Thr Ser Tyr Pro His Leu Leu Lys Arg Tyr Leu Asp Gln Lys Gly Ile 130 135 140 Ser Phe Lys Ser Cys Leu Leu Asn Gly Ser Val Glu Val Ala Pro Arg 145 150 155 160 Ala Gly Leu Ala Asp Ala Ile Cys Asp Leu Val Ser Thr Gly Ala Thr 165 170 175 Leu Glu Ala Asn Gly Leu Arg Glu Val Glu Val Ile Tyr Arg Ser Lys 180 185 190 Ala Cys Leu Ile Gln Arg Asp Gly Glu Met Glu Glu Ser Lys Gln Gln 195 200 205 Leu Ile Asp Lys Leu Leu Thr Arg Ile Gln Gly Val Ile Gln Ala Arg 210 215 220 Glu Ser Lys Tyr Ile Met Met Xaa Ala Pro Thr Glu Arg Leu Asp Glu 225 230 235 240 Val Ile Ala Leu Leu Pro Gly Ala Glu Arg Pro Thr Ile Leu Pro Leu 245 250 255 Ala Gly Asp Gln Gln Arg Val Ala Met His Met Val Ser Ser Glu Thr 260 265 270 Leu Phe Trp Glu Thr Met Glu Lys Leu Lys Ala Leu Gly Ala Ser Ser 275 280 285 Ile Leu Val Leu Pro Ile Glu Lys Met Met Glu 290 295 <210> 3 <211> 299 <212> PRT <213> Artificial Sequence <220> <223> hisG_R250H <400> 3 Met Thr Asp Asn Thr Arg Leu Arg Ile Ala Met Gln Lys Ser Gly Arg 1 5 10 15 Leu Ser Asp Asp Ser Arg Glu Leu Leu Ala Arg Cys Gly Ile Lys Ile 20 25 30 Asn Leu His Thr Gln Arg Leu Ile Ala Met Ala Glu Asn Met Pro Ile 35 40 45 Asp Ile Leu Arg Val Arg Asp Asp Asp Ile Pro Gly Leu Val Met Asp 50 55 60 Gly Val Val Asp Leu Gly Ile Ile Gly Glu Asn Val Leu Glu Glu Glu 65 70 75 80 Leu Leu Asn Arg Arg Ala Gln Gly Glu Asp Pro Arg Tyr Phe Thr Leu 85 90 95 Arg Arg Leu Asp Phe Gly Gly Cys Arg Leu Ser Leu Ala Thr Pro Val 100 105 110 Asp Glu Ala Trp Asp Gly Pro Leu Ser Leu Asn Gly Lys Arg Ile Ala 115 120 125 Thr Ser Tyr Pro His Leu Leu Lys Arg Tyr Leu Asp Gln Lys Gly Ile 130 135 140 Ser Phe Lys Ser Cys Leu Leu Asn Gly Ser Val Glu Val Ala Pro Arg 145 150 155 160 Ala Gly Leu Ala Asp Ala Ile Cys Asp Leu Val Ser Thr Gly Ala Thr 165 170 175 Leu Glu Ala Asn Gly Leu Arg Glu Val Glu Val Ile Tyr Arg Ser Lys 180 185 190 Ala Cys Leu Ile Gln Arg Asp Gly Glu Met Glu Glu Ser Lys Gln Gln 195 200 205 Leu Ile Asp Lys Leu Leu Thr Arg Ile Gln Gly Val Ile Gln Ala Arg 210 215 220 Glu Ser Lys Tyr Ile Met Met His Ala Pro Thr Glu Arg Leu Asp Glu 225 230 235 240 Val Ile Ala Leu Leu Pro Gly Ala Glu His Pro Thr Ile Leu Pro Leu 245 250 255 Ala Gly Asp Gln Gln Arg Val Ala Met His Met Val Ser Ser Glu Thr 260 265 270 Leu Phe Trp Glu Thr Met Glu Lys Leu Lys Ala Leu Gly Ala Ser Ser 275 280 285 Ile Leu Val Leu Pro Ile Glu Lys Met Met Glu 290 295 <210> 4 <211> 299 <212> PRT <213> Artificial Sequence <220> <223> hisG_T252A/L <220> <221> VARIANT <222> (252) <223> Xaa (252) = A or L <400> 4 Met Thr Asp Asn Thr Arg Leu Arg Ile Ala Met Gln Lys Ser Gly Arg 1 5 10 15 Leu Ser Asp Asp Ser Arg Glu Leu Leu Ala Arg Cys Gly Ile Lys Ile 20 25 30 Asn Leu His Thr Gln Arg Leu Ile Ala Met Ala Glu Asn Met Pro Ile 35 40 45 Asp Ile Leu Arg Val Arg Asp Asp Asp Ile Pro Gly Leu Val Met Asp 50 55 60 Gly Val Val Asp Leu Gly Ile Ile Gly Glu Asn Val Leu Glu Glu Glu 65 70 75 80 Leu Leu Asn Arg Arg Ala Gln Gly Glu Asp Pro Arg Tyr Phe Thr Leu 85 90 95 Arg Arg Leu Asp Phe Gly Gly Cys Arg Leu Ser Leu Ala Thr Pro Val 100 105 110 Asp Glu Ala Trp Asp Gly Pro Leu Ser Leu Asn Gly Lys Arg Ile Ala 115 120 125 Thr Ser Tyr Pro His Leu Leu Lys Arg Tyr Leu Asp Gln Lys Gly Ile 130 135 140 Ser Phe Lys Ser Cys Leu Leu Asn Gly Ser Val Glu Val Ala Pro Arg 145 150 155 160 Ala Gly Leu Ala Asp Ala Ile Cys Asp Leu Val Ser Thr Gly Ala Thr 165 170 175 Leu Glu Ala Asn Gly Leu Arg Glu Val Glu Val Ile Tyr Arg Ser Lys 180 185 190 Ala Cys Leu Ile Gln Arg Asp Gly Glu Met Glu Glu Ser Lys Gln Gln 195 200 205 Leu Ile Asp Lys Leu Leu Thr Arg Ile Gln Gly Val Ile Gln Ala Arg 210 215 220 Glu Ser Lys Tyr Ile Met Met His Ala Pro Thr Glu Arg Leu Asp Glu 225 230 235 240 Val Ile Ala Leu Leu Pro Gly Ala Glu Arg Pro Xaa Ile Leu Pro Leu 245 250 255 Ala Gly Asp Gln Gln Arg Val Ala Met His Met Val Ser Ser Glu Thr 260 265 270 Leu Phe Trp Glu Thr Met Glu Lys Leu Lys Ala Leu Gly Ala Ser Ser 275 280 285 Ile Leu Val Leu Pro Ile Glu Lys Met Met Glu 290 295 <210> 5 <211> 299 <212> PRT <213> Artificial Sequence <220> <223> hisG_E271K <400> 5 Met Thr Asp Asn Thr Arg Leu Arg Ile Ala Met Gln Lys Ser Gly Arg 1 5 10 15 Leu Ser Asp Asp Ser Arg Glu Leu Leu Ala Arg Cys Gly Ile Lys Ile 20 25 30 Asn Leu His Thr Gln Arg Leu Ile Ala Met Ala Glu Asn Met Pro Ile 35 40 45 Asp Ile Leu Arg Val Arg Asp Asp Asp Ile Pro Gly Leu Val Met Asp 50 55 60 Gly Val Val Asp Leu Gly Ile Ile Gly Glu Asn Val Leu Glu Glu Glu 65 70 75 80 Leu Leu Asn Arg Arg Ala Gln Gly Glu Asp Pro Arg Tyr Phe Thr Leu 85 90 95 Arg Arg Leu Asp Phe Gly Gly Cys Arg Leu Ser Leu Ala Thr Pro Val 100 105 110 Asp Glu Ala Trp Asp Gly Pro Leu Ser Leu Asn Gly Lys Arg Ile Ala 115 120 125 Thr Ser Tyr Pro His Leu Leu Lys Arg Tyr Leu Asp Gln Lys Gly Ile 130 135 140 Ser Phe Lys Ser Cys Leu Leu Asn Gly Ser Val Glu Val Ala Pro Arg 145 150 155 160 Ala Gly Leu Ala Asp Ala Ile Cys Asp Leu Val Ser Thr Gly Ala Thr 165 170 175 Leu Glu Ala Asn Gly Leu Arg Glu Val Glu Val Ile Tyr Arg Ser Lys 180 185 190 Ala Cys Leu Ile Gln Arg Asp Gly Glu Met Glu Glu Ser Lys Gln Gln 195 200 205 Leu Ile Asp Lys Leu Leu Thr Arg Ile Gln Gly Val Ile Gln Ala Arg 210 215 220 Glu Ser Lys Tyr Ile Met Met His Ala Pro Thr Glu Arg Leu Asp Glu 225 230 235 240 Val Ile Ala Leu Leu Pro Gly Ala Glu Arg Pro Thr Ile Leu Pro Leu 245 250 255 Ala Gly Asp Gln Gln Arg Val Ala Met His Met Val Ser Ser Lys Thr 260 265 270 Leu Phe Trp Glu Thr Met Glu Lys Leu Lys Ala Leu Gly Ala Ser Ser 275 280 285 Ile Leu Val Leu Pro Ile Glu Lys Met Met Glu 290 295 <210> 6 <211> 299 <212> PRT <213> Artificial Sequence <220> <223> hisG_S288P <400> 6 Met Thr Asp Asn Thr Arg Leu Arg Ile Ala Met Gln Lys Ser Gly Arg 1 5 10 15 Leu Ser Asp Asp Ser Arg Glu Leu Leu Ala Arg Cys Gly Ile Lys Ile 20 25 30 Asn Leu His Thr Gln Arg Leu Ile Ala Met Ala Glu Asn Met Pro Ile 35 40 45 Asp Ile Leu Arg Val Arg Asp Asp Asp Ile Pro Gly Leu Val Met Asp 50 55 60 Gly Val Val Asp Leu Gly Ile Ile Gly Glu Asn Val Leu Glu Glu Glu 65 70 75 80 Leu Leu Asn Arg Arg Ala Gln Gly Glu Asp Pro Arg Tyr Phe Thr Leu 85 90 95 Arg Arg Leu Asp Phe Gly Gly Cys Arg Leu Ser Leu Ala Thr Pro Val 100 105 110 Asp Glu Ala Trp Asp Gly Pro Leu Ser Leu Asn Gly Lys Arg Ile Ala 115 120 125 Thr Ser Tyr Pro His Leu Leu Lys Arg Tyr Leu Asp Gln Lys Gly Ile 130 135 140 Ser Phe Lys Ser Cys Leu Leu Asn Gly Ser Val Glu Val Ala Pro Arg 145 150 155 160 Ala Gly Leu Ala Asp Ala Ile Cys Asp Leu Val Ser Thr Gly Ala Thr 165 170 175 Leu Glu Ala Asn Gly Leu Arg Glu Val Glu Val Ile Tyr Arg Ser Lys 180 185 190 Ala Cys Leu Ile Gln Arg Asp Gly Glu Met Glu Glu Ser Lys Gln Gln 195 200 205 Leu Ile Asp Lys Leu Leu Thr Arg Ile Gln Gly Val Ile Gln Ala Arg 210 215 220 Glu Ser Lys Tyr Ile Met Met His Ala Pro Thr Glu Arg Leu Asp Glu 225 230 235 240 Val Ile Ala Leu Leu Pro Gly Ala Glu Arg Pro Thr Ile Leu Pro Leu 245 250 255 Ala Gly Asp Gln Gln Arg Val Ala Met His Met Val Ser Ser Glu Thr 260 265 270 Leu Phe Trp Glu Thr Met Glu Lys Leu Lys Ala Leu Gly Ala Ser Pro 275 280 285 Ile Leu Val Leu Pro Ile Glu Lys Met Met Glu 290 295 <210> 7 <211> 299 <212> PRT <213> Artificial Sequence <220> <223> hisG_SDM4 <400> 7 Met Thr Asp Asn Thr Arg Leu Arg Ile Ala Met Gln Lys Ser Gly Arg 1 5 10 15 Leu Ser Asp Asp Ser Arg Glu Leu Leu Ala Arg Cys Gly Ile Lys Ile 20 25 30 Asn Leu His Thr Gln Arg Leu Ile Ala Met Ala Glu Asn Met Pro Ile 35 40 45 Asp Ile Leu Arg Val Arg Asp Asp Asp Ile Pro Gly Leu Val Met Asp 50 55 60 Gly Val Val Asp Leu Gly Ile Ile Gly Glu Asn Val Leu Glu Glu Glu 65 70 75 80 Leu Leu Asn Arg Arg Ala Gln Gly Glu Asp Pro Arg Tyr Phe Thr Leu 85 90 95 Arg Arg Leu Asp Phe Gly Gly Cys Arg Leu Ser Leu Ala Thr Pro Val 100 105 110 Asp Glu Ala Trp Asp Gly Pro Leu Ser Leu Asn Gly Lys Arg Ile Ala 115 120 125 Thr Ser Tyr Pro His Leu Leu Lys Arg Tyr Leu Asp Gln Lys Gly Ile 130 135 140 Ser Phe Lys Ser Cys Leu Leu Asn Gly Ser Val Glu Val Ala Pro Arg 145 150 155 160 Ala Gly Leu Ala Asp Ala Ile Cys Asp Leu Val Ser Thr Gly Ala Thr 165 170 175 Leu Glu Ala Asn Gly Leu Arg Glu Val Glu Val Ile Tyr Arg Ser Lys 180 185 190 Ala Cys Leu Ile Gln Arg Asp Gly Glu Met Glu Glu Ser Lys Gln Gln 195 200 205 Leu Ile Asp Lys Leu Leu Thr Arg Ile Gln Gly Val Ile Gln Ala Arg 210 215 220 Glu Ser Lys Tyr Ile Met Met Lys Ala Pro Thr Glu Arg Leu Asp Glu 225 230 235 240 Val Ile Ala Leu Leu Pro Gly Ala Glu Arg Pro Ala Ile Leu Pro Leu 245 250 255 Ala Gly Asp Gln Gln Arg Val Ala Met His Met Val Ser Ser Lys Thr 260 265 270 Leu Phe Trp Glu Thr Met Glu Lys Leu Lys Ala Leu Gly Ala Ser Pro 275 280 285 Ile Leu Val Leu Pro Ile Glu Lys Met Met Glu 290 295 <210> 8 <211> 299 <212> PRT <213> Artificial Sequence <220> <223> hisG_SDM7 <400> 8 Met Thr Asp Asn Thr Arg Leu Arg Ile Ala Met Gln Lys Ser Gly Arg 1 5 10 15 Leu Ser Asp Asp Ser Arg Glu Leu Leu Ala Arg Cys Gly Ile Lys Ile 20 25 30 Asn Leu His Thr Gln Arg Leu Ile Ala Met Ala Glu Asn Met Pro Ile 35 40 45 Asp Ile Leu Arg Val Arg Asp Asp Asp Ile Pro Gly Leu Val Met Asp 50 55 60 Gly Val Val Asp Leu Gly Ile Ile Gly Glu Asn Val Leu Glu Glu Glu 65 70 75 80 Leu Leu Asn Arg Arg Ala Gln Gly Glu Asp Pro Arg Tyr Phe Thr Leu 85 90 95 Arg Arg Leu Asp Phe Gly Gly Cys Arg Leu Ser Leu Ala Thr Pro Val 100 105 110 Asp Glu Ala Trp Asp Gly Pro Leu Ser Leu Asn Gly Lys Arg Ile Ala 115 120 125 Thr Ser Tyr Pro His Leu Leu Lys Arg Tyr Leu Asp Gln Lys Gly Ile 130 135 140 Ser Phe Lys Ser Cys Leu Leu Asn Gly Ser Val Glu Val Ala Pro Arg 145 150 155 160 Ala Gly Leu Ala Asp Ala Ile Cys Asp Leu Val Ser Thr Gly Ala Thr 165 170 175 Leu Glu Ala Asn Gly Leu Arg Glu Val Glu Val Ile Tyr Arg Ser Lys 180 185 190 Ala Cys Leu Ile Gln Arg Asp Gly Glu Met Glu Glu Ser Lys Gln Gln 195 200 205 Leu Ile Asp Lys Leu Leu Thr Arg Ile Gln Gly Val Ile Gln Ala Arg 210 215 220 Glu Ser Lys Tyr Ile Met Met Thr Ala Pro Thr Glu Arg Leu Asp Glu 225 230 235 240 Val Ile Ala Leu Leu Pro Gly Ala Glu His Pro Leu Ile Leu Pro Leu 245 250 255 Ala Gly Asp Gln Gln Arg Val Ala Met His Met Val Ser Ser Lys Thr 260 265 270 Leu Phe Trp Glu Thr Met Glu Lys Leu Lys Ala Leu Gly Ala Ser Pro 275 280 285 Ile Leu Val Leu Pro Ile Glu Lys Met Met Glu 290 295 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> hisGW_CF <400> 9 agttcattgt acaatgatga gcg 23 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> hisGW_CR <400> 10 agccgccagg aatatacaac 20 <210> 11 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> 232K-R <400> 11 tttcatcatg atgtattttg attcgcgc 28 <210> 12 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> 232K-F <400> 12 gcgcgaatca aaatacatca tgatgaaa 28 <210> 13 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> 232E-R <400> 13 ttccatcatg atgtattttg attcgcgc 28 <210> 14 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> 232E-F <400> 14 gcgcgaatca aaatacatca tgatggaa 28 <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> 240K-R <400> 15 tttatccaga cgttcggtcg gt 22 <210> 16 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> 240K-F <400> 16 accgaccgaa cgtctggata aa 22 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 248F-R <400> 17 gaaacctggc agcagggcga 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 248F-F <400> 18 tcgccctgct gccaggtttc 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 252A-R <400> 19 cccgccagcg gcagaatcgc 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 252A-F <400> 20 gcgattctgc cgctggcggg 20 <210> 21 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 250H-R <400> 21 ccgccagcgg cagaatagtt ggatg 25 <210> 22 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 250H-F <400> 22 catccaacta ttctgccgct ggcgg 25 <210> 23 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 250E-R <400> 23 ccgccagcgg cagaatagtt ggttc 25 <210> 24 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 250E-F <400> 24 gaaccaacta ttctgccgct ggcgg 25 <210> 25 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 252L-R <400> 25 ccgccagcgg cagaatcaat gggcg 25 <210> 26 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 252L-F <400> 26 cgcccattga ttctgccgct ggcgg 25 <210> 27 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 252P-R <400> 27 ccgccagcgg cagaatcggt gggcg 25 <210> 28 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 252P-F <400> 28 cgcccaccga ttctgccgct ggcgg 25 <210> 29 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 252Q-R <400> 29 ccgccagcgg cagaatctgt gggcg 25 <210> 30 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 252Q-F <400> 30 cgcccacaga ttctgccgct ggcgg 25 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 271K-R <400> 31 tttgctgctg accatgtgca 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 271K-F <400> 32 tgcacatggt cagcagcaaa 20 <210> 33 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 288P-R <400> 33 cggactggca cccagcgctt tca 23 <210> 34 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 288P-F <400> 34 tgaaagcgct gggtgccagt ccg 23 <210> 35 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 288K-R <400> 35 cttactggca cccagcgctt tca 23 <210> 36 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 288K-F <400> 36 tgaaagcgct gggtgccagt aag 23 <210> 37 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> 232T-R <400> 37 tgtcatcatg atgtattttg attcgcgc 28 <210> 38 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> 232T-F <400> 38 gcgcgaatca aaatacatca tgatgaca 28 <210> 39 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> hisG_HF-F <400> 39 gctcattcat taaacaaatc cattgc 26 <210> 40 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> hisG_HF-R <400> 40 tttgttattc ctctttaaac ctgtc 25 <210> 41 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> FR(hisG)-F <400> 41 gtttaaagag gaataacaaa gtgtaggctg gagctgcttc 40 <210> 42 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> FR(hisG)-R <400> 42 ccagatcaat tcgcgctaac tctgtcaaac atgagaatta a 41 <210> 43 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> hisG+FR-F <400> 43 ttaattctca tgtttgacag agttagcgcg aattgatctg g 41 <210> 44 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> hisG+HR-R <400> 44 tgtgttaaag ctcatggcga tcactccatc atcttctcaa tcg 43 <210> 45 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> hisG_HR-F <400> 45 tcgccatgag ctttaacaca a 21 <210> 46 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> hisG_HR-R <400> 46 agtgtggaag gtttcaatat tctt 24 <210> 47 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> hisG-F <400> 47 atatgaattc atgacagaca acactcgttt acg 33 <210> 48 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> hisG-R <400> 48 atataagctt tcactccatc atcttctcaa tcggcaggac cagaatcgg 49 <210> 49 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> 271K-R2 <400> 49 atatagcgct ttcagttttt ccatggtttc ccagaacagg gtttt 45 <210> 50 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> hisG-CF <400> 50 atattctgaa atgagctgtt gacaa 25 <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> hisG-CR <400> 51 tactgccgcc aggcaaattc 20 <210> 52 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 250H+252L-R <400> 52 ccgccagcgg cagaatcaat ggatg 25 <210> 53 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 250H+252L-F <400> 53 catccattga ttctgccgct ggcgg 25

Claims (7)

  1. 서열번호 1의 아미노산 서열로 이루어지는 ATP-포스포리보실전이효소에서,
    288번째 위치한 세린이 프롤린으로 치환된 ATP-포스포리보실전이효소 변이체.
  2. 제1항에 있어서,
    상기 ATP-포스포리보실전이효소는 대장균(E. coli)의 hisG 유전자로부터 발현된, 변이체.
  3. 제1항에 있어서,
    상기 변이체는 히스티딘에 의한 피드백 억제가 감소하는, 변이체.
  4. 제1항에 있어서,
    하기 아미노산 치환 중 하나 이상을 더 포함하는 변이체:
    (a) 232번째에 위치한 히스티딘이 라이신 또는 트레오닌으로 치환
    (b) 250번째에 위치한 아르기닌이 히스티딘으로 치환
    (c) 252번째 위치한 트레오닌이 알라닌, 루신, 글라이신, 발린, 또는 이소루신으로 치환
    (d) 271번째 위치한 글루타민산이 라이신으로 치환.
  5. 제1항의 ATP-포스포리보실전이효소 변이체를 발현하는 형질전환 균주.
  6. 제5항에 있어서,
    상기 균주는 대장균인, 형질전환 균주.
  7. 제5항의 균주를 배양하는 단계를 포함하는 히스티딘 생산방법.
KR1020200184686A 2020-12-28 2020-12-28 히스티딘에 의한 피드백 억제가 감소된 atp-prt 변이체 및 이를 발현하는 히스티딘 생산 균주 KR20220094261A (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020200184686A KR20220094261A (ko) 2020-12-28 2020-12-28 히스티딘에 의한 피드백 억제가 감소된 atp-prt 변이체 및 이를 발현하는 히스티딘 생산 균주
EP21915387.1A EP4269575A1 (en) 2020-12-28 2021-04-26 Atp-prt variant with reduced feedback inhibition by histidine, and histidine-producing strain expressing same
JP2023539353A JP2024501039A (ja) 2020-12-28 2021-04-26 ヒスチジンによるフィードバック抑制が減少したatp-prt変異体およびこれを発現するヒスチジン生産菌株
PCT/KR2021/005246 WO2022145588A1 (ko) 2020-12-28 2021-04-26 히스티딘에 의한 피드백 억제가 감소된 atp-prt 변이체 및 이를 발현하는 히스티딘 생산 균주
CN202180088150.0A CN116783290A (zh) 2020-12-28 2021-04-26 组氨酸导致的反馈抑制得到减少的atp-prt变体及表达该变体的组氨酸生产菌株
US18/269,694 US20240060104A1 (en) 2020-12-28 2021-04-26 Atp-prt variant with reduced feedback inhibition by histidine, and histidine-producing strain expressing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200184686A KR20220094261A (ko) 2020-12-28 2020-12-28 히스티딘에 의한 피드백 억제가 감소된 atp-prt 변이체 및 이를 발현하는 히스티딘 생산 균주

Publications (1)

Publication Number Publication Date
KR20220094261A true KR20220094261A (ko) 2022-07-06

Family

ID=82259267

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200184686A KR20220094261A (ko) 2020-12-28 2020-12-28 히스티딘에 의한 피드백 억제가 감소된 atp-prt 변이체 및 이를 발현하는 히스티딘 생산 균주

Country Status (6)

Country Link
US (1) US20240060104A1 (ko)
EP (1) EP4269575A1 (ko)
JP (1) JP2024501039A (ko)
KR (1) KR20220094261A (ko)
CN (1) CN116783290A (ko)
WO (1) WO2022145588A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170098205A (ko) 2008-09-26 2017-08-29 가부시끼 가이샤 구보다 탈곡기

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2276687C2 (ru) * 2003-07-16 2006-05-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Бактерия, принадлежащая к роду escherichia, - продуцент l-гистидина и способ получения l-гистидина
KR101904666B1 (ko) * 2017-08-02 2018-11-29 씨제이제일제당 (주) Atp 포스포리보실기 전이효소 변이체 및 이를 이용한 l-히스티딘 생산방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170098205A (ko) 2008-09-26 2017-08-29 가부시끼 가이샤 구보다 탈곡기

Also Published As

Publication number Publication date
JP2024501039A (ja) 2024-01-10
WO2022145588A1 (ko) 2022-07-07
US20240060104A1 (en) 2024-02-22
CN116783290A (zh) 2023-09-19
EP4269575A1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
CN111315876B (zh) Atp磷酸核糖基转移酶突变体以及使用该突变体生产l-组氨酸的方法
RU2418069C2 (ru) Способ конструирования рекомбинантных бактерий, принадлежащих к роду pantoea, и способ продукции l-аминокислот с использованием бактерий, принадлежащих к роду pantoea
US11180784B2 (en) Microorganism of the genus Corynebacterium producing L-amino acids and a method for producing L-amino acids using the same
JP5488594B2 (ja) プリンリボヌクレオシド及びリボヌクレオチドの製造方法
EP3119875B1 (en) Microorganisms producing l-amino acids and process for producing l-amino acids using the same
KR101804017B1 (ko) L-쓰레오닌을 생산하는 재조합 미생물 및 이를 이용하여 l-쓰레오닌을 생산하는 방법
KR102433200B1 (ko) 히스티딘에 의한 피드백 억제가 감소된 atp-prt 변이체 및 이를 발현하는 히스티딘 생산 균주
KR20220094261A (ko) 히스티딘에 의한 피드백 억제가 감소된 atp-prt 변이체 및 이를 발현하는 히스티딘 생산 균주
KR20220094258A (ko) 히스티딘에 의한 피드백 억제가 감소된 atp-prt 변이체 및 이를 발현하는 히스티딘 생산 균주
KR20220094260A (ko) 히스티딘에 의한 피드백 억제가 감소된 atp-prt 변이체 및 이를 발현하는 히스티딘 생산 균주
KR20220094257A (ko) 히스티딘에 의한 피드백 억제가 감소된 atp-prt 변이체 및 이를 발현하는 히스티딘 생산 균주
RU2405833C2 (ru) Способ микробиологического синтеза пуринового нуклеозида 5&#39;-аминоимидазол-4-карбоксамидрибозида (аикар) и штамм бактерий bacillus subtilis - продуцент аикар
EP3119874B1 (en) Microorganisms having enhanced l-amino acids productivity and process for producing l-amino acids using the same
KR101755349B1 (ko) L-쓰레오닌 생산능을 가지는 미생물 및 그를 이용하여 l-쓰레오닌을 생산하는 방법
KR20230108789A (ko) L-히스티딘 생산능이 향상된 에스케리치아 속 변이주 및 이를 이용한 l-히스티딘의 생산 방법
JP2024511393A (ja) L-シトルリン生産能が向上したコリネバクテリウム・グルタミカム変異株およびこれを用いたl-シトルリンの生産方法
KR20200107140A (ko) D-글루타메이트 영양요구성 대장균 및 이를 이용한 목적 물질 생산 방법