KR20220087385A - Novel tris(hydroxymethyl)methane core-based amphiphiles and uses thereof - Google Patents

Novel tris(hydroxymethyl)methane core-based amphiphiles and uses thereof Download PDF

Info

Publication number
KR20220087385A
KR20220087385A KR1020210179875A KR20210179875A KR20220087385A KR 20220087385 A KR20220087385 A KR 20220087385A KR 1020210179875 A KR1020210179875 A KR 1020210179875A KR 20210179875 A KR20210179875 A KR 20210179875A KR 20220087385 A KR20220087385 A KR 20220087385A
Authority
KR
South Korea
Prior art keywords
compound
formula
alkoxy
gtm
isomer
Prior art date
Application number
KR1020210179875A
Other languages
Korean (ko)
Inventor
채필석
사더프아이만
배형은
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Publication of KR20220087385A publication Critical patent/KR20220087385A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/221Mono, di- or trisaccharides or derivatives thereof

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Emergency Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

본 발명은 새롭게 개발한 트리스(하이드록시메틸)메테인 중심 구조를 갖는 양친매성 화합물, 이의 제조방법 및 이를 이용하여 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법에 관한 것이다. 또한, 이 화합물은 기존의 화합물보다 다양한 구조와 특성을 지닌 막단백질들을 세포막에서 효율적으로 추출하고 이를 수용액에서 장기간 안정적으로 보관할 수 있고, 이를 통해 그 기능분석 및 구조 분석에 활용될 수 있다. 막단백질 구조 및 기능 분석은 신약 개발에 밀접한 관계가 있는 만큼 현 생물학 및 화학에서 가장 관심을 갖고 있는 분야 중 하나이다.The present invention relates to a newly developed amphiphilic compound having a tris (hydroxymethyl) methane central structure, a method for preparing the same, and a method for extracting, dissolving, stabilizing, crystallizing, or analyzing a membrane protein using the same. In addition, this compound can efficiently extract membrane proteins with various structures and properties from the cell membrane and store them stably in aqueous solution for a long period of time, which can be utilized for functional and structural analysis. Membrane protein structure and function analysis is one of the fields of current interest in biology and chemistry as it is closely related to the development of new drugs.

Description

새로운 트리스(하이드록시메틸)메테인 중심 구조를 갖는 양친매성 화합물 및 이의 활용 {Novel tris(hydroxymethyl)methane core-based amphiphiles and uses thereof}Amphiphilic compound having a novel tris(hydroxymethyl)methane core structure and utilization thereof {Novel tris(hydroxymethyl)methane core-based amphiphiles and uses thereof}

본 발명은 새롭게 개발한 트리스(하이드록시메틸)메테인 중심 구조를 갖는 양친매성 화합물, 이의 제조방법 및 이를 이용하여 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법에 관한 것이다.The present invention relates to a newly developed amphiphilic compound having a tris (hydroxymethyl) methane central structure, a method for preparing the same, and a method for extracting, dissolving, stabilizing, crystallizing, or analyzing a membrane protein using the same.

막단백질(membrain proteins)은 생물학적 시스템에서 중요한 역할을 한다. 이 생체거대분자(bio-macromolecules)는 친수성 및 소수성 부분을 포함하므로, 막단백질을 세포막으로부터 추출하고, 수용액에서 용해화와 안정화시키기 위해서는 양친매성 분자가 필요하다.Membrane proteins play important roles in biological systems. Since these bio-macromolecules contain hydrophilic and hydrophobic moieties, amphiphilic molecules are required to extract membrane proteins from cell membranes and to solubilize and stabilize them in aqueous solutions.

막단백질의 구조 분석을 위해서는 양질의 막단백질 결정을 얻어야 하는데 이를 위해서는 수용액에서의 막단백질의 구조적 안정성이 선행되어야 한다. 막단백질 연구에 사용되어 온 기존의 양친매성 분자들의 개수는 100가지 이상으로 다수가 존재하지만 그 중 5개 정도만 막단백질 구조 연구에 활발히 활용되어 왔다. 이 5개의 양쪽성 분자는 OG (n-octyl-β-D-glucopyranoside), NG (n-nonyl-β-D-glucopyranoside), DM (n-decyl-β-D-maltopyranoside), DDM (n-dodecyl-β-D-maltopyranoside), 및 LDAO (lauryldimethylamine-N-oxide)를 포함한다(비특허문헌 1, 비특허문헌 2). 하지만 이들 분자에 의해 둘러싸여 있는 많은 막단백질들은 그 구조가 쉽게 변성되거나 응집되어 그 기능을 빠르게 상실하는 경향이 있기 때문에 이 분자들을 활용한 막단백질의 기능 및 구조 연구에 상당한 제한점이 있다. 이는 종래의 분자들이 화학구조가 간단하여 다양한 특성을 나타내주지 못하기 때문이다. 따라서 새로운 구조를 통한 새롭고 우수한 특성을 지니는 새로운 양쪽성 물질 개발이 필요하다.For structural analysis of membrane proteins, high-quality membrane protein crystals must be obtained. For this, structural stability of membrane proteins in aqueous solution must be preceded. The number of existing amphiphilic molecules that have been used in the study of membrane proteins is more than 100, and there are many, but only about 5 of them have been actively used in the study of the structure of membrane proteins. These five amphoteric molecules are OG (n-octyl-β-D-glucopyranoside), NG (n-nonyl-β-D-glucopyranoside), DM (n-decyl-β-D-maltopyanoside), DDM (n- dodecyl-β-D-maltopyranoside), and lauryldimethylamine- N -oxide (LDAO) (Non-Patent Document 1, Non-Patent Document 2). However, since many membrane proteins surrounded by these molecules tend to quickly lose their function due to their structure being easily denatured or aggregated, there are significant limitations to the study of the function and structure of membrane proteins using these molecules. This is because conventional molecules do not exhibit various properties due to their simple chemical structure. Therefore, it is necessary to develop a new amphoteric material with new and excellent properties through a new structure.

이에 본 발명자들은 트리스(하이드록시메틸)메테인 중심구조에 친수성 및 소숭성을 갖는 펜던트 사슬 포함하는 양친매성 화합물을 개발하였고, 이 화합물의 막단백질 안정화 특성을 확인하여 본 발명을 완성하였다.Accordingly, the present inventors have developed an amphiphilic compound including a pendant chain having hydrophilicity and oleophobicity in a tris(hydroxymethyl)methane central structure, and completed the present invention by confirming the membrane protein stabilization properties of this compound.

S. Newstead et al., Protein Sci. 17 (2008) 466-472. S. Newstead et al., Protein Sci. 17 (2008) 466-472. S. Newstead et al., Mol. Membr. Biol. 25 (2008) 631-638. S. Newstead et al., Mol. Membr. Biol. 25 (2008) 631-638.

본 발명의 목적은 화학식 1로 표시되는 화합물 또는 이의 이성질체를 제공하는 것이다.An object of the present invention is to provide a compound represented by Formula 1 or an isomer thereof.

본 발명의 다른 목적은 상기 화합물을 포함하는 막단백질의 추출, 용해화, 안정화, 결정화 또는 분석용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for extraction, solubilization, stabilization, crystallization or analysis of a membrane protein containing the compound.

본 발명의 또 다른 목적은 상기 화합물의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing the compound.

본 발명의 일 구체예는 하기 화학식 1 또는 화학식 2로 표시되는 화합물 또는 이의 이성질체를 제공한다:One embodiment of the present invention provides a compound represented by the following formula (1) or formula (2) or an isomer thereof:

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

[화학식 2][Formula 2]

Figure pat00002
Figure pat00002

화학식 1 또는 2에서,In Formula 1 or 2,

R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고; R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group;

X1 내지 X3는 각각 독립적으로 당류(saccharide)이며; 및X 1 to X 3 are each independently a saccharide; and

L은 C1-5의 알킬기 또는 C1-5의 알콕시이고, 여기서 상기 C1-5의 알콕시는 C1-5의 알콕시 또는 당류로 치환될 수 있다.L is a C 1-5 alkyl group or C 1-5 alkoxy, wherein the C 1-5 alkoxy may be substituted with C 1-5 alkoxy or saccharide.

본 명세서에서 사용된 용어, "당류(saccharide)"는 탄수화물 중에서 비교적 분자가 작고, 물에 녹아서 단맛이 나는 화합물을 의미한다. 당류는 당을 구성하는 분자의 수에 따라 단당류, 이당류, 다당류로 구분된다. 여기서 상기 당류는 상기 당류는 친수성기로 작용할 수 있다. As used herein, the term “saccharide” refers to a compound having a relatively small molecule among carbohydrates and having a sweet taste when dissolved in water. Sugars are classified into monosaccharides, disaccharides, and polysaccharides according to the number of molecules constituting the sugar. Here, the saccharide may act as a hydrophilic group.

상기 구체예에서 사용된 당류는 단당류(monosaccharide) 또는 이당류(disaccharide)일 수 있으며, 구체적으로 글루코스(glucose) 또는 말토오스(maltose)일 수 있으나, 이에 제한되지 않는다.The saccharide used in the above embodiment may be a monosaccharide or a disaccharide, and specifically may be glucose or maltose, but is not limited thereto.

본 발명의 화학식 1 또는 2에서, 상기 X1 내지 X3의 상기 당류는 친수성기로 작용할 수 있다. 아울러, 상기 R1 내지 R3의 알킬기는 소수성기로 작용할 수 있다. 본 발명의 일 구체예에 따른 화합물은 친수성도와 소수성도의 밸런스(hydrophile-lipophile balance)를 최적으로 하기 위하여 3개의 알킬 사슬 및 3개의 당류가 도입되었다.In Formula 1 or 2 of the present invention, the saccharide of X 1 to X 3 may function as a hydrophilic group. In addition, the alkyl group of R 1 to R 3 may function as a hydrophobic group. In the compound according to one embodiment of the present invention, three alkyl chains and three saccharides were introduced to optimize the hydrophilicity and hydrophobicity balance (hydrophile-lipophile balance).

또한, 본 발명의 일 실시예에 따른 화합물은 트리스(하이드록시메틸)메테인을 중심으로 이 중심 구조 가운데의 4차 탄소에 붙어 있는 4번째 치환기인 pendant 사슬을 통해 소수성기 또는 친수성기을 추가함으로써 양친매성 화합물의 친수성기와 소수성기의 밀도를 조절할 수 있다. 이와 같은 분자 구조의 유동성을 통해 소수성기 밀도를 극대화하고 분자의 기하학적 구조를 변형시켜 마이셀 구조를 엔지니어링함으로써 이 나노구조의 자가조립체의 기능을 크게 향상시켰다. In addition, the compound according to an embodiment of the present invention is an amphiphilic compound by adding a hydrophobic group or a hydrophilic group through the pendant chain, which is the fourth substituent attached to the quaternary carbon in the central structure of tris (hydroxymethyl) methane. The density of hydrophilic and hydrophobic groups can be controlled. By engineering the micellar structure by maximizing the density of hydrophobic groups through the fluidity of the molecular structure and modifying the molecular geometry, the function of the self-assembly of this nanostructure was greatly improved.

본 발명의 구체적인 일 실시예에서, 상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C20의 알킬기이고; X1 내지 X3는 각각 독립적으로 글루코스 또는 말토오스이며; 및 L은 C1-3의 알킬기일 수 있다.In a specific embodiment of the present invention, R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 20 alkyl group; X 1 to X 3 are each independently glucose or maltose; and L may be a C 1-3 alkyl group.

본 발명의 다른 구체적인 일 실시예에서, 상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C20의 알킬기이고; X1 내지 X3는 각각 독립적으로 글루코스 또는 말토오스이며; 및 L은 C1-3의 알콕시이고, 여기서 상기 C1-3의 알콕시는 C1-3의 알콕시 또는 당류로 치환된 것일 수 있다.In another specific embodiment of the present invention, R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 20 alkyl group; X 1 to X 3 are each independently glucose or maltose; and L is C 1-3 alkoxy, wherein the C 1-3 alkoxy may be substituted with C 1-3 alkoxy or saccharide.

본 발명의 다른 구체적인 일 실시예에서, 상기 R1 내지 R3은 비치환된 C3-C15의 알킬기이고; X1 내지 X3는 글루코스 또는 말토오스이며; 및 L은 메틸기, 메톡시에톡시 또는 글루코스에톡시일 수 있다.In another specific embodiment of the present invention, R 1 to R 3 are an unsubstituted C 3 -C 15 alkyl group; X 1 to X 3 are glucose or maltose; and L may be a methyl group, methoxyethoxy or glucoseethoxy.

본 발명의 다른 구체예에 따른 화합물은 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하기 위한 양친매성 분자일 수 있으나, 이에 제한하지 않는다.The compound according to another embodiment of the present invention may be an amphiphilic molecule for extracting, solubilizing, stabilizing, crystallizing or analyzing a membrane protein, but is not limited thereto.

구체적으로, 상기 추출은 막단백질을 세포막으로부터 추출하는 것일 수 있다.Specifically, the extraction may be to extract the membrane protein from the cell membrane.

본 명세서에서 사용된 용어, "양친매성 분자"란 한 분자 내에 소수성기와 친수성기가 공존하여 극성, 비극성 용매 모두에 친화성을 가질 수 있는 분자를 의미한다. 계면활성제나 세포막에 존재하는 인지질 분자들은 한 끝에는 친수성기, 다른 끝에는 소수성기를 가진 분자로 양친매성을 갖고 수용액 중에서 미셀이나 리포좀을 형성하는 특징이 있다. 친수성기가 극성을 갖고 있으나 비극성기가 공존하기 때문에 이들의 양친매성 분자는 수용액에 잘 녹지 않는 경향이 있다. 그러나 농도가 어느 한계농도(임계 응집 농도, CAC) 이상이 되면 소수성 상호작용에 의해 소수성기가 내부로 집합하고 친수성기가 표면에 노출된 둥글거나 타원 형태로 응집되어 물에 대한 용해성이 크게 증가한다.As used herein, the term “amphiphilic molecule” refers to a molecule capable of having affinity for both polar and non-polar solvents by coexisting a hydrophobic group and a hydrophilic group in one molecule. Phospholipid molecules present in surfactants or cell membranes have a hydrophilic group at one end and a hydrophobic group at the other end, have amphiphilic properties, and form micelles or liposomes in aqueous solution. Although the hydrophilic group has polarity, since the non-polar group coexists, these amphiphilic molecules tend not to dissolve well in aqueous solution. However, when the concentration exceeds a certain limit concentration (critical aggregation concentration, CAC), the hydrophobic group aggregates inside due to hydrophobic interaction and the hydrophilic group aggregates in a round or oval shape exposed on the surface, greatly increasing solubility in water.

CAC를 측정하는 방법은 특별히 제한되지 않으나, 당해 기술분야에서 널리 알려진 방법을 사용할 수 있으며, 예를 들어 디페닐헥사트리엔(diphenylhexatriene; DPH)을 이용한 형광 염색 방법으로 측정할 수 있다.A method for measuring CAC is not particularly limited, but a method widely known in the art may be used, for example, it may be measured by a fluorescence staining method using diphenylhexatriene (DPH).

본 발명의 일 구체예에 따른 화합물은 수용액에서 임계 응집 농도(CAC)가 0.0001 내지 1 mM일 수 있으며, 구체적으로 0.0001 내지 0.1 mM, 보다 구체적으로 0.001 내지 0.1 mM, 보다 더 구체적으로 0.001 내지 0.01 mM일 수 있으나, 이에 제한하지 않는다. The compound according to one embodiment of the present invention may have a critical aggregation concentration (CAC) of 0.0001 to 1 mM in aqueous solution, specifically 0.0001 to 0.1 mM, more specifically 0.001 to 0.1 mM, and even more specifically 0.001 to 0.01 mM. may be, but is not limited thereto.

기존에 막단백질 연구에 주로 사용되고 있는 DDM의 경우 임계 응집 농도가 0.17 mM인 것과 비교하여 본 발명의 화합물은 는 매우 작은 CAC 값을 가지고 있다. 따라서, 본 발명의 화합물은 낮은 농도에서도 응집이 용이하게 형성되므로, 적은 양을 사용하여 막단백질을 효과적으로 연구 분석할 수 있어 DDM 보다 활용측면에서 유리하다 할 수 있다.Compared to the case of DDM, which has been mainly used for membrane protein research, the critical aggregation concentration of 0.17 mM, the compound of the present invention has a very small CAC value. Therefore, since the compound of the present invention easily forms aggregation even at a low concentration, it can be said that it is advantageous in terms of utilization over DDM because it can effectively study and analyze membrane proteins using a small amount.

또한, 본 발명의 또 다른 구체예는 상기 화합물을 포함하는 막단백질의 추출, 용해화, 안정화, 결정화 또는 분석용 조성물을 제공한다.In addition, another embodiment of the present invention provides a composition for extraction, solubilization, stabilization, crystallization or analysis of a membrane protein containing the compound.

구체적으로, 상기 추출은 막단백질을 세포막으로부터 추출하는 것일 수 있다.Specifically, the extraction may be to extract the membrane protein from the cell membrane.

상기 조성물은 미셀, 리포좀, 에멀션 또는 나노입자의 제형인 것일 수 있으나, 이에 제한하지 않는다.The composition may be in the form of micelles, liposomes, emulsions, or nanoparticles, but is not limited thereto.

상기 미셀은 반지름이 1.0 nm 내지 100 nm일 수 있고, 구체적으로 5.0 nm 내지 100.0 nm일 수 있고, 예를 들어, 7 nm 내지 90 nm일 수 있으나, 이에 제한하지 않는다.The micelle may have a radius of 1.0 nm to 100 nm, specifically 5.0 nm to 100.0 nm, for example, 7 nm to 90 nm, but is not limited thereto.

미셀의 반지름을 측정하는 방법은 특별히 제한되지 않으나, 당해 기술분야에서 널리 알려진 방법을 사용할 수 있으며, 예를 들어 동적 광산란(dynamic light scattering; DLS) 실험을 이용해 측정할 수 있다.A method of measuring the radius of the micelles is not particularly limited, but a method widely known in the art may be used, for example, it may be measured using a dynamic light scattering (DLS) experiment.

상기 미셀, 리포좀, 에멀션 또는 나노입자는 내부의 소수성으로 막단백질과 결합할 수 있다. 즉, 상기 미셀, 리포좀, 에멀션 또는 나노입자는 세포막에 존재하는 막단백질을 추출하여 감싸안을 수 있다. 따라서, 상기 미셀에 의하여 세포막으로부터 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 것이 가능하다.The micelles, liposomes, emulsions or nanoparticles may bind to membrane proteins due to their hydrophobicity therein. That is, the micelles, liposomes, emulsions, or nanoparticles can be wrapped by extracting the membrane protein present in the cell membrane. Therefore, it is possible to extract, solubilize, stabilize, crystallize or analyze membrane proteins from the cell membrane by the micelles.

상기 조성물은 막단백질의 추출, 용해화, 안정화, 결정화 또는 분석에 도움이 될 수 있는 버퍼 등을 추가로 포함할 수 있다.The composition may further include a buffer, etc. that can be helpful in extraction, solubilization, stabilization, crystallization or analysis of membrane proteins.

구체적으로, 상기 추출은 막단백질을 세포막으로부터 추출하는 것일 수 있다.Specifically, the extraction may be to extract the membrane protein from the cell membrane.

본 명세서에서 사용된 용어, "막단백질"이란 세포막 지질이중층으로 이입되는 단백질 또는 당단백질의 총칭이다. 이는 세포막 전체 층을 관통하거나, 표층에 위치하거나, 세포막을 배접하는 등 여러 상태로 존재하고 있다. 막단백질의 예로 효소, 펩티드호르몬과 국소호르몬 등의 수용체, 당 등의 수용담체, 이온채널, 세포막 항원 등이 있으나, 이에 제한되지 않는다.As used herein, the term "membrane protein" is a generic term for proteins or glycoproteins that are introduced into the cell membrane lipid bilayer. It penetrates the entire layer of the cell membrane, is located on the surface layer, or exists in various states such as lining the cell membrane. Examples of membrane proteins include, but are not limited to, enzymes, receptors such as peptide hormones and local hormones, receptor carriers such as sugars, ion channels, and cell membrane antigens.

상기 막단백질은 세포막 지질이중층으로 이입되는 단백질 또는 당단백질이라면 어느 것이나 포함하며, 구체적으로 LeuT (Leucine transporter), MelB(melibiose permease), β2AR (human β2 adrenergic receptor), MOR(mouse μ-opioid receptor) 또는 이들의 2 이상의 조합일 수 있으나, 이에 제한되지 않는다.The membrane protein includes any protein or glycoprotein that is introduced into the cell membrane lipid bilayer, specifically LeuT (Leucine transporter), MelB (melibiose permease), β 2 AR (human β 2 adrenergic receptor), MOR (mouse μ- opioid receptor) or a combination of two or more thereof, but is not limited thereto.

본 명세서에서 사용된 용어, "막단백질의 추출(extraction)"이란 막단백질을 세포막(membrane)으로부터 분리하는 것을 의미한다.As used herein, the term "extraction of a membrane protein" means separation of a membrane protein from a cell membrane (membrane).

본 명세서에서 사용된 용어, "막단백질의 용해화(solubilization)"란 물에 녹지 않는 막단백질을 수용액에서 미셀에 녹아들도록 하는 것을 의미한다. As used herein, the term "solubilization of membrane proteins" means to dissolve membrane proteins insoluble in water into micelles in aqueous solution.

본 명세서에서 사용된 용어, "막단백질의 안정화(stabilization)"란 막단백질의 구조, 기능이 변하지 않도록 3차 또는 4차 구조를 안정하게 보존하는 것을 의미한다.As used herein, the term "stabilization of membrane protein" refers to stably preserving the tertiary or quaternary structure so that the structure and function of the membrane protein are not changed.

본 명세서에서 사용된 용어, "막단백질의 결정화(crystallization)"란 용액에서 막단백질의 결정을 형성하는 것을 의미한다.As used herein, the term "crystallization of a membrane protein" means to form a crystal of a membrane protein in solution.

본 명세서에서 사용된 용어, "막단백질의 분석(analysis)"이란 막단백질의 구조 또는 기능을 분석하는 것을 의미한다. 상기 구체예에서, 막단백질의 분석은 공지의 방법을 이용할 수 있으며, 이에 제한되지 않으나, 예를 들어 전자현미경(electron microscopy) 또는 핵자기공명 (nuclear magnetic resonance)을 이용하여 막단백질의 구조를 분석할 수 있다.As used herein, the term "analysis of membrane protein" refers to analyzing the structure or function of a membrane protein. In the above embodiment, the analysis of the membrane protein may use a known method, but is not limited thereto, and for example, the structure of the membrane protein is analyzed using electron microscopy or nuclear magnetic resonance. can do.

또한, 본 발명의 또 다른 구체예는 하기 반응식 1에 따른 화학식 1로 표시되는 화합물의 제조 방법을 제공한다:In addition, another embodiment of the present invention provides a method for preparing a compound represented by Formula 1 according to Scheme 1:

1)하기 화학식 3의 화합물의 에폭사이드 고리 열림 반응을 통해 알칸올을 도입하여 화학식 4의 화합물을 제조하는 단계(단계 1); 및1) preparing a compound of Formula 4 by introducing an alkanol through an epoxide ring opening reaction of the compound of Formula 3 (step 1); and

2)당화 반응을 통하여 화학식 4의 화합물에 보호기가 부착된 당류를 도입한 후, 탈보호기화(deprotection) 반응을 수행하는 단계(단계 2).2) After introducing a saccharide to which a protecting group is attached to the compound of Formula 4 through a saccharification reaction, a deprotection reaction is performed (step 2).

[반응식 1][Scheme 1]

Figure pat00003
Figure pat00003

반응식 1에서,In Scheme 1,

R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고; R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group;

X1 내지 X3는 각각 독립적으로 당류(saccharide)이며; 및X 1 to X 3 are each independently a saccharide; and

L은 C1-5의 알킬기 또는 C1-5의 알콕시이고, 여기서 상기 C1-5의 알콕시는 C1-5의 알콕시 또는 당류로 치환될 수 있다.L is a C 1-5 alkyl group or C 1-5 alkoxy, wherein the C 1-5 alkoxy may be substituted with C 1-5 alkoxy or saccharide.

본 발명의 구체적인 일 실시예에서, 상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C20의 알킬기이고; X1 내지 X3는 각각 독립적으로 글루코스 또는 말토오스이며; 및 L은 C1-3의 알킬기일 수 있다.In a specific embodiment of the present invention, R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 20 alkyl group; X 1 to X 3 are each independently glucose or maltose; and L may be a C 1-3 alkyl group.

본 발명의 다른 구체적인 일 실시예에서, 상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C20의 알킬기이고; X1 내지 X3는 각각 독립적으로 글루코스 또는 말토오스이며; 및 L은 C1-3의 알콕시이고, 여기서 상기 C1-3의 알콕시는 C1-3의 알콕시 또는 글로코스로 치환된 것일 수 있다.In another specific embodiment of the present invention, R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 20 alkyl group; X 1 to X 3 are each independently glucose or maltose; and L is C 1-3 alkoxy, wherein the C 1-3 alkoxy may be substituted with C 1-3 alkoxy or glucose.

본 발명의 다른 구체적인 일 실시예에서, 상기 R1 내지 R3은 비치환된 C3-C15의 알킬기이고; X1 내지 X3는 글루코스 또는 말토오스이며; 및 L은 메틸기, 메톡시에톡시 또는 글루코스에톡시일 수 있다.In another specific embodiment of the present invention, R 1 to R 3 are an unsubstituted C 3 -C 15 alkyl group; X 1 to X 3 are glucose or maltose; and L may be a methyl group, methoxyethoxy or glucoseethoxy.

또한, 본 발명의 또 다른 구체예는 하기 반응식 2에 따른 화학식 2로 표시되는 화합물의 제조 방법을 제공한다:In addition, another embodiment of the present invention provides a method for preparing a compound represented by Formula 2 according to Scheme 2:

1)하기 화학식 5의 화합물에 보호기 Y를 부착하여 화학식 6의 화합물을 제조하는 단계(단계 1); 1) preparing a compound of Formula 6 by attaching a protecting group Y to the compound of Formula 5 (step 1);

2)화학식 6의 화합물에 요오드화알킬(alkyl iodide)을 반응시킨 후 상기 보호기 Y를 제거하여 화학식 7의 화합물을 제조하는 단계(단계 2); 및2) reacting the compound of formula 6 with an alkyl iodide and then removing the protecting group Y to prepare a compound of formula 7 (step 2); and

3)당화 반응을 통하여 화학식 7의 화합물에 보호기가 부착된 당류를 도입한 후, 탈보호기화(deprotection) 반응을 수행하는 단계(단계 3)를 포함하는 화학식 2로 표시되는 화합물을 제조하는 방법:3) A method for preparing a compound represented by Formula 2, comprising the step of introducing a saccharide having a protecting group to the compound of Formula 7 through a saccharification reaction and then performing a deprotection reaction (step 3):

[반응식 2][Scheme 2]

Figure pat00004
Figure pat00004

반응식 2에서,In Scheme 2,

R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고; R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group;

X1 내지 X3는 각각 독립적으로 당류(saccharide)이며; X 1 to X 3 are each independently a saccharide;

L은 C1-5의 알킬기 또는 C1-5의 알콕시이고, 여기서 상기 C1-5의 알콕시는 C1-5의 알콕시 또는 당류로 치환될 수 있고; 및L is a C 1-5 alkyl group or C 1-5 alkoxy, wherein the C 1-5 alkoxy may be substituted with C 1-5 alkoxy or saccharide; and

Y는 보호기일 수 있다.Y may be a protecting group.

본 발명의 구체적인 일 실시예에서, 상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C20의 알킬기이고; X1 내지 X3는 각각 독립적으로 글루코스 또는 말토오스이며; 및 L은 C1-3의 알킬기일 수 있다.In a specific embodiment of the present invention, R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 20 alkyl group; X 1 to X 3 are each independently glucose or maltose; and L may be a C 1-3 alkyl group.

본 발명의 다른 구체적인 일 실시예에서, 상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C20의 알킬기이고; X1 내지 X3는 각각 독립적으로 글루코스 또는 말토오스이며; 및 L은 C1-3의 알콕시이고, 여기서 상기 C1-3의 알콕시는 C1-3의 알콕시 또는 글루코스로 치환된 것일 수 있다.In another specific embodiment of the present invention, R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 20 alkyl group; X 1 to X 3 are each independently glucose or maltose; and L is C 1-3 alkoxy, wherein the C 1-3 alkoxy may be substituted with C 1-3 alkoxy or glucose.

본 발명의 다른 구체적인 일 실시예에서, 상기 R1 내지 R3은 비치환된 C3-C15의 알킬기이고; X1 내지 X3는 글루코스 또는 말토오스이며; 및 L은 메틸기, 메톡시에톡시 또는 글루코스에톡시일 수 있다.In another specific embodiment of the present invention, R 1 to R 3 are an unsubstituted C 3 -C 15 alkyl group; X 1 to X 3 are glucose or maltose; and L may be a methyl group, methoxyethoxy or glucoseethoxy.

상기 반응식 1 또는 반응식 2에서 상기 보호기 Y는 tert-butyldimethylsilyl(TBDMS)일 수 있고, 상기 보호기가 부착된 당류는 퍼벤조일화된 말토오스(perbenzoylated maltose 또는 글루코스(perbenzoylated glucose)일 수 있다.In Scheme 1 or Scheme 2, the protecting group Y may be tert-butyldimethylsilyl (TBDMS), and the saccharide to which the protecting group is attached may be perbenzoylated maltose or perbenzoylated glucose.

본 발명의 구체예들에 따른 트리스(하이드록시메틸)메테인 중심 구조 기반의 화합물을 이용하면 기존 화합물 대비 막단백질을 수용액에서 장기간 안정적으로 보관할 수 있고, 이를 통해 그 기능분석 및 구조 분석에 활용될 수 있다.By using the compound based on the tris (hydroxymethyl) methane structure according to the embodiments of the present invention, the membrane protein can be stored stably in an aqueous solution for a long period of time compared to the existing compound, which can be used for functional analysis and structural analysis. can

막단백질 구조 및 기능 분석은 현 생물학 및 화학에서 가장 관심을 갖고 있는 분야 중 하나이므로, 신약 개발과 긴밀한 관계가 있는 단백질 구조 연구에 응용이 가능하다.Membrane protein structure and function analysis is one of the most interesting fields in current biology and chemistry, so it can be applied to protein structure research that is closely related to drug development.

또한, 본 발명의 구체예들에 따른 화합물은 쉽게 구할 수 있는 출발물질로부터 간단한 방법으로 합성이 가능하므로, 막단백질 연구를 위한 화합물의 대량 생산이 가능하다.In addition, since the compounds according to the embodiments of the present invention can be synthesized in a simple manner from readily available starting materials, mass production of compounds for membrane protein research is possible.

도 1는 본 발명의 실시예 1에 따른 E-GTMs의 합성스킴을 나타낸 도이다.
도 2는 본 발명의 실시예 1에 따른 M-GTMs의 합성스킴을 나타낸 도이다.
도 3은 E-GTMs에 의해 형성된 미셀의 크기 분포도를 나타낸 도이다.
도 4는 M-GTMs에 의해 형성된 미셀의 크기 분포도를 나타낸 도이다.
도 5는 농도 및 온도에 따른 GTMs에 의해 형성된 미셀의 크기를 나타낸 도이다.
도 6은 M-GTMs 또는 DDM에 의한 수용액에서의 LeuT (Leucine transporter) 구조 안정성을 CMC + 0.04 wt% (a)와 CMC + 0.2 wt% (b) 에서 13일간 주기적으로 측정한 결과를 나타낸 것이다.
도 7은 E-GTMs 또는 DDM에 의한 수용액에서의 LeuT (Leucine transporter) 구조 안정성을 CMC + 0.04 wt% (a)와 CMC + 0.2 wt% (b)에서 13일간 주기적으로 측정한 결과를 나타낸 것이다.
도 8은 M-/E-GTMs 또는 DDM에 의한 온도에 따른 MelB 단백질 가용화 능력을 측정한 결과를 나타낸 것이다.
도 9는 M-/E-GTMs GTMs 또는 DDM에 의한 수용액에서의 β2AR 구조 안정성을 CMC + 0.2 wt%에서 5일간 주기적으로 측정한 결과를 나타낸 것이다.
도 10은 M-GTMs 또는 DDM에 의한 수용액에서의 MOR 구조 안정성을 CMC + 0.1 wt%에서 3일간 주기적으로 측정한 결과를 나타낸 것이다.
1 is a diagram showing a synthesis scheme of E-GTMs according to Example 1 of the present invention.
2 is a diagram showing a synthesis scheme of M-GTMs according to Example 1 of the present invention.
3 is a diagram showing the size distribution of micelles formed by E-GTMs.
4 is a diagram showing the size distribution of micelles formed by M-GTMs.
5 is a diagram showing the size of micelles formed by GTMs according to concentration and temperature.
6 shows the results of periodically measuring LeuT (Leucine transporter) structural stability in aqueous solution by M-GTMs or DDM at CMC + 0.04 wt% (a) and CMC + 0.2 wt% (b) for 13 days.
7 shows the results of periodically measuring the structural stability of LeuT (Leucine transporter) in aqueous solution by E-GTMs or DDM at CMC + 0.04 wt% (a) and CMC + 0.2 wt% (b) for 13 days.
8 shows the results of measuring MelB protein solubilization ability according to temperature by M-/E-GTMs or DDM.
9 shows the results of periodically measuring the stability of the β 2 AR structure in an aqueous solution by M-/E-GTMs GTMs or DDM at CMC + 0.2 wt% for 5 days.
10 shows the results of periodically measuring the MOR structure stability in aqueous solution by M-GTMs or DDM at CMC + 0.1 wt% for 3 days.

이하 본 발명을 하기 실시예에서 보다 상세하게 기술한다. 다만, 하기 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 권리범위를 제한하거나 한정하는 것이 아니다. 본 발명의 상세한 설명 및 실시예로부터 본 발명이 속하는 기술분야의 통상의 기술자가 용이하게 유추할 수 있는 것은 본 발명의 권리범위에 속하는 것으로 해석된다.Hereinafter, the present invention will be described in more detail in the following examples. However, the following examples are merely illustrative of the content of the present invention and do not limit or limit the scope of the present invention. What a person skilled in the art can easily infer from the detailed description and examples of the present invention is construed as belonging to the scope of the present invention.

<실시예 1> E-GTM-Is의 합성 방법<Example 1> Synthesis method of E-GTM-Is

E-GTM-Is의 합성 스킴을 도 1에 나타내었다. 하기의 합성 방법에 따라 E-GTM-Is의 3종의 화합물을 합성하였다.The synthesis scheme of E-GTM-Is is shown in FIG. 1 . Three compounds of E-GTM-Is were synthesized according to the following synthesis method.

<1-1> 에폭사이드 고리 열림 반응의 일반 합성 절차 (도 1의 단계 a)<1-1> General synthetic procedure of epoxide ring opening reaction (step a in FIG. 1)

NaH(4.5당량)를 불활성 대기 하에 알칸올(ROH; 6.0당량)에 첨가하였다. 혼합물을 실온에서 30분 동안 교반한 다음 글리시딜 에테르(A1; 1.0 당량)를 적가하였다. 반응 혼합물을 50

Figure pat00005
에서 24시간 동안 교반하였다. 빙냉 1M HCl을 적가하여 반응을 ?칭하였다. 희석된 반응 혼합물을 에틸아세테이트로 세척하고 혼합된 유기 분획을 염수로 세척하고 무수 Na2SO4로 건조시켰다. 유기 용매를 회전 증발하여 얻어진 유상 잔류물을 컬럼 크로마토그래피 정제하여 목적 화합물물 B를 수득하였다. NaH (4.5 equiv) was added to the alkanol (ROH; 6.0 equiv) under an inert atmosphere. The mixture was stirred at room temperature for 30 min, then glycidyl ether (A1; 1.0 eq.) was added dropwise. 50 of the reaction mixture
Figure pat00005
was stirred for 24 hours. The reaction was quenched by dropwise addition of ice-cold 1M HCl. The diluted reaction mixture was washed with ethyl acetate and the combined organic fractions were washed with brine and dried over anhydrous Na 2 SO 4 . The oily residue obtained by rotary evaporation of the organic solvent was purified by column chromatography to obtain the target compound B.

<1-2> 당화(glycosycosylation)반응 의 일반 합성 절차 (도 1의 단계 b)<1-2> General synthetic procedure of glycosycosylation reaction (step b of FIG. 1)

N2 대기하에서, 무수 CH2Cl2에 화합물 B(1당량) 및 AgOTf (3.6 당량)의 혼합물을 -45°C에서 교반하였다. 그 후 CH2Cl2에 용해된 퍼벤조일화 말토실브로마이드 (3.6 당량)를 이 현탁액에 첨가하였다. -45°C에서 5분동안 교반한 다음 0°C에서 30분동안 교반하였다. 반응 완료 후 (TLC를 통해 분석함), 피리딘을 반응 혼합물에 첨가하였다. 반응 혼합물을 CH2Cl2 (30 mL)로 희석한 후 셀 라이트로 여과하였다. 여과액을 1.0 M Na2S2O3 수용액, 0.1 M HCl 수용액 및 염수로 연속적으로 세척하였다. 그 다음 유기층을 무수 Na2SO4로 건조시키고 용매를 회전 증발로 제거하였다. 생성된 잔류물을 실리카 겔 컬럼 크로마토그래피 (EtOAc/헥산)로 정제하여 당화된 목적 화합물을 수득하였다.Under N 2 atmosphere, a mixture of compound B (1 eq) and AgOTf (3.6 eq) in anhydrous CH 2 Cl 2 was stirred at -45 °C. Then perbenzoylated maltosylbromide (3.6 eq) dissolved in CH 2 Cl 2 was added to this suspension. The mixture was stirred at -45 °C for 5 min and then at 0 °C for 30 min. After completion of the reaction (analyzed by TLC), pyridine was added to the reaction mixture. The reaction mixture was diluted with CH 2 Cl 2 (30 mL) and then filtered through celite. The filtrate was washed successively with 1.0 M aqueous Na 2 S 2 O 3 aqueous solution, 0.1 M aqueous HCl solution and brine. Then the organic layer was dried over anhydrous Na 2 SO 4 and the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography (EtOAc/hexane) to obtain the saccharified target compound.

<1-3> 탈보호기화 반응 (deprotection reaction)을 위한 일반 합성 절차 (도 1의 단계 c)<1-3> General synthetic procedure for deprotection reaction (step c of FIG. 1)

O-벤조일화된 화합물을 무수 CH2Cl2로 용해시킨 다음 MeOH를 지속적인 침전이 나타날때까지 천천히 첨가하였다. 상기 반응 혼합물에 0.5 M의 메탄올성 용액(methanolic solution)인 NaOMe를 최종 농도가 0.05 M이 되도록 첨가하였다. 반응 혼합물을 실온에서 6시간 동안 교반시켰다. 반응 완료 후, 반응 혼합물을 Amberlite IR-120 (H+ form) resin을 이용하여 중화시켰다. 여과하여 resin을 제거하고, MeOH로 세척하고, 진공 조건(in vacuo)에서 여과물로부터 용매를 제거하였다. 잔여물을 실리카 겔 컬럼크로마토그래피(CH2Cl2/MeOH)를 이용하여 정제하여 목적 화합물을 얻었다. The O -benzoylated compound was dissolved with anhydrous CH 2 Cl 2 and then MeOH was added slowly until persistent precipitation appeared. NaOMe, a methanolic solution of 0.5 M, was added to the reaction mixture to a final concentration of 0.05 M. The reaction mixture was stirred at room temperature for 6 hours. After completion of the reaction, the reaction mixture was neutralized using Amberlite IR-120 (H + form) resin. The resin was removed by filtration, washed with MeOH, and the solvent was removed from the filtrate under vacuum conditions ( in vacuo ). The residue was purified using silica gel column chromatography (CH 2 Cl 2 /MeOH) to obtain the target compound.

<제조예 1> E-GTM-I10의 합성<Preparation Example 1> Synthesis of E-GTM-I10

<1-1> 화합물 B1((13R)-17-(((R)-3-(decyloxy)-2-hydroxypropoxy)methyl)-17-ethyl-11,15,19,23-tetraoxatritriacontane-13,21-diol)의 합성<1-1> Compound B1((13R)-17-(((R)-3-(decyloxy)-2-hydroxypropoxy)methyl)-17-ethyl-11,15,19,23-tetraoxatritriacontane-13,21 -diol) synthesis

실시예 1-1에 따라 화합물 B1을 30%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.93 (t, J = 4.0 Hz, 3H), 3.51-3.33 (m, 24H), 3.10 (s br, 3H), 1.56 (quin, J = 8.0 Hz, 6H), 1.39 (q, J = 8.0 Hz, 2H), 1.36-1.20 (m, 42H), 0.88 (t, J = 8.0 Hz, 9H), 0.84 (t, J = 8.0 Hz, 3H); 13 C NMR (100 MHz, CDCl3): δ 72.9, 72.6, 72.2, 72.0, 71.9, 70.7, 69.4, 64.4, 43.5, 32.1, 29.8, 29.7, 29.6, 29.5, 26.3, 23.4, 22.8, 14.3.According to Example 1-1, compound B1 was synthesized in a yield of 30%. 1 H NMR (400 MHz, CDCl 3 ): δ 3.93 (t, J = 4.0 Hz, 3H), 3.51-3.33 (m, 24H), 3.10 (s br, 3H), 1.56 (quin, J = 8.0 Hz, 6H), 1.39 (q, J = 8.0 Hz, 2H), 1.36-1.20 (m, 42H), 0.88 (t, J = 8.0 Hz, 9H), 0.84 (t, J = 8.0 Hz, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 72.9, 72.6, 72.2, 72.0, 71.9, 70.7, 69.4, 64.4, 43.5, 32.1, 29.8, 29.7, 29.6, 29.5, 26.3, 23.4, 22.8, 14.3.

<1-2> E-GTM-I10a의 합성<1-2> Synthesis of E-GTM-I10a

실시예 1-2에 따라 E-GTM-I10a를 66%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.13 (t, J = 6.0 Hz, 6H), 8.02 (d, J = 8.0 Hz, 6H), 7.87-7.85 (m, 12H), 7.81-7.74 (m, 15H), 7.65-7.62 (m, 6H), 7.56-7.47 (m, 6H), 7.43-7.36 (m, 24H), 7.31-7.15 (m, 30H), 6.12 (t, J = 10.0 Hz, 3H), 5.75-5.67 (m, 10H), 5.39-5.22 (m, 7H), 5.10-4.90 (m, 5H), 4.78-4.62 (m, 3H), 4.49-4.41 (m, 7H), 4.40-4.35 (m, 4H), 4.32-4.22 (m, 4H), 4.16-4.05 (m, 3H), 3.97-3.74 (m, 5H), 3.43-2.91 (m, 18H), 1.42-1.38 (m, 2H), 1.30-1.05 (m, 48H), 0.88 (t, J = 8.0 Hz, 9H), 0.65-0.52 (m, 3H); 13 C NMR (100 MHz, CDCl3): δ 166.2, 165.8, 165.6, 165.5, 165.1, 165.0, 133.4, 133.3, 133.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.4, 128.9, 128.8, 128.7, 128.4, 128.3, 128.2, 128.1, 100.9, 100.6, 96.5, 75.2, 73.3, 72.8, 72.6, 71.8, 71.7, 70.9, 70.7, 70.0, 69.1, 63.6, 62.5, 32.0, 29.7, 29.6, 29.4, 26.1, 26.0, 25.8, 22.7, 14.2.According to Example 1-2, E-GTM-I10a was synthesized in a yield of 66%. 1 H NMR (400 MHz, CDCl 3 ): δ 8.13 (t, J = 6.0 Hz, 6H), 8.02 (d, J = 8.0 Hz, 6H), 7.87-7.85 (m, 12H), 7.81-7.74 (m) , 15H), 7.65-7.62 (m, 6H), 7.56-7.47 (m, 6H), 7.43-7.36 (m, 24H), 7.31-7.15 (m, 30H), 6.12 (t, J = 10.0 Hz, 3H) ), 5.75-5.67 (m, 10H), 5.39-5.22 (m, 7H), 5.10-4.90 (m, 5H), 4.78-4.62 (m, 3H), 4.49-4.41 (m, 7H), 4.40-4.35 (m, 4H), 4.32-4.22 (m, 4H), 4.16-4.05 (m, 3H), 3.97-3.74 (m, 5H), 3.43-2.91 (m, 18H), 1.42-1.38 (m, 2H) , 1.30-1.05 (m, 48H), 0.88 (t, J = 8.0 Hz, 9H), 0.65-0.52 (m, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.2, 165.8, 165.6, 165.5, 165.1, 165.0, 133.4, 133.3, 133.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.4, 128.9, 128.8, 128.7, 128.4, 128.3, 128.2, 128.1, 100.9, 100.6, 96.5, 75.2, 73.3, 72.8, 72.6, 71.8, 71.7, 70.9, 70.7, 70.0, 69.1, 63.6, 62.5, 32.0, 29.7, 29.6, 29.4, 26.1, 26.0, 25.8, 22.7, 14.2.

<1-3> E-GTM-I10의 합성<1-3> Synthesis of E-GTM-I10

실시예 1-3에 따라 화합물 E-GTM-I10를 89%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.18 (d, J = 4.0 Hz, 3H), 4.63-4.35 (m, 3H), 4.08-4.00 (m, 3H), 3.88-3.82 (m, 12H), 3.68-3.51 (m, 25H), 3.49-3.44 (m, 9H), 3.39-3.30 (m, 9H), 3.29-3.25 (m, 4H) 1.57-1.51 (m, 6H), 1.42-1.20 (m, 44H), 0.88 (t, J = 12.0 Hz, 12H); 13 C NMR (100 MHz, CD3OD): δ 104.1 102.9, 81.2, 78.3, 77.8, 76.6, 75.1, 74.8, 74.1, 72.8, 72.4, 72.0, 71.5, 70.5, 62.8, 62.3, 33.2, 30.9, 30.8, 30.7, 30.6, 27.4, 27.3, 23.8, 14.7; HRMS (MALDI + ): calcd. for C81H152O39 [M+Na]+ 1771.9803, found 1771.8369.According to Example 1-3, compound E-GTM-I10 was synthesized in a yield of 89%. 1 H NMR (400 MHz, CD 3 OD): δ 5.18 (d, J = 4.0 Hz, 3H), 4.63-4.35 (m, 3H), 4.08-4.00 (m, 3H), 3.88-3.82 (m, 12H) ), 3.68-3.51 (m, 25H), 3.49-3.44 (m, 9H), 3.39-3.30 (m, 9H), 3.29-3.25 (m, 4H) 1.57-1.51 (m, 6H), 1.42-1.20 ( m, 44H), 0.88 (t, J = 12.0 Hz, 12H); 13 C NMR (100 MHz, CD 3 OD): δ 104.1 102.9, 81.2, 78.3, 77.8, 76.6, 75.1, 74.8, 74.1, 72.8, 72.4, 72.0, 71.5, 70.5, 62.8, 62.3, 33.2, 30.9, 30.8, 30.7, 30.6, 27.4, 27.3, 23.8, 14.7; HRMS (MALDI + ) : calcd. for C 81 H 152 O 39 [M+Na] + 1771.9803, found 1771.8369.

<제조예 2> E-GTM-I11의 합성<Preparation Example 2> Synthesis of E-GTM-I11

<2-1> 화합물 B2((14R)-18-ethyl-18-(((R)-2-hydroxy-3-(undecyloxy)propoxy)methyl)-12,16,20,24-tetraoxapentatriacontane-14, 22-diol)의 합성<2-1> Compound B2((14R)-18-ethyl-18-(((R)-2-hydroxy-3-(undecyloxy)propoxy)methyl)-12,16,20,24-tetraoxapentatriacontane-14, 22-diol) synthesis

실시예 1-1에 따라 화합물 B2를 33%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.93 (t, J = 4.0 Hz, 3H), 3.51-3.33 (m, 24H), 3.04 (s br, 3H), 1.56 (quin, J = 8.0 Hz, 6H), 1.39 (q, J = 8.0 Hz, 2H), 1.36-1.20 (m, 48H), 0.88 (t, J = 8.0 Hz, 9H), 0.84 (t, J = 8.0 Hz, 3H); 13 C NMR (100 MHz, CDCl3): δ 72.9, 72.6, 72.1, 72.0, 71.9, 70.7, 69.4, 64.3, 43.5, 32.1, 29.8, 29.7, 29.6, 29.5, 26.3, 23.4, 22.8, 14.3.According to Example 1-1, compound B2 was synthesized in a yield of 33%. 1 H NMR (400 MHz, CDCl 3 ): δ 3.93 (t, J = 4.0 Hz, 3H), 3.51-3.33 (m, 24H), 3.04 (s br, 3H), 1.56 (quin, J = 8.0 Hz, 6H), 1.39 (q, J = 8.0 Hz, 2H), 1.36-1.20 (m, 48H), 0.88 (t, J = 8.0 Hz, 9H), 0.84 (t, J = 8.0 Hz, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 72.9, 72.6, 72.1, 72.0, 71.9, 70.7, 69.4, 64.3, 43.5, 32.1, 29.8, 29.7, 29.6, 29.5, 26.3, 23.4, 22.8, 14.3.

<2-2> E-GTM-I11a의 합성<2-2> Synthesis of E-GTM-I11a

실시예 1-2에 따라 E-GTM-I11a를 64%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.11 (t, J = 6.0 Hz, 6H), 8.06 (d, J = 8.0 Hz, 6H), 7.86-7.84 (d, J = 8.0 Hz, 9H), 7.79-7.70 (m, 15H), 7.69-7.62 (m, 6H), 7.57-7.49 (m, 7H), 7.45-7.37 (m, 24H), 7.35-7.12 (m, 32H), 6.11 (t, J = 8.0 Hz, 3H), 5.79-5.75 (m, 6H), 5.69 (t, J = 10.0 Hz, 3H), 5.31-5.27 (m, 6H), 5.09-4.97 (m, 3H), 4.92 (t, J = 8.0 Hz, 3H), 4.78-4.76 (m, 3H), 4.53-4.47 (m, 6H), 4.43-4.26 (m, 6H), 4.13-4.05 (m, 4H), 3.97-3.74 (m, 3H), 3.53-2.82 (m, 23H), 1.44-1.38 (m, 2H), 1.30-1.05 (m, 54H), 0.88 (t, J = 8.0 Hz, 9H), 0.65-0.52 (m, 3H); 13 C NMR (100 MHz, CDCl3): δ 166.2, 166.1, 165.8, 165.6, 165.5, 165.1, 133.5, 133.4, 133.3, 133.1, 133.0, 130.0, 129.9, 129.7, 129.6, 129.5, 129.4, 129.3, 128.9, 128.8, 128.7, 128.6, 128.4, 128.3, 128.2, 128.1, 100.6, 100.4, 96.5, 73.3, 72.7, 72.6, 71.8, 71.7, 70.9, 70.7, 70.0, 69.1, 63.6, 62.5, 60.4, 53.4, 32.0, 29.7, 29.6, 29.5, 29.4, 26.1, 26.0, 22.7, 21.1, 14.2.According to Example 1-2, E-GTM-I11a was synthesized in a yield of 64%. 1 H NMR (400 MHz, CDCl 3 ): δ 8.11 (t, J = 6.0 Hz, 6H), 8.06 (d, J = 8.0 Hz, 6H), 7.86-7.84 (d, J = 8.0 Hz, 9H), 7.79-7.70 (m, 15H), 7.69-7.62 (m, 6H), 7.57-7.49 (m, 7H), 7.45-7.37 (m, 24H), 7.35-7.12 (m, 32H), 6.11 (t, J ) = 8.0 Hz, 3H), 5.79-5.75 (m, 6H), 5.69 (t, J = 10.0 Hz, 3H), 5.31-5.27 (m, 6H), 5.09-4.97 (m, 3H), 4.92 (t, J = 8.0 Hz, 3H), 4.78-4.76 (m, 3H), 4.53-4.47 (m, 6H), 4.43-4.26 (m, 6H), 4.13-4.05 (m, 4H), 3.97-3.74 (m, 3H), 3.53-2.82 (m, 23H), 1.44-1.38 (m, 2H), 1.30-1.05 (m, 54H), 0.88 (t, J = 8.0 Hz, 9H), 0.65-0.52 (m, 3H) ; 13 C NMR (100 MHz, CDCl 3 ): δ 166.2, 166.1, 165.8, 165.6, 165.5, 165.1, 133.5, 133.4, 133.3, 133.1, 133.0, 130.0, 129.9, 129.7, 129.6, 129.5, 129.4, 129.3, 128.9, 128.8, 128.7, 128.6, 128.4, 128.3, 128.2, 128.1, 100.6, 100.4, 96.5, 73.3, 72.7, 72.6, 71.8, 71.7, 70.9, 70.7, 70.0, 69.1, 63.6, 62.5, 60.4, 53.4, 32.0, 29.7, 29.6, 29.5, 29.4, 26.1, 26.0, 22.7, 21.1, 14.2.

<2-3> E-GTM-I11의 합성<2-3> Synthesis of E-GTM-I11

실시예 1-3에 따라 화합물 E-GTM-I11를 90%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.18 (s, 3H), 4.54-4.48 (m, 3H), 4.02-3.90 (m, 3H), 3.87-3.63 (m, 9H), 3.61-3.47 (m, 35H), 3.39-3.30 (m, 9H), 3.29-3.21 (m, 7H) 1.57-1.51 (m, 6H), 1.42-1.20 (m, 50H), 0.88 (t, J = 8.0 Hz, 12H); 13 C NMR (100 MHz, CD3OD): δ 104.2, 103.7, 102.9, 81.2, 78.4, 77.7, 76.7, 75.1, 74.8, 74.2, 72.9, 72.8, 72.5, 72.1, 71.5, 70.5, 62.8, 62.3, 44.8, 44.7, 33.2, 30.9, 30.8, 30.7, 27.4, 23.9, 14.7; HRMS (MALDI + ): calcd. for C84H158O39 [M+Na]+ 1814.0272, found 1813.8971.According to Example 1-3, compound E-GTM-I11 was synthesized in a yield of 90%. 1 H NMR (400 MHz, CD 3 OD): δ 5.18 (s, 3H), 4.54-4.48 (m, 3H), 4.02-3.90 (m, 3H), 3.87-3.63 (m, 9H), 3.61-3.47 (m, 35H), 3.39-3.30 (m, 9H), 3.29-3.21 (m, 7H) 1.57-1.51 (m, 6H), 1.42-1.20 (m, 50H), 0.88 (t, J = 8.0 Hz, 12H); 13 C NMR (100 MHz, CD 3 OD): δ 104.2, 103.7, 102.9, 81.2, 78.4, 77.7, 76.7, 75.1, 74.8, 74.2, 72.9, 72.8, 72.5, 72.1, 71.5, 70.5, 62.8, 62.3, 44.8 , 44.7, 33.2, 30.9, 30.8, 30.7, 27.4, 23.9, 14.7; HRMS (MALDI + ) : calcd. for C 84 H 158 O 39 [M+Na] + 1814.0272, found 1813.8971.

<제조예 3> E-GTM-I12의 합성<Preparation Example 3> Synthesis of E-GTM-I12

<3-1> 화합물 B3((15R)-19-(((R)-3-(dodecyloxy)-2-hydroxypropoxy)methyl)-19-ethyl-13,17,21,25-tetraoxaheptatriacontane-15, 23-diol)의 합성<3-1> Compound B3((15R)-19-(((R)-3-(dodecyloxy)-2-hydroxypropoxy)methyl)-19-ethyl-13,17,21,25-tetraoxaheptatriacontane-15, 23 -diol) synthesis

실시예 1-1에 따라 화합물 B3을 32%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.93 (t, J = 4.0 Hz, 3H), 3.51-3.33 (m, 24H), 2.94 (s br, 3H), 1.56 (quin, J = 8.0 Hz, 6H), 1.39 (q, J = 8.0 Hz, 2H), 1.36-1.20 (m, 54H), 0.88 (t, J = 8.0 Hz, 9H), 0.84 (t, J = 8.0 Hz, 3H); 13 C NMR (100 MHz, CDCl3): δ 73.0, 72.9, 72.1, 72.0, 71.9, 70.7, 69.4, 64.4, 43.5, 32.1, 29.8, 29.7, 29.6, 29.5, 26.2, 23.3, 22.8, 14.3.According to Example 1-1, compound B3 was synthesized in a yield of 32%. 1 H NMR (400 MHz, CDCl 3 ): δ 3.93 (t, J = 4.0 Hz, 3H), 3.51-3.33 (m, 24H), 2.94 (s br, 3H), 1.56 (quin, J = 8.0 Hz, 6H), 1.39 (q, J = 8.0 Hz, 2H), 1.36-1.20 (m, 54H), 0.88 (t, J = 8.0 Hz, 9H), 0.84 (t, J = 8.0 Hz, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 73.0, 72.9, 72.1, 72.0, 71.9, 70.7, 69.4, 64.4, 43.5, 32.1, 29.8, 29.7, 29.6, 29.5, 26.2, 23.3, 22.8, 14.3.

<3-2> E-GTM-I12a의 합성<3-2> Synthesis of E-GTM-I12a

실시예 1-2에 따라 E-GTM-I12a를 66%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.11 (t, J = 6.0 Hz, 6H), 8.07 (d, J = 8.0 Hz, 6H), 7.86-7.84 (d, J = 8.0 Hz, 9H), 7.79-7.70 (m, 12H), 7.69-7.62 (m, 6H), 7.57-7.49 (m, 6H), 7.47-7.37 (m, 28H), 7.35-7.19 (m, 32H), 6.12 (t, J = 8.0 Hz, 3H), 5.77-5.74 (m, 6H), 5.67 (t, J = 10.0 Hz, 3H), 5.31-5.24 (m, 6H), 5.06-4.93 (m, 3H), 4.89 (t, J = 8.0 Hz, 3H), 4.74-4.69 (m, 3H), 4.53-4.45 (m, 6H), 4.43-4.26 (m, 6H), 4.13-4.02 (m, 4H), 3.97-3.76 (m, 3H), 3.53-2.82 (m, 23H), 1.44-1.38 (m, 2H), 1.30-1.05 (m, 60H), 0.88 (t, J = 8.0 Hz, 9H), 0.65-0.52 (m, 3H); 13 C NMR (100 MHz, CDCl3): δ 166.3, 166.0, 165.8, 165.6, 165.2, 133.5, 133.2, 130.2, 130.1, 130.0, 129.9, 129.7, 129.6, 129.1, 128.9, 128.8, 128.6, 128.3, 128.2, 100.5, 100.4, 96.5, 73.4, 72.7, 72.6, 71.8, 71.7, 70.9, 70.7, 69.1, 63.6, 62.5, 60.4, 53.4, 32.0, 29.8, 29.6, 29.5, 29.4, 26.2, 26.0, 22.7, 21.2, 14.2.According to Example 1-2, E-GTM-I12a was synthesized in a yield of 66%. 1 H NMR (400 MHz, CDCl 3 ): δ 8.11 (t, J = 6.0 Hz, 6H), 8.07 (d, J = 8.0 Hz, 6H), 7.86-7.84 (d, J = 8.0 Hz, 9H), 7.79-7.70 (m, 12H), 7.69-7.62 (m, 6H), 7.57-7.49 (m, 6H), 7.47-7.37 (m, 28H), 7.35-7.19 (m, 32H), 6.12 (t, J ) = 8.0 Hz, 3H), 5.77-5.74 (m, 6H), 5.67 (t, J = 10.0 Hz, 3H), 5.31-5.24 (m, 6H), 5.06-4.93 (m, 3H), 4.89 (t, J = 8.0 Hz, 3H), 4.74-4.69 (m, 3H), 4.53-4.45 (m, 6H), 4.43-4.26 (m, 6H), 4.13-4.02 (m, 4H), 3.97-3.76 (m, 3H), 3.53-2.82 (m, 23H), 1.44-1.38 (m, 2H), 1.30-1.05 (m, 60H), 0.88 (t, J = 8.0 Hz, 9H), 0.65-0.52 (m, 3H) ; 13 C NMR (100 MHz, CDCl 3 ): δ 166.3, 166.0, 165.8, 165.6, 165.2, 133.5, 133.2, 130.2, 130.1, 130.0, 129.9, 129.7, 129.6, 129.1, 128.9, 128.8, 128.6, 128.3, 128.2, 100.5, 100.4, 96.5, 73.4, 72.7, 72.6, 71.8, 71.7, 70.9, 70.7, 69.1, 63.6, 62.5, 60.4, 53.4, 32.0, 29.8, 29.6, 29.5, 29.4, 26.2, 26.0, 22.7, 21.2, 14.2.

<3-3> E-GTM-I12의 합성<3-3> Synthesis of E-GTM-I12

실시예 1-3에 따라 화합물 E-GTM-I12를 90%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.17 (d, J = 4.0 Hz, 3H), 4.56-4.47 (m, 3H), 4.02-3.90 (m, 3H), 3.87-3.79 (m, 9H), 3.69-3.51 (m, 27H), 3.49-3.40 (m, 12H), 3.39-3.34 (m, 9H), 3.27-3.25 (m, 3H), 1.57-1.51 (m, 6H), 1.42-1.20 (m, 56H), 0.88 (t, J = 8.0 Hz, 12H); 13 C NMR (100 MHz, CD3OD): δ 104.2, 103.0, 81.4, 78.2, 77.8, 76.8, 76.4, 75.2, 75.0, 74.9, 74.3, 73.1, 72.9, 71.9, 71.6, 62.9, 62.4, 33.2, 30.9, 30.8, 30.6, 27.4, 23.9, 14.6; HRMS (MALDI + ): calcd. for C87H164O39 [M+Na]+ 1856.0742, found 1855.9846.According to Example 1-3, compound E-GTM-I12 was synthesized in a yield of 90%. 1 H NMR (400 MHz, CD 3 OD): δ 5.17 (d, J = 4.0 Hz, 3H), 4.56-4.47 (m, 3H), 4.02-3.90 (m, 3H), 3.87-3.79 (m, 9H) ), 3.69-3.51 (m, 27H), 3.49-3.40 (m, 12H), 3.39-3.34 (m, 9H), 3.27-3.25 (m, 3H), 1.57-1.51 (m, 6H), 1.42-1.20 (m, 56H), 0.88 (t, J = 8.0 Hz, 12H); 13 C NMR (100 MHz, CD 3 OD): δ 104.2, 103.0, 81.4, 78.2, 77.8, 76.8, 76.4, 75.2, 75.0, 74.9, 74.3, 73.1, 72.9, 71.9, 71.6, 62.9, 62.4, 33.2, 30.9 , 30.8, 30.6, 27.4, 23.9, 14.6; HRMS (MALDI + ) : calcd. for C 87 H 164 O 39 [M+Na] + 1856.0742, found 1855.9846.

<실시예 2> E-GTM-Os의 합성 방법<Example 2> Synthesis method of E-GTM-Os

E-GTM-Os의 합성 스킴을 도 1에 나타내었다. 하기의 합성 방법에 따라 E-GTM-Os의 3종의 화합물을 합성하였다.The synthesis scheme of E-GTM-Os is shown in FIG. 1 . Three types of compounds of E-GTM-Os were synthesized according to the following synthesis method.

<2-1> 1차 알코올의 TBDMS 보호기화 반응의 일반 절차(도 1의 단계 d)<2-1> General procedure of TBDMS protective vaporization reaction of primary alcohol (step d in FIG. 1)

THF에 용해된 헥사-올 유도체(A2; 3,3'-((2-((2,3-다이하이드록시프로폭시)메틸)-2-에틸프로판-1,3-다이일)비스(옥시))비스(프로판-1,2-다이올))를 아르곤 하 0

Figure pat00006
에서 이미다졸(6.0 당량)을 조금씩 첨가하였다. 5분 후, DCM 중 TBDMSCl(3.6당량)의 용액을 첨가하고 생성된 혼합물을 실온에서 1시간 동안 교반한 다음 얼음으로 ?칭하였다. 증류수로 추가 희석한 후, 반응 혼합물을 DCM으로 추출하였다. 혼합된 DCM 분획을 빙냉 HCl(0.1M), 물 및 염수로 연속적으로 세척한 다음 무수 Na2SO4로 건조시켰다. 반응 혼합물로부터 용매를 제거한 후 얻어진 유상 잔류물을 크로마토그래피로 정제하여 목적 화합물 C를 74% 수율로 수득하였다. 1 H NMR (400 MHz, CDCl3): δ 3.73 (quin, J = 4.0 Hz, 3H), 3.54 (d, J = 8.0 Hz, 6H), 3.43-3.35 (m, 6H), 3.33-3.27 (m, 6H), 2.87 (s br, 3H), 1.33 (quin, J = 8.0 Hz, 2H), 0.83 (s, 27H), 0.76 (t, J = 8.0 Hz, 3H), 0.01 (s, 18H); 13 C NMR (100 MHz, CDCl3): δ 72.4, 72.3, 72.0, 70.5, 70.4, 64.0, 43.3, 43.2, 25.9, 25.7, 23.2, 18.3, 18.0, 7.7, 7.6, -4.7, -4.8, -5.4.Hexa-ol derivative (A2; 3,3'-((2-((2,3-dihydroxypropoxy)methyl)-2-ethylpropane-1,3-diyl)bis(oxy )) bis(propane-1,2-diol)) under argon 0
Figure pat00006
imidazole (6.0 equivalents) was added little by little. After 5 min, a solution of TBDMSCl (3.6 eq) in DCM was added and the resulting mixture was stirred at room temperature for 1 h and then quenched with ice. After further dilution with distilled water, the reaction mixture was extracted with DCM. The combined DCM fractions were washed successively with ice-cold HCl (0.1M), water and brine, then dried over anhydrous Na 2 SO 4 . After removing the solvent from the reaction mixture, the obtained oily residue was purified by chromatography to obtain the target compound C in 74% yield. 1 H NMR (400 MHz, CDCl 3 ): δ 3.73 (quin, J = 4.0 Hz, 3H), 3.54 (d, J = 8.0 Hz, 6H), 3.43-3.35 (m, 6H), 3.33-3.27 (m) , 6H), 2.87 (s br, 3H), 1.33 (quin, J = 8.0 Hz, 2H), 0.83 (s, 27H), 0.76 (t, J ) = 8.0 Hz, 3H), 0.01 (s, 18H); 13 C NMR (100 MHz, CDCl 3 ): δ 72.4, 72.3, 72.0, 70.5, 70.4, 64.0, 43.3, 43.2, 25.9, 25.7, 23.2, 18.3, 18.0, 7.7, 7.6, -4.7, -4.8, -5.4 .

<2-2> 트라이알킬화된 트라이올 유도체 합성의 일반 절차(도 1의 단계 e)<2-2> General procedure of trialkylated triol derivative synthesis (step e of FIG. 1)

DMF 중 화합물 C(1.0 당량)의 빙냉 용액에 불활성 대기하에 NaH(4.5 당량)를 첨가하였다. 버블링이 중단된 후, 요오드화 알킬(RI; 4.5 당량)을 적가하고 생성된 혼합물을 70

Figure pat00007
에서 24시간 동안 교반하였다. 얼음을 첨가하여 반응을 ?칭한 다음, 물로 희석하였다. 희석된 반응 혼합물을 에틸아세테이트로 추출하고 혼합한 유기 분획을 염수로 세척하고 무수 Na2SO4로 건조시켰다. 감압하에서 용매를 제거하여 THF에 용해된 오일성 잔류물을 얻었다. 이 용액에 THF 중 1.0 M TBAF(4.5 당량)를 첨가한 다음, 실온에서 12시간 동안 교반하였다. 반응 종료 후, 반응 혼합물을 물로 희석하고 에틸아세테이트로 세척하였다. 혼합한 유기 분획을 염수로 세척하고 무수 Na2SO4로 건조시켰다. 감압하에서 용매를 제거하여 유상 잔류물을 얻었고, 이를 컬럼 크로마토그래피 정제하여 목적 화합물 D를 수득하였다.To an ice-cooled solution of compound C (1.0 equiv) in DMF was added NaH (4.5 equiv) under an inert atmosphere. After bubbling ceased, alkyl iodide (RI; 4.5 eq) was added dropwise and the resulting mixture was stirred at 70
Figure pat00007
was stirred for 24 hours. The reaction was quenched by adding ice and then diluted with water. The diluted reaction mixture was extracted with ethyl acetate, and the combined organic fractions were washed with brine and dried over anhydrous Na 2 SO 4 . The solvent was removed under reduced pressure to give an oily residue dissolved in THF. To this solution was added 1.0 M TBAF in THF (4.5 eq) and then stirred at room temperature for 12 h. After completion of the reaction, the reaction mixture was diluted with water and washed with ethyl acetate. The combined organic fractions were washed with brine and dried over anhydrous Na 2 SO 4 . The solvent was removed under reduced pressure to obtain an oily residue, which was purified by column chromatography to obtain the target compound D.

<2-3> 당화(glycosycosylation)반응 의 일반 합성 절차 (도 1의 단계 f)<2-3> General synthesis procedure of glycosycosylation reaction (step f of FIG. 1)

N2 대기하에서, 무수 CH2Cl2에 화합물 D(1당량) 및 AgOTf (3.6 당량)의 혼합물을 -45°C에서 교반하였다. 그 후 CH2Cl2에 용해된 퍼벤조일화 말토실브로마이드 (3.6 당량)를 이 현탁액에 첨가하였다. -45°C에서 5분동안 교반한 다음 0°C에서 30분동안 교반하였다. 반응 완료 후 (TLC에 의해 검출됨), 피리딘을 반응 혼합물에 첨가하였다. 반응 혼합물을 CH2Cl2 (30 mL)로 희석한 후 셀 라이트로 여과하였다. 여과액을 1.0 M Na2S2O3 수용액, 0.1 M HCl 수용액 및 염수로 연속적으로 세척하였다. 그 다음 유기층을 무수 Na2SO4로 건조시키고 용매를 회전 증발로 제거하였다. 생성된 잔류물을 실리카 겔 컬럼 크로마토그래피 (EtOAc/헥산)로 정제하여 당화된 목적 화합물을 수득하였다.Under N 2 atmosphere, a mixture of compound D (1 eq) and AgOTf (3.6 eq) in anhydrous CH 2 Cl 2 was stirred at -45 °C. Then perbenzoylated maltosylbromide (3.6 eq) dissolved in CH 2 Cl 2 was added to this suspension. The mixture was stirred at -45 °C for 5 min and then at 0 °C for 30 min. After completion of the reaction (detected by TLC), pyridine was added to the reaction mixture. The reaction mixture was diluted with CH 2 Cl 2 (30 mL) and then filtered through celite. The filtrate was washed successively with 1.0 M aqueous Na 2 S 2 O 3 aqueous solution, 0.1 M aqueous HCl solution and brine. Then the organic layer was dried over anhydrous Na 2 SO 4 and the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography (EtOAc/hexane) to obtain the saccharified target compound.

<2-4> 탈보호기화 반응 (deprotection reaction)을 위한 일반 합성 절차 (도 1의 단계 g)<2-4> General synthetic procedure for deprotection reaction (step g in FIG. 1)

O-벤조일화된 화합물을 무수 CH2Cl2로 용해시킨 다음 MeOH를 지속적인 침전이 나타날때까지 천천히 첨가하였다. 상기 반응 혼합물에 0.5 M의 메탄올성 용액(methanolic solution)인 NaOMe를 최종 농도가 0.05 M이 되도록 첨가하였다. 반응 혼합물을 실온에서 6시간 동안 교반시켰다. 반응 완료 후, 반응 혼합물을 Amberlite IR-120 (H+ form) resin을 이용하여 중화시켰다. 여과하여 resin을 제거하고, MeOH로 세척하고, 진공 조건(in vacuo)에서 여과물로부터 용매를 제거하였다. 잔여물을 실리카 겔 컬럼크로마토그래피(CH2Cl2/MeOH)를 이용하여 정제하여 목적 화합물을 얻었다.The O -benzoylated compound was dissolved with anhydrous CH 2 Cl 2 and then MeOH was added slowly until persistent precipitation appeared. NaOMe, a methanolic solution of 0.5 M, was added to the reaction mixture to a final concentration of 0.05 M. The reaction mixture was stirred at room temperature for 6 hours. After completion of the reaction, the reaction mixture was neutralized using Amberlite IR-120 (H + form) resin. The resin was removed by filtration, washed with MeOH, and the solvent was removed from the filtrate under vacuum conditions ( in vacuo ). The residue was purified using silica gel column chromatography (CH 2 Cl 2 /MeOH) to obtain the target compound.

<제조예 4> E-GTM-O10의 합성<Preparation Example 4> Synthesis of E-GTM-O10

<4-1> 화합물 D1((2R)-3-(2,2-bis((2-(decyloxy)-3-hydroxypropoxy)methyl)butoxy)-2-(decyloxy)propan-1-ol)의 합성<4-1> Synthesis of compound D1((2R)-3-(2,2-bis((2-(decyloxy)-3-hydroxypropoxy)methyl)butoxy)-2-(decyloxy)propan-1-ol)

실시예 2-2에 따라 화합물 D1을 68%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.70 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.62-3.42 (m, 18H), 3.30 (s, 6H), 2.76 (s br, 3H), 1.56 (quin, J = 6.0 Hz, 6H), 1.38-1.20 (m, 44H), 0.88 (t, J = 8.0 Hz, 9H), 0.83 (t, J = 8.0 Hz, 3H). 13 C NMR (100 MHz, CDCl3): δ 78.3, 78.2, 73.2, 72.5, 72.3, 72.0, 71.8, 71.5, 71.3, 70.5, 69.5, 62.9, 62.8, 43.3, 32.1, 30.2, 29.8, 29.7, 29.6, 29.5, 26.3, 23.2, 22.8, 14.3, 7.7.According to Example 2-2, compound D1 was synthesized in a yield of 68%. 1 H NMR (400 MHz, CDCl 3 ): δ 3.70 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.62-3.42 (m, 18H), 3.30 (s, 6H) , 2.76 (s br, 3H), 1.56 (quin, J = 6.0 Hz, 6H), 1.38-1.20 (m, 44H), 0.88 (t, J = 8.0 Hz, 9H), 0.83 (t, J = 8.0 Hz) , 3H). 13 C NMR (100 MHz, CDCl 3 ): δ 78.3, 78.2, 73.2, 72.5, 72.3, 72.0, 71.8, 71.5, 71.3, 70.5, 69.5, 62.9, 62.8, 43.3, 32.1, 30.2, 29.8, 29.7, 29.6, 29.5, 26.3, 23.2, 22.8, 14.3, 7.7.

<4-2> E-GTM-O10a의 합성<4-2> Synthesis of E-GTM-O10a

실시예 2-3에 따라 E-GTM-O10a를 65%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.11 (t, J = 4.0 Hz, 6H), 8.02 (d, J = 8.0 Hz, 6H), 7.86 (t, J = 8.0 Hz, 12H), 7.75 (t, J = 4.0 Hz, 12H), 7.65 (t, J = 4.0 Hz, 6H), 7.54-7.51 (m, 3H), 7.48 (d, J = 8.0 Hz, 3H), 7.41-7.32 (m, 22H), 7.30-7.14 (m, 35H), 6.13 (t, J = 10.0 Hz, 3H), 5.82-5.78 (m, 6H), 5.70 (t, J = 8.0 Hz, 3H), 5.38-5.21 (m, 6H), 4.94-4.88 (m, 6H), 4.79 (d, J = 6.0 Hz, 3H), 4.56 (t, J = 10.0 Hz, 3H), 4.49 (d, J = 8.0 Hz, 3H), 4.41 (d, J = 8.0 Hz, 3H), 4.28 (d, J = 12.0 Hz, 3H), 3.37-3.84 (m, 3H), 3.49-3.36 (m, 8H), 3.27-3.18 (m, 10H), 2.95-2.80 (m, 6H), 1.42-1.38 (m, 2H), 1.30-1.05 (m, 50H), 0.88 (t, J = 8.0 Hz, 9H), 0.65-0.52 (m, 3H); 13 C NMR (100 MHz, CDCl3): δ 165.8, 165.7, 165.5, 165.1, 133.5, 133.4, 133.3, 133.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.4, 129.2, 128.9, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 101.2, 100.9, 96.5, 75.0, 73.2, 72.9, 72.4, 71.7, 70.9, 70.5, 70.0, 69.1, 63.5, 62.5, 60.4, 32.0, 30.1, 29.7, 29.5, 29.4, 26.1, 26.0, 22.8, 21.0, 14.2.According to Example 2-3, E-GTM-O10a was synthesized in a yield of 65%. 1 H NMR (400 MHz, CDCl 3 ): δ 8.11 (t, J = 4.0 Hz, 6H), 8.02 (d, J = 8.0 Hz, 6H), 7.86 (t, J = 8.0 Hz, 12H), 7.75 ( t, J = 4.0 Hz, 12H), 7.65 (t, J = 4.0 Hz, 6H), 7.54-7.51 (m, 3H), 7.48 (d, J = 8.0 Hz, 3H), 7.41-7.32 (m, 22H) ), 7.30-7.14 (m, 35H), 6.13 (t, J = 10.0 Hz, 3H), 5.82-5.78 (m, 6H), 5.70 (t, J = 8.0 Hz, 3H), 5.38-5.21 (m, 6H), 4.94-4.88 (m, 6H), 4.79 (d, J = 6.0 Hz, 3H), 4.56 (t, J = 10.0 Hz, 3H), 4.49 (d, J = 8.0 Hz, 3H), 4.41 ( d, J = 8.0 Hz, 3H), 4.28 (d, J = 12.0 Hz, 3H), 3.37-3.84 (m, 3H), 3.49-3.36 (m, 8H), 3.27-3.18 (m, 10H), 2.95 -2.80 (m, 6H), 1.42-1.38 (m, 2H), 1.30-1.05 (m, 50H), 0.88 (t, J = 8.0 Hz, 9H), 0.65-0.52 (m, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 165.8, 165.7, 165.5, 165.1, 133.5, 133.4, 133.3, 133.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.4, 129.2, 128.9, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 101.2, 100.9, 96.5, 75.0, 73.2, 72.9, 72.4, 71.7, 70.9, 70.5, 70.0, 69.1, 63.5, 62.5, 60.4, 32.0, 30.1, 29.7, 29.5, 29.4, 26.1, 26.0, 22.8, 21.0, 14.2.

<4-3> E-GTM-O10의 합성<4-3> Synthesis of E-GTM-O10

실시예 1-3에 따라 화합물 E-GTM-O10를 90%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.18 (d, J = 4.0 Hz, 3H), 4.33-4.29 (m, 3H), 3.95-3.78 (m, 13H), 3.71-3.44 (m, 37H), 3.41-3.24 (m, 13H), 1.55 (quin, J = 8.0 Hz, 6H), 1.42-1.20 (m, 44H), 0.88 (t, J = 12.0 Hz, 12H); 13 C NMR (100 MHz, CD3OD): δ 104.9, 104.7, 103.0, 81.4, 81.3, 79.4, 77.8, 76.4, 75.2, 74.9, 74.8, 74.2, 72.9, 72.6, 71.8, 71.7, 71.6, 70.5, 62.8, 62.3, 52.8, 44.7, 33.3, 31.4, 31.0, 30.9, 30.8, 30.7, 27.4, 24.1, 23.9, 14.7; HRMS (MALDI + ): calcd. for C81H152O39 [M+Na]+ 1771.9803, found 1771.8602.According to Example 1-3, compound E-GTM-O10 was synthesized in a yield of 90%. 1 H NMR (400 MHz, CD 3 OD): δ 5.18 (d, J = 4.0 Hz, 3H), 4.33-4.29 (m, 3H), 3.95-3.78 (m, 13H), 3.71-3.44 (m, 37H) ), 3.41-3.24 (m, 13H), 1.55 (quin, J = 8.0 Hz, 6H), 1.42-1.20 (m, 44H), 0.88 (t, J = 12.0 Hz, 12H); 13 C NMR (100 MHz, CD 3 OD): δ 104.9, 104.7, 103.0, 81.4, 81.3, 79.4, 77.8, 76.4, 75.2, 74.9, 74.8, 74.2, 72.9, 72.6, 71.8, 71.7, 71.6, 70.5, 62.8 , 62.3, 52.8, 44.7, 33.3, 31.4, 31.0, 30.9, 30.8, 30.7, 27.4, 24.1, 23.9, 14.7; HRMS (MALDI + ) : calcd. for C 81 H 152 O 39 [M+Na] + 1771.9803, found 1771.8602.

<제조예 5> E-GTM-O11의 합성<Preparation Example 5> Synthesis of E-GTM-O11

<5-1> 화합물 D2)(2R)-3-(2,2-bis((3-hydroxy-2-(undecyloxy)propoxy)methyl)butoxy)-2-(undecyloxy)propan-1-o l)의 합성<5-1> of compound D2)(2R)-3-(2,2-bis((3-hydroxy-2-(undecyloxy)propoxy)methyl)butoxy)-2-(undecyloxy)propan-1-ol) synthesis

실시예 2-2에 따라 화합물 D2를 67%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.69 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.61-3.42 (m, 18H), 3.30 (s, 6H), 2.83 (s br, 3H), 1.56 (quin, J = 6.0 Hz, 6H), 1.38-1.20 (m, 50H), 0.88 (t, J = 8.0 Hz, 9H), 0.83 (t, J = 8.0 Hz, 3H). 13 C NMR (100 MHz, CDCl3): δ 78.3, 73.2, 72.4, 72.3, 72.0, 71.8, 71.3, 70.4, 69.4, 62.8, 62.7, 43.2, 32.0, 30.2, 29.8, 29.7, 29.6, 29.4, 26.3, 23.2, 22.8, 14.2, 7.7.According to Example 2-2, compound D2 was synthesized in a yield of 67%. 1 H NMR (400 MHz, CDCl 3 ): δ 3.69 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.61-3.42 (m, 18H), 3.30 (s, 6H) , 2.83 (s br, 3H), 1.56 (quin, J = 6.0 Hz, 6H), 1.38-1.20 (m, 50H), 0.88 (t, J = 8.0 Hz, 9H), 0.83 (t, J = 8.0 Hz) , 3H). 13 C NMR (100 MHz, CDCl 3 ): δ 78.3, 73.2, 72.4, 72.3, 72.0, 71.8, 71.3, 70.4, 69.4, 62.8, 62.7, 43.2, 32.0, 30.2, 29.8, 29.7, 29.6, 29.4, 26.3, 23.2, 22.8, 14.2, 7.7.

<5-2> E-GTM-O11a의 합성<5-2> Synthesis of E-GTM-O11a

실시예 2-3에 따라 E-GTM-O11a를 66%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.11 (t, J = 6.0 Hz, 6H), 8.00 (d, J = 8.0 Hz, 6H), 7.86 (d, J = 8.0 Hz, 12H), 7.76-7.74 (m, 12H), 7.66-7.64 (m, 6H), 7.59-7.50 (m, 6H), 7.44-7.36 (m, 24H), 7.31-7.15 (m, 33H), 6.12 (t, J = 10.0 Hz, 3H), 5.82-5.78 (m, 6H), 5.69 (t, J = 8.0 Hz, 3H), 5.39-5.22 (m, 6H), 4.93-4.86 (m, 6H), 4.78 (d, J = 8.0 Hz, 3H), 4.56 (dt, J 1-2 = 4.0 Hz, J 1-3 = 10.0 Hz, 3H), 4.47 (d, J = 12.0 Hz, 3H), 4.42 (d, J = 8.0 Hz, 3H), 4.26 (d, J = 12.0 Hz, 3H), 3.37-3.84 (m, 3H), 3.49-3.36 (m, 8H), 3.27-3.18 (m, 10H), 2.95-2.80 (m, 6H), 1.42-1.38 (m, 2H), 1.30-1.05 (m, 50H), 0.88 (t, J = 8.0 Hz, 9H), 0.65-0.52 (m, 3H); 13 C NMR (100 MHz, CDCl3): δ 165.8, 165.7, 165.5, 165.1, 133.5, 133.4, 133.3, 133.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.4, 129.2, 128.9, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 101.2, 100.9, 96.5, 75.0, 73.2, 72.9, 72.4, 71.7, 70.9, 70.5, 70.0, 69.1, 63.5, 62.5, 60.4, 32.0, 30.1, 29.7, 29.5, 29.4, 26.1, 26.0, 22.8, 21.0, 14.2.According to Example 2-3, E-GTM-O11a was synthesized in a yield of 66%. 1 H NMR (400 MHz, CDCl 3 ): δ 8.11 (t, J = 6.0 Hz, 6H), 8.00 (d, J = 8.0 Hz, 6H), 7.86 (d, J = 8.0 Hz, 12H), 7.76 7.74 (m, 12H), 7.66-7.64 (m, 6H), 7.59-7.50 (m, 6H), 7.44-7.36 (m, 24H), 7.31-7.15 (m, 33H), 6.12 (t, J = 10.0) Hz, 3H), 5.82-5.78 (m, 6H), 5.69 (t, J = 8.0 Hz, 3H), 5.39-5.22 (m, 6H), 4.93-4.86 (m, 6H), 4.78 (d, J = 8.0 Hz, 3H), 4.56 (dt, J 1-2 = 4.0 Hz, J 1-3 = 10.0 Hz, 3H), 4.47 (d, J = 12.0 Hz, 3H), 4.42 (d, J = 8.0 Hz, 3H), 4.26 (d, J = 12.0 Hz, 3H), 3.37-3.84 (m, 3H), 3.49-3.36 (m, 8H), 3.27-3.18 (m, 10H), 2.95-2.80 (m, 6H) , 1.42-1.38 (m, 2H), 1.30-1.05 (m, 50H), 0.88 (t, J = 8.0 Hz, 9H), 0.65-0.52 (m, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 165.8, 165.7, 165.5, 165.1, 133.5, 133.4, 133.3, 133.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.4, 129.2, 128.9, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 101.2, 100.9, 96.5, 75.0, 73.2, 72.9, 72.4, 71.7, 70.9, 70.5, 70.0, 69.1, 63.5, 62.5, 60.4, 32.0, 30.1, 29.7, 29.5, 29.4, 26.1, 26.0, 22.8, 21.0, 14.2.

<5-3> E-GTM-O11의 합성<5-3> Synthesis of E-GTM-O11

실시예 2-3에 따라 화합물 E-GTM-O11 92%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.18 (d, J = 4.0 Hz, 3H), 4.33-4.29 (m, 3H), 3.94-3.78 (m, 13H), 3.71-3.44 (m, 37H), 3.40-3.26 (m, 13H), 1.55 (quin, J = 8.0 Hz, 6H), 1.42-1.20 (m, 50H), 0.88 (t, J = 8.0 Hz, 12H); 13 C NMR (100 MHz, CD3OD): δ 104.8, 104.7, 102.9, 81.3, 81.2, 79.4, 77.7, 76.6, 75.1, 74.8, 74.7, 74.1, 72.8, 72.6, 71.7, 71.6, 71.5, 70.4, 62.8, 62.3, 52.8, 44.6, 33.2, 31.3, 30.9, 30.8, 30.6, 27.4, 24.0, 23.9, 14.7; HRMS (MALDI + ): calcd. for C84H158O39 [M+Na]+ 1814.0272, found 1813.8898.According to Example 2-3, compound E-GTM-O11 was synthesized in a yield of 92%. 1 H NMR (400 MHz, CD 3 OD): δ 5.18 (d, J = 4.0 Hz, 3H), 4.33-4.29 (m, 3H), 3.94-3.78 (m, 13H), 3.71-3.44 (m, 37H) ), 3.40-3.26 (m, 13H), 1.55 (quin, J = 8.0 Hz, 6H), 1.42-1.20 (m, 50H), 0.88 (t, J = 8.0 Hz, 12H); 13 C NMR (100 MHz, CD 3 OD): δ 104.8, 104.7, 102.9, 81.3, 81.2, 79.4, 77.7, 76.6, 75.1, 74.8, 74.7, 74.1, 72.8, 72.6, 71.7, 71.6, 71.5, 70.4, 62.8 , 62.3, 52.8, 44.6, 33.2, 31.3, 30.9, 30.8, 30.6, 27.4, 24.0, 23.9, 14.7; HRMS (MALDI + ) : calcd. for C 84 H 158 O 39 [M+Na] + 1814.0272, found 1813.8898.

<제조예 6> E-GTM-O12의 합성<Preparation Example 6> Synthesis of E-GTM-O12

<6-1> 화합물 D3((2R)-3-(2,2-bis((2-(dodecyloxy)-3-hydroxypropoxy)methyl)butoxy)-2-(dodecyloxy)propan-1-ol)의 합성<6-1> Synthesis of compound D3((2R)-3-(2,2-bis((2-(dodecyloxy)-3-hydroxypropoxy)methyl)butoxy)-2-(dodecyloxy)propan-1-ol)

실시예 2-2에 따라 화합물 D3을 69%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.70 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.62-3.42 (m, 18H), 3.30 (s, 6H), 2.66 (s br, 3H), 1.56 (quin, J = 6.0 Hz, 6H), 1.38-1.20 (m, 56H), 0.88 (t, J = 8.0 Hz, 9H), 0.83 (t, J = 8.0 Hz, 3H). 13 C NMR (100 MHz, CDCl3): δ 78.3, 72.3, 72.1, 72.0, 71.9, 71.7, 71.4, 70.8, 69.5, 63.0, 62.9, 43.3, 32.1, 30.3, 29.9, 29.8, 29.7, 29.5, 26.3, 23.2, 22.9, 20.9, 14.3, 7.7.According to Example 2-2, compound D3 was synthesized in a yield of 69%. 1 H NMR (400 MHz, CDCl 3 ): δ 3.70 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.62-3.42 (m, 18H), 3.30 (s, 6H) , 2.66 (s br, 3H), 1.56 (quin, J = 6.0 Hz, 6H), 1.38-1.20 (m, 56H), 0.88 (t, J = 8.0 Hz, 9H), 0.83 (t, J = 8.0 Hz) , 3H). 13 C NMR (100 MHz, CDCl 3 ): δ 78.3, 72.3, 72.1, 72.0, 71.9, 71.7, 71.4, 70.8, 69.5, 63.0, 62.9, 43.3, 32.1, 30.3, 29.9, 29.8, 29.7, 29.5, 26.3, 23.2, 22.9, 20.9, 14.3, 7.7.

<6-2> E-GTM-O12a의 합성<6-2> Synthesis of E-GTM-O12a

실시예 2-3에 따라 E-GTM-O12a를 66%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.09 (t, J = 6.0 Hz, 6H), 7.92 (d, J = 8.0 Hz, 6H), 7.83 (d, J = 8.0 Hz, 6H), 7.82-7.80 (m, 6H), 7.74 (d, J = 8.0 Hz, 12H), 7.65-7.62 (m, 6H), 7.55-7.49 (m, 6H), 7.47-7.38 (m, 24H), 7.32-7.18 (m, 33H), 6.10 (t, J = 10.0 Hz, 3H), 5.78-5.74 (m, 6H), 5.67 (t, J = 8.0 Hz, 3H), 5.37-5.29 (m, 3H), 5.27 (dd, J 1-2 = 4.0 Hz, J 1-3 = 10.0 Hz, 3H), 4.90 (d, J = 12.0 Hz, 3H), 4.85 (d, J = 8.0 Hz, 3H), 4.76 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.53 (dt, J 1-2 = 4.0 Hz, J1-3 = 10.0 Hz, 3H), 4.46 (d, J = 12.0 Hz, 3H), 4.38 (d, J = 10.0 Hz, 3H), 4.25 (dd, J 1-2 = 4.0 Hz, J 1-3 = 10.0 Hz, 3H), 4.12-4.07 (m, 3H), 3.94-3.78 (m, 3H), 3.62-3.30 (m, 9H), 3.37-3.25 (m, 3H), 3.18-3.05 (m, 6H), 3.01-2.90 (m, 3H), 2.82 (m, 3H), 1.42-1.38 (m, 2H), 1.30-1.05 (m, 60H), 0.88 (t, J = 8.0 Hz, 9H), 0.65-0.52 (m, 3H); 13 C NMR (100 MHz, CDCl3): δ 166.3, 166.3, 165.9, 165.7, 165.6, 165.2, 133.6, 133.5, 133.4, 133.2, 133.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.3, 129.0, 128.8, 128.7, 128.6, 128.5, 128.3, 128.2, 101.2, 100.9, 96.5, 75.2, 75.0, 73.2, 72.9, 72.4, 71.8, 71.2, 71.0, 70.7, 70.0, 69.2, 63.6, 62.6, 60.5, 32.1, 30.2, 29.8, 29.6, 29.5, 29.4, 26.2, 26.0, 22.8, 21.2, 14.3.According to Example 2-3, E-GTM-O12a was synthesized in a yield of 66%. 1 H NMR (400 MHz, CDCl 3 ): δ 8.09 (t, J = 6.0 Hz, 6H), 7.92 (d, J = 8.0 Hz, 6H), 7.83 (d, J = 8.0 Hz, 6H), 7.82 7.80 (m, 6H), 7.74 (d, J = 8.0 Hz, 12H), 7.65-7.62 (m, 6H), 7.55-7.49 (m, 6H), 7.47-7.38 (m, 24H), 7.32-7.18 ( m, 33H), 6.10 (t, J = 10.0 Hz, 3H), 5.78-5.74 (m, 6H), 5.67 (t, J = 8.0 Hz, 3H), 5.37-5.29 (m, 3H), 5.27 (dd , J 1-2 = 4.0 Hz, J 1-3 = 10.0 Hz, 3H), 4.90 (d, J = 12.0 Hz, 3H), 4.85 (d, J = 8.0 Hz, 3H), 4.76 (dd, J 1 -2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.53 (dt, J 1-2 = 4.0 Hz, J 1-3 = 10.0 Hz, 3H), 4.46 (d, J = 12.0 Hz, 3H) ), 4.38 (d, J = 10.0 Hz, 3H), 4.25 (dd, J 1-2 = 4.0 Hz, J 1-3 = 10.0 Hz, 3H), 4.12-4.07 (m, 3H), 3.94-3.78 ( m, 3H), 3.62-3.30 (m, 9H), 3.37-3.25 (m, 3H), 3.18-3.05 (m, 6H), 3.01-2.90 (m, 3H), 2.82 (m, 3H), 1.42- 1.38 (m, 2H), 1.30-1.05 (m, 60H), 0.88 (t, J = 8.0 Hz, 9H), 0.65-0.52 (m, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.3, 166.3, 165.9, 165.7, 165.6, 165.2, 133.6, 133.5, 133.4, 133.2, 133.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.3, 129.0, 128.8, 128.7, 128.6, 128.5, 128.3, 128.2, 101.2, 100.9, 96.5, 75.2, 75.0, 73.2, 72.9, 72.4, 71.8, 71.2, 71.0, 70.7, 70.0, 69.2, 63.6, 62.6, 60.5, 32.1, 30.2, 29.8, 29.6, 29.5, 29.4, 26.2, 26.0, 22.8, 21.2, 14.3.

<6-3> E-GTM-O12의 합성<6-3> Synthesis of E-GTM-O12

실시예 2-4에 따라 화합물 E-GTM-O12를 92%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.14 (d, J = 4.0 Hz, 3H), 4.29-4.25 (m, 3H), 3.90-3.88 (m, 4H), 3.87-3.84 (s, 2H), 3.80-3.78 (m, 6H), 3.75-3.68 (m, 13H), 3.67-3.60 (m, 11H), 3.58-3.50 (m, 7H), 3.49-3.40 (m, 6H), 3.35-3.30 (m, 9H), 3.27-3.21 (m, 5H), 1.53 (quin, J = 8.0 Hz, 6H), 1.42-1.20 (m, 56H), 0.86 (t, J = 8.0 Hz, 12H); 13 C NMR (100 MHz, CD3OD): δ 104.8, 104.7, 102.9, 81.3, 81.2, 79.4, 77.7, 76.6, 75.1, 74.8, 74.7, 74.1, 72.8, 71.7, 71.6, 71.5, 62.8, 62.3, 52.8, 44.6, 33.2, 31.3, 30.9, 30.8, 30.6, 27.4, 24.1, 23.9, 14.7; HRMS (MALDI + ): calcd. for C87H164O39 [M+Na]+ 1856.0742, found 1855.9741.According to Example 2-4, compound E-GTM-O12 was synthesized in a yield of 92%. 1 H NMR (400 MHz, CD 3 OD): δ 5.14 (d, J = 4.0 Hz, 3H), 4.29-4.25 (m, 3H), 3.90-3.88 (m, 4H), 3.87-3.84 (s, 2H) ), 3.80-3.78 (m, 6H), 3.75-3.68 (m, 13H), 3.67-3.60 (m, 11H), 3.58-3.50 (m, 7H), 3.49-3.40 (m, 6H), 3.35-3.30 (m, 9H), 3.27-3.21 (m, 5H), 1.53 (quin, J = 8.0 Hz, 6H), 1.42-1.20 (m, 56H), 0.86 (t, J = 8.0 Hz, 12H); 13 C NMR (100 MHz, CD 3 OD): δ 104.8, 104.7, 102.9, 81.3, 81.2, 79.4, 77.7, 76.6, 75.1, 74.8, 74.7, 74.1, 72.8, 71.7, 71.6, 71.5, 62.8, 62.3, 52.8 , 44.6, 33.2, 31.3, 30.9, 30.8, 30.6, 27.4, 24.1, 23.9, 14.7; HRMS (MALDI + ) : calcd. for C 87 H 164 O 39 [M+Na] + 1856.0742, found 1855.9741.

<실시예 3> M-GTM-Is의 합성 방법<Example 3> Synthesis method of M-GTM-Is

M-GTM-Is의 합성 스킴을 도 2에 나타내었다. 하기의 합성 방법에 따라 M-GTM-Is의 3종의 화합물을 합성하였다.The synthesis scheme of M-GTM-Is is shown in FIG. 2 . Three types of compounds of M-GTM-Is were synthesized according to the following synthesis method.

<3-1> 화합물 E의 합성 절차(도 2)<3-1> Synthesis procedure of compound E (FIG. 2)

4-[(2-메톡시에톡시)메틸]-1-메틸-2,6,7-트라이옥사바이사이클로[2.2.2]옥테인을 DCM/MeOH(1:1)에 용해시켰다. 이 용액에 몇 방울의 농축액을 첨가하였다. HCl 및 생성된 혼합물을 50

Figure pat00008
에서 4시간 동안 가열하였다. NaOH로 중화한 후, 반응 혼합물을 농축하였다. 생성된 잔류물을 50% NaOH에 용해시키고 tert-뷰틸 암모늄 브로마이드(0.5 당량) 및 알릴 브로마이드(4 당량)를 후속적으로 첨가하였다. 반응 혼합물을 상온에서 5시간 동안 교반하고 55
Figure pat00009
에서 24시간 동안 열활성화시킨 후 에틸 에테르로 추출하였다. 혼합한 유기층을 염수로 세척하고, 무수 Na2SO4로 건조시키고, 감압하에 농축시켰다. 잔류물을 컬럼 크로마토그래피로 정제하여 목적 화합물 E를 74% 수율로 수득하였다. 1 H NMR (400 MHz, CDCl3): δ 5.92-5.83 (m, 3H), 5.27 (quin, J = 8.0 Hz, 1.5H), 5.22 (quin, J = 8.0 Hz, 1.5H), 5.14 (quin, J = 8.0 Hz, 1.5H), 5.11 (quin, J = 8.0 Hz, 1.5H), 3.95-3.93 (m, 6H), 3.58-3.55 (m, 2H), 3.52-3.50 (m, 2H), 3.48 (s, 6H), 3.36 (s, 3H); 13 C NMR (100 MHz, CDCl3): δ 135.2, 115.9, 72.1, 71.7, 70.8, 70.1, 69.2, 58.9, 45.4.4-[(2-methoxyethoxy)methyl]-1-methyl-2,6,7-trioxabicyclo[2.2.2]octane was dissolved in DCM/MeOH (1:1). A few drops of the concentrate were added to this solution. HCl and the resulting mixture to 50
Figure pat00008
was heated for 4 hours. After neutralization with NaOH, the reaction mixture was concentrated. The resulting residue was dissolved in 50% NaOH and tert-butyl ammonium bromide (0.5 equiv) and allyl bromide (4 equiv) were subsequently added. The reaction mixture was stirred at room temperature for 5 hours and 55
Figure pat00009
After thermal activation for 24 hours, it was extracted with ethyl ether. The combined organic layers were washed with brine, dried over anhydrous Na 2 SO 4 , and concentrated under reduced pressure. The residue was purified by column chromatography to obtain the target compound E in 74% yield. 1 H NMR (400 MHz, CDCl 3 ): δ 5.92-5.83 (m, 3H), 5.27 (quin, J = 8.0 Hz, 1.5H), 5.22 (quin, J = 8.0 Hz, 1.5H), 5.14 (quin , J = 8.0 Hz, 1.5H), 5.11 (quin, J = 8.0 Hz, 1.5H), 3.95-3.93 (m, 6H), 3.58-3.55 (m, 2H), 3.52-3.50 (m, 2H), 3.48 (s, 6H), 3.36 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 135.2, 115.9, 72.1, 71.7, 70.8, 70.1, 69.2, 58.9, 45.4.

<3-2> 화합물 F1(2,2'-(((2-((2-methoxyethoxy)methyl)-2-((oxiran-2-ylmethoxy)methyl)propane-1,3-diyl)bis(oxy))bis(methylene))bis(oxirane))의 합성 절차(도 2의 단계 a1)<3-2> Compound F1(2,2'-(((2-((2-methoxyethoxy)methyl)-2-((oxiran-2-ylmethoxy)methyl)propane-1,3-diyl)bis(oxy Synthesis procedure of ))bis(methylene))bis(oxirane)) (step a1 in Fig. 2)

DCM 중 화합물 E의 빙냉 용액에 3-클로로퍼벤조산(4 당량)을 첨가하였다. 반응 혼합물을 실온에서 12시간 동안 교반하였다. 반응 종료 후 감압하에서 용매를 제거하였다. 생성된 잔류물을 컬럼 크로마토그래피(EtOAc/헥산)로 정제하여 목적 화합물 F1을 76% 수율로 얻었다. 1 H NMR (400 MHz, CDCl3): δ 3.69 (quin, J = 8.0 Hz, 3H), 3.58-3.55 (m, 2H), 3.52-3.49 (m, 7H), 3.47 (d, J = 8.0 Hz, 3H), 3.4-3.36 (m, 6H), 3.13-3.09 (m, 3H), 2.77 (quin, J = 8.0 Hz, 3H), 2.59 (quin, J = 8.0 Hz, 3H); 13 C NMR (100 MHz, CDCl3): δ 166.8, 134.3, 132.9, 131.8, 129.8, 129.7, 127.9, 71.9, 71.6, 70.7, 69.9, 69.6, 58.8, 50.7, 45.6, 44.0.To an ice-cold solution of compound E in DCM was added 3-chloroperbenzoic acid (4 eq). The reaction mixture was stirred at room temperature for 12 hours. After completion of the reaction, the solvent was removed under reduced pressure. The resulting residue was purified by column chromatography (EtOAc/hexane) to obtain the target compound F1 in 76% yield. 1 H NMR (400 MHz, CDCl 3 ): δ 3.69 (quin, J = 8.0 Hz, 3H), 3.58-3.55 (m, 2H), 3.52-3.49 (m, 7H), 3.47 (d, J = 8.0 Hz) , 3H), 3.4-3.36 (m, 6H), 3.13-3.09 (m, 3H), 2.77 (quin, J = 8.0 Hz, 3H), 2.59 (quin, J = 8.0 Hz, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.8, 134.3, 132.9, 131.8, 129.8, 129.7, 127.9, 71.9, 71.6, 70.7, 69.9, 69.6, 58.8, 50.7, 45.6, 44.0.

<3-3> 에폭사이드 고리 열림 반응의 일반 합성 절차 (도 2의 단계 b)<3-3> General synthetic procedure of epoxide ring opening reaction (step b of FIG. 2)

NaH(4.5당량)를 불활성 대기 하에 알칸올(ROH; 6.0당량)에 첨가하였다. 혼합물을 실온에서 30분 동안 교반한 다음 글리시딜 에테르(A1; 1.0 당량)를 적가하였다. 반응 혼합물을 50

Figure pat00010
에서 24시간 동안 교반하였다. 빙냉 1M HCl을 적가하여 반응을 켄칭하였다. 희석된 반응 혼합물을 에틸아세테이트로 세척하고 혼합된 유기 분획을 염수로 세척하고 무수 Na2SO4로 건조시켰다. 유기 용매를 회전 증발하여 얻어진 유상 잔류물을 컬럼 크로마토그래피 정제하여 목적 화합물물 G를 수득하였다. NaH (4.5 equiv) was added to the alkanol (ROH; 6.0 equiv) under an inert atmosphere. The mixture was stirred at room temperature for 30 min, then glycidyl ether (A1; 1.0 eq.) was added dropwise. 50 of the reaction mixture
Figure pat00010
was stirred for 24 hours. The reaction was quenched by dropwise addition of ice-cold 1M HCl. The diluted reaction mixture was washed with ethyl acetate and the combined organic fractions were washed with brine and dried over anhydrous Na 2 SO 4 . The oily residue obtained by rotary evaporation of the organic solvent was purified by column chromatography to obtain the target compound G.

<3-4> 당화(glycosycosylation)반응 의 일반 합성 절차 (도 2의 단계 c)<3-4> General synthetic procedure of glycosycosylation reaction (step c in FIG. 2)

N2 대기하에서, 무수 CH2Cl2에 화합물 B(1당량) 및 AgOTf (3.6 당량)의 혼합물을 -45°C에서 교반하였다. 그 후 CH2Cl2에 용해된 퍼벤조일화 말토실브로마이드 (3.6 당량)를 이 현탁액에 첨가하였다. -45°C에서 5분동안 교반한 다음 0°C에서 30분동안 교반하였다. 반응 완료 후 (TLC에 의해 검출됨), 피리딘을 반응 혼합물에 첨가하였다. 반응 혼합물을 CH2Cl2 (30 mL)로 희석한 후 셀 라이트로 여과하였다. 여과액을 1.0 M Na2S2O3 수용액, 0.1 M HCl 수용액 및 염수로 연속적으로 세척하였다. 그 다음 유기층을 무수 Na2SO4로 건조시키고 용매를 회전 증발로 제거하였다. 생성된 잔류물을 실리카 겔 컬럼 크로마토그래피 (EtOAc/헥산)로 정제하여 당화된 목적 화합물을 수득하였다.Under N 2 atmosphere, a mixture of compound B (1 eq) and AgOTf (3.6 eq) in anhydrous CH 2 Cl 2 was stirred at -45 °C. Then perbenzoylated maltosylbromide (3.6 eq) dissolved in CH 2 Cl 2 was added to this suspension. The mixture was stirred at -45 °C for 5 min and then at 0 °C for 30 min. After completion of the reaction (detected by TLC), pyridine was added to the reaction mixture. The reaction mixture was diluted with CH 2 Cl 2 (30 mL) and then filtered through celite. The filtrate was washed successively with 1.0 M aqueous Na 2 S 2 O 3 aqueous solution, 0.1 M aqueous HCl solution and brine. Then the organic layer was dried over anhydrous Na 2 SO 4 and the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography (EtOAc/hexane) to obtain the saccharified target compound.

<3-5> 탈보호기화 반응 (deprotection reaction)을 위한 일반 합성 절차 (도 2의 단계 d)<3-5> General synthetic procedure for deprotection reaction (step d of FIG. 2)

O-벤조일화된 화합물을 무수 CH2Cl2로 용해시킨 다음 MeOH를 지속적인 침전이 나타날때까지 천천히 첨가하였다. 상기 반응 혼합물에 0.5 M의 메탄올성 용액(methanolic solution)인 NaOMe를 최종 농도가 0.05 M이 되도록 첨가하였다. 반응 혼합물을 실온에서 6시간 동안 교반시켰다. 반응 완료 후, 반응 혼합물을 Amberlite IR-120 (H+ form) resin을 이용하여 중화시켰다. 여과하여 resin을 제거하고, MeOH로 세척하고, 진공 조건(in vacuo)에서 여과물로부터 용매를 제거하였다. 잔여물을 실리카 겔 컬럼크로마토그래피(CH2Cl2/MeOH)를 이용하여 정제하여 목적 화합물을 얻었다. The O -benzoylated compound was dissolved with anhydrous CH 2 Cl 2 and then MeOH was added slowly until persistent precipitation appeared. NaOMe, a methanolic solution of 0.5 M, was added to the reaction mixture to a final concentration of 0.05 M. The reaction mixture was stirred at room temperature for 6 hours. After completion of the reaction, the reaction mixture was neutralized using Amberlite IR-120 (H + form) resin. The resin was removed by filtration, washed with MeOH, and the solvent was removed from the filtrate under vacuum conditions ( in vacuo ). The residue was purified using silica gel column chromatography (CH 2 Cl 2 /MeOH) to obtain the target compound.

<제조예 7> M-GTM-I10의 합성<Preparation Example 7> Synthesis of M-GTM-I10

<7-1> 화합물 G1(3,3'-((2-(((<7-1> Compound G1 (3,3'-((2-(((( RR )-2-(decyloxy)-3-hydroxypropoxy)methyl)-2-((2-methoxyethoxy)methyl)propane-1,3-diyl)bis (oxy))bis(2-(decyloxy)propan-1-ol)의 합성)-2-(decyloxy)-3-hydroxypropoxy)methyl)-2-((2-methoxyethoxy)methyl)propane-1,3-diyl)bis (oxy))bis(2-(decyloxy)propan-1-ol ) synthesis

실시예 3-3에 따라 화합물 G1을 68%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.92 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.57-3.54 (m, 2H), 3.51-3.40 (m, 28H), 3.24 (s, 3H), 3.24 (s br, 3H), 1.56 (quin, J = 6.0 Hz, 6H), 1.35-1.20 (m, 42H), 0.88 (t, J = 8.0 Hz, 9H), 13 C NMR (100 MHz, CDCl3): δ 72.8, 71.9, 71.7, 71.5, 70.7, 70.3, 70.1, 69.0, 58.7, 53.3, 45.4, 31.8, 29.5, 29.4, 29.2, 26.0, 22.5, 14.0.According to Example 3-3, compound G1 was synthesized in a yield of 68%. 1 H NMR (400 MHz, CDCl 3 ): δ 3.92 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.57-3.54 (m, 2H), 3.51-3.40 (m, 28H), 3.24 (s, 3H), 3.24 (s br, 3H), 1.56 (quin, J = 6.0 Hz, 6H), 1.35-1.20 (m, 42H), 0.88 (t, J = 8.0 Hz, 9H) , 13 C NMR (100 MHz, CDCl 3 ): δ 72.8, 71.9, 71.7, 71.5, 70.7, 70.3, 70.1, 69.0, 58.7, 53.3, 45.4, 31.8, 29.5, 29.4, 29.2, 26.0, 22.5, 14.0.

<7-2> M-GTM-I10a의 합성<7-2> Synthesis of M-GTM-I10a

실시예 3-4에 따라 M-GTM-I10a를 65%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.11 (t, J = 4.0 Hz, 6H), 8.08 (d, J = 8.0 Hz, 6H), 7.86 (t, J = 8.0 Hz, 12H), 7.76 (t, J = 4.0 Hz, 12H), 7.66-7.62 (m, 6H), 7.54-7.48 (m, 6H), 7.44-7.34 (m, 24H), 7.32-7.14 (m, 34H), 6.11 (t, J = 10.0 Hz, 3H), 5.80-5.66 (m, 9H), 5.32-5.21 (m, 8H), 5.08-4.88 (m, 6H), 4.77 (d, J = 6.0 Hz, 3H), 4.52-4.40 (m, 9H), 4.29 (d, J = 12.0 Hz, 3H), 4.11-4.05 (m, 3H), 3.91-3.85 (m, 3H), 3.47-3.27 (m, 18H), 3.22-2.86 (m, 14H), 1.47-1.38 (m, 3H), 1.30-1.11 (m, 45H), 0.89 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 166.1, 165.8, 165.6, 165.5, 165.4, 165.1, 165.0, 133.4, 133.3, 133.2, 133.0, 132.9, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.4, 129.3, 129.0, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 100.3, 96.5, 75.2, 75.1, 73.3, 72.7, 72.6, 71.8, 71.7, 70.8, 69.9, 69.1, 63.6, 62.5, 60.4, 58.9, 53.4, 45.4, 31.9, 29.8, 29.6, 29.5, 29.4, 26.1, 26.0, 22.7, 21.0, 14.2, 14.1.According to Example 3-4, M-GTM-I10a was synthesized in a yield of 65%. 1 H NMR (400 MHz, CDCl 3 ): δ 8.11 (t, J = 4.0 Hz, 6H), 8.08 (d, J = 8.0 Hz, 6H), 7.86 (t, J = 8.0 Hz, 12H), 7.76 ( t, J = 4.0 Hz, 12H), 7.66-7.62 (m, 6H), 7.54-7.48 (m, 6H), 7.44-7.34 (m, 24H), 7.32-7.14 (m, 34H), 6.11 (t, J = 10.0 Hz, 3H), 5.80-5.66 (m, 9H), 5.32-5.21 (m, 8H), 5.08-4.88 (m, 6H), 4.77 (d, J = 6.0 Hz, 3H), 4.52-4.40 (m, 9H), 4.29 (d, J = 12.0 Hz, 3H), 4.11-4.05 (m, 3H), 3.91-3.85 (m, 3H), 3.47-3.27 (m, 18H), 3.22-2.86 (m) , 14H), 1.47-1.38 (m, 3H), 1.30-1.11 (m, 45H), 0.89 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.1, 165.8, 165.6, 165.5, 165.4, 165.1, 165.0, 133.4, 133.3, 133.2, 133.0, 132.9, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.4, 129.3, 129.0, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 100.3, 96.5, 75.2, 75.1, 73.3, 72.7, 72.6, 71.8, 71.7, 70.8, 69.9, 69.1, 63.6, 62.5, 60.4, 58.9, 53.4, 45.4, 31.9, 29.8, 29.6, 29.5, 29.4, 26.1, 26.0, 22.7, 21.0, 14.2, 14.1.

<7-3> M-GTM-I10의 합성<7-3> Synthesis of M-GTM-I10

실시예 3-5에 따라 화합물 M-GTM-I10를 89%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.17 (d, J = 4.0 Hz, 3H), 4.55-4.47 (m, 3H), 4.03-3.80 (m, 12H), 3.71-3.40 (m, 52H), 3.31-3.23 (m, 8H), 1.60-1.55 (m, 6H), 1.35-1.25 (m, 42H), 0.90 (t, J = 12.0 Hz, 9H); 13 C NMR (100 MHz, CD3OD): δ 104.1, 103.7, 102.9, 81.2, 78.3, 77.8, 77.6, 76.6, 75.1, 74.8, 74.1, 73.1, 72.8, 72.7, 72.5, 72.0, 71.8, 71.5, 71.1, 62.8, 62.3, 59.4, 47.0, 46.9, 33.1, 30.8, 30.7, 30.5, 27.3, 23.8, 14.6; HRMS (FAB + ): calcd. for C83H156O41 [M+Na]+ 1832.0020, found 1832.0012.According to Example 3-5, compound M-GTM-I10 was synthesized in a yield of 89%. 1 H NMR (400 MHz, CD 3 OD): δ 5.17 (d, J = 4.0 Hz, 3H), 4.55-4.47 (m, 3H), 4.03-3.80 (m, 12H), 3.71-3.40 (m, 52H) ), 3.31-3.23 (m, 8H), 1.60-1.55 (m, 6H), 1.35-1.25 (m, 42H), 0.90 (t, J = 12.0 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 104.1, 103.7, 102.9, 81.2, 78.3, 77.8, 77.6, 76.6, 75.1, 74.8, 74.1, 73.1, 72.8, 72.7, 72.5, 72.0, 71.8, 71.5, 71.1 , 62.8, 62.3, 59.4, 47.0, 46.9, 33.1, 30.8, 30.7, 30.5, 27.3, 23.8, 14.6; HRMS (FAB + ) : calcd. for C 83 H 156 O 41 [M+Na] + 1832.0020, found 1832.0012.

<제조예 8> M-GTM-I11의 합성<Preparation Example 8> Synthesis of M-GTM-I11

<8-1> 화합물 G2(3,3'-((2-(((<8-1> Compound G2 (3,3'-((2-(((( RR )-3-hydroxy-2-(undecyloxy)propoxy)methyl)-2-((2-methoxyethoxy)methyl)propane-1,3-diyl)bis (oxy))bis(2-(undecyloxy)propan-1-ol))의 합성)-3-hydroxy-2-(undecyloxy)propoxy)methyl)-2-((2-methoxyethoxy)methyl)propane-1,3-diyl)bis (oxy))bis(2-(undecyloxy)propan-1- ol)) synthesis

실시예 3-3에 따라 화합물 G2를 68%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.92 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.57-3.53 (m, 2H), 3.50-3.40 (m, 28H), 3.35 (s, 3H), 3.05 (s br, 3H), 1.55 (quin, J = 6.0 Hz, 6H), 1.33-1.22 (m, 42H), 0.89 (t, J = 8.0 Hz, 9H), 13 C NMR (100 MHz, CDCl3): δ 72.8, 71.8, 71.7, 70.8, 70.5, 70.3, 69.2, 58.9, 45.4, 31.9, 29.6, 29.5, 29.3, 26.1, 22.7, 14.1.According to Example 3-3, compound G2 was synthesized in a yield of 68%. 1 H NMR (400 MHz, CDCl 3 ): δ 3.92 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.57-3.53 (m, 2H), 3.50-3.40 (m, 28H), 3.35 (s, 3H), 3.05 (s br, 3H), 1.55 (quin, J = 6.0 Hz, 6H), 1.33-1.22 (m, 42H), 0.89 (t, J = 8.0 Hz, 9H) , 13 C NMR (100 MHz, CDCl 3 ): δ 72.8, 71.8, 71.7, 70.8, 70.5, 70.3, 69.2, 58.9, 45.4, 31.9, 29.6, 29.5, 29.3, 26.1, 22.7, 14.1.

<8-2> M-GTM-I11a의 합성<8-2> Synthesis of M-GTM-I11a

실시예 3-4에 따라 M-GTM-I11a를 64%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.11 (t, J = 4.0 Hz, 6H), 8.07 (d, J = 8.0 Hz, 6H), 7.86 (t, J = 8.0 Hz, 12H), 7.75 (t, J = 4.0 Hz, 12H), 7.66-7.61 (m, 6H), 7.55-7.49 (m, 6H), 7.43-7.34 (m, 24H), 7.32-7.14 (m, 34H), 6.10 (t, J = 10.0 Hz, 3H), 5.80-5.65 (m, 9H), 5.32-5.19 (m, 8H), 5.08-4.85 (m, 6H), 4.77 (d, J = 6.0 Hz, 3H), 4.52-4.39 (m, 9H), 4.29 (d, J = 12.0 Hz, 3H), 4.11-4.03 (m, 3H), 3.90-3.85 (m, 3H), 3.45-3.25 (m, 18H), 3.22-2.85 (m, 14H), 1.47-1.38 (m, 3H), 1.29-1.09 (m, 51H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 166.1, 165.8, 165.6, 165.5, 165.0, 133.5, 133.3, 133.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.3, 129.0, 128.8, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 96.5, 75.2, 72.6, 71.8, 71.7, 70.8, 70.0, 69.1, 62.5, 58.9, 53.5, 31.9, 29.7, 29.6, 29.4, 26.1, 26.0, 22.7, 14.2.According to Example 3-4, M-GTM-I11a was synthesized in a yield of 64%. 1 H NMR (400 MHz, CDCl 3 ): δ 8.11 (t, J = 4.0 Hz, 6H), 8.07 (d, J = 8.0 Hz, 6H), 7.86 (t, J = 8.0 Hz, 12H), 7.75 ( t, J = 4.0 Hz, 12H), 7.66-7.61 (m, 6H), 7.55-7.49 (m, 6H), 7.43-7.34 (m, 24H), 7.32-7.14 (m, 34H), 6.10 (t, J = 10.0 Hz, 3H), 5.80-5.65 (m, 9H), 5.32-5.19 (m, 8H), 5.08-4.85 (m, 6H), 4.77 (d, J = 6.0 Hz, 3H), 4.52-4.39 (m, 9H), 4.29 (d, J = 12.0 Hz, 3H), 4.11-4.03 (m, 3H), 3.90-3.85 (m, 3H), 3.45-3.25 (m, 18H), 3.22-2.85 (m) , 14H), 1.47-1.38 (m, 3H), 1.29-1.09 (m, 51H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.1, 165.8, 165.6, 165.5, 165.0, 133.5, 133.3, 133.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.3, 129.0, 128.8, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 96.5, 75.2, 72.6, 71.8, 71.7, 70.8, 70.0, 69.1, 62.5, 58.9, 53.5, 31.9, 29.7, 29.6, 29.4, 26.1, 26.0, 22.7, 14.2.

<8-3> M-GTM-I11의 합성<8-3> Synthesis of M-GTM-I11

실시예 3-5에 따라 화합물 M-GTM-I11를 89%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.18 (d, J = 4.0 Hz, 3H), 4.55-4.46 (m, 3H), 4.05-3.82 (m, 12H), 3.70-3.40 (m, 52H), 3.30-3.20 (m, 8H), 1.60-1.52 (m, 6H), 1.35-1.23 (m, 48H), 0.89 (t, J = 12.0 Hz, 9H); 13 C NMR (100 MHz, CD3OD): δ 104.1, 103.7, 102.9, 81.2, 78.4, 77.8, 77.6, 76.6, 75.1, 74.8, 74.1, 73.0, 72.8, 72.7, 72.6, 72.0, 71.5, 62.7, 62.3, 59.4, 54.9, 47.0, 46.9, 33.1, 30.9, 30.8, 30.7, 30.5, 27.3, 23.8, 14.6; HRMS (FAB + ): calcd. for C86H162O41 [M+Na]+ 1875.0523, found 1875.0497.According to Example 3-5, compound M-GTM-I11 was synthesized in a yield of 89%. 1 H NMR (400 MHz, CD 3 OD): δ 5.18 (d, J = 4.0 Hz, 3H), 4.55-4.46 (m, 3H), 4.05-3.82 (m, 12H), 3.70-3.40 (m, 52H) ), 3.30-3.20 (m, 8H), 1.60-1.52 (m, 6H), 1.35-1.23 (m, 48H), 0.89 (t, J = 12.0 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 104.1, 103.7, 102.9, 81.2, 78.4, 77.8, 77.6, 76.6, 75.1, 74.8, 74.1, 73.0, 72.8, 72.7, 72.6, 72.0, 71.5, 62.7, 62.3 , 59.4, 54.9, 47.0, 46.9, 33.1, 30.9, 30.8, 30.7, 30.5, 27.3, 23.8, 14.6; HRMS (FAB + ) : calcd. for C 86 H 162 O 41 [M+Na] + 1875.0523, found 1875.0497.

<제조예 9> M-GTM-I12의 합성<Preparation Example 9> Synthesis of M-GTM-I12

<9-1> 화합물 G3(3,3'-((2-(((<9-1> compound G3 (3,3'-((2-((( RR )-2-(dodecyloxy)-3-hydroxypropoxy)methyl)-2-((2-methoxyethoxy)methyl)propane-1,3-diyl)bis (oxy))bis(2-(dodecyloxy)propan-1-ol))의 합성)-2-(dodecyloxy)-3-hydroxypropoxy)methyl)-2-((2-methoxyethoxy)methyl)propane-1,3-diyl)bis (oxy))bis(2-(dodecyloxy)propan-1-ol )) synthesis

실시예 3-3에 따라 화합물 G3을 68%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.92 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.57-3.54 (m, 2H), 3.51-3.40 (m, 28H), 3.24 (s, 3H), 3.24 (s br, 3H), 1.56 (quin, J = 6.0 Hz, 6H), 1.35-1.20 (m, 42H), 0.88 (t, J = 8.0 Hz, 9H), 13 C NMR (100 MHz, CDCl3): δ 72.8, 71.8, 71.7, 70.7, 70.3, 70.1, 69.1 58.7, 53.3, 45.4, 31.8, 29.5, 29.3, 29.2, 26.2, 22.5, 14.0.According to Example 3-3, compound G3 was synthesized in a yield of 68%. 1 H NMR (400 MHz, CDCl 3 ): δ 3.92 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.57-3.54 (m, 2H), 3.51-3.40 (m, 28H), 3.24 (s, 3H), 3.24 (s br, 3H), 1.56 (quin, J = 6.0 Hz, 6H), 1.35-1.20 (m, 42H), 0.88 (t, J = 8.0 Hz, 9H) , 13 C NMR (100 MHz, CDCl 3 ): δ 72.8, 71.8, 71.7, 70.7, 70.3, 70.1, 69.1 58.7, 53.3, 45.4, 31.8, 29.5, 29.3, 29.2, 26.2, 22.5, 14.0.

<9-2> M-GTM-I12a의 합성<9-2> Synthesis of M-GTM-I12a

실시예 3-4에 따라 M-GTM-I12a를 65%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.11 (t, J = 4.0 Hz, 6H), 8.07 (d, J = 8.0 Hz, 6H), 7.87 (t, J = 8.0 Hz, 12H), 7.75 (t, J = 4.0 Hz, 12H), 7.66-7.62 (m, 6H), 7.54-7.47 (m, 6H), 7.44-7.34 (m, 24H), 7.32-7.14 (m, 34H), 6.10 (t, J = 10.0 Hz, 3H), 5.80-5.64 (m, 9H), 5.32-5.21 (m, 8H), 5.06-4.86 (m, 6H), 4.77 (d, J = 6.0 Hz, 3H), 4.52-4.38 (m, 9H), 4.30 (d, J = 12.0 Hz, 3H), 4.11-4.04 (m, 3H), 3.91-3.85 (m, 3H), 3.47-3.25 (m, 18H), 3.22-2.86 (m, 14H), 1.48-1.38 (m, 3H), 1.33-1.14 (m, 57H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 166.1, 166.0, 165.8, 165.6, 165.4, 165.1, 165.0, 133.4, 133.3, 133.2, 133.0, 132.8, 129.9, 129.8, 129.7, 129.6, 129.5, 129.4, 129.3, 129.0, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 100.5, 100.3, 96.4, 75.1, 73.3, 72.6, 72.5, 71.8, 71.7, 70.8, 69.9, 69.1, 63.6, 62.5, 31.9, 29.7, 29.5, 29.4, 26.1, 26.0, 22.7, 14.1.According to Example 3-4, M-GTM-I12a was synthesized in a yield of 65%. 1 H NMR (400 MHz, CDCl 3 ): δ 8.11 (t, J = 4.0 Hz, 6H), 8.07 (d, J = 8.0 Hz, 6H), 7.87 (t, J = 8.0 Hz, 12H), 7.75 ( t, J = 4.0 Hz, 12H), 7.66-7.62 (m, 6H), 7.54-7.47 (m, 6H), 7.44-7.34 (m, 24H), 7.32-7.14 (m, 34H), 6.10 (t, J = 10.0 Hz, 3H), 5.80-5.64 (m, 9H), 5.32-5.21 (m, 8H), 5.06-4.86 (m, 6H), 4.77 (d, J = 6.0 Hz, 3H), 4.52-4.38 (m, 9H), 4.30 (d, J = 12.0 Hz, 3H), 4.11-4.04 (m, 3H), 3.91-3.85 (m, 3H), 3.47-3.25 (m, 18H), 3.22-2.86 (m) , 14H), 1.48-1.38 (m, 3H), 1.33-1.14 (m, 57H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.1, 166.0, 165.8, 165.6, 165.4, 165.1, 165.0, 133.4, 133.3, 133.2, 133.0, 132.8, 129.9, 129.8, 129.7, 129.6, 129.5, 129.4, 129.3, 129.0, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 100.5, 100.3, 96.4, 75.1, 73.3, 72.6, 72.5, 71.8, 71.7, 70.8, 69.9, 69.1, 63.6, 62.5, 31.9, 29.7, 29.5, 29.4, 26.1, 26.0, 22.7, 14.1.

<9-3> M-GTM-I12의 합성<9-3> Synthesis of M-GTM-I12

실시예 3-5에 따라 화합물 M-GTM-I12를 89%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.18 (d, J = 4.0 Hz, 3H), 4.56-4.47 (m, 3H), 4.05-3.80 (m, 12H), 3.71-3.41 (m, 52H), 3.31-3.20 (m, 8H), 1.62-1.53 (m, 6H), 1.32-1.20 (m, 54H), 0.89 (t, J = 12.0 Hz, 9H); 13 C NMR (100 MHz, CD3OD): δ 104.1, 103.7, 102.9, 81.3, 78.3, 77.6, 76.7, 75.1, 74.8, 74.1, 73.0, 72.8, 72.7, 72.5, 72.0, 71.5, 62.7, 62.3, 59.3, 33.1, 30.8, 30.7, 30.5, 27.3, 23.8, 14.5; HRMS (FAB + ): calcd. for C89H168O41 [M+Na]+ 1916.0959, found 1916.0968.According to Example 3-5, compound M-GTM-I12 was synthesized in a yield of 89%. 1 H NMR (400 MHz, CD 3 OD): δ 5.18 (d, J = 4.0 Hz, 3H), 4.56-4.47 (m, 3H), 4.05-3.80 (m, 12H), 3.71-3.41 (m, 52H) ), 3.31-3.20 (m, 8H), 1.62-1.53 (m, 6H), 1.32-1.20 (m, 54H), 0.89 (t, J = 12.0 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 104.1, 103.7, 102.9, 81.3, 78.3, 77.6, 76.7, 75.1, 74.8, 74.1, 73.0, 72.8, 72.7, 72.5, 72.0, 71.5, 62.7, 62.3, 59.3 , 33.1, 30.8, 30.7, 30.5, 27.3, 23.8, 14.5; HRMS (FAB + ) : calcd. for C 89 H 168 O 41 [M+Na] + 1916.0959, found 1916.0968.

<실시예 4> M-GTM-Os의 합성 방법<Example 4> Synthesis method of M-GTM-Os

M-GTM-Os의 합성 스킴을 도 2에 나타내었다. 하기의 합성 방법에 따라 M-GTM-Os의 3종의 화합물을 합성하였다.The synthesis scheme of M-GTM-Os is shown in FIG. 2 . Three types of compounds of M-GTM-Os were synthesized according to the following synthesis method.

<4-1> 화합물 E의 합성 절차(도 2)<4-1> Synthesis procedure of compound E (FIG. 2)

4-[(2-메톡시에톡시)메틸]-1-메틸-2,6,7-트라이옥사바이사이클로[2.2.2]옥테인을 DCM/MeOH(1:1)에 용해시켰다. 이 용액에 몇 방울의 농축액을 첨가하였다. HCl 및 생성된 혼합물을 50

Figure pat00011
에서 4시간 동안 가열하였다. NaOH로 중화한 후, 반응 혼합물을 농축하였다. 생성된 잔류물을 50% NaOH에 용해시키고 tert-뷰틸 암모늄 브로마이드(0.5 당량) 및 알릴 브로마이드(4 당량)를 후속적으로 첨가하였다. 반응 혼합물을 상온에서 5시간 동안 교반하고 55
Figure pat00012
에서 24시간 동안 열활성화시킨 후 에틸 에테르로 추출하였다. 혼합한 유기층을 염수로 세척하고, 무수 Na2SO4로 건조시키고, 감압하에 농축시켰다. 잔류물을 컬럼 크로마토그래피로 정제하여 목적 화합물 E를 74% 수율로 수득하였다. 1 H NMR (400 MHz, CDCl3): δ 5.92-5.83 (m, 3H), 5.27 (quin, J = 8.0 Hz, 1.5H), 5.22 (quin, J = 8.0 Hz, 1.5H), 5.14 (quin, J = 8.0 Hz, 1.5H), 5.11 (quin, J = 8.0 Hz, 1.5H), 3.95-3.93 (m, 6H), 3.58-3.55 (m, 2H), 3.52-3.50 (m, 2H), 3.48 (s, 6H), 3.36 (s, 3H); 13 C NMR (100 MHz, CDCl3): δ 135.2, 115.9, 72.1, 71.7, 70.8, 70.1, 69.2, 58.9, 45.4.4-[(2-methoxyethoxy)methyl]-1-methyl-2,6,7-trioxabicyclo[2.2.2]octane was dissolved in DCM/MeOH (1:1). A few drops of the concentrate were added to this solution. HCl and the resulting mixture to 50
Figure pat00011
was heated for 4 hours. After neutralization with NaOH, the reaction mixture was concentrated. The resulting residue was dissolved in 50% NaOH and tert-butyl ammonium bromide (0.5 equiv) and allyl bromide (4 equiv) were subsequently added. The reaction mixture was stirred at room temperature for 5 hours and 55
Figure pat00012
After thermal activation for 24 hours, it was extracted with ethyl ether. The combined organic layers were washed with brine, dried over anhydrous Na 2 SO 4 , and concentrated under reduced pressure. The residue was purified by column chromatography to obtain the target compound E in 74% yield. 1 H NMR (400 MHz, CDCl 3 ): δ 5.92-5.83 (m, 3H), 5.27 (quin, J = 8.0 Hz, 1.5H), 5.22 (quin, J = 8.0 Hz, 1.5H), 5.14 (quin , J = 8.0 Hz, 1.5H), 5.11 (quin, J = 8.0 Hz, 1.5H), 3.95-3.93 (m, 6H), 3.58-3.55 (m, 2H), 3.52-3.50 (m, 2H), 3.48 (s, 6H), 3.36 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 135.2, 115.9, 72.1, 71.7, 70.8, 70.1, 69.2, 58.9, 45.4.

<4-2> 화합물 F2(3,3'-((2-((2,3-dihydroxypropoxy)methyl)-2-((2-methoxyethoxy)methyl)propane-1,3-diyl)bis(oxy))bis(propane-1,2-diol)의 합성 절차(도 2의 단계 a2)<4-2> Compound F2(3,3'-((2-((2,3-dihydroxypropoxy)methyl)-2-((2-methoxyethoxy)methyl)propane-1,3-diyl)bis(oxy) ) Synthesis procedure of bis(propane-1,2-diol) (step a2 in Fig. 2)

아세톤, H2O 및 tert-BuOH(1:1:0.2)에 용해된 화합물 E의 빙냉 용액에 N-메틸모르폴린(NMO) 및 OsO4(4.0중량%)를 적가하였다. 생성된 혼합물을 실온에서 24시간 동안 교반하였다. TLC에 의해 지시된 바와 같이 반응이 완료된 후, 용매 및 휘발성 성분을 감압하에 제거하였다. 미정제 잔류물의 컬럼 크로마토그래피 정제로 화합물 F2를 74% 수율로 수득하였다. 1 H NMR (400 MHz, CDCl3): δ 3.72 (quin, J = 4.0 Hz, 3H), 3.55 (d, J = 8.0 Hz, 6H), 3.50-3.48 (m, 3H), 3.45-3.34 (m, 18H), 3.29 (s, 3H), 2.94 (s br, 3H), 0.83 (s, 27H), 0.01 (s, 18H); 13 C NMR (100 MHz, CDCl3): δ 72.4, 71.7, 70.8, 70.5, 70.4, 70.3, 64.0, 58.8, 45.4, 25.8, 18.2.To an ice-cooled solution of compound E dissolved in acetone, H 2 O and tert-BuOH (1:1:0.2), N-methylmorpholine (NMO) and OsO 4 (4.0 wt%) were added dropwise. The resulting mixture was stirred at room temperature for 24 hours. After the reaction was complete as indicated by TLC, the solvent and volatile components were removed under reduced pressure. Column chromatography purification of the crude residue gave compound F2 in 74% yield. 1 H NMR (400 MHz, CDCl 3 ): δ 3.72 (quin, J = 4.0 Hz, 3H), 3.55 (d, J = 8.0 Hz, 6H), 3.50-3.48 (m, 3H), 3.45-3.34 (m) , 18H), 3.29 (s, 3H), 2.94 (s br, 3H), 0.83 (s, 27H), 0.01 (s, 18H); 13 C NMR (100 MHz, CDCl 3 ): δ 72.4, 71.7, 70.8, 70.5, 70.4, 70.3, 64.0, 58.8, 45.4, 25.8, 18.2.

<4-3> 1차 알코올의 TBDMS 보호기화 반응의 일반 절차(도 2의 단계 e)<4-3> General procedure of TBDMS protective vaporization reaction of primary alcohol (step e of FIG. 2)

THF에 용해된 화합물 F2를 아르곤 하 0

Figure pat00013
에서 이미다졸(6.0 당량)을 조금씩 첨가하였다. 5분 후, DCM 중 TBDMSCl(3.6당량)의 용액을 첨가하고 생성된 혼합물을 실온에서 1시간 동안 교반한 다음 얼음으로 켄칭하였다. 증류수로 추가 희석한 후, 반응 혼합물을 DCM으로 추출하였다. 혼합된 DCM 분획을 빙냉 HCl(0.1M), 물 및 염수로 연속적으로 세척한 다음 무수 Na2SO4로 건조시켰다. 반응 혼합물로부터 용매를 제거한 후 얻어진 유상 잔류물을 크로마토그래피로 정제하여 목적 화합물 H를 74% 수율로 수득하였다. 1 H NMR (400 MHz, CDCl3): δ 3.72 (quin, J = 4.0 Hz, 3H), 3.55 (d, J = 8.0 Hz, 6H), 3.50-3.48 (m, 3H), 3.45-3.34 (m, 18H), 3.29 (s, 3H), 2.94 (s br, 3H), 0.83 (s, 27H), 0.01 (s, 18H); 13 C NMR (100 MHz, CDCl3): δ 72.4, 71.7, 70.8, 70.5, 70.4, 70.3, 64.0, 58.8, 45.4, 25.8, 18.2, -5.4Compound F2 dissolved in THF was added to 0 under argon.
Figure pat00013
imidazole (6.0 equivalents) was added little by little. After 5 min, a solution of TBDMSCl (3.6 eq) in DCM was added and the resulting mixture was stirred at room temperature for 1 h and then quenched with ice. After further dilution with distilled water, the reaction mixture was extracted with DCM. The combined DCM fractions were washed successively with ice-cold HCl (0.1M), water and brine, then dried over anhydrous Na 2 SO 4 . After removing the solvent from the reaction mixture, the obtained oily residue was purified by chromatography to obtain the target compound H in 74% yield. 1 H NMR (400 MHz, CDCl 3 ): δ 3.72 (quin, J = 4.0 Hz, 3H), 3.55 (d, J = 8.0 Hz, 6H), 3.50-3.48 (m, 3H), 3.45-3.34 (m) , 18H), 3.29 (s, 3H), 2.94 (s br, 3H), 0.83 (s, 27H), 0.01 (s, 18H); 13 C NMR (100 MHz, CDCl 3 ): δ 72.4, 71.7, 70.8, 70.5, 70.4, 70.3, 64.0, 58.8, 45.4, 25.8, 18.2, -5.4

<4-4> 트라이알킬화된 트라이올 유도체 합성의 일반 절차(도 2의 단계 f)<4-4> General procedure of trialkylated triol derivative synthesis (step f in FIG. 2)

DMF 중 화합물 H(1.0 당량)의 빙냉 용액에 불활성 대기하에 NaH(4.5 당량)를 첨가하였다. 버블링이 중단된 후, 요오드화 알킬(RI; 4.5 당량)을 적가하고 생성된 혼합물을 70

Figure pat00014
에서 24시간 동안 교반하였다. 얼음을 첨가하여 반응을 켄칭한 다음, 물로 희석하였다. 희석된 반응 혼합물을 에틸아세테이트로 추출하고 혼합한 유기 분획을 염수로 세척하고 무수 Na2SO4로 건조시켰다. 감압하에서 용매를 제거하여 THF에 용해된 오일성 잔류물을 얻었다. 이 용액에 THF 중 1.0 M TBAF(4.5 당량)를 첨가한 다음, 실온에서 12시간 동안 교반하였다. 반응 종료 후, 반응 혼합물을 물로 희석하고 에틸아세테이트로 세척하였다. 혼합한 유기 분획을 염수로 세척하고 무수 Na2SO4로 건조시켰다. 감압하에서 용매를 제거하여 유상 잔류물을 얻었고, 이를 컬럼 크로마토그래피 정제하여 목적 화합물 I를 수득하였다.To an ice-cooled solution of compound H (1.0 equiv) in DMF was added NaH (4.5 equiv) under an inert atmosphere. After bubbling ceased, alkyl iodide (RI; 4.5 eq) was added dropwise and the resulting mixture was stirred at 70
Figure pat00014
was stirred for 24 hours. The reaction was quenched by addition of ice and then diluted with water. The diluted reaction mixture was extracted with ethyl acetate, and the combined organic fractions were washed with brine and dried over anhydrous Na 2 SO 4 . The solvent was removed under reduced pressure to give an oily residue dissolved in THF. To this solution was added 1.0 M TBAF in THF (4.5 eq) and then stirred at room temperature for 12 h. After completion of the reaction, the reaction mixture was diluted with water and washed with ethyl acetate. The combined organic fractions were washed with brine and dried over anhydrous Na 2 SO 4 . The solvent was removed under reduced pressure to obtain an oily residue, which was purified by column chromatography to obtain the desired compound I.

<4-5> 당화(glycosycosylation)반응 의 일반 합성 절차 (도 1의 단계 g)<4-5> General synthetic procedure of glycosycosylation reaction (step g in FIG. 1)

N2 대기하에서, 무수 CH2Cl2에 화합물 I(1당량) 및 AgOTf (3.6 당량)의 혼합물을 -45°C에서 교반하였다. 그 후 CH2Cl2에 용해된 퍼벤조일화 말토실브로마이드 (3.6 당량)를 이 현탁액에 첨가하였다. -45°C에서 5분동안 교반한 다음 0°C에서 30분동안 교반하였다. 반응 완료 후 (TLC에 의해 검출됨), 피리딘을 반응 혼합물에 첨가하였다. 반응 혼합물을 CH2Cl2 (30 mL)로 희석한 후 셀 라이트로 여과하였다. 여과액을 1.0 M Na2S2O3 수용액, 0.1 M HCl 수용액 및 염수로 연속적으로 세척하였다. 그 다음 유기층을 무수 Na2SO4로 건조시키고 용매를 회전 증발로 제거하였다. 생성된 잔류물을 실리카 겔 컬럼 크로마토그래피 (EtOAc/헥산)로 정제하여 당화된 목적 화합물을 수득하였다.Under N 2 atmosphere, a mixture of compound I (1 eq) and AgOTf (3.6 eq) in anhydrous CH 2 Cl 2 was stirred at -45 °C. Then perbenzoylated maltosylbromide (3.6 eq) dissolved in CH 2 Cl 2 was added to this suspension. The mixture was stirred at -45 °C for 5 min and then at 0 °C for 30 min. After completion of the reaction (detected by TLC), pyridine was added to the reaction mixture. The reaction mixture was diluted with CH 2 Cl 2 (30 mL) and then filtered through celite. The filtrate was washed successively with 1.0 M aqueous Na 2 S 2 O 3 aqueous solution, 0.1 M aqueous HCl solution and brine. Then the organic layer was dried over anhydrous Na 2 SO 4 and the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography (EtOAc/hexane) to obtain the saccharified target compound.

<4-6> 탈보호기화 반응 (deprotection reaction)을 위한 일반 합성 절차 (도 2의 단계 h)<4-6> General synthetic procedure for deprotection reaction (step h in FIG. 2)

O-벤조일화된 화합물을 무수 CH2Cl2로 용해시킨 다음 MeOH를 지속적인 침전이 나타날때까지 천천히 첨가하였다. 상기 반응 혼합물에 0.5 M의 메탄올성 용액(methanolic solution)인 NaOMe를 최종 농도가 0.05 M이 되도록 첨가하였다. 반응 혼합물을 실온에서 6시간 동안 교반시켰다. 반응 완료 후, 반응 혼합물을 Amberlite IR-120 (H+ form) resin을 이용하여 중화시켰다. 여과하여 resin을 제거하고, MeOH로 세척하고, 진공 조건(in vacuo)에서 여과물로부터 용매를 제거하였다. 잔여물을 실리카 겔 컬럼크로마토그래피(CH2Cl2/MeOH)를 이용하여 정제하여 목적 화합물을 얻었다.The O-benzoylated compound was dissolved with anhydrous CH 2 Cl 2 and then MeOH was added slowly until persistent precipitation appeared. NaOMe, a methanolic solution of 0.5 M, was added to the reaction mixture to a final concentration of 0.05 M. The reaction mixture was stirred at room temperature for 6 hours. After completion of the reaction, the reaction mixture was neutralized using Amberlite IR-120 (H+ form) resin. The resin was removed by filtration, washed with MeOH, and the solvent was removed from the filtrate in vacuo. The residue was purified using silica gel column chromatography (CH 2 Cl 2 /MeOH) to obtain the target compound.

<제조예 10> M-GTM-O10의 합성<Preparation Example 10> Synthesis of M-GTM-O10

<10-1> 화합물 I1((13<10-1> compound I1 ((13 RR ,21,21 RR )-17-((()-17-((( RR )-3-(decyloxy)-2-hydroxypropoxy)methyl)-17-((2-methoxyethoxy)methyl)-11,15,19,23-tetra oxatritriacontane-13,21-diol)의 합성Synthesis of )-3-(decyloxy)-2-hydroxypropoxy)methyl)-17-((2-methoxyethoxy)methyl)-11,15,19,23-tetra oxatritriacontane-13,21-diol)

실시예 4-4에 따라 화합물 I1을 30%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.71-3.68 (m, 3H), 3.61-3.40 (m, 30H), 3.37 (s, 3H), 2.74 (s br, 3H), 1.56 (quin, J = 8.0 Hz, 6H), 1.39 (q, J = 8.0 Hz, 2H), 1.36-1.20 (m, 42H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 78.1, 78.0, 73.1, 71.8, 71.7, 71.2, 71.1, 70.9, 70.7, 70.2, 69.2, 62.7, 62.6, 58.9, 45.3, 31.8, 30.0, 29.6, 29.5, 29.3, 26.1, 22.6, 14.1.According to Example 4-4, compound I1 was synthesized in a yield of 30%. 1 H NMR (400 MHz, CDCl 3 ): δ 3.71-3.68 (m, 3H), 3.61-3.40 (m, 30H), 3.37 (s, 3H), 2.74 (s br, 3H), 1.56 (quin, J = 8.0 Hz, 6H), 1.39 (q, J = 8.0 Hz, 2H), 1.36-1.20 (m, 42H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 78.1, 78.0, 73.1, 71.8, 71.7, 71.2, 71.1, 70.9, 70.7, 70.2, 69.2, 62.7, 62.6, 58.9, 45.3, 31.8, 30.0, 29.6, 29.5, 29.3, 26.1, 22.6, 14.1.

<10-2> M-GTM-O10a의 합성<10-2> Synthesis of M-GTM-O10a

실시예 4-5에 따라 M-GTM-O10a를 66%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.08 (t, J = 6.0 Hz, 6H), 7.99 (d, J = 8.0 Hz, 6H), 7.85-7.78 (m, 12H), 7.74-7.72 (m, 15H), 7.64-7.61 (m, 6H), 7.54-7.49 (m, 6H), 7.46-7.36 (m, 24H), 7.34-7.17 (m, 30H), 6.08 (t, J = 10.0 Hz, 3H), 5.79-5.62 (m, 10H), 5.35-5.23 (m, 7H), 4.90-4.83 (m, 5H), 4.77-4.73 (m, 3H), 4.54-4.42 (m, 7H), 4.39-4.36 (m, 4H), 4.32-4.21 (m, 4H), 4.13-4.06 (m, 3H), 3.89-3.78 (m, 3H), 3.58-3.54 (m, 2H) 3.46-2.98 (m, 28H), 1.34-1.05 (m, 48H), 0.87 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 166.1, 165.8, 165.6, 165.4, 165.4, 165.1, 133.4, 133.3, 133.2, 133.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.4, 129.2, 128.9, 128.7, 128.6, 128.5, 128.4, 128.2, 128.0, 96.4, 75.0, 73.1, 72.8, 72.3, 71.7, 71.0, 70.9, 70.6, 69.9, 69.2, 62.5, 58.9, 31.9, 30.1, 29.6, 29.5, 29.3, 26.0, 25.9, 22.7, 14.1.According to Example 4-5, M-GTM-O10a was synthesized in a yield of 66%. 1 H NMR (400 MHz, CDCl 3 ): δ 8.08 (t, J = 6.0 Hz, 6H), 7.99 (d, J = 8.0 Hz, 6H), 7.85-7.78 (m, 12H), 7.74-7.72 (m , 15H), 7.64-7.61 (m, 6H), 7.54-7.49 (m, 6H), 7.46-7.36 (m, 24H), 7.34-7.17 (m, 30H), 6.08 (t, J = 10.0 Hz, 3H) ), 5.79-5.62 (m, 10H), 5.35-5.23 (m, 7H), 4.90-4.83 (m, 5H), 4.77-4.73 (m, 3H), 4.54-4.42 (m, 7H), 4.39-4.36 (m, 4H), 4.32-4.21 (m, 4H), 4.13-4.06 (m, 3H), 3.89-3.78 (m, 3H), 3.58-3.54 (m, 2H) 3.46-2.98 (m, 28H), 1.34-1.05 (m, 48H), 0.87 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.1, 165.8, 165.6, 165.4, 165.4, 165.1, 133.4, 133.3, 133.2, 133.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.4, 129.2, 128.9, 128.7, 128.6, 128.5, 128.4, 128.2, 128.0, 96.4, 75.0, 73.1, 72.8, 72.3, 71.7, 71.0, 70.9, 70.6, 69.9, 69.2, 62.5, 58.9, 31.9, 30.1, 29.6, 29.5, 29.3, 26.0, 25.9, 22.7, 14.1.

<10-3> M-GTM-O10의 합성<10-3> Synthesis of M-GTM-O10

실시예 4-6에 따라 화합물 M-GTM-O10을 89%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.21 (d, J = 4.0 Hz, 3H), 4.37-4.32 (m, 3H), 4.06-3.85 (m, 12H), 3.74-3.40 (m, 52H), 3.34-3.28 (m, 8H), 1.62-1.59 (m, 6H), 1.40-1.29 (m, 42H), 0.94 (t, J = 12.0 Hz, 9H); 13 C NMR (100 MHz, CD3OD): δ 104.7, 104.6, 102.9, 81.3, 81.2, 79.3, 77.7, 76.6, 75.1, 74.8, 74.6, 74.1, 73.0, 72.7, 72.0, 71.7, 71.5, 71.3, 62.7, 62.2, 59.4, 33.2, 31.2, 30.9, 30.8, 30.7, 30.5, 27.3, 23.8, 14.6; HRMS (FAB + ): calcd. for C83H156O41 [M+Na]+ 1832.0020, found 1832.0014.According to Example 4-6, the compound M-GTM-O10 was synthesized in a yield of 89%. 1 H NMR (400 MHz, CD 3 OD): δ 5.21 (d, J = 4.0 Hz, 3H), 4.37-4.32 (m, 3H), 4.06-3.85 (m, 12H), 3.74-3.40 (m, 52H) ), 3.34-3.28 (m, 8H), 1.62-1.59 (m, 6H), 1.40-1.29 (m, 42H), 0.94 (t, J = 12.0 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 104.7, 104.6, 102.9, 81.3, 81.2, 79.3, 77.7, 76.6, 75.1, 74.8, 74.6, 74.1, 73.0, 72.7, 72.0, 71.7, 71.5, 71.3, 62.7 , 62.2, 59.4, 33.2, 31.2, 30.9, 30.8, 30.7, 30.5, 27.3, 23.8, 14.6; HRMS (FAB + ) : calcd. for C 83 H 156 O 41 [M+Na] + 1832.0020, found 1832.0014.

<제조예 11> M-GTM-O11의 합성<Preparation Example 11> Synthesis of M-GTM-O11

<11-1> 화합물 I2((14<11-1> compound I2 ((14 RR ,22,22 RR )-18-((()-18-((( RR )-2-hydroxy-3-(undecyloxy)propoxy)methyl)-18-((2-methoxyethoxy)methyl)-12,16,20,24-tet raoxapentatriacontane-14,22-diol)의 합성Synthesis of )-2-hydroxy-3-(undecyloxy)propoxy)methyl)-18-((2-methoxyethoxy)methyl)-12,16,20,24-tet raoxapentatriacontane-14,22-diol)

실시예 4-4에 따라 화합물 I2를 30%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.70-3.68 (m, 3H), 3.60-3.38 (m, 30H), 3.38 (s, 3H), 2.80 (s br, 3H), 1.56 (quin, J = 8.0 Hz, 6H), 1.39 (q, J = 8.0 Hz, 2H), 1.35-1.20 (m, 48H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 78.1, 78.0, 73.1, 71.8, 71.6, 71.2, 71.1, 70.9, 70.7, 70.2, 69.2, 62.6, 58.9, 45.3, 31.8, 30.0, 29.6, 29.4, 29.3, 26.1, 22.6, 14.0.According to Example 4-4, compound I2 was synthesized in a yield of 30%. 1 H NMR (400 MHz, CDCl 3 ): δ 3.70-3.68 (m, 3H), 3.60-3.38 (m, 30H), 3.38 (s, 3H), 2.80 (s br, 3H), 1.56 (quin, J = 8.0 Hz, 6H), 1.39 (q, J = 8.0 Hz, 2H), 1.35-1.20 (m, 48H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 78.1, 78.0, 73.1, 71.8, 71.6, 71.2, 71.1, 70.9, 70.7, 70.2, 69.2, 62.6, 58.9, 45.3, 31.8, 30.0, 29.6, 29.4, 29.3, 26.1, 22.6, 14.0.

<11-2> M-GTM-O11a의 합성<11-2> Synthesis of M-GTM-O11a

실시예 4-5에 따라 M-GTM-O11a를 66%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.09 (t, J = 6.0 Hz, 6H), 7.99 (d, J = 8.0 Hz, 6H), 7.86-7.78 (m, 12H), 7.75-7.72 (m, 15H), 7.64-7.61 (m, 6H), 7.55-7.49 (m, 6H), 7.46-7.35 (m, 24H), 7.33-7.17 (m, 30H), 6.09 (t, J = 10.0 Hz, 3H), 5.80-5.62 (m, 10H), 5.35-5.23 (m, 7H), 4.91-4.83 (m, 5H), 4.77-4.73 (m, 3H), 4.54-4.41 (m, 7H), 4.39-4.36 (m, 4H), 4.32-4.21 (m, 4H), 4.13-4.05 (m, 3H), 3.89-3.77 (m, 3H), 3.58-3.54 (m, 2H) 3.46-2.99 (m, 28H), 1.34-1.06 (m, 54H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 166.1, 165.8, 165.6, 165.4, 165.1, 165.0, 133.5, 133.3, 133.2, 133.1, 133.0, 129.9, 129.8, 129.7, 129.6, 129.4, 129.2, 128.9, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 101.2, 100.9, 96.4, 75.0, 73.2, 72.8, 72.4, 72.3, 71.8, 71.0, 70.9, 70.8, 70.6, 69.9, 69.5, 69.1, 62.5, 58.9, 45.3, 31.9, 30.1, 29.6, 29.5, 29.4, 26.1, 25.9, 22.7, 14.2.According to Example 4-5, M-GTM-O11a was synthesized in a yield of 66%. 1 H NMR (400 MHz, CDCl 3 ): δ 8.09 (t, J = 6.0 Hz, 6H), 7.99 (d, J = 8.0 Hz, 6H), 7.86-7.78 (m, 12H), 7.75-7.72 (m , 15H), 7.64-7.61 (m, 6H), 7.55-7.49 (m, 6H), 7.46-7.35 (m, 24H), 7.33-7.17 (m, 30H), 6.09 (t, J = 10.0 Hz, 3H) ), 5.80-5.62 (m, 10H), 5.35-5.23 (m, 7H), 4.91-4.83 (m, 5H), 4.77-4.73 (m, 3H), 4.54-4.41 (m, 7H), 4.39-4.36 (m, 4H), 4.32-4.21 (m, 4H), 4.13-4.05 (m, 3H), 3.89-3.77 (m, 3H), 3.58-3.54 (m, 2H) 3.46-2.99 (m, 28H), 1.34-1.06 (m, 54H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.1, 165.8, 165.6, 165.4, 165.1, 165.0, 133.5, 133.3, 133.2, 133.1, 133.0, 129.9, 129.8, 129.7, 129.6, 129.4, 129.2, 128.9, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 101.2, 100.9, 96.4, 75.0, 73.2, 72.8, 72.4, 72.3, 71.8, 71.0, 70.9, 70.8, 70.6, 69.9, 69.5, 69.1, 62.5, 58.9, 45.3, 31.9, 30.1, 29.6, 29.5, 29.4, 26.1, 25.9, 22.7, 14.2.

<11-3> M-GTM-O11의 합성<11-3> Synthesis of M-GTM-O11

실시예 4-6에 따라 화합물 M-GTM-O11을 89%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.21 (d, J = 4.0 Hz, 3H), 4.37-4.31 (m, 3H), 4.06-3.85 (m, 12H), 3.73-3.38 (m, 52H), 3.34-3.27 (m, 8H), 1.64-1.59 (m, 6H), 1.40-1.28 (m, 48H), 0.93 (t, J = 12.0 Hz, 9H); 13 C NMR (100 MHz, CD3OD): δ 104.8, 104.7, 102.9, 81.3, 81.2, 79.3, 77.7, 76.6, 75.1, 74.8, 74.7, 74.1, 73.0, 72.7, 72.5, 72.0, 71.7, 71.5, 71.2, 62.7, 62.3, 59.4, 33.1, 31.2, 30.9, 30.8, 30.7, 30.5, 27.3, 23.8, 14.6; HRMS (FAB + ): calcd. for C86H162O41 [M+Na]+ 1874.0489, found 1874.0494.According to Example 4-6, the compound M-GTM-O11 was synthesized in a yield of 89%. 1 H NMR (400 MHz, CD 3 OD): δ 5.21 (d, J = 4.0 Hz, 3H), 4.37-4.31 (m, 3H), 4.06-3.85 (m, 12H), 3.73-3.38 (m, 52H) ), 3.34-3.27 (m, 8H), 1.64-1.59 (m, 6H), 1.40-1.28 (m, 48H), 0.93 (t, J = 12.0 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 104.8, 104.7, 102.9, 81.3, 81.2, 79.3, 77.7, 76.6, 75.1, 74.8, 74.7, 74.1, 73.0, 72.7, 72.5, 72.0, 71.7, 71.5, 71.2 , 62.7, 62.3, 59.4, 33.1, 31.2, 30.9, 30.8, 30.7, 30.5, 27.3, 23.8, 14.6; HRMS (FAB + ) : calcd. for C 86 H 162 O 41 [M+Na] + 1874.0489, found 1874.0494.

<제조예 12> M-GTM-O12의 합성<Preparation Example 12> Synthesis of M-GTM-O12

<12-1> 화합물 I3((15<12-1> Compound I3 ((15) RR ,23,23 RR )-19-((()-19-((( RR )-3-(dodecyloxy)-2-hydroxypropoxy)methyl)-19-((2-methoxyethoxy)methyl)-13,17,21,25-tet raoxaheptatriacontane-15,23-diol)의 합성Synthesis of )-3-(dodecyloxy)-2-hydroxypropoxy)methyl)-19-((2-methoxyethoxy)methyl)-13,17,21,25-tet raoxaheptatriacontane-15,23-diol)

실시예 4-4에 따라 화합물 I3을 30%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.70-3.67 (m, 3H), 3.61-3.40 (m, 30H), 3.38 (s, 3H), 2.75 (s br, 3H), 1.56 (quin, J = 8.0 Hz, 6H), 1.39 (q, J = 8.0 Hz, 2H), 1.34-1.20 (m, 54H), 0.87 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 78.1, 78.0, 71.8, 71.6, 71.2, 71.1, 70.9, 70.7, 70.2, 69.2, 62.7, 62.6, 58.9, 45.3, 36.4, 31.9, 30.0, 29.6, 29.5, 29.3, 26.1, 22.6, 14.0.According to Example 4-4, compound I3 was synthesized in a yield of 30%. 1 H NMR (400 MHz, CDCl 3 ): δ 3.70-3.67 (m, 3H), 3.61-3.40 (m, 30H), 3.38 (s, 3H), 2.75 (s br, 3H), 1.56 (quin, J = 8.0 Hz, 6H), 1.39 (q, J = 8.0 Hz, 2H), 1.34-1.20 (m, 54H), 0.87 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 78.1, 78.0, 71.8, 71.6, 71.2, 71.1, 70.9, 70.7, 70.2, 69.2, 62.7, 62.6, 58.9, 45.3, 36.4, 31.9, 30.0, 29.6, 29.5, 29.3, 26.1, 22.6, 14.0.

<12-2> M-GTM-O12a의 합성<12-2> Synthesis of M-GTM-O12a

실시예 4-5에 따라 M-GTM-O12a를 66%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.08 (t, J = 6.0 Hz, 6H), 8.01 (d, J = 8.0 Hz, 6H), 7.86-7.78 (m, 12H), 7.74-7.72 (m, 15H), 7.65-7.61 (m, 6H), 7.55-7.49 (m, 6H), 7.46-7.36 (m, 24H), 7.35-7.16 (m, 30H), 6.08 (t, J = 10.0 Hz, 3H), 5.79-5.60 (m, 10H), 5.35-5.23 (m, 7H), 4.90-4.80 (m, 5H), 4.77-4.73 (m, 3H), 4.54-4.42 (m, 7H), 4.39-4.34 (m, 4H), 4.32-4.21 (m, 4H), 4.11-4.06 (m, 3H), 3.88-3.78 (m, 3H), 3.58-3.54 (m, 2H) 3.47-2.98 (m, 28H), 1.34-1.04 (m, 60H), 0.87 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 166.1, 165.8, 165.6, 165.5, 165.0, 133.5, 133.3, 133.2, 133.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.4, 129.2, 128.9, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 96.4, 75.0, 73.1, 72.8, 72.4, 71.8, 71.1, 70.9, 70.6, 70.0, 69.1, 63.5, 62.5, 58.9, 31.9, 30.1, 29.7, 29.6, 29.4, 26.1, 25.9, 22.7, 14.2.According to Example 4-5, M-GTM-O12a was synthesized in a yield of 66%. 1 H NMR (400 MHz, CDCl 3 ): δ 8.08 (t, J = 6.0 Hz, 6H), 8.01 (d, J = 8.0 Hz, 6H), 7.86-7.78 (m, 12H), 7.74-7.72 (m , 15H), 7.65-7.61 (m, 6H), 7.55-7.49 (m, 6H), 7.46-7.36 (m, 24H), 7.35-7.16 (m, 30H), 6.08 (t, J = 10.0 Hz, 3H) ), 5.79-5.60 (m, 10H), 5.35-5.23 (m, 7H), 4.90-4.80 (m, 5H), 4.77-4.73 (m, 3H), 4.54-4.42 (m, 7H), 4.39-4.34 (m, 4H), 4.32-4.21 (m, 4H), 4.11-4.06 (m, 3H), 3.88-3.78 (m, 3H), 3.58-3.54 (m, 2H) 3.47-2.98 (m, 28H), 1.34-1.04 (m, 60H), 0.87 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.1, 165.8, 165.6, 165.5, 165.0, 133.5, 133.3, 133.2, 133.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.4, 129.2, 128.9, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 96.4, 75.0, 73.1, 72.8, 72.4, 71.8, 71.1, 70.9, 70.6, 70.0, 69.1, 63.5, 62.5, 58.9, 31.9, 30.1, 29.7, 29.6, 29.4, 26.1, 25.9, 22.7, 14.2.

<12-3> M-GTM-O12의 합성<12-3> Synthesis of M-GTM-O12

실시예 4-6에 따라 화합물 M-GTM-O12를 89%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.21 (d, J = 4.0 Hz, 3H), 4.38-4.32 (m, 3H), 4.07-3.84 (m, 12H), 3.74-3.40 (m, 52H), 3.34-3.27 (m, 8H), 1.62-1.58 (m, 6H), 1.41-1.28 (m, 54H), 0.94 (t, J = 12.0 Hz, 9H); 13 C NMR (100 MHz, CD3OD): δ 104.8, 102.9, 81.3, 79.3, 79.2, 77.7, 76.6, 75.1, 74.8, 74.7, 74.1, 73.0, 71.7, 71.5, 71.2, 62.7, 62.2, 59.4, 33.1, 31.2, 30.9, 30.8, 30.5, 27.3, 23.8, 14.5; HRMS (FAB + ): calcd. for C89H168O41 [M+Na]+ 1917.0992, found 1917.1056.According to Example 4-6, the compound M-GTM-O12 was synthesized in a yield of 89%. 1 H NMR (400 MHz, CD 3 OD): δ 5.21 (d, J = 4.0 Hz, 3H), 4.38-4.32 (m, 3H), 4.07-3.84 (m, 12H), 3.74-3.40 (m, 52H) ), 3.34-3.27 (m, 8H), 1.62-1.58 (m, 6H), 1.41-1.28 (m, 54H), 0.94 (t, J = 12.0 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 104.8, 102.9, 81.3, 79.3, 79.2, 77.7, 76.6, 75.1, 74.8, 74.7, 74.1, 73.0, 71.7, 71.5, 71.2, 62.7, 62.2, 59.4, 33.1 , 31.2, 30.9, 30.8, 30.5, 27.3, 23.8, 14.5; HRMS (FAB + ) : calcd. for C 89 H 168 O 41 [M+Na] + 1917.0992, found 1917.1056.

<실험예 1> GTMs의 특성<Experimental Example 1> Characteristics of GTMs

상기 실시예 1 내지 4의 합성 방법에 따라 합성된 GTMs의 특성을 확인하기 위하여, GTMs의 분자량 (M.W.), 임계응집농도(critical aggregation concentration; CAC) 및 형성된 미셀의 유체역학적 직경(hydrodynamic diameter; D h)을 측정하였다.In order to confirm the characteristics of the GTMs synthesized according to the synthesis method of Examples 1 to 4, the molecular weight (MW) of the GTMs, the critical aggregation concentration (CAC), and the hydrodynamic diameter of the formed micelles (hydrodynamic diameter; D h ) was measured.

구체적으로, 임계응집농도(CAC)는 형광 염색, 디페닐헥사트리엔(diphenylhexatriene; DPH)을 이용하여 측정하였고, 각각의 제제(1.0 wt%)에 의해 형성된 미셀의 유체역학적 지름(D h)은 동적 광산란(dynamic light scattering; DLS) 실험을 통해 측정하였다. 측정된 결과를 기존의 양친매성 분자(detergent)인 DDM과 비교하여 표 1에 나타내었다.Specifically, the critical aggregation concentration (CAC) was measured using fluorescence staining and diphenylhexatriene (DPH), and the hydrodynamic diameter ( D h ) of micelles formed by each agent (1.0 wt%) was It was measured through a dynamic light scattering (DLS) experiment. The measured results are shown in Table 1 in comparison with DDM, which is an existing amphiphilic molecule (detergent).

DetergentDetergent MWa
(Da)
MW a
(Da)
CAC (μM)CAC (μM) D h
(nm)b
D h
(nm) b
Solubility (wt%)Solubility (wt%)
E-GTM-I10E-GTM-I10 1750.11750.1 1010 32.8 ± 0.432.8 ± 0.4 ~10~10 E-GTM-I11E-GTM-I11 1792.11792.1 3.03.0 62.8 ± 0.262.8 ± 0.2 ~5 ~5 E-GTM-I12E-GTM-I12 1834.21834.2 1.51.5 76.0 ± 0.676.0 ± 0.6 ~3 ~3 E-GTM-O10E-GTM-O10 1750.11750.1 5.05.0 47.0 ± 0.447.0 ± 0.4 ~10 ~10 E-GTM-O11E-GTM-O11 1792.11792.1 2.02.0 77.8 ± 0.277.8 ± 0.2 ~5 ~5 E-GTM-O12E-GTM-O12 1834.21834.2 1.51.5 85.6 ± 1.485.6 ± 1.4 ~1~1 M-GTM-I10M-GTM-I10 1810.11810.1 6.06.0 9.2 ± 0.49.2 ± 0.4 ~10 ~10 M-GTM-I11M-GTM-I11 1852.21852.2 5.05.0 22.2 ± 4.022.2 ± 4.0 ~10~10 M-GTM-I12M-GTM-I12 1894.31894.3 4.04.0 35.4 ± 1.635.4 ± 1.6 ~10 ~10 M-GTM-O10M-GTM-O10 1810.11810.1 5.05.0 7.6 ± 0.27.6 ± 0.2 ~10 ~10 M-GTM-O11M-GTM-O11 1852.21852.2 4.04.0 12.6 ± 0.212.6 ± 0.2 ~10 ~10 M-GTM-O12M-GTM-O12 1894.31894.3 3.03.0 33.6 ± 0.633.6 ± 0.6 ~10 ~10 DDMDDM 510.6510.6 170170 6.8 ± 0.66.8 ± 0.6 ~10 ~10

aMolecular weight of the detergent. bHydrodynamic diameter of the micelles determined at 1.0 wt % by dynamic light scattering.대부분의 GTMs의 CAC 값 (0.0015 내지 0.010 mM)은 DDM의 CAC 값 (0.17 mM)과 비교하여 상당히 작았다. 따라서, GTMs은 낮은 농도에서도 미셀이 용이하게 형성되므로, 이는 자체 조립 경향이 더 높음을 나타낸다. 또한, GTMs의 CAC 값은 알킬 사슬의 길이가 증가함에 따라 감소하였는데, 이는 알킬 사슬 길이의 연장에 따라 소수성이 증가하기 때문인 것으로 판단된다. 또한,펜던트 종류에 따른 차이를 비교할 때, 소수성 에틸 펜던트 대신 친수성 MEM이 존재하는 M-GTM가 친유성기의 소수성을 감소시켜 예상대로 E-GTM와 비교하여 높은 CAC를 제공하였다. 이는 M-GTM이 E-GTM에 비해 효과적인 응집체 형성에 더 유리한 분자 구조를 갖는다는 것을 의미한다. 이성질체 관점에서 비교할 때, 위치 이성질체 GTM의 관점에서, GTM-O가 짧은 알킬 간 사슬 거리로 인해 GTM-I보다 낮은 CAC를 제공하였다. a Molecular weight of the detergent. b Hydrodynamic diameter of the micelles determined at 1.0 wt % by dynamic light scattering. The CAC values (0.0015 to 0.010 mM) of most GTMs were significantly smaller than those of DDM (0.17 mM). Therefore, GTMs readily form micelles even at low concentrations, indicating a higher tendency for self-assembly. In addition, the CAC value of GTMs decreased as the length of the alkyl chain increased, which is thought to be due to the increase in hydrophobicity with the extension of the length of the alkyl chain. In addition, when comparing the differences according to the type of pendant, M-GTM in which hydrophilic MEM was present instead of hydrophobic ethyl pendant reduced the hydrophobicity of lipophilic groups, providing higher CAC as expected compared to E-GTM. This means that M-GTM has a more favorable molecular structure for effective aggregate formation than E-GTM. When compared in terms of isomers, in terms of regioisomeric GTMs, GTM-O gave a lower CAC than GTM-I due to the shorter interalkyl chain distance.

아울러, DLS를 통해 GTMs에 의해 형성된 미셀의 크기 분포를 조사한 결과, 크기 측면에서 양친매성 화합물 응집체의 집단을 분석할 때 M-GTM-O11에 의해 형성된 응집체는 E-GTM-O11에 의해 형성된 응집체에 비해 좁은 분포를 나타냈다 이것은 모든 GTM에 대한 일반적인 경향으로, M-GTM에 의해 형성된 자가 조립 응집체가 E-GTM에 의해 형성된 것보다 더 높은 균질성을 나타냄을 확인하였다 (도 3 및 4). In addition, as a result of examining the size distribution of micelles formed by GTMs through DLS, when analyzing the population of amphiphilic compound aggregates in terms of size, the aggregates formed by M-GTM-O11 were different from those formed by E-GTM-O11. This was a general trend for all GTMs, confirming that the self-assembled aggregates formed by M-GTM showed higher homogeneity than those formed by E-GTM (Figs. 3 and 4).

추가로 양친매성 화합물 용액의 농도 또는 온도의 변화에 따른 미셀 크기를 분석하였다. E-GTM-O11 및 M-GTM-O11은 모두 용액 농도 및 온도가 증가함에 따라 큰 응집체를 형성하는 경향을 나타내었다(도 5).In addition, the size of micelles according to the change in the concentration or temperature of the amphiphilic compound solution was analyzed. Both E-GTM-O11 and M-GTM-O11 showed a tendency to form large aggregates with increasing solution concentration and temperature (FIG. 5).

<실험예 2> GTMs의 LeuT 막단백질 구조 안정화 능력 평가<Experimental Example 2> Evaluation of GTMs LeuT membrane protein structure stabilization ability

GTMs에 의한 LeuT 단백질의 구조 안정성을 측정하는 실험을 하였다. 각각의 양친매성 화합물은 CMC + 0.04 wt% 또는 CMC + 0.2 wt% 농도로 사용하였으며, LeuT의 기질 결합 특성을 [3H]-Leu를 사용하여 SPA(scintillation proximity assay)를 통해 측정하였다. 측정은 각각 실온에서 13일간 인큐베이션 기간 동안 규칙적인 간격으로 수행하였다.An experiment was conducted to measure the structural stability of the LeuT protein by GTMs. Each amphiphilic compound was used at a concentration of CMC + 0.04 wt% or CMC + 0.2 wt%, and the substrate binding properties of LeuT were measured using [ 3 H]-Leu through a scintillation proximity assay (SPA). Measurements were each performed at regular intervals during a 13-day incubation period at room temperature.

구체적으로, 호열성 박테리아 아퀴펙스 아에오리쿠스(Aquifex aeolicus) 유래 와일드 타입 LeuT (leucine transporter)를 이전에 설명된 방법에 의해 정제하였다 (G. Deckert 등의 Nature 1998, 392, 353-358). LeuT를 C-말단 8xHis-태그된 트랜스포터를 암호화하는 pET16b로 형질전환된 E. coli C41 (DE3)에서 발현시켰다 (발현 플라스미드는 Dr E. Gouaux, Vollum Institute, Portland, Oregon, USA로부터 제공받음). 요약하면, 박테리아 멤브레인의 분리 및 1 중량% DDM에서 용해화 후에, 단백질을 Ni2+-NTA 수지 (Life Technologies, Denmark)에 결합시키고, 20 mM Tris-HCl (pH 8.0), 1mM NaCl, 199 mM KCl, 0.05%(w/v) DDM 및 300 mM 이미다졸(imidazole)에서 용리하였다. 그 후에, 정제된 LeuT (0.5 mg/ml)는 상기와 동등한 버퍼에서 DDM 및 이미다졸을 제외하고, GTMs 또는 DDM이 최종 농도 CMC + 0.04% (w/v) 또는 CMC + 0.2 wt% (w/v) 로 보충된 버퍼로 희석하였다. 단백질 샘플은 실온에서 14간 인큐베이션하고, 지정된 시간에 원심분리하고, 단백질 특성을 SPA를 사용하여 [3H]-Leucine 결합 능력을 측정함에 의하여 확인하였다. SPA는 450 mM NaCl, 각각의 GTMs (또는 DDM), 20 nM [3H]-Leucine 및 1.25 mg/ml copper chelate (His-Tag) YSi beads (Perkin Elmer, Denmark)를 함유하는 버퍼에서 각각의 단백질 샘플로 수행하였다. 각각의 샘플에 대한 전체 [3H]-Leucine 결합도는 MicroBeta liquid scintillation counter (Perkin Elmer)를 사용하여 측정하였다.Specifically, a wild type LeuT (leucine transporter) derived from the thermophilic bacterium Aquifex aeolicus was purified by the previously described method (G. Deckert et al. Nature 1998, 392, 353-358). LeuT was expressed in E. coli C41 (DE3) transformed with pET16b encoding a C-terminal 8xHis-tagged transporter (expression plasmid was provided by Dr E. Gouaux, Vollum Institute, Portland, Oregon, USA). . Briefly, after separation of the bacterial membrane and solubilization in 1 wt% DDM, the protein was bound to Ni 2+ -NTA resin (Life Technologies, Denmark), 20 mM Tris-HCl (pH 8.0), 1 mM NaCl, 199 mM Eluted in KCl, 0.05% (w/v) DDM and 300 mM imidazole. Thereafter, purified LeuT (0.5 mg/ml) was prepared except for DDM and imidazole in the same buffer as above, and GTMs or DDM had a final concentration of CMC + 0.04% (w/v) or CMC + 0.2 wt% (w/ v) was diluted with buffer supplemented with Protein samples were incubated for 14 hours at room temperature, centrifuged at designated times, and protein properties were confirmed by measuring [ 3 H]-Leucine binding capacity using SPA. SPA was prepared from each protein in buffer containing 450 mM NaCl, respective GTMs (or DDM), 20 nM [ 3 H]-Leucine and 1.25 mg/ml copper chelate (His-Tag) YSi beads (Perkin Elmer, Denmark). was performed with the sample. Total [ 3 H]-Leucine binding to each sample was measured using a MicroBeta liquid scintillation counter (Perkin Elmer).

도 6에 나타난 바와 같이, 모든 M-GTMs은 DDM과 비교하여 초기활성이 유사하였으며, 13일 인큐베이션 기간 동안 LeuT의 기질 결합 특성을 유지하는 효과가 DDM 보다 우수하였다. 또한 도 7에 나타난 바와 같이, 대부분의 E-GTMs의 경우에도 I12, 010 및 012를 제외하고는 DDM과 비교하여 우수한 활성을 나타냄을 확인하였다. 상대적으로 짧은 알킬 사슬 길이를 갖는 화합물에서 가장 우수한 기질 결합 활성을 확인하였고 상대적으로 긴 알킬 사슬을 갖는 화합물의 초기 활성이 낮음을 확인하였다.As shown in FIG. 6 , all M-GTMs had similar initial activity compared to DDM, and the effect of maintaining the substrate binding properties of LeuT during the 13-day incubation period was superior to that of DDM. In addition, as shown in FIG. 7 , it was confirmed that most of the E-GTMs exhibited superior activity compared to DDM, except for I12, 010 and 012. It was confirmed that the most excellent substrate binding activity was confirmed in the compound having a relatively short alkyl chain length, and it was confirmed that the initial activity of the compound having a relatively long alkyl chain was low.

이러한 결과는 GTMs의 구조의 종류 및 알킬 사슬의 길이가 LeuT 구조적 안정성 유지에 중요한 요소로 작용했음을 암시한다. These results suggest that the type of structure and the length of the alkyl chain of GTMs acted as important factors in maintaining the structural stability of LeuT.

<실험예 3> GTMs의 MelB 막단백질 구조 안정화 능력 평가<Experimental Example 3> Evaluation of MelB membrane protein structure stabilization ability of GTMs

플라스미드 pK95βAHB/WT MelBSt/CH10를 사용하여 C-말단에 10-His tag를 가지는 살모넬라 티피뮤리움 (Salmonella typhimurium) MelBSt (melibiose permease)를 E. coli DW2 세포 (ΔmelB 및 ΔlacZY)에서 발현하였다. A. S. Ethayathulla 등의 논문(Nat. Commun. 2014, 5, 3009)에 기재된 방법에 따라 세포 성장 및 멤브레인 준비를 수행했다. 단백질 검정은 Micro BCA 키트 (Thermo Scientific, Rockford, IL)로 수행했다. P. S. Chae 등의 Nat. Methods 2010, 7, 1003-1008에 기재된 프로토콜을 사용하여 MelBSt 안정성에 대해 GTMs 또는 DDM을 평가하였다. MelBSt를 함유하는 멤브레인 샘플 (최종 단백질 농도는 10 mg/mL)을 1.5% (w/v) DDM, 또는 GTMs를 함유하는 용해화 버퍼 (20 mM sodium phosphate, pH 7.5, 200 mM NaCl, 10% 글리세롤, 20 mM melibiose)에 90분 동안 4개의 온도 (0, 45, 55, 65℃)에서 인큐베이션하였다. 불용성 물질을 제거하기 위하여, 45분 동안 4℃에서 TLA-100 rotor가 구비된 Beckman OptimaTM MAX 초원심분리기로 355,590g에서 초원심분리를 수행하였다. 용해된 부분은 SDS-15% PAGE에 의해 분리하고, 그 다음 HisProbe-HRP 항체(Thermo Scientific)로 면역블로팅했다. 처리 없이 20㎍의 단백질을 함유하는 멤브레인 분획은 전체 MelB를 나타내기 위해 사용하였고, 처리된 샘플은 동등 부피로 각각의 웰에 로딩하였다. MelBSt는 SuperSignal West Pico chemiluminescent 기질을 이용해 ImageQuant LAS 4000 Biomolecular Imager (GE Health Care Lifer Science)에 의해 측정하였다.Plasmid pK95βAHB/WT MelB St /CH10 was used to express Salmonella typhimurium MelB St (melibiose permease) with a 10-His tag at the C-terminus in E. coli DW2 cells (ΔmelB and ΔlacZY). Cell growth and membrane preparation were performed according to the method described in AS Ethayathulla et al. ( Nat. Commun . 2014, 5 , 3009). Protein assays were performed with the Micro BCA kit (Thermo Scientific, Rockford, IL). P.S. Chae et al. Nat. GTMs or DDMs were evaluated for MelB St stability using the protocol described in Methods 2010, 7, 1003-1008. Membrane samples containing MelB St (final protein concentration of 10 mg/mL) were mixed with a dissolution buffer (20 mM sodium phosphate, pH 7.5, 200 mM NaCl, 10%) containing 1.5% (w/v) DDM, or GTMs. glycerol, 20 mM melibiose) for 90 min at 4 temperatures (0, 45, 55, 65 °C). To remove insoluble materials, ultracentrifugation was performed at 355,590 g in a Beckman Optima TM MAX ultracentrifuge equipped with a TLA-100 rotor at 4° C. for 45 minutes. Lysed portions were separated by SDS-15% PAGE and then immunoblotted with HisProbe-HRP antibody (Thermo Scientific). Membrane fractions containing 20 μg of protein without treatment were used to represent total MelB, and treated samples were loaded into each well in equal volumes. MelB St was measured by ImageQuant LAS 4000 Biomolecular Imager (GE Health Care Lifer Science) using SuperSignal West Pico chemiluminescent substrate.

도 8a에 나타난 결과와 같이, 0℃에서 대부분의 GTMs은 DDM보다 적은 MelB 단백질 추출 효율을 보여주었다. As shown in FIG. 8a , most GTMs at 0° C. showed less MelB protein extraction efficiency than DDM.

그러나, 온도를 45℃로 올렸을 때, 대부분 GTMs은 0℃와 비교하여 MelB 단백질 가용화 능력이 증가함을 확인할 수 있었고, GTMs(M-GTM-I10 및 M-GTM-O10)는 DDM과 비슷함 단백질의 가용화 상태를 유지하는 능력을 나타내었다. However, when the temperature was raised to 45 °C, most of the GTMs showed an increase in MelB protein solubilization ability compared to 0 °C, and GTMs (M-GTM-I10 and M-GTM-O10) were similar to DDM proteins. showed the ability to maintain the solubilized state.

온도를 55℃로 올렸을 때, DDM은 현저하게 단백질 가용화 능력이 떨어졌지만 긴 알킬 사슬을 갖는 GTMs를 제외한 대부분의 GTMs는 DDM보다 우수한 MelB 단백질 가용화 상태 유지 능력을 나타내었다. 온도가 65℃에서는 GTMs 및 DDM 모두 가용화된 MelB 단백질이 확인되지 않았다.When the temperature was raised to 55 °C, DDM markedly lowered protein solubilization ability, but most GTMs except for GTMs having long alkyl chains showed superior ability to maintain MelB protein solubilization state than DDM. At a temperature of 65 °C, neither GTMs nor DDM solubilized MelB protein was identified.

전체적으로 낮은 온도 (0℃)에서는 DDM이 GTMs보다 비슷하거나 높은 단백질 추출 효율을 보여준 반면 온도가 높아질수록(45℃ 및 55℃) GTMs에 의해 가용된 MelB 단백질량이 DDM보다 더 증가함을 확인할 수 있는 바, 단백질 추출 효율은 DDM이 다소 우수하지만 단백질의 가용화 상태를 유지하는 능력 즉 단백질 안정화 능력은 GTMs이 더 우수함을 확인할 수 있었다.Overall, at a low temperature (0℃), DDM showed similar or higher protein extraction efficiency than GTMs, but it was confirmed that the amount of MelB protein available by GTMs increased more than DDM as the temperature increased (45℃ and 55℃). , It was confirmed that DDM was somewhat better in protein extraction efficiency, but GTMs had better ability to maintain protein solubilization, that is, protein stabilization ability.

추가적으로, RSO(right side out) 베시클을 이용한 Trp → D2G FRET 분석을 수행하였다. 구체적으로, RSO 막 베시클은 MelBSt 또는 MelBEc를 포함하는 E. coli DW2 세포로부터 삼투용해에 의해 제조되었다. 1mg/mL의 단백질 농도에서 100mM KPi 및 100mM NaCl을 포함하는 완충액 (pH 7.5)에 혼합된 RSO 막 베시클을 23°C에서 60분 동안 1.0 % DDM 또는 GTMs로 처리하고 4°C에서 45분 동안 300,000g이상에서 TLA 120.2 로터를 사용하여 초 원심 분리하였다. Amico-Bowman Series 2 (AB2) Spectrofluorometer를 사용하여 Trp→D2G FRET 시험에 상청액을 적용하였다. 트립토판 잔류물은 290nm에서 여기되었고, Trp→D2G FRET는 MelBEc 및 MelBSt에 대해 각각 465 nm 및 490 nm에서 기록되었다. 시간 추적에서 10μM D2G 및 과량의 멜리비오스 또는 동일한 부피의 물을 각각 1분 및 2분 지점에서 첨가하였다.Additionally, Trp → D 2 G FRET analysis using a right side out (RSO) vesicle was performed. Specifically, RSO membrane vesicles were prepared by osmosis from E. coli DW2 cells containing MelB St or MelB Ec . RSO membrane vesicles mixed in buffer (pH 7.5) containing 100 mM KPi and 100 mM NaCl at a protein concentration of 1 mg/mL were treated with 1.0% DDM or GTMs at 23 °C for 60 min and 4 °C for 45 min. At 300,000 g or more, ultracentrifugation was performed using a TLA 120.2 rotor. The supernatant was applied to the Trp→D 2 G FRET test using an Amico-Bowman Series 2 (AB2) Spectrofluorometer. The tryptophan residue was excited at 290 nm, and Trp→D 2 G FRET was recorded at 465 nm and 490 nm for MelB Ec and MelB St , respectively. 10 μM D 2 G and excess melibiose or equal volume of water were added at 1 and 2 min points, respectively, in time tracking.

도 8b에 나타난 바와 같이, 활성 MelBSt에 대한 D2G 첨가는 강한 형광 신호를 제공하고 D2G와 경쟁관계 있는 멜리비오스를 첨가하게 되면 결합자리에서 리간드-기질 교환이 발생하여 형광신호가 감소한다. DDM 가용화된 MelBSt는 D2G와 멜리비오스를 순차적으로 첨가시 이에 대한 적절한 대한 반응을 나타낸 반면에 E. coli에서 얻은 덜 안정적인 동족체 MelBEC를 동일한 조건에서 사용했을 때 이 단백질의 기능이 완전한 소실됨을 관찰되었다. 대조적으로, M-GTMs로 가용화한 두 MelB 동족체의 경우에는 모두 그 기능을 잘 보존하였다. 따라서, 이들 M-GTMs는 MelB를 기능적 형태로 유지하는 데 있어 DDM보다 우수함을 확인하였다.As shown in FIG. 8b , the addition of D 2 G to the active MelB St provides a strong fluorescence signal, and when melibiose, which competes with D 2 G, is added, ligand-substrate exchange occurs at the binding site and the fluorescence signal is reduced. do. While DDM solubilized MelB St showed an adequate response to the sequential addition of D 2 G and melibiose, the protein's function was completely lost when the less stable homolog MelB EC obtained from E. coli was used under the same conditions. was observed to be In contrast, in the case of both MelB homologues solubilized with M-GTMs, their functions were well preserved. Therefore, it was confirmed that these M-GTMs are superior to DDM in maintaining MelB in a functional form.

<실험예 4> GTMs의 β<Experimental Example 4> β of GTMs 22 AR 막단백질 구조 안정화 능력 평가Evaluation of AR membrane protein structure stabilization ability

GTMs에 의한 인간 β2 아드레날린성 수용체 (β2AR), G-단백질 연결 수용체(GPCR) 구조 안정성을 측정하는 실험을 하였다. 즉, DDM으로 정제된 수용체는 CHS (cholesteryl hemisuccinate) 없이 각각의 GTMs만을 함유하는 버퍼 용액 또는 CHS와 DDM을 함유하는 버퍼 용액으로 희석시켜 양친매성 분자 교환을 수행하였다. 양친매성 분자의 최종 농도는 CMC+0.2 wt%이었으며, 수용체의 리간드 결합 특성은 [3H]-다이하이드로알프레놀올 ([3H]-DHA)의 결합에 의해 측정하였다.An experiment was conducted to measure the structural stability of human β 2 adrenergic receptor (β 2 AR) and G-protein coupled receptor (GPCR) by GTMs. That is, the receptor purified with DDM was diluted with a buffer solution containing only each GTMs without CHS (cholesteryl hemisuccinate) or a buffer solution containing CHS and DDM to perform amphipathic molecular exchange. The final concentration of the amphipathic molecule was CMC+0.2 wt%, and the ligand binding properties of the receptor were determined by binding of [ 3 H]-dihydroalprenolol ([ 3 H]-DHA).

구체적으로, 방사성 리간드 결합 시험은 다음과 같은 방법을 이용하였다. β2AR는 0.1% DDM을 사용하여 정제하였으며 (D. M. Rosenbaum 등, Science, 2007, 318, 1266-1273.), 약 10 mg/ml (약 200 μM)로 최종 농축하였다. DDM으로 정제된 β2AR를 사용하여 0.2% 양친매성 화합물 (DDM 또는 GTMs)에서 0.5 mg/ml BSA로 보충된 10 nM [3H]-Dihydroalprenolol (DHA)를 함유하는 마스터 결합 혼합물을 제조하였다. DDM 또는 GTMs로 정제된 수용체는 실온에서 3일 또는 5일간 10 nM의 [3H]-DHA와 함께 인큐베이션하였다. 혼합물을 G-50 컬럼에 로딩하고, 통과액을 1 ml 바인딩 버퍼 (0.5 mg/ml BSA 및 20xCMC 각각의 양친매성 화합물로 보충된 20 mM HEPES pH 7.5, 100 mM NaCl)로 수집하고, 그리고 15 ml 섬광 유체(scintillation fluid)로 채웠다. 수용체-결합된 [3H]-DHA는 섬광 카운터 (Beckman)로 측정했다. [3H]-DHA의 결합도는 컬럼 그래프로 나타내었다.Specifically, the radioligand binding test was performed using the following method. β 2 AR was purified using 0.1% DDM (DM Rosenbaum et al., Science , 2007, 318, 1266-1273.), and finally concentrated to about 10 mg/ml (about 200 μM). A master binding mixture containing 10 nM [ 3 H]-Dihydroalprenolol (DHA) supplemented with 0.5 mg/ml BSA in 0.2% amphiphilic compounds (DDM or GTMs) was prepared using β 2 AR purified with DDM. Receptors purified with DDM or GTMs were incubated with 10 nM [ 3 H]-DHA at room temperature for 3 or 5 days. The mixture is loaded onto a G-50 column, the flow-through is collected with 1 ml binding buffer (20 mM HEPES pH 7.5, 100 mM NaCl supplemented with an amphiphilic compound of 0.5 mg/ml BSA and 20xCMC each), and 15 ml Filled with scintillation fluid. Receptor-bound [ 3 H]-DHA was measured with a scintillation counter (Beckman). The degree of binding of [ 3 H]-DHA was shown as a column graph.

도 9에 나타난 바와 같이, 초기 수용체의 리간드 결합 유지 특성을 확인하는 시험을 수행한 결과, 긴 알킬 사슬을 갖는 E-GTM-O12 및 E-GTM-I12을 제외한 대부분의 GTMs은 DDM 보다 수용체의 리간드 결합 능력이 우수함을 확인하였다. As shown in FIG. 9 , as a result of performing a test to confirm the ligand binding retention properties of the initial receptor, most GTMs, except for E-GTM-O12 and E-GTM-I12 having long alkyl chains, were more receptor ligands than DDM. It was confirmed that the binding ability was excellent.

도 10에 나타난 바와 같이,장기간 수용체의 리간드 결합 유지 특성을 확인하는 시험을 수행한 결과, 대부분의 GTMs은 DDM 보다 수용체의 리간드 결합 능력을 장기간 유지하는데 더 우수함을 확인하였다. 특히, M-GTM-O12에 가용화된 수용체는 5일 배양 후 90% 이상의 리간드 결합 능력을 유지하여 가장 우수하였다.As shown in FIG. 10 , as a result of performing a test to confirm the ligand-binding retention properties of the receptor for a long time, it was confirmed that most GTMs are superior to the DDM in maintaining the ligand-binding ability of the receptor for a long period of time. In particular, the receptor solubilized in M-GTM-O12 was the best by maintaining 90% or more ligand binding ability after 5 days of culture.

<실험예 5> MOR 열안정성 테스트<Experimental Example 5> MOR thermal stability test

장기 안정성 분석을 수행하기 위해 MOR을 양친매성 화합물(DDM 또는 M-GTMs)를 포함하는 완충 용액(20mM HEPES pH 7.5, 100mM NaCl)으로 최종 수용체 및 양친매성 화합물의 최종 농도가 각각 20nM 및 0.1%이 되도록 희석하였다. 각 양친매성 화합물(DDM 또는 GTMs)에 가용화된 MOR을 4°C에서 6일 동안 보관하고 수용체를 30nM의 방사성 [3H]-다이프레노르핀(DPN)과 60분 동안 실온에서 인큐베이션하여 특정 리간드 결합 능력을 측정하였다. 비특이적 결합은 수용체를 실온에서 60분 동안 30nM [3H]-DPN 및 100μM Naloxone과 함께 인큐베이션하여 측정하였다. 인큐베이션 후 혼합물을 Zeba™ 96-웰 스핀 탈염 플레이트, 40K MWCO에 로딩하였다. 리간드-결합 수용체를 함유하는 통과류(flow-through)를 원심분리를 통해 수집하였다. 5ml의 신틸레이션 유체를 첨가한 후, 신틸레이션 카운터(Beckman)로 방사능을 측정하였다. 각 양친매성 화합물에 대해 3개의 특이적 결합 그룹과 1개의 비특이적 결합 그룹을 확보하였다. 최종 결합능은 특이적 결합 그룹에서 비특이적 결합 그룹의 방사능을 빼서 계산하였다.To perform long-term stability assays, MOR was mixed with a buffer solution (20 mM HEPES pH 7.5, 100 mM NaCl) containing amphiphilic compounds (DDM or M-GTMs) with final concentrations of 20 nM and 0.1% of the final receptor and amphiphilic compounds, respectively. diluted as much as possible. Specific ligand binding by storing MOR solubilized in each amphiphilic compound (DDM or GTMs) for 6 days at 4 °C and incubating the receptor with 30 nM of radioactive [3H]-diprenorphine (DPN) for 60 min at room temperature ability was measured. Non-specific binding was determined by incubating the receptors with 30 nM [ 3 H]-DPN and 100 μM Naloxone for 60 min at room temperature. After incubation the mixture was loaded into a Zeba™ 96-well spin desalting plate, 40K MWCO. The flow-through containing the ligand-bound receptor was collected via centrifugation. After adding 5 ml of scintillation fluid, radioactivity was measured with a scintillation counter (Beckman). Three specific binding groups and one non-specific binding group were obtained for each amphiphilic compound. The final binding capacity was calculated by subtracting the radioactivity of the non-specific binding group from the specific binding group.

그 결과, DDM에 가용화된 수용체는 시간이 지남에 따라 활성을 빠르게 잃어 8시간 배양 후 잔류 활성이 10%에 불과하였다. 대조적으로, 테스트된 모든 M-GTMs은 DDM보다 3일 배양 과정에서 수용체 안정성을 보존하는데 현저하게 효과적임을 확인하였다. β2AR에서 관찰되었던 것과 유사하게 M-GTMs는 MOR 수용체 안정성을 장기간 유지하는데 있어서 DDM보다 더 효과적인 것으로 나타났다(도 10). As a result, the receptor solubilized in DDM rapidly lost activity over time, and the residual activity was only 10% after 8 hours of incubation. In contrast, all M-GTMs tested were significantly more effective than DDM in preserving receptor stability over the course of 3 days incubation. Similar to what was observed with β 2 AR, M-GTMs appeared to be more effective than DDMs in maintaining MOR receptor stability for a long period of time ( FIG. 10 ).

Claims (19)

하기 화학식 1 또는 2로 표시되는 화합물 또는 이의 이성질체:
[화학식 1]
Figure pat00015

[화학식 2]
Figure pat00016

화학식 1 또는 2에서,
R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고;
X1 내지 X3는 각각 독립적으로 당류(saccharide)이며; 및
L은 C1-5의 알킬기 또는 C1-5의 알콕시이고, 여기서 상기 C1-5의 알콕시는 C1-5의 알콕시 또는 당류로 치환될 수 있다.
A compound represented by Formula 1 or 2 or an isomer thereof:
[Formula 1]
Figure pat00015

[Formula 2]
Figure pat00016

In Formula 1 or 2,
R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group;
X 1 to X 3 are each independently a saccharide; and
L is a C 1-5 alkyl group or C 1-5 alkoxy, wherein the C 1-5 alkoxy may be substituted with C 1-5 alkoxy or saccharide.
제 1항에 있어서, 상기 당류는 단당류(monosaccharide) 또는 이당류(disaccharide)인 화합물 또는 이의 이성질체.
According to claim 1, wherein the saccharide is a monosaccharide (monosaccharide) or disaccharide (disaccharide) compound or an isomer thereof.
제 1항에 있어서, 상기 당류는 글루코스(glucose) 또는 말토오스(maltose)인 화합물 또는 이의 이성질체.
The compound or isomer thereof according to claim 1, wherein the saccharide is glucose or maltose.
제 1항에 있어서, 상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C20의 알킬기이고; X1 내지 X3는 각각 독립적으로 글루코스 또는 말토오스이며; 및 L은 C1-3의 알킬기인 화합물, 또는 이의 이성질체.
According to claim 1, wherein R One To R 3 Each independently represents a substituted or unsubstituted C 3 -C 20 Alkyl group; X 1 to X 3 are each independently glucose or maltose; and L is a C 1-3 alkyl group, or an isomer thereof.
제 1항에 있어서, 상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C20의 알킬기이고; X1 내지 X3는 각각 독립적으로 글루코스 또는 말토오스이며; 및 L은 C1-3의 알콕시이고, 여기서 상기 C1-3의 알콕시는 C1-3의 알콕시 또는 결글루코스로 치환된 화합물, 또는 이의 이성질체.
According to claim 1, wherein R One To R 3 Each independently represents a substituted or unsubstituted C 3 -C 20 Alkyl group; X 1 to X 3 are each independently glucose or maltose; And L is C 1-3 alkoxy, wherein the C 1-3 alkoxy is a compound substituted with C 1-3 alkoxy or glucose, or an isomer thereof.
제 1항에 있어서, 상기 R1 내지 R3은 비치환된 C3-C15의 알킬기이고; X1 내지 X3는 글루코스 또는 말토오스이며; 및 L은 메틸기, 메톡시에톡시, 또는 글루코스에톡시인 화합물, 또는 이의 이성질체.
The method according to claim 1, wherein R 1 to R 3 are an unsubstituted C 3 -C 15 alkyl group; X 1 to X 3 are glucose or maltose; and L is a methyl group, methoxyethoxy, or glucose ethoxy, or an isomer thereof.
제 1항에 있어서, 상기 화합물은 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하기 위한 양친매성 분자인 화합물 또는 이의 이성질체.
The compound or isomer thereof according to claim 1, wherein the compound is an amphiphilic molecule for extracting, solubilizing, stabilizing, crystallizing or analyzing a membrane protein.
제 1항에 있어서, 상기 화합물은 수용액에서 임계 응집 농도(CAC)가 0.0001 내지 1 mM인 화합물 또는 이의 이성질체.
The compound or isomer thereof according to claim 1, wherein the compound has a critical aggregation concentration (CAC) of 0.0001 to 1 mM in aqueous solution.
제 1항에 따른 화합물, 또는 이의 이성질체를 포함하는 막단백질의 추출용 조성물.
A composition for extracting a membrane protein comprising the compound according to claim 1, or an isomer thereof.
제 1항에 따른 화합물, 또는 이의 이성질체를 포함하는 막단백질의 용해화용 조성물
A composition for solubilizing a membrane protein comprising the compound according to claim 1 or an isomer thereof
제 1항에 따른 화합물, 또는 이의 이성질체를 포함하는 막단백질의 안정화용 조성물
A composition for stabilizing a membrane protein comprising the compound according to claim 1 or an isomer thereof
제 1항에 따른 화합물, 또는 이의 이성질체를 포함하는 막단백질의 결정화용 조성물.
A composition for crystallization of a membrane protein comprising the compound according to claim 1 or an isomer thereof.
제 1항에 따른 화합물, 또는 이의 이성질체를 포함하는 막단백질의 분석용 조성물.
A composition for analysis of a membrane protein comprising the compound according to claim 1, or an isomer thereof.
제 9항 내지 제 13항 중 어느 한 항에 있어서, 상기 조성물은 미셀, 리포좀, 에멀션 또는 나노입자의 제형인 것인 조성물.
14. The composition according to any one of claims 9 to 13, wherein the composition is a formulation of micelles, liposomes, emulsions or nanoparticles.
제 9항 내지 제13항 중 어느 한 항에 있어서, 상기 막단백질은 LeuT (Leucine transporter), MelB(melibiose permease), β2AR (human β2 adrenergic receptor), MOR(mouse μ-opioid receptor) 또는 이들의 2 이상의 조합인 조성물.
The method according to any one of claims 9 to 13, wherein the membrane protein is LeuT (Leucine transporter), MelB (melibiose permease), β 2 AR (human β 2 adrenergic receptor), MOR (mouse μ-opioid receptor) or A composition that is a combination of two or more thereof.
1)하기 화학식 3의 화합물의 에폭사이드 고리 열림 반응을 통해 알칸올을 도입하여 화학식 4의 화합물을 제조하는 단계(단계 1); 및
2)당화 반응을 통하여 화학식 4의 화합물에 보호기가 부착된 당류를 도입한 후, 탈보호기화(deprotection) 반응을 수행하는 단계(단계 2)를 포함하는 화학식 1로 표시되는 화합물을 제조하는 방법:
[반응식 1]
Figure pat00017

반응식 1에서,
R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고;
X1 내지 X3는 각각 독립적으로 당류(saccharide)이며; 및
L은 C1-5의 알킬기 또는 C1-5의 알콕시이고, 여기서 상기 C1-5의 알콕시는 C1-5의 알콕시 또는 당류로 치환될 수 있다.
1) preparing a compound of Formula 4 by introducing an alkanol through an epoxide ring opening reaction of the compound of Formula 3 (step 1); and
2) A method for preparing a compound represented by Formula 1, comprising the step of introducing a saccharide having a protecting group to the compound of Formula 4 through a saccharification reaction and then performing a deprotection reaction (Step 2):
[Scheme 1]
Figure pat00017

In Scheme 1,
R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group;
X 1 to X 3 are each independently a saccharide; and
L is a C 1-5 alkyl group or C 1-5 alkoxy, wherein the C 1-5 alkoxy may be substituted with C 1-5 alkoxy or saccharide.
제 16항에 있어서, 상기 R1 내지 R3은 비치환된 C3-C15의 알킬기이고; X1 내지 X3는 글루코스 또는 말토오스이며; 및 L은 메틸기, 메톡시에톡시 또는 글루코스에톡시인 방법.
17. The method of claim 16, wherein R 1 to R 3 are an unsubstituted C 3 -C 15 alkyl group; X 1 to X 3 are glucose or maltose; and L is a methyl group, methoxyethoxy or glucoseethoxy.
1)하기 화학식 5의 화합물에 보호기 Y를 부착하여 화학식 6의 화합물을 제조하는 단계(단계 1);
2)화학식 6의 화합물에 요오드화알킬(alkyl iodide)을 반응시킨 후 상기 보호기 Y를 제거하여 화학식 7의 화합물을 제조하는 단계(단계 2); 및
3)당화 반응을 통하여 화학식 7의 화합물에 보호기가 부착된 당류를 도입한 후, 탈보호기화(deprotection) 반응을 수행하는 단계(단계 3)를 포함하는 화학식 2로 표시되는 화합물을 제조하는 방법:
[반응식 2]
Figure pat00018

반응식 2에서,
R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고;
X1 내지 X3는 각각 독립적으로 당류(saccharide)이며;
L은 C1-5의 알킬기 또는 C1-5의 알콕시이고, 여기서 상기 C1-5의 알콕시는 C1-5의 알콕시 또는 당류로 치환될 수 있고; 및
Y는 보호기이다.
1) preparing a compound of Formula 6 by attaching a protecting group Y to the compound of Formula 5 (step 1);
2) reacting the compound of formula 6 with an alkyl iodide and then removing the protecting group Y to prepare a compound of formula 7 (step 2); and
3) A method for preparing a compound represented by Formula 2, comprising the step of introducing a saccharide having a protecting group to the compound of Formula 7 through a saccharification reaction and then performing a deprotection reaction (step 3):
[Scheme 2]
Figure pat00018

In Scheme 2,
R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group;
X 1 to X 3 are each independently a saccharide;
L is a C 1-5 alkyl group or C 1-5 alkoxy, wherein the C 1-5 alkoxy may be substituted with C 1-5 alkoxy or saccharide; and
Y is a protecting group.
제 18항에 있어서, 상기 R1 내지 R3은 비치환된 C3-C15의 알킬기이고; X1 내지 X3는 글루코스 또는 말토오스이며; 및 L은 메틸기, 메톡시에톡시 또는 글루코스에톡시인 방법.
19. The method of claim 18, wherein R 1 to R 3 are an unsubstituted C 3 -C 15 alkyl group; X 1 to X 3 are glucose or maltose; and L is a methyl group, methoxyethoxy or glucoseethoxy.
KR1020210179875A 2020-12-17 2021-12-15 Novel tris(hydroxymethyl)methane core-based amphiphiles and uses thereof KR20220087385A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200177578 2020-12-17
KR20200177578 2020-12-17

Publications (1)

Publication Number Publication Date
KR20220087385A true KR20220087385A (en) 2022-06-24

Family

ID=82215774

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210179875A KR20220087385A (en) 2020-12-17 2021-12-15 Novel tris(hydroxymethyl)methane core-based amphiphiles and uses thereof

Country Status (1)

Country Link
KR (1) KR20220087385A (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. Newstead et al., Mol. Membr. Biol. 25 (2008) 631-638.
S. Newstead et al., Protein Sci. 17 (2008) 466-472.

Similar Documents

Publication Publication Date Title
KR101923584B1 (en) Novel butane-tetraol-based amphiphiles and uses thereof
KR102124989B1 (en) Novel amphiphiles having penta-saccharides hydrophilic group and uses thereof
KR102061762B1 (en) Novel tantem malonate-based amphiphiles and uses thereof
KR101719122B1 (en) Novel mannitol-based amphiphiles and uses thereof
KR101998175B1 (en) Novel norbornene-based amphiphiles and uses thereof
KR20220087385A (en) Novel tris(hydroxymethyl)methane core-based amphiphiles and uses thereof
US10793589B2 (en) Resorcinarene-based amphipathic compound and use thereof
KR101781929B1 (en) Novel xylene-linked amphiphiles and uses thereof
KR102045870B1 (en) Novel amphiphiles with dendronic hydrophobic group and uses thereof
KR102070081B1 (en) Novel vitamin E-based amphiphiles and uses thereof
KR102515251B1 (en) Novel triazine-based amphiphiles and uses thereof
KR102582645B1 (en) Novel triazine dimer-based amphiphiles and uses thereof
KR102039483B1 (en) Tandem neopentyl glycol-based amphiphiles and uses thereof
KR102166783B1 (en) Novel trehalose-cored amphiphiles and uses thereof
US11884693B2 (en) 1,3-acetonedicarboxylate-derived amphipathic compounds and uses thereof
KR102321563B1 (en) Novel terphenyl-baseed amphiphiles and uses thereof
KR102164196B1 (en) Novel steroid -based amphiphiles and uses thereof
KR20200118634A (en) Novel scyllo inositol-cored amphiphiles and uses thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal