KR102039483B1 - Tandem neopentyl glycol-based amphiphiles and uses thereof - Google Patents

Tandem neopentyl glycol-based amphiphiles and uses thereof Download PDF

Info

Publication number
KR102039483B1
KR102039483B1 KR1020170127404A KR20170127404A KR102039483B1 KR 102039483 B1 KR102039483 B1 KR 102039483B1 KR 1020170127404 A KR1020170127404 A KR 1020170127404A KR 20170127404 A KR20170127404 A KR 20170127404A KR 102039483 B1 KR102039483 B1 KR 102039483B1
Authority
KR
South Korea
Prior art keywords
compound
formula
tnm
mhz
nmr
Prior art date
Application number
KR1020170127404A
Other languages
Korean (ko)
Other versions
KR20180037907A (en
Inventor
채필석
사더프아이만
배형은
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Publication of KR20180037907A publication Critical patent/KR20180037907A/en
Application granted granted Critical
Publication of KR102039483B1 publication Critical patent/KR102039483B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • C07H15/06Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical being a hydroxyalkyl group esterified by a fatty acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • C07K1/1136General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure by reversible modification of the secondary, tertiary or quarternary structure, e.g. using denaturating or stabilising agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/30Extraction; Separation; Purification by precipitation
    • C07K1/306Extraction; Separation; Purification by precipitation by crystallization
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

본 발명은 텐덤 네오펜틸 글리콜(tandem neopentyl glycol) 기반의 양친매성 화합물, 이의 제조방법 및 이를 이용하여 막단백질을 추출, 용해화, 안정화 또는 결정화하는 방법에 관한 것이다. 본 발명에 따른 텐덤 네오펜틸 글리콜(tandem neopentyl glycol) 기반의 화합물을 이용하면 막단백질 가용화 효과가 우수할 뿐 아니라 막단백질을 수용액에서 장기간 안정적으로 보관할 수 있기 때문에, 이를 통해 그 기능분석 및 구조 분석에 활용될 수 있다. 막단백질 구조 및 기능 분석은 현 생물학 및 화학에서 가장 관심을 갖고 있는 분야 중 하나이고, 현재 개발되고 있는 신약의 절반 이상이 막단백질을 타깃으로 하므로 신약 개발과 긴밀한 관계가 있는 막단백질 구조 연구에 응용이 가능하다.The present invention relates to an amphiphilic compound based on tandem neopentyl glycol, a method for preparing the same, and a method for extracting, solubilizing, stabilizing or crystallizing a membrane protein using the same. By using the tandem neopentyl glycol-based compound according to the present invention, not only the membrane protein solubilization effect is excellent, but also the membrane protein can be stably stored in an aqueous solution for a long time, and thus the functional analysis and structural analysis are performed. Can be utilized. Membrane protein structure and function analysis is one of the areas of greatest interest in current biology and chemistry, and since more than half of currently developed drugs target membrane proteins, they are applied to the study of membrane protein structures closely related to drug development. This is possible.

Figure 112017096027589-pat00031
Figure 112017096027589-pat00031

Description

텐덤 네오펜틸 글리콜 기반의 양친매성 화합물 및 이의 활용{Tandem neopentyl glycol-based amphiphiles and uses thereof}Tandem neopentyl glycol-based amphiphiles and uses thereof

본 발명은 새롭게 개발한 텐덤 네오펜틸 글리콜(tandem neopentyl glycol) 기반의 양친매성 화합물 및 이를 이용하여 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법에 관한 것이다.The present invention relates to a newly developed amphiphilic compound based on tandem neopentyl glycol and a method for extracting, solubilizing, stabilizing, crystallizing or analyzing membrane proteins using the same.

막단백질(membrane proteins)은 생물학적 시스템에서 중요한 역할을 한다. 이 생체거대분자(bio-macromolecules)는 친수성 및 소수성 부분을 포함하므로, 막단백질을 지질 환경으로부터 추출하고, 수용액에서 용해화와 안정화시키기 위해서는 양친매성 분자가 필요하다.Membrane proteins play an important role in biological systems. Since these bio-macromolecules contain hydrophilic and hydrophobic moieties, amphiphilic molecules are required to extract membrane proteins from the lipid environment and to dissolve and stabilize them in aqueous solutions.

막단백질의 구조 분석을 위해서는 양질의 막단백질 결정을 얻어야 하는데 이를 위해서는 수용액에서의 막단백질의 구조적 안정성이 선행되어야 한다. 막단백질 연구에 사용되어 온 기존의 양친매성 분자들의 개수는 100가지 이상으로 다수가 존재하지만 그 중 5개 정도만 막단백질 구조 연구에 활발히 활용되어 왔다. 이 5개의 양쪽성 분자는 OG (n-octyl-β-D-glucopyranoside), NG (n-nonyl-β-D-glucopyranoside), DM (n-decyl-β-D-maltopyranoside), DDM (n-dodecyl-β-D-maltopyranoside), 및 LDAO (lauryldimethylamine-N-oxide)를 포함한다(비특허문헌 1, 비특허문헌 2). 하지만 이들 분자에 의해 둘러싸여 있는 많은 막단백질은 그 구조가 쉽게 변성되거나 응집되어 그 기능을 빠르게 상실하기 때문에 이 분자들을 활용한 막단백질의 기능 및 구조 연구에 상당한 제한점이 있다. 이는 종래의 분자들이 화학구조가 간단하여 충분히 다양한 특성을 나타내주지 못하기 때문이다. For the structural analysis of membrane proteins, it is necessary to obtain high-quality membrane protein crystals, which requires the structural stability of membrane proteins in aqueous solution. There are more than 100 existing amphiphilic molecules that have been used for membrane protein research, but only about 5 of them have been actively used for membrane protein structure research. These five amphoteric molecules are n-octyl-β-D-glucopyranoside (OG), n-nonyl-β-D-glucopyranoside (NG), n-decyl-β-D-maltopyranoside (DM), and DDM (n- dodecyl-β-D-maltopyranoside) and LDAO (lauryldimethylamine- N- oxide) are included (nonpatent literature 1, nonpatent literature 2). However, many membrane proteins surrounded by these molecules have significant limitations in studying the function and structure of membrane proteins utilizing these molecules because their structure is easily denatured or aggregated and quickly loses their function. This is because conventional molecules do not exhibit sufficiently diverse characteristics due to their simple chemical structure.

막단백질의 구조분석을 위해서 수용액 상에서의 막단백질의 구조적 안정성을 유지하는 것이 중요한 부분이고, 막단백질은 아직까지 밝혀지지 않은 종류가 많고 그 구조적 특성이 다양하기 때문에 기존에 쓰이고 있는 양친매성 분자로 밝힐 수 있는 막단백질의 수는 한계가 있어 왔다. 그래서 기존의 양친매성 분자의 유동적인 알킬 사슬과는 다른 다양한 양친매성 분자 개발의 필요성에 따라, 본 발명자들은 유동성이 적은 neopentyl glycol을 반복적으로 연결하여 2개의 4차탄소를 분자의 중심부에 도입함으로써 분자 전체의 유동성을 크게 제약함으로써 막단백질 결정화를 촉진하는 새로운 양친매성 화합물을 개발하여 본 발명을 완성하였다.For structural analysis of membrane proteins, it is important to maintain the structural stability of membrane proteins in aqueous solution, and membrane proteins are known as amphiphilic molecules because they have many unknown types and structural characteristics. The number of membrane proteins that can be used has been limited. Thus, in accordance with the necessity of developing various amphiphilic molecules different from the fluid alkyl chains of the existing amphiphilic molecules, the present inventors repeatedly connect two less fluid neopentyl glycols to introduce two quaternary carbons into the center of the molecule. The present invention was completed by developing a new amphiphilic compound that promotes membrane protein crystallization by greatly restricting the overall fluidity.

S. Newstead et al., Protein Sci. 17 (2008) 466-472. S. Newstead et al., Protein Sci. 17 (2008) 466-472. S. Newstead et al., Mol. Membr. Biol. 25 (2008) 631-638. S. Newstead et al., Mol. Membr. Biol. 25 (2008) 631-638.

본 발명의 목적은 화학식 1로 표시되는 화합물을 제공하는 것이다.An object of the present invention is to provide a compound represented by the formula (1).

본 발명의 다른 목적은 상기 화합물을 포함하는 막단백질의 추출, 용해화, 안정화, 결정화 또는 분석용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for extraction, solubilization, stabilization, crystallization or analysis of a membrane protein comprising the compound.

본 발명의 또 다른 목적은 상기 화합물의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing the compound.

본 발명의 또 다른 목적은 상기 화합물을 이용하여 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method for extracting, solubilizing, stabilizing, crystallizing or analyzing membrane proteins using the compounds.

본 발명의 일 구체예는 하기 화학식 1로 표시되는 화합물을 제공한다:One embodiment of the present invention provides a compound represented by Formula 1:

[화학식 1][Formula 1]

Figure 112017096027589-pat00001
Figure 112017096027589-pat00001

상기 화학식 1에서,In Chemical Formula 1,

상기 R1, R2 R3 은 각각 독립적으로 치환 또는 비치환된 C3-C20의 알킬기, 치환 또는 비치환된 C3-C20의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C20의 아릴기일 수 있고;R 1 , R 2 and Each R 3 may independently be a substituted or unsubstituted C 3 -C 20 alkyl group, a substituted or unsubstituted C 3 -C 20 cycloalkyl group, or a substituted or unsubstituted C 3 -C 20 aryl group;

상기 X1, X2 및 X3는 각각 독립적으로 산소로 연결된 당류(saccharide)일 수 있고; X 1 , X 2 and X 3 may each independently be a saccharide linked to oxygen;

상기 Y1, Y2 및 Y3은 산소(O)있고; 그리고Y 1 , Y 2 and Y 3 are oxygen (O); And

상기 m은 0 또는 1일 수 있다.M may be 0 or 1.

본 명세서에서 사용된 용어, "당류(saccharide)"는 탄수화물 중에서 비교적 분자가 작고, 물에 녹아서 단맛이 나는 화합물을 의미한다. 당류는 당을 구성하는 분자의 수에 따라 단당류, 이당류, 다당류로 구분된다.As used herein, the term "saccharide" refers to a compound that is relatively small molecule in carbohydrates and is sweet in water. Sugars are classified into monosaccharides, disaccharides and polysaccharides according to the number of molecules constituting the sugar.

상기 구체예에서 사용된 당류는 단당류(monosaccharide) 또는 이당류(disaccharide)일 수 있으며, 구체적으로 글루코스(glucose) 또는 말토오스(maltose)일 수 있고, 보다 구체적으로 말토오스(maltose)일 수 있으나, 이에 제한되지 않는다.The sugar used in the above embodiments may be monosaccharide or disaccharide, specifically glucose or maltose, and more specifically maltose, but not limited thereto. Do not.

상기 당류는 친수성기로 작용할 수 있다. 본 발명의 일 구체예에 따른 화합물은 친수성기인 당류 3개를 병렬로 연결하여 친수성기의 크기를 크게 하면서도 길이의 증가를 최소화함으로써 막단백질과의 복합체 형성시 그 크기를 작게하였다. 상기 화합물과 막단백질과의 복합체의 크기가 작으면 양질의 막단백질 결정을 얻을 수 있다 (G. G. Prive, Methods 2007, 41, 388-397). 특히, 글루코사이드(glucoside)와 같은 작은 친수성기를 갖고 있는 양친매성 분자는 막단백질 결정화에 있어서 탁월한 효과를 가질 수 있다.The saccharide may act as a hydrophilic group. Compound according to an embodiment of the present invention by connecting three hydrophilic saccharides in parallel to increase the size of the hydrophilic group while minimizing the increase in length to reduce the size when forming a complex with the membrane protein. If the complex of the compound with the membrane protein is small, high quality membrane protein crystals can be obtained (GG Prive, Methods 2007, 41, 388-397). In particular, amphiphilic molecules with small hydrophilic groups, such as glucosides, can have an excellent effect on membrane protein crystallization.

또한, 상기 R1, R2 R3 은 소수성기로 작용할 수 있다. 본 발명의 일 구체예에 따른 화합물은 친수성도와 소수성도의 밸런스(hydrophile-lipophile balance)를 최적으로 하기 위하여 길이가 다른 세개의 알킬기 소수성기로 도입하였다.In addition, the R 1 , R 2 And R 3 may act as a hydrophobic group. Compounds according to one embodiment of the present invention were introduced into three hydrophobic groups of different lengths in order to optimize the hydrophile-lipophile balance (hydrophile-lipophile balance).

본 발명의 일 구체예에 따른 화합물은 에터(ether) 결합에 의해 소수성기와 친수성기가 연결되어 있을 수 있다. 즉, 분자 중심부의 강직도(rigidity)를 유지하면서 알킬 사슬의 유동성을 충분히 확보하기 위한 링커를 도입하였다. 구체적으로 상기 에터 결합은 텐덤 네오펜틸 글리콜(tandem neopentyl glycol) 링커를 이용하여 도입한 것일 수 있다.Compound according to an embodiment of the present invention may be linked to a hydrophobic group and a hydrophilic group by ether (ether) bond. In other words, a linker for sufficiently securing the fluidity of the alkyl chain is introduced while maintaining the rigidity of the center of the molecule. Specifically, the ether bond may be introduced using a tandem neopentyl glycol linker.

구체적으로, 상기 R1, R2 R3 은 C7-C14 알킬기일 수 있고; 상기 R1, R2 R3 은 동일할 수 있고; Y1, Y2 및 Y3은 산소일 수 있고; 상기 X1 내지 X3은 산소로 연결된 말토오스(maltose)일 수 있고; 그리고 상기 m은 O 일 수 있다.Specifically, the R 1 , R 2 And R 3 may be a C 7 -C 14 alkyl group; R 1 , R 2 and R 3 may be the same; Y 1 , Y 2 and Y 3 may be oxygen; X 1 to X 3 may be maltose connected by oxygen; And m may be O.

또한, 상기 R1, R2 R3 은 C7-C14 알킬기일 수 있고; 상기 R1, R2 R3 은 동일할 수 있고; Y1, Y2 및 Y3은 산소일 수 있고; 상기 X1 내지 X3은 산소로 연결된 말토오스(maltose)일 수 있고; 그리고 상기 m은 1 일 수 있다.In addition, the R 1 , R 2 And R 3 may be a C 7 -C 14 alkyl group; R 1 , R 2 and R 3 may be the same; Y 1 , Y 2 and Y 3 may be oxygen; X 1 to X 3 may be maltose connected by oxygen; And m may be 1.

본 발명의 일 실시예에서, 상기 R1, R2 R3은 C9-C14 알킬기이고; 상기 R1, R2 R3 은 동일하고; Y1, Y2 및 Y3은 산소이고; 상기 X1 내지 X3은 산소로 연결된 말토오스(maltose)이고; 상기 m이 0 또는 1 인 화합물을 "TNMs(tandem neopentyl glycol-derived maltosides)"로 명명하였다.In one embodiment of the invention, the R 1 , R 2 And R 3 is a C 9 -C 14 alkyl group; R 1 , R 2 and R 3 is the same; Y 1 , Y 2 and Y 3 are oxygen; X 1 to X 3 are maltose connected by oxygen; The compound whose m is 0 or 1 was named "tandem neopentyl glycol-derived maltosides" (TNMs).

보다 구체적으로, 본 발명의 일 실시예에서, 상기 R1, R2 R3은 C9 알킬기이고; Y1, Y2 및 Y3은 산소이고; 상기 X1 내지 X3은 산소로 연결된 말토오스(maltose)이고; 상기 m은 1 인 화합물을 "TNM-C9L"로 명명하였고, 하기 화학식 2으로 표시될 수 있다.More specifically, in one embodiment of the present invention, the R 1 , R 2 And R 3 is a C 9 alkyl group; Y 1 , Y 2 and Y 3 are oxygen; X 1 to X 3 are maltose connected by oxygen; The m is named 1 compound "TNM-C9L", it can be represented by the formula (2).

[화학식 2][Formula 2]

Figure 112017096027589-pat00002
Figure 112017096027589-pat00002

보다 구체적으로, 본 발명의 일 실시예에서, 상기 R1, R2 R3은 C10 알킬기이고; Y1, Y2 및 Y3은 산소이고; 상기 X1 내지 X3은 산소로 연결된 말토오스(maltose)이고; 상기 m은 1 인 화합물을 "TNM-C10L"로 명명하였고, 하기 화학식 3으로 표시될 수 있다.More specifically, in one embodiment of the present invention, the R 1 , R 2 And R 3 is a C 10 alkyl group; Y 1 , Y 2 and Y 3 are oxygen; X 1 to X 3 are maltose connected by oxygen; The m is named 1 compound "TNM-C10L", it can be represented by the formula (3).

[화학식 3][Formula 3]

Figure 112017096027589-pat00003
Figure 112017096027589-pat00003

보다 구체적으로, 본 발명의 일 실시예에서, 상기 R1, R2 R3은 C11 알킬기이고; Y1, Y2 및 Y3은 산소이고; 상기 X1 내지 X3은 산소로 연결된 말토오스(maltose)이고; 상기 m은 1 인 화합물을 "TNM-C11L"로 명명하였고, 하기 화학식 4으로 표시될 수 있다.More specifically, in one embodiment of the present invention, the R 1 , R 2 And R 3 is a C 11 alkyl group; Y 1 , Y 2 and Y 3 are oxygen; X 1 to X 3 are maltose connected by oxygen; The m is named 1 compound "TNM-C11L", it can be represented by the formula (4).

[화학식 4][Formula 4]

Figure 112017096027589-pat00004
Figure 112017096027589-pat00004

보다 구체적으로, 본 발명의 일 실시예에서, 상기 R1, R2 R3은 C12 알킬기이고; Y1, Y2 및 Y3은 산소이고; 상기 X1 내지 X3은 산소로 연결된 말토오스(maltose)이고; 상기 m은 1 인 화합물을 "TNM-C12L"로 명명하였고, 하기 화학식 5으로 표시될 수 있다.More specifically, in one embodiment of the present invention, the R 1 , R 2 And R 3 is a C 12 alkyl group; Y 1 , Y 2 and Y 3 are oxygen; X 1 to X 3 are maltose connected by oxygen; The m is named 1 compound "TNM-C12L", it can be represented by the formula (5).

[화학식 5][Formula 5]

Figure 112017096027589-pat00005
Figure 112017096027589-pat00005

보다 구체적으로, 본 발명의 일 실시예에서, 상기 R1, R2 R3은 C13 알킬기이고; Y1, Y2 및 Y3은 산소이고; 상기 X1 내지 X3은 산소로 연결된 말토오스(maltose)이고; 상기 m은 1 인 화합물을 "TNM-C13L"로 명명하였고, 하기 화학식 6으로 표시될 수 있다.More specifically, in one embodiment of the present invention, the R 1 , R 2 And R 3 is a C 13 alkyl group; Y 1 , Y 2 and Y 3 are oxygen; X 1 to X 3 are maltose connected by oxygen; The m is named 1 compound "TNM-C13L", it can be represented by the formula (6).

[화학식 6][Formula 6]

Figure 112017096027589-pat00006
Figure 112017096027589-pat00006

보다 구체적으로, 본 발명의 일 실시예에서, 상기 R1, R2 R3은 C14 알킬기이고; Y1, Y2 및 Y3은 산소이고; 상기 X1 내지 X3은 산소로 연결된 말토오스(maltose)이고; 상기 m은 1 인 화합물을 "TNM-C14L"로 명명하였고, 하기 화학식 7으로 표시될 수 있다.More specifically, in one embodiment of the present invention, the R 1 , R 2 And R 3 is a C 14 alkyl group; Y 1 , Y 2 and Y 3 are oxygen; X 1 to X 3 are maltose connected by oxygen; The m is named "TNM-C14L" and the compound of 1 may be represented by the following formula (7).

[화학식 7][Formula 7]

Figure 112017096027589-pat00007
Figure 112017096027589-pat00007

보다 구체적으로, 본 발명의 일 실시예에서, 상기 R1, R2 R3은 C11 알킬기이고; Y1, Y2 및 Y3은 산소이고; 상기 X1 내지 X3은 산소로 연결된 말토오스(maltose)이고; 상기 m은 0 인 화합물을 "TNM-C11S"로 명명하였고, 하기 화학식 8으로 표시될 수 있다. More specifically, in one embodiment of the present invention, the R 1 , R 2 And R 3 is a C 11 alkyl group; Y 1 , Y 2 and Y 3 are oxygen; X 1 to X 3 are maltose connected by oxygen; The m is a compound of 0 is named "TNM-C11S", it can be represented by the formula (8).

[화학식 8][Formula 8]

Figure 112017096027589-pat00008
Figure 112017096027589-pat00008

보다 구체적으로, 본 발명의 일 실시예에서, 상기 R1, R2 R3은 C12 알킬기이고; Y1, Y2 및 Y3은 산소이고; 상기 X1 내지 X3은 산소로 연결된 말토오스(maltose)이고; 상기 m은 0 인 화합물을 "TNM-C12S"로 명명하였고, 하기 화학식 9으로 표시될 수 있다.More specifically, in one embodiment of the present invention, the R 1 , R 2 And R 3 is a C 12 alkyl group; Y 1 , Y 2 and Y 3 are oxygen; X 1 to X 3 are maltose connected by oxygen; The m is a compound of 0 is named "TNM-C12S", it can be represented by the formula (9).

[화학식 9][Formula 9]

Figure 112017096027589-pat00009
Figure 112017096027589-pat00009

보다 구체적으로, 본 발명의 일 실시예에서, 상기 R1, R2 R3은 C13 알킬기이고; Y1, Y2 및 Y3은 산소이고; 상기 X1 내지 X3은 산소로 연결된 말토오스(maltose)이고; 상기 m은 0 인 화합물을 "TNM-C13S"로 명명하였고, 하기 화학식 10으로 표시될 수 있다.More specifically, in one embodiment of the present invention, the R 1 , R 2 And R 3 is a C 13 alkyl group; Y 1 , Y 2 and Y 3 are oxygen; X 1 to X 3 are maltose connected by oxygen; The m is a compound of 0 is named "TNM-C13S", it can be represented by the formula (10).

[화학식 10][Formula 10]

Figure 112017096027589-pat00010
Figure 112017096027589-pat00010

보다 구체적으로, 본 발명의 일 실시예에서, 상기 R1, R2 R3은 C14 알킬기이고; Y1, Y2 및 Y3은 산소이고; 상기 X1 내지 X3은 산소로 연결된 말토오스(maltose)이고; 상기 m은 0 인 화합물을 "TNM-C14S"로 명명하였고, 하기 화학식 11으로 표시될 수 있다.More specifically, in one embodiment of the present invention, the R 1 , R 2 And R 3 is a C 14 alkyl group; Y 1 , Y 2 and Y 3 are oxygen; X 1 to X 3 are maltose connected by oxygen; The m is a compound of 0 is named "TNM-C14S", it can be represented by the formula (11).

[화학식 11][Formula 11]

Figure 112017096027589-pat00011
Figure 112017096027589-pat00011

본 발명의 다른 구체예에 따른 화합물은 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하기 위한 양친매성 분자일 수 있으나, 이에 제한하지 않는다.Compounds according to other embodiments of the invention may be, but are not limited to, amphiphilic molecules for extracting, solubilizing, stabilizing, crystallizing or analyzing membrane proteins.

본 명세서에서 사용된 용어, "양친매성 분자"란 한 분자 내에 소수성기와 친수성기가 존재하여 극성, 비극성 용매에 대해 2가지 성질 모두에 친화성을 갖는 분자를 의미한다. 계면활성제나 세포막에 존재하는 인지질 분자들은 한 끝에는 친수성기, 다른 끝에는 소수성기를 가진 분자로 양친매성을 갖고 수용액 중에서 미셀이나 리포좀을 형성하는 특징이 있다. 친수성기가 극성을 갖고 있으나 비극성기가 공존하기 때문에 이들의 양친매성 분자는 물에 잘 녹지 않는 경향이 있다. 그러나 농도가 어느 한계농도(임계 미셀 농도, CMC) 이상이 되면 소수성 상호작용에 의해 소수성기가 내부로 집합하여 친수성기가 표면에 오는 미셀이 생성되어 물에 대한 용해성이 크게 증가한다.As used herein, the term "amphiphilic molecule" refers to a molecule having a hydrophobic group and a hydrophilic group in one molecule and having affinity for both polar and nonpolar solvents. Phospholipid molecules present in surfactants and cell membranes are amphiphilic molecules with hydrophilic groups at one end and hydrophobic groups at the other end, and have the characteristic of forming micelles or liposomes in aqueous solution. Hydrophilic groups have polarity, but because the nonpolar groups coexist, their amphiphilic molecules tend to be insoluble in water. However, when the concentration is above a certain limit concentration (critical micelle concentration, CMC), hydrophobic groups are collected by hydrophobic interactions, and micelles with hydrophilic groups are formed on the surface, and solubility in water is greatly increased.

CMC를 측정하는 방법은 특별히 제한되지 않으나, 당해 기술 분야에서 널리 알려진 방법으로 사용할 수 있으며, 예를 들어 디페닐헥사트리엔(diphenylhexatriene; DPH)을 이용한 형광 염색 방법으로 측정할 수 있다.The method of measuring CMC is not particularly limited, but may be used by a method well known in the art, and may be measured by, for example, a fluorescent dye method using diphenylhexatriene (DPH).

본 발명의 일 구체예에 따른 화합물은 수용액에서 임계 미셀 농도(CMC)가 0.0001 mM 내지 1 mM일 수 있으며, 구체적으로, 0.0001 mM 내지 0.0 1mM, 보다 구체적으로, 0.0004 mM 내지 0.001 mM일 수 있으나, 이에 제한하지 않는다.The compound according to an embodiment of the present invention may have a critical micelle concentration (CMC) in an aqueous solution of 0.0001 mM to 1 mM, specifically, 0.0001 mM to 0.0 1 mM, more specifically, 0.0004 mM to 0.001 mM, This is not restrictive.

기존에 막단백질 연구에 주로 사용되고 있는 DDM의 경우 임계 미셀 농도가 0.17 mM인 것과 비교하여 본 구체예의 TNMs은 DDM 보다 매우 작은 CMC 값을 가졌다. 따라서, TNMs은 적은 양으로도 미셀이 용이하게 형성되므로, 적은 양을 사용하여 막단백질을 효과적으로 연구 분석할 수 있어 DDM 보다 유리함을 확인할 수 있었다.In the case of DDM, which is mainly used for membrane protein research, the TNMs of this embodiment had a much lower CMC value than that of DDM, compared to a critical micelle concentration of 0.17 mM. Therefore, since the micelles are easily formed in small amounts, TNMs can be effectively studied and analyzed membrane proteins using a small amount, it was confirmed that the advantage over DDM.

또한, 본 발명의 또 다른 구체예는 상기 화합물을 포함하는 막단백질의 추출, 용해화, 안정화, 결정화 또는 분석용 조성물을 제공한다.In addition, another embodiment of the present invention provides a composition for extraction, solubilization, stabilization, crystallization or analysis of membrane proteins comprising the compound.

상기 조성물은 미셀, 리포좀, 에멀션 또는 나노입자의 제형인 것일 수 있으나, 이에 제한하지 않는다.The composition may be, but is not limited to, a formulation of micelles, liposomes, emulsions or nanoparticles.

상기 미셀은 반지름이 2.0 nm 내지 60.0 nm일 수 있고, 구체적으로 3.0 nm 내지 55.0 nm일 수 있으며, 보다 구체적으로 본 발명의 실시예들에 따른 TNMs에 의해 형성된 미셀은 반지름이 3.0 nm 내지 50.0 nm일 수 있으나, 이에 제한하지 않는다.The micelles may have a radius of 2.0 nm to 60.0 nm, specifically 3.0 nm to 55.0 nm, and more specifically micelles formed by TNMs according to embodiments of the present invention have a radius of 3.0 nm to 50.0 nm. May be, but is not limited thereto.

미셀의 반지름을 측정하는 방법은 특별히 제한되지 않으나, 당해 기술 분야에서 널리 알려진 방법을 사용할 수 있으며, 예를 들어 동적 광산란(dynamic light scattering; DLS) 실험을 이용해 측정할 수 있다.The method of measuring the radius of the micelle is not particularly limited, but a method well known in the art may be used, and may be measured using, for example, dynamic light scattering (DLS) experiments.

TNMs에 의해 형성된 미셀의 크기는 범위가 넓게 나타남을 확인할 수 있다.The size of the micelle formed by the TNMs can be seen to be wide range.

상기 미셀, 리포좀, 에멀션 또는 나노입자는 내부에 막단백질을 포함할 수 있다. 즉, 상기 미셀, 리포좀, 에멀션 또는 나노입자는 세포막 내부에 존재하는 막단백질을 추출하여 감싸안을 수 있다. 따라서, 상기 미셀에 의하여 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 것이 가능하다.The micelles, liposomes, emulsions or nanoparticles may comprise a membrane protein therein. That is, the micelles, liposomes, emulsions or nanoparticles can be wrapped by extracting the membrane protein present in the cell membrane. Therefore, it is possible to extract, solubilize, stabilize, crystallize or analyze membrane proteins by the micelles.

상기 조성물은 막단백질의 추출, 용해화, 안정화 또는 분석에 도움이 될 수 있는 버퍼 등을 추가로 포함할 수 있다.The composition may further include a buffer or the like that may be helpful for the extraction, solubilization, stabilization or analysis of the membrane protein.

또한, 본 발명은 하기 1) 내지 7)의 단계를 포함하는 하기 화학식 1로 표시되는 화합물의 제조 방법을 제공한다:In addition, the present invention provides a method for preparing a compound represented by the following Chemical Formula 1, comprising the following steps 1) to 7):

1) 5,5-비스-브모로메틸-2,2-다이메틸-[1,3]다이옥산(5,5-bis-bromomethyl-2,2-dimethyl-[1,3]dioxane) 및 알코올(alcohol)을 반응시켜 다이알킬레이션된 다이올을 합성하는 단계;1) 5,5-bis-bromomethyl-2,2-dimethyl- [1,3] dioxane (5,5-bis-bromomethyl-2,2-dimethyl- [1,3] dioxane) and alcohol ( alcohol) to synthesize dialkylated diols;

2) 상기 단계 1)의 생성물에 1-브로모알칸(1-bromoalkane)을 첨가하여 트리알킬레이션된 모노올을 합성하는 단계;2) synthesizing a trialkylated monool by adding 1-bromoalkane to the product of step 1);

3) 상기 단계 2)의 생성물에 알릴 아이오다이드(allyl iodide)를 첨가하여 알코올을 알릴레이션시키는 단계;3) allylating the alcohol by adding allyl iodide to the product of step 2);

4) 상기 단계 3)의 생성물을 하이드로보레이션 산화반응 시켜 트리알킬레이션된 모노올을 합성하는 단계;4) synthesizing trialkylated monool by hydroboration oxidation of the product of step 3);

5) 상기 단계 4)의 생성물에 4-(브로모메틸)-l-메틸-2,6,7-트리옥사바이사이클로[2.2.2]-옥탄(4-(bromomethyl)-l-methyl-2,6,7-trioxabicyclo[2.2.2]-octane)을 첨가하여 트리알킬레이션된 트리올을 합성하는 단계;5) 4- (bromomethyl) -l-methyl-2,6,7-trioxabicyclo [2.2.2] -octane (4- (bromomethyl) -l-methyl-2 in the product of step 4) , 6,7-trioxabicyclo [2.2.2] -octane) to synthesize trialkylated triols;

6) 상기 단계 5)의 생성물에 글리코실레이션(glycosylation) 반응을 수행하여 보호기가 부착된 당류를 도입하는 단계; 및6) introducing a saccharide with a protecting group by performing a glycosylation reaction on the product of step 5); And

7) 상기 단계 6)의 생성물에 탈보호기화(deprotection)반응을 수행하는 단계;를 포함하는 하기 화학식 1로 표시되는 화합물의 제조방법: 7) performing a deprotection reaction (deprotection) reaction on the product of step 6);

[화학식 1][Formula 1]

Figure 112017096027589-pat00012
Figure 112017096027589-pat00012

상기 화학식 1에서,In Chemical Formula 1,

상기 R1, R2 R3 은 각각 독립적으로 치환 또는 비치환된 C3-C20의 알킬기, 치환 또는 비치환된 C3-C20의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C20의 아릴기이고;R 1 , R 2 and Each R 3 is independently a substituted or unsubstituted C 3 -C 20 alkyl group, a substituted or unsubstituted C 3 -C 20 cycloalkyl group, or a substituted or unsubstituted C 3 -C 20 aryl group;

상기 X1, X2 및 X3는 각각 독립적으로 산소로 연결된 당류(saccharide)이고; X 1 , X 2 and X 3 are each independently a saccharide linked by oxygen;

상기 Y1, Y2 및 Y3은 산소(O)이고; 그리고Y 1 , Y 2 and Y 3 are oxygen (O); And

상기 m은 1이다.M is 1.

상기 방법에 따라 제조된 화합물은 상기 화학식 2 내지 화학식 7로 표시되는 화합물일 수 있다.The compound prepared according to the method may be a compound represented by Formula 2 to Formula 7.

또한, 본 발명은 하기 1) 내지 8)의 단계를 포함하는 하기 화학식 1로 표시되는 화합물의 제조 방법을 제공한다:In addition, the present invention provides a method for preparing a compound represented by the following Chemical Formula 1, comprising the following steps 1) to 8):

1) 5,5-비스-브모로메틸-2,2-다이메틸-[1,3]다이옥산(5,5-bis-bromomethyl-2,2-dimethyl-[1,3]dioxane)을 알킬레이션 반응시켜 다이알킬레이션된 다이올형태의 화합물을 합성하는 단계;1) Alkylation of 5,5-bis-bromomethyl-2,2-dimethyl- [1,3] dioxane (5,5-bis-bromomethyl-2,2-dimethyl- [1,3] dioxane) Reacting to synthesize a compound in the form of a dialkylated diol;

2) 상기 단계 1)의 생성물에 1-브로모알칸(1-bromoalkane)을 첨가하여 트리알킬레이션된 모노올 형태의 화합물을 합성하는 단계;2) adding 1-bromoalkane to the product of step 1) to synthesize a trialkylated monool type compound;

3) 상기 단계 2)의 생성물에 알릴 아이오다이드(allyl iodide)를 첨가하여 알코올을 알릴레이션시키는 단계;3) allylating the alcohol by adding allyl iodide to the product of step 2);

4) 상기 단계 3)의 생성물을 하이드로보레이션(hydroboration) 산화반응시켜 트리알킬레이션된 모노올 형태의 화합물을 합성하는 단계;4) hydroboration oxidation of the product of step 3) to synthesize trialkylated monool compounds;

5) 상기 단계 4)의 생성물의 알코올 산화반응을 통해 트리알킬레이션된 알데하이드 형태의 화합물를 합성하는 단계;5) synthesizing the compound of the trialkylated aldehyde form through alcohol oxidation of the product of step 4);

6) 상기 단계 5)의 생성물에 포름알데하이드 및 수용성 알칼라인 에탄올을 첨가하여 트리알킬레이션된 트리올 형태의 화합물을 합성하는 단계;6) adding formaldehyde and water-soluble alkaline ethanol to the product of step 5) to synthesize a trialkylated triol form of the compound;

7) 상기 단계 6)의 생성물에 글리코실레이션(glycosylation) 반응을 수행하여 보호기가 부착된 당류를 도입하는 단계; 및7) introducing a saccharide to which a protecting group is attached by performing a glycosylation reaction on the product of step 6); And

8) 상기 단계 7)의 생성물에 탈보호기화(deprotection)반응을 수행하는 단계;를 포함하는 하기 화학식 1로 표시되는 화합물의 제조방법: 8) A process for preparing a compound represented by the following Chemical Formula 1 comprising the step of performing a deprotection reaction on the product of step 7):

[화학식 1][Formula 1]

Figure 112017096027589-pat00013
Figure 112017096027589-pat00013

상기 화학식 1에서,In Chemical Formula 1,

상기 R1, R2 R3 은 각각 독립적으로 치환 또는 비치환된 C3-C20의 알킬기, 치환 또는 비치환된 C3-C20의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C20의 아릴기이고;R 1 , R 2 and Each R 3 is independently a substituted or unsubstituted C 3 -C 20 alkyl group, a substituted or unsubstituted C 3 -C 20 cycloalkyl group, or a substituted or unsubstituted C 3 -C 20 aryl group;

상기 X1, X2 및 X3는 각각 독립적으로 산소로 연결된 당류(saccharide)이고; X 1 , X 2 and X 3 are each independently a saccharide linked by oxygen;

상기 Y1, Y2 및 Y3은 산소(O)이고; 그리고Y 1 , Y 2 and Y 3 are oxygen (O); And

상기 m은 0이다.M is zero.

상기 방법에 따라 제조된 화합물은 상기 화학식 8 내지 화학식 11로 표시되는 화합물일 수 있다.The compound prepared according to the method may be a compound represented by Formula 8 to Formula 11.

또한, 본 발명의 또 다른 구체예는 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법을 제공한다. 구체적으로, 수용액에서 하기 화학식 1로 표시되는 화합물을 막단백질에 처리하는 단계를 포함하는, 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법을 제공한다:Still another embodiment of the present invention provides a method for extracting, solubilizing, stabilizing, crystallizing or analyzing membrane proteins. Specifically, the present invention provides a method for extracting, solubilizing, stabilizing, crystallizing, or analyzing a membrane protein, comprising treating the membrane protein with a compound represented by Formula 1 in an aqueous solution:

[화학식 1][Formula 1]

Figure 112017096027589-pat00014
Figure 112017096027589-pat00014

상기 화학식 1에서,In Chemical Formula 1,

상기 R1, R2 R3 은 각각 독립적으로 치환 또는 비치환된 C3-C20의 알킬기, 치환 또는 비치환된 C3-C20의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C20의 아릴기일 수 있고;R 1 , R 2 and Each R 3 may independently be a substituted or unsubstituted C 3 -C 20 alkyl group, a substituted or unsubstituted C 3 -C 20 cycloalkyl group, or a substituted or unsubstituted C 3 -C 20 aryl group;

상기 X1, X2 및 X3는 각각 독립적으로 산소로 연결된 당류(saccharide)일 수 있고; X 1 , X 2 and X 3 may each independently be a saccharide linked to oxygen;

상기 Y1, Y2 및 Y3은 산소(O)있고; 그리고Y 1 , Y 2 and Y 3 are oxygen (O); And

상기 m은 0 또는 1일 수 있다.M may be 0 or 1.

구체적으로, 상기 R1, R2 R3 은 C7-C14 알킬기일 수 있고; 상기 R1, R2 R3 은 동일할 수 있고; Y1, Y2 및 Y3은 산소일 수 있고; 상기 X1 내지 X3은 산소로 연결된 말토오스(maltose)일 수 있고; 그리고 상기 m은 O 일 수 있다.Specifically, the R 1 , R 2 And R 3 may be a C 7 -C 14 alkyl group; R 1 , R 2 and R 3 may be the same; Y 1 , Y 2 and Y 3 may be oxygen; X 1 to X 3 may be maltose connected by oxygen; And m may be O.

또한, 상기 R1, R2 R3 은 C7-C14 알킬기일 수 있고; 상기 R1, R2 R3 은 동일할 수 있고; Y1, Y2 및 Y3은 산소일 수 있고; 상기 X1 내지 X3은 산소로 연결된 말토오스(maltose)일 수 있고; 그리고 상기 m은 1 일 수 있다.In addition, the R 1 , R 2 And R 3 may be a C 7 -C 14 alkyl group; R 1 , R 2 and R 3 may be the same; Y 1 , Y 2 and Y 3 may be oxygen; X 1 to X 3 may be maltose connected by oxygen; And m may be 1.

상기 화합물은 본 발명의 일 실시예에 따른 하기의 화학식 2로 표시되는 11종의 화합물일 수 있으나, 이에 제한되지 않는다.The compound may be 11 kinds of compounds represented by the following Chemical Formula 2 according to one embodiment of the present invention, but is not limited thereto.

본 명세서에서 사용된 용어, "막단백질"이란 세포막 지질이중층으로 이입되는 단백질 또는 당단백질의 총칭이다. 이는 세포막 전체 층을 관통하거나, 표층에 위치하거나, 세포막을 배접하는 등 여러 상태로 존재하고 있다. 막단백질의 예로 효소, 펩티드호르몬, 국소호르몬 등의 수용체, 당 등의 수용담체, 이온채널, 세포막 항원 등이 있으나, 이에 제한되지 않는다.As used herein, the term "membrane protein" is a generic term for proteins or glycoproteins that are introduced into cell membrane lipid bilayers. It exists in various states such as penetrating the entire layer of the cell membrane, located on the surface layer, or contacting the cell membrane. Examples of membrane proteins include, but are not limited to, receptors such as enzymes, peptide hormones, local hormones, receptors such as sugars, ion channels, and cell membrane antigens.

상기 막단백질은 세포막 지질이중층으로 이입되는 단백질 또는 당단백질이라면 어느 것이나 포함하며, 구체적으로 UapA (uric acid-xanthine/H+ symporter), MelB (melibiose permease), LeuT (Leucine transporter), GPCRs (G-protein coupled receptors) 또는 이들의 2 이상의 조합일 수 있으나, 이에 제한되지 않는다.The membrane protein includes any protein or glycoprotein introduced into the cell membrane lipid bilayer, specifically UapA (uric acid-xanthine / H + symporter), MelB (melibiose permease), LeuT (Leucine transporter), GPCRs (G- protein coupled receptors) or a combination of two or more thereof, but is not limited thereto.

본 명세서에서 사용된 용어, "막단백질의 추출"이란 막단백질을 세포막(membrane)으로부터 분리하는 것을 의미한다.As used herein, the term "extraction of membrane proteins" refers to the separation of membrane proteins from membranes.

본 명세서에서 사용된 용어, "막단백질의 용해화(solubilization)"란 물에 녹지 않는 막단백질을 수용액에서 미셀에 녹아들도록 하는 것을 의미한다. As used herein, the term "solubilization" of membrane proteins means that membrane proteins that are insoluble in water are dissolved in micelles in aqueous solution.

본 명세서에서 사용된 용어, "막단백질의 안정화(stabilization)"란 막단백질의 구조, 기능이 변하지 않도록 3차 또는 4차 구조를 안정하게 보존하는 것을 의미한다.As used herein, the term "stabilization of membrane proteins" means the stable preservation of tertiary or quaternary structures such that the structure, function of the membrane protein does not change.

본 명세서에서 사용된 용어, "막단백질의 결정화(crystallization)"란 용액에서 막단백질의 결정을 형성하는 것을 의미한다.As used herein, the term "crystallization of membrane proteins" means the formation of crystals of membrane proteins in solution.

본 명세서에서 사용된 용어, "막단백질의 분석(analysis)"이란 막단백질의 구조 또는 기능을 분석하는 것을 의미한다. 상기 구체예에서, 막단백질의 분석은 공지의 방법을 이용할 수 있으며, 이에 제한되지 않으나, 예를 들어 전자현미경(electron microscopy)을 이용하여 막단백질의 구조를 분석할 수 있다.As used herein, the term "analysis" of a membrane protein means to analyze the structure or function of the membrane protein. In the above embodiment, the analysis of the membrane protein may use a known method, but is not limited thereto. For example, the structure of the membrane protein may be analyzed by electron microscopy.

본 발명의 구체예들에 따른 트리스- 또는 네오펜틸 글리콜-기반의 화합물을 이용하면 기존 화합물 대비 막단백질을 수용액에서 장기간 안정적으로 보관할 수 있고, 이를 통해 그 기능분석 및 구조 분석에 활용될 수 있다. Using a tris- or neopentyl glycol-based compound according to embodiments of the present invention can be stored for a long time stably compared to the existing compound in aqueous solution, it can be utilized for its functional analysis and structural analysis.

막단백질 구조 및 기능 분석은 현 생물학 및 화학에서 가장 관심을 갖고 있는 분야 중 하나이며, 현재 개발되고 있는 신약의 절반 이상이 막단백질을 타깃으로 하고 있으므로, 신약 개발과 긴밀한 관계가 있는 단백질 구조 연구에 응용이 가능하다.Membrane protein structure and function analysis is one of the areas of greatest interest in current biology and chemistry, and since more than half of currently developed drugs are targeted to membrane proteins, it is important to study protein structure closely related to drug development. Application is possible.

구체적으로, 본 발명의 구체예들에 따른 화합물은 작은 친수성기를 가져 막단백질 결정화에 있어서 탁월한 효과를 가질 수 있을 뿐만 아니라, 작은 친수성기를 사용하였을 때 발생하는 막단백질의 안정성이 다소 떨어지는 문제점이 발생하지 않고 기존 화합물 보다 우수한 막단백질 안정성을 보여준다.Specifically, the compound according to the embodiments of the present invention has a small hydrophilic group and may not only have an excellent effect on the membrane protein crystallization, but also cause a problem that the stability of the membrane protein generated when using a small hydrophilic group is somewhat deteriorated. Shows better membrane protein stability than conventional compounds.

또한, 본 발명의 구체예들에 따른 화합물은 쉽게 구할 수 있는 출발물질로부터 간단한 방법으로 합성이 가능하므로, 막단백질 연구를 위한 화합물의 대량 생산이 가능하다.In addition, the compound according to the embodiments of the present invention can be synthesized from a readily available starting material by a simple method, thereby enabling mass production of the compound for membrane protein research.

도 1는 본 발명의 TNMs의 합성스킴을 나타낸 도이다.
도 2는 본 발명의 TNMs의 합성스킴을 나타낸 도이다.
도 3은 본 발명의 TNMs의 화학 구조를 나타낸 도이다.
도 4는 (a) TNM-Ls 와 (b) TNM-Ss에 의해 형성된 마이셀들의 Dynamic light scattering (DLS) 프로파일. 개수에 근거한 분석을 통해 마이셀 사이즈에 대한 정보를 얻었다.
도 5는 수용액 속에서 CMC+0.04 wt% 농도로 사용된 (a) TNM-Ls 또는 (b) TNM-Ss에 의한 LHI-RC complex의 구조적 안정성은 875 nm의 흡광도를 모니터링하여 측정한 결과를 나타낸 도이다.
도 6은 수용액 속에서 CMC+0.2 wt% 농도로 사용된 (a) TNM-Ls 또는 (b) TNM-Ss에 의한 LHI-RC complex의 구조적 안정성은 875 nm의 흡광도를 모니터링하여 측정한 결과를 나타낸 도이다.
도 7은 수용액 속에서 CMC+0.2 wt% 농도로 사용된 (a) TNM-Ls 또는 (b) TNM-Ss에 의한 UapA 단백질의 구조적 안정성을 CPM assay를 이용하여 측정한 결과를 나타낸 도이다.
도 8은 수용액 속에서 CMC+0.04 wt% 농도로 사용된 (a) TNM-Ls 또는 (b) TNM-Ss에 의한 UapA 단백질의 구조적 안정성을 CPM assay를 이용하여 측정한 결과를 나타낸 도이다.
도 9는 CMC+0.04 wt% 농도에서 사용된 TNMs에 의한 LeuT 단백질의 안정성을 SPA(scintillation proximity assay)를 이용하여 측정한 결과를 나타낸 도이다.
도 10은 CMC+0.2 wt% 농도에서 사용된 TNMs에 의한 LeuT 단백질의 안정성을 SPA(scintillation proximity assay)를 이용하여 측정한 결과를 나타낸 도이다.
도 11은 TNMs에 의한 β2AR의 안정성에 대한 효과를 측정 4일 동안 상온에서 incubation하면서 일정한 간격으로 [3H]-dihydroalprenolol (DHA)를 사용하여 단백질 활성을 측정한 결과를 나타낸 도이다.
도 12는 TNM-C12L에 의한 β2AR의 안정성에 대한 효과를 측정 4일 동안 상온에서 incubation하면서 일정한 간격으로 [3H]-dihydroalprenolol (DHA)를 사용하여 단백질 활성을 측정한 결과를 나타낸 도이다.
1 is a diagram showing a synthesis scheme of TNMs of the present invention.
2 is a diagram showing a synthesis scheme of TNMs of the present invention.
3 is a diagram showing the chemical structure of the TNMs of the present invention.
4 is a dynamic light scattering (DLS) profile of micelles formed by (a) TNM-Ls and (b) TNM-Ss. The analysis based on the number provided information on the size of the micelles.
Figure 5 shows the structural stability of the LHI-RC complex by (a) TNM-Ls or (b) TNM-Ss used at a concentration of CMC + 0.04 wt% in aqueous solution, measured by monitoring the absorbance at 875 nm. It is also.
Figure 6 shows the structural stability of the LHI-RC complex by (a) TNM-Ls or (b) TNM-Ss used at a concentration of CMC + 0.2 wt% in an aqueous solution, measured by monitoring the absorbance at 875 nm. It is also.
Figure 7 shows the results of measuring the structural stability of the UapA protein by (a) TNM-Ls or (b) TNM-Ss used in CMC + 0.2 wt% concentration in an aqueous solution using a CPM assay.
Figure 8 is a diagram showing the results of measuring the structural stability of the UapA protein by (a) TNM-Ls or (b) TNM-Ss used in CMC + 0.04 wt% concentration in an aqueous solution using a CPM assay.
9 is a diagram showing the results of measuring the stability of the LeuT protein by TNMs used at the concentration of CMC + 0.04 wt% using a scintillation proximity assay (SPA).
10 is a diagram showing the results of measuring the stability of LeuT protein by TNMs used at the concentration of CMC + 0.2 wt% using a scintillation proximity assay (SPA).
11 is a diagram showing the results of measuring protein activity using [ 3 H] -dihydroalprenolol (DHA) at regular intervals while incubating at room temperature for 4 days to measure the effect on the stability of β 2 AR by TNMs.
12 is a diagram showing the results of measuring protein activity using [ 3 H] -dihydroalprenolol (DHA) at regular intervals while incubating at room temperature for 4 days to measure the effect on the stability of β 2 AR by TNM-C12L. .

이하 본 발명을 하기 실시예에서 보다 상세하게 기술한다. 다만, 하기 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 권리범위를 제한하거나 한정하는 것이 아니다. 본 발명의 상세한 설명 및 실시예로부터 본 발명이 속하는 기술분야의 통상의 기술자가 용이하게 유추할 수 있는 것은 본 발명의 권리범위에 속하는 것으로 해석된다.Hereinafter, the present invention will be described in more detail in the following examples. However, the following examples merely illustrate the contents of the present invention and do not limit or limit the scope of the present invention. From the detailed description and examples of the present invention, those skilled in the art to which the present invention pertains can be easily inferred to be within the scope of the present invention.

<< 실시예EXAMPLE 1>  1> TNMTNM -- Ls의Ls 합성 방법 Synthetic Method

TNM-Ls의 합성 스킴을 도 1에 나타내었다. 하기 <1-1> 내지 <1-7>의 합성 방법에 따라 TNM-Ls(Tandem Neopentyl Glycol Maltosides)의 6종의 화합물을 합성하여 도 3에 나타내었다.The synthesis scheme of TNM-Ls is shown in FIG. 1. Six compounds of TNM-Ls (Tandem Neopentyl Glycol Maltosides) were synthesized according to the synthesis methods of the following <1-1> to <1-7>, and are shown in FIG. 3.

<1-1> <1-1> 다이알킬화된Dialkylated 다이올(dialkylated diols)의Of dialkylated diols 일반 합성 절차 (도 1의 단계 a) General Synthesis Procedure (Step a) of Figure 1

DMF와 혼합된 NaH (4.0 당량)의 용액에, 각각의 알킬 알콜 (3.0 당량)을 0 ℃, N2 대기 하에 적가하고, 생성된 혼합물을 실온에서 15분 동안 교반하였다. 5,5- 비스-브로모메틸-2,2-다이메틸-[1,3]다이옥산(A)(1.0 당량)을 첨가한 후, 반응 혼합물을 120℃로 가온시키고, 이 온도에서 15시간 동안 방치하였다. 실온으로 냉각시킨 후, 반응을 얼음물로 종결시키고 다이에틸에테르로 유기물을 3회 추출하였다. 혼합된 유기층을 염수(brine)로 세척하고, 무수 Na2SO4상에서 건조시킨 다음 회전 증발기로 농축시켰다. 용매를 완전히 증발시킨 후, 잔류물을 CH2Cl2 및 MeOH의 1:1 혼합물에 용해시키고 p-톨루엔 술폰산(p-TSA)모노수화물(촉매량)을 첨가하고 실온에서 2시간 동안 교반하였다. 반응 혼합물을 포화 수용성 NaHCO3 용액으로 중화시키고, 용매의 부피를 회전 증발기로 감소시켰다. 반응 혼합물을 CH2Cl2 및 H2O 사이에 분배시켰다. 수집된 유기층을 염수로 세척하고, 무수 Na2SO4상에서 건조시킨 후, 진공 농축시켰다. 플래시 칼럼크로마토그래피(EtOAc/헥산)에 의해 백색 고체의 에테르-함유 다이올(B1-B6)을 수득 하였다(92-94 % (두 단계)).To a solution of NaH (4.0 equiv) mixed with DMF, each alkyl alcohol (3.0 equiv) was added dropwise under 0 ° C., N 2 atmosphere, and the resulting mixture was stirred at room temperature for 15 minutes. After addition of 5,5-bis-bromomethyl-2,2-dimethyl- [1,3] dioxane (A) (1.0 equiv), the reaction mixture is warmed to 120 ° C. and at this temperature for 15 h It was left. After cooling to room temperature, the reaction was terminated with ice water and the organics were extracted three times with diethyl ether. The combined organic layers were washed with brine, dried over anhydrous Na 2 SO 4 and concentrated on a rotary evaporator. After the solvent was completely evaporated, the residue was dissolved in a 1: 1 mixture of CH 2 Cl 2 and MeOH and p-toluene sulfonic acid (p-TSA) monohydrate (catalyst amount) was added and stirred at room temperature for 2 hours. The reaction mixture was neutralized with saturated aqueous NaHCO 3 solution and the volume of solvent was reduced with a rotary evaporator. The reaction mixture was partitioned between CH 2 Cl 2 and H 2 O. The collected organic layers were washed with brine, dried over anhydrous Na 2 SO 4 and concentrated in vacuo. Flash column chromatography (EtOAc / hexanes) afforded an ether-containing diol (B1-B6) as a white solid (92-94% (two steps)).

<1-2> <1-2> 트리알킬화된Trialkylated 모노올Monool (( trialkylatedtrialkylated mono- mono- olol ) 의 일반 합성 절차(도 1의 단계 b)General synthesis procedure (step b of FIG. 1)

무수 DMF와 혼합된 NaH (1.3 당량)의 현탁액에 0℃, 아르곤하에서 상기 무수 DMF에 혼합된 다이올 유도체(B1-B6) (1.0 당량)의 용액을 천천히 첨가하였다. 15분 교반 후, 1-브로모알칸(RBr)(1.3 당량)을 혼합물에 첨가하고 온도를 100℃까지 증가시켰다. 반응 혼합물을 이 온도에서 4시간 동안 방치한 후, 실온으로 냉각시키고 H2O로 반응 종결시켰다. 반응 혼합물을 CH2Cl2로 2회 추출하고, 염수로 세척하고, 무수 Na2SO4상에서 건조시켰다. 유기층을 진공하에 농축시키고, 생성된 잔류물을 실리카 겔 컬럼 크로마토 그래피 (EtOAc/헥산)로 정제 하여 오일성 액체 형태의 트리알킬함유 모노올(C1-C6)을 얻었다(85 내지 90 %).To a suspension of NaH (1.3 equiv) mixed with anhydrous DMF was slowly added a solution of diol derivative (B1-B6) (1.0 equiv) mixed with the anhydrous DMF at 0 ° C. under argon. After 15 min stirring, 1-bromoalkane (RBr) (1.3 equiv) was added to the mixture and the temperature was increased to 100 ° C. The reaction mixture was left at this temperature for 4 hours, then cooled to room temperature and terminated with H 2 O. The reaction mixture was extracted twice with CH 2 Cl 2 , washed with brine and dried over anhydrous Na 2 SO 4 . The organic layer was concentrated in vacuo and the resulting residue was purified by silica gel column chromatography (EtOAc / hexane) to give trialkyl-containing monools (C1-C6) in the form of an oily liquid (85-90%).

<1-3> 아릴레이션(allylation)의 일반 합성 절차 (도 1의 단계 c)<1-3> General Synthesis Procedure of Arlylation (Step c of FIG. 1)

무수 DMF와 혼합된 NaH (2.0 당량)의 현탁액에 0℃, 아르곤하에서 상기 무수 DMF에 혼합된 트리알킬화된 모노올 유도체(C1-C6)(1.0 당량)의 용액을 천천히 첨가하였다. 15분 동안 교반한 후, 알릴아이오다이드(allyl iodide)(1.5 당량)를 혼합물에 첨가하고 온도를 60 ℃까지 증가시켰다. 반응 혼합물을 이 온도에서 4시간 동안 방치한 후, 실온으로 냉각시키고 H2O로 반응종결시켰다. 반응 혼합물을 CH2Cl2로 2 회 추출하고, 염수로 세척하고, 무수 Na2SO4상에서 건조시켰다. 유기층을 진공에서 농축시키고, 생성된 잔류물을 실리카 겔 컬럼 크로마토 그래피 (EtOAc / 헥산)로 정제하여 오일성 액체형태의 트리알킬화된 알릴 화합물(D1-D6)을 얻었다(90 내지 95 %).To a suspension of NaH (2.0 equiv) mixed with anhydrous DMF was slowly added a solution of trialkylated monool derivatives (C1-C6) (1.0 equiv) mixed with the anhydrous DMF at 0 ° C. under argon. After stirring for 15 minutes, allyl iodide (1.5 equiv) was added to the mixture and the temperature increased to 60 ° C. The reaction mixture was left at this temperature for 4 hours, then cooled to room temperature and terminated with H 2 O. The reaction mixture was extracted twice with CH 2 Cl 2 , washed with brine and dried over anhydrous Na 2 SO 4 . The organic layer was concentrated in vacuo and the resulting residue was purified by silica gel column chromatography (EtOAc / hexane) to give trialkylated allyl compound (D1-D6) in oily liquid form (90-95%).

<1-4> 하이드로보레이션(hydroboration)의 일반 합성 절차 (도 1의 단계 d)<1-4> General Synthesis Procedure of Hydroboration (Step d of FIG. 1)

완전히 증류된 무수 THF (3 ml) 및 트리알킬화된 알릴 화합물(D1-D6)(1.65 g, 2.77 mmol)을 건조한 둥근 바닥 플라스크에 N2하에 넣고 얼음 욕조에서 0℃로 냉각시켰다. THF(3 ml)와 혼합된 1M BH3 용액을 상기 혼합물에 서서히 첨가한 다음, 반응 혼합물을 0℃에서 10시간 동안 교반하였다. 이어서, 반응 혼합물을 3M NaOH 용액(2 ml)으로 넣고 추가적으로 20분 동안 교반하고, 30% H2O2 용액(2 ml)을 첨가하였다. 혼합물을 실온에서 2시간 동안 교반하였다. K2CO3로 포화시킨 후, 반응 혼합물을 다이에틸에테르로 추출하였다. 유기층을 무수 Na2SO4상에서 건조시키고 진공하에 농축시켰다. 생성된 혼합물을 실리카 겔 컬럼 크로마토그래피(EtOAc/헥산)로 정제하여 오일성 액체로서 트리알킬화된 하이드로보레이션된 화합물(E1-E6)을 수득하였다(55 내지 60 %).Completely distilled anhydrous THF (3 ml) and trialkylated allyl compound (D1-D6) (1.65 g, 2.77 mmol) were placed in a dry round bottom flask under N 2 and cooled to 0 ° C. in an ice bath. 1M BH 3 solution mixed with THF (3 ml) was slowly added to the mixture, then the reaction mixture was stirred at 0 ° C. for 10 hours. The reaction mixture was then poured into 3M NaOH solution (2 ml) and stirred for an additional 20 minutes and 30% H 2 O 2 solution (2 ml) was added. The mixture was stirred at rt for 2 h. After saturated with K 2 CO 3 , the reaction mixture was extracted with diethyl ether. The organic layer was dried over anhydrous Na 2 SO 4 and concentrated in vacuo. The resulting mixture was purified by silica gel column chromatography (EtOAc / hexanes) to give trialkylated hydroborated compounds (E1-E6) as oily liquids (55-60%).

<1-5> <1-5> 트리알킬화된Trialkylated 트리올(trialkylated tri-ol)의Of trialkylated tri-ols 일반 합성 절차 (도 1의 단계 e) General Synthesis Procedure (Step e of Figure 1)

DMF(10 ml)에 혼합된 트리알킬화된 하이드로보레이션된 화합물(E1-E6)(1.0 당량)의 용액에 0℃, 아르곤하에서 NaH(3.0 당량)를 첨가하고, 반응 혼합물을 12분 동안 교반하였다. THF(3 ml)에 용해된 4-(브로모메틸)-1-메틸-2,6,7-트리옥사바이사이클로[2.2.2]-옥탄(3.0 당량)을 서서히 첨가하였다. 생성된 혼합물을 100℃에서 24시간 동안 가열하였다. 물로 급냉시킨 후, 용매를 감압하에 제거하였다. 고체 잔류물을 다이에틸에테르에 용해시키고, 염수로 세척하고, 무수 Na2SO4상에서 건조시켰다. 회전 증발기에 의해 유기층을 농축시킨 후, 잔류물을 DCM/MeOH(10ml/10ml) 혼합물에 용해시켰다. 이 용액에 농축된 HCl을 몇 방울을 첨가하고 생성된 혼합물을 50℃에서 4시간 동안 가열하였다. NaOH로 중화시키고 반응 혼합물을 농축시킨 후, 생성된 잔류물을 칼럼 크로마토그래피(EtOAc/헥산)로 정제하여 오일성 액체 형태의 트리알킬화된 트리올(F1-F6)을 얻었다(45 내지 50 %).To a solution of trialkylated hydroborated compound (E1-E6) (1.0 equiv) mixed in DMF (10 ml) was added NaH (3.0 equiv) at 0 ° C., under argon, and the reaction mixture was stirred for 12 minutes. . 4- (Bromomethyl) -1-methyl-2,6,7-trioxabicyclo [2.2.2] -octane (3.0 equiv) dissolved in THF (3 ml) was added slowly. The resulting mixture was heated at 100 ° C. for 24 hours. After quenching with water, the solvent was removed under reduced pressure. The solid residue was dissolved in diethyl ether, washed with brine and dried over anhydrous Na 2 SO 4 . After concentration of the organic layer by rotary evaporator, the residue was dissolved in a DCM / MeOH (10 ml / 10 ml) mixture. Several drops of concentrated HCl were added to this solution and the resulting mixture was heated at 50 ° C. for 4 hours. After neutralization with NaOH and concentration of the reaction mixture, the resulting residue was purified by column chromatography (EtOAc / hexanes) to give trialkylated triols (F1-F6) in oily liquid form (45-50%).

<1-6> 당화(glycosycosylation)반응 의 일반 합성 절차 (도 1의 단계 f)<1-6> General Synthesis Procedure of Glycosycosylation Reaction (Step f of FIG. 1)

이는 Chae , P. S. 등의 합성 방법 (Nat. Methods 2010, 7, 1003.)에 따랐다. 질소하에서 무수 CH2Cl2에 혼합된 트리알킬화된 트리올 유도체(F1-F6)의 교반 용액에 2,4,6-collidine(1.0 당량)을 첨가하였다. 상기 혼합물에 AgOTf(4.5 당량)를 0℃에서 첨가하였다. 이 용액에 CH2Cl2에 용해된 페르벤조일레이티드 말토실브로마이드(perbenzoylated maltosylbromide)용액 4.0 당량을 서서히 첨가하였다. 실온에서 10분 동안 교반하였다. 반응이 완료된 후(TLC로 반응 완료 확인), 피리딘을 반응 혼합물에 첨가하였고, 이를 CH2Cl2로 희석시킨 다음 celite로 여과하였다. 여과물을 1M Na2S2O3수용액, 0.1M HCl 수용액 및 염수로 세척하였다. 그 다음 유기층을 무수 Na2SO4로 건조시키고, 회전 증발기를 이용하여 용매를 제거하였다. 잔여물을 실리카겔 컬럼 크로마토그래피(EtOAc/헥산)로 정제하여 흰색 고체 상태의 글리코실화 화합물(TNM-La)을 얻었다(45 to 75 %).This was followed by the synthesis method of Chae , PS et al. (Nat. Methods 2010, 7, 1003.). 2,4,6-collidine (1.0 equiv) was added to a stirred solution of trialkylated triol derivatives (F1-F6) mixed with anhydrous CH 2 Cl 2 under nitrogen. AgOTf (4.5 equiv) was added to the mixture at 0 ° C. To this solution was added 4.0 equivalents of a perbenzoylated maltosylbromide solution dissolved in CH 2 Cl 2 . Stir at room temperature for 10 minutes. After the reaction was completed (confirmed by TLC to complete the reaction), pyridine was added to the reaction mixture, which was diluted with CH 2 Cl 2 and then filtered through celite. The filtrate was washed with 1M Na 2 S 2 O 3 aqueous solution, 0.1M HCl aqueous solution and brine. The organic layer was then dried over anhydrous Na 2 SO 4 and the solvent removed using a rotary evaporator. The residue was purified by silica gel column chromatography (EtOAc / hexane) to give a glycosylated compound (TNM-La) as a white solid (45 to 75%).

<1-7> <1-7> 탈보호기화Deprotection Vaporization 반응 ( reaction ( deprotectiondeprotection reaction)을 위한 일반 합성 절차 (도 1의 단계 g) General synthetic procedure for the reaction (step g of FIG. 1)

이는 Chae , P. S. 등의 합성 방법 (Nat. Methods, 2010, 7, 1003.)에 따랐다. Zemplen's 조건하에 데-O-벤조일화(de-O-benzoylation)를 수행하였다. O-protected 화합물을 무수 CH2Cl2로 용해시킨 다음 MeOH과 0.5M의 메탄올성 용액(methanolic solution)인 NaOMe를 교대로 첨가하여 침전이 생성되지 않도록 하였다. 상기 반응 혼합물에 0.5M의 메탄올성 용액(methanolic solution)인 NaOMe를 최종 농도가 0.05M이 되도록 첨가하였다. 반응 혼합물을 상온에서 6시간 동안 교반시켰다. 반응 완료 후, 반응 혼합물을 Amberlite IR-120 (H+form) resin을 이용하여 중화시켰다. 여과하여 resin을 제거하고, MeOH로 세척하고, 진공 조건(in vacuo)에서 여과물로부터 용매를 제거하였다. 잔여물을 실리카 겔 크로마토그래피(CH2Cl2/MeOH)를 이용하여 정제하여 흰색 고체 화합물을 얻었다(90 to 95 %). 이렇게 얻은 화합물이 본 발명의 화합물 TNM-Ls이다This was followed by the synthesis method of Chae , PS et al. (Nat. Methods, 2010, 7, 1003.). Under Zemplen's condition to - O - benzoyl Chemistry (de- O -benzoylation) it was carried out. The O- protected compound was dissolved in anhydrous CH 2 Cl 2 and then MeOH and NaOMe, a 0.5 M methanolic solution, were added alternately to prevent precipitation. To the reaction mixture was added 0.5M methanolic solution, NaOMe, to a final concentration of 0.05M. The reaction mixture was stirred at room temperature for 6 hours. After completion of the reaction, the reaction mixture was neutralized with Amberlite IR-120 (H + form) resin. The resin was removed by filtration, washed with MeOH, and the solvent was removed from the filtrate in vacuo . The residue was purified by silica gel chromatography (CH 2 Cl 2 / MeOH) to give a white solid compound (90 to 95%). The compound thus obtained is the compound TNM-Ls of the present invention.

<제조예 1> TNM-C9L의 합성Preparation Example 1 Synthesis of TNM-C9L

<1-1> 2,2-bis((nonyloxy)methyl)propane-1,3-diol(화합물 B1)의 합성<1-1> Synthesis of 2,2-bis ((nonyloxy) methyl) propane-1,3-diol (Compound B1)

실시예 1-1의 절차에 따라 화합물 B1을 92%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.65 (d, J = 4.0 Hz, 4H), 3.51 (s, 4H), 3.42 (t, J = 4.0 Hz, 4H), 2.85 (t, J = 4.0 Hz, 2H), 1.56 (quin, J = 4.0 Hz, 4H), 1.28-1.26 (m, 24H), 0.88 (t, J = 7.2 Hz, 6H); 13 C NMR (100 MHz, CDCl3):δ73.4, 72.2, 65.7, 44.6, 32.1, 29.8, 29.7, 29.5, 26.3, 22.9, 14.1.Compound B1 was synthesized in a yield of 92% according to the procedure of Example 1-1. 1 H NMR (400 MHz, CDCl 3 ): δ 3.65 (d, J = 4.0 Hz, 4H), 3.51 (s, 4H), 3.42 (t, J = 4.0 Hz, 4H), 2.85 (t, J = 4.0 Hz, 2H), 1.56 (quin, J = 4.0 Hz, 4H), 1.28-1.26 (m, 24H), 0.88 (t, J = 7.2 Hz, 6H); 13 C NMR (100 MHz, CDCl 3 ): δ 73.4, 72.2, 65.7, 44.6, 32.1, 29.8, 29.7, 29.5, 26.3, 22.9, 14.1.

<1-2> 3-(<1-2> 3- ( nonyloxynonyloxy )-2,2-) -2,2- bis((nonyloxy)methyl)propanbis ((nonyloxy) methyl) propan -1--One- ol(화합물 C1)의ol (compound C1) 합성 synthesis

실시예 1-2의 절차에 따라 화합물 C1을 87%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.71 (d, J = 8.0 Hz, 2H), 3.43 (s, 6H), 3.38 (t, J = 8.0 Hz, 6H), 3.17 (t, J = 4.0 Hz, 1H), 1.53 (quin, J = 4.0 Hz, 6H), 1.30-1.26 (m, 36H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ 71.6, 71.3, 66.3, 44.7, 31.6, 29.5, 25.8, 22.6, 14.1.Compound C1 was synthesized in the yield of 87% according to the procedure of Examples 1-2. 1 H NMR (400 MHz, CDCl 3 ): δ 3.71 (d, J = 8.0 Hz, 2H), 3.43 (s, 6H), 3.38 (t, J = 8.0 Hz, 6H), 3.17 (t, J = 4.0 Hz, 1H), 1.53 (quin, J = 4.0 Hz, 6H), 1.30-1.26 (m, 36H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 71.6, 71.3, 66.3, 44.7, 31.6, 29.5, 25.8, 22.6, 14.1.

<1-3> 1-<1-3> 1- (3-(allyloxy)-2,2-bis((3- (allyloxy) -2,2-bis ( (( nonyloxynonyloxy )methyl)methyl) propoxypropoxy )) nonane(화합물 D1)의of nonane (Compound D1) 합성 synthesis

실시예 1-3의 절차에 따라 화합물 D1을 92%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 5.93-5.83 (m, 1H), 5.28-5.22 (m, 1H), 5.14-5.11 (m, 1H), 3.95-3.93 (m, 2H), 3.42 (s, 2H), 3.38 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 1.52 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 36H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ135.4, 116.1, 72.4, 72.1, 71.9, 71.7, 69.8, 69.7, 45.6, 32.1, 29.8, 29.5, 26.4, 26.3, 22.9, 14.2.Compound D1 was synthesized in the yield of 92% according to the procedure of Examples 1-3. 1 H NMR (400 MHz, CDCl 3 ): δ 5.93-5.83 (m, 1H), 5.28-5.22 (m, 1H), 5.14-5.11 (m, 1H), 3.95-3.93 (m, 2H), 3.42 ( s, 2H), 3.38 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 1.52 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 36H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 135.4, 116.1, 72.4, 72.1, 71.9, 71.7, 69.8, 69.7, 45.6, 32.1, 29.8, 29.5, 26.4, 26.3, 22.9, 14.2.

<1-4> 3-(3-(<1-4> 3- (3- ( nonyloxynonyloxy )-2,2-) -2,2- bis((nonyloxy)methyl)propoxybis ((nonyloxy) methyl) propoxy )) propanpropan -1--One- ol(화합물 E1)의ol (compound E1) 합성 synthesis

실시예 1-4의 절차에 따라 화합물 E1을 55%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.76 (t, J = 8.0 Hz, 2H), 3.60 (t, J = 8.0 Hz, 2H), 3.43 (s, 2H), 3.38 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 2.88 (br s, 1H), 1.80 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.30-1.26 (m, 36H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ71.8, 71.4, 70.2, 62.9, 45.3, 32.1, 31.9, 29.9, 29.7, 29.8, 29.5, 26.4, 22.9, 14.2.Compound E1 was synthesized in a yield of 55% according to the procedure of Examples 1-4. 1 H NMR (400 MHz, CDCl 3 ): δ 3.76 (t, J = 8.0 Hz, 2H), 3.60 (t, J = 8.0 Hz, 2H), 3.43 (s, 2H), 3.38 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 2.88 (br s, 1H), 1.80 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.30-1.26 (m, 36H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 71.8, 71.4, 70.2, 62.9, 45.3, 32.1, 31.9, 29.9, 29.7, 29.8, 29.5, 26.4, 22.9, 14.2.

<1-5> 2-(<1-5> 2- ( hydroxymethylhydroxymethyl )-2-((3-(3-() -2-((3- (3- ( nonyloxynonyloxy )-2,2-) -2,2- bisbis (((( nonyloxynonyloxy )methyl) propoxy)propoxy)methyl)propane-1,3-diol(화합물 F1)의 합성Synthesis of) methyl) propoxy) propoxy) methyl) propane-1,3-diol (Compound F1)

실시예 1-5의 절차에 따라 화합물 F1을 45%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.70 (s, 6H), 3.52 (t, J = 8.0 Hz, 2H) 3.50 (s, 2H), 3.46 (t, J = 8.0 Hz, 2H), 3.38 (quin, J = 8.0 Hz, 12H), 3.35 (s, 2H), 2.88 (br s, 3H), 1.79 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 36H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ73.1, 71.6, 69.9, 69.6, 68.8, 67.7, 64.9, 45.4, 31.9, 29.7, 29.6, 29.5, 29.4, 26.2, 22.7, 14.1.Compound F1 was synthesized in the yield of 45% according to the procedure of Examples 1-5. 1 H NMR (400 MHz, CDCl 3 ): δ 3.70 (s, 6H), 3.52 (t, J = 8.0 Hz, 2H) 3.50 (s, 2H), 3.46 (t, J = 8.0 Hz, 2H), 3.38 (quin, J = 8.0 Hz, 12H), 3.35 (s, 2H), 2.88 (br s, 3H), 1.79 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 36H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 71.3, 71.6, 69.9, 69.6, 68.8, 67.7, 64.9, 45.4, 31.9, 29.7, 29.6, 29.5, 29.4, 26.2, 22.7, 14.1.

<1-6> TNM-C9La의 합성<1-6> Synthesis of TNM-C9La

실시예 1-6의 일반적인 당화 반응 절차에 따라 TNM-C9La를 52%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 8.08 (d, J = 8.0 Hz, 6H), 7.98 (d, J = 8.0 Hz, 6H), 7.92-7.83 (m, 12H), 7.79-7.66 (m, 12H), 7.65-7.20 (m, 69H), 6.10 (t, J = 18.2 Hz, 3H), 5.75-5.62 (m, 3H), 5.43 (t, J = 16.4 Hz, 3H), 5.19-5.10 (m, 6H), 4.57 (t, J = 3.2 Hz, 6H), 4.34-4.26 (dd, J = 8.0, 12.0 Hz, 9H), 4.18 (d, J = 8.0 Hz, 3H), 3.70 (t, J = 20.0 Hz, 6H), 3.37 (quin, J = 18.4 Hz, 12H), 3.23-2.98 (m, 14H), 1.79 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.25 (m, 36H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ166.0, 165.7, 165.5, 165.0, 164.7, 133.4, 133.1, 129.9, 129.8, 129.7, 129.6, 29.4, 129.3, 128.9, 128.8, 128.7, 128.6, 128.4, 128.2, 100.8, 95.7, 72.1, 72.0, 71.5, 71.2, 69.7, 68.9, 68.8, 63.3, 62.3, 45.3, 31.9, 29.7, 29.5, 29.4, 26.2, 22.7, 14.2.TNM-C9La in 52% yield according to the general saccharification reaction procedure of Examples 1-6 Synthesized. 1 H NMR (400 MHz, CDCl 3 ): δ 8.08 (d, J = 8.0 Hz, 6H), 7.98 (d, J = 8.0 Hz, 6H), 7.92-7.83 (m, 12H), 7.79-7.66 (m , 12H), 7.65-7.20 (m, 69H), 6.10 (t, J = 18.2 Hz, 3H), 5.75-5.62 (m, 3H), 5.43 (t, J = 16.4 Hz, 3H), 5.19-5.10 ( m, 6H), 4.57 (t, J = 3.2 Hz, 6H), 4.34-4.26 (dd, J = 8.0, 12.0 Hz, 9H), 4.18 (d, J = 8.0 Hz, 3H), 3.70 (t, J = 20.0 Hz, 6H), 3.37 (quin, J = 18.4 Hz, 12H), 3.23-2.98 (m, 14H), 1.79 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H ), 1.31-1.25 (m, 36H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.0, 165.7, 165.5, 165.0, 164.7, 133.4, 133.1, 129.9, 129.8, 129.7, 129.6, 29.4, 129.3, 128.9, 128.8, 128.7, 128.6, 128.4, 128.2 , 100.8, 95.7, 72.1, 72.0, 71.5, 71.2, 69.7, 68.9, 68.8, 63.3, 62.3, 45.3, 31.9, 29.7, 29.5, 29.4, 26.2, 22.7, 14.2.

<1-7> TNM-C9L의 합성<1-7> Synthesis of TNM-C9L

실시예 1-7의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TNM-C9L을 90%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD):δ 5.15 (d,J = 4.0 Hz, 3H), 4.35 (d, J = 8.0 Hz, 3H), 3.98 (d, J = 12.0 Hz, 3H), 3.84-3.78 (m, 6H), 3.70-3.58 (m, 15H), 3.55-3.22 (m, 45H), 1.81 (quin, J = 12.0 Hz, 2H), 1.56 (quin, J = 12.0 Hz, 6H), 1.34-1.29 (m, 36H), 0.89 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD3OD):δ105.1, 103.1, 81.5, 77.9, 76.6, 75.2, 74.8, 74.3, 72.6, 71.5, 70.6, 62.8, 46.7, 46.6, 33.3, 31.0, 30.8, 30.6, 27.6, 23.9, 14.7;HRMS ( EI ): calcd. for C76H142O38[M+Na]+ 1685.9077, found 1685.9081.TNM-C9L in 90% yield according to the general synthetic procedure for deprotection reactions of Examples 1-7. Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.35 (d, J = 8.0 Hz, 3H), 3.98 (d, J = 12.0 Hz, 3H), 3.84 -3.78 (m, 6H), 3.70-3.58 (m, 15H), 3.55-3.22 (m, 45H), 1.81 (quin, J = 12.0 Hz, 2H), 1.56 (quin, J = 12.0 Hz, 6H), 1.34-1.29 (m, 36H), 0.89 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 105.1, 103.1, 81.5, 77.9, 76.6, 75.2, 74.8, 74.3, 72.6, 71.5, 70.6, 62.8, 46.7, 46.6, 33.3, 31.0, 30.8, 30.6, 27.6, 23.9, 14.7; HRMS ( EI ) : calcd. for C 76 H 142 0 38 [M + Na] + 1685.9077, found 1685.9081.

<제조예 2> TNM-C10L의 합성Preparation Example 2 Synthesis of TNM-C10L

<2-1> 2,2-bis((decyloxy)methyl)propane-1,3-diol (화합물 B2)의 합성<2-1> Synthesis of 2,2-bis ((decyloxy) methyl) propane-1,3-diol (Compound B2)

실시예 1-1의 절차에 따라 화합물 B2을 92%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.65 (d, J = 4.0 Hz, 4H), 3.51 (s, 4H), 3.42 (t, J = 4.0 Hz, 4H), 2.85 (t, J = 4.0 Hz, 2H), 1.56 (quin, J = 4.0 Hz, 4H), 1.28-1.26 (m, 28H), 0.88 (t, J = 7.2 Hz, 6H); 13 C NMR (100 MHz, CDCl3):δ73.4, 72.2, 65.7, 44.6, 32.1, 29.8, 29.7, 29.5, 26.3, 22.9, 14.1.Compound B2 was synthesized in the yield of 92% according to the procedure of Example 1-1. 1 H NMR (400 MHz, CDCl 3 ): δ 3.65 (d, J = 4.0 Hz, 4H), 3.51 (s, 4H), 3.42 (t, J = 4.0 Hz, 4H), 2.85 (t, J = 4.0 Hz, 2H), 1.56 (quin, J = 4.0 Hz, 4H), 1.28-1.26 (m, 28H), 0.88 (t, J = 7.2 Hz, 6H); 13 C NMR (100 MHz, CDCl 3 ): δ 73.4, 72.2, 65.7, 44.6, 32.1, 29.8, 29.7, 29.5, 26.3, 22.9, 14.1.

<2-2> 3-(<2-2> 3- ( decyloxydecyloxy )-2,2-) -2,2- bis((decyloxy)methyl)propanbis ((decyloxy) methyl) propan -1--One- olol (화합물 C2)의 합성 Synthesis of (Compound C2)

실시예 1-2의 절차에 따라 화합물 C2을 90%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.71 (d, J = 8.0 Hz, 2H), 3.44 (s, 6H), 3.36 (t, J = 8.0 Hz, 6H), 3.17 (t, J = 8.0 Hz, 1H), 1.52 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 42H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ 71.6, 71.3, 66.3, 44.7, 31.8, 29.6, 29.1, 26.1, 22.6, 14.1. Compound C2 was synthesized in a yield of 90% according to the procedure of Examples 1-2. 1 H NMR (400 MHz, CDCl 3 ): δ 3.71 (d, J = 8.0 Hz, 2H), 3.44 (s, 6H), 3.36 (t, J = 8.0 Hz, 6H), 3.17 (t, J = 8.0 Hz, 1H), 1.52 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 42H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 71.6, 71.3, 66.3, 44.7, 31.8, 29.6, 29.1, 26.1, 22.6, 14.1.

<2-3> 1-<2-3> 1- (3-(allyloxy)-2,2-bis((3- (allyloxy) -2,2-bis ( (( decyloxydecyloxy )methyl)methyl) propoxypropoxy )) decane(화합물 D2)의of decane (compound D2) 합성 synthesis

실시예 1-3의 절차에 따라 화합물 D2을 92%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 5.93-5.84 (m, 1H), 5.27-5.22 (m, 1H), 5.13-5.10 (m, 1H), 3.95-3.93 (m, 2H), 3.42 (s, 2H), 3.38 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 1.52 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 42H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR( 100 MHz, CDCl3):δ135.5, 116.1, 72.4, 72.1, 71.9, 69.8, 69.7, 45.6, 32.1, 29.8, 29.5, 26.4, 26.3, 22.9, 14.2.Compound D2 was synthesized in the yield of 92% according to the procedure of Examples 1-3. 1 H NMR (400 MHz, CDCl 3 ): δ 5.93-5.84 (m, 1H), 5.27-5.22 (m, 1H), 5.13-5.10 (m, 1H), 3.95-3.93 (m, 2H), 3.42 ( s, 2H), 3.38 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 1.52 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 42H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 135.5, 116.1, 72.4, 72.1, 71.9, 69.8, 69.7, 45.6, 32.1, 29.8, 29.5, 26.4, 26.3, 22.9, 14.2.

<2-4> 3-(3-(<2-4> 3- (3- ( decyloxydecyloxy )-2,2-) -2,2- bis((decyloxy)methyl)propoxybis ((decyloxy) methyl) propoxy )) propanpropan -1--One- olol (화합물 E2)의 합성 Synthesis of (Compound E2)

실시예 1-4의 절차에 따라 화합물 E2을 58%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.76 (t, J = 8.0 Hz, 2H), 3.59 (t, J = 8.0 Hz, 2H), 3.43 (s, 2H), 3.37 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 2.88 (brs, 1H), 1.80 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.30-1.26 (m, 42H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ71.8, 71.4, 70.2, 62.9, 45.3, 32.1, 29.9, 29.8, 29.5, 26.4, 22.9, 14.2.Compound E2 was synthesized in the yield of 58% according to the procedure of Examples 1-4. 1 H NMR (400 MHz, CDCl 3 ): δ 3.76 (t, J = 8.0 Hz, 2H), 3.59 (t, J = 8.0 Hz, 2H), 3.43 (s, 2H), 3.37 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 2.88 (brs, 1H), 1.80 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.30-1.26 (m, 42H ), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 71.8, 71.4, 70.2, 62.9, 45.3, 32.1, 29.9, 29.8, 29.5, 26.4, 22.9, 14.2.

<2-5> 2-(<2-5> 2- ( hydroxymethylhydroxymethyl )-2-((3-(3-() -2-((3- (3- ( decyloxydecyloxy )-2,2-) -2,2- bis((decyloxy) methyl)bis ((decyloxy) methyl) propoxy)propoxy)methyl)propane-1,3-diol (화합물 F2)의 합성Synthesis of propoxy) propoxy) methyl) propane-1,3-diol (Compound F2)

실시예 1-5의 절차에 따라 화합물 F2을 47%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.67 (s, 6H), 3.51 (t, J = 8.0 Hz, 2H) 3.49 (s, 2H), 3.46 (t, J = 8.0 Hz, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 3.35 (s, 2H), 2.68 (br s, 3H), 1.79 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 42H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ73.1, 71.6, 69.9, 68.8, 67.7, 64.9, 45.4, 31.9, 29.7, 29.6, 29.4, 26.2, 22.7, 14.1.Compound F2 was synthesized in the yield of 47% according to the procedure of Examples 1-5. 1 H NMR (400 MHz, CDCl 3 ): δ 3.67 (s, 6H), 3.51 (t, J = 8.0 Hz, 2H) 3.49 (s, 2H), 3.46 (t, J = 8.0 Hz, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 3.35 (s, 2H), 2.68 (br s, 3H), 1.79 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 42H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 71.3, 71.6, 69.9, 68.8, 67.7, 64.9, 45.4, 31.9, 29.7, 29.6, 29.4, 26.2, 22.7, 14.1.

<2-6> TNM-C10La의 합성<2-6> Synthesis of TNM-C10La

실시예 1-6의 일반적인 당화 반응 절차에 따라 TNM-C10La를 45%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 8.08 (d, J = 8.0 Hz, 6H), 7.98 (d, J = 8.0 Hz, 6H), 7.92-7.83 (m, 12H), 7.79-7.66 (m, 12H), 7.65-7.20 (m, 69H), 6.12 (t, J = 18.2 Hz, 3H), 5.75-5.63 (m, 3H), 5.44 (t, J = 16.4 Hz, 3H), 5.20-5.11 (m, 6H), 4.58 (t, J = 3.2 Hz, 6H), 4.34-4.26 (dd, J = 8.0, 12.0 Hz, 9H), 4.18 (d, J = 8.0 Hz, 3H), 3.70 (t, J = 20.0 Hz, 6H), 3.36 (quin, J = 18.4 Hz, 12H), 3.24-2.99 (m, 14H), 1.79 (quin, J = 8.0 Hz, 2H), 1.53 (quin, J = 8.0 Hz, 6H), 1.31-1.25 (m, 42H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ166.0, 165.7, 165.5, 165.0, 164.7, 133.4, 133.1, 129.9, 129.8, 129.7, 129.6, 129.4, 129.3, 128.9, 128.8, 128.6, 128.4, 128.3, 100.8, 95.7, 72.1, 72.0, 71.5, 71.2, 69.7, 68.8, 63.3, 62.3, 45.3, 31.9, 29.7, 29.5, 29.4, 26.3, 22.7, 14.2.TNM-C10La was obtained in 45% yield according to the general saccharification reaction procedure of Examples 1-6. Synthesized. 1 H NMR (400 MHz, CDCl 3 ): δ 8.08 (d, J = 8.0 Hz, 6H), 7.98 (d, J = 8.0 Hz, 6H), 7.92-7.83 (m, 12H), 7.79-7.66 (m , 12H), 7.65-7.20 (m, 69H), 6.12 (t, J = 18.2 Hz, 3H), 5.75-5.63 (m, 3H), 5.44 (t, J = 16.4 Hz, 3H), 5.20-5.11 ( m, 6H), 4.58 (t, J = 3.2 Hz, 6H), 4.34-4.26 (dd, J = 8.0, 12.0 Hz, 9H), 4.18 (d, J = 8.0 Hz, 3H), 3.70 (t, J = 20.0 Hz, 6H), 3.36 (quin, J = 18.4 Hz, 12H), 3.24-2.99 (m, 14H), 1.79 (quin, J = 8.0 Hz, 2H), 1.53 (quin, J = 8.0 Hz, 6H ), 1.31-1.25 (m, 42H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.0, 165.7, 165.5, 165.0, 164.7, 133.4, 133.1, 129.9, 129.8, 129.7, 129.6, 129.4, 129.3, 128.9, 128.8, 128.6, 128.4, 128.3, 100.8 , 95.7, 72.1, 72.0, 71.5, 71.2, 69.7, 68.8, 63.3, 62.3, 45.3, 31.9, 29.7, 29.5, 29.4, 26.3, 22.7, 14.2.

<2-7> TNM-C10L의 합성<2-7> Synthesis of TNM-C10L

실시예 1-7의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TNM-C10L을 95%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD):δ 5.15 (d,J = 4.0 Hz, 3H), 4.34 (d, J = 8.0 Hz, 3H), 3.97 (d, J = 10.0 Hz, 3H), 3.84-3.78 (m, 6H), 3.70-3.58 (m, 15H), 3.55-3.22 (m, 45H), 1.79 (quin, J = 12.8 Hz, 2H), 1.54 (quin, J = 12.0 Hz, 6H), 1.34-1.29 (m, 48H), 0.90 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD3OD):δ105.1, 103.1, 81.5, 77.8, 76.6, 75.1, 74.8, 74.2, 72.6, 71.5, 70.6, 70.0, 62.8, 62.2, 46.7, 46.6, 33.3, 31.0, 30.8, 30.7, 27.6, 23.9, 14.7;HRMS (EI): calcd. for C82H154O38[M+Na]+ 1770.0016, found 1770.0011.TNM-C10L in 95% yield according to the general synthetic procedure for deprotection reactions of Examples 1-7. Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.34 (d, J = 8.0 Hz, 3H), 3.97 (d, J = 10.0 Hz, 3H), 3.84 -3.78 (m, 6H), 3.70-3.58 (m, 15H), 3.55-3.22 (m, 45H), 1.79 (quin, J = 12.8 Hz, 2H), 1.54 (quin, J = 12.0 Hz, 6H), 1.34-1.29 (m, 48H), 0.90 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 105.1, 103.1, 81.5, 77.8, 76.6, 75.1, 74.8, 74.2, 72.6, 71.5, 70.6, 70.0, 62.8, 62.2, 46.7, 46.6, 33.3, 31.0, 30.8, 30.7, 27.6, 23.9, 14.7; HRMS (EI) : calcd. for C 82 H 154 O 38 [M + Na] + 1770.0016, found 1770.0011.

<제조예 3> TNM-C11L의 합성Preparation Example 3 Synthesis of TNM-C11L

<3-1> 2,2-bis((undecyloxy)methyl)propane-1,3-diol (화합물 B3)의 합성<3-1> Synthesis of 2,2-bis ((undecyloxy) methyl) propane-1,3-diol (Compound B3)

실시예 1-1의 절차에 따라 화합물 B3을 94%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.65 (d, J = 4.0 Hz, 4H), 3.51 (s, 4H), 3.42 (t, J = 8.0 Hz, 4H), 2.85 (t, J = 4.0 Hz, 2H), 1.56 (quin, J = 4.0 Hz, 4H), 1.28-1.25 (m, 32H), 0.88 (t, J = 7.2 Hz, 6H); 13 C NMR (100 MHz, CDCl3):δ73.5, 72.3, 65.7, 44.6, 32.1, 29.8, 29.7, 29.6, 29.5, 26.3, 22.9, 14.1.Compound B3 was synthesized in a yield of 94% according to the procedure of Example 1-1. 1 H NMR (400 MHz, CDCl 3 ): δ 3.65 (d, J = 4.0 Hz, 4H), 3.51 (s, 4H), 3.42 (t, J = 8.0 Hz, 4H), 2.85 (t, J = 4.0 Hz, 2H), 1.56 (quin, J = 4.0 Hz, 4H), 1.28-1.25 (m, 32H), 0.88 (t, J = 7.2 Hz, 6H); 13 C NMR (100 MHz, CDCl 3 ): δ 73.5, 72.3, 65.7, 44.6, 32.1, 29.8, 29.7, 29.6, 29.5, 26.3, 22.9, 14.1.

<3-2> 3-(<3-2> 3- ( undecyloxyundecyloxy )-2,2-) -2,2- bis((undecyloxy)methyl)propanbis ((undecyloxy) methyl) propan -1--One- olol (화합물 C3)의 합성 Synthesis of (Compound C3)

실시예 1-2의 절차에 따라 화합물 C3을 85%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.71 (d, J = 8.0 Hz, 2H), 3.43 (s, 6H), 3.38 (t, J = 8.0 Hz, 6H), 3.16 (t, J = 8.0 Hz, 1H), 1.53 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ71.7, 71.4, 62.9, 45.1, 32.1, 29.9, 29.7, 29.5, 26.4, 22.7, 14.2.Compound C3 was synthesized in 85% yield according to the procedure of Examples 1-2. 1 H NMR (400 MHz, CDCl 3 ): δ 3.71 (d, J = 8.0 Hz, 2H), 3.43 (s, 6H), 3.38 (t, J = 8.0 Hz, 6H), 3.16 (t, J = 8.0 Hz, 1H), 1.53 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 71.7, 71.4, 62.9, 45.1, 32.1, 29.9, 29.7, 29.5, 26.4, 22.7, 14.2.

<3-3> 1-(3-(<3-3> 1- (3- ( allyloxyallyloxy )-2,2-) -2,2- bis((undecyloxy)methyl)propoxybis ((undecyloxy) methyl) propoxy )) undecaneundecane (화합물 D3)의 합성 Synthesis of (Compound D3)

실시예 1-3의 절차에 따라 화합물 D3을 94%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 5.95-5.85 (m, 1H), 5.27-5.22 (m, 1H), 5.14-5.11 (m, 1H), 3.95-3.93 (m, 2H), 3.42 (s, 2H), 3.38 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 1.52 (quin, J = 8.0 Hz, 6H), 1.29-1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ135.5, 116.1, 72.4, 72.1, 71.9, 70.0, 69.8, 69.7, 45.6, 32.1, 29.8, 29.5, 26.4, 26.3, 22.9, 14.2.Compound D3 was synthesized in the yield of 94% according to the procedure of Examples 1-3. 1 H NMR (400 MHz, CDCl 3 ): δ 5.95-5.85 (m, 1H), 5.27-5.22 (m, 1H), 5.14-5.11 (m, 1H), 3.95-3.93 (m, 2H), 3.42 ( s, 2H), 3.38 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 1.52 (quin, J = 8.0 Hz, 6H), 1.29-1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 135.5, 116.1, 72.4, 72.1, 71.9, 70.0, 69.8, 69.7, 45.6, 32.1, 29.8, 29.5, 26.4, 26.3, 22.9, 14.2.

<3-4> 3-(3-(<3-4> 3- (3- ( undecyloxyundecyloxy )-2,2-) -2,2- bis((undecyloxy)methyl)propoxybis ((undecyloxy) methyl) propoxy )) propanpropan -1--One- olol (화합물 E3)의 합성 Synthesis of (Compound E3)

실시예 1-4의 절차에 따라 화합물 E3을 58%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.77 (t, J = 8.0 Hz, 2H), 3.60 (t, J = 8.0 Hz, 2H), 3.43 (s, 2H), 3.37 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 2.90 (brs, 1H), 1.80 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.30-1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ71.8, 71.5, 70.2, 63.0, 45.3, 32.1, 29.9, 29.8, 29.6, 29.5, 26.4, 22.9, 14.2.Compound E3 was synthesized in the yield of 58% according to the procedure of Examples 1-4. 1 H NMR (400 MHz, CDCl 3 ): δ 3.77 (t, J = 8.0 Hz, 2H), 3.60 (t, J = 8.0 Hz, 2H), 3.43 (s, 2H), 3.37 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 2.90 (brs, 1H), 1.80 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.30-1.26 (m, 48H ), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 71.8, 71.5, 70.2, 63.0, 45.3, 32.1, 29.9, 29.8, 29.6, 29.5, 26.4, 22.9, 14.2.

<3-5> 2-(<3-5> 2- ( hydroxymethylhydroxymethyl )-2-((3-(3-() -2-((3- (3- ( undecyloxyundecyloxy )-2,2-) -2,2- bis((undecyloxy) methyl)bis ((undecyloxy) methyl) propoxy)propoxy)methyl) propane-1,3-diol (화합물 F3)의 합성propoxy) propoxy) methyl) propane-1,3-diol (Compound F3)

실시예 1-5의 절차에 따라 화합물 F3을 47%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.67 (s, 6H), 3.50 (t, J = 8.0 Hz, 2H) 3.48 (s, 2H), 3.45 (t, J = 8.0 Hz, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 3.35 (s, 2H), 3.29 (brs, 3H), 1.79 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ73.1, 71.6, 69.9, 69.6, 68.8, 67.7, 64.9, 45.4, 44.8, 31.9, 29.7, 29.6, 29.4, 26.2, 22.7, 14.2.Compound F3 was synthesized in the yield of 47% according to the procedure of Examples 1-5. 1 H NMR (400 MHz, CDCl 3 ): δ 3.67 (s, 6H), 3.50 (t, J = 8.0 Hz, 2H) 3.48 (s, 2H), 3.45 (t, J = 8.0 Hz, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 3.35 (s, 2H), 3.29 (brs, 3H), 1.79 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31 -1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 71.3, 71.6, 69.9, 69.6, 68.8, 67.7, 64.9, 45.4, 44.8, 31.9, 29.7, 29.6, 29.4, 26.2, 22.7, 14.2.

<3-6> TNM-C11La의 합성<3-6> Synthesis of TNM-C11La

실시예 1-6의 일반적인 당화 반응 절차에 따라 TNM-C11La를 48%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 8.08 (d, J = 8.0 Hz, 6H), 7.98 (d, J = 8.0 Hz, 6H), 7.92-7.85 (m, 12H), 7.79-7.67 (m, 12H), 7.65-7.22 (m, 69H), 6.11 (t, J = 20 Hz, 3H), 5.75-5.63 (m, 6H), 5.44 (t, J = 16.4 Hz, 3H), 5.20-5.10 (m, 6H), 4.57 (t, J = 3.2 Hz, 6H), 4.34-4.26 (dd, J = 8.0, 12.0 Hz, 9H), 4.19 (d, J = 8.0 Hz, 3H), 3.70 (t, J = 20.0 Hz, 6H), 3.37 (quin, J = 18.4 Hz, 12H), 3.23-2.98 (m, 14H), 1.79 (quin, J = 8.0 Hz, 2H), 1.51 (quin, J = 8.0 Hz, 6H), 1.30-1.25 (m, 48H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ166.1, 165.8, 165.5, 165.1, 164.7, 133.4, 133.1, 129.9, 129.8, 129.7, 129.6, 129.4, 129.3, 128.9, 128.8, 128.7, 128.6, 128.4, 128.2, 100.8, 95.7, 72.1, 72.0, 71.5, 71.2, 69.7, 68.9, 68.8, 63.3, 62.4, 45.3, 31.9, 29.7, 29.5, 29.4, 26.3, 22.7, 14.2.TNM-C11La in 48% yield according to the general saccharification reaction procedure of Examples 1-6 Synthesized. 1 H NMR (400 MHz, CDCl 3 ): δ 8.08 (d, J = 8.0 Hz, 6H), 7.98 (d, J = 8.0 Hz, 6H), 7.92-7.85 (m, 12H), 7.79-7.67 (m , 12H), 7.65-7.22 (m, 69H), 6.11 (t, J = 20 Hz, 3H), 5.75-5.63 (m, 6H), 5.44 (t, J = 16.4 Hz, 3H), 5.20-5.10 ( m, 6H), 4.57 (t, J = 3.2 Hz, 6H), 4.34-4.26 (dd, J = 8.0, 12.0 Hz, 9H), 4.19 (d, J = 8.0 Hz, 3H), 3.70 (t, J = 20.0 Hz, 6H), 3.37 (quin, J = 18.4 Hz, 12H), 3.23-2.98 (m, 14H), 1.79 (quin, J = 8.0 Hz, 2H), 1.51 (quin, J = 8.0 Hz, 6H ), 1.30-1.25 (m, 48H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.1, 165.8, 165.5, 165.1, 164.7, 133.4, 133.1, 129.9, 129.8, 129.7, 129.6, 129.4, 129.3, 128.9, 128.8, 128.7, 128.6, 128.4, 128.2 , 100.8, 95.7, 72.1, 72.0, 71.5, 71.2, 69.7, 68.9, 68.8, 63.3, 62.4, 45.3, 31.9, 29.7, 29.5, 29.4, 26.3, 22.7, 14.2.

<3-7> TNM-C11L의 합성<3-7> Synthesis of TNM-C11L

실시예 1-7의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TNM-C11L을 94%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD):δ 5.15 (d,J = 4.0 Hz, 3H), 4.34 (d, J = 8.0 Hz, 3H), 3.97 (d, J = 10.0 Hz, 3H), 3.84-3.78 (m, 6H), 3.70-3.58 (m, 15H), 3.55-3.22 (m, 45H), 1.79 (quin, J = 12.8 Hz, 2H), 1.54 (quin, J = 12.0 Hz, 6H), 1.34-1.29 (m, 48H), 0.90 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD3OD):δ105.1, 103.1, 81.5, 77.8, 76.6, 75.1, 74.8, 74.2, 72.6, 71.5, 70.6, 70.0, 62.8, 62.2, 46.7, 46.6, 33.3, 31.0, 30.8, 30.7, 27.6, 23.9, 14.7; HRMS (EI): calcd. for C82H154O38[M+Na]+ 1770.0016, found 1770.0011.TNM-C11L in 94% yield according to the general synthetic procedure for deprotection reactions of Examples 1-7. Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.34 (d, J = 8.0 Hz, 3H), 3.97 (d, J = 10.0 Hz, 3H), 3.84 -3.78 (m, 6H), 3.70-3.58 (m, 15H), 3.55-3.22 (m, 45H), 1.79 (quin, J = 12.8 Hz, 2H), 1.54 (quin, J = 12.0 Hz, 6H), 1.34-1.29 (m, 48H), 0.90 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 105.1, 103.1, 81.5, 77.8, 76.6, 75.1, 74.8, 74.2, 72.6, 71.5, 70.6, 70.0, 62.8, 62.2, 46.7, 46.6, 33.3, 31.0, 30.8, 30.7, 27.6, 23.9, 14.7; HRMS (EI) : calcd. for C 82 H 154 O 38 [M + Na] + 1770.0016, found 1770.0011.

<제조예 4> TNM-C12L 의합성Preparation Example 4 Synthesis of TNM-C12L

<4-1> 2,2-bis((dodecyloxy)methyl)propane-1,3-diol (화합물 B4)의 합성<4-1> Synthesis of 2,2-bis ((dodecyloxy) methyl) propane-1,3-diol (Compound B4)

실시예 1-1의 절차에 따라 화합물 B4을 94%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.64 (d, J = 4.0 Hz, 4H), 3.51 (s, 4H), 3.42 (t, J = 8.0 Hz, 4H), 2.85 (t, J = 4.0 Hz, 2H), 1.55 (quin, J = 4.0 Hz, 4H), 1.28-1.25 (m, 36H), 0.88 (t, J = 7.2 Hz, 6H); 13 C NMR (100 MHz, CDCl3):δ73.6, 72.4, 65.8, 44.6, 32.1, 30.2, 29.9, 29.8, 29.5, 26.3, 22.9, 14.2.Compound B4 was synthesized in a yield of 94% according to the procedure of Example 1-1. 1 H NMR (400 MHz, CDCl 3 ): δ 3.64 (d, J = 4.0 Hz, 4H), 3.51 (s, 4H), 3.42 (t, J = 8.0 Hz, 4H), 2.85 (t, J = 4.0 Hz, 2H), 1.55 (quin, J = 4.0 Hz, 4H), 1.28-1.25 (m, 36H), 0.88 (t, J = 7.2 Hz, 6H); 13 C NMR (100 MHz, CDCl 3 ): δ 73.6, 72.4, 65.8, 44.6, 32.1, 30.2, 29.9, 29.8, 29.5, 26.3, 22.9, 14.2.

<4-2> 3-(<4-2> 3- ( dodecyloxydodecyloxy )-2,2-) -2,2- bis((dodecyloxy)methyl)propanbis ((dodecyloxy) methyl) propan -1--One- olol (화합물 C4)의 합성 Synthesis of (Compound C4)

실시예 1-2의 절차에 따라 화합물 C4을 85%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.71 (d, J = 8.0 Hz, 2H), 3.43 (s, 6H), 3.38 (t, J = 8.0 Hz, 6H), 3.17 (t, J = 8.0 Hz, 1H), 1.53 (quin, J = 8.0 Hz, 6H), 1.30-1.26 (m, 54H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ71.8, 71.4, 70.2, 62.9, 45.1, 32.1, 29.9, 29.7, 29.6, 26.4, 22.7, 14.2.Compound C4 was synthesized in a yield of 85% according to the procedure of Examples 1-2. 1 H NMR (400 MHz, CDCl 3 ): δ 3.71 (d, J = 8.0 Hz, 2H), 3.43 (s, 6H), 3.38 (t, J = 8.0 Hz, 6H), 3.17 (t, J = 8.0 Hz, 1H), 1.53 (quin, J = 8.0 Hz, 6H), 1.30-1.26 (m, 54H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 71.8, 71.4, 70.2, 62.9, 45.1, 32.1, 29.9, 29.7, 29.6, 26.4, 22.7, 14.2.

<4-3> 1-(3-(<4-3> 1- (3- ( allyloxyallyloxy )-2,2-) -2,2- bis((dodecyloxy)methyl)propoxybis ((dodecyloxy) methyl) propoxy )) dodecanedodecane (화합물 D4)의 합성 Synthesis of (Compound D4)

실시예 1-3의 절차에 따라 화합물 D4을 94%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 5.93-5.83 (m, 1H), 5.27-5.22 (m, 1H), 5.14-5.11 (m, 1H), 3.95-3.93 (m, 2H), 3.42 (s, 2H), 3.38 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 1.53 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 54H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ135.6, 116.2, 72.4, 72.1, 71.9, 69.9, 69.7, 45.6, 32.1, 29.8, 29.6, 26.4, 26.3, 22.9, 14.2.Compound D4 was synthesized in a yield of 94% according to the procedure of Examples 1-3. 1 H NMR (400 MHz, CDCl 3 ): δ 5.93-5.83 (m, 1H), 5.27-5.22 (m, 1H), 5.14-5.11 (m, 1H), 3.95-3.93 (m, 2H), 3.42 ( s, 2H), 3.38 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 1.53 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 54H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 135.6, 116.2, 72.4, 72.1, 71.9, 69.9, 69.7, 45.6, 32.1, 29.8, 29.6, 26.4, 26.3, 22.9, 14.2.

<4-4> 3-(3-(<4-4> 3- (3- ( dodecyloxydodecyloxy )-2,2-) -2,2- bis((dodecyloxy)methyl)propoxybis ((dodecyloxy) methyl) propoxy )) propanpropan -1--One- olol (화합물 E4)의 합성 Synthesis of (Compound E4)

실시예 1-4의 절차에 따라 화합물 E4을 57%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.77 (t, J = 8.0 Hz, 2H), 3.60 (t, J = 8.0 Hz, 2H), 3.43 (s, 2H), 3.37 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 2.90 (brs, 1H), 1.80 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.30-1.25 (m, 54H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ71.9, 71.4, 70.2, 62.9, 45.3, 32.1, 29.9, 29.8, 29.6, 29.5, 26.4, 22.9, 14.3.Compound E4 was synthesized in the yield of 57% following the procedure of Examples 1-4. 1 H NMR (400 MHz, CDCl 3 ): δ 3.77 (t, J = 8.0 Hz, 2H), 3.60 (t, J = 8.0 Hz, 2H), 3.43 (s, 2H), 3.37 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 2.90 (brs, 1H), 1.80 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.30-1.25 (m, 54H ), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 79.1, 71.4, 70.2, 62.9, 45.3, 32.1, 29.9, 29.8, 29.6, 29.5, 26.4, 22.9, 14.3.

<4-5> 2-(<4-5> 2- ( hydroxymethylhydroxymethyl )-2-((3-(3-() -2-((3- (3- ( dodecyloxydodecyloxy )-2,2-) -2,2- bis((dodecyloxy) methyl)bis ((dodecyloxy) methyl) propoxy)propoxy)methyl) propane-1,3-diol (화합물 F4)의 합성propoxy) propoxy) methyl) propane-1,3-diol (Compound F4)

실시예 1-5의 절차에 따라 화합물 F4을 50%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.70 (s, 6H), 3.52 (t, J = 8.0 Hz, 2H) 3.50 (s, 2H), 3.46 (t, J = 8.0 Hz, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 3.35 (s, 2H), 2.91 (br s, 3H), 1.79 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 54H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ73.2, 71.6, 69.9, 68.9, 68.8, 67.7, 65.1, 45.4, 44.9, 31.9, 29.7, 29.6, 29.4, 26.2, 22.7, 14.2.Compound F4 was synthesized in the yield of 50% according to the procedure of Examples 1-5. 1 H NMR (400 MHz, CDCl 3 ): δ 3.70 (s, 6H), 3.52 (t, J = 8.0 Hz, 2H) 3.50 (s, 2H), 3.46 (t, J = 8.0 Hz, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 3.35 (s, 2H), 2.91 (br s, 3H), 1.79 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 54H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 77.2, 71.6, 69.9, 68.9, 68.8, 67.7, 65.1, 45.4, 44.9, 31.9, 29.7, 29.6, 29.4, 26.2, 22.7, 14.2.

<4-6> TNM-C12La의 합성<4-6> Synthesis of TNM-C12La

실시예 1-6의 일반적인 당화 반응 절차에 따라 TNM-C12La를 70%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 8.09 (d, J = 8.0 Hz, 6H), 7.98 (d, J = 8.0 Hz, 6H), 7.92-7.83 (m, 12H), 7.79-7.66 (m, 12H), 7.65-7.20 (m, 69H), 6.11 (t, J = 18.2 Hz, 3H), 5.75-5.63 (m, 6H), 5.44 (t, J = 16.4 Hz, 3H), 5.20-5.11 (m, 6H), 4.57 (t, J = 3.2 Hz, 6H), 4.34-4.26 (dd, J = 8.0, 12.0 Hz, 9H), 4.18 (d, J = 8 Hz, 3H), 3.70 (t, J = 20.0 Hz, 6H), 3.36 (quin, J = 18.4 Hz, 12H), 3.23-2.98 (m, 14H), 1.79 (quin, J = 8.0 Hz, 2H), 1.53 (quin, J = 8.0 Hz, 6H), 1.34-1.25 (m, 54H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ166.0, 165.7, 165.5, 165.0, 164.7, 133.4, 133.1, 129.9, 129.8, 129.7, 129.6, 129.4, 129.3, 128.9, 128.7, 128.6, 128.4, 128.2, 100.8, 95.7, 72.1, 72.0, 71.5, 71.2, 69.7, 68.9, 68.8, 63.3, 62.3, 45.4, 31.9, 29.8, 29.6, 29.4, 26.3, 22.7, 14.2.TNM-C12La in a yield of 70% according to the general saccharification reaction procedure of Examples 1-6 Synthesized. 1 H NMR (400 MHz, CDCl 3 ): δ 8.09 (d, J = 8.0 Hz, 6H), 7.98 (d, J = 8.0 Hz, 6H), 7.92-7.83 (m, 12H), 7.79-7.66 (m , 12H), 7.65-7.20 (m, 69H), 6.11 (t, J = 18.2 Hz, 3H), 5.75-5.63 (m, 6H), 5.44 (t, J = 16.4 Hz, 3H), 5.20-5.11 ( m, 6H), 4.57 (t, J = 3.2 Hz, 6H), 4.34-4.26 (dd, J = 8.0, 12.0 Hz, 9H), 4.18 (d, J = 8 Hz, 3H), 3.70 (t, J = 20.0 Hz, 6H), 3.36 (quin, J = 18.4 Hz, 12H), 3.23-2.98 (m, 14H), 1.79 (quin, J = 8.0 Hz, 2H), 1.53 (quin, J = 8.0 Hz, 6H ), 1.34-1.25 (m, 54H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.0, 165.7, 165.5, 165.0, 164.7, 133.4, 133.1, 129.9, 129.8, 129.7, 129.6, 129.4, 129.3, 128.9, 128.7, 128.6, 128.4, 128.2, 100.8 , 95.7, 72.1, 72.0, 71.5, 71.2, 69.7, 68.9, 68.8, 63.3, 62.3, 45.4, 31.9, 29.8, 29.6, 29.4, 26.3, 22.7, 14.2.

<4-7> TNM-C12L의 합성<4-7> Synthesis of TNM-C12L

실시예 1-7의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TNM-C12L을 95%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD):δ 5.15 (d,J = 4.0 Hz, 3H), 4.35 (d, J = 8.0 Hz, 3H), 3.98 (d, J = 12.0 Hz, 3H), 3.84-3.78 (m, 6H), 3.70-3.58 (m, 15H), 3.55-3.22 (m, 45H), 1.80 (quin, J = 12.0 Hz, 2H), 1.55 (quin, J = 12.0 Hz, 6H), 1.34-1.29 (m, 54H), 0.90 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD3OD):δ105.1, 103.1, 81.5, 77.8, 76.6, 75.1, 74.9, 74.2, 72.6, 71.5, 70.6, 62.8, 46.7, 46.6, 33.3, 31.0, 30.8, 30.7, 27.6, 23.9, 14.7; HRMS (EI): calcd. for C85H160O38[M+Na]+ 1812.0485, found 1812.0480.TNM-C12L in 95% yield according to the general synthetic procedure for the deprotection reaction of Examples 1-7. Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.35 (d, J = 8.0 Hz, 3H), 3.98 (d, J = 12.0 Hz, 3H), 3.84 -3.78 (m, 6H), 3.70-3.58 (m, 15H), 3.55-3.22 (m, 45H), 1.80 (quin, J = 12.0 Hz, 2H), 1.55 (quin, J = 12.0 Hz, 6H), 1.34-1.29 (m, 54H), 0.90 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 105.1, 103.1, 81.5, 77.8, 76.6, 75.1, 74.9, 74.2, 72.6, 71.5, 70.6, 62.8, 46.7, 46.6, 33.3, 31.0, 30.8, 30.7, 27.6, 23.9, 14.7; HRMS (EI) : calcd. for C 85 H 160 0 38 [M + Na] + 1812.0485, found 1812.0480.

<제조예 5> TNM-C13L 의합성Preparation Example 5 Synthesis of TNM-C13L

<5-1> 2,2-bis((tridecyloxy)methyl)propane-1,3-diol (화합물 B5)의 합성<5-1> Synthesis of 2,2-bis ((tridecyloxy) methyl) propane-1,3-diol (Compound B5)

실시예 1-1의 절차에 따라 화합물 B5을 94%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.65 (d, J = 4.0 Hz, 4H), 3.51 (s, 4H), 3.42 (t, J = 8.0 Hz, 4H), 2.85 (t, J = 4.0 Hz, 2H), 1.56 (quin, J = 4.0 Hz, 4H), 1.28-1.25 (m, 40H), 0.88 (t, J = 7.2 Hz, 6H); 13 C NMR (100 MHz, CDCl3):δ73.6, 72.5, 65.8, 44.6, 32.1, 30.3, 29.9, 29.7, 29.6, 26.3, 22.9, 14.2.Compound B5 was synthesized in a yield of 94% according to the procedure of Example 1-1. 1 H NMR (400 MHz, CDCl 3 ): δ 3.65 (d, J = 4.0 Hz, 4H), 3.51 (s, 4H), 3.42 (t, J = 8.0 Hz, 4H), 2.85 (t, J = 4.0 Hz, 2H), 1.56 (quin, J = 4.0 Hz, 4H), 1.28-1.25 (m, 40H), 0.88 (t, J = 7.2 Hz, 6H); 13 C NMR (100 MHz, CDCl 3 ): δ 73.6, 72.5, 65.8, 44.6, 32.1, 30.3, 29.9, 29.7, 29.6, 26.3, 22.9, 14.2.

<5-2> 3-(<5-2> 3- ( trideyloxytrideyloxy )-2,2-) -2,2- bis((trideyloxy)methyl)propanbis ((trideyloxy) methyl) propan -1--One- olol (화합물 C5)의 합성 Synthesis of (Compound C5)

실시예 1-2의 절차에 따라 화합물 C5을 85%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.71 (d, J = 8.0 Hz, 2H), 3.43 (s, 6H), 3.38 (t, J = 8.0 Hz, 6H), 3.17 (t, J = 8.0 Hz, 1H), 1.53 (quin, J = 8.0 Hz, 6H), 1.28-1.25 (m, 60H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ71.7, 71.4, 70.2, 62.9, 45.1, 32.1, 29.9, 29.7, 29.6, 26.4, 22.7, 14.2.Compound C5 was synthesized in a yield of 85% according to the procedure of Examples 1-2. 1 H NMR (400 MHz, CDCl 3 ): δ 3.71 (d, J = 8.0 Hz, 2H), 3.43 (s, 6H), 3.38 (t, J = 8.0 Hz, 6H), 3.17 (t, J = 8.0 Hz, 1H), 1.53 (quin, J = 8.0 Hz, 6H), 1.28-1.25 (m, 60H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 71.7, 71.4, 70.2, 62.9, 45.1, 32.1, 29.9, 29.7, 29.6, 26.4, 22.7, 14.2.

<5-3> 1-(3-(<5-3> 1- (3- ( allyloxyallyloxy )-2,2-) -2,2- bis((tridecyloxy)methyl)propoxybis ((tridecyloxy) methyl) propoxy )) tridecanetridecane (화합물 D5)의 합성 Synthesis of (Compound D5)

실시예 1-3의 절차에 따라 화합물 D5을 95%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 5.93-5.83 (m, 1H), 5.27-5.22 (m, 1H), 5.14-5.11 (m, 1H), 3.95-3.93 (m, 2H), 3.42 (s, 2H), 3.38 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 1.52 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 60H), 0.88 ((t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ135.6, 116.1, 72.4, 72.1, 71.9, 69.8, 69.7, 45.6, 32.1, 29.9, 29.8, 29.7, 29.6, 26.4, 26.3, 22.9, 14.3.Compound D5 was synthesized in the yield of 95% according to the procedure of Examples 1-3. 1 H NMR (400 MHz, CDCl 3 ): δ 5.93-5.83 (m, 1H), 5.27-5.22 (m, 1H), 5.14-5.11 (m, 1H), 3.95-3.93 (m, 2H), 3.42 ( s, 2H), 3.38 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 1.52 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 60H), 0.88 ((t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 135.6, 116.1, 72.4, 72.1, 71.9, 69.8, 69.7, 45.6, 32.1, 29.9, 29.8, 29.7, 29.6, 26.4, 26.3 , 22.9, 14.3.

<5-4> 3-(3-(<5-4> 3- (3- ( tridecyloxytridecyloxy )-2,2-) -2,2- bis((tridecyloxy)methyl)propoxybis ((tridecyloxy) methyl) propoxy ) ) propanpropan -1-ol(화합물 E5)의 합성Synthesis of -1-ol (Compound E5)

실시예 1-4의 절차에 따라 화합물 E5을 60%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.76 (t, J = 8.0 Hz, 2H), 3.61 (t, J = 8.0 Hz, 2H), 3.43 (s, 2H), 3.38 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 2.90 (brs, 1H), 1.80 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.30-1.25 (m, 60H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ71.9, 71.4, 70.2, 62.9, 45.3, 32.1, 31.9, 30.1, 29.9, 29.8, 29.5, 26.4, 22.9, 14.3.Compound E5 was synthesized in the yield of 60% according to the procedure of Examples 1-4. 1 H NMR (400 MHz, CDCl 3 ): δ 3.76 (t, J = 8.0 Hz, 2H), 3.61 (t, J = 8.0 Hz, 2H), 3.43 (s, 2H), 3.38 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 2.90 (brs, 1H), 1.80 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.30-1.25 (m, 60H ), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 79.1, 71.4, 70.2, 62.9, 45.3, 32.1, 31.9, 30.1, 29.9, 29.8, 29.5, 26.4, 22.9, 14.3.

<5-5> 2-(<5-5> 2- ( hydroxymethylhydroxymethyl )-2-((3-(3-() -2-((3- (3- ( tridecyloxytridecyloxy )-2,2-) -2,2- bis((tridecyloxy)bis ((tridecyloxy) methyl)propoxy)propoxy)methyl) propane-1,3-diol (화합물 F5)의 합성 Synthesis of methyl) propoxy) propoxy) methyl) propane-1,3-diol (Compound F5)

실시예 1-5의 절차에 따라 화합물 F5을 49%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.70 (s, 6H), 3.52 (t, J = 8.0 Hz, 2H) 3.50 (s, 2H), 3.46 (t, J = 8.0 Hz, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 3.35 (s, 2H), 2.67 (brs, 3H), 1.79 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.25 (m, 60H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ73.14, 71.6, 69.9, 68.8, 67.7, 65.1, 45.5, 31.9, 29.7, 29.6, 29.4, 26.2, 22.7, 14.2.Compound F5 was synthesized in the yield of 49% according to the procedure of Examples 1-5. 1 H NMR (400 MHz, CDCl 3 ): δ 3.70 (s, 6H), 3.52 (t, J = 8.0 Hz, 2H) 3.50 (s, 2H), 3.46 (t, J = 8.0 Hz, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 3.35 (s, 2H), 2.67 (brs, 3H), 1.79 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31 -1.25 (m, 60H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 73.14, 71.6, 69.9, 68.8, 67.7, 65.1, 45.5, 31.9, 29.7, 29.6, 29.4, 26.2, 22.7, 14.2.

<5-6> TNM-C13La의 합성<5-6> Synthesis of TNM-C13La

실시예 1-6의 일반적인 당화 반응 절차에 따라 TNM-C13La를 65%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 8.09 (d, J = 8.0 Hz, 6H), 7.96 (d, J = 7.2Hz, 6H), 7.90-7.83 (m, 12H), 7.79-7.66 (m, 12H), 7.65-7.20 (m, 69H), 6.08 (t, J = 18.2 Hz, 3H), 5.75-5.63 (m, 6H), 5.41 (t, J = 16.4 Hz, 3H), 5.20-5.10 (m, 6H), 4.56 (t, J = 3.2 Hz, 6H), 4.34-4.26 (dd, J = 8.0, 12.0 Hz, 9H), 4.18 (d, J = 8 Hz, 3H), 3.70 (t, J = 20.0 Hz, 6H), 3.36 (quin, J = 18.4 Hz, 12H), 3.20-2.96 (m, 14H), 1.60 (quin, J = 8.0 Hz, 2H), 1.50 (quin, J = 8.0 Hz, 6H), 1.34-1.21 (m, 60H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ166.2, 165.8, 165.5, 165.0, 164.7, 133.4, 133.1, 129.9, 129.8, 129.7, 129.6, 129.4, 129.3, 128.9, 128.8, 128.7, 128.6, 128.4, 128.2, 100.8, 95.7, 72.1, 72.0, 71.5, 71.2, 69.7, 68.9, 68.8, 63.3, 62.3, 45.4, 32.0, 29.7, 29.5, 29.4, 26.2, 22.8, 14.3.TNM-C13La in a yield of 65% according to the general saccharification reaction procedure of Examples 1-6 Synthesized. 1 H NMR (400 MHz, CDCl 3 ): δ 8.09 (d, J = 8.0 Hz, 6H), 7.96 (d, J = 7.2 Hz, 6H), 7.90-7.83 (m, 12H), 7.79-7.66 (m , 12H), 7.65-7.20 (m, 69H), 6.08 (t, J = 18.2 Hz, 3H), 5.75-5.63 (m, 6H), 5.41 (t, J = 16.4 Hz, 3H), 5.20-5.10 ( m, 6H), 4.56 (t, J = 3.2 Hz, 6H), 4.34-4.26 (dd, J = 8.0, 12.0 Hz, 9H), 4.18 (d, J = 8 Hz, 3H), 3.70 (t, J = 20.0 Hz, 6H), 3.36 (quin, J = 18.4 Hz, 12H), 3.20-2.96 (m, 14H), 1.60 (quin, J = 8.0 Hz, 2H), 1.50 (quin, J = 8.0 Hz, 6H ), 1.34-1.21 (m, 60H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.2, 165.8, 165.5, 165.0, 164.7, 133.4, 133.1, 129.9, 129.8, 129.7, 129.6, 129.4, 129.3, 128.9, 128.8, 128.7, 128.6, 128.4, 128.2 , 100.8, 95.7, 72.1, 72.0, 71.5, 71.2, 69.7, 68.9, 68.8, 63.3, 62.3, 45.4, 32.0, 29.7, 29.5, 29.4, 26.2, 22.8, 14.3.

<5-7> TNM-C13L의 합성<5-7> Synthesis of TNM-C13L

실시예 1-7의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TNM-C13L을 93%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD):δ 5.15 (d,J = 4.0 Hz, 3H), 4.34 (d, J = 8.0 Hz, 3H), 3.97 (d, J = 10.0 Hz, 3H), 3.86-3.78 (m, 6H), 3.70-3.57 (m, 15H), 3.55-3.20 (m, 45H), 1.79 (quin, J = 12.4 Hz, 2H), 1.54 (quin, J = 12.0 Hz, 6H), 1.34-1.28 (m, 60H), 0.90 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD3OD):δ105.1, 103.1, 81.5, 77.8, 76.7, 75.1, 74.8, 74.2, 72.6, 71.5, 70.6, 70.0, 62.8, 46.7, 46.6, 33.3, 31.0, 30.8, 30.7, 27.6, 23.9, 14.7; HRMS (EI): calcd. for C88H166O38[M+Na]+ 1855.0989, found 1855.1305.TNM-C13L in 93% yield according to the general synthetic procedure for deprotection reactions of Examples 1-7. Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.34 (d, J = 8.0 Hz, 3H), 3.97 (d, J = 10.0 Hz, 3H), 3.86 -3.78 (m, 6H), 3.70-3.57 (m, 15H), 3.55-3.20 (m, 45H), 1.79 (quin, J = 12.4 Hz, 2H), 1.54 (quin, J = 12.0 Hz, 6H), 1.34-1.28 (m, 60H), 0.90 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 105.1, 103.1, 81.5, 77.8, 76.7, 75.1, 74.8, 74.2, 72.6, 71.5, 70.6, 70.0, 62.8, 46.7, 46.6, 33.3, 31.0, 30.8, 30.7, 27.6, 23.9, 14.7; HRMS (EI) : calcd. for C 88 H 166 O 38 [M + Na] + 1855.0989, found 1855.1305.

<제조예 6> RMA-C5E 의합성Preparation Example 6 Synthesis of RMA-C5E

<6-1> 2,2-bis((tetradecyloxy)methyl)propane-1,3-diol (화합물 B6)의 합성<6-1> Synthesis of 2,2-bis ((tetradecyloxy) methyl) propane-1,3-diol (Compound B6)

실시예 1-1의 절차에 따라 화합물 B6을 94%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.65 (d, J = 4.0 Hz, 4H), 3.51 (s, 4H), 3.42 (t, J = 8.0 Hz, 4H), 2.85 (t, J = 4.0 Hz, 2H), 1.56 (quin, J = 4.0 Hz, 4H), 1.28-1.25 (m, 44H), 0.88 (t, J = 7.2 Hz, 6H); 13 C NMR (100 MHz, CDCl3):δ73.6, 72.5, 65.8, 44.6, 32.1, 30.3, 29.9, 29.7, 29.6, 26.4, 22.9, 14.3.Compound B6 was synthesized in a yield of 94% according to the procedure of Example 1-1. 1 H NMR (400 MHz, CDCl 3 ): δ 3.65 (d, J = 4.0 Hz, 4H), 3.51 (s, 4H), 3.42 (t, J = 8.0 Hz, 4H), 2.85 (t, J = 4.0 Hz, 2H), 1.56 (quin, J = 4.0 Hz, 4H), 1.28-1.25 (m, 44H), 0.88 (t, J = 7.2 Hz, 6H); 13 C NMR (100 MHz, CDCl 3 ): δ 73.6, 72.5, 65.8, 44.6, 32.1, 30.3, 29.9, 29.7, 29.6, 26.4, 22.9, 14.3.

<6-2> 3-(<6-2> 3- ( tetradecyloxytetradecyloxy )-2,2-) -2,2- bis((tetradecyloxy)bis ((tetradecyloxy) methyl)methyl) propanpropan -1--One- olol (화합물 C6)의 합성 Synthesis of (Compound C6)

실시예 1-2의 절차에 따라 화합물 C6을 85%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.71 (d, J = 8.0 Hz, 2H), 3.43 (s, 6H), 3.38 (t, J = 8.0 Hz, 6H), 3.16 (t, J = 8.0 Hz, 1H), 1.53 (quin, J = 8.0 Hz, 6H), 1.28-1.25 (m, 66H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ71.7, 71.4, 70.3, 62.9, 45.1, 32.1, 31.9, 29.9, 29.7, 29.5, 26.4, 22.7, 14.2.Compound C6 was synthesized in a yield of 85% according to the procedure of Examples 1-2. 1 H NMR (400 MHz, CDCl 3 ): δ 3.71 (d, J = 8.0 Hz, 2H), 3.43 (s, 6H), 3.38 (t, J = 8.0 Hz, 6H), 3.16 (t, J = 8.0 Hz, 1H), 1.53 (quin, J = 8.0 Hz, 6H), 1.28-1.25 (m, 66H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 71.7, 71.4, 70.3, 62.9, 45.1, 32.1, 31.9, 29.9, 29.7, 29.5, 26.4, 22.7, 14.2.

<6-3> 1-(3-(<6-3> 1- (3- ( allyloxyallyloxy )-2,2-) -2,2- bis((tetradecyloxy)bis ((tetradecyloxy) methyl)methyl) propoxypropoxy )) tetradecanetetradecane (화합물 D6)의 합성 Synthesis of (Compound D6)

실시예 1-3의 절차에 따라 화합물 D6을 93%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 5.93-5.83 (m, 1H), 5.27-5.22 (m, 1H), 5.14-5.11 (m, 1H), 3.95-3.93 (m, 2H), 3.42 (s, 2H), 3.38 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 1.52 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 66H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ135.7, 116.2, 72.5, 72.4, 72.1, 71.9, 71.7, 69.8, 69.7, 45.6, 32.1, 29.8, 29.5, 26.4, 26.4, 23.2, 14.3.Compound D6 was synthesized in a yield of 93% according to the procedure of Examples 1-3. 1 H NMR (400 MHz, CDCl 3 ): δ 5.93-5.83 (m, 1H), 5.27-5.22 (m, 1H), 5.14-5.11 (m, 1H), 3.95-3.93 (m, 2H), 3.42 ( s, 2H), 3.38 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 1.52 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 66H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 135.7, 116.2, 72.5, 72.4, 72.1, 71.9, 71.7, 69.8, 69.7, 45.6, 32.1, 29.8, 29.5, 26.4, 26.4, 23.2, 14.3.

<6-<6- 4>34> 3 -(3-(-(3- ( tetradecyloxytetradecyloxy )-2,2-) -2,2- bis((tetradecyloxy)bis ((tetradecyloxy) methyl)methyl) propoxypropoxy )) propanpropan -1-ol (화합물 E6)의 합성Synthesis of -1-ol (Compound E6)

실시예 1-4의 절차에 따라 화합물 E6을 58%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.77 (t, J = 8.0 Hz, 2H), 3.60 (t, J = 8.0 Hz, 2H), 3.43 (s, 2H), 3.37 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 2.89 (brs, 1H), 1.80 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.30-1.25 (m, 66H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ71.9, 71.4, 70.2, 62.9, 45.3, 32.2, 31.1, 29.9, 29.8, 29.7, 29.5, 26.5, 22.9, 14.3.Compound E6 was synthesized in 58% yield following the procedure of Examples 1-4. 1 H NMR (400 MHz, CDCl 3 ): δ 3.77 (t, J = 8.0 Hz, 2H), 3.60 (t, J = 8.0 Hz, 2H), 3.43 (s, 2H), 3.37 (s, 6H), 3.35 (t, J = 8.0 Hz, 6H), 2.89 (brs, 1H), 1.80 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.30-1.25 (m, 66H ), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 79.1, 71.4, 70.2, 62.9, 45.3, 32.2, 31.1, 29.9, 29.8, 29.7, 29.5, 26.5, 22.9, 14.3.

<6-5> 2-(<6-5> 2- ( hydroxymethylhydroxymethyl )-2-((3-(3-() -2-((3- (3- ( tetradecyloxytetradecyloxy )-2,2-) -2,2- bis((tetrade cyloxy)bis ((tetrade cyloxy) methyl)propoxy)propoxy)methyl) propane-1,3-diol (화합물 F6)의 합성methyl) propoxy) propoxy) methyl) propane-1,3-diol (Compound F6)

실시예 1-5의 절차에 따라 화합물 F6을 50%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.70 (s, 6H), 3.52 (t, J = 8.0 Hz, 2H) 3.50 (s, 2H), 3.46 (t, J = 8.0 Hz, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 3.35 (s, 2H), 2.65 (br s, 3H), 1.79 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.25 (m, 66H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ73.14, 71.6, 69.9, 68.8, 67.7, 65.1, 45.5, 32.1, 31.9, 29.7, 29.7, 29.4, 26.2, 22.7, 14.3.Compound F6 was synthesized in the yield of 50% according to the procedure of Examples 1-5. 1 H NMR (400 MHz, CDCl 3 ): δ 3.70 (s, 6H), 3.52 (t, J = 8.0 Hz, 2H) 3.50 (s, 2H), 3.46 (t, J = 8.0 Hz, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 3.35 (s, 2H), 2.65 (br s, 3H), 1.79 (quin, J = 8.0 Hz, 2H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.25 (m, 66H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 73.14, 71.6, 69.9, 68.8, 67.7, 65.1, 45.5, 32.1, 31.9, 29.7, 29.7, 29.4, 26.2, 22.7, 14.3.

<6-6> TNM-C14La의 합성<6-6> Synthesis of TNM-C14La

실시예 1-6의 일반적인 당화 반응 절차에 따라 TNM-C14La를 75%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 8.08 (d, J = 8.0 Hz, 6H), 7.98 (d, J = 8.0 Hz, 6H), 7.88-7.84 (m, 12H), 7.79-7.66 (m, 12H), 7.65-7.20 (m, 69H), 6.10 (t, J = 18.2 Hz, 3H), 5.75-5.62 (m, 6H), 5.43 (t, J = 16.4 Hz, 3H), 5.19-5.12 (m, 6H), 4.57 (t, J = 3.2 Hz, 6H), 4.34-4.26 (dd, J = 8.0, 12.0 Hz, 9H), 4.18 (d, J = 8.0 Hz, 3H), 3.69 (t, J = 20.0 Hz, 6H), 3.32 (quin, J = 18.4 Hz, 12H), 3.23-2.98 (m, 14H), 1.65 (quin, J = 8.0 Hz, 2H), 1.51 (quin, J = 8.0 Hz, 6H), 1.31-1.21 (m, 66H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ166.2, 165.8, 165.5, 165.1, 165.0, 164.7, 133.4, 133.1, 129.9, 129.8, 129.7, 129.6, 129.4, 129.3, 128.9, 128.8, 128.7, 128.6, 128.4, 128.2, 100.8, 95.7, 72.1, 72.0, 71.5, 71.2, 69.7, 68.9, 68.8, 63.3, 62.3, 45.4, 32.0, 29.7, 29.5, 29.4, 26.2, 22.8, 14.3.TNM-C14La in 75% yield according to the general saccharification reaction procedure of Examples 1-6 Synthesized. 1 H NMR (400 MHz, CDCl 3 ): δ 8.08 (d, J = 8.0 Hz, 6H), 7.98 (d, J = 8.0 Hz, 6H), 7.88-7.84 (m, 12H), 7.79-7.66 (m , 12H), 7.65-7.20 (m, 69H), 6.10 (t, J = 18.2 Hz, 3H), 5.75-5.62 (m, 6H), 5.43 (t, J = 16.4 Hz, 3H), 5.19-5.12 ( m, 6H), 4.57 (t, J = 3.2 Hz, 6H), 4.34-4.26 (dd, J = 8.0, 12.0 Hz, 9H), 4.18 (d, J = 8.0 Hz, 3H), 3.69 (t, J = 20.0 Hz, 6H), 3.32 (quin, J = 18.4 Hz, 12H), 3.23-2.98 (m, 14H), 1.65 (quin, J = 8.0 Hz, 2H), 1.51 (quin, J = 8.0 Hz, 6H ), 1.31-1.21 (m, 66H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.2, 165.8, 165.5, 165.1, 165.0, 164.7, 133.4, 133.1, 129.9, 129.8, 129.7, 129.6, 129.4, 129.3, 128.9, 128.8, 128.7, 128.6, 128.4 , 128.2, 100.8, 95.7, 72.1, 72.0, 71.5, 71.2, 69.7, 68.9, 68.8, 63.3, 62.3, 45.4, 32.0, 29.7, 29.5, 29.4, 26.2, 22.8, 14.3.

<6-7> TNM-C14L의 합성<6-7> Synthesis of TNM-C14L

실시예 1-7의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TNM-C14L을 95%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD):δ 5.15 (d,J = 4.0 Hz, 3H), 4.34 (d, J = 7.6 Hz, 3H), 3.97 (d, J = 10.0 Hz, 3H), 3.84-3.78 (m, 6H), 3.70-3.58 (m, 15H), 3.55-3.22 (m, 45H), 1.79 (quin, J = 12.8 Hz, 2H), 1.54 (quin, J = 12.0 Hz, 6H), 1.34-1.28 (m, 66H), 0.90 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD3OD):δ103.1, 81.5, 77.9, 74.9, 72.5, 71.5, 70.6, 62.8, 54.9, 46.6, 33.3, 30.8, 30.7, 27.6, 24.3, 23.9, 14.7; HRMS ( EI ): calcd. for C91H172O38[M+Na]+ 1897.1459, found 1897.1396.TNM-C14L in 95% yield according to the general synthetic procedure for the deprotection reaction of Examples 1-7. Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.34 (d, J = 7.6 Hz, 3H), 3.97 (d, J = 10.0 Hz, 3H), 3.84 -3.78 (m, 6H), 3.70-3.58 (m, 15H), 3.55-3.22 (m, 45H), 1.79 (quin, J = 12.8 Hz, 2H), 1.54 (quin, J = 12.0 Hz, 6H), 1.34-1.28 (m, 66H), 0.90 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 103.1, 81.5, 77.9, 74.9, 72.5, 71.5, 70.6, 62.8, 54.9, 46.6, 33.3, 30.8, 30.7, 27.6, 24.3, 23.9, 14.7; HRMS ( EI ) : calcd. for C 91 H 172 O 38 [M + Na] + 1897.1459, found 1897.1396.

<실시예 2> TNM-Ss의 합성 방법Example 2 Synthesis of TNM-Ss

TNM-Ss의 합성 스킴을 도 2에 나타내었다. 하기 <2-1> 내지 <2-7>의 합성 방법에 따라 TNM-Ss의 4종의 화합물을 합성하여 도 3에 나타내었다.The synthesis scheme of TNM-Ss is shown in FIG. 2. Four compounds of TNM-Ss were synthesized according to the synthesis methods of <2-1> to <2-7> shown in FIG. 3.

TNM-Ss는 실시예 <1-1> 내지 <1-4>의 절차를 통해 생성된 트리알킬화된 하이드로보레이션된 화합물(E3-E6)로부터 하기 절차를 통해서 합성되었다. TNM-Ss was synthesized from the trialkylated hydroborated compound (E3-E6) produced through the procedure of Examples <1-1> to <1-4> through the following procedure.

<2-1> 알코올 <2-1> alcohol 산화반응(alcohol oxidation) 의Of alcohol oxidation 일반 합성 절차 (도 2의 단계 h) General Synthesis Procedure (Step h of Figure 2)

CH2Cl2 내에 피리디늄 클로로크로메이트(pyridinium chlorochromate, PCC)(2.0 당량) 및 셀라이트(celite)가 1:1 비율로 혼합된 용액에 트리알킬화된 하이드로보레이션된 화합물(E3-E6)(1.0 당량)을 서서히 첨가하였다. 생성된 혼합물을 실온에서 1일 동안 교반하였다. 용액을 CH2Cl2로 희석시킨 후, 셀라이트의 짧은 패드상에서 여과하였다. 저압에서 용매를 제거한 후 수득된 잔류물을 실리카 겔 컬럼크로마토그래피(EtOAc/헥산)에 의해 순차 정제하여 오일 액체 형태의 트리알킬화된 알데하이드 화합물(H3-H6)을 수득하였다(90 내지 95 %).CH 2 Cl 2 Slowly add trialkylated hydroborated compound (E3-E6) (1.0 equiv) to a solution in which pyridinium chlorochromate (PCC) (2.0 equiv) and celite were mixed in a 1: 1 ratio. Added. The resulting mixture was stirred at rt for 1 day. The solution was diluted with CH 2 Cl 2 and then filtered over a short pad of celite. The solvent obtained after removal of the solvent at low pressure was sequentially purified by silica gel column chromatography (EtOAc / hexane) to give trialkylated aldehyde compound (H3-H6) in the form of an oil liquid (90-95%).

<2-2> <2-2> 트리알킬화된Trialkylated 트리올( Triol ( trialkylatedtrialkylated tritri -- olol ) 의 일반 합성 절차 (도 2의 단계 i) General Synthesis Procedure (Step i of FIG. 2)

50% 수용성 알칼리 EtOH(KOH 30%)과 혼합된 트리알킬화된 알데하이드 (H3-H6)의 용액에 포름알데하이드 용액을 첨가 하였다. 생성된 혼합물을 2시간 동안 실온에서 교반한 다음, 60℃에서 2일 동안 가열하였다. 회전식 증발기로 EtOH를 제거한 후, 생성된 혼합물을 다이에틸에테르로 추출하였다. 유기층을 무수 Na2SO4상에서 건조시킨 후, 실리카 겔 컬럼크로마토그래피(EtOAc/헥산)로 정제하여 오일 액체 상태의 트리알킬화된 트리올 화합물(I3-16)을 수득하였다(30 내지 40 %).A formaldehyde solution was added to a solution of trialkylated aldehyde (H3-H6) mixed with 50% water soluble alkaline EtOH (KOH 30%). The resulting mixture was stirred at room temperature for 2 hours and then heated at 60 ° C. for 2 days. After removing EtOH with a rotary evaporator, the resulting mixture was extracted with diethyl ether. The organic layer was dried over anhydrous Na 2 SO 4 , and then purified by silica gel column chromatography (EtOAc / hexane) to give trialkylated triol compound (I3-16) as an oil liquid (30 to 40%).

<2-3> 당화(glycosycosylation)반응 의 일반 합성 절차 (도 2의 단계 f)<2-3> General Synthesis Procedure of Glycosycosylation Reaction (Step f in Fig. 2)

이는 Chae , P. S. 등의 합성 방법 (Nat. Methods, 2010, 7, 1003.)에 따랐다. 질소하에서 무수 CH2Cl2에 혼합된 트리알킬화된 트리올 화합물(I3-I6)의 교반 용액에 2,4,6-collidine (1.0 당량)을 첨가하였다. 상기 혼합물에 AgOTf (4.5 당량)를 0℃에서 첨가하였다. 이 용액에 CH2Cl2에 용해된 페르벤조일레이티드 말토실브로마이드 (perbenzoylated maltosylbromide)용액 4.0 당량을 서서히 첨가하였다. 실온에서 10분 동안 교반하였다. 반응이 완료된 후 (TLC로 반응 완료 확인), 피리딘을 반응 혼합물에 첨가하였고, 이를 CH2Cl2로 희석시킨 다음 celite로 여과하였다. 여과물을 1M Na2S2O3수용액, 0.1M HCl 수용액 및 염수로 세척하였다. 그 다음 유기층을 무수 Na2SO4로 건조시키고, 회전 증발기를 이용하여 용매를 제거하였다. 잔여물을 실리카겔 컬럼 크로마토그래피(EtOAc/헥산)로 정제하여 흰색 고체 상태의 글리코실화 화합물 (TNM-Sa)을 얻었다(45 to 75 %).This was followed by the synthesis method of Chae , PS et al. (Nat. Methods, 2010, 7, 1003.). 2,4,6-collidine (1.0 equiv) was added to a stirred solution of trialkylated triol compound (I3-I6) mixed with anhydrous CH 2 Cl 2 under nitrogen. AgOTf (4.5 equiv) was added to the mixture at 0 ° C. To this solution was slowly added 4.0 equivalents of a perbenzoylated maltosylbromide solution dissolved in CH 2 Cl 2 . Stir at room temperature for 10 minutes. After the reaction was complete (confirmed by TLC to complete the reaction), pyridine was added to the reaction mixture, which was diluted with CH 2 Cl 2 and then filtered through celite. The filtrate was washed with 1M Na 2 S 2 O 3 aqueous solution, 0.1M HCl aqueous solution and brine. The organic layer was then dried over anhydrous Na 2 SO 4 and the solvent removed using a rotary evaporator. The residue was purified by silica gel column chromatography (EtOAc / hexane) to give a glycosylated compound (TNM-Sa) as a white solid (45 to 75%).

<2-4> <2-4> 탈보호기화Deprotection Vaporization 반응 ( reaction ( deprotectiondeprotection reaction)을 위한 일반 합성 절차 (도 2의 단계 g) General synthetic procedure for the reaction (step g of FIG. 2)

이는 Chae , P. S. 등의 합성 방법 (Nat Meth 2010, 7, 1003.)에 따랐다. Zemplen's 조건하에 데-O-벤조일화(de-O-benzoylation)를 수행하였다. O-protected 화합물을 무수 CH2Cl2로 용해시킨 다음 MeOH 과 0.5M의 메탄올성 용액(methanolic solution)인 NaOMe를 교대로 첨가하여 침전이 생기지 않도록 하였다. 상기 반응 혼합물에 0.5M의 메탄올성 용액(methanolic solution)인 NaOMe를 최종 농도가 0.05M이 되도록 첨가하였다. 반응 혼합물을 상온에서 6시간 동안 교반시켰다. 반응 완료 후, 반응 혼합물을 Amberlite IR-120 (H+form) resin을 이용하여 중화시켰다. 여과하여 resin을 제거하고, MeOH로 세척하고, 진공 조건(in vacuo)에서 여과물로부터 용매를 제거하였다. 잔여물을 실리카 겔 크로마토그래피(CH2Cl2/MeOH)를 이용하여 정제하여 흰색 고체 화합물을 얻었다(90 to 95 %). 이렇게 얻은 화합물이 본 발명의 화합물 TNM-Ss이다This was followed by synthetic methods (Nat Meth 2010, 7, 1003.) by Chae , PS, etc. Under Zemplen's condition to - O - benzoyl Chemistry (de- O -benzoylation) it was carried out. The O- protected compound was dissolved in anhydrous CH 2 Cl 2 and then MeOH and 0.5M methanolic solution NaOMe were added alternately to prevent precipitation. To the reaction mixture was added 0.5M methanolic solution, NaOMe, to a final concentration of 0.05M. The reaction mixture was stirred at room temperature for 6 hours. After completion of the reaction, the reaction mixture was neutralized with Amberlite IR-120 (H + form) resin. The resin was removed by filtration, washed with MeOH, and the solvent was removed from the filtrate in vacuo . The residue was purified by silica gel chromatography (CH 2 Cl 2 / MeOH) to give a white solid compound (90 to 95%). The compound thus obtained is the compound TNM-Ss of the present invention.

<제조예 7> TNM-C11S의 합성Preparation Example 7 Synthesis of TNM-C11S

<7-1> 3-(3-(<7-1> 3- (3- ( undecyloxyundecyloxy )-2,2-) -2,2- bis((undecyloxy)methyl)propoxybis ((undecyloxy) methyl) propoxy )) propanalpropanal 화합물 H3의 합성 Synthesis of Compound H3

실시예 2-1의 절차에 따라 화합물 H3을 90%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 9.69 (s, 1H), 3.68 (t, J = 8.0 Hz, 2H), 3.35 (s, 6H), 3.28 (t, J = 8.0 Hz, 6H), 2.54-2.50 (m, 2H) 1.53 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 CNMR (100 MHz, CDCl3):δ202.0, 71.7, 70.4, 69.7, 65.4, 45.5, 44.0, 32.1, 29.9, 29.8, 29.7, 29.5, 26.4, 22.9, 14.3.Compound H3 was synthesized in a yield of 90% according to the procedure of Example 2-1. 1 H NMR (400 MHz, CDCl 3 ): δ 9.69 (s, 1H), 3.68 (t, J = 8.0 Hz, 2H), 3.35 (s, 6H), 3.28 (t, J = 8.0 Hz, 6H), 2.54-2.50 (m, 2H) 1.53 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 CNMR (100 MHz, CDCl 3 ): δ 202.0, 71.7, 70.4, 69.7, 65.4, 45.5, 44.0, 32.1, 29.9, 29.8, 29.7, 29.5, 26.4, 22.9, 14.3.

<7-2> 2-(<7-2> 2- ( hydroxymethylhydroxymethyl )-2-((3-() -2-((3- ( undecyloxyundecyloxy )-2,2-) -2,2- bisbis (((( undecyloxyundecyloxy )methyl) propoxy)methyl)propane-1,3-diol 화합물 I3의 합성) methyl) propoxy) methyl) propane-1,3-diol Synthesis of Compound I3

실시예 2-2의 절차에 따라 화합물 I3을 37%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.67 (s, 6H), 3.46 (s, 2H) 3.42 (s, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 2.75 (brs, 3H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ73.5, 72.5, 72.0, 70.6, 65.2, 45.4, 32.1, 29.9, 29.7, 29.5, 26.4, 22.9, 14.3.Compound I3 was synthesized in the yield of 37% according to the procedure of Example 2-2. 1 H NMR (400 MHz, CDCl 3 ): δ 3.67 (s, 6H), 3.46 (s, 2H) 3.42 (s, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 2.75 (brs, 3H) , 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 73.5, 72.5, 72.0, 70.6, 65.2, 45.4, 32.1, 29.9, 29.7, 29.5, 26.4, 22.9, 14.3.

<7-3> TNM-C11Sa의 합성<7-3> Synthesis of TNM-C11Sa

실시예 2-3의 일반적인 당화 반응 절차에 따라 TNM-C11Sa를 45%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 8.07 (d, J = 8.0 Hz, 6H), 7.97 (d, J = 8.0 Hz, 6H), 7.90-7.83 (m, 12H), 7.78-7.72 (m, 12H), 7.66-7.22 (m, 69H), 6.11 (t, J = 20.0 Hz, 3H), 5.75-5.63 (m, 6H), 5.44 (t, J = 16.4 Hz, 3H), 5.20-5.10 (m, 6H), 4.57 (t, J = 3.2 Hz, 6H), 4.34-4.26 (dd, J = 8.0, 12.0 Hz, 9H), 4.19 (d, J = 8.0 Hz, 3H), 3.70 (t, J = 20.0 Hz, 4H), 3.37 (quin, J = 18.4 Hz, 12H), 3.23-2.98 (m, 12H), 1.79 (quin, J = 8.0 Hz, 2H), 1.51 (quin, J = 8.0 Hz, 6H), 1.30-1.25 (m, 48H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ166.2, 165.9, 165.6, 165.2, 165.1, 164.8, 133.5, 133.2, 130.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.1, 129.0, 128.9, 128.8, 128.5, 128.4, 101.2, 96.0, 72.3, 71.5, 71.3, 70.0, 69.5, 69.1, 45.7, 32.1, 29.9, 29.8, 29.5, 26.4, 22.9, 14.3.Following the general saccharification reaction procedure of Example 2-3, TNM-C11Sa was obtained at a yield of 45%. Synthesized. 1 H NMR (400 MHz, CDCl 3 ): δ 8.07 (d, J = 8.0 Hz, 6H), 7.97 (d, J = 8.0 Hz, 6H), 7.90-7.83 (m, 12H), 7.78-7.72 (m , 12H), 7.66-7.22 (m, 69H), 6.11 (t, J = 20.0 Hz, 3H), 5.75-5.63 (m, 6H), 5.44 (t, J = 16.4 Hz, 3H), 5.20-5.10 ( m, 6H), 4.57 (t, J = 3.2 Hz, 6H), 4.34-4.26 (dd, J = 8.0, 12.0 Hz, 9H), 4.19 (d, J = 8.0 Hz, 3H), 3.70 (t, J = 20.0 Hz, 4H), 3.37 (quin, J = 18.4 Hz, 12H), 3.23-2.98 (m, 12H), 1.79 (quin, J = 8.0 Hz, 2H), 1.51 (quin, J = 8.0 Hz, 6H ), 1.30-1.25 (m, 48H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.2, 165.9, 165.6, 165.2, 165.1, 164.8, 133.5, 133.2, 130.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.1, 129.0, 128.9, 128.8, 128.5 , 128.4, 101.2, 96.0, 72.3, 71.5, 71.3, 70.0, 69.5, 69.1, 45.7, 32.1, 29.9, 29.8, 29.5, 26.4, 22.9, 14.3.

<7-4> TNM-C11S의 합성<7-4> Synthesis of TNM-C11S

실시예 2-4의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TNM-C11Sa을 94%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD):δ 5.15 (d,J = 4.0 Hz, 3H), 4.35 (d, J = 8.0 Hz, 3H), 3.98 (d, J = 10.0 Hz, 3H), 3.87-3.79 (m, 6H), 3.70-3.58 (m, 13H), 3.55-3.22 (m, 43H), 1.54 (quin, J = 12.0 Hz, 6H), 1.34-1.29 (m, 48H), 0.90 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD3OD):δ 105.2, 103.1, 81.6, 77.9, 76.7, 75.2, 74.9, 74.3, 72.7, 71.6, 70.9, 62.8, 62.3, 33.2, 31.0, 30.9, 30.8, 30.7, 27.6, 23.9, 14.6; HRMS ( EI ): calcd. for C79H148O37[M+Na]+ 1711.9597, found 1711.9594.TNM-C11Sa in 94% yield according to the general synthetic procedure for deprotection reaction of Examples 2-4 Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.35 (d, J = 8.0 Hz, 3H), 3.98 (d, J = 10.0 Hz, 3H), 3.87 -3.79 (m, 6H), 3.70-3.58 (m, 13H), 3.55-3.22 (m, 43H), 1.54 (quin, J = 12.0 Hz, 6H), 1.34-1.29 (m, 48H), 0.90 (t , J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 105.2, 103.1, 81.6, 77.9, 76.7, 75.2, 74.9, 74.3, 72.7, 71.6, 70.9, 62.8, 62.3, 33.2, 31.0, 30.9, 30.8, 30.7, 27.6 , 23.9, 14.6; HRMS ( EI ) : calcd. for C 79 H 148 0 37 [M + Na] + 1711.9597, found 1711.9594.

<제조예 8> TNM-C12S의 합성Preparation Example 8 Synthesis of TNM-C12S

<8-1> 3-(3-(<8-1> 3- (3- ( dodecyloxydodecyloxy )-2,2-) -2,2- bis((dodecyloxy)methyl)propoxybis ((dodecyloxy) methyl) propoxy )) propanalpropanal (화합물 H4)의 합성 Synthesis of (Compound H4)

실시예 2-1의 절차에 따라 화합물 H4을 93%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 9.69 (s, 1H), 3.68 (t, J = 8.0 Hz, 2H), 3.35 (s, 6H), 3.28 (t, J = 8.0 Hz, 6H), 2.54-2.50 (m, 2H) 1.53 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ202.0, 71.7, 70.4, 69.7, 65.4, 45.5, 44.0, 32.1, 29.9, 29.7, 29.5, 26.4, 22.9, 14.3.Compound H4 was synthesized in a yield of 93% according to the procedure of Example 2-1. 1 H NMR (400 MHz, CDCl 3 ): δ 9.69 (s, 1H), 3.68 (t, J = 8.0 Hz, 2H), 3.35 (s, 6H), 3.28 (t, J = 8.0 Hz, 6H), 2.54-2.50 (m, 2H) 1.53 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 202.0, 71.7, 70.4, 69.7, 65.4, 45.5, 44.0, 32.1, 29.9, 29.7, 29.5, 26.4, 22.9, 14.3.

<8-2> 2-(<8-2> 2- ( hydroxymethylhydroxymethyl )-2-((3-() -2-((3- ( dodecyloxydodecyloxy )-2,2-) -2,2- bisbis (((( dodecyloxydodecyloxy )methyl) propoxy)methyl)propane-1,3-diol(화합물 I4)의 합성Synthesis of) methyl) propoxy) methyl) propane-1,3-diol (Compound I4)

실시예 2-2의 절차에 따라 화합물 I4을 30%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.67 (s, 6H), 3.46 (s, 2H) 3.42 (s, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 2.82 (brs, 3H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 54H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ73.5, 72.5, 72.0, 70.6, 65.2, 45.4, 32.1, 29.9, 29.7, 29.5, 26.4, 22.9, 14.3.Compound I4 was synthesized in the yield of 30% according to the procedure of Example 2-2. 1 H NMR (400 MHz, CDCl 3 ): δ 3.67 (s, 6H), 3.46 (s, 2H) 3.42 (s, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 2.82 (brs, 3H) , 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 54H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 73.5, 72.5, 72.0, 70.6, 65.2, 45.4, 32.1, 29.9, 29.7, 29.5, 26.4, 22.9, 14.3.

<8-3> TNM-C12Sa의 합성<8-3> Synthesis of TNM-C12Sa

실시예 2-3의 일반적인 당화 반응 절차에 따라 TNM-C12Sa를 58%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 8.07 (d, J = 8.0 Hz, 6H), 7.97 (d, J = 8.0 Hz, 6H), 7.90-7.83 (m, 12H), 7.78-7.72 (m, 12H), 7.66-7.22 (m, 69H), 6.11 (t, J = 20.0 Hz, 3H), 5.75-5.63 (m, 6H), 5.44 (t, J = 16.4 Hz, 3H), 5.20-5.10 (m, 6H), 4.57 (t, J = 3.2 Hz, 6H), 4.35-4.27 (dd, J = 8.0, 12.0 Hz, 9H), 4.19 (d, J = 8.0 Hz, 3H), 3.70 (t, J = 20.0 Hz, 4H), 3.37 (quin, J = 18.4 Hz, 12H), 3.23-2.98 (m, 12H), 1.79 (quin, J = 8.0 Hz, 2H), 1.51 (quin, J = 8.0 Hz, 6H), 1.30-1.25 (m, 54H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR(100 MHz, CDCl3):δ166.2, 165.9, 165.6, 165.2, 165.1, 164.8, 133.5, 133.2, 130.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.1, 129.0, 128.9, 128.8, 128.7, 128.5, 128.4, 101.2, 96.0, 72.3, 71.5, 71.3, 70.0, 69.5, 69.1, 45.7, 32.1, 29.9, 29.8, 29.5, 26.4, 22.9, 14.3.TNM-C12Sa in 58% yield according to the general saccharification reaction procedure of Example 2-3 Synthesized. 1 H NMR (400 MHz, CDCl 3 ): δ 8.07 (d, J = 8.0 Hz, 6H), 7.97 (d, J = 8.0 Hz, 6H), 7.90-7.83 (m, 12H), 7.78-7.72 (m , 12H), 7.66-7.22 (m, 69H), 6.11 (t, J = 20.0 Hz, 3H), 5.75-5.63 (m, 6H), 5.44 (t, J = 16.4 Hz, 3H), 5.20-5.10 ( m, 6H), 4.57 (t, J = 3.2 Hz, 6H), 4.35-4.27 (dd, J = 8.0, 12.0 Hz, 9H), 4.19 (d, J = 8.0 Hz, 3H), 3.70 (t, J = 20.0 Hz, 4H), 3.37 (quin, J = 18.4 Hz, 12H), 3.23-2.98 (m, 12H), 1.79 (quin, J = 8.0 Hz, 2H), 1.51 (quin, J = 8.0 Hz, 6H ), 1.30-1.25 (m, 54H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.2, 165.9, 165.6, 165.2, 165.1, 164.8, 133.5, 133.2, 130.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.1, 129.0, 128.9, 128.8, 128.7 , 128.5, 128.4, 101.2, 96.0, 72.3, 71.5, 71.3, 70.0, 69.5, 69.1, 45.7, 32.1, 29.9, 29.8, 29.5, 26.4, 22.9, 14.3.

<8-4> TNM-C12S의 합성<8-4> Synthesis of TNM-C12S

실시예 2-4의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TNM-C12Sa을 90%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD):δ 5.15(d,J = 4.0 Hz, 3H), 4.35 (d, J = 8.0 Hz, 3H), 3.98 (d, J = 10.0 Hz, 3H), 3.87-3.79 (m, 6H), 3.70-3.58 (m, 13H), 3.56-3.23 (m, 43H), 1.54 (quin, J = 12.0 Hz, 6H), 1.34-1.29 (m, 54H), 0.90 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD3OD):δ 105.2, 103.1, 81.6, 77.9, 76.7, 75.2, 74.9, 74.3, 72.7, 71.6, 70.9, 62.8, 62.3, 33.2, 31.0, 30.9, 30.8, 30.6, 27.6, 23.9, 14.6; HRMS ( EI ): calcd. for C82H154O37[M+Na]+ 1754.0067, found 1754.0071.TNM-C12Sa in a yield of 90% according to the general synthetic procedure for deprotection reaction of Examples 2-4 Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.35 (d, J = 8.0 Hz, 3H), 3.98 (d, J = 10.0 Hz, 3H), 3.87 -3.79 (m, 6H), 3.70-3.58 (m, 13H), 3.56-3.23 (m, 43H), 1.54 (quin, J = 12.0 Hz, 6H), 1.34-1.29 (m, 54H), 0.90 (t , J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 105.2, 103.1, 81.6, 77.9, 76.7, 75.2, 74.9, 74.3, 72.7, 71.6, 70.9, 62.8, 62.3, 33.2, 31.0, 30.9, 30.8, 30.6, 27.6 , 23.9, 14.6; HRMS ( EI ) : calcd. for C 82 H 154 O 37 [M + Na] + 1754.0067, found 1754.0071.

<제조예 9> TNM-C13S의 합성Preparation Example 9 Synthesis of TNM-C13S

<9-1> 3-(3-(<9-1> 3- (3- ( tridecyloxytridecyloxy )-2,2-) -2,2- bis((tridecyloxy)methyl)propoxybis ((tridecyloxy) methyl) propoxy )) propanalpropanal (화합물 H5)의 합성 Synthesis of (Compound H5)

실시예 2-1의 절차에 따라 화합물 H5을 95%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 9.69 (s, 1H), 3.68 (t, J = 8.0 Hz, 2H), 3.36 (s, 6H), 3.28 (t, J = 8.0 Hz, 6H), 2.55-2.51 (m, 2H) 1.53 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ202.0, 71.7, 70.4, 69.7, 65.4, 45.5, 44.0, 32.1, 29.9, 29.8, 29.7, 29.5, 26.4, 22.9, 14.3.Compound H5 was synthesized in a yield of 95% according to the procedure of Example 2-1. 1 H NMR (400 MHz, CDCl 3 ): δ 9.69 (s, 1H), 3.68 (t, J = 8.0 Hz, 2H), 3.36 (s, 6H), 3.28 (t, J = 8.0 Hz, 6H), 2.55-2.51 (m, 2H) 1.53 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 202.0, 71.7, 70.4, 69.7, 65.4, 45.5, 44.0, 32.1, 29.9, 29.8, 29.7, 29.5, 26.4, 22.9, 14.3.

<9-2> 2-(<9-2> 2- ( hydroxymethylhydroxymethyl )-2-((3-() -2-((3- ( tridecyloxytridecyloxy )-2,2-) -2,2- bis((tridecyloxy)bis ((tridecyloxy) methyl)propoxy)methyl)propane-1,3-diol (화합물 I5)의 합성 Synthesis of methyl) propoxy) methyl) propane-1,3-diol (Compound I5)

실시예 2-2의 절차에 따라 화합물 I5을 35%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.67 (s, 6H), 3.47 (s, 2H) 3.42 (s, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 2.90 (brs, 3H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 60H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ73.5, 72.5, 72.0, 70.6, 65.2, 45.4, 32.1, 30.0, 29.9, 29.7, 29.5, 26.4, 22.9, 14.3.Compound I5 was synthesized in the yield of 35% according to the procedure of Example 2-2. 1 H NMR (400 MHz, CDCl 3 ): δ 3.67 (s, 6H), 3.47 (s, 2H) 3.42 (s, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 2.90 (brs, 3H) , 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 60H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 73.5, 72.5, 72.0, 70.6, 65.2, 45.4, 32.1, 30.0, 29.9, 29.7, 29.5, 26.4, 22.9, 14.3.

<9-3> TNM-C13Sa의 합성<9-3> Synthesis of TNM-C13Sa

실시예 2-3의 일반적인 당화 반응 절차에 따라 TNM-C13Sa를 60%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 8.07 (d, J = 8.0 Hz, 6H), 7.97 (d, J = 8.0 Hz, 6H), 7.90-7.83 (m, 12H), 7.78-7.72 (m, 12H), 7.66-7.22 (m, 69H), 6.11 (t, J = 20.0 Hz, 3H), 5.75-5.63 (m, 6H), 5.44 (t, J = 16.4 Hz, 3H), 5.20-5.10 (m, 6H), 4.57 (t, J = 3.2 Hz, 6H), 4.35-4.27 (dd, J = 8.0, 12.0 Hz, 9H), 4.19 (d, J = 8.0 Hz, 3H), 3.71 (t, J = 20.0 Hz, 4H), 3.37 (quin, J = 18.4 Hz, 12H), 3.23-2.98 (m, 12H), 1.79 (quin, J = 8.0 Hz, 2H), 1.51 (quin, J = 8.0 Hz, 6H), 1.30-1.25 (m, 60H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ166.2, 165.9, 165.6, 165.2, 165.1, 164.9, 133.5, 133.2, 130.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.1, 129.0, 128.9, 128.8, 128.5, 128.4, 101.2, 96.0, 72.3, 71.5, 71.3, 70.0, 69.5, 69.1, 45.7, 32.1, 29.9, 29.8, 29.5, 26.4, 22.9, 14.3.TNM-C13Sa in a yield of 60% according to the general saccharification reaction procedure of Example 2-3 Synthesized. 1 H NMR (400 MHz, CDCl 3 ): δ 8.07 (d, J = 8.0 Hz, 6H), 7.97 (d, J = 8.0 Hz, 6H), 7.90-7.83 (m, 12H), 7.78-7.72 (m , 12H), 7.66-7.22 (m, 69H), 6.11 (t, J = 20.0 Hz, 3H), 5.75-5.63 (m, 6H), 5.44 (t, J = 16.4 Hz, 3H), 5.20-5.10 ( m, 6H), 4.57 (t, J = 3.2 Hz, 6H), 4.35-4.27 (dd, J = 8.0, 12.0 Hz, 9H), 4.19 (d, J = 8.0 Hz, 3H), 3.71 (t, J = 20.0 Hz, 4H), 3.37 (quin, J = 18.4 Hz, 12H), 3.23-2.98 (m, 12H), 1.79 (quin, J = 8.0 Hz, 2H), 1.51 (quin, J = 8.0 Hz, 6H ), 1.30-1.25 (m, 60H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.2, 165.9, 165.6, 165.2, 165.1, 164.9, 133.5, 133.2, 130.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.1, 129.0, 128.9, 128.8, 128.5 , 128.4, 101.2, 96.0, 72.3, 71.5, 71.3, 70.0, 69.5, 69.1, 45.7, 32.1, 29.9, 29.8, 29.5, 26.4, 22.9, 14.3.

<9-4> TNM-C13S의 합성<9-4> Synthesis of TNM-C13S

실시예 2-4의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TNM-C13Sa을 93%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD):δ5.15(d,J = 4.0 Hz, 3H), 4.35 (d, J = 8.0 Hz, 3H), 3.98 (d, J = 10.0 Hz, 3H), 3.87-3.79 (m, 6H), 3.70-3.58 (m, 13H), 3.55-3.22 (m, 43H), 1.55 (quin, J = 12.0 Hz, 6H), 1.34-1.29 (m, 60H), 0.90 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD3OD):δ 105.2, 103.1, 81.6, 77.9, 76.7, 75.2, 74.9, 74.3, 72.7, 71.6, 70.9, 62.8, 62.3, 33.2, 31.0, 30.9, 30.8, 30.6, 27.6, 23.9, 14.6; HRMS ( EI ): calcd. for C85H160O37[M+Na]+ 1796.0536,found 1796.0541.TNM-C13Sa in 93% yield according to the general synthetic procedure for deprotection reaction of Examples 2-4 Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.35 (d, J = 8.0 Hz, 3H), 3.98 (d, J = 10.0 Hz, 3H), 3.87-3.79 (m, 6H), 3.70-3.58 (m, 13H), 3.55-3.22 (m, 43H), 1.55 (quin, J = 12.0 Hz, 6H), 1.34-1.29 (m, 60H), 0.90 ( t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 105.2, 103.1, 81.6, 77.9, 76.7, 75.2, 74.9, 74.3, 72.7, 71.6, 70.9, 62.8, 62.3, 33.2, 31.0, 30.9, 30.8, 30.6, 27.6 , 23.9, 14.6; HRMS ( EI ) : calcd. for C 85 H 160 O 37 [M + Na] + 1796.0536, found 1796.0541.

<제조예 10> TNM-C14S의 합성Preparation Example 10 Synthesis of TNM-C14S

<10-1> 3-(3-(<10-1> 3- (3- ( dodecyloxydodecyloxy )-2,2-) -2,2- bis((dodecyloxy)methyl)propoxybis ((dodecyloxy) methyl) propoxy )) propanalpropanal (화합물 H6)의 합성 Synthesis of (Compound H6)

실시예 2-1의 절차에 따라 화합물 H6을 95%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 9.69 (s, 1H), 3.68 (t, J = 8.0 Hz, 2H), 3.36 (s, 6H), 3.28 (t, J = 8.0 Hz, 6H), 2.55-2.51 (m, 2H) 1.53 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ202.0, 71.7, 70.4, 69.7, 65.4, 45.5, 44.0, 32.1, 29.9, 29.8, 29.7, 29.5, 26.4, 22.9, 14.3.Compound H6 was synthesized in a yield of 95% according to the procedure of Example 2-1. 1 H NMR (400 MHz, CDCl 3 ): δ 9.69 (s, 1H), 3.68 (t, J = 8.0 Hz, 2H), 3.36 (s, 6H), 3.28 (t, J = 8.0 Hz, 6H), 2.55-2.51 (m, 2H) 1.53 (quin, J = 8.0 Hz, 6H), 1.28-1.26 (m, 48H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 202.0, 71.7, 70.4, 69.7, 65.4, 45.5, 44.0, 32.1, 29.9, 29.8, 29.7, 29.5, 26.4, 22.9, 14.3.

<10-2> 2-(<10-2> 2- ( hydroxymethylhydroxymethyl )-2-((3-() -2-((3- ( dodecyloxydodecyloxy )-2,2-) -2,2- bisbis (((( dodecyloxydodecyloxy )methyl) propoxy)methyl)propane-1,3-diol(화합물 I6)의 합성Synthesis of) methyl) propoxy) methyl) propane-1,3-diol (Compound I6)

실시예 2-2의 절차에 따라 화합물 I6을 40%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ 3.67 (s, 6H), 3.47 (s, 2H) 3.42 (s, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 2.85 (brs, 3H), 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 66H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ73.5, 72.5, 72.0, 70.6, 65.2, 45.4,32.1, 30.0, 29.9, 29.7, 29.5, 26.4, 22.9, 14.3.Compound I6 was synthesized in the yield of 40% according to the procedure of Example 2-2. 1 H NMR (400 MHz, CDCl 3 ): δ 3.67 (s, 6H), 3.47 (s, 2H) 3.42 (s, 2H), 3.36 (quin, J = 8.0 Hz, 12H), 2.85 (brs, 3H) , 1.52 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 66H), 0.88 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 73.5, 72.5, 72.0, 70.6, 65.2, 45.4,32.1, 30.0, 29.9, 29.7, 29.5, 26.4, 22.9, 14.3.

<10-3> TNM-C14Sa의 합성<10-3> Synthesis of TNM-C14Sa

실시예 2-3의 일반적인 당화 반응 절차에 따라 TNM-C14Sa를 55%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3):δ8.07 (d, J = 8.0 Hz, 6H), 7.97 (d, J = 8.0 Hz, 6H), 7.90-7.83 (m, 12H), 7.78-7.72 (m, 12H), 7.66-7.22 (m, 69H), 6.11 (t, J = 20.0 Hz, 3H), 5.75-5.63 (m, 6H), 5.44 (t, J = 16.4 Hz, 3H), 5.20-5.10 (m, 6H), 4.57 (t, J = 3.2 Hz, 6H), 4.35-4.27 (dd, J = 8.0, 12.0 Hz, 9H), 4.19 (d, J = 8.0 Hz, 3H), 3.71 (t, J = 20.0 Hz, 4H), 3.37 (quin, J = 18.4 Hz, 12H), 3.23-2.98 (m, 12H), 1.79 (quin, J = 8.0 Hz, 2H), 1.51 (quin, J = 8.0 Hz, 6H), 1.30-1.25 (m, 66H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl3):δ166.2, 165.9, 165.6, 165.2, 165.1, 164.9, 133.5, 133.2, 130.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.1, 129.0, 128.8, 128.5, 128.4, 101.2, 96.0, 72.3, 71.5, 71.3, 70.0, 69.5, 69.1, 45.7, 32.1, 29.9, 29.8, 29.5, 26.4, 22.9, 14.3.TNM-C14Sa in a yield of 55% according to the general saccharification reaction procedure of Example 2-3 Synthesized. 1 H NMR (400 MHz, CDCl 3 ): δ 8.07 (d, J = 8.0 Hz, 6H), 7.97 (d, J = 8.0 Hz, 6H), 7.90-7.83 (m, 12H), 7.78-7.72 ( m, 12H), 7.66-7.22 (m, 69H), 6.11 (t, J = 20.0 Hz, 3H), 5.75-5.63 (m, 6H), 5.44 (t, J = 16.4 Hz, 3H), 5.20-5.10 (m, 6H), 4.57 (t, J = 3.2 Hz, 6H), 4.35-4.27 (dd, J = 8.0, 12.0 Hz, 9H), 4.19 (d, J = 8.0 Hz, 3H), 3.71 (t, J = 20.0 Hz, 4H), 3.37 (quin, J = 18.4 Hz, 12H), 3.23-2.98 (m, 12H), 1.79 (quin, J = 8.0 Hz, 2H), 1.51 (quin, J = 8.0 Hz, 6H), 1.30-1.25 (m, 66H), 0.87 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.2, 165.9, 165.6, 165.2, 165.1, 164.9, 133.5, 133.2, 130.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.1, 129.0, 128.8, 128.5, 128.4 , 101.2, 96.0, 72.3, 71.5, 71.3, 70.0, 69.5, 69.1, 45.7, 32.1, 29.9, 29.8, 29.5, 26.4, 22.9, 14.3.

<10-4> TNM-C14S의 합성<10-4> Synthesis of TNM-C14S

실시예 2-4의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TNM-C14Sa을 95%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD):δ5.15(d,J = 4.0 Hz, 3H), 4.35 (d, J = 8.0 Hz, 3H), 3.98 (d, J = 10.0 Hz, 3H), 3.87-3.79 (m, 6H), 3.70-3.58 (m, 13H), 3.56-3.23 (m, 43H), 1.55 (quin, J = 12.0 Hz, 6H), 1.34-1.29 (m, 66H), 0.90 (t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD3OD):δ 105.2, 103.1, 81.6, 77.9, 76.7, 75.2, 74.9, 74.3, 72.7, 71.6, 70.9, 62.8, 62.3, 33.2, 31.0, 30.9, 30.8, 30.6, 27.6, 23.9, 14.6; HRMS ( EI ): calcd. for C88H166O37[M+Na]+ 1839.1040, found 1839.0858.TNM-C14Sa in 95% yield according to the general synthetic procedure for the deprotection reaction of Examples 2-4 Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.35 (d, J = 8.0 Hz, 3H), 3.98 (d, J = 10.0 Hz, 3H), 3.87-3.79 (m, 6H), 3.70-3.58 (m, 13H), 3.56-3.23 (m, 43H), 1.55 (quin, J = 12.0 Hz, 6H), 1.34-1.29 (m, 66H), 0.90 ( t, J = 7.2 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 105.2, 103.1, 81.6, 77.9, 76.7, 75.2, 74.9, 74.3, 72.7, 71.6, 70.9, 62.8, 62.3, 33.2, 31.0, 30.9, 30.8, 30.6, 27.6 , 23.9, 14.6; HRMS ( EI ) : calcd. for C 88 H 166 O 37 [M + Na] + 1839.1040, found 1839.0858.

<실시예 3> TNMs 특성Example 3 TNMs Characteristics

상기 실시예 1 및 2의 합성 방법에 따라 합성된 TNMs의 특성을 확인하기 위하여, TNMs의 분자량(M.W.), 임계미셀농도(critical micellar concentration; CMC) 및 형성된 미셀의 유체역학적 반지름(hydrodynamic radii; R h)을 측정하였다.In order to confirm the characteristics of the TNMs synthesized according to the synthesis method of Examples 1 and 2, the molecular weight (MW), critical micellar concentration (CMC) of TNMs and the hydrodynamic radii of the micelles formed ( R) h ) was measured.

구체적으로, 임계미셀농도(CMC)는 소수성 형광 염색, 디페닐헥사트리엔(diphenylhexatriene; DPH)을 이용하여 측정하였고, 각각의 제제에 의해 형성된 미셀의 유체역학적 반지름(R h)은 동적 광산란(dynamic light scattering; DLS) 실험을 통해 측정하였다. 측정된 결과를 기존의 양친매성 분자(detergent)인 DDM과 비교하여 표 1에 나타내었다.Specifically, the critical micelle concentration (CMC) was measured using hydrophobic fluorescence staining, diphenylhexatriene (DPH), and the hydrodynamic radius ( R h ) of micelles formed by each agent was determined by dynamic light scattering. light scattering (DLS) experiments. The measured results are shown in Table 1 in comparison with the existing amphiphilic molecules (DDM).

DetergentDetergent MwMw CMC(mM)CMC (mM) CMC (wt%)CMC (wt%) RR hh (nm) (nm) TNM-C9LTNM-C9L 1646.91646.9 ~0.002~ 0.002 ~0.00033~ 0.00033 4.5 ± 0.24.5 ± 0.2 TNM-C10LTNM-C10L 1689.01689.0 ~0.0015~ 0.0015 ~0.00025~ 0.00025 4.5 ± 0.14.5 ± 0.1 TNM-C11LTNM-C11L 1731.11731.1 ~0.001~ 0.001 ~0.00017~ 0.00017 29.5 ± 1.629.5 ± 1.6 TNM-C12LTNM-C12L 1773.21773.2 ~0.0008~ 0.0008 ~0.00016~ 0.00016 33.8 ± 0.833.8 ± 0.8 TNM-C13LTNM-C13L 1815.21815.2 ~0.0006~ 0.0006 ~0.00011~ 0.00011 45.9 ± 2.745.9 ± 2.7 TNM-C14LTNM-C14L 1857.31857.3 ~0.0004~ 0.0004 ~0.00007~ 0.00007 48.1 ± 1.148.1 ± 1.1 TNM-C11STNM-C11S 1690.01690.0 ~0.0025~ 0.0025 ~0.00051~ 0.00051 5.7 ± 0.25.7 ± 0.2 TNM-C12STNM-C12S 1732.11732.1 ~0.0015~ 0.0015 ~0.00035~ 0.00035 6.5 ± 0.66.5 ± 0.6 TNM-C13STNM-C13S 1774.21774.2 ~0.001~ 0.001 ~0.00071~ 0.00071 9.8 ± 1.79.8 ± 1.7 TNM-C14STNM-C14S 1816.31816.3 ~0.0008~ 0.0008 ~0.00054~ 0.00054 11.6 ± 0.211.6 ± 0.2 DDMDDM 510.1510.1 ~0.17~ 0.17 ~0.0087~ 0.0087 3.4±0.023.4 ± 0.02

TNMs의 CMC 값은 DDM 보다 훨씬 작았다. 가장 긴 알킬 사슬 (C14)을 가지고 있는 TNM-C14 및 TNM-C14S의 CMC 값은 DDM 보다 100배 이상 작았다. 따라서, TNMs 는 적은 양으로도 미셀이 용이하게 형성되므로, DDM 보다 용해성이 좋음을 확인할 수 있었다. The CMC value of TNMs was much smaller than that of DDM. The CMC values of TNM-C14 and TNM-C14S with the longest alkyl chains (C14) were at least 100 times smaller than DDM. Therefore, since the micelles were easily formed even in a small amount of TNMs, the solubility was better than that of DDM.

TNMs에 의해 형성된 미셀의 크기는 4.5~48.1 nm로 범위가 넓었고 DDM보다 큰 미셀을 형성함을 확인하였다. TNMs에 의해 형성된 미셀의 크기는 알킬 사슬 길이가 증가함에 따라 증가하였다. 추가로 상기 TNMs에 의해 형성된 미셀을 개수에 기초한 크기 분포를 분석한 결과, TNMs(TNM-Ls 및 TNM-Ss)는 각각 하나의 군집을 가진 미셀을 형성하는 것을 확인하였다(도 4).The size of micelles formed by TNMs ranged from 4.5 to 48.1 nm, forming micelles larger than DDM. The size of micelles formed by TNMs increased with increasing alkyl chain length. In addition, as a result of analyzing the size distribution based on the number of micelles formed by the TNMs, it was confirmed that the TNMs (TNM-Ls and TNM-Ss) each form micelles with one cluster (FIG. 4).

<< 실시예EXAMPLE 3>  3> TNMs의Of TNMs R. R. capsulatuscapsulatus superassemblysuperassembly ( ( LHILHI -- RCRC ) 구조 안정화 능력 평가(도 4)) Structural stabilization ability evaluation (FIG. 4)

TNMs에 의한 로도박터 캡슐라터스(Rhodobacter capsulatus)의 광합성 어셈블리(photosynthetic superassembly) 구조 안정화 능력을 평가하는 실험을 하였다. 광합성 어셈블리는 LHI (light-harvesting complex I) 및 RC (reaction centre complex)로 구성되어 있다. LHI-RC의 구조적 안정성은 UV-Vis 분광법을 활용하여 20일간 단백질의 구조를 모니터링하는 방법으로 측정하였다. 양친매성 분자는 본 발명의 모든 TNMs와 기존 양친매성 분자인 DDM 및 OG를 사용하였으며, 양친매성 분자의 농도는 CMC + 0.04 wt% (도 5a) 및 CMC + 0.2 wt% (도 5b)에서 측정하여 양친매성 분자의 농도에 따른 LHI-RC 단백질 안정성을 조사하였다.Also by TNMs bakteo la capsule Charters (Rhodobacter experiments were conducted to evaluate the ability of the capsulatus to stabilize the photosynthetic superassembly structure. Photosynthetic assembly consists of a light-harvesting complex I (LHI) and a reaction center complex (RC). Structural stability of LHI-RC was measured by monitoring the structure of the protein for 20 days using UV-Vis spectroscopy. Amphipathic molecules were used as all TNMs of the present invention and the existing amphipathic molecules DDM and OG, the concentration of amphipathic molecules was measured at CMC + 0.04 wt% (FIG. 5A) and CMC + 0.2 wt% (FIG. 5B) The stability of LHI-RC protein according to the concentration of amphiphilic molecules was investigated.

구체적으로, R. capsulatus의 광합성 어셈블리의 안정성은 본 발명자의 2008년 논문(P. S. Chae et al., ChemBioChem 2008, 9, 1706-1709.)에 게재된 방법을 이용하여 측정하였다. 요약하면, 본 발명자는 LHII(light-harvesting complex II)를 가지고 있지 않은 R. capsulatus, U43[pUHTM86Bgl] 박테리아로부터 얻은 멤브레인을 이용하였다. R. capsulatus 멤브레인의 동결액 10 ㎖ 분액을 유리 균질기(glass homogenizer)를 이용하여 균질화하고, 30분 동안 32 ℃에서 배양하였다. 상기 균질화된 멤브레인을 1.0 wt% DDM을 32 ℃에서 30분동안 처리하였다. 멤브레인 파편(debris)은 315,000 g로 4 ℃에서 30분 동안 초원심분리하여, 펠렛을 수집하였다. DDM-용해화 상층액에 200 μL Ni2 +-NTA resin (10 mM Tris, pH 7.8을 포함하는 버퍼에서 전-평형 및 저장됨)을 첨가하였다. 상기 혼합 용액을 1 시간 동안 4 ℃에서 resin과 결합되도록 하였다. resin을 수집하고 500 μL 결합 버퍼 (1×CMC 농도의 DDM이 포함된 pH 7.8 Tris 버퍼 용액)로 두 번 세척하였다. 새로운 초원심분리 튜브로 교체한 후, 상기 레진을 단백질은 1M 이미다졸을 포함하는 300 μL 용출 버퍼(1 M 이미다졸이 첨가된 pH 7.8의 상기 결합 버퍼)로 두 번 처리하였다. DDM-정제된 슈퍼어셈블리는 CMC + 0.04 wt%, CMC + 0.2 wt% 농도의 각 TNMs, DDM 및 OG가 포함된 용액(pH 7.8, 920 μL)으로 희석하였다. 이들 단백질 복합체 샘플을 20 일간(처음 10일은 15 또는 20℃에서 그 후 10일간은 32℃에서 수행함)의 배양 기간 동안 일정한 간격으로 단백질 안정성을 모니터하기 위해 수집했다. UV-Vis 흡수 스펙트럼을 650 nm 내지 950 nm의 범위에서 측정 하였다.Specifically, the stability of photosynthetic assembly of R. capsulatus was measured using the method published in our 2008 paper (PS Chae et al., Chem BioChem 2008, 9, 1706-1709.). In summary, we used membranes from R. capsulatus , U43 [pUHTM86Bgl] bacteria, which do not have a light-harvesting complex II (LHII). R. capsulatus A 10 ml aliquot of the freezing solution of the membrane was homogenized using a glass homogenizer and incubated at 32 ° C. for 30 minutes. The homogenized membrane was treated with 1.0 wt% DDM at 32 ° C. for 30 minutes. Membrane debris were ultracentrifuged at 31 ° C. at 4 ° C. for 30 minutes to collect pellets. DDM- solubilization (I in buffer containing 10 mM Tris, pH 7.8 - being balance and storage) 200 μL Ni 2 + -NTA resin was added to the supernatant. The mixed solution was allowed to combine with the resin at 4 ° C. for 1 hour. The resin was collected and washed twice with 500 μL binding buffer (pH 7.8 Tris buffer solution with 1 × CMC concentration of DDM). After replacement with a new ultracentrifuge tube, the resin was treated twice with 300 μL elution buffer containing 1M imidazole (the binding buffer at pH 7.8 with 1 M imidazole added). DDM-purified superassembly was diluted with a solution (pH 7.8, 920 μL) containing each TNMs, DDM and OG at CMC + 0.04 wt%, CMC + 0.2 wt% concentrations. These protein complex samples were collected to monitor protein stability at regular intervals during the incubation period of 20 days (first 10 days at 15 or 20 ° C. and then 10 days at 32 ° C.). UV-Vis absorption spectra were measured in the range of 650 nm to 950 nm.

TNM-C14S를 제외한 모든 신규 화합물은 복합체를 안정화시키는데 있어서 DDM 및 OG보다 우수하였다. TNMs 중에서 가장 짧은 알킬 사슬을 가진 화합물(TNM-C9L 및 TNM-C11S)이 가장 우수한 효과를 나타내었다. CMC + 0.04 wt%에서 CMC + 0.2 wt%로 화합물 농도가 증가하면 DDM과 OG 모두에서 단백질의 안정성이 떨어지는데(도 5 및 6), TNMs, 특히 TNM-C14L 및 TNM-C14S와 같은 가장 긴 알킬사슬을 가진 화합물에 의해서도 이와 유사한 결과가 얻어졌다. 그러나 본 양친매성 분자의 농도 (CMC + 0.2 wt%)에서 나머지 다른 TNM분자들은 LHI-RC 복합체를 안정화시키는 효과는 DDM보다 명확히 우세하였다. All new compounds except TNM-C14S were superior to DDM and OG in stabilizing complexes. Among the TNMs, the compounds with the shortest alkyl chains (TNM-C9L and TNM-C11S) showed the best effect. Increasing the compound concentration from CMC + 0.04 wt% to CMC + 0.2 wt% decreases protein stability in both DDM and OG (FIGS. 5 and 6), with the longest alkyl chains such as TNMs, especially TNM-C14L and TNM-C14S. Similar results were obtained with compounds having However, at the concentration of this amphiphilic molecule (CMC + 0.2 wt%), the rest of the TNM molecules were clearly superior to DDM in stabilizing the LHI-RC complex.

<실시예 4> TNMs의 막단백질(UapA) 구조 안정화 능력 평가(도 5)<Example 4> Evaluation of membrane protein (UapA) structure stabilization ability of TNMs (Fig. 5)

수용액에서 TNMs에 의한 UapA (uric acid-xanthine/H+ symporter) 구조 안정성을 측정하는 실험을 하였다. UapA의 구조적 안정성은 CPM assay를 이용하여 측정하였으며, TNMs 및 DDM 농도는 CMC + 0.04 wt% 및 CMC + 0.2 wt%에서 측정하였다.Experiments were conducted to determine the structural stability of UapA (uric acid-xanthine / H + symporter) by TNMs in aqueous solution. Structural stability of UapA was measured using CPM assay, and TNMs and DDM concentrations were measured at CMC + 0.04 wt% and CMC + 0.2 wt%.

구체적으로, UapA 단백질은 아스페르길러스 니둘란스(Aspergillus nidulans) 내의 요산(uric acid)-잔틴(xanthine)/H+ 동시수송체(symporter)이다. 단백질 안정성은 설프하이드릴(sulfhydryl)-특이적 형광단(fluorophore)인 CPM (N-[4-(7-Diethylamino-4-methyl-3-coumarinyl)phenyl]maleimide)를 이용하여 형광 분광광도계(fluorescence spectroscopy)를 이용해 측정하였다. 시스테인 잔기의 프리(free) 설프하이드릴기(-SH)는 단백질의 중심 안에 있으나, 단백질 풀림(unfolding)에 의해 표면으로 노출되어 용매에 접근 가능해진다. CPM은 프리 티올(thiol)과 반응하여 형광이 되고, 이에 의해 풀림 센서로 작동된다. 열 안정성 측정을 위해, 먼저 UapAG411V△1-11은 사카로마이세스 세레비제(Saccharomyces cerevisiae) FGY217 균주에서 GFP 융합으로 발현되고, 샘플 버퍼(20 mM Tris (pH 7.5), 150 mM NaCl, 0.03% DDM, 1mM xanthine) 내로 분리하였으며, 이는 J. Leung 등의 논문(Mol . Membr . Biol. 2013, 30, 32-42)에 기재된 방법을 따랐다. UapA 단백질은 100 kDa 분자량 컷 오프(cut off) 필터(Millipore)를 이용하여 약 10 mg/ml로 농축하였다. 농축된 단백질은 Greiner 96-well 플레이트에서 CMC+0.04 wt% 또는 CMC+0.2 wt%의 농도로 DDM 또는 TNMs를 각각 포함하는 버퍼로 1:150으로 희석하였다. DMSO (sigma)에 저장된 CPM 염료 (Invitrogen)을 염료 버퍼 (20 mM Tris (pH 7.5), 150 mM NaCl, 0.03% DDM, 5 mM EDTA)에 희석시키고, 3㎕의 희석된 염료를 각각의 단백질 테스트 조건에 첨가하였다. 반응은 120분 동안 40℃에서 마이크로플레이트 형광분광계를 이용하여 모니터링하였다. 40℃에서 120분 후에 남아있는 상대적인 접힌 단백질의 비율을 계산하기 위해 상대적인 최대 형광을 띠는 샘플을 대조군으로 이용하였다. 상대적인 접힌 단백질은 GraphPad Prism을 이용하여 시간에 따라 나타냈다.Specifically, UapA protein is Aspergillus nidulan nidulans ) is a uric acid-xanthine / H + symporter. Protein stability was determined using a fluorescence spectrophotometer using CPM ( N- [4- (7-Diethylamino-4-methyl-3-coumarinyl) phenyl] maleimide), a sulfhydryl-specific fluorophore. spectroscopy). The free sulfhydryl group (-SH) of the cysteine residue is in the center of the protein, but is exposed to the surface by protein unfolding to make the solvent accessible. CPM reacts with free thiol and becomes fluorescent, thereby acting as an annealing sensor. To measure the thermal stability, first UapAG411V △ 1-11 is my process as Saccharomyces celebrity non-zero (Saccharomyces cerevisiae ) expressed in GFP fusion in FGY217 strain and isolated into sample buffer (20 mM Tris (pH 7.5), 150 mM NaCl, 0.03% DDM, 1 mM xanthine), which is described in J. Leung et al ., Mol . Membr . . followed the method described in 2013, 30, 32-42). UapA protein was concentrated to about 10 mg / ml using a 100 kDa molecular weight cut off filter (Millipore). The concentrated protein was diluted 1: 150 in a Greiner 96-well plate with buffer containing DDM or TNMs, respectively, at a concentration of CMC + 0.04 wt% or CMC + 0.2 wt%. CPM dye (Invitrogen) stored in DMSO (sigma) is diluted in dye buffer (20 mM Tris (pH 7.5), 150 mM NaCl, 0.03% DDM, 5 mM EDTA) and 3 μl of diluted dye is tested for each protein Added to conditions. The reaction was monitored using a microplate fluorometer at 40 ° C. for 120 minutes. Relative maximum fluorescence samples were used as controls to calculate the percentage of relative folded protein remaining after 120 minutes at 40 ° C. Relative folded proteins are shown over time using GraphPad Prism.

CMC + 0.2 wt %에서 UapA 단백질을 접힘 상태로 유지하는 능력은 모든 TNMs가 DDM보다 우수하였다(도 7). 특히, TNM-C12L 및 TNM-C14S가 TNM-Ls 및 TNM-Ss 중에서 각각 가장 효과적인 것으로 나타났다(도 7). TNMs은 CMC + 0.04 wt%에서도 CMC + 0.2 wt %에서와 유사한 능력을 보였다(도 8). 이러한 결과로부터 TNMs은 세포막으로부터 추출한 UapA 단백질을 수용액에서 구조적으로 안정한 상태로 유지하는 데 우수한 효과를 나타내므로, 막단백질을 안정화시키는 데 효과적으로 사용될 수 있음을 알 수 있었다.The ability to keep the UapA protein folded at CMC + 0.2 wt% was better for all TNMs than for DDM (FIG. 7). In particular, TNM-C12L and TNM-C14S were shown to be the most effective among TNM-Ls and TNM-Ss, respectively (FIG. 7). TNMs showed similar abilities at CMC + 0.2 wt% even at CMC + 0.04 wt% (FIG. 8). From these results, it can be seen that TNMs can be effectively used to stabilize the membrane protein because it shows an excellent effect in maintaining the structurally stable state of the UapA protein extracted from the cell membrane in aqueous solution.

<실시예 5> TNMs의 막단백질 (LeuT) 구조 안정화 능력 평가<Example 5> Evaluation of membrane protein (LeuT) structure stabilization capacity of TNMs

TNMs에 의한 LeuT (leucine transporter) 단백질의 구조 안정성을 측정하는 실험을 하였다. LeuT 단백질 활성도를 단백질 기질([3H]-Leu)를 활용한 SPA (scintillation proximity assay)에 의해 측정하였으며, TNMs 또는 DDM의 농도는 CMC + 0.04 wt% 및 CMC + 0.2 wt%를 사용하였다.Experiments were conducted to measure the structural stability of LeuT (leucine transporter) protein by TNMs. LeuT protein activity was measured by scintillation proximity assay (SPA) using protein substrate ([ 3 H] -Leu), and the concentrations of TNMs or DDM were CMC + 0.04 wt% and CMC + 0.2 wt%.

G. Deckert 등의 논문(Nature 1998, 392, 353-358.)에 게재된 방법에 따라, 아퀴펙스 에오리쿠스(Aquifex aeolicus)로부터 와일드 타입 LeuT (leucine transporter)의 정제를 수행하였다. LeuT는 C-말단 8xHis-태그된 트랜스포터를 암호화하는 pET16b로 형질전환된 E. coli C41(DE3)에서 발현된다 (발현 플라스미드는 Dr E. Gouaux, Vollum Institute, Portland, Oregon, USA에 의해 제공받음). 요약하면, LeuT 단백질을 분리하고, 1.0 wt% DDM에 용해화한 후에, 단백질을 Ni2 +-NTA resin (Life Technologies, Denmark)에 결합시키고, 20 mM Tris-HCl (pH 8.0), 1 mM NaCl, 199 mM KCl, 0.05 % DDM 및 300 mM 이미다졸로 용출시켰다. 그 다음, 약 1.5 mg/ml 단백질 샘플(stock)을 DDM 및 이미다졸이 없으나 TNMs 또는 DDM (대조군)을 최종 농도가 CMC + 0.04 wt% 또는 CMC + 0.2 wt%가 되도록 보충한 동등한 버퍼로 희석하였다. 단백질 샘플은 상온에 10일간 저장하고, 지정된 시간에 원심분리하였으며, 단백질 활성은 SPA (scintillation proximity assay) (M. Quick et al., Proc. Natl , Acad . Sci . U.S.A . 2007, 104, 3603-3608.)를 이용하여 [3H]-Leu 결합을 측정하였다. 상기 최종 농도에서 450 mM NaCl 및 각각의 상기 화합물을 함유하는 버퍼로 분석을 수행하였다. 20 nM [3H]-Leu 및 1.25 mg/ml copper chelate (His-Tag) YSi beads (둘 모두 PerkinElmer, Denmark 로부터 구매함)의 존재 하에 SPA 반응을 수행하였다. [3H]-Leu 결합은 MicroBeta liquid scintillation counter (PerkinElmer)를 이용하여 측정하였다.Purification of wild type LeuT (leucine transporter) from Aquifex aeolicus was carried out according to the method published in G. Deckert et al. ( Nature 1998, 392, 353-358.). LeuT is expressed in E. coli C41 (DE3) transformed with pET16b encoding the C-terminal 8xHis-tagged transporter (expression plasmids are provided by Dr E. Gouaux, Vollum Institute, Portland, Oregon, USA ). In summary, separate the LeuT protein, after screen dissolved in 1.0 wt% DDM, and coupling a protein to the Ni 2 + -NTA resin (Life Technologies , Denmark), 20 mM Tris-HCl (pH 8.0), 1 mM NaCl Eluted with 199 mM KCl, 0.05% DDM and 300 mM imidazole. About 1.5 mg / ml protein stock was then diluted with equivalent buffer free of DDM and imidazole but supplemented with TNMs or DDM (control) to a final concentration of CMC + 0.04 wt% or CMC + 0.2 wt% . Protein samples were stored at room temperature for 10 days, centrifuged at designated times, and protein activity was determined by scintillation proximity assay (SPA) (M. Quick et al., Proc. Natl , Acad . Sci . USA . 2007, 104, 3603- 3608.) was used to measure [ 3 H] -Leu binding. The assay was performed with a buffer containing 450 mM NaCl and each of these compounds at the final concentration. SPA reactions were performed in the presence of 20 nM [ 3 H] -Leu and 1.25 mg / ml copper chelate (His-Tag) YSi beads (both purchased from PerkinElmer, Denmark). [ 3 H] -Leu binding was measured using a MicroBeta liquid scintillation counter (PerkinElmer).

도 9 및 10에 나타난 결과와 같이, TNM-Ls중에서는 TNM-C10L에 의해, TNM-Ss중에서는 TNM-11S에 의해 가용화된 LeuT가 가장 우수한 기질 결합 능력을 나타내었고, 상기 화합물들의 단백질 안정화 효과는 DDM보다 우수하였다. 또한, 링커 길이가 짧은 TNM-Ss가 길이가 긴 TNM-Ls보다 우수한 트랜스포터의 활성 유지 능력을 나타냄을 확인하였다. 양친매성 화합물의 농도가 CMC + 0.04 wt %에서 CMC + 0.2 wt %로 증가하여도 결과는 유사하였다.As shown in FIGS. 9 and 10, LeuT solubilized by TNM-C10L in TNM-Ls and TNM-11S in TNM-Ss showed the best substrate binding ability, and the protein stabilizing effect of the compounds. Was better than DDM. In addition, it was confirmed that the shorter linker length TNM-Ss exhibited the ability of the transporter to maintain better activity than the longer TNM-Ls. The results were similar when the concentration of amphiphilic compound increased from CMC + 0.04 wt% to CMC + 0.2 wt%.

그 결과, TNMs 중 TNM-C11L은 DDM가 유사한 가용화된 수용체의 초기 활성 유지 능력을 보였다(도 9 및 10). 그러나 장기간 LeuT 안정화 능력에 있어서, DDM은 시간이 지남에 따라 빠른 단백질 활성 손실을 나타내었으나, TNM-C11L은 10일 배양 과정동안 LeuT의 활성을 잘 유지함을 확인하였다(도 9 및 10). 따라서 TNM-C10L과 TNM-C11S가 DDM보다 본 트랜스포터의 활성유지 능력이 우수하였다. As a result, TNM-C11L among TNMs showed the ability of DDM to maintain early activity of similar solubilized receptors (FIGS. 9 and 10). However, in the long-term LeuT stabilization ability, DDM showed a rapid loss of protein activity over time, TNM-C11L was confirmed to maintain the activity of LeuT well during the 10-day incubation process (Figs. 9 and 10). Therefore, TNM-C10L and TNM-C11S showed better activity of this transporter than DDM.

<실시예 6> TNMs의 βExample 6 β of TNMs 22 AR 단백질 안정화 능력 평가AR protein stabilization ability assessment

수용체는 바큘로바이러스(baculovirus)로 감염된 Sf9 곤충 세포에서 발현되었고 1 % DDM에 가용화되었다. DDM에 가용화된 수용체는 0.01 % 콜레스테릴 석시네이트 (cholesteryl succinate, CHS)의 존재하에 알프레놀올 세파로스(alprenolol sepharose)에 의해 정제되었다. DDM에 의해 정제된 β 2 AR을 DDM 또는 TNMs를 함유하는 버퍼로 희석하여 최종 농도가 CMC+0.2 wt% 되도록 하였다. 각 화합물에 가용화된 β 2 AR을 실온에서 4일 동안 보관하였고, 실온에서 30분 동안 10 nM의 방사성 [3H]-다이 하이드로알프레놀올(dihydroalprenolol, DHA)로 인큐베이트함으로써 규칙적인 간격으로 수용체의 리간드 결합능력을 측정하였다. 혼합물을 G-50 컬럼에 로딩하고, 일정량의 결합 버퍼(20 mM HEPES pH 7.5, 100 mM NaCl, 0.5 mg/ml BSA가 보충된)을 사용하여 상층액을 수집하였다. 추가로 15 ml 섬광 유체를 첨가하였다. 수용체-결합된 [3H]-DHA는 섬광 계수기(Beckman)로 측정하였다.The receptor was expressed in Sf9 insect cells infected with baculovirus and solubilized in 1% DDM. Receptors solubilized in DDM were purified by alprenolol sepharose in the presence of 0.01% cholesteryl succinate (CHS). Β 2 AR purified by DDM was diluted with buffer containing DDM or TNMs to a final concentration of CMC + 0.2 wt%. The solubilized β 2 AR for each compound was stored at room temperature for 4 days and incubated with radioactive [ 3 H] -dihydroalprenool (DHA) at 10 nM for 30 minutes at room temperature at regular intervals. Ligand binding capacity was measured. The mixture was loaded onto a G-50 column and the supernatant collected using an amount of binding buffer (supplemented with 20 mM HEPES pH 7.5, 100 mM NaCl, 0.5 mg / ml BSA). An additional 15 ml scintillation fluid was added. Receptor-bound [ 3 H] -DHA was measured with a scintillation counter (Beckman).

그 결과, TNMs 중 TNM-C12L은 DDM가 유사한 가용화된 수용체의 초기 활성 유지 능력을 보였다(도 11). 그러나 장기간 수용체 안정화 능력에 있어서, DDM은 시간이 지남에 따라 빠른 활성 손실을 나타내었으나, TNM-C12L에 가용화된 수용체는 4일 배양 과정동안 수용체의 활성을 계속 유지함을 보였다(도 12). 따라서 TNM-C12L는 DDM보다 가용화된 수용체 단백질 연구에 더욱 효과적일 것으로 판단할 수 있었다.As a result, TNM-C12L among TNMs showed the ability of DDM to maintain the initial activity of similar solubilized receptors (FIG. 11). However, in the long-term receptor stabilization ability, DDM showed a rapid loss of activity over time, while receptors solubilized in TNM-C12L continued to retain the activity of the receptor for 4 days of culture (FIG. 12). Therefore, TNM-C12L could be judged to be more effective in solubilizing receptor protein studies than DDM.

Claims (22)

하기 화학식 1로 표시되는 화합물:
[화학식 1]
Figure 112019048527639-pat00015

상기 화학식 1에서,
상기 R1, R2 R3 은 각각 독립적으로 비치환된 C3-C20의 알킬기이고;
상기 X1, X2 및 X3는 각각 독립적으로 산소로 연결된 당류(saccharide)이고;
상기 Y1, Y2 및 Y3은 산소(O)이고; 그리고
상기 m은 0 또는 1이다.
Compound represented by the following formula (1):
[Formula 1]
Figure 112019048527639-pat00015

In Chemical Formula 1,
R 1 , R 2 and Each R 3 is independently an unsubstituted C 3 -C 20 alkyl group;
X 1 , X 2 and X 3 are each independently a saccharide linked by oxygen;
Y 1 , Y 2 and Y 3 are oxygen (O); And
M is 0 or 1;
제 1항에 있어서,
상기 당류는 단당류(monosaccharide) 또는 이당류(disaccharide)인 화합물.
The method of claim 1,
The saccharide is a monosaccharide or a disaccharide (disaccharide) compound.
제 1 에 있어서,
상기 당류는 글루코스(glucose) 또는 말토오스(maltose)인 화합물
In the first,
The saccharide is glucose or maltose
제 1항에 있어서,
상기 R1 내지 R3는 각각 독립적으로 비치환된 C3-C20의 알킬기이고; 상기 X1 내지 X3은 글루코스(glucose) 또는 말토오스(maltose)이고; 상기 Y1, Y2 및 Y3은 산소(O)이고; 그리고 상기 m은 1인 화합물.
The method of claim 1,
R 1 to R 3 are each independently an unsubstituted C 3 -C 20 alkyl group; X 1 to X 3 are glucose or maltose; Y 1 , Y 2 and Y 3 are oxygen (O); And m is 1.
제 1항에 있어서,
상기 R1 내지 R3는 각각 독립적으로 비치환된 C3-C20의 알킬기이고; 상기 X1내지 X3은 글루코스(glucose) 또는 말토오스(maltose)이고; 상기 Y1, Y2 및 Y3은 산소(O)이고; 그리고 상기 m은 0인 화합물.
The method of claim 1,
R 1 to R 3 are each independently an unsubstituted C 3 -C 20 alkyl group; X 1 to X 3 are glucose or maltose; Y 1 , Y 2 and Y 3 are oxygen (O); And m is 0.
제1항에 있어서,
상기 화합물은 하기 화학식 2 내지 11로 표시되는 화합물 중 하나인 화합물:
[화학식 2]
Figure 112017096027589-pat00016

[화학식 3]
Figure 112017096027589-pat00017

[화학식 4]
Figure 112017096027589-pat00018

[화학식 5]
Figure 112017096027589-pat00019

[화학식 6]
Figure 112017096027589-pat00020

[화학식 7]
Figure 112017096027589-pat00021

[화학식 8]
Figure 112017096027589-pat00022

[화학식 9]
Figure 112017096027589-pat00023

[화학식 10]
Figure 112017096027589-pat00024

[화학식 11]
Figure 112017096027589-pat00025
The method of claim 1,
The compound is one of the compounds represented by the formula 2 to 11:
[Formula 2]
Figure 112017096027589-pat00016

[Formula 3]
Figure 112017096027589-pat00017

[Formula 4]
Figure 112017096027589-pat00018

[Formula 5]
Figure 112017096027589-pat00019

[Formula 6]
Figure 112017096027589-pat00020

[Formula 7]
Figure 112017096027589-pat00021

[Formula 8]
Figure 112017096027589-pat00022

[Formula 9]
Figure 112017096027589-pat00023

[Formula 10]
Figure 112017096027589-pat00024

[Formula 11]
Figure 112017096027589-pat00025
제 1항에 있어서,
상기 화합물은 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하기 위한 양친매성 분자인 화합물.
The method of claim 1,
The compound is an amphiphilic molecule for extracting, solubilizing, stabilizing, crystallizing or analyzing the membrane protein.
제 1항에 있어서,
상기 화합물은 수용액에서 미셀 농도(CMC)가 0.0001 내지 1mM인 화합물.
The method of claim 1,
The compound has a micelle concentration (CMC) in the aqueous solution of 0.0001 to 1mM.
제 1항에 따른 화합물을 포함하는 막단백질의 추출용 조성물.Composition for extracting membrane protein comprising the compound according to claim 1. 삭제delete 1) 5,5-비스-브로모메틸-2,2-다이메틸-[1,3]다이옥산 (5,5-bis-bromomethyl-2,2-dimethyl-[1,3]dioxane) 및 알코올(alcohol)을 반응시켜 다이알킬레이션된 다이올을 합성하는 단계;
2) 상기 단계 1)의 생성물에 1-브로모알칸(1-bromoalkane)을 첨가하여 트리알킬레이션된 모노올을 합성하는 단계;
3) 상기 단계 2)의 생성물에 알릴 아이오다이드(allyl iodide)를 첨가하여 모노올을 알릴레이션시키는 단계;
4) 상기 단계 3)의 생성물을 하이드로보레이션 산화반응 시켜 트리알킬레이션된 모노올을 합성하는 단계;
5) 상기 단계 4)의 생성물에 4-(브로모메틸)-l-메틸-2,6,7-트리옥사바이사이클로[2.2.2]-옥탄(4-(bromomethyl)-l-methyl-2,6,7-trioxabicyclo[2.2.2]-octane)을 첨가하여 트리알킬레이션된 트리올을 합성하는 단계;
6) 상기 단계 5)의 생성물에 글리코실레이션(glycosylation) 반응을 수행하여 보호기가 부착된 당류를 도입하는 단계; 및
7) 상기 단계 6)의 생성물에 탈보호기화(deprotection)반응을 수행하는 단계;를 포함하는 하기 화학식 1로 표시되는 화합물의 제조방법:
[화학식 1]
Figure 112019503611000-pat00026

상기 화학식 1에서,
상기 R1, R2 R3 은 각각 독립적으로 비치환된 C3-C20의 알킬기이고;
상기 X1, X2 및 X3는 각각 독립적으로 산소로 연결된 당류(saccharide)이고;
상기 Y1, Y2 및 Y3은 산소(O)이고; 그리고
상기 m은 1이다.
1) 5,5-bis-bromomethyl-2,2-dimethyl- [1,3] dioxane (5,5-bis-bromomethyl-2,2-dimethyl- [1,3] dioxane) and alcohol ( alcohol) to synthesize dialkylated diols;
2) synthesizing a trialkylated monool by adding 1-bromoalkane to the product of step 1);
3) allylating the monool by adding allyl iodide to the product of step 2);
4) synthesizing trialkylated monool by hydroboration oxidation of the product of step 3);
5) 4- (bromomethyl) -l-methyl-2,6,7-trioxabicyclo [2.2.2] -octane (4- (bromomethyl) -l-methyl-2 in the product of step 4) , 6,7-trioxabicyclo [2.2.2] -octane) to synthesize trialkylated triols;
6) introducing a saccharide with a protecting group by performing a glycosylation reaction on the product of step 5); And
7) performing a deprotection reaction (deprotection) reaction on the product of step 6);
[Formula 1]
Figure 112019503611000-pat00026

In Chemical Formula 1,
R 1 , R 2 and Each R 3 is independently an unsubstituted C 3 -C 20 alkyl group;
X 1 , X 2 and X 3 are each independently a saccharide linked by oxygen;
Y 1 , Y 2 and Y 3 are oxygen (O); And
M is 1.
1) 5,5-비스-브로모메틸-2,2-다이메틸-[1,3]다이옥산(5,5-bis-bromomethyl-2,2-dimethyl-[1,3]dioxane)을 알킬레이션 반응시켜 다이알킬레이션된 다이올형태의 화합물을 합성하는 단계;
2) 상기 단계 1)의 생성물에 1-브로모알칸(1-bromoalkane)을 첨가하여 트리알킬레이션된 모노올 형태의 화합물을 합성하는 단계;
3) 상기 단계 2)의 생성물에 알릴 아이오다이드(allyl iodide)를 첨가하여 모노올을 알릴레이션시키는 단계;
4) 상기 단계 3)의 생성물을 하이드로보레이션(hydroboration) 산화반응시켜 트리알킬레이션된 모노올 형태의 화합물을 합성하는 단계;
5) 상기 단계 4)의 생성물의 알코올 산화반응을 통해 트리알킬레이션된 알데하이드 형태의 화합물을 합성하는 단계;
6) 상기 단계 5)의 생성물에 포름알데하이드 및 수용성 알칼라인 에탄올을 첨가하여 트리알킬레이션된 트리올 형태의 화합물을 합성하는 단계;
7) 상기 단계 6)의 생성물에 글리코실레이션(glycosylation) 반응을 수행하여 보호기가 부착된 당류를 도입하는 단계; 및
8) 상기 단계 7)의 생성물에 탈보호기화(deprotection)반응을 수행하는 단계;를 포함하는 하기 화학식 1로 표시되는 화합물의 제조방법:
[화학식 1]
Figure 112019503611000-pat00027

상기 화학식 1에서,
상기 R1, R2 R3 은 각각 독립적으로 비치환된 C3-C20의 알킬기이고;
상기 X1, X2 및 X3는 각각 독립적으로 산소로 연결된 당류(saccharide)이고;
상기 Y1, Y2 및 Y3은 산소(O)이고; 그리고
상기 m은 0이다.
1) Alkylation of 5,5-bis-bromomethyl-2,2-dimethyl- [1,3] dioxane (5,5-bis-bromomethyl-2,2-dimethyl- [1,3] dioxane) Reacting to synthesize a compound in the form of a dialkylated diol;
2) synthesizing a trialkylated monool type compound by adding 1-bromoalkane to the product of step 1);
3) allylating the monool by adding allyl iodide to the product of step 2);
4) hydroboration oxidation of the product of step 3) to synthesize trialkylated monool compounds;
5) synthesizing a compound of the trialkylated aldehyde form through alcohol oxidation of the product of step 4);
6) adding formaldehyde and water-soluble alkaline ethanol to the product of step 5) to synthesize a trialkylated triol form of the compound;
7) introducing a saccharide to which a protecting group is attached by performing a glycosylation reaction on the product of step 6); And
8) A process for preparing a compound represented by the following Chemical Formula 1 comprising the step of performing a deprotection reaction on the product of step 7):
[Formula 1]
Figure 112019503611000-pat00027

In Chemical Formula 1,
R 1 , R 2 and Each R 3 is independently an unsubstituted C 3 -C 20 alkyl group;
X 1 , X 2 and X 3 are each independently a saccharide linked by oxygen;
Y 1 , Y 2 and Y 3 are oxygen (O); And
M is zero.
삭제delete 삭제delete 삭제delete 삭제delete 제 1항에 따른 화합물을 포함하는 막단백질의 용해화용 조성물.Composition for solubilizing the membrane protein containing the compound according to claim 1. 제 1항에 따른 화합물을 포함하는 막단백질의 안정화용 조성물.A composition for stabilizing a membrane protein comprising the compound according to claim 1. 제 1항에 따른 화합물을 포함하는 막단백질의 결정화용 조성물.A composition for crystallization of a membrane protein comprising the compound according to claim 1. 제 1항에 따른 화합물을 포함하는 막단백질의 분석용 조성물.Composition for the analysis of membrane proteins comprising a compound according to claim 1. 제 9항 및 제17항 내지 제20항 중 어느 한 항에 있어서, 상기 조성물은 미셀, 리포좀, 에멀션 또는 나노입자의 제형인 것인 조성물.21. The composition of any one of claims 9 and 17-20, wherein the composition is a formulation of micelles, liposomes, emulsions or nanoparticles. 제 9항 및 제17항 내지 제20항 중 어느 한 항에 있어서, 상기 막단백질은 LHI-RC 복합체(light harvesting-I and the reaction center complex), UapA (Uric acid-xanthine/H+ symporter), LeuT (Leucine transporter),β2AR (human β2 adrenergic receptor), MelB (Melibiose permease),또는 이들의 2 이상의 조합인 조성물.
The method of claim 9 or 17 to 20, wherein the membrane protein is LHI-RC complex (light harvesting-I and the reaction center complex), UapA (Uric acid-xanthine / H + symporter), LeuT (Leucine transporter), β2AR (human β2 adrenergic receptor), MelB (Melibiose permease), or a combination of two or more thereof.
KR1020170127404A 2016-10-05 2017-09-29 Tandem neopentyl glycol-based amphiphiles and uses thereof KR102039483B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160128271 2016-10-05
KR20160128271 2016-10-05

Publications (2)

Publication Number Publication Date
KR20180037907A KR20180037907A (en) 2018-04-13
KR102039483B1 true KR102039483B1 (en) 2019-11-27

Family

ID=61974450

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170127404A KR102039483B1 (en) 2016-10-05 2017-09-29 Tandem neopentyl glycol-based amphiphiles and uses thereof

Country Status (1)

Country Link
KR (1) KR102039483B1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chem, Commun. Vol. 52, Pages 12104-12107(공개일: 2016. 10. 4.)*
J. Am. Chem. Soc., 2010, Vol. 132, Pages 16750-16752

Also Published As

Publication number Publication date
KR20180037907A (en) 2018-04-13

Similar Documents

Publication Publication Date Title
KR101797826B1 (en) Novel TRIS- or neopentyl glycol-based amphiphiles and uses thereof
KR102061762B1 (en) Novel tantem malonate-based amphiphiles and uses thereof
KR102124989B1 (en) Novel amphiphiles having penta-saccharides hydrophilic group and uses thereof
KR101923584B1 (en) Novel butane-tetraol-based amphiphiles and uses thereof
KR102039483B1 (en) Tandem neopentyl glycol-based amphiphiles and uses thereof
KR101923583B1 (en) Novel mesitylene-cored amphiphiles and uses thereof
KR102045870B1 (en) Novel amphiphiles with dendronic hydrophobic group and uses thereof
KR101935293B1 (en) Novel resorcinarne-based amphiphiles and uses thereof
KR20170028824A (en) Novel xylene-linked amphiphiles and uses thereof
KR102070081B1 (en) Novel vitamin E-based amphiphiles and uses thereof
KR102321563B1 (en) Novel terphenyl-baseed amphiphiles and uses thereof
KR102166783B1 (en) Novel trehalose-cored amphiphiles and uses thereof
KR102515251B1 (en) Novel triazine-based amphiphiles and uses thereof
KR102582645B1 (en) Novel triazine dimer-based amphiphiles and uses thereof
KR101778687B1 (en) Novel deoxycholate-linked amphiphiles and uses thereof
KR20220087385A (en) Novel tris(hydroxymethyl)methane core-based amphiphiles and uses thereof
KR102007317B1 (en) Benzene-derived facial amphiphiles and uses thereof
US11884693B2 (en) 1,3-acetonedicarboxylate-derived amphipathic compounds and uses thereof
KR102604632B1 (en) Novel cylopentane-based amphiphiles and uses thereof
KR20200118634A (en) Novel scyllo inositol-cored amphiphiles and uses thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant