KR20200118634A - Novel scyllo inositol-cored amphiphiles and uses thereof - Google Patents

Novel scyllo inositol-cored amphiphiles and uses thereof Download PDF

Info

Publication number
KR20200118634A
KR20200118634A KR1020190040803A KR20190040803A KR20200118634A KR 20200118634 A KR20200118634 A KR 20200118634A KR 1020190040803 A KR1020190040803 A KR 1020190040803A KR 20190040803 A KR20190040803 A KR 20190040803A KR 20200118634 A KR20200118634 A KR 20200118634A
Authority
KR
South Korea
Prior art keywords
formula
compound
unsubstituted
substituted
reaction
Prior art date
Application number
KR1020190040803A
Other languages
Korean (ko)
Inventor
채필석
아이만 사더프
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Priority to KR1020190040803A priority Critical patent/KR20200118634A/en
Publication of KR20200118634A publication Critical patent/KR20200118634A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • C07K1/1136General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure by reversible modification of the secondary, tertiary or quarternary structure, e.g. using denaturating or stabilising agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6842Proteomic analysis of subsets of protein mixtures with reduced complexity, e.g. membrane proteins, phosphoproteins, organelle proteins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biomedical Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Saccharide Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a newly developed scyllo-inositol-based amphiphile compound, a method for preparing the same, and a method for extracting, solubilizing, stabilizing, crystallizing or analyzing a membrane protein by using the same. In addition, this compound can efficiently extract membrane proteins with more various structures and properties from cell membranes than conventional compounds and stably store the membrane proteins in an aqueous solution for a long period of time, and thus can be used for functional analysis and structural analysis accordingly. The analysis of membrane protein structures and functions is one of the most interesting fields in biology and chemistry as it is closely related to the development of novel drugs.

Description

새로운 실로-이노시톨 중심을 갖는 양친매성 화합물 및 이의 활용 {Novel scyllo inositol-cored amphiphiles and uses thereof}Novel scyllo inositol-cored amphiphiles and uses thereof}

본 발명은 새롭게 개발한 실로-이노시톨 기반의 양친매성 화합물, 이의 제조방법 및 이를 이용하여 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법에 관한 것이다.The present invention relates to a newly developed psilo-inositol-based amphiphilic compound, a preparation method thereof, and a method of extracting, solubilizing, stabilizing, crystallizing or analyzing a membrane protein using the same.

막단백질(membrain proteins)은 생물학적 시스템에서 중요한 역할을 한다. 이 생체거대분자(bio-macromolecules)는 친수성 및 소수성 부분을 포함하므로, 막단백질을 세포막으로부터 추출하고, 수용액에서 용해화와 안정화시키기 위해서는 양친매성 분자가 필요하다.Membrain proteins play an important role in biological systems. Since these bio-macromolecules contain hydrophilic and hydrophobic moieties, amphiphilic molecules are required to extract membrane proteins from cell membranes and dissolve and stabilize them in aqueous solutions.

막단백질의 구조 분석을 위해서는 양질의 막단백질 결정을 얻어야 하는데 이를 위해서는 수용액에서의 막단백질의 구조적 안정성이 선행되어야 한다. 막단백질 연구에 사용되어 온 기존의 양친매성 분자들의 개수는 100가지 이상으로 다수가 존재하지만 그 중 5개 정도만 막단백질 구조 연구에 활발히 활용되어 왔다. 이 5개의 양쪽성 분자는 OG (n-octyl-β-D-glucopyranoside), NG (n-nonyl-β-D-glucopyranoside), DM (n-decyl-β-D-maltopyranoside), DDM (n-dodecyl-β-D-maltopyranoside), 및 LDAO (lauryldimethylamine-N-oxide)를 포함한다(비특허문헌 1, 비특허문헌 2). 하지만 이들 분자에 의해 둘러싸여 있는 많은 막단백질들은 그 구조가 쉽게 변성되거나 응집되어 그 기능을 빠르게 상실하는 경향이 있기 때문에 이 분자들을 활용한 막단백질의 기능 및 구조 연구에 상당한 제한점이 있다. 이는 종래의 분자들이 화학구조가 간단하여 다양한 특성을 나타내주지 못하기 때문이다. 따라서 새로운 구조를 통한 새롭고 우수한 특성을 지니는 새로운 양쪽성 물질 개발이 필요하다.In order to analyze the structure of a membrane protein, a high-quality membrane protein crystal must be obtained, and for this, the structural stability of the membrane protein in an aqueous solution must precede. The number of existing amphiphilic molecules that have been used in membrane protein research is more than 100, and there are many, but only about 5 of them have been actively used in membrane protein structure studies. These five amphoteric molecules are OG (n-octyl-β-D-glucopyranoside), NG (n-nonyl-β-D-glucopyranoside), DM (n-decyl-β-D-maltopyranoside), and DDM (n- dodecyl-β-D-maltopyranoside), and LDAO (lauryldimethylamine- N- oxide) (Non-Patent Document 1, Non-Patent Document 2). However, since many membrane proteins surrounded by these molecules have a tendency to rapidly lose their function due to their structure being easily denatured or aggregated, there are significant limitations in studying the functions and structures of membrane proteins using these molecules. This is because conventional molecules have a simple chemical structure and do not exhibit various properties. Therefore, there is a need to develop a new amphoteric material having new and excellent properties through a new structure.

이에 본 발명자들은 실로-이노시톨 중심구조에 소수성기와 친수성기를 도입한 양친매성 화합물을 개발하였고, 이 화합물의 막단백질 안정화 특성을 확인하여 본 발명을 완성하였다.Accordingly, the present inventors developed an amphiphilic compound in which a hydrophobic group and a hydrophilic group were introduced into the central structure of psilo-inositol, and the present invention was completed by confirming the membrane protein stabilization properties of the compound.

S. Newstead et al., Protein Sci. 17 (2008) 466-472. S. Newstead et al., Protein Sci. 17 (2008) 466-472. S. Newstead et al., Mol. Membr. Biol. 25 (2008) 631-638. S. Newstead et al., Mol. Membr. Biol. 25 (2008) 631-638.

본 발명의 목적은 화학식 1 또는 화학식 2로 표시되는 화합물을 제공하는 것이다.An object of the present invention is to provide a compound represented by Formula 1 or Formula 2.

본 발명의 다른 목적은 상기 화합물을 포함하는 막단백질의 추출, 용해화, 안정화, 결정화 또는 분석용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for extraction, solubilization, stabilization, crystallization or analysis of a membrane protein containing the compound.

본 발명의 또 다른 목적은 상기 화합물의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing the compound.

본 발명의 또 다른 목적은 상기 화합물을 이용하여 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for extracting, dissolving, stabilizing, crystallizing or analyzing membrane proteins using the above compound.

본 발명의 일 구체예는 하기 화학식 1 또는 화학식 2로 표시되는 화합물을 제공한다:One embodiment of the present invention provides a compound represented by the following Formula 1 or Formula 2:

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에서,In Formula 1,

상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기, 치환 또는 비치환된 C3-C30의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C30의 아릴기일 수 있고; The R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group, a substituted or unsubstituted C 3 -C 30 cycloalkyl group, or a substituted or unsubstituted C 3 -C 30 aryl Can be a group;

상기 L1 내지 L3은 각각 독립적으로 직접결합 또는 -O(산소)-Y-로, 상기 Y는 치환 또는 비치환된 C1-C10의 알킬렌기일 수 있으며; 그리고The L 1 to L 3 may each independently be a direct bond or -O (oxygen)-Y-, wherein Y may be a substituted or unsubstituted C 1 -C 10 alkylene group; And

상기 X1 내지 X3은 산소와 연결된 당류(saccharide)일 수 있다.The X 1 to X 3 may be saccharides linked to oxygen.

[화학식 2][Formula 2]

Figure pat00002
Figure pat00002

상기 화학식 2에서,In Chemical Formula 2,

상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기, 치환 또는 비치환된 C3-C30의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C30의 아릴기일 수 있고; The R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group, a substituted or unsubstituted C 3 -C 30 cycloalkyl group, or a substituted or unsubstituted C 3 -C 30 aryl Can be a group;

상기 L4 내지 L6은 치환 또는 비치환된 C1-C10의 알킬렌기일 수 있으며; 그리고The L 4 to L 6 may be a substituted or unsubstituted C 1 -C 10 alkylene group; And

상기 X4 내지 X9는 산소와 연결된 당류(saccharide)일 수 있다.The X 4 to X 9 may be a saccharide linked to oxygen.

본 명세서에서 사용된 용어, "당류(saccharide)"는 탄수화물 중에서 비교적 분자가 작고, 물에 녹아서 단맛이 나는 화합물을 의미한다. 당류는 당을 구성하는 분자의 수에 따라 단당류, 이당류, 다당류로 구분된다.As used herein, the term "saccharide" refers to a compound having a relatively small molecule among carbohydrates and having a sweet taste by dissolving in water. Sugars are classified into monosaccharides, disaccharides, and polysaccharides according to the number of molecules constituting the sugar.

상기 구체예에서 사용된 당류는 단당류(monosaccharide) 또는 이당류(disaccharide)일 수 있으며, 구체적으로 글루코스(glucose) 또는 말토오스(maltose)일 수 있으나, 이에 제한되지 않는다.The saccharide used in the above embodiments may be monosaccharide or disaccharide, and specifically, may be glucose or maltose, but is not limited thereto.

상기 당류는 친수성기로 작용할 수 있다. 본 발명의 일 구체예에 따른 화합물은 친수성기인 글루코스 또는 말토오스를 각각 4개 또는 8개를 병렬로 연결하여 친수성기의 크기를 크게 하면서도 길이의 증가를 최소화함으로써 막단백질과의 복합체 형성시 그 크기를 작게하였다. 상기 화합물과 막단백질과의 복합체의 크기가 작으면 양질의 막단백질 결정을 얻을 수 있다 (G. G. Prive, Methods 2007, 41, 388-397).These saccharides may act as a hydrophilic group. The compound according to an embodiment of the present invention increases the size of the hydrophilic group while minimizing the increase in length by connecting 4 or 8 hydrophilic groups of glucose or maltose in parallel, thereby reducing the size of the complex when forming a complex with a membrane protein. I did. When the size of the complex between the compound and the membrane protein is small, high-quality membrane protein crystals can be obtained (GG Prive, Methods 2007, 41, 388-397).

또한, 상기 R1 내지 R3는 소수성기로 작용할 수 있다. 본 발명의 일 구체예에 따른 화합물은 친수성도와 소수성도의 밸런스(hydrophile-lipophile balance)를 최적으로 하기 위하여 길이를 달리한 3개의 치환 또는 비치환된 알킬기를 소수성기로 도입하였다.In addition, R 1 to R 3 may function as a hydrophobic group. In the compound according to an embodiment of the present invention, three substituted or unsubstituted alkyl groups having different lengths were introduced as hydrophobic groups in order to optimize the balance between hydrophilicity and hydrophobicity.

본 발명의 일 구체예에 따른 화합물은 중심구조로 실로-이노시톨 링커를 가질 수 있다. 즉, 상기 화합물은 실로-이노시톨을 중심구조로 하여 3개 또는 6개의 친수성기 및 3개의 소수성기를 도입한 양친매성 물질로, 막단백질 안정화 및 결정화에 우수한 성능을 가질 수 있다.The compound according to an embodiment of the present invention may have a silo-inositol linker as a central structure. That is, the compound is an amphiphilic material in which 3 or 6 hydrophilic groups and 3 hydrophobic groups are introduced with psilo-inositol as a central structure, and may have excellent performance in stabilizing and crystallizing membrane proteins.

구체적으로, 상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기일 수 있고; 그리고 상기 X1 내지 X9 는 글루코스(glucose) 또는 말토오스(maltose)일 수 있다. Specifically, R 1 to R 3 may each independently be a substituted or unsubstituted C 3 -C 30 alkyl group; In addition, X 1 to X 9 may be glucose or maltose.

본 발명의 일 실시예에서, 상기 화학식 1에서 상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기일 수 있고; 상기 X1 내지 X3 은 말토오스일 수 있고; 그리고 상기 L1 내지 L3 은 직접결합 또는 -O-Y-이며, 상기 Y는 알킬렌기일 수 있는 이러한 화합물을 각각 "STMs (scyllo-inositol-cored trimaltosides) 또는 STM-Es (scyllo-inositol-cored trimaltosides with ethylene glycol linker)"로 명명하였다. In an embodiment of the present invention, in Formula 1, R 1 to R 3 may each independently be a substituted or unsubstituted C 3 -C 30 alkyl group; X 1 to X 3 may be maltose; And the L 1 to L 3 is a direct bond or -OY-, and Y is such a compound which may be an alkylene group, respectively, "STMs (scyllo-inositol-cored trimaltosides) or STM-Es (scyllo-inositol-cored trimaltosides with ethylene glycol linker)".

본 발명의 다른 실시예에서, 상기 화학식 2에서 상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기일 수 있고; 상기 X4 내지 X9는 글루코스일 수 있고; 그리고 상기 L4 내지 L6 은 알킬렌기일 수 있는 이러한 화합물을 각각 "SHG-Gs (scyllo-inositol-cored hexaglucoside with glycerol linker)"로 명명하였다.In another embodiment of the present invention, in Formula 2, R 1 to R 3 may each independently be a substituted or unsubstituted C 3 -C 30 alkyl group; X 4 to X 9 may be glucose; And the L 4 to L 6 These compounds, which may be alkylene groups, were each named "SHG-Gs (scyllo-inositol-cored hexaglucoside with glycerol linker)".

본 발명의 일 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 내지 R3은 C10의 알킬기이고; 상기 X1 내지 X3은 말토오스이고; 그리고 L1 내지 L3은 직접결합인 화합물을 "STM-10"으로 명명하였다. 따라서, 상기 화합물은 하기 화학식 3로 표시되는 화합물일 수 있다:In an embodiment of the present invention, as the compound represented by Formula 1, wherein R 1 to R 3 are C 10 alkyl groups; X 1 to X 3 are maltose; And L 1 to L 3 is a direct bond, the compound was named "STM-10". Accordingly, the compound may be a compound represented by Formula 3:

[화학식 3][Formula 3]

Figure pat00003
Figure pat00003

본 발명의 다른 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 내지 R3은 C11의 알킬기이고; 상기 X1 내지 X3은 말토오스이고; 그리고 L1 내지 L3은 직접결합인 화합물을 "STM-11"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 4로 표시되는 화합물일 수 있다:In another embodiment of the present invention, as the compound represented by Formula 1, wherein R 1 to R 3 are C 11 alkyl groups; X 1 to X 3 are maltose; And L 1 to L 3 is a direct bond, the compound was named "STM-11". Thus, the compound may be a compound represented by Formula 4:

[화학식 4][Formula 4]

Figure pat00004
Figure pat00004

본 발명의 또 다른 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 내지 R3은 C12의 알킬기이고; 상기 X1 내지 X3은 말토오스이고; 그리고 L1 내지 L3은 직접결합인 화합물을 "STM-12"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 5로 표시되는 화합물일 수 있다:In another embodiment of the present invention, as the compound represented by Formula 1, wherein R 1 to R 3 are C 12 alkyl groups; X 1 to X 3 are maltose; And L 1 to L 3 is a direct bond, the compound was named "STM-12". Thus, the compound may be a compound represented by Formula 5:

[화학식 5][Formula 5]

Figure pat00005
Figure pat00005

본 발명의 또 다른 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 내지 R3은 C7의 알킬기이고; 상기 X1 내지 X3은 말토오스이고; 그리고 L1 내지 L3은 -O-CH2CH2-인 화합물을 "STM-E7"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 6로 표시되는 화합물일 수 있다:In another embodiment of the present invention, as the compound represented by Formula 1, wherein R 1 to R 3 are C 7 alkyl groups; X 1 to X 3 are maltose; And L 1 to L 3 is -O-CH 2 CH 2 -The compound was named "STM-E7". Thus, the compound may be a compound represented by Formula 6:

[화학식 6][Formula 6]

Figure pat00006
Figure pat00006

본 발명의 또 다른 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 내지 R3은 C8의 알킬기이고; 상기 X1 내지 X3은 말토오스이고; 그리고 L1 내지 L3은 -O-CH2CH2-인 화합물을 "STM-E8"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 7로 표시되는 화합물일 수 있다:In another embodiment of the present invention, as the compound represented by Formula 1, wherein R 1 to R 3 are C 8 alkyl groups; X 1 to X 3 are maltose; And L 1 to L 3 is -O-CH 2 CH 2 -The compound was named "STM-E8". Thus, the compound may be a compound represented by Formula 7:

[화학식 7][Formula 7]

Figure pat00007
Figure pat00007

본 발명의 또 다른 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 내지 R3은 C9의 알킬기이고; 상기 X1 내지 X3은 말토오스이고; 그리고 L1 내지 L3은 -O-CH2CH2-인 화합물을 "STM-E9"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 8로 표시되는 화합물일 수 있다:In another embodiment of the present invention, as the compound represented by Formula 1, wherein R 1 to R 3 are C 9 alkyl groups; X 1 to X 3 are maltose; And L 1 to L 3 is -O-CH 2 CH 2 -The compound was named "STM-E9". Thus, the compound may be a compound represented by Formula 8 below:

[화학식 8][Formula 8]

Figure pat00008
Figure pat00008

본 발명의 또 다른 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 내지 R3은 C10의 알킬기이고; 상기 X1 내지 X3은 말토오스이고; 그리고 L1 내지 L3은 -O-CH2CH2-인 화합물을 "STM-E10"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 9로 표시되는 화합물일 수 있다:In another embodiment of the present invention, as the compound represented by Formula 1, wherein R 1 to R 3 are C 10 alkyl groups; X 1 to X 3 are maltose; And L 1 to L 3 is -O-CH 2 CH 2 -The compound was named "STM-E10". Thus, the compound may be a compound represented by Formula 9:

[화학식 9][Formula 9]

Figure pat00009
Figure pat00009

본 발명의 또 다른 실시예에서, 상기 화학식 2로 표시되는 화합물로서, 상기 R1 내지 R3은 C12의 알킬기이고; 상기 X4 내지 X9은 글루코스이고; 그리고 L4 내지 L6은 -CH2-인 화합물을 "SHG-G12"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 10로 표시되는 화합물일 수 있다:In another embodiment of the present invention, as the compound represented by Formula 2, wherein R 1 to R 3 are C 12 alkyl groups; X 4 to X 9 are glucose; And L 4 to L 6 was named "SHG-G12" a compound of -CH 2 -. Thus, the compound may be a compound represented by Formula 10 below:

[화학식 10][Formula 10]

Figure pat00010
Figure pat00010

본 발명의 또 다른 실시예에서, 상기 화학식 2로 표시되는 화합물로서, 상기 R1 내지 R3은 C13의 알킬기이고; 상기 X4 내지 X9은 글루코스이고; 그리고 L4 내지 L6은 -CH2-인 화합물을 "SHG-G13"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 11로 표시되는 화합물일 수 있다:In another embodiment of the present invention, as the compound represented by Formula 2, wherein R 1 to R 3 are C 13 alkyl groups; X 4 to X 9 are glucose; And L 4 to L 6 was named "SHG-G13" a compound of -CH 2 -. Thus, the compound may be a compound represented by the following formula (11):

[화학식 11][Formula 11]

Figure pat00011
Figure pat00011

본 발명의 또 다른 실시예에서, 상기 화학식 2로 표시되는 화합물로서, 상기 R1 내지 R3은 C14의 알킬기이고; 상기 X4 내지 X9은 글루코스이고; 그리고 L4 내지 L6은 -CH2-인 화합물을 "SHG-G14"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 12로 표시되는 화합물일 수 있다:In another embodiment of the present invention, as the compound represented by Formula 2, wherein R 1 to R 3 are C 14 alkyl groups; X 4 to X 9 are glucose; And L 4 to L 6 was named "SHG-G14" a compound of -CH 2 -. Thus, the compound may be a compound represented by the following Formula 12:

[화학식 12][Formula 12]

Figure pat00012
Figure pat00012

본 발명의 다른 구체예에 따른 화합물은 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하기 위한 양친매성 분자일 수 있으나, 이에 제한하지 않는다.The compound according to another embodiment of the present invention may be an amphiphilic molecule for extracting, dissolving, stabilizing, crystallizing or analyzing a membrane protein, but is not limited thereto.

구체적으로, 상기 추출은 막단백질을 세포막으로부터 추출하는 것일 수 있다.Specifically, the extraction may be to extract the membrane protein from the cell membrane.

본 명세서에서 사용된 용어, "양친매성 분자"란 한 분자 내에 소수성기와 친수성기가 공존하여 극성, 비극성 용매 모두에 친화성을 가질 수 있는 분자를 의미한다. 계면활성제나 세포막에 존재하는 인지질 분자들은 한 끝에는 친수성기, 다른 끝에는 소수성기를 가진 분자로 양친매성을 갖고 수용액 중에서 미셀이나 리포좀을 형성하는 특징이 있다. 친수성기가 극성을 갖고 있으나 비극성기가 공존하기 때문에 이들의 양친매성 분자는 수용액에 잘 녹지 않는 경향이 있다. 그러나 농도가 어느 한계농도(임계 미셀 농도, CMC) 이상이 되면 소수성 상호작용에 의해 소수성기가 내부로 집합하고 친수성기가 표면에 노출된 둥글거나 타원 형태의 미셀이 생성되어 물에 대한 용해성이 크게 증가한다.As used herein, the term "amphiphilic molecule" refers to a molecule capable of having affinity for both polar and non-polar solvents by coexisting hydrophobic groups and hydrophilic groups in one molecule. Phospholipid molecules present in surfactants or cell membranes have a hydrophilic group at one end and a hydrophobic group at the other end. They have amphiphilic properties and form micelles or liposomes in aqueous solutions. Hydrophilic groups have polarity, but since non-polar groups coexist, their amphiphilic molecules tend to be less soluble in aqueous solutions. However, when the concentration exceeds a certain limit concentration (critical micelle concentration, CMC), hydrophobic groups are collected inside by hydrophobic interaction, and round or elliptical micelles are formed in which the hydrophilic groups are exposed on the surface. .

CMC를 측정하는 방법은 특별히 제한되지 않으나, 당해 기술분야에서 널리 알려진 방법을 사용할 수 있으며, 예를 들어 디페닐헥사트리엔(diphenylhexatriene; DPH)을 이용한 형광 염색 방법으로 측정할 수 있다.A method of measuring CMC is not particularly limited, but a method widely known in the art may be used, for example, it may be measured by a fluorescent staining method using diphenylhexatriene (DPH).

본 발명의 일 구체예에 따른 화합물은 수용액에서 임계 미셀 농도(CMC)가 0.0001 내지 1 mM일 수 있으며, 구체적으로 구체적으로 0.001 내지 0.5 mM, 보다 더 구체적으로 0.005 내지 0.3 mM 일 수 있으나, 이에 제한하지 않는다. The compound according to an embodiment of the present invention may have a critical micelle concentration (CMC) in an aqueous solution of 0.0001 to 1 mM, specifically 0.001 to 0.5 mM, and more specifically 0.005 to 0.3 mM, but is limited thereto. I never do that.

기존에 막단백질 연구에 주로 사용되고 있는 DDM의 경우 임계 미셀 농도가 0.17 mM인 것과 비교하여 본 구체예의 대부분의 STMs, STM-Es 또는 SHG-Gs은 작은 CMC 값을 가지고 있다. 따라서, STMs, STM-Es 또는 SHG-Gs는 낮은 농도에서도 미셀이 용이하게 형성되므로, 적은 양을 사용하여 막단백질을 효과적으로 연구 분석할 수 있어 DDM 보다 활용측면에서 유리하다 할 수 있다.In the case of DDM, which is mainly used for membrane protein studies, most of the STMs, STM-Es or SHG-Gs of this embodiment have a small CMC value compared to the critical micelle concentration of 0.17 mM. Therefore, since micelles are easily formed even at low concentrations of STMs, STM-Es or SHG-Gs, it can be said that it is more advantageous in terms of utilization than DDM because it is possible to study and analyze membrane proteins effectively using a small amount.

또한, 본 발명의 또 다른 구체예는 상기 화합물을 포함하는 막단백질의 추출, 용해화, 안정화, 결정화 또는 분석용 조성물을 제공한다.In addition, another embodiment of the present invention provides a composition for extraction, solubilization, stabilization, crystallization or analysis of a membrane protein containing the compound.

구체적으로, 상기 추출은 막단백질을 세포막으로부터 추출하는 것일 수 있다.Specifically, the extraction may be to extract the membrane protein from the cell membrane.

상기 조성물은 미셀, 리포좀, 에멀션 또는 나노입자의 제형인 것일 수 있으나, 이에 제한하지 않는다.The composition may be in the form of micelles, liposomes, emulsions, or nanoparticles, but is not limited thereto.

상기 미셀은 반지름이 2.0 nm 내지 50 nm일 수 있고, 구체적으로 2.0 nm 내지 30.0 nm일 수 있으나, 이에 제한하지 않는다.The micelles may have a radius of 2.0 nm to 50 nm, and specifically 2.0 nm to 30.0 nm, but are not limited thereto.

미셀의 반지름을 측정하는 방법은 특별히 제한되지 않으나, 당해 기술분야에서 널리 알려진 방법을 사용할 수 있으며, 예를 들어 동적 광산란 (dynamic light scattering; DLS) 실험을 이용해 측정할 수 있다.A method of measuring the radius of the micelle is not particularly limited, but a method well known in the art may be used, and may be measured using, for example, a dynamic light scattering (DLS) experiment.

상기 미셀, 리포좀, 에멀션 또는 나노입자는 내부의 소수성으로 막단백질과 결합할 수 있다. 즉, 상기 미셀, 리포좀, 에멀션 또는 나노입자는 세포막에 존재하는 막단백질을 추출하여 감싸안을 수 있다. 따라서, 상기 미셀에 의하여 세포막으로부터 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 것이 가능하다.The micelles, liposomes, emulsions, or nanoparticles are hydrophobic and can bind to membrane proteins. That is, the micelles, liposomes, emulsions, or nanoparticles may extract and wrap a membrane protein present in a cell membrane. Therefore, it is possible to extract, solubilize, stabilize, crystallize, or analyze membrane proteins from the cell membrane by the micelles.

상기 조성물은 막단백질의 추출, 용해화, 안정화, 결정화 또는 분석에 도움이 될 수 있는 버퍼 등을 추가로 포함할 수 있다.The composition may further include a buffer that may aid in extraction, solubilization, stabilization, crystallization, or analysis of membrane proteins.

또한, 본 발명의 또 다른 구체예는 하기 1) 내지 4)의 단계를 포함하는 하기 화학식 1로 표시되는 화합물의 제조 방법을 제공한다:In addition, another embodiment of the present invention provides a method for preparing a compound represented by the following formula (1) comprising the steps of 1) to 4) below:

1) 실리톨-1, 3, 5-오르쏘아세테이트(scyllitol-1,3,5-orthoacetate)에 알킬 아이오다이드(alkyl iodide)를 첨가하여 알킬화를 반응을 수행하는 단계;1) performing an alkylation reaction by adding alkyl iodide to silitol-1, 3, 5-orthoacetate;

2) 상기 단계 1)의 생성물에 산을 처리하여 오르쏘아세테이트 보호기를 제거하여 트리올을 생성하는 단계;2) treating the product of step 1) with an acid to remove the orthoacetate protecting group to produce a triol;

3) 상기 단계 2)의 생성물에 글리코실레이션(glycosylation) 반응을 수행하여 보호기가 부착된 당류를 도입하는 단계; 및3) introducing a saccharide having a protecting group attached thereto by performing a glycosylation reaction to the product of step 2); And

4) 상기 단계 3)의 생성물에 탈보호기화(deprotection) 반응을 수행하는 단계,4) performing a deprotection reaction on the product of step 3),

[화학식 1][Formula 1]

Figure pat00013
Figure pat00013

상기 화학식 1에서,In Formula 1,

상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기, 치환 또는 비치환된 C3-C30의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C30의 아릴기일 수 있고; The R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group, a substituted or unsubstituted C 3 -C 30 cycloalkyl group, or a substituted or unsubstituted C 3 -C 30 aryl Can be a group;

상기 L1 내지 L3은 직접결합일 수 있으며; 그리고The L 1 to L 3 may be a direct bond; And

상기 X1 내지 X3 는 산소와 연결된 당류(saccharide)일 수 있다.The X 1 to X 3 may be saccharides linked to oxygen.

상기 방법에 의해 합성된 화합물은 본 발명의 일 실시예에 따른 화학식 3 내지 5 중 하나의 화합물일 수 있으나, 이에 제한되지 않는다.The compound synthesized by the above method may be one of Chemical Formulas 3 to 5 according to an embodiment of the present invention, but is not limited thereto.

본 구체예에서, 5단계의 합성 단계를 거쳐 간단한 방법으로 화합물을 합성할 수 있으므로, 막단백질 연구를 위한 화합물의 대량 생산이 가능하다.In this embodiment, since the compound can be synthesized by a simple method through five synthesis steps, mass production of the compound for membrane protein research is possible.

또한, 본 발명의 또 다른 구체예는 하기 1) 내지 5)의 단계를 포함하는 하기 화학식 1로 표시되는 화합물의 제조 방법을 제공한다:In addition, another embodiment of the present invention provides a method for preparing a compound represented by the following formula 1, including the steps of 1) to 5):

1) 1, 3, 5-트리알릴레이트 실리톨(1,3,5-triallylated scyllitol) 에 알킬 아이오다이드(alkyl iodide)를 첨가하여 알킬화 반응을 수행하는 단계;1) performing an alkylation reaction by adding an alkyl iodide to 1,3,5-triallylated scyllitol;

2) 상기 단계 1)의 생성물에 오존분해 반응(ozonolysis)을 수행하는 단계;2) performing an ozonolysis reaction on the product of step 1);

3) 상기 단계 2의 생성물에 글리코실레이션(glycosylation) 반응을 수행하여 보호기가 부착된 당류를 도입하는 단계; 및3) introducing a saccharide to which a protecting group is attached by performing a glycosylation reaction to the product of step 2; And

4) 상기 단계 3)의 생성물에 탈보호기화(deprotection) 반응을 수행하는 단계,4) performing a deprotection reaction on the product of step 3),

[화학식 1][Formula 1]

Figure pat00014
Figure pat00014

상기 화학식 1에서,In Formula 1,

상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기, 치환 또는 비치환된 C3-C30의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C30의 아릴기일 수 있고; The R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group, a substituted or unsubstituted C 3 -C 30 cycloalkyl group, or a substituted or unsubstituted C 3 -C 30 aryl Can be a group;

상기 L1 내지 L3은 -O(산소)-Y-로, 상기 Y는 치환 또는 비치환된 C1-C10의 알킬렌기일 수 있으며; 그리고The L 1 to L 3 may be -O (oxygen)-Y-, and Y may be a substituted or unsubstituted C 1 -C 10 alkylene group; And

상기 X1 내지 X3 는 산소와 연결된 당류(saccharide)일 수 있다.The X 1 to X 3 may be saccharides linked to oxygen.

상기 방법에 의해 합성된 화합물은 본 발명의 일 실시예에 따른 화학식 6 내지 9 중 하나의 화합물일 수 있으나, 이에 제한되지 않는다.The compound synthesized by the above method may be one of Chemical Formulas 6 to 9 according to an embodiment of the present invention, but is not limited thereto.

또한, 본 발명의 또 다른 구체예는 하기 1) 내지 5)의 단계를 포함하는 하기 화학식 2로 표시되는 화합물의 제조 방법을 제공한다:In addition, another embodiment of the present invention provides a method for preparing a compound represented by the following formula (2) comprising the steps of 1) to 5) below:

1) 1, 3, 5-트리알릴레이트 실리톨(1,3,5-triallylated scyllitol)에 알킬 아이오다이드(alkyl iodide)를 첨가하여 알킬화 반응을 수행하는 단계;1) performing an alkylation reaction by adding an alkyl iodide to 1,3,5-triallylated scyllitol;

2) 상기 단계 1)의 생성물에 다이하이드록실레이션(dihydroxylation)을 수행하는 단계;2) performing dihydroxylation on the product of step 1);

3) 상기 단계 2의 생성물에 글리코실레이션(glycosylation) 반응을 수행하여 보호기가 부착된 당류를 도입하는 단계; 및3) introducing a saccharide to which a protecting group is attached by performing a glycosylation reaction to the product of step 2; And

4) 상기 단계 3)의 생성물에 탈보호기화(deprotection) 반응을 수행하는 단계,4) performing a deprotection reaction on the product of step 3),

[화학식 2][Formula 2]

Figure pat00015
Figure pat00015

상기 화학식 2에서,In Chemical Formula 2,

상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기, 치환 또는 비치환된 C3-C30의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C30의 아릴기일 수 있고; The R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group, a substituted or unsubstituted C 3 -C 30 cycloalkyl group, or a substituted or unsubstituted C 3 -C 30 aryl Can be a group;

상기 L4 내지 L6은 치환 또는 비치환된 C1-C10의 알킬렌기일 수 있으며; 그리고The L 4 to L 6 may be a substituted or unsubstituted C 1 -C 10 alkylene group; And

상기 X4 내지 X9는 산소와 연결된 당류(saccharide)일 수 있다.The X 4 to X 9 may be a saccharide linked to oxygen.

상기 방법에 의해 합성된 화합물은 본 발명의 일 실시예에 따른 화학식 10 내지 12 중 하나의 화합물일 수 있으나, 이에 제한되지 않는다.The compound synthesized by the above method may be one of Formulas 10 to 12 according to an embodiment of the present invention, but is not limited thereto.

본 발명의 또 다른 구체예는 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법을 제공한다. 구체적으로, 수용액에서 하기 화학식 1 또는 화학식 2로 표시되는 화합물을 막단백질에 처리하는 단계를 포함하는, 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법을 제공한다:Another embodiment of the present invention provides a method for extracting, dissolving, stabilizing, crystallizing or analyzing membrane proteins. Specifically, it provides a method for extracting, dissolving, stabilizing, crystallizing or analyzing a membrane protein, comprising the step of treating a membrane protein with a compound represented by the following Formula 1 or Formula 2 in an aqueous solution:

[화학식 1][Formula 1]

Figure pat00016
Figure pat00016

상기 화학식 1에서,In Formula 1,

상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기, 치환 또는 비치환된 C3-C30의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C30의 아릴기일 수 있고; The R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group, a substituted or unsubstituted C 3 -C 30 cycloalkyl group, or a substituted or unsubstituted C 3 -C 30 aryl Can be a group;

상기 L1 내지 L3은 각각 독립적으로 직접결합 또는 -O(산소)-Y-로, 상기 Y는 치환 또는 비치환된 C1-C10의 알킬렌기일 수 있으며; 그리고The L 1 to L 3 may each independently be a direct bond or -O (oxygen)-Y-, wherein Y may be a substituted or unsubstituted C 1 -C 10 alkylene group; And

상기 X1 내지 X3은 산소와 연결된 당류(saccharide)일 수 있다.The X 1 to X 3 may be saccharides linked to oxygen.

[화학식 2][Formula 2]

Figure pat00017
Figure pat00017

상기 화학식 2에서,In Chemical Formula 2,

상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기, 치환 또는 비치환된 C3-C30의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C30의 아릴기일 수 있고; The R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group, a substituted or unsubstituted C 3 -C 30 cycloalkyl group, or a substituted or unsubstituted C 3 -C 30 aryl Can be a group;

상기 L4 내지 L6은 치환 또는 비치환된 C1-C10의 알킬렌기일 수 있으며; 그리고The L 4 to L 6 may be a substituted or unsubstituted C 1 -C 10 alkylene group; And

상기 X4 내지 X9는 산소와 연결된 당류(saccharide)일 수 있다.The X 4 to X 9 may be a saccharide linked to oxygen.

구체적으로, 상기 화학식 1에서 상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기일 수 있고; 상기 X1 내지 X3 은 말토오스일 수 있고; 그리고 상기 L1 내지 L3 은 직접결합 또는 -O-Y-이며, 상기 Y는 알킬렌기일 수 있다. Specifically, in Formula 1, R 1 to R 3 may each independently be a substituted or unsubstituted C 3 -C 30 alkyl group; X 1 to X 3 may be maltose; And the L 1 to L 3 is a direct bond or -OY-, and the Y may be an alkylene group.

본 발명의 다른 실시예에서, 상기 화학식 2에서 상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기일 수 있고; 상기 X4 내지 X9는 글루코스일 수 있고; 그리고 상기 L4 내지 L6 은 알킬렌기일 수 있다.In another embodiment of the present invention, in Formula 2, R 1 to R 3 may each independently be a substituted or unsubstituted C 3 -C 30 alkyl group; X 4 to X 9 may be glucose; And the L 4 to L 6 may be an alkylene group.

상기 화합물은 본 발명의 일 실시예에 따른 화학식 3 내지 12 중 하나의 화합물일 수 있으나, 이에 제한되지 않는다.The compound may be one of Formulas 3 to 12 according to an embodiment of the present invention, but is not limited thereto.

구체적으로, 상기 추출은 막단백질을 세포막으로부터 추출하는 것일 수 있다.Specifically, the extraction may be to extract the membrane protein from the cell membrane.

본 명세서에서 사용된 용어, "막단백질"이란 세포막 지질이중층으로 이입되는 단백질 또는 당단백질의 총칭이다. 이는 세포막 전체 층을 관통하거나, 표층에 위치하거나, 세포막을 배접하는 등 여러 상태로 존재하고 있다. 막단백질의 예로 효소, 펩티드호르몬과 국소호르몬 등의 수용체, 당 등의 수용담체, 이온채널, 세포막 항원 등이 있으나, 이에 제한되지 않는다.As used herein, the term "membrane protein" is a generic term for a protein or glycoprotein that is transferred to the cell membrane lipid bilayer. These exist in various states, such as penetrating the entire cell membrane, being located on the surface, or adhering to the cell membrane. Examples of membrane proteins include, but are not limited to, enzymes, receptors such as peptide hormones and local hormones, receptor carriers such as sugars, ion channels, and cell membrane antigens.

상기 막단백질은 세포막 지질이중층으로 이입되는 단백질 또는 당단백질이라면 어느 것이나 포함하며, 구체적으로 LHI-RC, LeuT (Leucine transporter), β2AR (human β2 adrenergic receptor), MelBst (melibiose permease) 또는 이들의 2 이상의 조합일 수 있으나, 이에 제한되지 않는다.The membrane protein includes any protein or glycoprotein that is transferred to the cell membrane lipid bilayer, specifically LHI-RC, LeuT (Leucine transporter), β 2 AR (human β 2 adrenergic receptor), MelB st (melibiose permease) or a combination of two or more thereof, but is not limited thereto.

본 명세서에서 사용된 용어, "막단백질의 추출(extraction)"이란 막단백질을 세포막(membrane)으로부터 분리하는 것을 의미한다.As used herein, the term "extraction of membrane proteins" means separating membrane proteins from cell membranes.

본 명세서에서 사용된 용어, "막단백질의 용해화(solubilization)"란 물에 녹지 않는 막단백질을 수용액에서 미셀에 녹아들도록 하는 것을 의미한다. As used herein, the term "solubilization of membrane proteins" refers to dissolving membrane proteins insoluble in water into micelles in an aqueous solution.

본 명세서에서 사용된 용어, "막단백질의 안정화(stabilization)"란 막단백질의 구조, 기능이 변하지 않도록 3차 또는 4차 구조를 안정하게 보존하는 것을 의미한다.As used herein, the term "stabilization of a membrane protein" means stably preserving a tertiary or quaternary structure so that the structure and function of the membrane protein are not changed.

본 명세서에서 사용된 용어, "막단백질의 결정화(crystallization)"란 용액에서 막단백질의 결정을 형성하는 것을 의미한다.As used herein, the term "crystallization of a membrane protein" means forming a crystal of a membrane protein in a solution.

본 명세서에서 사용된 용어, "막단백질의 분석(analysis)"이란 막단백질의 구조 또는 기능을 분석하는 것을 의미한다. 상기 구체예에서, 막단백질의 분석은 공지의 방법을 이용할 수 있으며, 이에 제한되지 않으나, 예를 들어 전자현미경(electron microscopy) 또는 핵자기공명 (nuclear magnetic resonance)을 이용하여 막단백질의 구조를 분석할 수 있다.As used herein, the term "analysis of a membrane protein" means analyzing the structure or function of a membrane protein. In the above embodiment, the analysis of the membrane protein may use a known method, but is not limited thereto, for example, analyzing the structure of the membrane protein using electron microscopy or nuclear magnetic resonance. can do.

본 발명의 구체예들에 따른 실로-이노시톨 기반의 화합물을 이용하면 기존 화합물 대비 막단백질을 수용액에서 장기간 안정적으로 보관할 수 있고, 이를 통해 그 기능분석 및 구조 분석에 활용될 수 있다.When the silo-inositol-based compound according to the embodiments of the present invention is used, the membrane protein can be stably stored in an aqueous solution for a long time compared to the existing compound, and through this, it can be used for functional analysis and structural analysis.

막단백질 구조 및 기능 분석은 현 생물학 및 화학에서 가장 관심을 갖고 있는 분야 중 하나이므로, 신약 개발과 긴밀한 관계가 있는 단백질 구조 연구에 응용이 가능하다.Membrane protein structure and function analysis is one of the fields of interest in current biology and chemistry, so it can be applied to protein structure studies that are closely related to the development of new drugs.

또한, 본 발명의 구체예들에 따른 화합물은 쉽게 구할 수 있는 출발물질로부터 간단한 방법으로 합성이 가능하므로, 막단백질 연구를 위한 화합물의 대량 생산이 가능하다.In addition, since the compounds according to the embodiments of the present invention can be synthesized by a simple method from readily available starting materials, mass production of compounds for membrane protein studies is possible.

도 1는 본 발명의 실시예 1에 따른 STMs의 합성스킴을 나타낸 도이다.
도 2는 본 발명의 실시예 2에 따른 STM-Es의 합성스킴을 나타낸 도이다.
도 3은 본 발명의 실시예 3에 따른 SHG-Gs의 합성스킴을 나타낸 도이다.
도 4는 STMs, STM-Es 또는 SHG-Gs의 DLS 프로파일을 도시한 것이다.
도 5는 CMC + 0.2 wt% STMs, STM-Es 또는 SHG-Gs에 의해 용해된 LHI-RC를 포함하는 R. capsulatus 조립체의 장기간 안정성을 측정한 결과를 나타낸 도이다.
도 6은 CMC + 0.2 wt%의 STMs, STM-Es, SHG-Gs 또는 DDM에 의한 수용액에서의 LeuT (Leucine transporter) 구조 안정성을 측정한 결과이다. 단백질 안정성은 SPA (scintillation proximity assay)를 통해 트랜스포터의 기질 결합 특성을 측정함으로써 확인하였다. 각각의 양친매성 화합물 존재하에 LeuT를 14일 동안 상온에서 인큐베이션하면서 단백질의 기질 결합 특성을 규칙적인 간격으로 측정하였다:
도 7은 STMs, STM-Es, SHG-Gs 또는 DDM을 1.5 wt% 농도로 사용하여 MelBSt 단백질을 4개의 온도(0, 45, 55, 65 ℃)에서 추출 후, 90분 동안 같은 온도에서 인큐베이션한 다음 수용액에 용해되어 있는 MelBSt 단백질의 양을 측정한 결과이다:
(a) 각 양친매성 화합물을 사용하여 추출한 MelB 단백질의 양을 나타낸 SDS-PAGE 및 Western Blotting 결과 및 각 양친매성 화합물을 사용하여 추출한 MelBSt 단백질의 양을 양친매성 화합물 미처리 멤브레인 샘플(Memb)에 존재하는 전체 단백질 양의 퍼센티지(%)로 나타낸 히스토그램(histogram); 및
(b) DDM 또는 STM-12에 의해 용해된 MelB의 기능이 유지되는지 여부를 확인한 결과
도 8은 STMs, STM-Es, SHG-Gs 또는 DDM 에 의한 β2AR의 안정성에 대한 효과를 (a) 30분 시점에, (b) 3일간 일정 간격으로, 또는 (c) 5일간 일정 간격으로 측정한 결과이다. 단백질 리간드 결합 특성은 [3H]-dihydroalprenolol(DHA)의 ligand binding assay를 통해 측정하였다.
1 is a diagram showing a synthesis scheme of STMs according to Example 1 of the present invention.
2 is a diagram showing a synthesis scheme of STM-Es according to Example 2 of the present invention.
3 is a diagram showing a synthesis scheme of SHG-Gs according to Example 3 of the present invention.
4 shows the DLS profile of STMs, STM-Es or SHG-Gs.
5 is a diagram showing the results of measuring the long-term stability of R. capsulatus assembly containing LHI-RC dissolved by CMC + 0.2 wt% STMs, STM-Es or SHG-Gs.
6 is a result of measuring the structural stability of LeuT (Leucine transporter) in an aqueous solution by CMC + 0.2 wt% of STMs, STM-Es, SHG-Gs or DDM. Protein stability was confirmed by measuring the substrate binding properties of the transporter through a scintillation proximity assay (SPA). In the presence of each amphiphilic compound, LeuT was incubated at room temperature for 14 days to measure the protein's substrate binding properties at regular intervals:
Figure 7 is a MelB St protein using STMs, STM-Es, SHG-Gs or DDM at a concentration of 1.5 wt%, extracted at four temperatures (0, 45, 55, 65 ℃), incubated at the same temperature for 90 minutes Then, the amount of MelB St protein dissolved in the aqueous solution was measured:
(a) SDS-PAGE and Western Blotting results showing the amount of MelB protein extracted using each amphiphilic compound, and the amount of MelB St protein extracted using each amphiphilic compound is present in a membrane sample (Memb) without an amphiphilic compound A histogram expressed as a percentage (%) of the total amount of protein to be taken; And
(b) As a result of checking whether the function of MelB dissolved by DDM or STM-12 is maintained
Figure 8 shows the effect on the stability of β 2 AR by STMs, STM-Es, SHG-Gs or DDM (a) at 30 minutes, (b) at regular intervals for 3 days, or (c) at regular intervals for 5 days It is the result of measurement. Protein ligand binding properties were measured through a ligand binding assay of [ 3 H]-dihydroalprenolol (DHA).

이하 본 발명을 하기 실시예에서 보다 상세하게 기술한다. 다만, 하기 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 권리범위를 제한하거나 한정하는 것이 아니다. 본 발명의 상세한 설명 및 실시예로부터 본 발명이 속하는 기술분야의 통상의 기술자가 용이하게 유추할 수 있는 것은 본 발명의 권리범위에 속하는 것으로 해석된다.Hereinafter, the present invention will be described in more detail in the following examples. However, the following examples are not intended to limit or limit the scope of the present invention only to illustrate the content of the present invention. What can be easily inferred by those skilled in the art from the detailed description and examples of the present invention is construed as belonging to the scope of the present invention.

<실시예 1> STMs 의 합성 방법<Example 1> Synthesis method of STMs

STMs 의 합성 스킴을 도 1에 나타내었다. 하기 <1-1> 내지 <1-3>의 합성 방법에 따라 STMs 3종의 화합물을 합성하였다.The synthesis scheme of STMs is shown in FIG. 1. Three kinds of STMs compounds were synthesized according to the synthesis methods of the following <1-1> to <1-3>.

<1-1> 1,3,5-<1-1> 1,3,5- 트리알킬화된Trialkylated 실리톨Silitol (1,3,5-(1,3,5- trialkylatedtrialkylated scyllitolscyllitol )(화합물 A)의 합성(도 1의 단계 a)Synthesis of (Compound A) (Step a in Fig. 1)

DMF에 혼합된 실리톨-1,3,5-오르쏘아세테이트(syllitol-1,3,5-orthoacetate)(화합물 1a, 1.0 당량) 용액을 0 ℃로 냉각시킨 후 불활성 대기 하에서 NaH (미네랄 오일에 60 % 분산액, 6.0 당량)를 첨가하였다. 알킬 아이오다이드(4.5 당량)를 가스 방출이 멈춘 후에 적가하고, 반응 혼합물을 실온에서 완전히 혼합될때까지 교반하였다. 얼음 첨가 후 증류수로 희석하여 반응을 켄칭시켰다. 희석된 반응 혼합물을 에틸 아세테이트로 추출 하였다. 혼합한 에틸 아세테이트 분획을 염수로 세척하고 무수 Na2SO4상에서 건조시켰다. 감압 하에서 용매를 제거하여 TFA/H2O (10:1) 혼합물에 용해된 무색의 오일을 생성시키고, 실온에서 2 시간 동안 교반을 계속하였다. 공-용매 DCM으로 TFA를 회전 증발시켜 유성 잔류물을 수득하였으며, 이를 DCM/MeOH (1 : 1)에 재용해시켰다. 이 혼합물에 NaOH (25 중량 %)를 첨가하여 12이상 pH를 증가시켰다. 생성된 알칼리성 혼합물을 40 ℃에서 4 시간 동안 교반한 다음 물로 희석시켰다. 희석된 혼합물을 DCM으로 2 회 세척하였다. 혼합된 유기층을 염수로 세척하고 무수 Na2SO4상에서 건조시켰다. 감압하에서 DCM을 제거하여 유성 잔류물을 얻었으며, 컬럼 크로마토그래피 정제를 통해 무색 오일의 목적 화합물 A를 수득하였다.After cooling the solution of silitol-1,3,5-orthoacetate (compound 1a, 1.0 equivalent) mixed in DMF to 0 °C, NaH (mineral oil) was added under an inert atmosphere. 60% dispersion, 6.0 eq) was added. Alkyl iodide (4.5 equivalents) was added dropwise after gas evolution ceased, and the reaction mixture was stirred at room temperature until thoroughly mixed. After adding ice, it was diluted with distilled water to quench the reaction. The diluted reaction mixture was extracted with ethyl acetate. The combined ethyl acetate fractions were washed with brine and dried over anhydrous Na 2 SO 4 . Removal of the solvent under reduced pressure gave a colorless oil dissolved in a TFA/H2O (10:1) mixture, and stirring was continued at room temperature for 2 hours. TFA was rotary evaporated with co-solvent DCM to give an oily residue, which was redissolved in DCM/MeOH (1: 1). NaOH (25% by weight) was added to the mixture to increase the pH by 12 or more. The resulting alkaline mixture was stirred at 40° C. for 4 hours and then diluted with water. The diluted mixture was washed twice with DCM. The combined organic layer was washed with brine and dried over anhydrous Na 2 SO 4 . DCM was removed under reduced pressure to obtain an oily residue, and the title compound A was obtained as a colorless oil through column chromatography purification.

<1-2> 말토실레이션(maltosylation)반응의 일반 합성 절차 (도 1의 단계 b)<1-2> General synthesis procedure of maltosylation reaction (step b of FIG. 1)

질소(N2) 하에서, 화합물 A (1.0 당량), 디메톡시에탄 (30.0 당량) 및 AgOTf (3.6 당량)의 혼합물을 무수 CH2Cl2 에서 -45 ℃에서 교반하였다. 무수 CH2Cl2에서 페르벤조일레이티드 말토실브로마이드(perbenzoylated maltosylbromide) (3.6 당량)용액을이 현탁액에 적가하였다. -45 ℃에서 5 분 동안 교반을 계속한 후, 반응 혼합물의 온도를 0 ℃로 증가시키고 30 분 동안 계속 교반하였다. 반응 완결 후 (TLC로 나타냄), 피리딘을 첨가하여 반응을 켄칭시킨 후, CH2Cl2로 희석하여 셀 라이트상에서 여과하였다. 여과액을 1 M 수용성 Na2S2O3 용액, 0.1 M HCl 수용액 및 염수로 연속적으로 세척하였다. 유기층을 무수 Na2SO4로 건조시킨 후, 감압하에 용매를 제거하였다. 수득된 잔류물을 실리카 겔 컬럼 크로마토그래피 (EtOAc/헥산)로 정제하여 유리질 고체인 목적하는 생성물 화합물 A1을 수득하였다.Under nitrogen (N 2 ), a mixture of compound A (1.0 equivalent), dimethoxyethane (30.0 equivalent) and AgOTf (3.6 equivalent) was stirred in anhydrous CH 2 Cl 2 at -45°C. A solution of perbenzoylated maltosylbromide (3.6 equivalents) in anhydrous CH 2 Cl 2 was added dropwise to this suspension. After continuing the stirring at -45° C. for 5 minutes, the temperature of the reaction mixture was increased to 0° C. and stirring was continued for 30 minutes. After completion of the reaction (represented by TLC), pyridine was added to quench the reaction, then diluted with CH 2 Cl 2 and filtered over Celite. The filtrate was washed successively with 1 M aqueous Na 2 S 2 O 3 solution, 0.1 M HCl aqueous solution, and brine. After drying the organic layer with anhydrous Na 2 SO 4 , the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (EtOAc/hexane) to obtain the desired product compound A 1 as a glassy solid.

<1-3> <1-3> 탈보호기화Deprotection vaporization 반응 ( reaction ( deprotectiondeprotection reaction)을 위한 일반 합성 절차 (도 1의 단계 c) reaction) for general synthesis procedure (step c in FIG. 1)

이는 Chae, P. S. 등의 합성 방법 (Nat Meth 2010, 7, 1003.)에 따랐다. Zemplen's 조건하에 데-O-벤조일화(de-O-benzoylation)를 수행하였다. O-protected 화합물을 무수 CH2Cl2로 용해시킨 다음 MeOH를 지속적인 침전이 나타날때까지 천천히 첨가하였다. 상기 반응 혼합물에 0.5M의 메탄올성 용액(methanolic solution)인 NaOMe를 최종 농도가 0.05 M이 되도록 첨가하였다. 반응 혼합물을 상온에서 6시간 동안 교반시켰다. 반응 완료 후, 반응 혼합물을 Amberlite IR-120 (H+ form) resin을 이용하여 중화시켰다. 여과하여 resin을 제거하고, MeOH로 세척하고, 진공 조건(in vacuo)에서 여과물로부터 용매를 제거하였다. 2 mL의 MeOH:CH2Cl2 (1:1) 혼합물에 용해된 잔류물에 디에틸에테르 (50 mL)를 첨가하여 침전된 백색 고체의 목적 화합물 A2을 수득하였다.This was followed by the synthesis method of Chae, PS et al. (Nat Meth 2010, 7, 1003.). De-O-benzoylation was performed under Zemplen's conditions. The O-protected compound was dissolved in anhydrous CH2Cl2 and then MeOH was slowly added until a continuous precipitation appeared. NaOMe, which is a 0.5M methanolic solution, was added to the reaction mixture so that the final concentration was 0.05M. The reaction mixture was stirred at room temperature for 6 hours. After completion of the reaction, the reaction mixture was neutralized using Amberlite IR-120 (H+ form) resin. The resin was removed by filtration, washed with MeOH, and the solvent was removed from the filtrate under vacuum conditions (in vacuo). Diethyl ether (50 mL) was added to the residue dissolved in 2 mL of MeOH:CH 2 Cl 2 (1:1) mixture to obtain the target compound A 2 as a precipitated white solid.

<제조예 1> STM-10의 합성<Production Example 1> Synthesis of STM-10

<1-1> 화합물 A1의 합성<1-1> Synthesis of Compound A1

실시예 1-1의 1,3,5-트리알킬화된 실리톨 합성 절차에 따라 화합물 A1을 70%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.79 (t, J = 6.0 Hz, 6H), 3.44 (t, J = 10.0 Hz, 3H), 3.11 (t, J = 10.0 Hz, 3H), 3.03 (s br, 3H), 1.60 (quin, J = 6.0 Hz, 6H), 1.38-1.20 (m, 42H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 82.3, 74.2, 32.1, 30.5, 29.8, 29.7, 29.6, 29.5, 26.3, 22.8, 14.3.Compound A1 was synthesized in 70% yield according to the procedure for synthesizing 1,3,5-trialkylated silitol of Example 1-1. 1 H NMR (400 MHz, CDCl 3 ): δ 3.79 (t, J = 6.0 Hz, 6H), 3.44 (t, J = 10.0 Hz, 3H), 3.11 (t, J = 10.0 Hz, 3H), 3.03 ( s br, 3H), 1.60 (quin, J = 6.0 Hz, 6H), 1.38-1.20 (m, 42H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 82.3, 74.2, 32.1, 30.5, 29.8, 29.7, 29.6, 29.5, 26.3, 22.8, 14.3.

<1-2> STM-10a의 합성<1-2> Synthesis of STM-10a

실시예 1-2의 일반적인 당화 반응 절차에 따라 화합물 STM-10a를 62%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.14 (d, J = 8.0 Hz, 6H), 7.97 (d, J = 8.0 Hz, 6H), 7.83 (d, J = 8.0 Hz, 6H), 7.73-7.68 (m, 18H), 7.59 (t, J = 10.0 Hz, 3H), 7.54 (d, J = 8.0 Hz, 6H), 7.52-7.45 (m, 12H), 7.43-7.38 (m, 12H), 7.36-7.30 (m, 12H), 7.25-7.21 (m, 11H), 7.20 (d, J = 8.0 Hz, 6H), 7.13 (t, J = 8.0 Hz, 7H), 6.14 (t, J = 10.0 Hz, 3H), 5.80-5.66 (m, 9H), 5.35-5.30 (m, 8H), 5.23 (d, J = 4.0 Hz, 3H), 5.19 (t, J = 10.0 Hz, 3H), 4.92 (d, J = 12.0 Hz, 3H), 4.81 (d, J = 8.0 Hz, 3H), 4.49 (t, J = 8.0 Hz, 3H), 4.40-4.37 (m, 3H), 4.33-4.30 (m, 3H), 4.18 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.04 (d, J = 12.0 Hz, 3H), 3.66-3.57 (m, 6H), 3.12 (q, J = 8.0 Hz, 3H), 2.85 (t, J = 10.0 Hz, 3H), 1.48-1.38 (m, 6H), 1.28-1.08 (m, 42H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 166.3, 165.8, 165.6, 165.2, 164.9, 133.7, 133.5, 133.3, 133.1, 130.1, 130.0, 129.9, 129.8, 129.7, 129.5, 129.2, 129.1, 128.9, 128.8, 128.6, 128.5, 128.3, 128.2, 100.2, 96.4, 80.8, 78.6, 75.2, 73.5, 72.8, 71.0, 70.0, 69.2, 63.9, 62.6, 32.2, 30.3, 30.0, 29.8, 29.7, 26.3, 23.0, 14.4.Compound STM-10a was synthesized in a yield of 62% according to the general saccharification reaction procedure of Example 1-2. 1 H NMR (400 MHz, CDCl 3 ): δ 8.14 (d, J = 8.0 Hz, 6H), 7.97 (d, J = 8.0 Hz, 6H), 7.83 (d, J = 8.0 Hz, 6H), 7.73- 7.68 (m, 18H), 7.59 (t, J = 10.0 Hz, 3H), 7.54 (d, J = 8.0 Hz, 6H), 7.52-7.45 (m, 12H), 7.43-7.38 (m, 12H), 7.36 -7.30 (m, 12H), 7.25-7.21 (m, 11H), 7.20 (d, J = 8.0 Hz, 6H), 7.13 (t, J = 8.0 Hz, 7H), 6.14 (t, J = 10.0 Hz, 3H), 5.80-5.66 (m, 9H), 5.35-5.30 (m, 8H), 5.23 (d, J = 4.0 Hz, 3H), 5.19 (t, J = 10.0 Hz, 3H), 4.92 (d, J = 12.0 Hz, 3H), 4.81 (d, J = 8.0 Hz, 3H), 4.49 (t, J = 8.0 Hz, 3H), 4.40-4.37 (m, 3H), 4.33-4.30 (m, 3H), 4.18 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.04 (d, J = 12.0 Hz, 3H), 3.66-3.57 (m, 6H), 3.12 (q, J = 8.0 Hz, 3H), 2.85 (t, J = 10.0 Hz, 3H), 1.48-1.38 (m, 6H), 1.28-1.08 (m, 42H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.3, 165.8, 165.6, 165.2, 164.9, 133.7, 133.5, 133.3, 133.1, 130.1, 130.0, 129.9, 129.8, 129.7, 129.5, 129.2, 129.1, 128.9, 128.8, 128.6, 128.5, 128.3, 128.2, 100.2, 96.4, 80.8, 78.6, 75.2, 73.5, 72.8, 71.0, 70.0, 69.2, 63.9, 62.6, 32.2, 30.3, 30.0, 29.8, 29.7, 26.3, 23.0, 14.4.

<1-3> STM-10의 합성<1-3> Synthesis of STM-10

실시예 1-3의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 STM-10을 91%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.11 (d, J = 4.0 Hz, 3H), 4.79 (d, J = 8.0 Hz, 3H), 3.94-3.90 (m, 6H), 3.82-3.77 (m, 9H), 3.71-3.64 (m, 9H), 3.62-3.58 (m, 6H), 3.44 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.39 (t, J = 8.0 Hz, 3H), 3.34-3.27 (m, 9H), 3.24-3.19 (dd, J 1-2 = 4.0 Hz, J 1-3 = 8.0 Hz, 3H), 1.64-1.62 (m, 6H), 1.39-1.21 (m, 42H), 0.90 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CD3OD): δ 105.0, 102.9, 81.3, 77.9, 76.5, 75.6, 75.1, 74.8, 74.2, 71.3, 70.4, 70.1, 62.7, 62.3, 48.5, 46.6, 41.6, 39.5, 32.7, 27.7, 23.8, 14.7. HRMS ( FAB + ): calcd. for C72H132O36 [M+Na]+ 1595.8396, found 1595.8402.According to the general synthetic procedure for the deprotection vaporization reaction of Example 1-3, STM-10 was obtained in a yield of 91%. Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.11 (d, J = 4.0 Hz, 3H), 4.79 (d, J = 8.0 Hz, 3H), 3.94-3.90 (m, 6H), 3.82-3.77 ( m, 9H), 3.71-3.64 (m, 9H), 3.62-3.58 (m, 6H), 3.44 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.39 (t, J = 8.0 Hz, 3H), 3.34-3.27 (m, 9H), 3.24-3.19 (dd, J 1-2 = 4.0 Hz, J 1-3 = 8.0 Hz, 3H), 1.64-1.62 (m, 6H) , 1.39-1.21 (m, 42H), 0.90 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 105.0, 102.9, 81.3, 77.9, 76.5, 75.6, 75.1, 74.8, 74.2, 71.3, 70.4, 70.1, 62.7, 62.3, 48.5, 46.6, 41.6, 39.5, 32.7 , 27.7, 23.8, 14.7. HRMS ( FAB + ) : calcd. for C 72 H 132 O 36 [M+Na] + 1595.8396, found 1595.8402.

<제조예 2> STM-11의 합성<Production Example 2> Synthesis of STM-11

<2-1> 화합물 A2의 합성<2-1> Synthesis of Compound A2

실시예 1-1의 1,3,5-트리알킬화된 실리톨 합성 절차에 따라 화합물 A2를 70%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.79 (t, J = 6.0 Hz, 6H), 3.43 (t, J = 8.0 Hz, 3H), 3.10 (t, J = 10.0 Hz, 3H), 2.69 (s br, 3H), 1.60 (quin, J = 8.0 Hz, 6H), 1.38-1.20 (m, 48H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 82.3, 74.2, 73.5, 32.1, 30.5, 29.8, 29.7, 29.6, 29.5, 26.3, 22.8, 14.3.Compound A2 was synthesized in 70% yield according to the procedure for synthesizing 1,3,5-trialkylated silitol of Example 1-1. 1 H NMR (400 MHz, CDCl 3 ): δ 3.79 (t, J = 6.0 Hz, 6H), 3.43 (t, J = 8.0 Hz, 3H), 3.10 (t, J = 10.0 Hz, 3H), 2.69 ( s br, 3H), 1.60 (quin, J = 8.0 Hz, 6H), 1.38-1.20 (m, 48H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 82.3, 74.2, 73.5, 32.1, 30.5, 29.8, 29.7, 29.6, 29.5, 26.3, 22.8, 14.3.

<2-2> STM-11a의 합성<2-2> Synthesis of STM-11a

실시예 1-2의 일반적인 당화 반응 절차에 따라 화합물 STM-11a를 63%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.15 (d, J = 8.0 Hz, 6H), 7.99 (d, J = 8.0 Hz, 6H), 7.80 (d, J = 8.0 Hz, 6H), 7.73-7.70 (m, 18H), 7.59 (t, J = 10.0 Hz, 3H), 7.54 (d, J = 8.0 Hz, 6H), 7.52-7.45 (m, 12H), 7.43-7.38 (m, 12H), 7.36-7.30 (m, 12H), 7.25-7.21 (m, 11H), 7.20 (d, J = 8.0 Hz, 6H), 7.13 (t, J = 8.0 Hz, 7H), 6.06 (t, J = 10.0 Hz, 3H), 5.72 (t, J = 10.0 Hz, 3H), 5.67 (d, J = 4.0 Hz, 3H), 5.63 (t, J = 8.0 Hz, 3H), 5.28 (t, J = 10.0 Hz, 3H), 5.23 (d, J = 4.0 Hz, 3H), 5.19 (t, J = 10.0 Hz, 3H), 4.92 (d, J = 12.0 Hz, 3H), 4.81 (d, J = 8.0 Hz, 3H), 4.49 (t, J = 8.0 Hz, 3H), 4.40-4.37 (m, 3H), 4.33-4.30 (m, 3H), 4.18 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.04 (d, J = 12.0 Hz, 3H), 3.66-3.57 (m, 6H), 3.12 (q, J = 8.0 Hz, 3H), 2.85 (t, J = 10.0 Hz, 3H), 1.48-1.38 (m, 6H), 1.28-1.08 (m, 48H), 0.87 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 166.3, 165.9, 165.6, 165.3, 165.2, 164.9, 133.7, 133.5, 133.3, 133.1, 130.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.2, 129.1, 128.9, 128.8, 128.6, 128.5, 128.3, 128.2, 100.1, 96.4, 80.8, 78.6, 75.2, 73.5, 72.8, 72.6, 71.0, 70.0, 69.2, 63.9, 62.6, 32.2, 30.3, 30.0, 29.8, 29.7, 26.3, 23.0, 14.4.Compound STM-11a was synthesized in a yield of 63% according to the general saccharification reaction procedure of Example 1-2. 1 H NMR (400 MHz, CDCl 3 ): δ 8.15 (d, J = 8.0 Hz, 6H), 7.99 (d, J = 8.0 Hz, 6H), 7.80 (d, J = 8.0 Hz, 6H), 7.73- 7.70 (m, 18H), 7.59 (t, J = 10.0 Hz, 3H), 7.54 (d, J = 8.0 Hz, 6H), 7.52-7.45 (m, 12H), 7.43-7.38 (m, 12H), 7.36 -7.30 (m, 12H), 7.25-7.21 (m, 11H), 7.20 (d, J = 8.0 Hz, 6H), 7.13 (t, J = 8.0 Hz, 7H), 6.06 (t, J = 10.0 Hz, 3H), 5.72 (t, J = 10.0 Hz, 3H), 5.67 (d, J = 4.0 Hz, 3H), 5.63 (t, J = 8.0 Hz, 3H), 5.28 (t, J = 10.0 Hz, 3H) , 5.23 (d, J = 4.0 Hz, 3H), 5.19 (t, J = 10.0 Hz, 3H), 4.92 (d, J = 12.0 Hz, 3H), 4.81 (d, J = 8.0 Hz, 3H), 4.49 (t, J = 8.0 Hz, 3H), 4.40-4.37 (m, 3H), 4.33-4.30 (m, 3H), 4.18 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H ), 4.04 (d, J = 12.0 Hz, 3H), 3.66-3.57 (m, 6H), 3.12 (q, J = 8.0 Hz, 3H), 2.85 (t, J = 10.0 Hz, 3H), 1.48-1.38 (m, 6H), 1.28-1.08 (m, 48H), 0.87 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.3, 165.9, 165.6, 165.3, 165.2, 164.9, 133.7, 133.5, 133.3, 133.1, 130.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.2, 129.1, 128.9, 128.8, 128.6, 128.5, 128.3, 128.2, 100.1, 96.4, 80.8, 78.6, 75.2, 73.5, 72.8, 72.6, 71.0, 70.0, 69.2, 63.9, 62.6, 32.2, 30.3, 30.0, 29.8, 29.7, 26.3, 23.0, 14.4.

<2-3> STM-11의 합성<2-3> Synthesis of STM-11

실시예 1-3의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 STM-11을 92%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.11 (d, J = 4.0 Hz, 3H), 4.79 (d, J = 8.0 Hz, 3H), 3.96-3.90 (m, 6H), 3.86-3.77 (m, 9H), 3.71-3.64 (m, 9H), 3.62-3.58 (m, 6H), 3.44 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.39 (t, J = 8.0 Hz, 3H), 3.34-3.27 (m, 9H), 3.24-3.19 (dd, J 1-2 = 8.0 Hz, J 1-3 = 12.0 Hz, 3H), 1.64-1.62 (m, 6H), 1.39-1.21 (m, 48H), 0.90 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CD3OD): δ 105.0, 102.9, 81.3, 77.8, 76.5, 75.5, 75.1, 74.8, 74.2, 71.5, 70.4, 70.1, 62.7, 62.3, 48.5, 46.6, 41.6, 39.5, 33.6, 32.7, 27.7, 23.8, 14.7. HRMS ( FAB + ): calcd. for C75H138O36 [M+Na]+ 1637.8866, found 1637.8862.According to the general synthetic procedure for the deprotection vaporization reaction of Example 1-3, STM-11 was obtained in a yield of 92%. Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.11 (d, J = 4.0 Hz, 3H), 4.79 (d, J = 8.0 Hz, 3H), 3.96-3.90 (m, 6H), 3.86-3.77 ( m, 9H), 3.71-3.64 (m, 9H), 3.62-3.58 (m, 6H), 3.44 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.39 (t, J = 8.0 Hz, 3H), 3.34-3.27 (m, 9H), 3.24-3.19 (dd, J 1-2 = 8.0 Hz, J 1-3 = 12.0 Hz, 3H), 1.64-1.62 (m, 6H) , 1.39-1.21 (m, 48H), 0.90 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 105.0, 102.9, 81.3, 77.8, 76.5, 75.5, 75.1, 74.8, 74.2, 71.5, 70.4, 70.1, 62.7, 62.3, 48.5, 46.6, 41.6, 39.5, 33.6 , 32.7, 27.7, 23.8, 14.7. HRMS ( FAB + ) : calcd. for C 75 H 138 O 36 [M+Na] + 1637.8866, found 1637.8862.

<제조예 3> STM-12의 합성<Production Example 3> Synthesis of STM-12

<3-1> 화합물 A3의 합성<3-1> Synthesis of Compound A3

실시예 1-1의 1,3,5-트리알킬화된 실리톨 합성 절차에 따라 화합물 A3를 72%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.91 (t, J = 6.0 Hz, 6H), 3.77 (t, J = 6.0 Hz, 3H), 3.71 (t, J = 8.0 Hz, 3H), 3.04 (s br, 3H), 1.60 (quin, J = 8.0 Hz, 6H), 1.38-1.20 (m, 54H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 82.4, 74.1, 73.4, 63.1, 32.9, 32.1, 30.5, 29.8, 29.7, 29.6, 29.5, 26.3, 25.9, 22.9, 14.3.Compound A3 was synthesized in 72% yield according to the procedure for synthesizing 1,3,5-trialkylated silitol of Example 1-1. 1 H NMR (400 MHz, CDCl 3 ): δ 3.91 (t, J = 6.0 Hz, 6H), 3.77 (t, J = 6.0 Hz, 3H), 3.71 (t, J = 8.0 Hz, 3H), 3.04 ( s br, 3H), 1.60 (quin, J = 8.0 Hz, 6H), 1.38-1.20 (m, 54H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 82.4, 74.1, 73.4, 63.1, 32.9, 32.1, 30.5, 29.8, 29.7, 29.6, 29.5, 26.3, 25.9, 22.9, 14.3.

<3-2> STM-12a의 합성<3-2> Synthesis of STM-12a

실시예 1-2의 일반적인 당화 반응 절차에 따라 화합물 STM-12a를 62%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.15 (d, J = 8.0 Hz, 6H), 8.00 (d, J = 8.0 Hz, 6H), 7.80 (d, J = 8.0 Hz, 6H), 7.73-7.69 (m, 18H), 7.61 (t, J = 6.0 Hz, 3H), 7.55-7.52 (m, 6H), 7.48-7.44 (m, 12H), 7.42-7.38 (m, 12H), 7.36-7.31 (m, 12H), 7.26-7.19 (m, 18H), 7.16 (t, J = 8.0 Hz, 6H), 6.05 (t, J = 10.0 Hz, 3H), 5.71 (t, J = 10.0 Hz, 3H), 5.67 (d, J = 4.0 Hz, 3H), 5.63 (t, J = 8.0 Hz, 3H), 5.27 (t, J = 8.0 Hz, 3H), 5.23 (d, J = 8.0 Hz, 3H) 5.19 (t, J = 8.0 Hz, 3H), 4.91 (d, J = 8.0 Hz, 3H), 4.81 (d, J = 12.0 Hz, 3H), 4.49 (t, J = 10.0 Hz, 3H), 4.40-4.36 (m, 3H), 4.33-4.29 (m, 3H), 4.18 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.04 (d, J = 8.0 Hz, 3H), 3.65-3.57 (m, 6H), 3.11 (q, J = 8.0 Hz, 3H), 2.85 (t, J = 10.0 Hz, 3H), 1.48-1.38 (m, 6H), 1.28-1.08 (m, 54H), 0.87 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 166.2, 165.8, 165.5, 165.2, 165.1, 164.8, 133.6, 133.4, 133.2, 133.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.4, 129.1, 128.9, 128.8, 128.6, 128.5, 128.4, 128.2, 100.0, 96.3, 80.7, 78.5, 75.1, 73.4, 72.4, 70.9, 69.8, 69.1, 63.9, 62.5, 53.5, 32.1, 30.2, 29.9, 29.8, 29.7, 29.5, 26.2, 22.8, 21.1, 14.3.Compound STM-12a was synthesized in a yield of 62% according to the general saccharification reaction procedure of Example 1-2. 1 H NMR (400 MHz, CDCl 3 ): δ 8.15 (d, J = 8.0 Hz, 6H), 8.00 (d, J = 8.0 Hz, 6H), 7.80 (d, J = 8.0 Hz, 6H), 7.73- 7.69 (m, 18H), 7.61 (t, J = 6.0 Hz, 3H), 7.55-7.52 (m, 6H), 7.48-7.44 (m, 12H), 7.42-7.38 (m, 12H), 7.36-7.31 ( m, 12H), 7.26-7.19 (m, 18H), 7.16 (t, J = 8.0 Hz, 6H), 6.05 (t, J = 10.0 Hz, 3H), 5.71 (t, J = 10.0 Hz, 3H), 5.67 (d, J = 4.0 Hz, 3H), 5.63 (t, J = 8.0 Hz, 3H), 5.27 (t, J = 8.0 Hz, 3H), 5.23 (d, J = 8.0 Hz, 3H) 5.19 (t , J = 8.0 Hz, 3H), 4.91 (d, J = 8.0 Hz, 3H), 4.81 (d, J = 12.0 Hz, 3H), 4.49 (t, J = 10.0 Hz, 3H), 4.40-4.36 (m , 3H), 4.33-4.29 (m, 3H), 4.18 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.04 (d, J = 8.0 Hz, 3H), 3.65- 3.57 (m, 6H), 3.11 (q, J = 8.0 Hz, 3H), 2.85 (t, J = 10.0 Hz, 3H), 1.48-1.38 (m, 6H), 1.28-1.08 (m, 54H), 0.87 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.2, 165.8, 165.5, 165.2, 165.1, 164.8, 133.6, 133.4, 133.2, 133.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.4, 129.1, 128.9, 128.8, 128.6, 128.5, 128.4, 128.2, 100.0, 96.3, 80.7, 78.5, 75.1, 73.4, 72.4, 70.9, 69.8, 69.1, 63.9, 62.5, 53.5, 32.1, 30.2, 29.9, 29.8, 29.7, 29.5, 26.2, 22.8, 21.1, 14.3.

<3-3> STM-12의 합성<3-3> Synthesis of STM-12

실시예 1-3의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 STM-12을 92%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.14 (d, J = 4.0 Hz, 3H), 4.27 (d, J = 8.0 Hz, 3H), 3.99 (q, J = 8.0 Hz, 3H), 3.86-3.71 (m, 15H), 3.69-3.59 (m, 24H), 3.53 (t, J = 8.0 Hz, 3H), 3.44 (dd, J 1-2 = 4.0 Hz, J 1-3 = 8.0 Hz, 3H), 3.36-3.31 (m, 3H), 3.28-3.22 (m, 3H), 1.59-1.57 (m, 6H), 1.39-1.21 (m, 54H), 0.90 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CD3OD): δ 104.5, 103.1, 84.1, 81.5, 77.9, 76.8, 75.2, 75.0, 74.9, 74.8, 74.3, 71.7, 71.6, 68.4, 62.8, 62.3, 33.2, 32.1, 31.8, 31.0, 30.9, 30.6, 27.6, 23.9, 14.7. HRMS (FAB + ): calcd. for C78H144O36 [M+Na]+ 1679.9335, found 1679.9341.According to the general synthetic procedure for the deprotection vaporization reaction of Example 1-3, STM-12 in a yield of 92% Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.14 (d, J = 4.0 Hz, 3H), 4.27 (d, J = 8.0 Hz, 3H), 3.99 (q, J = 8.0 Hz, 3H), 3.86 -3.71 (m, 15H), 3.69-3.59 (m, 24H), 3.53 (t, J = 8.0 Hz, 3H), 3.44 (dd, J 1-2 = 4.0 Hz, J 1-3 = 8.0 Hz, 3H ), 3.36-3.31 (m, 3H), 3.28-3.22 (m, 3H), 1.59-1.57 (m, 6H), 1.39-1.21 (m, 54H), 0.90 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 104.5, 103.1, 84.1, 81.5, 77.9, 76.8, 75.2, 75.0, 74.9, 74.8, 74.3, 71.7, 71.6, 68.4, 62.8, 62.3, 33.2, 32.1, 31.8 , 31.0, 30.9, 30.6, 27.6, 23.9, 14.7. HRMS (FAB + ) : calcd. for C 78 H 144 O 36 [M+Na] + 1679.9335, found 1679.9341.

<실시예 2> STM-Es 의 합성 방법<Example 2> Synthesis method of STM-Es

STM-Es 의 합성 스킴을 도 2에 나타내었다. 하기 <2-1> 내지 <2-4>의 합성 방법에 따라 STM-Es 3종의 화합물을 합성하였다.The synthesis scheme of STM-Es is shown in FIG. 2. According to the synthesis method of the following <2-1> to <2-4>, three types of STM-Es compounds were synthesized.

<2-1> 1,3,5-<2-1> 1,3,5- 트리알릴화Triallylation -2,4,6--2,4,6- 트리알킬화된Trialkylated 실리톨(1,3,5-triallylated-2,4,6-trialkylated Silitol (1,3,5-triallylated-2,4,6-trialkylated scyllitolscyllitol )(화합물 B)의 합성(도 2의 단계 a)) Synthesis of (Compound B) (Step a in Fig. 2)

DMF에 용해된 1,3,5-트리알릴화 실리톨(1,3,5-triallylated syllitol)(화합물 1b)에 아르곤(Ar) 대기 하에서 NaH (미네랄 오일에 60 % 분산액, 6.0 당량)를 첨가하였다. 알킬 아이오다이드(4.5 당량)를 가스 방출이 멈춘 후에 적가하고, 반응 혼합물을 실온에서 24시간 동안 교반하고 얼음 첨가하여 반응을 켄칭시켰다. 켄칭된 반응 혼합물을 물로 희석한 후 에틸 아세테이트로 세척하였다. 혼합한 에틸 아세테이트 분획을 염수로 세척하고 무수 Na2SO4상에서 건조시켰다. 감압 하에서 용매를 제거하여 유성 잔류물을 수득하였으며, 컬럼 크로마토그래피 정제를 통해 유색 오일의 목적 화합물 B를 수득하였다.NaH (60% dispersion in mineral oil, 6.0 equivalents) was added to 1,3,5-triallylated syllitol (1,3,5-triallylated syllitol) (compound 1b) dissolved in DMF under argon (Ar) atmosphere. I did. Alkyl iodide (4.5 equivalents) was added dropwise after gas evolution ceased, and the reaction mixture was stirred at room temperature for 24 hours and ice was added to quench the reaction. The quenched reaction mixture was diluted with water and then washed with ethyl acetate. The combined ethyl acetate fractions were washed with brine and dried over anhydrous Na 2 SO 4 . The solvent was removed under reduced pressure to obtain an oily residue, and purified by column chromatography to give the title compound B as a colored oil.

<2-2> 오존 분해 (ozonolysis)반응의 일반 합성 절차 (도 2의 단계 b)<2-2> General synthesis procedure of ozonolysis reaction (step b in Fig. 2)

MeOH에 용해된 1,3,5-트리알릴화-2,4,6-트리알킬화된 실리톨의 혼합물을 -78 ℃로 냉각시켰다. 청색이 유지될 때까지 오존을 반응 혼합물 내로 15 분 동안 퍼징 하였다. 반응을 -78 ℃에서 20 분 동안 교반한 후, 디메틸설파이드 (8.0 당량)를 첨가 하였다. 온도를 서서히 증가시키고, 혼합물을 실온에서 18 시간 동안 교반하였다. 반응 혼합물로부터 유기 용매를 제거하여 유성 잔류물을 얻었고, 이는 칼럼 크로마토그래피로 정제하여 무색 오일의 목적 화합물 C을 수득하였다.A mixture of 1,3,5-triallylated-2,4,6-trialkylated silitol dissolved in MeOH was cooled to -78°C. Ozone was purged into the reaction mixture for 15 minutes until a blue color was maintained. After the reaction was stirred at -78 °C for 20 minutes, dimethyl sulfide (8.0 equivalents) was added. The temperature was slowly increased and the mixture was stirred at room temperature for 18 hours. The organic solvent was removed from the reaction mixture to give an oily residue, which was purified by column chromatography to give the title compound C as a colorless oil.

<2-3> 말토실레이션(maltosylation)반응의 일반 합성 절차 (도 2의 단계 c)<2-3> General synthesis procedure of maltosylation reaction (step c in FIG. 2)

질소(N2) 하에서, 화합물 A (1.0 당량), 디메톡시에탄 (30.0 당량) 및 AgOTf (3.6 당량)의 혼합물을 무수 CH2Cl2 에서 -45 ℃에서 교반하였다. 무수 CH2Cl2에서 페르벤조일레이티드 말토실브로마이드(perbenzoylated maltosylbromide) (3.6 당량)용액을이 현탁액에 적가하였다. -45 ℃에서 5 분 동안 교반을 계속한 후, 반응 혼합물의 온도를 0 ℃로 증가시키고 30 분 동안 계속 교반하였다. 반응 완결 후 (TLC로 나타냄), 피리딘을 첨가하여 반응을 켄칭시킨 후, CH2Cl2로 희석하여 셀 라이트상에서 여과하였다. 여과액을 1 M 수용성 Na2S2O3 용액, 0.1 M HCl 수용액 및 염수로 연속적으로 세척하였다. 유기층을 무수 Na2SO4로 건조시킨 후, 감압하에 용매를 제거하였다. 수득된 잔류물을 실리카 겔 컬럼 크로마토그래피 (EtOAc/헥산)로 정제하여 유리질 고체인 목적하는 생성물 화합물 C1을 수득하였다.Under nitrogen (N 2 ), a mixture of compound A (1.0 equivalent), dimethoxyethane (30.0 equivalent) and AgOTf (3.6 equivalent) was stirred in anhydrous CH 2 Cl 2 at -45°C. A solution of perbenzoylated maltosylbromide (3.6 equivalents) in anhydrous CH 2 Cl 2 was added dropwise to this suspension. After continuing the stirring at -45° C. for 5 minutes, the temperature of the reaction mixture was increased to 0° C. and stirring was continued for 30 minutes. After completion of the reaction (represented by TLC), pyridine was added to quench the reaction, then diluted with CH 2 Cl 2 and filtered over Celite. The filtrate was washed successively with 1 M aqueous Na 2 S 2 O 3 solution, 0.1 M HCl aqueous solution, and brine. After drying the organic layer with anhydrous Na 2 SO 4 , the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (EtOAc/hexane) to obtain the desired product compound C 1 as a glassy solid.

<2-4> <2-4> 탈보호기화Deprotection vaporization 반응 ( reaction ( deprotectiondeprotection reaction)을 위한 일반 합성 절차 (도 2의 단계 d) reaction) for general synthesis procedure (step d in FIG. 2)

이는 Chae, P. S. 등의 합성 방법 (Nat Meth 2010, 7, 1003.)에 따랐다. Zemplen's 조건하에 데-O-벤조일화(de-O-benzoylation)를 수행하였다. O-protected 화합물을 무수 CH2Cl2로 용해시킨 다음 MeOH를 지속적인 침전이 나타날때까지 천천히 첨가하였다. 상기 반응 혼합물에 0.5M의 메탄올성 용액(methanolic solution)인 NaOMe를 최종 농도가 0.05 M이 되도록 첨가하였다. 반응 혼합물을 상온에서 6시간 동안 교반시켰다. 반응 완료 후, 반응 혼합물을 Amberlite IR-120 (H+ form) resin을 이용하여 중화시켰다. 여과하여 resin을 제거하고, MeOH로 세척하고, 진공 조건(in vacuo)에서 여과물로부터 용매를 제거하였다. 2 mL의 MeOH:CH2Cl2 (1:1) 혼합물에 용해된 잔류물에 디에틸에테르 (50 mL)를 첨가하여 침전된 백색 고체의 목적 화합물 C2을 수득하였다.This was followed by the synthesis method of Chae, PS et al. (Nat Meth 2010, 7, 1003.). De-O-benzoylation was performed under Zemplen's conditions. The O-protected compound was dissolved in anhydrous CH2Cl2 and then MeOH was slowly added until a continuous precipitation appeared. NaOMe, which is a 0.5M methanolic solution, was added to the reaction mixture so that the final concentration was 0.05M. The reaction mixture was stirred at room temperature for 6 hours. After completion of the reaction, the reaction mixture was neutralized using Amberlite IR-120 (H+ form) resin. The resin was removed by filtration, washed with MeOH, and the solvent was removed from the filtrate under vacuum conditions (in vacuo). Diethyl ether (50 mL) was added to the residue dissolved in 2 mL of MeOH:CH 2 Cl 2 (1:1) mixture to obtain the target compound C 2 as a precipitated white solid.

<제조예 4> STM-E7의 합성<Production Example 4> Synthesis of STM-E7

<4-1> 화합물 B4의 합성<4-1> Synthesis of Compound B4

실시예 2-1의 1,3,5-트리알릴화된 실리톨의 일반적인 알킬화 반응 절차에 따라 화합물 B4를 75%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 5.98-5.91 (m, 3H), 5.26 (dd, J 1-2 = 4.0 Hz, J 1-3 = 20.0 Hz, 3H), 5.14 (dd, J 1-2 = 4.0 Hz, J 1 -3 = 12.0 Hz, 3H), 4.27 (d, J = 8.0 Hz, 6H), 3.73 (t, J = 6.0 Hz, 6H), 3.10 (s, 6H), 1.58 (quin, J = 8.0 Hz, 6H), 1.31-1.20 (m, 24H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 135.2, 116.5, 82.7, 82.4, 77.4, 77.1, 76.7, 74.5, 74.0, 31.8, 30.5, 29.2, 26.1, 23.0, 14.0.Compound B4 was synthesized in 75% yield according to the general alkylation reaction procedure of 1,3,5-triallylated silitol of Example 2-1. 1 H NMR (400 MHz, CDCl 3 ): δ 5.98-5.91 (m, 3H), 5.26 (dd, J 1-2 = 4.0 Hz, J 1-3 = 20.0 Hz, 3H), 5.14 (dd, J 1 -2 = 4.0 Hz, J 1 -3 = 12.0 Hz, 3H), 4.27 (d, J = 8.0 Hz, 6H), 3.73 (t, J = 6.0 Hz, 6H), 3.10 (s, 6H), 1.58 ( quin, J = 8.0 Hz, 6H), 1.31-1.20 (m, 24H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 135.2, 116.5, 82.7, 82.4, 77.4, 77.1, 76.7, 74.5, 74.0, 31.8, 30.5, 29.2, 26.1, 23.0, 14.0.

<4-2> 화합물 C8의 합성<4-2> Synthesis of Compound C8

실시예 2-2의 일반적인 오존 분해 반응 절차에 따라 화합물 C8을 71%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.88-3.86 (m, 6H), 3.78 (t, J = 6.0 Hz, 6H), 3.70 (t, J = 6.0 Hz, 6H), 3.45 (br s, 3H), 3.28 (t, J = 10.0 Hz, 3H), 3.10 (t, J = 10.0 Hz, 3H), 1.64 (quin, J = 6.0 Hz, 6H), 1.31-1.27 (m, 24H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 83.0, 82.9, 74.8, 74.7, 68.2, 31.9, 30.3, 29.3, 26.1, 22.7, 14.2.Compound C8 was synthesized with 71% yield according to the general ozone decomposition reaction procedure of Example 2-2. 1 H NMR (400 MHz, CDCl 3 ): δ 3.88-3.86 (m, 6H), 3.78 (t, J = 6.0 Hz, 6H), 3.70 (t, J = 6.0 Hz, 6H), 3.45 (br s, 3H), 3.28 (t, J = 10.0 Hz, 3H), 3.10 (t, J = 10.0 Hz, 3H) , 1.64 (quin, J = 6.0 Hz, 6H), 1.31-1.27 (m, 24H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 83.0, 82.9, 74.8, 74.7, 68.2, 31.9, 30.3, 29.3, 26.1, 22.7, 14.2.

<4-3> STM-E7a의 합성<4-3> Synthesis of STM-E7a

실시예 2-3의 일반적인 당화 반응 절차에 따라 화합물 STM-E7a를 65%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.10 (d, J = 8.0 Hz, 6H), 7.98 (d, J = 8.0 Hz, 6H), 7.85 (d, J = 4.0 Hz, 6H), 7.77 (d, J = 8.0 Hz, 6H), 7.74 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 12H), 7.63 (d, J = 8.0 Hz, 6H), 7.51-7.48 (m, 6H), 7.46-7.35 (m, 24H), 7.31-7.29 (m, 9H), 7.27-7.16 (m, 24H), 6.08 (t, J = 8.0 Hz, 3H), 5.76-5.72 (m, 6H), 5.65 (t, J = 10.0 Hz, 3H), 5.30 (t, J = 10.0 Hz, 6H), 5.25 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.90 (d, J = 12.0 Hz, 3H), 4.80 (d, J = 4.0 Hz, 3H), 4.74 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.49 (t, J = 8.0 Hz, 3H), 4.46-4.40 (m, 3H), 4.38 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.24 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.08 (d, J = 12.0 Hz, 3H), 3.93-3.90 (m, 3H), 3.72-3.70 (m, 3H), 3.63-3.57 (m, 6H), 3.42 (q, J = 4.0 Hz, 3H), 3.33 (q, J = 4.0 Hz, 3H), 2.64 (t, J = 12.0 Hz, 3H), 2.42 (t, J = 8.0 Hz, 3H) 1.32-1.30 (m, 6H), 1.25-1.08 (m, 24H), 0.86 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 166.3, 165.9, 165.8, 165.6, 165.2, 165.1, 133.6, 133.5, 133.4, 133.3, 133.2, 130.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.3, 129.0, 128.9, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 101.1, 96.5, 83.1, 82.0, 75.3, 73.6, 73.3, 73.1, 72.3, 71.6, 71.0, 70.0, 69.4, 69.2, 63.7, 53.6, 32.0, 30.5, 29.4, 26.4, 22.9, 14.3.Compound STM-E7a was synthesized in a yield of 65% according to the general saccharification reaction procedure of Example 2-3. 1 H NMR (400 MHz, CDCl 3 ): δ 8.10 (d, J = 8.0 Hz, 6H), 7.98 (d, J = 8.0 Hz, 6H), 7.85 (d, J = 4.0 Hz, 6H), 7.77 ( d, J = 8.0 Hz, 6H), 7.74 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 12H), 7.63 (d, J = 8.0 Hz, 6H), 7.51-7.48 (m , 6H), 7.46-7.35 (m, 24H), 7.31-7.29 (m, 9H), 7.27-7.16 (m, 24H), 6.08 (t, J = 8.0 Hz, 3H), 5.76-5.72 (m, 6H) ), 5.65 (t, J = 10.0 Hz, 3H), 5.30 (t, J = 10.0 Hz, 6H), 5.25 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.90 (d, J = 12.0 Hz, 3H), 4.80 (d, J = 4.0 Hz, 3H), 4.74 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.49 (t, J = 8.0 Hz, 3H), 4.46-4.40 (m, 3H), 4.38 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.24 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.08 (d, J = 12.0 Hz, 3H), 3.93-3.90 (m, 3H), 3.72-3.70 (m, 3H), 3.63-3.57 (m, 6H) ), 3.42 (q, J = 4.0 Hz, 3H), 3.33 (q, J = 4.0 Hz, 3H), 2.64 (t, J = 12.0 Hz, 3H), 2.42 (t, J = 8.0 Hz, 3H) 1.32 -1.30 (m, 6H), 1.25-1.08 (m, 24H), 0.86 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.3, 165.9, 165.8, 165.6, 165.2, 165.1, 133.6, 133.5, 133.4, 133.3, 133.2, 130.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.3, 129.0, 128.9, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 101.1, 96.5, 83.1, 82.0, 75.3, 73.6, 73.3, 73.1, 72.3, 71.6, 71.0, 70.0, 69.4, 69.2, 63.7, 53.6, 32.0, 30.5, 29.4, 26.4, 22.9, 14.3.

<4-4> STM-E7의 합성<4-4> Synthesis of STM-E7

실시예 2-4의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 STM-E7을 92%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.32 (d, J = 8.0 Hz, 3H), 4.05-3.95 (m, 6H), 3.90 (d, J = 12.0 Hz, 6H), 3.86 (d, J = 16.0 Hz, 6H), 3.82-3.71 (m, 15H), 3.69-3.60 (m, 12H), 3.53 (t, J = 10.0 Hz, 3H), 3.44 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.39-3.36 (m, 3H), 3.2 (t, J = 8.0 Hz, 3H), 3.09 (t, J = 8.0 Hz, 3H), 1.64-1.62 (m, 6H), 1.39-1.21 (m, 24H), 0.91 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CD3OD): δ 104.3, 103.3, 84.3, 83.8, 81.4, 77.8, 76.7, 75.1, 74.8, 74.2, 73.4, 71.5, 70.4, 62.8, 62.3, 33.1, 31.7, 30.6, 27.4, 23.8, 14.7. HRMS ( FAB + ): calcd. for C69H126O39 [M+Na]+ 1601.7774, found 1601.7771.According to the general synthetic procedure for the deprotection vaporization reaction of Example 2-4, STM-E7 in a yield of 92% Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.32 (d, J = 8.0 Hz, 3H), 4.05-3.95 (m, 6H), 3.90 (d, J = 12.0 Hz, 6H), 3.86 (d, J = 16.0 Hz, 6H), 3.82-3.71 (m, 15H), 3.69-3.60 (m, 12H), 3.53 (t, J = 10.0 Hz, 3H), 3.44 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.39-3.36 (m, 3H), 3.2 (t, J = 8.0 Hz, 3H), 3.09 (t, J = 8.0 Hz, 3H), 1.64-1.62 (m, 6H), 1.39-1.21 (m, 24H), 0.91 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 104.3, 103.3, 84.3, 83.8, 81.4, 77.8, 76.7, 75.1, 74.8, 74.2, 73.4, 71.5, 70.4, 62.8, 62.3, 33.1, 31.7, 30.6, 27.4 , 23.8, 14.7. HRMS ( FAB + ) : calcd. for C 69 H 126 O 39 [M+Na] + 1601.7774, found 1601.7771.

<제조예 5> STM-E8의 합성<Production Example 5> Synthesis of STM-E8

<5-1> 화합물 B5의 합성<5-1> Synthesis of Compound B5

실시예 2-1의 1,3,5-트리알릴화된 실리톨의 일반적인 알킬화 반응 절차에 따라 화합물 B5를 73%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 5.99-5.91 (m, 3H), 5.26 (dd, J 1-2 = 3.0 Hz, J 1-3 = 16.0 Hz, 3H), 5.14 (dd, J 1-2 = 4.0 Hz, J 1 -3 = 12.0 Hz, 3H), 4.27 (d, J = 8.0 Hz, 6H), 3.72 (t, J = 6.0 Hz, 6H), 3.10 (s, 6H), 1.57 (quin, J = 8.0 Hz, 6H), 1.29-1.20 (m, 30H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 135.5, 116.8, 83.0, 82.6, 74.8, 74.2, 32.0, 30.8, 29.7, 29.5, 26.4, 23.0, 14.3.Compound B5 was synthesized in 73% yield according to the general alkylation reaction procedure of 1,3,5-triallylated silitol of Example 2-1. 1 H NMR (400 MHz, CDCl 3 ): δ 5.99-5.91 (m, 3H), 5.26 (dd, J 1-2 = 3.0 Hz, J 1-3 = 16.0 Hz, 3H), 5.14 (dd, J 1 -2 = 4.0 Hz, J 1 -3 = 12.0 Hz, 3H), 4.27 (d, J = 8.0 Hz, 6H), 3.72 (t, J = 6.0 Hz, 6H), 3.10 (s, 6H), 1.57 ( quin, J = 8.0 Hz, 6H), 1.29-1.20 (m, 30H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 135.5, 116.8, 83.0, 82.6, 74.8, 74.2, 32.0, 30.8, 29.7, 29.5, 26.4, 23.0, 14.3.

<5-2> 화합물 C9의 합성<5-2> Synthesis of Compound C9

실시예 2-2의 일반적인 오존 분해 반응 절차에 따라 화합물 C9를 73%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.85-3.83 (m, 6H), 3.74 (t, J = 6.0 Hz, 6H), 3.68 (s, 6H), 3.38 (br s, 3H), 3.25 (t, J = 10.0 Hz, 3H), 3.06 (t, J = 10.0 Hz, 3H), 1.59 (quin, J = 8.0 Hz, 6H), 1.31-1.24 (m, 30H), 0.85 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 83.1, 82.9, 74.9, 74.7, 63.4, 32.0, 30.3, 29.7, 29.4, 26.2, 22.8, 14.3.Compound C9 was synthesized in 73% yield according to the general ozone decomposition reaction procedure of Example 2-2. 1 H NMR (400 MHz, CDCl 3 ): δ 3.85-3.83 (m, 6H), 3.74 (t, J = 6.0 Hz, 6H), 3.68 (s, 6H), 3.38 (br s, 3H), 3.25 (t, J = 10.0 Hz, 3H), 3.06 (t, J = 10.0 Hz, 3H), 1.59 (quin, J = 8.0 Hz, 6H), 1.31-1.24 (m, 30H), 0.85 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 83.1, 82.9, 74.9, 74.7, 63.4, 32.0, 30.3, 29.7, 29.4, 26.2, 22.8, 14.3.

<5-3> STM-E8a의 합성<5-3> Synthesis of STM-E8a

실시예 2-3의 일반적인 당화 반응 절차에 따라 화합물 STM-E8a를 65%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.11 (d, J = 8.0 Hz, 6H), 8.01 (d, J = 8.0 Hz, 6H), 7.86 (d, J = 8.0 Hz, 6H), 7.80 (d, J = 8.0 Hz, 6H), 7.75 (d, J = 8.0 Hz, 12H), 7.65 (d, J = 8.0 Hz, 6H), 7.54 (t, J = 8.0 Hz, 3H), 7.49 (t, J = 8.0 Hz, 3H), 7.46-7.35 (m, 24H), 7.31-7.27 (m, 9H), 7.26-7.21 (m, 18H), 7.15 (t, J = 8.0 Hz, 6H), 6.13 (t, J = 10.0 Hz, 3H), 5.79 (t, J = 8.0 Hz, 3H), 5.77 (t, J = 4.0 Hz, 3H), 5.70 (t, J = 10.0 Hz, 3H), 5.32-5.23 (m, 6H), 4.90 (d, J = 12.0 Hz, 3H), 4.80 (d, J = 4.0 Hz, 3H), 4.74 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.56-4.49 (m, 6H), 4.42 (d, J = 12.0 Hz, 3H), 4.29 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.13-4.06 (m, 3H), 3.95 (t, J = 4.0 Hz, 3H), 3.77-3.70 (m, 3H), 3.65-3.63 (m, 6H), 3.47-3.38 (m, 6H), 2.71 (t, J = 12.0 Hz, 3H), 2.47 (t, J = 8.0 Hz, 3H) 1.36-1.32 (m, 6H), 1.25-1.08 (m, 30H), 0.86 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 166.2, 165.8, 165.7, 165.5, 165.1, 165.1, 165.0, 133.5, 133.4, 133.3, 133.2, 133.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.4, 129.3, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 101.0, 96.5, 83.0, 82.0, 75.2, 73.6, 73.2, 73.0, 72.3, 71.6, 71.0, 70.9, 70.0, 69.4, 69.2, 63.7, 62.6, 60.4, 53.5, 31.9, 30.4, 29.6, 29.4, 26.3, 22.7, 21.0, 14.2.Compound STM-E8a was synthesized in a yield of 65% according to the general saccharification reaction procedure of Example 2-3. 1 H NMR (400 MHz, CDCl 3 ): δ 8.11 (d, J = 8.0 Hz, 6H), 8.01 (d, J = 8.0 Hz, 6H), 7.86 (d, J = 8.0 Hz, 6H), 7.80 ( d, J = 8.0 Hz, 6H), 7.75 (d, J = 8.0 Hz, 12H), 7.65 (d, J = 8.0 Hz, 6H), 7.54 (t, J = 8.0 Hz, 3H), 7.49 (t, J = 8.0 Hz, 3H), 7.46-7.35 (m, 24H), 7.31-7.27 (m, 9H), 7.26-7.21 (m, 18H), 7.15 (t, J = 8.0 Hz, 6H), 6.13 (t , J = 10.0 Hz, 3H), 5.79 (t, J = 8.0 Hz, 3H), 5.77 (t, J = 4.0 Hz, 3H), 5.70 (t, J = 10.0 Hz, 3H), 5.32-5.23 (m , 6H), 4.90 (d, J = 12.0 Hz, 3H), 4.80 (d, J = 4.0 Hz, 3H), 4.74 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H) , 4.56-4.49 (m, 6H), 4.42 (d, J = 12.0 Hz, 3H), 4.29 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.13-4.06 (m , 3H), 3.95 (t, J = 4.0 Hz, 3H), 3.77-3.70 (m, 3H), 3.65-3.63 (m, 6H), 3.47-3.38 (m, 6H), 2.71 (t, J = 12.0 Hz, 3H), 2.47 (t, J = 8.0 Hz, 3H) 1.36-1.32 (m, 6H), 1.25-1.08 (m, 30H), 0.86 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.2, 165.8, 165.7, 165.5, 165.1, 165.1, 165.0, 133.5, 133.4, 133.3, 133.2, 133.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.4, 129.3, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 101.0, 96.5, 83.0, 82.0, 75.2, 73.6, 73.2, 73.0, 72.3, 71.6, 71.0, 70.9, 70.0, 69.4, 69.2, 63.7, 62.6, 60.4, 53.5, 31.9, 30.4, 29.6, 29.4, 26.3, 22.7, 21.0, 14.2.

<5-4> STM-E8의 합성<5-4> Synthesis of STM-E8

실시예 2-4의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 STM-E8을 92%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.32 (d, J = 8.0 Hz, 3H), 4.05-3.98 (m, 6H), 3.91-3.88 (m, 6H), 3.83-3.80 (m, 6H), 3.76 (t, J = 6.0Hz, 9H), 3.69-3.61 (m, 12H), 3.52 (t, J = 10.0 Hz, 3H), 3.45 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.39-3.35 (m, 3H), 3.28-3.24 (m, 6H), 3.20 (t, J = 10.0 Hz, 3H), 3.09 (t, J = 8.0 Hz, 3H), 1.64-1.62 (m, 6H), 1.39-1.21 (m, 30H), 0.91 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CD3OD): δ 104.4, 103.1, 84.3, 83.8, 81.6, 77.8, 76.8, 75.2, 74.9, 74.8, 74.2, 73.5, 71.5, 70.4, 62.8, 62.3, 33.2, 31.7, 30.9, 30.6, 27.5, 23.9, 14.7. HRMS (FAB + ): calcd. for C72H132O39 [M+Na]+ 1643.8243, found 1643.8236.According to the general synthetic procedure for the deprotection vaporization reaction of Example 2-4, STM-E8 in a yield of 92% Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.32 (d, J = 8.0 Hz, 3H), 4.05-3.98 (m, 6H), 3.91-3.88 ( m, 6H), 3.83-3.80 (m, 6H), 3.76 (t, J = 6.0Hz, 9H), 3.69-3.61 (m, 12H), 3.52 (t, J = 10.0 Hz, 3H), 3.45 (dd , J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.39-3.35 (m, 3H), 3.28-3.24 (m, 6H), 3.20 (t, J = 10.0 Hz, 3H), 3.09 (t, J = 8.0 Hz, 3H), 1.64-1.62 (m, 6H), 1.39-1.21 (m, 30H), 0.91 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 104.4, 103.1, 84.3, 83.8, 81.6, 77.8, 76.8, 75.2, 74.9, 74.8, 74.2, 73.5, 71.5, 70.4, 62.8, 62.3, 33.2, 31.7, 30.9 , 30.6, 27.5, 23.9, 14.7. HRMS (FAB + ) : calcd. for C 72 H 132 O 39 [M+Na] + 1643.8243, found 1643.8236.

<제조예 6> STM-E9의 합성<Production Example 6> Synthesis of STM-E9

<6-1> 화합물 B6의 합성<6-1> Synthesis of Compound B6

실시예 2-1의 1,3,5-트리알릴화된 실리톨의 일반적인 알킬화 반응 절차에 따라 화합물 B6을 77%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 5.98-5.91 (m, 3H), 5.26 (dd, J 1-2 = 3.0 Hz, J 1-3 = 16.0 Hz, 3H), 5.14 (dd, J 1-2 = 4.0 Hz, J 1 -3 = 12.0 Hz, 3H), 4.27 (d, J = 8.0 Hz, 6H), 3.72 (t, J = 6.0 Hz, 6H), 3.10 (s, 6H), 1.57 (quin, J = 8.0 Hz, 6H), 1.29-1.20 (m, 36H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 135.5, 116.9, 83.0, 82.6, 74.8, 74.3, 32.1, 30.8, 29.8, 29.5, 26.4, 23.0, 14.3.Compound B6 was synthesized with a yield of 77% according to the general alkylation reaction procedure of 1,3,5-triallylated silitol of Example 2-1. 1 H NMR (400 MHz, CDCl 3 ): δ 5.98-5.91 (m, 3H), 5.26 (dd, J 1-2 = 3.0 Hz, J 1-3 = 16.0 Hz, 3H), 5.14 (dd, J 1 -2 = 4.0 Hz, J 1 -3 = 12.0 Hz, 3H), 4.27 (d, J = 8.0 Hz, 6H), 3.72 (t, J = 6.0 Hz, 6H), 3.10 (s, 6H), 1.57 ( quin, J = 8.0 Hz, 6H), 1.29-1.20 (m, 36H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 135.5, 116.9, 83.0, 82.6, 74.8, 74.3, 32.1, 30.8, 29.8, 29.5, 26.4, 23.0, 14.3.

<6-2> 화합물 C10의 합성<6-2> Synthesis of Compound C10

실시예 2-2의 일반적인 오존 분해 반응 절차에 따라 화합물 C10을 73%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.88-3.86 (m, 6H), 3.78 (t, J = 6.0 Hz, 6H), 3.70 (s, 6H), 3.48 (br s, 3H), 3.28 (t, J = 10.0 Hz, 3H), 3.10 (t, J = 10.0 Hz, 3H), 1.63 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 36H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 83.0, 82.9, 74.8, 74.7, 63.2, 31.9, 30.2, 29.6, 29.3, 26.1, 22.7, 14.2.Compound C10 was synthesized in 73% yield according to the general ozone decomposition reaction procedure of Example 2-2. 1 H NMR (400 MHz, CDCl 3 ): δ 3.88-3.86 (m, 6H), 3.78 (t, J = 6.0 Hz, 6H), 3.70 (s, 6H), 3.48 (br s, 3H), 3.28 (t, J = 10.0 Hz, 3H), 3.10 (t, J = 10.0 Hz, 3H), 1.63 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 36H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 83.0, 82.9, 74.8, 74.7, 63.2, 31.9, 30.2, 29.6, 29.3, 26.1, 22.7, 14.2.

<6-3> STM-E9a의 합성<6-3> Synthesis of STM-E9a

실시예 2-3의 일반적인 당화 반응 절차에 따라 화합물 STM-E9a를 65%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.08 (d, J = 8.0 Hz, 6H), 7.98 (d, J = 8.0 Hz, 6H), 7.85 (d, J = 8.0 Hz, 6H), 7.77 (d, J = 8.0 Hz, 6H), 7.73 (d, J = 8.0 Hz, 12H), 7.63 (d, J = 8.0 Hz, 6H), 7.57-7.45 (m, 9H), 7.44-7.37 (m, 21H), 7.33-7.29 (m, 9H), 7.27-7.17 (m, 24H), 6.09 (t, J = 12.0 Hz, 3H), 5.75 (t, J = 8.0 Hz, 3H), 5.73 (d, J = 4.0 Hz, 3H), 5.66 (t, J = 10.0 Hz, 3H), 5.30 (t, J = 8.0 Hz, 3H), 5.25 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.89 (d, J = 8.0 Hz, 3H), 4.80 (d, J = 8.0 Hz, 3H), 4.75 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.50 (t, J = 8.0 Hz, 3H), 4.47-4.43 (m, 3H), 4.37 (dd, J 1-2 = 4.0 Hz, J 1-3 = 8.0 Hz, 3H), 4.24 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.12-4.07 (m, 3H), 3.93-3.91 (m, 3H), 3.74-3.71 (m, 3H), 3.63-3.58 (m, 6H), 3.43-3.33 (m, 6H), 2.67 (t, J = 10.0 Hz, 3H), 2.45 (t, J = 10.0 Hz, 3H) 1.32-1.08 (m, 36H), 0.86 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 166.3, 166.0, 165.8, 165.6, 165.2, 165.1, 133.6, 133.5, 133.4, 133.3, 133.2, 130.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.3, 129.1, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 128.2, 101.1, 96.6, 83.1, 82.0, 75.3, 73.7, 73.3, 73.1, 72.3, 71.6, 71.0, 70.1, 69.5, 69.3, 63.7, 62.6, 32.1, 30.6, 29.8, 29.5, 26.5, 22.9, 14.3.Compound STM-E9a was synthesized in a yield of 65% according to the general saccharification reaction procedure of Example 2-3. 1 H NMR (400 MHz, CDCl 3 ): δ 8.08 (d, J = 8.0 Hz, 6H), 7.98 (d, J = 8.0 Hz, 6H), 7.85 (d, J = 8.0 Hz, 6H), 7.77 ( d, J = 8.0 Hz, 6H), 7.73 (d, J = 8.0 Hz, 12H), 7.63 (d, J = 8.0 Hz, 6H), 7.57-7.45 (m, 9H), 7.44-7.37 (m, 21H) ), 7.33-7.29 (m, 9H), 7.27-7.17 (m, 24H), 6.09 (t, J = 12.0 Hz, 3H), 5.75 (t, J = 8.0 Hz, 3H), 5.73 (d, J = 4.0 Hz, 3H), 5.66 (t, J = 10.0 Hz, 3H), 5.30 (t, J = 8.0 Hz, 3H), 5.25 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.89 (d, J = 8.0 Hz, 3H), 4.80 (d, J = 8.0 Hz, 3H), 4.75 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.50 (t, J = 8.0 Hz, 3H), 4.47-4.43 (m, 3H), 4.37 (dd, J 1-2 = 4.0 Hz, J 1-3 = 8.0 Hz, 3H), 4.24 (dd, J 1 -2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.12-4.07 (m, 3H), 3.93-3.91 (m, 3H), 3.74-3.71 (m, 3H), 3.63-3.58 (m, 6H), 3.43-3.33 (m, 6H), 2.67 (t, J = 10.0 Hz, 3H), 2.45 (t, J = 10.0 Hz, 3H) 1.32-1.08 (m, 36H), 0.86 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.3, 166.0, 165.8, 165.6, 165.2, 165.1, 133.6, 133.5, 133.4, 133.3, 133.2, 130.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.3, 129.1, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 128.2, 101.1, 96.6, 83.1, 82.0, 75.3, 73.7, 73.3, 73.1, 72.3, 71.6, 71.0, 70.1, 69.5, 69.3, 63.7, 62.6, 32.1, 30.6, 29.8, 29.5, 26.5, 22.9, 14.3.

<6-4> STM-E9의 합성<6-4> Synthesis of STM-E9

실시예 2-4의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 STM-E9를 90%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.33 (d, J = 8.0 Hz, 3H), 3.99 (d, J = 0.04 Hz, 6H), 3.86 (d, J = 8.0 Hz, 6H), 3.82-3.75 (m, 15H), 3.70-3.61 (m, 12H), 3.54 (t, J = 10.0 Hz, 3H), 3.47 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.39-3.35 (m, 3H), 3.32-3.25 (m, 6H), 3.20 (t, J = 10.0 Hz, 3H), 3.07 (t, J = 8.0 Hz, 3H), 1.64-1.62 (m, 6H), 1.39-1.21 (m, 36H), 0.90 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CD3OD): δ 104.3, 103.1, 84.2, 83.7, 81.5, 77.8, 76.7, 75.1, 74.8, 74.2, 73.4, 71.5, 70.4, 62.8, 62.3, 52.8, 33.2, 31.7, 30.9, 30.8, 30.6, 27.4, 23.8, 14.7. HRMS (FAB + ): calcd. for C75H138O39 [M+Na]+ 1685.8713, found 1685.8710.According to the general synthetic procedure for the deprotection vaporization reaction of Example 2-4, STM-E9 in a yield of 90% Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.33 (d, J = 8.0 Hz, 3H), 3.99 (d, J = 0.04 Hz, 6H), 3.86 (d, J = 8.0 Hz, 6H), 3.82-3.75 (m, 15H), 3.70-3.61 (m, 12H), 3.54 (t, J = 10.0 Hz, 3H), 3.47 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 3.39-3.35 (m, 3H), 3.32-3.25 (m, 6H), 3.20 (t, J = 10.0 Hz, 3H), 3.07 (t, J = 8.0 Hz, 3H), 1.64-1.62 (m, 6H), 1.39-1.21 (m, 36H), 0.90 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 104.3, 103.1, 84.2, 83.7, 81.5, 77.8, 76.7, 75.1, 74.8, 74.2, 73.4, 71.5, 70.4, 62.8, 62.3, 52.8, 33.2, 31.7, 30.9 , 30.8, 30.6, 27.4, 23.8, 14.7. HRMS (FAB + ) : calcd. for C 75 H 138 O 39 [M+Na] + 1685.8713, found 1685.8710.

<제조예 7> STM-E10의 합성<Production Example 7> Synthesis of STM-E10

<7-1> 화합물 B7의 합성<7-1> Synthesis of Compound B7

실시예 2-1의 1,3,5-트리알릴화된 실리톨의 일반적인 알킬화 반응 절차에 따라 화합물 B7을 75%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 6.00-5.90 (m, 3H), 5.25 (d, J = 20.0 Hz, 3H), 5.14 (d, J = 8.0 Hz, 3H), 4.26 (d, J = 4.0 Hz, 6H), 3.72 (t, J = 8.0 Hz, 6H), 3.09 (s, 6H), 1.57 (quin, J = 8.0 Hz, 6H), 1.29-1.20 (m, 40H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 135.5, 116.8, 83.0, 82.6, 74.8, 74.2, 32.1, 30.7, 29.8, 29.7, 29.5, 26.4, 22.9, 14.3.Compound B7 was synthesized in 75% yield according to the general alkylation reaction procedure of 1,3,5-triallylated silitol of Example 2-1. 1 H NMR (400 MHz, CDCl 3 ): δ 6.00-5.90 (m, 3H), 5.25 (d, J = 20.0 Hz, 3H), 5.14 (d, J = 8.0 Hz, 3H), 4.26 (d, J = 4.0 Hz, 6H), 3.72 (t, J = 8.0 Hz, 6H), 3.09 (s, 6H), 1.57 (quin, J = 8.0 Hz, 6H), 1.29-1.20 (m, 40H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 135.5, 116.8, 83.0, 82.6, 74.8, 74.2, 32.1, 30.7, 29.8, 29.7, 29.5, 26.4, 22.9, 14.3.

<7-2> 화합물 C11의 합성<7-2> Synthesis of Compound C11

실시예 2-2의 일반적인 오존 분해 반응 절차에 따라 화합물 C11을 72%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.88-3.86 (m, 6H), 3.78 (t, J = 6.0 Hz, 6H), 3.70 (s, 6H), 3.48 (br s, 3H), 3.28 (t, J = 10.0 Hz, 3H), 3.10 (t, J = 10.0 Hz, 3H), 1.63 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 40H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 83.0, 82.9, 74.8, 74.7, 63.2, 32.0, 30.3, 29.7, 29.6, 29.4, 26.2, 22.8, 14.2.Compound C11 was synthesized in 72% yield according to the general ozone decomposition reaction procedure of Example 2-2. 1 H NMR (400 MHz, CDCl 3 ): δ 3.88-3.86 (m, 6H), 3.78 (t, J = 6.0 Hz, 6H), 3.70 (s, 6H), 3.48 (br s, 3H), 3.28 (t, J = 10.0 Hz, 3H), 3.10 (t, J = 10.0 Hz, 3H), 1.63 (quin, J = 8.0 Hz, 6H), 1.31-1.26 (m, 40H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 83.0, 82.9, 74.8, 74.7, 63.2, 32.0, 30.3, 29.7, 29.6, 29.4, 26.2, 22.8, 14.2.

<7-3> STM-E10a의 합성<7-3> Synthesis of STM-E10a

실시예 2-3의 일반적인 당화 반응 절차에 따라 화합물 STM-E10a를 65%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.10 (d, J = 8.0 Hz, 6H), 7.99 (d, J = 8.0 Hz, 6H), 7.85 (dd, J 1-2 = 4.0, J 1-3 = 12.0 Hz, 6H), 7.78 (d, J = 8.0 Hz, 6H), 7.73 (d, J = 8.0 Hz, 12H), 7.63 (dd, J 1-2 = 4.0, J 1-3 = 12.0 Hz, 3H), 7.55-7.49 (m, 7H), 7.46-7.35 (m, 25H), 7.33-7.27 (m, 12H), 7.25-7.16 (m, 22H), 6.10 (t, J = 12.0 Hz, 3H), 5.75-5.73 (m, 6H), 5.66 (t, J = 10.0 Hz, 3H), 5.32-5.24 (m, 6H), 4.89 (d, J = 8.0 Hz, 3H), 4.82 (d, J = 8.0 Hz, 3H), 4.75 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.50 (t, J = 8.0 Hz, 3H), 4.47-4.40 (m, 3H), 4.37 (d, J = 12.0 Hz, 3H), 4.24 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.12-4.07 (m, 3H), 3.93-3.91 (m, 3H), 3.74-3.71 (m, 3H), 3.63-3.58 (m, 6H), 3.43-3.33 (m, 6H), 2.67 (t, J = 10.0 Hz, 3H), 2.45 (t, J = 10.0 Hz, 3H) 1.32-1.08 (m, 40H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 166.2, 166.0, 165.8, 165.4, 165.2, 165.1, 133.6, 133.5, 133.4, 133.3, 133.2, 130.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.3, 129.1, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 128.2, 101.1, 96.6, 83.1, 82.0, 75.3, 73.6, 73.3, 73.1, 72.3, 71.6, 71.2, 70.1, 69.5, 69.3, 63.7, 62.6, 32.1, 30.6, 29.8, 29.5, 26.5, 22.9, 14.2.Compound STM-E10a was synthesized in a yield of 65% according to the general saccharification reaction procedure of Example 2-3. 1 H NMR (400 MHz, CDCl 3 ): δ 8.10 (d, J = 8.0 Hz, 6H), 7.99 (d, J = 8.0 Hz, 6H), 7.85 (dd, J 1-2 = 4.0, J 1- 3 = 12.0 Hz, 6H), 7.78 (d, J = 8.0 Hz, 6H), 7.73 (d, J = 8.0 Hz, 12H), 7.63 (dd, J 1-2 = 4.0, J 1-3 = 12.0 Hz , 3H), 7.55-7.49 (m, 7H), 7.46-7.35 (m, 25H), 7.33-7.27 (m, 12H), 7.25-7.16 (m, 22H), 6.10 (t, J = 12.0 Hz, 3H ), 5.75-5.73 (m, 6H), 5.66 (t, J = 10.0 Hz, 3H), 5.32-5.24 (m, 6H), 4.89 (d, J = 8.0 Hz, 3H), 4.82 (d, J = 8.0 Hz, 3H), 4.75 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.50 (t, J = 8.0 Hz, 3H), 4.47-4.40 (m, 3H), 4.37 (d, J = 12.0 Hz, 3H), 4.24 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.12-4.07 (m, 3H), 3.93-3.91 (m, 3H), 3.74-3.71 (m, 3H), 3.63-3.58 (m, 6H), 3.43-3.33 (m, 6H), 2.67 (t, J = 10.0 Hz, 3H), 2.45 (t, J = 10.0 Hz , 3H) 1.32-1.08 (m, 40H), 0.88 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.2, 166.0, 165.8, 165.4, 165.2, 165.1, 133.6, 133.5, 133.4, 133.3, 133.2, 130.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.3, 129.1, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3, 128.2, 101.1, 96.6, 83.1, 82.0, 75.3, 73.6, 73.3, 73.1, 72.3, 71.6, 71.2, 70.1, 69.5, 69.3, 63.7, 62.6, 32.1, 30.6, 29.8, 29.5, 26.5, 22.9, 14.2.

<7-4> STM-E10의 합성<7-4> Synthesis of STM-E10

실시예 2-4의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 STM-E10를 91%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.32 (d, J = 8.0 Hz, 3H), 4.05-3.98 (m, 6H), 3.90-3.88 (d, J = 12.0 Hz, 6H), 3.85-3.81 (m, 6H), 3.80-3.71 (m, 9H), 3.69-3.60 (m, 12H), 3.53 (t, J = 10.0 Hz, 3H), 3.45 (dd, J 1-2 = 4.0 Hz, J 1-3 = 8.0 Hz, 3H), 3.39-3.35 (m, 3H), 3.32-3.24 (m, 6H), 3.20 (t, J = 8.0 Hz, 3H), 3.07 (t, J = 8.0 Hz, 3H), 1.64-1.62 (m, 6H), 1.39-1.21 (m, 40H), 0.90 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CD3OD): δ 104.3, 103.1, 84.2, 83.6, 81.5, 77.8, 76.7, 75.1, 74.8, 74.2, 73.4, 71.5, 70.4, 62.8, 62.3, 33.2, 31.7, 30.9, 30.8, 30.6, 27.4, 23.8, 14.7. HRMS (FAB + ): calcd. for C78H144O39 [M+Na]+ 1727.9182, found 1727.9188.According to the general synthetic procedure for the deprotection vaporization reaction of Example 2-4, STM-E10 in a yield of 91% Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 5.15 (d, J = 4.0 Hz, 3H), 4.32 (d, J = 8.0 Hz, 3H), 4.05-3.98 (m, 6H), 3.90-3.88 ( d, J = 12.0 Hz, 6H), 3.85-3.81 (m, 6H), 3.80-3.71 (m, 9H), 3.69-3.60 (m, 12H), 3.53 (t, J = 10.0 Hz, 3H), 3.45 (dd, J 1-2 = 4.0 Hz, J 1-3 = 8.0 Hz, 3H), 3.39-3.35 (m, 3H), 3.32-3.24 (m, 6H), 3.20 (t, J = 8.0 Hz, 3H ), 3.07 (t, J = 8.0 Hz, 3H), 1.64-1.62 (m, 6H), 1.39-1.21 (m, 40H), 0.90 (t, J = 6.0 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 104.3, 103.1, 84.2, 83.6, 81.5, 77.8, 76.7, 75.1, 74.8, 74.2, 73.4, 71.5, 70.4, 62.8, 62.3, 33.2, 31.7, 30.9, 30.8 , 30.6, 27.4, 23.8, 14.7. HRMS (FAB + ) : calcd. for C 78 H 144 O 39 [M+Na] + 1727.9182, found 1727.9188.

<실시예 3> SHG-Gs<Example 3> SHG-Gs 의 합성 방법Synthesis method

SHG-Gs 의 합성 스킴을 도 3에 나타내었다. 하기 <3-1> 내지 <3-5>의 합성 방법에 따라 SHG-Gs 3종의 화합물을 합성하였다.The synthesis scheme of SHG-Gs is shown in FIG. 3. Three kinds of SHG-Gs compounds were synthesized according to the synthesis method of the following <3-1> to <3-5>.

<3-1> 1,3,5-<3-1> 1,3,5- 트리알릴화Triallylation -2,4,6--2,4,6- 트리알킬화된Trialkylated 실리톨(1,3,5-triallylated-2,4,6-trialkylated Silitol (1,3,5-triallylated-2,4,6-trialkylated scyllitolscyllitol )(화합물 B)의 합성(도 3의 단계 a)) Synthesis of (Compound B) (Step a in Fig. 3)

DMF에 용해된 1,3,5-트리알릴화 실리톨(1,3,5-triallylated syllitol)(화합물 1b)에 아르곤(Ar) 대기 하에서 NaH (미네랄 오일에 60 % 분산액, 6.0 당량)를 첨가하였다. 알킬 아이오다이드(4.5 당량)를 가스 방출이 멈춘 후에 적가하고, 반응 혼합물을 실온에서 24시간 동안 교반하고 얼음 첨가하여 반응을 켄칭시켰다. 켄칭된 반응 혼합물을 물로 희석한 후 에틸 아세테이트로 세척하였다. 혼합한 에틸 아세테이트 분획을 염수로 세척하고 무수 Na2SO4상에서 건조시켰다. 감압 하에서 용매를 제거하여 유성 잔류물을 수득하였으며, 컬럼 크로마토그래피 정제를 통해 유색 오일의 목적 화합물 B를 수득하였다.NaH (60% dispersion in mineral oil, 6.0 equivalents) was added to 1,3,5-triallylated syllitol (1,3,5-triallylated syllitol) (compound 1b) dissolved in DMF under argon (Ar) atmosphere. I did. Alkyl iodide (4.5 equivalents) was added dropwise after gas evolution ceased, and the reaction mixture was stirred at room temperature for 24 hours and ice was added to quench the reaction. The quenched reaction mixture was diluted with water and then washed with ethyl acetate. The combined ethyl acetate fractions were washed with brine and dried over anhydrous Na 2 SO 4 . The solvent was removed under reduced pressure to obtain an oily residue, and purified by column chromatography to give the title compound B as a colored oil.

<3-2> <3-2> 업존Upzone 디하이드록실레이션Dehydroxylation (( UpJohnUpJohn dihydroxylationdihydroxylation )반응의 일반 합성 절차 (도 3의 단계 b)) General synthesis procedure of the reaction (step b in Figure 3)

아세톤:물:tert-부탄올 (4:3:1)에 화합물 B가 잘 교반된 용액에 N-메틸모르폴린 N-옥사이드 (50 wt% 용액, 알켄 당 1.10 mmol)를 실온에서 첨가하였다. 몇 분 후 OsO4 (알켄 당 0.25 mol%)를 첨가하고 실온에서 교반을 계속하였다. TLC로 표시되는 것과 같이 반응 완료 후, 용매를 감압하에 제거하였다. 생성된 갈색 유성 잔류물을 DCM에 용해시킨 후, 물, 염수로 세척하고, 무수 Na2SO4상에서 건조시켰다. 감압 하에서 용매를 제거하여 암색의 오일을 얻었으며 컬럼 크로마토그래피 (SiO2)로 정제하여 목적 화합물 D을 수득하였다.To a well stirred solution of Compound B in acetone:water:tert-butanol (4:3:1), N-methylmorpholine N-oxide (50 wt% solution, 1.10 mmol per alkene) was added at room temperature. After a few minutes OsO 4 (0.25 mol% per alkene) was added and stirring was continued at room temperature. After completion of the reaction as indicated by TLC, the solvent was removed under reduced pressure. The resulting brown oily residue was dissolved in DCM, washed with water, brine, and dried over anhydrous Na 2 SO 4 . The solvent was removed under reduced pressure to obtain a dark oil, which was purified by column chromatography (SiO 2 ) to obtain the title compound D.

<3-3> 당화(glycosycosylation)반응의 일반 합성 절차 (도 3의 단계 c)<3-3> General synthesis procedure of glycosycosylation reaction (step c in FIG. 3)

질소(N2) 하에서, 화합물 D (1.0 당량), 디메톡시에탄 (30.0 당량) 및 AgOTf (7.2 당량)의 혼합물을 무수 CH2Cl2 에서 -45 ℃에서 교반하였다. 무수 CH2Cl2에서 페르벤조일레이티드 글루코실브로마이드(perbenzoylated glucosylbromide) (7.2 당량)용액을이 현탁액에 적가하였다. -45 ℃에서 수 분 동안 교반을 계속한 후, 반응 혼합물의 온도를 0 ℃로 증가시키고 30 분 동안 계속 교반하였다. 반응 완결 후 (TLC로 나타냄), 반응 혼합물에 피리딘을 첨가하고 CH2Cl2로 희석하여 셀 라이트상에서 여과하였다. 여과액을 1 M 수용성 Na2S2O3 용액, 0.1 M HCl 수용액 및 염수로 연속적으로 세척하였다. 유기층을 무수 Na2SO4로 건조시킨 후, 회전 증발기를 이용하여 용매를 제거하였다. 수득된 잔류물을 실리카 실리카 겔 컬럼 크로마토그래피 (EtOAc/헥산)로 정제하여 고체인 목적하는 화합물 D1을 수득하였다.Under nitrogen (N 2 ), a mixture of compound D (1.0 equivalent), dimethoxyethane (30.0 equivalent) and AgOTf (7.2 equivalent) was stirred in anhydrous CH 2 Cl 2 at -45°C. A solution of perbenzoylated glucosylbromide (7.2 equivalents) in anhydrous CH 2 Cl 2 was added dropwise to this suspension. After stirring was continued at -45° C. for several minutes, the temperature of the reaction mixture was increased to 0° C. and stirring was continued for 30 minutes. After completion of the reaction (represented by TLC), pyridine was added to the reaction mixture, diluted with CH 2 Cl 2, and filtered over Celite. The filtrate was washed successively with 1 M aqueous Na 2 S 2 O 3 solution, 0.1 M HCl aqueous solution, and brine. After drying the organic layer with anhydrous Na 2 SO 4 , the solvent was removed using a rotary evaporator. The obtained residue was purified by silica silica gel column chromatography (EtOAc/hexane) to obtain the desired compound D 1 as a solid.

<3-4> <3-4> 탈보호기화Deprotection vaporization 반응 ( reaction ( deprotectiondeprotection reaction)을 위한 일반 합성 절차 (도 3의 단계 d) reaction) for general synthesis procedure (step d in FIG. 3)

이는 Chae, P. S. 등의 합성 방법 (Nat Meth 2010, 7, 1003.)에 따랐다. Zemplen's 조건하에 데-O-벤조일화(de-O-benzoylation)를 수행하였다. O-protected 화합물을 무수 CH2Cl2로 용해시킨 다음 MeOH를 지속적인 침전이 나타날때까지 천천히 첨가하였다. 상기 반응 혼합물에 0.5M의 메탄올성 용액(methanolic solution)인 NaOMe를 최종 농도가 0.05 M이 되도록 첨가하였다. 반응 혼합물을 상온에서 6시간 동안 교반시켰다. 반응 완료 후, 반응 혼합물을 Amberlite IR-120 (H+ form) resin을 이용하여 중화시켰다. 여과하여 resin을 제거하고, MeOH로 세척하고, 진공 조건(in vacuo)에서 여과물로부터 용매를 제거하였다. 2 mL의 MeOH:CH2Cl2 (1:1) 혼합물에 용해된 잔류물에 디에틸에테르 (50 mL)를 첨가하여 침전된 백색 고체의 목적 화합물 D2을 수득하였다.This was followed by the synthesis method of Chae, PS et al. (Nat Meth 2010, 7, 1003.). De-O-benzoylation was performed under Zemplen's conditions. The O-protected compound was dissolved in anhydrous CH2Cl2 and then MeOH was slowly added until a continuous precipitation appeared. NaOMe, which is a 0.5M methanolic solution, was added to the reaction mixture so that the final concentration was 0.05M. The reaction mixture was stirred at room temperature for 6 hours. After completion of the reaction, the reaction mixture was neutralized using Amberlite IR-120 (H+ form) resin. The resin was removed by filtration, washed with MeOH, and the solvent was removed from the filtrate under vacuum conditions (in vacuo). Diethyl ether (50 mL) was added to the residue dissolved in 2 mL of MeOH:CH 2 Cl 2 (1:1) mixture to obtain the target compound D 2 as a precipitated white solid.

<제조예 8> SHG-G12의 합성<Production Example 8> Synthesis of SHG-G12

<8-1> 화합물 B12의 합성<8-1> Synthesis of Compound B12

실시예 3-1의 1,3,5-트리알릴화된 실리톨의 일반적인 알킬화 반응 절차에 따라 화합물 B12를 72%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 6.00-5.91 (m, 3H), 5.26 (d, J = 16.0 Hz, 3H), 5.14 (d, J = 12.0 Hz, 3H), 4.27 (d, J = 4.0 Hz, 6H), 3.72 (t, J = 6.0 Hz, 6H), 3.10 (s, 6H), 1.57 (quin, J = 8.0 Hz, 6H), 1.29-1.20 (m, 54H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 135.5, 116.8, 83.0, 82.6, 74.8, 74.2, 71.1, 32.1, 30.7, 29.9, 29.8, 29.7, 29.6, 26.4, 22.9, 14.3.Compound B12 was synthesized in 72% yield according to the general alkylation reaction procedure of 1,3,5-triallylated silitol of Example 3-1. 1 H NMR (400 MHz, CDCl 3 ): δ 6.00-5.91 (m, 3H), 5.26 (d, J = 16.0 Hz, 3H), 5.14 (d, J = 12.0 Hz, 3H), 4.27 (d, J = 4.0 Hz, 6H), 3.72 (t, J = 6.0 Hz, 6H), 3.10 (s, 6H), 1.57 (quin, J = 8.0 Hz, 6H), 1.29-1.20 (m, 54H), 0.88 (t , J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 135.5, 116.8, 83.0, 82.6, 74.8, 74.2, 71.1, 32.1, 30.7, 29.9, 29.8, 29.7, 29.6, 26.4, 22.9, 14.3.

<8-2> 화합물 D15의 합성<8-2> Synthesis of Compound D15

실시예 3-2의 일반적인 업존 디하이드록실레이션 반응 절차에 따라 화합물 D15를 82%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 4.02 (br s, 1H), 3.89-3.86 (m, 7H), 3.78-3.70 (m, 8H), 3.66 (d, J = 12.0 Hz, 3H), 3.57-3.52 (m, 3H), 3.29-3.23 (m, 3H), 3.10 (quin, J = 8.0 Hz, 3H), 2.42 (br s, 3H), 1.63 (quin, J = 8.0 Hz, 6H), 1.31-1.25 (m, 54H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 83.1, 83.0, 82.9, 82.8, 82.7, 82.6, 82.5, 75.1, 74.9, 74.8, 74.7, 74.5, 74.3, 72.1, 72.0, 71.9, 71.0, 66.5, 64.3, 63.4, 55.1, 53.5, 46.1, 32.0, 30.3, 30.2, 29.8, 29.7, 29.6, 29.5, 26.2, 26.1, 25.4, 22.8, 14.2.Compound D15 was synthesized in 82% yield according to the general upzone dehydroxylation reaction procedure of Example 3-2. 1 H NMR (400 MHz, CDCl 3 ): δ 4.02 (br s, 1H), 3.89-3.86 (m, 7H), 3.78-3.70 (m, 8H), 3.66 (d, J = 12.0 Hz, 3H), 3.57-3.52 (m, 3H), 3.29-3.23 (m, 3H), 3.10 (quin, J = 8.0 Hz, 3H), 2.42 (br s, 3H), 1.63 (quin, J = 8.0 Hz, 6H), 1.31-1.25 (m, 54H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 83.1, 83.0, 82.9, 82.8, 82.7, 82.6, 82.5, 75.1, 74.9, 74.8, 74.7, 74.5, 74.3, 72.1, 72.0, 71.9, 71.0, 66.5, 64.3, 63.4, 55.1, 53.5, 46.1, 32.0, 30.3, 30.2, 29.8, 29.7, 29.6, 29.5, 26.2, 26.1, 25.4, 22.8, 14.2.

<8-3> SHG-G12a의 합성<8-3> Synthesis of SHG-G12a

실시예 3-3의 일반적인 당화 반응 절차에 따라 화합물 SHG-G12a를 64%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.23-7.80 (m, 48H), 7.62-7.23 (m, 72H), 5.86-5.80 (m, 4H), 5.70 (t, J = 10.0 Hz, 3H), 5.62-5.46 (m, 9H), 5.38-5.28 (m, 2H), 4.90-4.75 (m, 4H), 4.64-4.50 (m, 6H), 4.46-4.44 (m, 4H), 4.38-4.32 (m, 3H), 4.13-3.98 (m, 9H), 3.72-3.18 (m, 19H), 2.80-2.00 (m, 6H), 1.50-1.40 (m, 3H), 1.38-1.10 (m, 57H), 0.84-0.80 (m, 9H); 13 C NMR (100 MHz, CDCl3): δ 166.1, 166.0, 165.9, 165.8, 165.4, 165.2, 165.1, 164.9, 133.4, 133.2, 130.2, 130.0, 129.9, 129.7, 129.6, 129.5, 129.3, 129.2, 129.1, 128.9, 128.6, 128.5, 128.4, 101.4, 73.3, 73.2, 73.0, 72.8, 72.5, 72.1, 71.9, 71.6, 70.0, 69.7, 63.1, 60.5, 53.6, 32.1, 30.8, 30.2, 30.1, 30.0, 29.9, 29.6, 26.7, 26.6, 22.8, 14.3.Compound SHG-G12a was synthesized in a yield of 64% according to the general saccharification reaction procedure of Example 3-3. 1 H NMR (400 MHz, CDCl 3 ): δ 8.23-7.80 (m, 48H), 7.62-7.23 (m, 72H), 5.86-5.80 (m, 4H), 5.70 (t, J = 10.0 Hz, 3H) , 5.62-5.46 (m, 9H), 5.38-5.28 (m, 2H), 4.90-4.75 (m, 4H), 4.64-4.50 (m, 6H), 4.46-4.44 (m, 4H), 4.38-4.32 ( m, 3H), 4.13-3.98 (m, 9H), 3.72-3.18 (m, 19H), 2.80-2.00 (m, 6H), 1.50-1.40 (m, 3H), 1.38-1.10 (m, 57H), 0.84-0.80 (m, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.1, 166.0, 165.9, 165.8, 165.4, 165.2, 165.1, 164.9, 133.4, 133.2, 130.2, 130.0, 129.9, 129.7, 129.6, 129.5, 129.3, 129.2, 129.1, 128.9, 128.6, 128.5, 128.4, 101.4, 73.3, 73.2, 73.0, 72.8, 72.5, 72.1, 71.9, 71.6, 70.0, 69.7, 63.1, 60.5, 53.6, 32.1, 30.8, 30.2, 30.1, 30.0, 29.9, 29.6, 26.7, 26.6, 22.8, 14.3.

<8-4> SHG-G12의 합성<8-4> Synthesis of SHG-G12

실시예 3-4의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 SHG-G12를 90%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 4.59 (t, J = 6.0 Hz, 1.5H), 4.49 (d, J = 8.0 Hz, 1.5H), 4.40 (d, J = 8.0 Hz, 1.5H), 4.33 (d, J = 8.0 Hz, 1.5H), 4.12 (d, J = 8.0 Hz, 2H), 4.06-4.01 (m, 5H), 3.99-3.96 (m, 4H), 3.88-3.80 (m, 8H), 3.78-3.65 (m, 16H), 3.38-3.28 (m, 9H), 3.28-3.26 (m, 8H), 3.23-3.19 (m, 8H), 3.13-3.09 (m, 3H), 1.69-1.59 (m, 6H), 1.38-1.20 (m, 54H), 0.90 (t, J = 8.0 Hz, 9H). 13 C NMR (100 MHz, CD3OD): δ 105.1, 104.8, 104.6, 84.1, 79.6, 78.2, 78.1, 78.0, 77.9, 75.6, 75.4, 75.3, 75.2, 71.8, 71.7, 71.6, 62.9, 33.2, 31.8, 31.2, 31.1, 31.0, 30.7, 27.6, 23.9, 14.6. HRMS (FAB + ): calcd. for C87H162O42 [M+Na]+ 1902.0438, found 1902.0431.SHG-G12 in a yield of 90% according to the general synthetic procedure for the deprotection vaporization reaction of Example 3-4 Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 4.59 (t, J = 6.0 Hz, 1.5H), 4.49 (d, J = 8.0 Hz, 1.5H), 4.40 (d, J = 8.0 Hz, 1.5H ), 4.33 (d, J = 8.0 Hz, 1.5H), 4.12 (d, J = 8.0 Hz, 2H), 4.06-4.01 (m, 5H), 3.99-3.96 (m, 4H), 3.88-3.80 (m) , 8H), 3.78-3.65 (m, 16H), 3.38-3.28 (m, 9H), 3.28-3.26 (m, 8H), 3.23-3.19 (m, 8H), 3.13-3.09 (m, 3H), 1.69 -1.59 (m, 6H), 1.38-1.20 (m, 54H), 0.90 (t, J = 8.0 Hz, 9H). 13 C NMR (100 MHz, CD 3 OD): δ 105.1, 104.8, 104.6, 84.1, 79.6, 78.2, 78.1, 78.0, 77.9, 75.6, 75.4, 75.3, 75.2, 71.8, 71.7, 71.6, 62.9, 33.2, 31.8 , 31.2, 31.1, 31.0, 30.7, 27.6, 23.9, 14.6. HRMS (FAB + ) : calcd. for C 87 H 162 O 42 [M+Na] + 1902.0438, found 1902.0431.

<제조예 9> SHG-G13의 합성<Production Example 9> Synthesis of SHG-G13

<9-1> 화합물 B13의 합성<9-1> Synthesis of Compound B13

실시예 3-1의 1,3,5-트리알릴화된 실리톨의 일반적인 알킬화 반응 절차에 따라 화합물 B13를 72%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 6.00-5.90 (m, 3H), 5.26 (dd, J 1-2 = 4.0 Hz, J 1-3 = 20.0 Hz, 3H), 5.14 (dd, J 1-2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.27 (d, J = 4.0 Hz, 6H), 3.72 (t, J = 6.0 Hz, 6H), 3.10 (s, 6H), 1.56 (quin, J = 8.0 Hz, 6H), 1.29-1.20 (m, 60H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 135.5, 116.8, 82.9, 82.6, 74.8, 74.2, 71.2, 32.1, 30.7, 30.0, 29.9, 29.8, 29.7, 29.6, 26.4, 22.9, 14.3.Compound B13 was synthesized in 72% yield according to the general alkylation reaction procedure of 1,3,5-triallylated silitol of Example 3-1. 1 H NMR (400 MHz, CDCl 3 ): δ 6.00-5.90 (m, 3H), 5.26 (dd, J 1-2 = 4.0 Hz, J 1-3 = 20.0 Hz, 3H), 5.14 (dd, J 1 -2 = 4.0 Hz, J 1-3 = 12.0 Hz, 3H), 4.27 (d, J = 4.0 Hz, 6H), 3.72 (t, J = 6.0 Hz, 6H), 3.10 (s, 6H), 1.56 ( quin, J = 8.0 Hz, 6H), 1.29-1.20 (m, 60H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 135.5, 116.8, 82.9, 82.6, 74.8, 74.2, 71.2, 32.1, 30.7, 30.0, 29.9, 29.8, 29.7, 29.6, 26.4, 22.9, 14.3.

<9-2> 화합물 D16의 합성<9-2> Synthesis of Compound D16

실시예 3-2의 일반적인 업존 디하이드록실레이션 반응 절차에 따라 화합물 D16를 82%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 4.02 (br s, 1H), 3.86-3.84 (m, 6H), 3.78-3.71 (m, 9H), 3.66 (d, J = 12.0 Hz, 3H), 3.57-3.51 (m, 3H), 3.38-3.23 (m, 3H), 3.14-3.06 (m, 3H), 2.42 (br s, 3H), 1.63 (quin, J = 8.0 Hz, 6H), 1.31-1.25 (m, 60H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 83.2, 83.0, 82.8, 82.8, 75.3, 75.1, 75.0, 74.8, 74.5, 72.1, 72.0, 71.9, 71.2, 63.6, 32.1, 30.4, 30.3, 30.2, 30.0, 29.9, 29.8, 29.7, 29.6, 26.4, 26.3, 26.2, 22.9, 14.3.Compound D16 was synthesized in 82% yield according to the general upzone dehydroxylation reaction procedure of Example 3-2. 1 H NMR (400 MHz, CDCl 3 ): δ 4.02 (br s, 1H), 3.86-3.84 (m, 6H), 3.78-3.71 (m, 9H), 3.66 (d, J = 12.0 Hz, 3H), 3.57-3.51 (m, 3H), 3.38-3.23 (m, 3H), 3.14-3.06 (m, 3H), 2.42 (br s, 3H), 1.63 (quin, J = 8.0 Hz, 6H), 1.31-1.25 (m, 60H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 83.2, 83.0, 82.8, 82.8, 75.3, 75.1, 75.0, 74.8, 74.5, 72.1, 72.0, 71.9, 71.2, 63.6, 32.1, 30.4, 30.3, 30.2, 30.0, 29.9, 29.8, 29.7, 29.6, 26.4, 26.3, 26.2, 22.9, 14.3.

<9-3> SHG-G13a의 합성<9-3> Synthesis of SHG-G13a

실시예 3-3의 일반적인 당화 반응 절차에 따라 화합물 SHG-G13a를 63%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.25-7.84 (m, 48H), 7.60-7.24 (m, 72H), 5.81-5.77 (m, 4H), 5.67 (t, J = 6.0 Hz, 3H), 5.64-5.43 (m, 9H), 5.38-5.28 (m, 2H), 4.87-4.70 (m, 4H), 4.60-4.52 (m, 6H), 4.44-4.41 (m, 6H), 4.35-4.27 (m, 3H), 4.09-3.95 (m, 8H), 3.65-3.15 (m, 20H), 2.66-2.01 (m, 5H), 1.50-1.40 (m, 3H), 1.38-1.10 (m, 63H), 0.84-0.80 (m, 9H); 13 C NMR (100 MHz, CDCl3): δ 166.0, 165.9, 165.7, 165.1, 164.9, 133.4, 133.2, 130.1, 129.9, 129.8, 129.6, 129.4, 129.2, 129.1, 129.0, 128.6, 128.4, 128.3, 101.3, 73.3, 73.0, 72.4, 71.8, 71.5, 70.0, 69.5, 63.0, 41.0, 32.0, 31.9, 30.8, 30.6, 30.2, 30.1, 29.9, 29.8, 29.7, 29.6, 29.5, 29.4, 26.7, 22.9, 22.7, 14.2.Compound SHG-G13a was synthesized in a yield of 63% according to the general saccharification reaction procedure of Example 3-3. 1 H NMR (400 MHz, CDCl 3 ): δ 8.25-7.84 (m, 48H), 7.60-7.24 (m, 72H), 5.81-5.77 (m, 4H), 5.67 (t, J = 6.0 Hz, 3H) , 5.64-5.43 (m, 9H), 5.38-5.28 (m, 2H), 4.87-4.70 (m, 4H), 4.60-4.52 (m, 6H), 4.44-4.41 (m, 6H), 4.35-4.27 ( m, 3H), 4.09-3.95 (m, 8H), 3.65-3.15 (m, 20H), 2.66-2.01 (m, 5H), 1.50-1.40 (m, 3H), 1.38-1.10 (m, 63H), 0.84-0.80 (m, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.0, 165.9, 165.7, 165.1, 164.9, 133.4, 133.2, 130.1, 129.9, 129.8, 129.6, 129.4, 129.2, 129.1, 129.0, 128.6, 128.4, 128.3, 101.3, 73.3, 73.0, 72.4, 71.8, 71.5, 70.0, 69.5, 63.0, 41.0, 32.0, 31.9, 30.8, 30.6, 30.2, 30.1, 29.9, 29.8, 29.7, 29.6, 29.5, 29.4, 26.7, 22.9, 22.7, 14.2.

<9-4> SHG-G13의 합성<9-4> Synthesis of SHG-G13

실시예 3-4의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 SHG-G13를 92%의 수득률로 합성하였다. 1 H NMR (400 MHz, sCD3OD): δ 4.59 (t, J = 6.0 Hz, 1.5H), 4.50 (d, J = 8.0 Hz, 1.5H), 4.40 (d, J = 8.0 Hz, 1.5H), 4.33 (d, J = 8.0 Hz, 1.5H), 4.10 (d, J = 8.0 Hz, 2H), 4.06-4.01 (m, 4H), 3.98-3.96 (m, 5H), 3.88-3.80 (m, 8H), 3.78-3.65 (m, 16H), 3.38-3.28 (m, 8H), 3.23-3.26 (m, 8H), 3.23-3.19 (m, 6H), 3.13-3.09 (m, 3H), 1.69-1.59 (m, 6H), 1.38-1.20 (m, 60H), 0.90 (t, J = 8.0 Hz, 9H). 13 C NMR (100 MHz, CD3OD): δ 105.1, 104.8, 104.6, 84.0, 79.7, 78.1, 78.0, 75.5, 75.2, 71.8, 71.7, 66.3, 63.0, 62.9, 62.6, 33.2, 31.8, 31.1, 31.0, 30.9, 30.6, 27.6, 23.8, 14.6. HRMS ( FAB + ): calcd. for C90H168O42 [M+Na]+ 1944.0908, found 1944.0921.According to the general synthetic procedure for the deprotection vaporization reaction of Example 3-4, SHG-G13 in a yield of 92% Synthesized. 1 H NMR (400 MHz, sCD 3 OD): δ 4.59 (t, J = 6.0 Hz, 1.5H), 4.50 (d, J = 8.0 Hz, 1.5H), 4.40 (d, J = 8.0 Hz, 1.5H ), 4.33 (d, J = 8.0 Hz, 1.5H), 4.10 (d, J = 8.0 Hz, 2H), 4.06-4.01 (m, 4H), 3.98-3.96 (m, 5H), 3.88-3.80 (m , 8H), 3.78-3.65 (m, 16H), 3.38-3.28 (m, 8H), 3.23-3.26 (m, 8H), 3.23-3.19 (m, 6H), 3.13-3.09 (m, 3H), 1.69 -1.59 (m, 6H), 1.38-1.20 (m, 60H), 0.90 (t, J = 8.0 Hz, 9H). 13 C NMR (100 MHz, CD 3 OD): δ 105.1, 104.8, 104.6, 84.0, 79.7, 78.1, 78.0, 75.5, 75.2, 71.8, 71.7, 66.3, 63.0, 62.9, 62.6, 33.2, 31.8, 31.1, 31.0 , 30.9, 30.6, 27.6, 23.8, 14.6. HRMS ( FAB + ) : calcd. for C 90 H 168 O 42 [M+Na] + 1944.0908, found 1944.0921.

<제조예 10> SHG-G14의 합성<Production Example 10> Synthesis of SHG-G14

<10-1> 화합물 B14의 합성<10-1> Synthesis of Compound B14

실시예 3-1의 1,3,5-트리알릴화된 실리톨의 일반적인 알킬화 반응 절차에 따라 화합물 B14를 71%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 6.00-5.92 (m, 3H), 5.26 (d, J = 16.0 Hz, 3H), 5.14 (d, J = 12.0 Hz, 3H), 4.27 (d, J = 8.0 Hz, 6H), 3.72 (t, J = 6.0 Hz, 6H), 3.10 (s, 6H), 1.57 (quin, J = 8.0 Hz, 6H), 1.29-1.20 (m, 66H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 135.5, 116.8, 83.0, 82.6, 74.8, 74.2, 32.1, 30.7, 29.9, 29.8, 29.7, 29.6, 26.4, 22.9, 14.3.Compound B14 was synthesized in 71% yield according to the general alkylation reaction procedure of 1,3,5-triallylated silitol of Example 3-1. 1 H NMR (400 MHz, CDCl 3 ): δ 6.00-5.92 (m, 3H), 5.26 (d, J = 16.0 Hz, 3H), 5.14 (d, J = 12.0 Hz, 3H), 4.27 (d, J = 8.0 Hz, 6H), 3.72 (t, J = 6.0 Hz, 6H), 3.10 (s, 6H), 1.57 (quin, J = 8.0 Hz, 6H), 1.29-1.20 (m, 66H), 0.88 (t , J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 135.5, 116.8, 83.0, 82.6, 74.8, 74.2, 32.1, 30.7, 29.9, 29.8, 29.7, 29.6, 26.4, 22.9, 14.3.

<10-2> 화합물 D17의 합성<10-2> Synthesis of Compound D17

실시예 3-2의 일반적인 업존 디하이드록실레이션 반응 절차에 따라 화합물 D17를 81%수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 3.87-3.85 (m, 6H), 3.77-3.70 (m, 9H), 3.64 (d, J = 12.0 Hz, 3H), 3.55-3.50 (m, 3H), 3.30-3.24 (m, 3H), 3.15-3.07, 1.63 (quin, J = 8.0 Hz, 6H), 1.31-1.25 (m, 66H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl3): δ 83.1, 83.0, 82.9, 82.8, 82.7, 82.6, 82.5, 75.1, 75.0, 74.9, 74.8, 74.6, 74.3, 72.1, 72.0, 71.9, 66.8, 63.4, 55.3, 46.4, 32.1, 30.3, 30.2, 30.1, 29.9, 29.8, 29.7, 29.5, 26.2, 26.1, 25.1, 22.8, 14.3.Compound D17 was synthesized in 81% yield according to the general upzone dehydroxylation reaction procedure of Example 3-2. 1 H NMR (400 MHz, CDCl 3 ): δ 3.87-3.85 (m, 6H), 3.77-3.70 (m, 9H), 3.64 (d, J = 12.0 Hz, 3H), 3.55-3.50 (m, 3H) , 3.30-3.24 (m, 3H), 3.15-3.07, 1.63 (quin, J = 8.0 Hz, 6H), 1.31-1.25 (m, 66H), 0.88 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 83.1, 83.0, 82.9, 82.8, 82.7, 82.6, 82.5, 75.1, 75.0, 74.9, 74.8, 74.6, 74.3, 72.1, 72.0, 71.9, 66.8, 63.4, 55.3, 46.4, 32.1, 30.3, 30.2, 30.1, 29.9, 29.8, 29.7, 29.5, 26.2, 26.1, 25.1, 22.8, 14.3.

<10-3> SHG-G14a의 합성<10-3> Synthesis of SHG-G14a

실시예 3-3의 일반적인 당화 반응 절차에 따라 화합물 SHG-G14a를 66%의 수득률로 합성하였다. 1 H NMR (400 MHz, CDCl3): δ 8.26-7.84 (m, 48H), 7.59-7.25 (m, 72H), 5.90-5.76 (m, 4H), 5.67 (t, J = 8.0 Hz, 3H), 5.64-5.43 (m, 9H), 5.34-5.25 (m, 2H), 4.89-4.70 (m, 4H), 4.65-4.49 (m, 6H), 4.47-4.25 (m, 6H), 4.15-3.91 (m, 11H), 383-3.13 (m, 18H), 2.66-2.02 (m, 5H), 1.49-1.43 (m, 3H), 1.33-1.10 (m, 69H), 0.84-0.80 (m, 9H); 13 C NMR (100 MHz, CDCl3): δ 166.0, 165.9, 165.8, 165.7, 165.3, 165.2, 165.0, 164.8, 133.3, 133.1, 130.1, 129.9, 129.8, 129.7, 129.4, 129.0, 128.6, 128.4, 128.3, 101.3, 72.1, 7.0, 62.8, 60.4, 32.0, 30.7, 30.2, 30.1, 29.9, 29.8, 29.5, 26.7, 22.7, 21.1, 14.2.Compound SHG-G14a was synthesized in a yield of 66% according to the general saccharification reaction procedure of Example 3-3. 1 H NMR (400 MHz, CDCl 3 ): δ 8.26-7.84 (m, 48H), 7.59-7.25 (m, 72H), 5.90-5.76 (m, 4H), 5.67 (t, J = 8.0 Hz, 3H) , 5.64-5.43 (m, 9H), 5.34-5.25 (m, 2H), 4.89-4.70 (m, 4H), 4.65-4.49 (m, 6H), 4.47-4.25 (m, 6H), 4.15-3.91 ( m, 11H), 383-3.13 (m, 18H), 2.66-2.02 (m, 5H), 1.49-1.43 (m, 3H), 1.33-1.10 (m, 69H), 0.84-0.80 (m, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 166.0, 165.9, 165.8, 165.7, 165.3, 165.2, 165.0, 164.8, 133.3, 133.1, 130.1, 129.9, 129.8, 129.7, 129.4, 129.0, 128.6, 128.4, 128.3, 101.3, 72.1, 7.0, 62.8, 60.4, 32.0, 30.7, 30.2, 30.1, 29.9, 29.8, 29.5, 26.7, 22.7, 21.1, 14.2.

<10-4> SHG-G14의 합성<10-4> Synthesis of SHG-G14

실시예 3-4의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 SHG-G14를 90%의 수득률로 합성하였다. 1 H NMR (400 MHz, CD3OD): δ 4.59 (t, J = 10.0 Hz, 1.5H), 4.49 (d, J = 8.0 Hz, 1.5H), 4.41 (d, J = 8.0 Hz, 1.5H), 4.33 (d, J = 8.0 Hz, 1.5H), 4.12 (d, J = 8.0 Hz, 2H), 4.06-4.01 (m, 5H), 3.99-3.96 (m, 4H), 3.88-3.80 (m, 8H), 3.78-3.65 (m, 16H), 3.38-3.28 (m, 7H), 3.28-3.26 (m, 10H), 3.24-3.20 (m, 8H), 3.13-3.08 (m, 3H), 1.69-1.59 (m, 6H), 1.38-1.20 (m, 66H), 0.90 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CD3OD): δ 104.9, 104.7, 104.5, 103.9, 83.9, 79.6, 78.0, 77.9, 77.8, 75.4, 75.3, 75.2, 75.1, 72.2, 71.6, 71.5, 62.9, 62.8, 33.2, 31.7, 31.0, 31.0, 30.9, 30.6, 27.5, 23.8, 14.7. HRMS (FAB + ): calcd. for C93H174O42 [M+Na]+ 1986.1377, found 1986.1382.SHG-G14 in a yield of 90% according to the general synthetic procedure for the deprotection vaporization reaction of Example 3-4 Synthesized. 1 H NMR (400 MHz, CD 3 OD): δ 4.59 (t, J = 10.0 Hz, 1.5H), 4.49 (d, J = 8.0 Hz, 1.5H), 4.41 (d, J = 8.0 Hz, 1.5H ), 4.33 (d, J = 8.0 Hz, 1.5H), 4.12 (d, J = 8.0 Hz, 2H), 4.06-4.01 (m, 5H), 3.99-3.96 (m, 4H), 3.88-3.80 (m) , 8H), 3.78-3.65 (m, 16H), 3.38-3.28 (m, 7H), 3.28-3.26 (m, 10H), 3.24-3.20 (m, 8H), 3.13-3.08 (m, 3H), 1.69 -1.59 (m, 6H), 1.38-1.20 (m, 66H), 0.90 (t, J = 8.0 Hz, 9H); 13 C NMR (100 MHz, CD 3 OD): δ 104.9, 104.7, 104.5, 103.9, 83.9, 79.6, 78.0, 77.9, 77.8, 75.4, 75.3, 75.2, 75.1, 72.2, 71.6, 71.5, 62.9, 62.8, 33.2 , 31.7, 31.0, 31.0, 30.9, 30.6, 27.5, 23.8, 14.7. HRMS (FAB + ) : calcd. for C 93 H 174 O 42 [M+Na] + 1986.1377, found 1986.1382.

<실험예 1> STMs, STM-Es 및 SHG-Gs 의 특성<Experimental Example 1> Characteristics of STMs, STM-Es and SHG-Gs

상기 실시예 1 내지 3의 합성 방법에 따라 합성된 제조예 1 내지 10의 STMs, STM-Es 및 SHG-Gs의 특성을 확인하기 위하여, STMs, STM-Es 및 SHG-Gs의 분자량(M.W.), 임계미셀농도(critical micellar concentration; CMC) 및 형성된 미셀의 유체역학적 반지름(hydrodynamic radii; R h)을 측정하였다.In order to confirm the properties of STMs, STM-Es and SHG-Gs of Preparation Examples 1 to 10 synthesized according to the synthesis method of Examples 1 to 3, the molecular weight (MW) of STMs, STM-Es and SHG-Gs, The critical micellar concentration (CMC) and the hydrodynamic radii ( R h ) of the formed micelles were measured.

구체적으로, 임계미셀농도(CMC)는 형광 염색, 디페닐헥사트리엔(diphenylhexatriene; DPH)을 이용하여 측정하였고, 각각의 제제(1.0 wt%)에 의해 형성된 미셀의 유체역학적 반지름(R h)은 동적 광산란(dynamic light scattering; DLS) 실험을 통해 측정하였다. 측정된 결과를 기존의 양친매성 분자(detergent)인 DDM과 비교하여 표 1에 나타내었다.Specifically, the critical micelle concentration (CMC) was measured using fluorescent dyeing and diphenylhexatriene (DPH), and the hydrodynamic radius ( R h ) of the micelles formed by each formulation (1.0 wt%) was It was measured through a dynamic light scattering (DLS) experiment. The measured results are shown in Table 1 in comparison with DDM, which is a conventional amphiphilic molecule (detergent).

DetergentDetergent MWMW aa CMC (mM)CMC (mM) CMC (wt%)CMC (wt%) RR hh (nm) (nm) b b ±SD±SD STM-E7STM-E7 1579.71579.7 ~0.300~0.300 ~0.0047~0.0047 2.5±0.12.5 ±0 .1 STM-E8STM-E8 1621.81621.8 ~0.150~0.150 ~0.0024~0.0024 3.8±0.23.8 ±0 .2 STM-E9STM-E9 1663.91663.9 ~0.035~0.035 ~0.0006~0.0006 11.2±0.211.2 ±0 .2 STM-E10STM-E10 1706.01706.0 ~0.010~0.010 ~0.0002~0.0002 21.1±0.721.1 ±0 .7 STM-11STM-11 1615.91615.9 ~0.015~0.015 ~0.00024~0.00024 9.4±0.59.4 ±0 .5 STM-12STM-12 1658.01658.0 ~0.010~0.010 ~0.00016~0.00016 12.3±0.112.3 ±0 .1 SHG-G12SHG-G12 1880.21880.2 ~0.015~0.015 ~0.0028~0.0028 2.7±0.22.7 ±0 .2 SHG-G13SHG-G13 1922.31922.3 ~0.012~0.012 ~0.0023~0.0023 2.8±0.12.8 ±0 .1 SHG-G14SHG-G14 1964.41964.4 ~0.008~0.008 ~0.0016~0.0016 2.9±0.12.9 ±0 .1 DDMDDM 510.6510.6 ~0.170~0.170 0.00870.0087 3.4±0.13.4 ±0 .1

a Molecular weight of detergents. b Detergent hydrodynamic radius measured at 0.5 wt% detergent concentration by dynamic light scattering (DLS). a Molecular weight of detergents. b Detergent hydrodynamic radius measured at 0.5 wt% detergent concentration by dynamic light scattering (DLS).

대부분의 STMs, STM-Es 및 SHG-Gs의 CMC 값 (0.008 내지 0.30 mM)은 DDM의 CMC 값 (0.17 mM)과 비교하여 상당히 작았다. 따라서, STMs, STM-Es 및 SHG-Gs는 낮은 농도에서도 미셀이 용이하게 형성되므로, DDM 보다 적은 양을 사용하고도 동일하거나 우월한 효과를 나타낼 수 있다. 또한, STMs, STM-Es 및 SHG-Gs의 CMC 값은 알킬 사슬의 길이가 증가함에 따라 감소하였는데, 이는 알킬 사슬 길이의 연장에 따라 소수성이 증가하기 때문인 것으로 판단된다. STMs, STM-Es 및 SHG-Gs에 의해 형성된 미셀의 크기는 대체적으로 알킬 사슬 길이가 증가함에 따라 증가하는 경향을 보였다. 이는 양친매성 화합물의 헤드 그룹의 부피가 일정하고, 꼬리 그룹의 부피가 알킬 사슬의 길이가 증가함에 따라 커져서 원뿔형에서 원통형으로 분자 기하 구조가 변하기 때문인 것으로 판단된다. 반면에 알킬 사슬 길이가 같은 경우, 친수성 헤드 그룹의 크기가 크면 원뿔형에 가까워지므로, 형성되는 미셀의 크기가 작아진다(6개의 글루코스를 갖는 SHG-G12 및 3개의 말토오스를 갖는 STM-12 비교). 모든 SHGs 및 일부 STMs는 DDM과 유사한 크기의 미셀을 형성하는 반면에, STMs 및 알킬사슬길이가 긴 STM-Es는 DDM보다 큰 크기의 미셀을 형성함을 확인하였다.The CMC values (0.008 to 0.30 mM) of most STMs, STM-Es and SHG-Gs were significantly smaller compared to the CMC values of DDM (0.17 mM). Therefore, since micelles are easily formed even at low concentrations of STMs, STM-Es and SHG-Gs, the same or superior effect can be exhibited even when using a smaller amount than DDM. In addition, the CMC values of STMs, STM-Es and SHG-Gs decreased as the length of the alkyl chain increased, which is believed to be due to the increase in hydrophobicity as the length of the alkyl chain increased. The size of micelles formed by STMs, STM-Es and SHG-Gs generally tended to increase with increasing alkyl chain length. It is believed that this is because the volume of the head group of the amphiphilic compound is constant, and the volume of the tail group increases as the length of the alkyl chain increases, and the molecular geometry changes from conical to cylindrical. On the other hand, when the alkyl chain length is the same, the larger the size of the hydrophilic head group becomes conical, so the size of the micelles formed becomes smaller (compare SHG-G12 with 6 glucose and STM-12 with 3 maltose). It was confirmed that all SHGs and some STMs formed micelles with a size similar to that of DDM, whereas STMs and STM-Es with a long alkyl chain length formed micelles with a larger size than DDM.

한편, DLS를 통해 STMs, STM-Es 및 SHG-Gs에 의해 형성된 미셀의 크기 분포를 조사한 결과, 모든 SHGs 는 오직 하나의 군집의 미셀을 나타내었으므로, 이는 미셀 균질성이 높음을 나타낸다 (도 4).On the other hand, as a result of examining the size distribution of micelles formed by STMs, STM-Es and SHG-Gs through DLS, all SHGs showed only one cluster of micelles, indicating high micelle homogeneity (FIG. 4 ). .

이러한 결과로부터 본 발명의 대부분의 STMs, STM-Es 및 SHG-Gs는 DDM보다 낮은 CMC 값을 가져 적은 양으로도 미셀이 용이하게 형성되므로 자가조립경향성이 DDM 보다 훨씬 크다는 점, STMs, STM-Es 및 SHG-Gs에 의해 형성된 미셀의 크기는 친수성 헤드 그룹 및 알킬 사슬의 꼬리 그룹의 상대적 부피에 따라 차이가 있다는 점, SHG-Gs에 의해 형성된 미셀은 균질성이 높다는 점을 확인할 수 있었다.From these results, most of the STMs, STM-Es and SHG-Gs of the present invention have lower CMC values than DDM, so micelles are easily formed even with a small amount, so that the tendency of self-assembly is much greater than that of DDM, STMs, STM-Es And it was confirmed that the size of the micelles formed by SHG-Gs differs according to the relative volumes of the hydrophilic head group and the tail group of the alkyl chain, and that the micelles formed by SHG-Gs have high homogeneity.

<< 실험예Experimental example 2> 2> STMsSTMs , STM-, STM- EsEs And SHGSHG -- GsGs 에 의해 용해된 Dissolved by R. R. capsulatuscapsulatus superassembly 안정성 평가 superassembly stability evaluation

조작된 로도박터 캡슐라투스 (Rhodobacter capsulatus) 균주에서 발현된 R. capsulatus 슈퍼어셈블리는 기존 문헌 (P. S. Chae, Analyst, 2015, 140, 3157-3163.)에 알려진 프로토콜에 따라 가용화되고 정제되었다. 동결된 멤브레인 (membrane)의 10 mL 분취량을 해동하고 실온에서 유리 조직 균질기 (glass tissue homogenizer)를 사용하여 균질화하였다. 균질액을 32 ℃에서 30 분 동안 천천히 교반하면서 인큐베이션하였다. 1.0 wt% DDM을 첨가 후, 균질액을 32 ℃에서 30 분 동안 더 인큐베이션하였다. 초 원심 분리 후, 가용화 된 LHI-RC (light harvesting complex I and the reaction centre) 복합체를 포함하는 상등액을 수집하고, Ni2 +-NTA 레진으로 4 ℃에서 1 시간 동안 인큐베이션하였다. 상기 레진을 10 개의 His-SpinTrap 컬럼에 각각 넣고 500 μL 결합 버퍼 (10 mM Tris (pH 7.8), 100 mL NaCl 및 1 x CMC DDM)으로 2 회 세척하였다. 1 M 이미다졸 (2 × 300 ㎕)을 포함하는 버퍼을 사용하여 DDM에 의해 정제된 LHI-RC 복합체를 컬럼으로부터 용출시켰다. CMC + 0.2 wt%의 최종 양친매성 분자 농도에 도달하기 위해 80 μL의 DDM에 의해 정제된 LHI-RC 복합체를 920 μL의 다음의 양친매성 분자 용액으로 각각 희석시켰다; (STMs, STM-Es, SHG-Gs 및 DDM). 각각의 양친매성 분자에 의해 생성된 LHI-RC 복합체를 최초 25℃에서 10일 동안 인큐베이션한 다음 35℃에서 10일 동안 인큐베이션하고, 그 후 10일 동안 45℃에서 인큐베이션하였다. 875 nm에서 시료의 흡광도를 측정하여 단백질-양친매성분자 샘플을 30일 인큐베이션하는 동안 일정한 간격으로 단백질 안정성을 측정하였다. Engineered Rhodobacter capsulatus ( Rhodobacter capsulatus ) strain expressed in R. capsulatus superassembly was solubilized and purified according to a protocol known in the existing literature (PS Chae, Analyst , 2015, 140, 3157-3163.). A 10 mL aliquot of frozen membrane was thawed and homogenized at room temperature using a glass tissue homogenizer. The homogenate was incubated at 32° C. for 30 minutes with slow stirring. After addition of 1.0 wt% DDM, the homogenate was further incubated at 32° C. for 30 minutes. After ultracentrifugation, the supernatant containing the solubilized LHI-RC (light harvesting complex I and the reaction center) complex was collected, and incubated with Ni 2 + -NTA resin at 4° C. for 1 hour. The resin was added to each of 10 His-SpinTrap columns and washed twice with 500 μL binding buffer (10 mM Tris (pH 7.8), 100 mL NaCl, and 1 x CMC DDM). LHI-RC complex purified by DDM was eluted from the column using a buffer containing 1 M imidazole (2×300 μl). The LHI-RC complex purified by 80 μL of DDM was diluted with 920 μL of the following amphiphilic molecule solution, respectively, to reach a final amphiphilic molecule concentration of CMC + 0.2 wt%; (STMs, STM-Es, SHG-Gs and DDM). The LHI-RC complex produced by each amphiphilic molecule was initially incubated at 25° C. for 10 days, then at 35° C. for 10 days, and then incubated at 45° C. for 10 days. By measuring the absorbance of the sample at 875 nm, protein stability was measured at regular intervals during the 30-day incubation of the protein-amphipathic component sample.

그 결과, 본 발명의 STMs, STM-Es 및 SHG-Gs 는 LHI-RC 복합체 안정성을 유지하는데 있어 DDM 보다 우수하였다(도 5). 세 그룹의 양친매성 화합물을 비교하는 경우, SHG-Gs는 STMs 및 STM-Es보다 우수한 효과를 나타내었다. 모든 양친매성 화합물은 온도가 증가할수록 복합체 안정성 유지 능력이 감소하는 것은 공통적이었다. As a result, STMs, STM-Es and SHG-Gs of the present invention were superior to DDM in maintaining the stability of the LHI-RC complex (FIG. 5). When comparing the three groups of amphiphilic compounds, SHG-Gs showed better effects than STMs and STM-Es. It was common for all amphiphilic compounds that the ability to maintain complex stability decreased with increasing temperature.

<< 실험예Experimental example 3> 3> STMsSTMs , STM-, STM- EsEs And SHGSHG -- GsGs of LeuTLeuT 막단백질Membrane protein 구조 안정화 능력 평가 Structure stabilization ability evaluation

호열성 박테리아 아퀴펙스 아에오리쿠스(Aquifex aeolicus) 유래 와일드 타입 LeuT (leucine transporter)를 이전에 설명된 방법에 의해 정제하였다 (G. Deckert 등의 Nature 1998, 392, 353-358). LeuT를 C-말단 8xHis-태그된 트랜스포터를 암호화하는 pET16b로 형질전환된 E. coli C41 (DE3)에서 발현시켰다 (발현 플라스미드는 Dr E. Gouaux, Vollum Institute, Portland, Oregon, USA로부터 제공받음). 요약하면, 박테리아 멤브레인의 분리 및 1% (w/v) DDM에서 용해화 후에, 단백질을 Ni2 +-NTA 수지 (Life Technologies, Denmark)에 결합시키고, 20 mM Tris-HCl (pH 8.0), 1mM NaCl, 199 mM KCl, 0.05%(w/v) DDM 및 300 mM 이미다졸(imidazole)에서 용리하였다. 그 후에, 정제된 LeuT (약 1.5 mg/ml)는 상기와 동등한 버퍼에서 DDM 및 이미다졸을 제외하고, STMs, STM-Es, SHG-Gs 또는 DDM 이 최종 농도 CMC + 0.2% (w/v)로 보충된 버퍼로 10배 희석하였다. 단백질 샘플은 상온에서 14일 동안 저장하고, 인큐베이션 동안 일정한 간격으로 원심분리하고, 단백질 특성을 SPA를 사용하여 [3H]-Leucine 결합 능력을 측정함에 의하여 확인하였다. SPA는 200 mM NaCl 및 각각의 STMs, STM-Es 또는 SHG-Gs (또는 DDM)을 함유하는 상기 언급한 농도의 버퍼에서 5 μL 의 단백질 샘플로 수행하였다. SPA 반응은 20 nM [3H]-Leucine 및 1.25 mg/ml copper chelate (His-Tag) YSi beads (Perkin Elmer, Denmark)의 존재하에 수행하였다. 각각의 샘플에 대한 전체 [3H]-Leucine 결합도는 MicroBeta liquid scintillation counter (Perkin Elmer)를 사용하여 측정하였다.Thermophilic bacteria Aquifex Aeolicus aeolicus ) derived wild type LeuT (leucine transporter) was purified by the method described previously (G. Deckert et al. Nature 1998, 392, 353-358). LeuT was expressed in E. coli C41 (DE3) transformed with pET16b encoding a C-terminal 8xHis-tagged transporter (expression plasmids provided by Dr E. Gouaux, Vollum Institute, Portland, Oregon, USA) . In summary, after separation of the bacterial membrane and solubilization in 1% (w/v) DDM, the protein was bound to Ni 2 + -NTA resin (Life Technologies, Denmark) and 20 mM Tris-HCl (pH 8.0), 1 mM It was eluted in NaCl, 199 mM KCl, 0.05% (w/v) DDM and 300 mM imidazole. After that, the purified LeuT (about 1.5 mg/ml) was obtained in a buffer equivalent to the above, excluding DDM and imidazole, and the final concentration of STMs, STM-Es, SHG-Gs or DDM was CMC + 0.2% (w/v). It was diluted 10-fold with buffer supplemented with. Protein samples were stored at room temperature for 14 days, centrifuged at regular intervals during incubation, and protein properties were confirmed by measuring [ 3 H]-Leucine binding ability using SPA. SPA was performed with 5 μL of protein samples in buffers at the concentrations mentioned above containing 200 mM NaCl and respective STMs, STM-Es or SHG-Gs (or DDM). The SPA reaction was carried out in the presence of 20 nM [ 3 H]-Leucine and 1.25 mg/ml copper chelate (His-Tag) YSi beads (Perkin Elmer, Denmark). The total [ 3 H]-Leucine binding degree of each sample was measured using a MicroBeta liquid scintillation counter (Perkin Elmer).

도 6에 나타난 바와 같이, DDM에 용해된 LeuT의 초기 기질 결합 활성은 본 발명의 다른 양친매성 화합물과 비교하여 우수하지만, 시간이 지남에 따라 급격히 활성이 떨어짐을 확인할 수 있었다. 장기간 기질 결합 활성을 비교한 결과, SHG-G13을 제외한 모든 화합물은 14일 인큐베이션 기간 동안 LeuT의 기질 결합 특성을 유지하는 효과가 DDM 보다 현저히 우수하였다. 즉, 대부분의 STMs, STM-Es 및 SHG-Gs는 오랜 기간 동안 트랜스포터 기질 결합 특성을 완전히 보유하였다. As shown in FIG. 6, the initial substrate binding activity of LeuT dissolved in DDM was superior compared to other amphiphilic compounds of the present invention, but it was confirmed that the activity rapidly decreased with time. As a result of comparing long-term substrate-binding activity, all compounds except for SHG-G13 were significantly superior to DDM in maintaining the substrate-binding properties of LeuT during the 14-day incubation period. That is, most of the STMs, STM-Es and SHG-Gs completely retained the transporter substrate binding properties for a long period of time.

<< 실시예Example 4> 4> STMsSTMs , STM-, STM- EsEs And SHGSHG -- GsGs of MelBMelB stst 막단백질Membrane protein 구조 안정화 능력 평가 Structure stabilization ability evaluation

STMs, STM-Es 및 SHG-Gs에 의한 MelBSt (Salmonella typhimurium melibiose permease) 단백질의 구조 안정성을 측정하는 실험을 하였다. An experiment was conducted to measure the structural stability of MelB St ( Salmonella typhimurium melibiose permease) protein by STMs, STM-Es and SHG-Gs.

구체적으로, 플라스미드 pK95△AHB/WT MelBSt/CH10를 사용하여 C-말단에 10-His tag를 가지는 살모넬라 티피뮤리움(Salmonella typhimurium) 유래 와일드 타입 MelBSt (melibiose permease)를 E. coli DW2 균주 ( melB lacZY)에서 발현시켰다. A. S. Ethayathulla 등의 논문 (Nat. Commun. 2014, 5, 3009)에 기재된 방법에 따라 세포 성장 및 멤브레인 준비를 수행했다. 단백질 검정은 Micro BCA 키트(Thermo Scientific, Rockford, IL)로 수행했다. 용해화 버퍼 (20 mM sodium phosphate, pH 7.5, 200 mM NaCl, 10% 글리세롤, 20 mM melibiose)에서 MelBSt를 함유하는 멤브레인 샘플(최종 단백질 농도는 10 mg/mL)을 1.5 wt% DDM, STMs, STM-Es 또는 SHG-Gs와 혼합하였다. 생성된 샘플을 4개의 다른 온도(0, 45, 55, 및 65 °C)에서 90분 동안 인큐베이션하였다. 불용성 물질을 제거하기 위하여, 45분 동안 4℃에서 TLA-100 rotor가 구비된 Beckman Optima? MAX 초원심분리기로 355,590g에서 초원심분리를 수행하였다. 초원심분리하지 않은 멤브레인 단백질 20 μg을 미처리된 멤브레인 또는 초원심분리 후 동량의 상기 화합물들의 추출물에 적용하고, 처리된 샘플은 동등 부피로 각각의 웰에 로딩하였다. 로딩된 샘플을 SDS-15% PAGE로 분석하고, 그 다음 Penta-His-HRP 항체 (Qiagen, Germantown, MD)로 면역블로팅하여 시각화하였다. Specifically, the wild type MelB St (melibiose permease) derived from Salmonella typhimurium having a 10-His tag at the C-terminus using the plasmid pK95ΔAHB/WT MelB St /CH10 was obtained from the E. coli DW2 strain ( Δ melB and Δ lacZY ). Cell growth and membrane preparation were performed according to the method described in AS Ethayathulla et al . ( Nat. Commun . 2014, 5 , 3009). Protein assays were performed with a Micro BCA kit (Thermo Scientific, Rockford, IL). Membrane sample (final protein concentration of 10 mg/mL) containing MelB St in solubilization buffer (20 mM sodium phosphate, pH 7.5, 200 mM NaCl, 10% glycerol, 20 mM melibiose) was added to 1.5 wt% DDM, STMs, Mixed with STM-Es or SHG-Gs. The resulting samples were incubated for 90 minutes at 4 different temperatures (0, 45, 55, and 65 °C). Beckman Optima with a TLA-100 rotor at 4°C for 45 minutes to remove insoluble matter. Ultracentrifugation was performed at 355,590 g with a MAX ultracentrifuge. 20 μg of non-ultracentrifuged membrane protein was applied to the untreated membrane or an equal amount of extracts of the above compounds after ultracentrifugation, and the treated samples were loaded into each well in an equal volume. The loaded sample was analyzed by SDS-15% PAGE, and then visualized by immunoblotting with Penta-His-HRP antibody (Qiagen, Germantown, MD).

RSO 베시클 제조 및 Trp→DRSO vesicle manufacturing and Trp→D 22 G FRET assay G FRET assay

MelBSt 또는 MelBEc를 함유하는 E. coli DW2 세포로부터 삼투압 용해를 통해 RSO 멤브레인 베시클을 제조하였다. 100 mM KPi (pH 7.5) and 100 mM NaCl을 함유하는 버퍼에 1 mg/ml 단백질 농도로 있는 RSO 멤브레인 베시클에 1.0% DDM 및 STM-12를 각각 23℃에서 60분동안 처리하고 TLA 120.2 rotor를 사용하여 >300,000g로 4℃에서 45분간 초원심분리를 수행하였다. 상층액에 Amico-Bowman Series 2 (AB2) Spectrofluorometer를 사용하여 FRET (Trp→D2G) 실험을 수행하였다. D2G (2'-(N-Dansyl)aminoalkyl-1-thio-β-D-galactopyranoside, dansylgalactoside)는 Drs. Gerard Leblanc 및 H. Ronald Kaback로부터 얻었다. D2G FRET 신호는 290 nm Trp 잔기를 방출하자 MelBSt 및 MelBEc에 대하여 각각 490 및 465 nm에서 수집되었다. 10 μM D2G 및 초과 melibiose 또는 동량의 물 (대조군)을 각각 1 분 및 2 분 시점에서 MelB 용액에 첨가하였다.RSO membrane vesicles were prepared from E. coli DW2 cells containing MelB St or MelB Ec through osmotic lysis. In a buffer containing 100 mM KPi (pH 7.5) and 100 mM NaCl, 1.0% DDM and STM-12 were respectively treated with 1.0% DDM and STM-12 in a RSO membrane vesicle at a protein concentration of 1 mg/ml for 60 minutes at 23° C. and a TLA 120.2 rotor Ultracentrifugation was performed at 4° C. for 45 minutes with >300,000 g. FRET (Trp→D 2 G) experiments were performed on the supernatant using an Amico-Bowman Series 2 (AB2) Spectrofluorometer. D 2 G (2'-( N- Dansyl)aminoalkyl-1-thio-β-D-galactopyranoside, dansylgalactoside) was obtained from Drs. Obtained from Gerard Leblanc and H. Ronald Kaback. D 2 G FRET signals were collected at 490 and 465 nm for MelB St and MelB Ec , respectively, upon releasing the 290 nm Trp residue. 10 μM D 2 G and excess melibiose or equal amounts of water (control) were added to the MelB solution at 1 and 2 minutes, respectively.

도 7(a)에 나타난 결과와 같이, 0℃ 및 45℃에서 SHG-Gs를 제외한 대부분의 STMs 및 STM-Es 는 DDM과 유사한 MelBst 가용화 능력을 나타내었다.As shown in Fig. 7(a), most of STMs and STM-Es excluding SHG-Gs at 0° C. and 45° C. showed similar MelB st solubilization ability as DDM.

그러나, 더 높은 온도(55℃)에서는 DDM의 MelBst 가용화 효력이 현저히 떨어진 반면에, 대부분의 STMs (특히 STM-11 및 STM-12)는 55℃에서도 MelBst 가용화 능력을 유지하였다. However, at higher temperatures (55° C.), the MelB st solubilizing potency of DDM fell significantly, while most STMs (especially STM-11 and STM-12) maintained the MelB st solubilizing ability even at 55° C.

전체적으로 낮은 온도(0°C 내지 45°C)에서는 DDM이 STMs, STM-Es 및 SHG-Gs보다 우수한 단백질 추출 효율을 보여준 반면 온도를 올려 측정한 단백질 열적 안정성 실험에서는 STMs (특히 STM-11 및 STM-12)가 DDM보다 현저히 우수한 트랜스포터 용해화 능력을 보여주어 단백질 안정화 능력이 탁월함을 확인하였다.Overall, at low temperatures (0°C to 45°C), DDM showed better protein extraction efficiency than STMs, STM-Es and SHG-Gs, whereas in protein thermal stability experiments measured by increasing the temperature, STMs (especially STM-11 and STM) -12) showed remarkably superior transporter solubilization ability than DDM, confirming that the protein stabilization ability was excellent.

추가로, STM-12는 DDM과 비교하여, MelBSt 뿐만 아니라, 이보다 안정성이 떨어지는 상동체인 MelBEc에 대해서도 단백질의 가용 능력 및 상기 막단백질의 기능을 유지하는 능력이 우수함을 확인하였다 (도 7b).In addition, compared to DDM, STM-12 was confirmed to have excellent protein soluble ability and ability to maintain the function of the membrane protein not only for MelB St, but also for MelB Ec , which is a less stable homolog (Fig. 7b). .

<< 실험예Experimental example 4> 4> STMsSTMs , STM-, STM- EsEs And SHGSHG -- GsGs of ββ 22 ARAR 막단백질Membrane protein 구조 안정화 능력 평가 Structure stabilization ability evaluation

STMs, STM-Es 및 SHG-Gs 에 의한 인간

Figure pat00018
2 아드레날린성 수용체 (β2AR), G-단백질 연결 수용체(GPCR) 구조 안정성을 측정하는 실험을 하였다. 즉, DDM으로 정제된 수용체는 CHS (cholesteryl hemisuccinate) 없이 각각의 STMs, STM-Es 및 SHG-Gs 만을 함유하는 버퍼 용액 또는 CHS와 DDM을 함유하는 버퍼 용액으로 희석시켰다. 최종 화합물 농도는 CMC+0.2 wt%이었으며, 수용체의 리간드 결합 특성은 [3H]-디하이드로알프레놀올 ([3H]-DHA)의 결합에 의해 측정하였다.STMs, STM-Es and SHG-Gs By human
Figure pat00018
2 Experiments were conducted to measure the structural stability of adrenergic receptor (β 2 AR) and G-protein coupled receptor (GPCR). That is, the receptors purified with DDM are each of STMs, STM-Es and SHG-Gs without CHS (cholesteryl hemisuccinate). It was diluted with a buffer solution containing mannose or a buffer solution containing CHS and DDM. Final compound concentrations were CMC + 0.2 wt%, the ligand binding characteristics of the receptor is [3 H] - were measured by a combination of dihydro alpeure nolol ([3 H] -DHA).

구체적으로, 방사성 리간드 결합 시험은 다음과 같은 방법을 이용하였다.β2AR는 0.1% DDM을 사용하여 정제하였으며 (D. M. Rosenbaum 등, Science, 2007, 318, 1266-1273.), 약 10 mg/ml (약 200 μM)로 최종 농축하였다. DDM으로 정제된β2AR를 사용하여 0.2% 양친매성 화합물 (DDM, STMs, STM-Es 및 SHG-Gs)에서 0.5 mg/ml BSA로 보충된 10 nM [3H]-Dihydroalprenolol (DHA)를 함유하는 마스터 결합 혼합물을 제조하였다. DDM, STMs, STM-Es 및 SHG-Gs로 정제된 수용체는 상온에서 30분 동안 10 nM의 [3H]-DHA와 함께 인큐베이션하였다. 혼합물을 G-50 컬럼에 로딩하고, 통과액을 1 ml 바인딩 버퍼 (0.5 mg/ml BSA 및 20xCMC 각각의 양친매성 화합물로 보충된 20 mM HEPES pH 7.5, 100 mM NaCl)로 수집하고, 그리고 15 ml 섬광 유체(scintillation fluid)로 채웠다. 수용체-결합된 [3H]-DHA는 섬광 카운터 (Beckman)로 측정했다. [3H]-DHA에 대한 비 특이적 결합은 동일한 결합 반응에서 2μM의 알프레놀올(alprenolol, Sigma)을 첨가함으로써 측정하였다. [3H]-DHA의 결합도는 컬럼 그래프로 나타내었고, 각각의 실험은 세 번씩 수행하였다.Specifically, the radioligand binding test used the following method: β 2 AR was purified using 0.1% DDM (DM Rosenbaum et al., Science , 2007, 318, 1266-1273.), about 10 mg/ml (About 200 μM) was finally concentrated. Contains 10 nM [ 3 H]-Dihydroalprenolol (DHA) supplemented with 0.5 mg/ml BSA in 0.2% amphiphilic compounds (DDM, STMs, STM-Es and SHG-Gs) using DDM purified β 2 AR A master binding mixture was prepared. The receptor purified by DDM, STMs, STM-Es and Gs-SHG was incubated with [3 H] -DHA of 10 nM for 30 minutes at room temperature. The mixture was loaded on a G-50 column, and the flow-through was collected with 1 ml binding buffer (20 mM HEPES pH 7.5, 100 mM NaCl supplemented with 0.5 mg/ml BSA and 20xCMC respective amphiphilic compounds), and 15 ml Filled with scintillation fluid. Receptor-bound [ 3 H]-DHA was measured with a scintillation counter (Beckman). Non-specific binding of the [3 H] -DHA was measured by the addition of alpeure nolol (alprenolol, Sigma) of 2μM in the same binding reaction. The degree of binding of [ 3 H]-DHA was shown in a column graph, and each experiment was performed three times.

도 8에 나타난 바와 같이, 수용체의 리간드 결합 특성을 유지하는 데 있어서 STM-E7이 초기 활성 및 장기간 활성면에서 DDM과 유사하거나 우수한 효과를 나타낸 반면에, 다른 대부분의 양친매성 화합물들은 DDM 보다 다소 낮은 활성을 나타내었다. As shown in Figure 8, in maintaining the ligand binding properties of the receptor, STM-E7 showed a similar or superior effect to DDM in terms of initial activity and long-term activity, whereas most other amphiphilic compounds were slightly lower than DDM. Showed activity.

Claims (17)

하기 화학식 1 또는 화학식 2로 표시되는 화합물:
[화학식 1]
Figure pat00019

상기 화학식 1에서,
상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고;
상기 L1 내지 L3은 각각 독립적으로 직접결합 또는 -O(산소)-Y-로, 상기 Y는 치환 또는 비치환된 C1-C10의 알킬렌기이며; 그리고
상기 X1 내지 X3은 산소와 연결된 당류(saccharide)이다.
[화학식 2]
Figure pat00020

상기 화학식 2에서,
상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고;
상기 L4 내지 L6은 치환 또는 비치환된 C1-C10의 알킬렌기이며; 그리고
상기 X4 내지 X9는 산소와 연결된 당류(saccharide)이다.
A compound represented by the following Formula 1 or Formula 2:
[Formula 1]
Figure pat00019

In Formula 1,
Each of R 1 to R 3 is independently a substituted or unsubstituted C 3 -C 30 alkyl group;
Wherein L 1 to L 3 are each independently a direct bond or -O(oxygen)-Y-, wherein Y is a substituted or unsubstituted C 1 -C 10 alkylene group; And
X 1 to X 3 are saccharides linked to oxygen.
[Formula 2]
Figure pat00020

In Chemical Formula 2,
Each of R 1 to R 3 is independently a substituted or unsubstituted C 3 -C 30 alkyl group;
L 4 to L 6 are substituted or unsubstituted C 1 -C 10 alkylene groups; And
X 4 to X 9 are saccharides linked to oxygen.
제 1항에 있어서, 상기 당류는 단당류(monosaccharide) 또는 이당류(disaccharide)인 화합물.
The compound according to claim 1, wherein the saccharide is a monosaccharide or a disaccharide.
제 1항에 있어서, 상기 당류는 글루코스(glucose) 또는 말토오스(maltose)인 화합물.
The compound of claim 1, wherein the saccharide is glucose or maltose.
제 1항에 있어서, 상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C20의 알킬기이며; 상기 X1 내지 X9 는 산소와 연결된 글루코스(glucose) 또는 말토오스(maltose)이며; 상기 화학식 1에서 상기 L1 내지 L3은 직접결합 또는 -O-CH2CH2-이며; 그리고 상기 화학식 2에서 L4 내지 L6은 -CH2-인 화합물.
The method of claim 1, wherein R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 20 alkyl group; X 1 to X 9 are glucose or maltose linked to oxygen; In Formula 1, L 1 to L 3 are a direct bond or -O-CH 2 CH 2 -; And L 4 to L 6 in Formula 2 is -CH 2 -.
제 1항에 있어서, 상기 화합물은 하기 화학식 3 내지 12 중 하나인 화합물:
[화학식 3]
Figure pat00021

[화학식 4]
Figure pat00022


[화학식 5]
Figure pat00023

[화학식 6]
Figure pat00024

[화학식 7]
Figure pat00025

[화학식 8]
Figure pat00026

[화학식 9]
Figure pat00027

[화학식 10]
Figure pat00028

[화학식 11]
Figure pat00029

[화학식 12]
Figure pat00030

The compound of claim 1, wherein the compound is one of the following Formulas 3 to 12:
[Formula 3]
Figure pat00021

[Formula 4]
Figure pat00022


[Formula 5]
Figure pat00023

[Formula 6]
Figure pat00024

[Formula 7]
Figure pat00025

[Formula 8]
Figure pat00026

[Formula 9]
Figure pat00027

[Formula 10]
Figure pat00028

[Formula 11]
Figure pat00029

[Formula 12]
Figure pat00030

제 1항에 있어서, 상기 화합물은 수용액에서 임계 미셀 농도(CMC)가 0.0001 내지 1 mM인 화합물.
The compound of claim 1, wherein the compound has a critical micelle concentration (CMC) of 0.0001 to 1 mM in an aqueous solution.
제 1항에 따른 화합물을 포함하는 막단백질의 용해화용 조성물.
A composition for dissolving a membrane protein comprising the compound according to claim 1.
제 1항에 따른 화합물을 포함하는 막단백질의 추출용 조성물.
A composition for extraction of membrane proteins comprising the compound according to claim 1.
제 1항에 따른 화합물을 포함하는 막단백질의 안정화용 조성물.
A composition for stabilizing a membrane protein comprising the compound according to claim 1.
제 1항에 따른 화합물을 포함하는 막단백질의 결정화용 조성물.
A composition for crystallization of a membrane protein comprising the compound according to claim 1.
제 1항에 따른 화합물을 포함하는 막단백질의 분석용 조성물.
A composition for analysis of membrane proteins comprising the compound according to claim 1.
제 7항 내지 제12항 중 어느 한 항에 있어서, 상기 조성물은 미셀, 리포좀, 에멀션 또는 나노입자의 제형인 것인 조성물.
13. The composition according to any one of claims 7 to 12, wherein the composition is a formulation of micelles, liposomes, emulsions or nanoparticles.
제 7항 내지 제12항 중 어느 한 항에 있어서, 상기 막단백질은 LHI-RC, LeuT (Leucine transporter), β2AR (human β2 adrenergic receptor), MelBst(melibiose permease) 또는 이들의 2 이상의 조합인 조성물.
The method of any one of claims 7 to 12, wherein the membrane protein is LHI-RC, LeuT (Leucine transporter), β 2 AR (human β 2 adrenergic receptor), MelB st (melibiose permease), or two or more thereof. A composition that is a combination.
1) 실리톨-1, 3, 5-오르쏘아세테이트(scyllitol-1,3,5-orthoacetate) 에 알킬 아이오다이드(alkyl iodide)를 첨가하여 알킬화를 반응을 수행하는 단계;
2) 상기 단계 1)의 생성물에 산을 처리하여 오르쏘아세테이트 보호기를 제거하여 트리올을 생성하는 단계;
3) 상기 단계 2)의 생성물에 글리코실레이션(glycosylation) 반응을 수행하여 보호기가 부착된 당류를 도입하는 단계; 및
4) 상기 단계 3)의 생성물에 탈보호기화(deprotection) 반응을 수행하는 단계;를 포함하는, 하기 화학식 1로 표시되는 화합물의 제조 방법:
[화학식 1]
Figure pat00031

상기 화학식 1에서,
상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고;
상기 L1 내지 L3은 직접결합이며; 그리고
상기 X1 내지 X3 는 산소와 연결된 당류(saccharide)이다.
1) performing an alkylation reaction by adding alkyl iodide to silitol-1, 3, 5-orthoacetate;
2) treating the product of step 1) with an acid to remove the orthoacetate protecting group to produce a triol;
3) introducing a saccharide having a protecting group attached thereto by performing a glycosylation reaction to the product of step 2); And
4) performing a deprotection reaction on the product of step 3); including, a method for preparing a compound represented by the following formula (1):
[Formula 1]
Figure pat00031

In Formula 1,
Each of R 1 to R 3 is independently a substituted or unsubstituted C 3 -C 30 alkyl group;
L 1 to L 3 are direct bonds; And
X 1 to X 3 are saccharides linked to oxygen.
1) 1, 3, 5-트리알릴레이트 실리톨(1,3,5-triallylated scyllitol)에 알킬 아이오다이드(alkyl iodide)를 첨가하여 알킬화 반응을 수행하는 단계;
2) 상기 단계 1)의 생성물에 오존분해 반응(ozonolysis)을 수행하는 단계;
3) 상기 단계 2의 생성물에 글리코실레이션(glycosylation) 반응을 수행하여 보호기가 부착된 당류를 도입하는 단계; 및
4) 상기 단계 3)의 생성물에 탈보호기화(deprotection) 반응을 수행하는 단계;를 포함하는, 하기 화학식 1로 표시되는 화합물의 제조 방법:
[화학식 1]
Figure pat00032

상기 화학식 1에서,
상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고;
상기 L1 내지 L3은 -O(산소)-Y-로, 상기 Y는 치환 또는 비치환된 C1-C10의 알킬렌기이며; 그리고
상기 X1 내지 X3 는 산소와 연결된 당류(saccharide)이다.
1) performing an alkylation reaction by adding an alkyl iodide to 1,3,5-triallylated scyllitol;
2) performing an ozonolysis reaction on the product of step 1);
3) introducing a saccharide to which a protecting group is attached by performing a glycosylation reaction to the product of step 2; And
4) performing a deprotection reaction on the product of step 3); including, a method for preparing a compound represented by the following formula (1):
[Formula 1]
Figure pat00032

In Formula 1,
Each of R 1 to R 3 is independently a substituted or unsubstituted C 3 -C 30 alkyl group;
L 1 to L 3 are -O(oxygen)-Y-, wherein Y is a substituted or unsubstituted C 1 -C 10 alkylene group; And
X 1 to X 3 are saccharides linked to oxygen.
1) 1, 3, 5-트리알릴레이트 실리톨(1,3,5-triallylated scyllitol)에 알킬 아이오다이드(alkyl iodide)를 첨가하여 알킬화 반응을 수행하는 단계
2) 상기 단계 1)의 생성물에 다이하이드록실레이션(dihydroxylation)을 수행하는 단계;
3) 상기 단계 2의 생성물에 글리코실레이션(glycosylation) 반응을 수행하여 보호기가 부착된 당류를 도입하는 단계; 및
4) 상기 단계 3)의 생성물에 탈보호기화(deprotection) 반응을 수행하는 단계;를 포함하는, 하기 화학식 2로 표시되는 화합물의 제조 방법:
[화학식 2]
Figure pat00033

상기 화학식 2에서,
상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고;
상기 L4 내지 L6은 치환 또는 비치환된 C1-C10의 알킬렌기이며; 그리고
상기 X4 내지 X9는 산소와 연결된 당류(saccharide)이다.
1) Step of performing an alkylation reaction by adding an alkyl iodide to 1,3,5-triallylated scyllitol
2) performing dihydroxylation on the product of step 1);
3) introducing a saccharide to which a protecting group is attached by performing a glycosylation reaction to the product of step 2; And
4) performing a deprotection reaction on the product of step 3); including, a method of preparing a compound represented by the following formula (2):
[Formula 2]
Figure pat00033

In Chemical Formula 2,
Each of R 1 to R 3 is independently a substituted or unsubstituted C 3 -C 30 alkyl group;
L 4 to L 6 are substituted or unsubstituted C 1 -C 10 alkylene groups; And
X 4 to X 9 are saccharides linked to oxygen.
수용액에서 하기 화학식 1 또는 화학식 2로 표시되는 화합물을 막단백질에 처리하는 단계를 포함하는, 막단백질을 추출하는 방법:
[화학식 1]
Figure pat00034

상기 화학식 1에서,
상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고;
상기 L1 내지 L3은 각각 독립적으로 직접결합 또는 -O(산소)-Y-로, 상기 Y는 치환 또는 비치환된 C1-C10의 알킬렌기이며; 그리고
상기 X1 내지 X3은 산소와 연결된 당류(saccharide)이다.
[화학식 2]
Figure pat00035

상기 화학식 2에서,
상기 R1 내지 R3은 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고
; 그리고
상기 X4 내지 X9는 산소와 연결된 당류(saccharide)이다.
A method for extracting a membrane protein, comprising treating the membrane protein with a compound represented by the following Formula 1 or Formula 2 in an aqueous solution:
[Formula 1]
Figure pat00034

In Formula 1,
Each of R 1 to R 3 is independently a substituted or unsubstituted C 3 -C 30 alkyl group;
Wherein L 1 to L 3 are each independently a direct bond or -O(oxygen)-Y-, wherein Y is a substituted or unsubstituted C 1 -C 10 alkylene group; And
X 1 to X 3 are saccharides linked to oxygen.
[Formula 2]
Figure pat00035

In Chemical Formula 2,
The R 1 to R 3 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group,
; And
X 4 to X 9 are saccharides linked to oxygen.
KR1020190040803A 2019-04-08 2019-04-08 Novel scyllo inositol-cored amphiphiles and uses thereof KR20200118634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190040803A KR20200118634A (en) 2019-04-08 2019-04-08 Novel scyllo inositol-cored amphiphiles and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190040803A KR20200118634A (en) 2019-04-08 2019-04-08 Novel scyllo inositol-cored amphiphiles and uses thereof

Publications (1)

Publication Number Publication Date
KR20200118634A true KR20200118634A (en) 2020-10-16

Family

ID=73035166

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190040803A KR20200118634A (en) 2019-04-08 2019-04-08 Novel scyllo inositol-cored amphiphiles and uses thereof

Country Status (1)

Country Link
KR (1) KR20200118634A (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. Newstead et al., Mol. Membr. Biol. 25 (2008) 631-638.
S. Newstead et al., Protein Sci. 17 (2008) 466-472.

Similar Documents

Publication Publication Date Title
KR102061762B1 (en) Novel tantem malonate-based amphiphiles and uses thereof
KR102124989B1 (en) Novel amphiphiles having penta-saccharides hydrophilic group and uses thereof
KR101719122B1 (en) Novel mannitol-based amphiphiles and uses thereof
KR101923584B1 (en) Novel butane-tetraol-based amphiphiles and uses thereof
KR101998175B1 (en) Novel norbornene-based amphiphiles and uses thereof
KR20200118634A (en) Novel scyllo inositol-cored amphiphiles and uses thereof
KR101935293B1 (en) Novel resorcinarne-based amphiphiles and uses thereof
KR102045870B1 (en) Novel amphiphiles with dendronic hydrophobic group and uses thereof
JP4599295B2 (en) α-selective glycosylation reaction method
KR101781929B1 (en) Novel xylene-linked amphiphiles and uses thereof
KR102166783B1 (en) Novel trehalose-cored amphiphiles and uses thereof
KR102515251B1 (en) Novel triazine-based amphiphiles and uses thereof
KR101778687B1 (en) Novel deoxycholate-linked amphiphiles and uses thereof
KR102070081B1 (en) Novel vitamin E-based amphiphiles and uses thereof
KR102321563B1 (en) Novel terphenyl-baseed amphiphiles and uses thereof
KR102007317B1 (en) Benzene-derived facial amphiphiles and uses thereof
KR102164196B1 (en) Novel steroid -based amphiphiles and uses thereof
US11884693B2 (en) 1,3-acetonedicarboxylate-derived amphipathic compounds and uses thereof
KR20220087385A (en) Novel tris(hydroxymethyl)methane core-based amphiphiles and uses thereof
KR102582645B1 (en) Novel triazine dimer-based amphiphiles and uses thereof
KR102039483B1 (en) Tandem neopentyl glycol-based amphiphiles and uses thereof
CN113880892A (en) Small-molecule detergent
CN117417395A (en) Non-natural phosphate sugar, preparation method thereof, sugar metabolism marking kit and application thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application