KR20220082125A - Dna aptamer specifically binding to coronavirus and using the same - Google Patents

Dna aptamer specifically binding to coronavirus and using the same Download PDF

Info

Publication number
KR20220082125A
KR20220082125A KR1020200170986A KR20200170986A KR20220082125A KR 20220082125 A KR20220082125 A KR 20220082125A KR 1020200170986 A KR1020200170986 A KR 1020200170986A KR 20200170986 A KR20200170986 A KR 20200170986A KR 20220082125 A KR20220082125 A KR 20220082125A
Authority
KR
South Korea
Prior art keywords
cov
dna
coronavirus
dna aptamer
aptamer
Prior art date
Application number
KR1020200170986A
Other languages
Korean (ko)
Inventor
이승재
이상희
박가영
조희영
Original Assignee
주식회사 에이치피바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이치피바이오 filed Critical 주식회사 에이치피바이오
Priority to KR1020200170986A priority Critical patent/KR20220082125A/en
Publication of KR20220082125A publication Critical patent/KR20220082125A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • G01N33/548Carbohydrates, e.g. dextran
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Virology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 코로나 바이러스에 특이적으로 결합하는 DNA 앱타머 및 이의 용도에 관한 것이다. 구체적으로, 본 발명에 따른 DNA 앱타머는 코로나 바이러스, 특히 COVID-19를 유발하는 신종 코로나 바이러스의 항원 단백질에 특이적으로 결합함으로써, 코로나 바이러스의 검출 및 진단뿐만 아니라, 치료에도 유용하게 사용될 수 있다.The present invention relates to a DNA aptamer that specifically binds to a coronavirus and a use thereof. Specifically, the DNA aptamer according to the present invention specifically binds to the antigen protein of the novel coronavirus that causes coronavirus, in particular, COVID-19, so that it can be usefully used not only for detection and diagnosis of coronavirus, but also for treatment.

Figure P1020200170986
Figure P1020200170986

Description

코로나 바이러스에 특이적으로 결합하는 DNA 앱타머 및 이의 용도{DNA APTAMER SPECIFICALLY BINDING TO CORONAVIRUS AND USING THE SAME}DNA aptamer that specifically binds to coronavirus and its use {DNA APTAMER SPECIFICALLY BINDING TO CORONAVIRUS AND USING THE SAME}

본 발명은 코로나 바이러스에 특이적으로 결합하는 DNA 앱타머 및 이의 용도에 관한 것이다.The present invention relates to a DNA aptamer that specifically binds to a coronavirus and a use thereof.

코로나 바이러스는 단일가닥 양성 RNA를 게놈으로 가지고, 외피가 있는 바이러스로 1937년 처음 발견된 이후 사람을 포함하여 다양한 동물에게서 분리되었다. 코로나 바이러스는 RNA 복제 및 전사 효소(RNA dependent RNA polymerase, RdRp)의 염기서열에 따라 α, β, γ 또는 δ군으로 분류되는데, 이중 α-코로나 코로나바이러스 및 β-코로나 바이러스는 주로 포유류에 감염되고, γ-코로나 바이러스 및 δ-코로나 바이러스는 조류에 감염된다. 그러나, 최근 돼지에서 δ-코로나 바이러스의 감염이 확인된 사례가 있다.Coronaviruses have single-stranded positive RNA as their genome and are enveloped viruses that have been isolated from a variety of animals, including humans, since they were first discovered in 1937. Coronaviruses are classified into α, β, γ, or δ groups according to the nucleotide sequence of RNA replication and transcription enzyme (RNA dependent RNA polymerase, RdRp), of which α-coronavirus and β-coronavirus mainly infect mammals and , γ-coronavirus and δ-coronavirus infect birds. However, there are cases in which infection of δ-coronavirus has been confirmed in pigs recently.

이와 같이, 코로나 바이러스는 이종 간 감염이 가능한 바이러스로 2003년에 전세계적으로 유행한 중증급성호흡기증후군을 일으키는 사스(SARS) 코로나 바이러스와 2015년에 국내에 전파되어 확산된 메르스(MERS) 코로나 바이러스가 있다. 이들 코로나 바이러스는 모두 박쥐에서 유래된 것으로 알려졌다. 또한, 최근 중국 우한에서 발생하여 전 세계적으로 유행하고 있는 신종 코로나 바이러스(2019-nCoV)도 이종 감염에 의한 것으로 확인되었다.As such, the coronavirus is a virus that can transmit heterogeneously, the SARS coronavirus that causes severe acute respiratory syndrome that was prevalent worldwide in 2003 and the MERS coronavirus that spread and spread in Korea in 2015 there is All of these coronaviruses are known to come from bats. In addition, the novel coronavirus (2019-nCoV), which recently occurred in Wuhan, China and is spreading around the world, was also confirmed to be caused by a heterogeneous infection.

그러나, 박쥐는 포유동물 중 비행능력이 있어 광범위한 지역에 서식할 수 있으며, 동굴 등 협소한 공간에서 다수의 개체가 집단으로 생활하는 특성으로 인해 한 개체가 바이러스에 감염될 경우 집단으로 감염이 전달된다. 또한, 비행을 통해 광범위한 지역으로 이동이 가능하여 다른 동물에로 감염을 확산시킬 수 있다. 또한, 박쥐는 다른 포유류와 달리 체온이 높아 바이러스에 대한 저항력이 있어 코로나 바이러스에 영향을 받지 않고 지속적인 감염을 전파할 수 있다.However, among mammals, bats have the ability to fly and can live in a wide area, and due to the nature of a large number of individuals living in a group in a narrow space such as a cave, when one individual becomes infected with the virus, the infection is transmitted to the group. . In addition, they can travel over a wide area by flying, allowing the infection to spread to other animals. In addition, unlike other mammals, bats have a high body temperature, which makes them resistant to viruses, so they are not affected by the coronavirus and can continuously spread infections.

신종 코로나 바이러스는 약 27 내지 32 kb의 RNA 유전자를 갖는 바이러스로, 신종 코로나 바이러스에 의한 감염증(COVID-19)은 약 2주간의 잠복기를 거쳐 발열, 기침, 호흡곤란, 숨가쁨, 가래 등의 호흡기 증상을 주로 동반한다. 이외에도 두통, 오한, 근육통, 식욕부진, 구토, 복통 등의 증상을 나타내기도 한다.The novel coronavirus is a virus having an RNA gene of about 27 to 32 kb. Infectious disease caused by the novel coronavirus (COVID-19) has an incubation period of about 2 weeks, followed by respiratory symptoms such as fever, cough, difficulty breathing, shortness of breath, and sputum. is mainly accompanied by In addition, it may show symptoms such as headache, chills, muscle pain, loss of appetite, vomiting, and abdominal pain.

즉, 사스나 메르스 바이러스의 대유행으로 큰 혼란을 겪은 바와 같이 사람에게 감염되지 않는 것으로 알려진 코로나 바이러스가 사람에게 감염될 가능성을 배제할 수 없게 되었다. 따라서, 이들 코로나 바이러스의 치료를 위한 치료제 개발이 활발히 진행되고 있다. 관련하여, 대한민국 특허등록 10-2145197호는 특정 화학식을 갖는 L-뉴클레오사이드를 유효성분으로 포함하는 코로나 바이러스 치료용 조성물을 개시하고 있다.In other words, it is impossible to rule out the possibility that the coronavirus, which is known to not infect humans, can infect humans, as was the case with the great chaos caused by the SARS and MERS virus pandemics. Therefore, the development of therapeutic agents for the treatment of these coronaviruses is actively progressing. In this regard, Republic of Korea Patent Registration No. 10-2145197 discloses a composition for treating coronavirus comprising L-nucleoside having a specific chemical formula as an active ingredient.

대한민국 특허등록 10-2145197호Korean Patent Registration No. 10-2145197

본 발명의 목적은 코로나 바이러스에 특이적으로 결합하는 DNA 앱타머 및 이의 용도를 제공하는 것이다.It is an object of the present invention to provide a DNA aptamer that specifically binds to a coronavirus and a use thereof.

상기 목적을 달성하기 위하여, 본 발명은 코로나 바이러스에 특이적으로 결합하는 DNA 앱타머를 제공한다.In order to achieve the above object, the present invention provides a DNA aptamer that specifically binds to the coronavirus.

또한, 본 발명은 상기 DNA 앱타머를 포함하는 조성물을 제공한다.In addition, the present invention provides a composition comprising the DNA aptamer.

또한, 본 발명은 상기 DNA 앱타머를 포함하는 코로나 바이러스 검출용 조성물을 제공한다.In addition, the present invention provides a composition for detecting a coronavirus comprising the DNA aptamer.

또한, 본 발명은 상기 DNA 앱타머를 이용하여 코로나 바이러스를 검출하는 방법을 제공한다.In addition, the present invention provides a method of detecting a coronavirus using the DNA aptamer.

나아가, 본 발명은 상기 DNA 앱타머를 이용하여 코로나 바이러스 감염에 의한 질병의 진단에 필요한 정보를 제공하는 방법을 제공한다.Furthermore, the present invention provides a method of providing information necessary for diagnosis of a disease caused by coronavirus infection using the DNA aptamer.

본 발명에 따른 DNA 앱타머는 코로나 바이러스, 특히 COVID-19를 유발하는 신종 코로나 바이러스의 항원 단백질에 특이적으로 결합함으로써, 코로나 바이러스의 검출 및 진단뿐만 아니라, 치료에도 유용하게 사용될 수 있다.The DNA aptamer according to the present invention can be usefully used for treatment as well as detection and diagnosis of coronavirus by specifically binding to the antigen protein of the novel coronavirus that causes coronavirus, particularly COVID-19.

도 1은 본 발명의 일 실시예에서 SARS-CoV-2 검출을 위한 생체시료 최적화를 아가로스 겔 전기영동을 통해 확인한 결과이다.
도 2는 본 발명의 일 실시예에서 SARS-CoV-2 검출을 위한 생체시료 최적화를 모세관 전기영동 방법으로 확인한 결과이다.
도 3은 본 발명의 일 실시예에서 용해시간 및 효소처리에 따라 SARS-CoV-2 검출을 위한 생체시료 최적화를 아가로스 겔 전기영동을 통해 확인한 결과이다.
도 4는 본 발명의 일 실시예에서 용해시간 및 효소처리에 따라 SARS-CoV-2 검출을 위한 생체시료 최적화를 모세관 전기영동 방법으로 확인한 결과이다.
도 5는 본 발명의 일 실시예에서 선별된 DNA 앱타머의 SARS-CoV-2 검출효과를 확인한 결과 그래프이다.
1 is a result of confirming the optimization of a biological sample for SARS-CoV-2 detection through agarose gel electrophoresis in an embodiment of the present invention.
2 is a result of confirming the optimization of a biological sample for SARS-CoV-2 detection by a capillary electrophoresis method in an embodiment of the present invention.
3 is a result of confirming the optimization of a biological sample for SARS-CoV-2 detection through agarose gel electrophoresis according to dissolution time and enzyme treatment in an embodiment of the present invention.
4 is a result confirming the optimization of a biological sample for SARS-CoV-2 detection by a capillary electrophoresis method according to dissolution time and enzyme treatment in an embodiment of the present invention.
5 is a graph showing the result of confirming the SARS-CoV-2 detection effect of the DNA aptamer selected in an embodiment of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 코로나 바이러스에 특이적으로 결합하는 DNA 앱타머를 제공한다.The present invention provides a DNA aptamer that specifically binds to a coronavirus.

또한, 본 발명은 상기 DNA 앱타머를 포함하는 조성물을 제공한다.In addition, the present invention provides a composition comprising the DNA aptamer.

또한, 본 발명은 상기 DNA 앱타머를 포함하는 코로나 바이러스 검출용 조성물을 제공한다.In addition, the present invention provides a composition for detecting a coronavirus comprising the DNA aptamer.

또한, 본 발명은 상기 DNA 앱타머를 이용하여 코로나 바이러스를 검출하는 방법을 제공한다.In addition, the present invention provides a method of detecting a coronavirus using the DNA aptamer.

나아가, 본 발명은 상기 DNA 앱타머를 이용하여 코로나 바이러스 감염에 의한 질병의 진단에 필요한 정보를 제공하는 방법을 제공한다.Furthermore, the present invention provides a method of providing information necessary for diagnosis of a disease caused by coronavirus infection using the DNA aptamer.

이하, 본 발명을 하기 실시예에 의해 상세히 설명한다, 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 이들에 의해 본 발명이 제한되는 것은 아니다. 본 발명의 청구범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 갖고 동일한 작용 효과를 이루는 것은 어떠한 것이라도 본 발명의 기술적 범위에 포함된다.Hereinafter, the present invention will be described in detail by the following examples, provided that the following examples are only for illustrating the present invention, and the present invention is not limited thereto. Anything that has substantially the same configuration as the technical idea described in the claims of the present invention and achieves the same operation and effect is included in the technical scope of the present invention.

실시예 1. 랜덤 DNA 라이브러리의 증폭Example 1. Amplification of random DNA library

신종 코로나 바이러스의 항원 단백질에 특이적으로 결합하는 DNA 앱타머를 선별하기 위해, 먼저 하기에 기재된 바와 같이 DNA 라이브러리를 제조하였다.In order to select a DNA aptamer that specifically binds to the antigen protein of the novel coronavirus, a DNA library was first prepared as described below.

구체적으로, dA:dG:dC:dT가 1.5:1.15:1.25:1의 비율로 포함된 40개의 랜덤 염기서열(N40)을 포함하는 100 bp 크기의 주형 DNA(서열번호 31: 5'-GGTAATACGACTCACTATAGGGAGATACCAGCTTATTCAATT-N40-AGATAGTAAGTGCAATCT-3')와 이에 대한 정방향 프라이머(서열번호 32: 5'-GGTAATACGACTCACTATAGGGAGATACCAGCTTATTCAATT-3'), 역방향 프라이머(서열번호 33: 5'-AGATTGCACTTACTATCT-3')를 바이오니아 사(한국)에 주문제작하였다. 1 ㎕의 주형 DNA, 5 ㎕의 10x PCR 완충용액, 4 ㎕의 dNTP 혼합물(2.5 mM), 2 ㎕의 10 μM 정방향 프라이머, 2 ㎕의 10 μM 역방향 프라이머, 0.3 ㎕의 ExTaq 중합효소(Takara, 일본)(1 unit/㎕) 및 35.7 ㎕의 증류수를 혼합하여 PCR 반응물을 준비하였다. 준비된 반응물을 하기 표 1에 기재된 바와 같은 조건으로 PCR을 수행하였다. 수득된 PCR 산물을 2% 아가로스 겔 전기영동을 통해 확인하였다.Specifically, 100 bp template DNA (SEQ ID NO: 31: 5'-GGTAATACGACTCACTATAGGGAGATACCAGCTTATTCAATT) including 40 random nucleotide sequences (N 40 ) in which dA: dG: dC: dT is 1.5:1.15:1.25:1 in a ratio -N 40 -AGATAGTAAGTGCAATCT-3 ') and a forward primer (SEQ ID NO: 32: 5'-GGTAATACGACTCACTATAGGGAGATACAGCTTATTCAATT-3'), a reverse primer (SEQ ID NO: 33: 5'-AGATTGCACTTACTATCT-3') to Bioneer Corporation (Korea) Made to order. 1 μl template DNA, 5 μl 10x PCR buffer, 4 μl dNTP mixture (2.5 mM), 2 μl 10 μM forward primer, 2 μl 10 μM reverse primer, 0.3 μl ExTaq polymerase (Takara, Japan) ) (1 unit/μl) and 35.7 μl of distilled water were mixed to prepare a PCR reaction. PCR was performed on the prepared reactants under the conditions described in Table 1 below. The obtained PCR product was confirmed through 2% agarose gel electrophoresis.

초기 변성 단계early metamorphic stage 94℃, 5분94°C, 5 minutes 1회1 time 변성 단계metamorphic stage 94℃, 30초94℃, 30 seconds 5회5 times 어닐링(annealing) 단계Annealing step 52℃, 30초52℃, 30 seconds 연신(elongation) 단계elongation step 72℃, 30초72℃, 30 seconds 후기 연신 단계Late Stretching Stage 72℃, 5분72°C, 5 minutes 1회1 time

실시예 2. 3차원 구조의 DNA 앱타머 제작Example 2. Preparation of a DNA aptamer of a three-dimensional structure

신종 코로나 바이러스의 항원 단백질에 특이적으로 결합하는 DNA 앱타머를 선별하기 위해, 3차원 구조의 DNA 앱타머를 제작하였다.In order to select a DNA aptamer that specifically binds to the antigen protein of the novel coronavirus, a three-dimensional DNA aptamer was prepared.

구체적으로, 10 ㎕의 DNA 앱타머에 10 ㎕의 2× PBS을 첨가하였다. 상기 혼합물을 85℃에서 5분 동안 끓여 변성시킨 후, 상온에서 1시간 이상 방치하여 서서히 식힘으로써, 3차원 구조의 RNA 앱타머를 제작하였다.Specifically, 10 μl of 2x PBS was added to 10 μl of DNA aptamer. After denaturing the mixture by boiling at 85° C. for 5 minutes, it was left at room temperature for 1 hour or more to cool slowly, thereby preparing a three-dimensional RNA aptamer.

실시예 3. 신종 코로나 바이러스 단백질에 특이적으로 결합하는 DNA 앱타머의 선별Example 3. Selection of DNA aptamers that specifically bind to novel coronavirus protein

3-1. 신종 코로나 바이러스 단백질에 특이적으로 결합하는 DNA 앱타머의 선별3-1. Screening of DNA aptamers that specifically bind to novel coronavirus proteins

신종 코로나 바이러스의 항원 단백질에 특이적으로 결합하는 DNA 앱타머를 SELEX 기법을 이용하여 선별하였다.DNA aptamers that specifically bind to the antigenic protein of the novel coronavirus were selected using the SELEX technique.

구체적으로, 신종 코로나 바이러스의 항원 단백질(84 pmole) 및 실시예 2에서 3차원 구조를 형성한 DNA 앱타머 풀(840 pmole)을 혼합하고, 1× PBS로 전체 부피를 200 ㎕로 조절하였다. 이를 4℃에서 1시간 동안 교반하면서 반응시켰다.Specifically, the antigen protein of novel coronavirus (84 pmole) and the DNA aptamer pool (840 pmole) that formed the three-dimensional structure in Example 2 were mixed, and the total volume was adjusted to 200 μl with 1× PBS. This was reacted with stirring at 4° C. for 1 hour.

한편, Ni-NTA agarose 정제 키트를 활성화하기 위하여 Ni-NTA agarose 200 ㎕에 1X 앱타머 선별용액 (500mM NaCl, 20mM Tris-HCl, 5mM imidazole) 200 ㎕을 넣고 4℃에서 30분 동안 교반하며 반응시켜 활성화시킨 후, 4℃에서 13,000 rpm으로 10분 동안 원심분리하여 상층액을 제거했다. 상기 과정을 2회 반복한 후 히스티딘 융합 항원 단백질과 DNA 앱타머 풀을 반응시킨 반응액을 활성화된 Ni-NTA agarose와 4℃에서 1시간 동안 교반하며 반응시켰다. 이후, 4℃에서 13,000 rpm으로 10분 동안 원심분리하여 상층액을 제거한 후, 세척용액 (500mM NaCl, 60mM imidazole, 20mM Tris-HCl) 1 ㎖을 넣어 세척하는 과정을 5회 반복하여 히스티딘 융합 항원 단백질과 결합하지 못한 DNA 앱타머를 제거하였다. Ni-NTA agarose로부터 히스티딘 융합 항원 단백질과 이에 특이적으로 결합하는 DNA 앱타머를 용출하기 위하여 DNA 앱타머 용출 용액 (300mM NaCl, 20mM Tris-HCl, 250mM imidazole) 200 ㎕를 넣어 4℃에서 1시간동안 교반하며 반응시켰으며, 이후, 4℃에서 13,000 rpm으로 10분 동안 원심분리하여 상층의 용출 용액을 얻었다. 상기 과정을 2회 반복하여 상층의 용출 용액을 획득하였다. 히스티딘 융합 항원 단백질과 이에 특이적으로 결합하는 DNA 앱타머간의 결합물에서 히스티딘 융합 항원 단백질을 제거하기 위하여, 용출 용액에 동일 부피의 PCI 용액을 처리한 후 4℃에서 13,000 rpm으로 15분간 원심 분리하여 상층액만을 회수하였다. 이후, 히스티딘 융합 항원 단백질과 특이적으로 결합하는 DNA 앱타머 만을 회수하기 위하여 PCI 법을 통하여 회수된 상층액에 1/10 부피의 3M NaOAc (pH4.5)와 2배부피의 100% 에탄올을 첨가하여 -70℃에서 2시간 반응시킨뒤, 반응액을 4℃에서 13,000 rpm으로 20분간 원심 분리하여 DNA 앱타머만을 회수하였다. 회수한 DNA 앱타머는 공기 중에서 건조시킨 후, 50 ㎕의 Nuclease free water에 녹였다.Meanwhile, in order to activate the Ni-NTA agarose purification kit, 200 μl of 1X aptamer selection solution (500mM NaCl, 20mM Tris-HCl, 5mM imidazole) was added to 200 μl of Ni-NTA agarose and reacted with stirring at 4°C for 30 minutes. After activation, the supernatant was removed by centrifugation at 13,000 rpm at 4°C for 10 minutes. After repeating the above process twice, the reaction solution in which the histidine fusion antigen protein and the DNA aptamer pool were reacted was reacted with activated Ni-NTA agarose at 4°C for 1 hour with stirring. Thereafter, the supernatant was removed by centrifugation at 13,000 rpm at 4°C for 10 minutes, and 1 ml of a washing solution (500mM NaCl, 60mM imidazole, 20mM Tris-HCl) was added and the washing process was repeated 5 times to repeat the histidine fusion antigen protein DNA aptamers that did not bind to were removed. To elute the histidine fusion antigen protein and DNA aptamer that specifically binds to it from Ni-NTA agarose, 200 μl of a DNA aptamer elution solution (300 mM NaCl, 20 mM Tris-HCl, 250 mM imidazole) was added at 4°C for 1 hour. The reaction was stirred and then centrifuged at 13,000 rpm at 4° C. for 10 minutes to obtain an elution solution of the upper layer. The above process was repeated twice to obtain an elution solution of the upper layer. In order to remove the histidine fusion antigen protein from the binding product between the histidine fusion antigen protein and the DNA aptamer specifically binding thereto, the elution solution was treated with an equal volume of PCI solution and then centrifuged at 4 ° C. at 13,000 rpm for 15 minutes. Only the supernatant was recovered. Then, to recover only the DNA aptamer that specifically binds to the histidine fusion antigen protein, 1/10 volume of 3M NaOAc (pH4.5) and 2 times the volume of 100% ethanol were added to the supernatant recovered through the PCI method. After reacting at -70°C for 2 hours, the reaction solution was centrifuged at 13,000 rpm at 4°C for 20 minutes to recover only the DNA aptamer. The recovered DNA aptamer was dried in air and then dissolved in 50 μl of nuclease free water.

3-2. 비특이적으로 결합하는 DNA 앱타머의 제거 3-2. Removal of non-specifically binding DNA aptamers

코로나 바이러스의 항원 단백질이 아닌 컬럼 및 완충액 내 조성물과 비특이적으로 결합하는 DNA 앱타머를 제거하는 동시에 항원 단백질에 결합하는 DNA 앱타머의 특이성을 향상시키기 위해 다음과 같은 실험을 수행하였다.In order to remove the DNA aptamer that non-specifically binds to the composition in the column and buffer, not the antigen protein of the coronavirus, and at the same time improve the specificity of the DNA aptamer that binds to the antigen protein, the following experiment was performed.

먼저, 실시예 3-1에서 수득된 DNA 앱타머를 통상적인 방법으로 증폭시키고, 증폭된 산물을 이용하여 실시예 3-1의 과정을 6회 반복하여 특이성이 향상된 DNA 앱타머를 선별하였다. 선별된 DNA 앱타머를 이용하여 항원 단백질이 결합되지 않은 DNA 앱타머를 선별하는 네가티브 SELEX(negative SELEX)을 수행하였다. 실험은 히스티딘 단백질만 결합된 컬럼을 사용한 것을 제외하고는 실시예 3-1과 동일한 조건 및 방법으로 수행되었다. 이때, 상기 조건에서 특이적으로 결합하지 않는 DNA 앱타머만을 수득하였다. 수득된 앱타머를 이용하여, 실시예 3-1의 과정을 4회 더 반복하여 총 9회의 SELEX를 수행함으로써 최종적으로 항원 단백질에 특이적으로 결합하는 앱타머를 수득하였다.First, the DNA aptamer obtained in Example 3-1 was amplified by a conventional method, and the process of Example 3-1 was repeated 6 times using the amplified product to select a DNA aptamer with improved specificity. Negative SELEX (negative SELEX) was performed to select a DNA aptamer to which an antigen protein is not bound using the selected DNA aptamer. The experiment was performed under the same conditions and methods as in Example 3-1, except that a column to which only the histidine protein was bound was used. At this time, only DNA aptamers that do not specifically bind under the above conditions were obtained. Using the obtained aptamer, the process of Example 3-1 was repeated 4 more times to perform SELEX a total of 9 times to finally obtain an aptamer that specifically binds to an antigen protein.

실시예 4. 친화성이 높은 DNA 앱타머 풀의 선별Example 4. Selection of high affinity DNA aptamer pool

SELEX를 통해 각 라운드에서 수득된 DNA 앱타머의 RdRp 단백질에 대한 친화성을 통상적인 나노드랍 방법으로 확인하였다.The affinity for the RdRp protein of the DNA aptamer obtained in each round through SELEX was confirmed by a conventional nanodrop method.

실험예 1. 신종 코로나 바이러스 단백질 및 DNA 앱타머 친화력의 정량적 확인Experimental Example 1. Quantitative confirmation of the affinity of novel coronavirus protein and DNA aptamer

1-1. SARS-CoV-2 항원 단백질 코팅 센서 칩의 제작1-1. Preparation of SARS-CoV-2 antigen protein coating sensor chip

표면 플라즈마 공명(surface plasmon resonance, SPR) 실험을 통해, 선별된 DNA 앱타머의 SARS-CoV-2 항원 단백질에의 결합력을 정량적으로 확인하였다.Through a surface plasma resonance (SPR) experiment, the binding ability of the selected DNA aptamer to the SARS-CoV-2 antigen protein was quantitatively confirmed.

먼저, 카르복실기로 표면이 코팅된 센서 칩 CM5(GE healthcare, 영국)에 0.1 M NHS(Nhydroxysuccinimide) 및 0.4 M EDC(N-ethyl-N'(dimethylaminopropyl) carbodiimide)가 혼합된 혼합액을 5 ㎕/min의 속도로 10분 동안 흘려주어 표면의 카르복실기를 활성화시켰다. 카르복실기가 활성화된 센서 칩 CM5의 표면에, 44 ng/㎕ 농도의 SARS-CoV-2 항원 단백질을 포함하는 10 mM 소듐 아세테이트(pH 4.5) 용액을 1/10로 희석하여 5 ㎕/min의 속도로 10분 동안 3회 반복 처리하였다. SARS-CoV-2 항원 단백질이 코팅된 센서 칩 CM5에 1 M 에탄올아민 하이드로클로라이드(pH 8.5)를 5 ㎕/min의 속도로 10분 동안 흘려주어 표면의 활성화된 카르복실기를 불활성화시켰다. 그 결과, 표면에 SARS-CoV-2 항원 단백질이 코팅된 센서 칩 CM5를 제작하였다.First, a mixture of 0.1 M NHS (Nhydroxysuccinimide) and 0.4 M EDC (N-ethyl-N' (dimethylaminopropyl) carbodiimide) was added to the sensor chip CM5 (GE healthcare, UK) coated with a carboxyl group at 5 μl/min. The carboxyl group on the surface was activated by flowing it at a speed for 10 minutes. On the surface of the carboxyl group-activated sensor chip CM5, a 10 mM sodium acetate (pH 4.5) solution containing 44 ng/μl of SARS-CoV-2 antigen protein was diluted 1/10 at a rate of 5 μl/min. The treatment was repeated 3 times for 10 minutes. 1 M ethanolamine hydrochloride (pH 8.5) was flowed to the sensor chip CM5 coated with the SARS-CoV-2 antigen protein at a rate of 5 μl/min for 10 minutes to inactivate the activated carboxyl groups on the surface. As a result, a sensor chip CM5 having a surface coated with SARS-CoV-2 antigen protein was fabricated.

1-2. DNA 앱타머의 친화력 확인1-2. Affinity confirmation of DNA aptamers

상기 선별된 DNA 앱타머의 SARS-CoV-2 항원 단백질에 대한 친화력을 SPR 방법을 이용하여 정량적으로 확인하였다.The affinity of the selected DNA aptamer to the SARS-CoV-2 antigen protein was quantitatively confirmed using the SPR method.

먼저, 상기에서 서열을 확인한 RNA 앱타머를 HBS-EP 완충액(GE Healthcare, BR-1001-88)에 300, 500, 700 또는 1,000 nM의 농도가 되도록 희석하여 준비하였다. 실험은 BIAcore 3000(BIACORE)을 사용하여 제조사의 프로토콜에 따라 수행되었으며, 실험예 1-1에서 제작된 SARS-CoV-2 항원 단백질이 코팅된 센서 칩 CM5에 대한 DNA 앱타머의 결합력과 아무것도 코팅되지 않은 센서 칩 CM5에 대한 DNA 앱타머의 결합력 차이를 확인하였다. 이때, 속도 변수는 BIA 평가프로그램(BIACORE)을 이용하여 수득 및 정량하였고, 각 실험 후, 센서 칩은 1 M NaCl 및 50 mM NaOH 완충액을 이용하여 재생시켰다. 그 결과, DNA 앱타머의 SARS-CoV-2 항원 단백질에 대한 친화력을 하기 표 2에 해리 상수(KD) 값으로 나타내었다.First, the RNA aptamer whose sequence was confirmed above was prepared by diluting it in HBS-EP buffer (GE Healthcare, BR-1001-88) to a concentration of 300, 500, 700 or 1,000 nM. The experiment was performed using BIAcore 3000 (BIACORE) according to the manufacturer's protocol, and the binding force of the DNA aptamer to the sensor chip CM5 coated with the SARS-CoV-2 antigen protein prepared in Experimental Example 1-1 and nothing was coated. The difference in the binding force of the DNA aptamer to the non-existent sensor chip CM5 was confirmed. At this time, the rate variables were obtained and quantified using the BIA evaluation program (BIACORE), and after each experiment, the sensor chip was regenerated using 1 M NaCl and 50 mM NaOH buffer. As a result, the affinity of the DNA aptamer to the SARS-CoV-2 antigen protein is shown in Table 2 below as a dissociation constant (K D ) value.

이름name 서열order KdKd 서열번호SEQ ID NO: CoV-S1-1CoV-S1-1 TCATCACGCAACTTTCATCAGTTCAGTACTAACATCGCGCTCATCACGCAACTTTCATCAGTTCAGTACTAACATCGCGC 6.87×10-9 6.87×10 -9 서열번호 1SEQ ID NO: 1 Cov-S1-2Cov-S1-2 CGTCTGCCAGATCCACCACACCAGTGCCCCTGACTAGCTACGTCTGCCAGATCCACCACACCAGTGCCCCTGACTAGCTA 8.70×10-8 8.70×10 -8 서열번호 2SEQ ID NO: 2 Cov-S1-3Cov-S1-3 CCCTAGGCAAGTATACGCTGCAATGGCACTGTGCTTCAGGCCCTAGGCAAGTATACGCTGCAATGGCACTGTGCTTCAGG 1.49×10-8 1.49×10 -8 서열번호 3SEQ ID NO: 3 Cov-S1-4Cov-S1-4 TGGAACGCTGCAGTTGCGATAATGGGAGGAAGGTTTAGATGGAACGCTGCAGTTGCGATAATGGGAGGAAGGTTTAGA 3.51×10-8 3.51×10 -8 서열번호 4SEQ ID NO: 4 Cov-S1-5Cov-S1-5 GGCAGCGTGTTTTGCGGTTGTAGTTGCCCCCAGTTCTGCAGGCAGCGTGTTTTGCGGTTGTAGTTGCCCCCAGTTCTGCA 2.06×10-10 2.06×10 -10 서열번호 5SEQ ID NO: 5 Cov-S2-1Cov-S2-1 CGGTACGGTGACAATCTCTGGAATGTTGGGAGAGTTTTTGCGGTACGGTGACAATCTCTGGAATGTTGGGAGAGTTTTTG 1.45×10-8 1.45×10 -8 서열번호 6SEQ ID NO: 6 Cov-S2-2Cov-S2-2 CACGTATAGGTGAATGTGCCATGTCATGCCCTCATGCCAGCACGTATAGGTGAATGTGCCATGTCATGCCCTCATGCCAG 2.06× 10-10 2.06× 10 -10 서열번호 7SEQ ID NO: 7 Cov-S2-3Cov-S2-3 ACCGGGATGCGGTGCGGCGATAGCTCTTGGGAGTGTTCCGACCGGGATGCGGTGCGGCGATAGCTCTTGGGAGTGTTCCG 1.81×10-8 1.81×10 -8 서열번호 8SEQ ID NO: 8 Cov-S2-4Cov-S2-4 GGCGCGGGGGGCAGCTCTGCCGTGTGTTGTTTGGCCAGAGGGCGCGGGGGGCAGCTCTGCCGTGTGTTGTTTGGCCAGAG 1.08×10-9 1.08×10 -9 서열번호 9SEQ ID NO: 9 Cov-S2-5Cov-S2-5 AGTGTCTGCGATTTCATTATACGGCTTGCCCCGAAGCACGAGTGTCTGCGATTTCATTATACGGCTTGCCCCGAAGCACG 1.77×10-7 1.77×10 -7 서열번호 10SEQ ID NO: 10 Cov-S1+2-1Cov-S1+2-1 AAAGGAGTGGGTAGCATGTTCAGGACTATTCTGAGTTACCAAAGGAGTGGGTAGCATGTTCAGGACTATTCTGAGTTACC 1.45×10-8 1.45×10 -8 서열번호 11SEQ ID NO: 11 Cov-S1+2-2Cov-S1+2-2 CGCCTCTTCAGTGTGATCGAGGTTGACCTTACCAAATCTACGCCTCTTCAGTGTGATCGAGGTTGACCTTACCAAATCTA 1.32×10-8 1.32×10 -8 서열번호 12SEQ ID NO: 12 Cov-S1+2-3Cov-S1+2-3 CACTCAGATGCGCCGCCCGAAGGTATGTCACGCGTGAGGACACTCAGATGCGCCGCCCGAAGGTATGTCACGCGTGAGGA 3.97×10-9 3.97×10 -9 서열번호 13SEQ ID NO: 13 Cov-S1+2-4Cov-S1+2-4 ACCCACAACGGCGAGTTTATCCCATGAAGTTCTTGCTTGGACCCACAACGGCGAGTTTATCCCATGAAGTTCTTGCTTGG 5.84×10-8 5.84×10 -8 서열번호 14SEQ ID NO: 14 Cov-S1+2-5Cov-S1+2-5 AAAAAAACTATATCCCAGGCATCGTGGGTGTATTGCGAAGAAAAAAACTATATCCCAGGCATCGTGGGTGTATTGCGAAG 6.87×10-9 6.87×10 -9 서열번호 15SEQ ID NO: 15 Cov-RBD-1Cov-RBD-1 CTGCAGTATAGGAAAACACCAAGATATCATGATACTCGAGCTGCAGTATAGGAAAACACCAAGATATCATGATACTCGAG 8.70×10-8 8.70×10 -8 서열번호 16SEQ ID NO: 16 Cov-RBD-2Cov-RBD-2 CTGAGAGCCACCAGACGTTAGAAGTGGTGTTGAAATGGGGCTGAGAGCCACCAGACGTTAGAAGTGGTGTTGAAATGGGG 1.31×10-10 1.31×10 -10 서열번호 17SEQ ID NO: 17 Cov-RBD-3Cov-RBD-3 TGTATAAACAAACCAATTGACATGCTGTCCACCTGCCGACTGTATAAACAAACCAATTGACATGCTGTCCACCTGCCGAC 6.18×10-9 6.18×10 -9 서열번호 18SEQ ID NO: 18 Cov-RBD-4Cov-RBD-4 CACTTGGCCTCTGTTGTAGTCTGGTAGTGGTAAACATAGGCACTTGGCCTCTGTTGTAGTCTGGTAGTGGTAAACATAGG 1.76×10-9 1.76×10 -9 서열번호 19SEQ ID NO: 19 Cov-RBD-5Cov-RBD-5 CGGCCGACTACCCTTTTGACTTTTTGTAGCTAGCTGGGCACGGCCGACTACCCTTTTGACTTTTTGTAGCTAGCTGGGCA 1.16×10-8 1.16×10 -8 서열번호 20SEQ ID NO: 20 Cov-NP-1Cov-NP-1 ACGTAGCCATGCTGTGTTATCAGAATCGTTGGATATTTTCACGTAGCCATGCTGTGTTATCAGAATCGTTGGATATTTTC 4.86×10-9 4.86×10 -9 서열번호 21SEQ ID NO: 21 Cov-NP-2Cov-NP-2 TCAGTTCAGTACTAACATCGCGCTCATCACGCAACTTTCATCAGTTCAGTACTAACATCGCGCTCATCACGCAACTTTCA 5.13×10-8 5.13×10 -8 서열번호 22SEQ ID NO: 22 Cov-NP-3Cov-NP-3 TGCCAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCTGCCAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCC 1.50×10-8 1.50×10 -8 서열번호 23SEQ ID NO: 23 Cov-NP-4Cov-NP-4 CCTATTCCTTATTATATTTTCTTTTTTTGTAATTTGGTCGCCTATTCCTTATTATATTTTCTTTTTTTGTAATTTGGTCG 1.11×10-8 1.11×10 -8 서열번호 24SEQ ID NO: 24 Cov-NP-5Cov-NP-5 GGTGCGAACAATGCCTGGTTGAGAATGCTCAGAATGGGCGGGTGCGAACAATGCCTGGTTGAGAATGCTCAGAATGGGCG 3.12×10-9 3.12×10 -9 서열번호 25SEQ ID NO: 25 CoV-RdRp-1CoV-RdRp-1 GCTTTATGCACACGATTGTTATCATATTCGCTCCTACGTCGCTTTATGCACACGATTGTTATCATATTCGCTCCTACGTC 1.10×10-9 1.10×10 -9 서열번호 26SEQ ID NO: 26 CoV-RdRp-2CoV-RdRp-2 GCACAGACTTTTCAATCCGGTTGTTAAGGGGTAAAGGGCGGCACAGACTTTTCAATCCGGTTGTTAAGGGGTAAAGGGCG 1.12×10-9 1.12×10 -9 서열번호 27SEQ ID NO: 27 CoV-RdRp-3CoV-RdRp-3 GGACGACGACGCACTGATAGGGTGTTGTGGCAATTGCTCGGGACGACGACGCACTGATAGGGTGTTGTGGCAATTGCTCG 5.42×10-8 5.42×10 -8 서열번호 28SEQ ID NO: 28 CoV-RdRp-4CoV-RdRp-4 CCAGCACTCGATCGTATTCCATTTCGGCTAATGCGTTCTACCAGCACTCGATCGTATTCCATTTCGGCTAATGCGTTCTA 1.33×10-10 1.33×10 -10 서열번호 29SEQ ID NO: 29 CoV-RdRp-5CoV-RdRp-5 CGCGTGGTGAATTTTAAGCATCCGAAATGGTATTCAGCTACGCGTGGTGAATTTTAAGCATCCGAAATGGTATTCAGCTA 4.25×10-10 4.25×10 -10 서열번호 30SEQ ID NO: 30

실험예 2. SARS-CoV-2 검출을 위한 생체시료 용해 시약 제조Experimental Example 2. Preparation of biological sample lysis reagent for SARS-CoV-2 detection

2-1. STR 분석을 통한 SARS-CoV-2 검출용 생체시료 용해 시약 최적화2-1. Optimization of biological sample lysis reagent for SARS-CoV-2 detection through STR analysis

SARS-CoV-2 감염 생체시료 용해 시약의 최적화를 위하여, chelex® 100 powder (sigma Aldrich, USA)를 3, 5, 8, 10%의 농도로 증류수 10ml에 희석하여, 용해 시약을 준비하였다. 생체 시료는 실험자의 구강상피 세포를 이용하였으며, 멸균한 면봉을 실험자의 구강 내에 최소 1분 이상 문질러 준비하였다. 구강상피 세포가 묻혀진 면봉을 화염멸균한 메스로 표면을 잘라, 가장 바깥 부분만을 e-tube에 회수하였으며, 회수한 시료에 준비한 용해 시약을 500 ul 첨가하였다. 용해 시약이 담긴 e-tube를 95℃ heat block 상에 각 10분, 15분 반응시킨 다음 상온에서 식혀주었으며, 원심분리를 통해 상층액만을 회수하였다. 회수한 시료 상층액은 Short Tandem Repeat (STR) 분석을 위해 선행되는 PCR 증폭과정의 주형 DNA로 사용되었다. PCR 과정은 2X HS prime Taq premix (제넷바이오, Korea) 5ul 및 증류수 2ul, primer mixture 1ul, 주형 DNA 2ul를 혼합하여 총 10ul의 PCR 혼합액을 준비하여 Pre-denaturation 96℃, 1분; Denaturation 94℃, 1분; Annealing 60℃, 1분; Extension 72℃, 1분; Final extension 60℃, 1시간 과정을 수행하였으며, Denaturation~Extension 과정은 28 반복하였다. PCR 산물은 2% 아가로즈 겔 상에 로딩하여, DNA 밴드를 확인하고 그 결과를 도 1에 나타내었다.For the optimization of the SARS-CoV-2 infection biological sample lysis reagent, chelex® 100 powder (sigma Aldrich, USA) was diluted in 10 ml of distilled water to a concentration of 3, 5, 8, or 10% to prepare a lysis reagent. For the biological sample, the oral epithelial cells of the experimenter were used, and a sterilized cotton swab was prepared by rubbing it into the mouth of the experimenter for at least 1 minute. The surface of the cotton swab imbued with oral epithelial cells was cut with a flame-sterilized scalpel, only the outermost part was recovered in the e-tube, and 500 ul of the prepared lysis reagent was added to the recovered sample. The e-tube containing the lysis reagent was reacted on a heat block at 95°C for 10 minutes and 15 minutes, respectively, and then cooled at room temperature, and only the supernatant was recovered through centrifugation. The recovered sample supernatant was used as a template DNA in the PCR amplification process preceding for short tandem repeat (STR) analysis. PCR process is performed by mixing 5ul of 2X HS prime Taq premix (Genet Bio, Korea), 2ul of distilled water, 1ul of primer mixture, and 2ul of template DNA to prepare a total of 10ul of PCR mixture. Pre-denaturation 96℃, 1 minute; Denaturation 94° C., 1 min; Annealing 60°C, 1 min; Extension 72°C, 1 min; Final extension 60℃, 1 hour process was performed, and the Denaturation ~ Extension process was repeated 28 times. The PCR product was loaded on a 2% agarose gel to confirm the DNA band, and the results are shown in FIG. 1 .

도 1에 나타난 바와 같이, 3~10% chelex 농도 조건 및 85℃, 95℃의 용해 조건을 실시한 모든 시료에서 PCR 산물이 관찰되었으며 해당 조건상 생체 시료에서 DNA 추출에 문제가 없음을 확인하였다.As shown in FIG. 1, PCR products were observed in all samples subjected to 3-10% chelex concentration conditions and dissolution conditions of 85°C and 95°C, and it was confirmed that there was no problem in DNA extraction from biological samples under the conditions.

2-2. 모세관 전기영동 방법을 이용한 증폭 확인2-2. Confirmation of amplification using capillary electrophoresis method

실시한 PCR 산물이 STR 기반의 검출방법 상에서 검출이 올바르게 진행됨을 STR profiling 분석을 통해 검증하였다. PCR 결과 얻어진 PCR 산물은 모세관(capillary) 전기영동 방법을 이용하여 증폭산물의 크기를 확인하였다. PCR증폭 산물의 DNA 농도를 600 ng/ul로 증류수를 이용해 희석하였다. 구체적으로, 9.3 ㎕의 Hi-Di foramide와 0.05 ㎕의 GeneScan-500LIZ(ABI, 미국) 및 0.3 ㎕의 PCR 산물을 혼합하고, 95℃에서 3분 동안 가열하여 PCR 산물을 단일 염기가닥으로 변형시켰다. 수득된 단일 염기가닥을 3130XL Genetic Analyzer 또는 3730 Genetic Analyzer의 모세관에 적용시키고, 전기영동에 의해 전개가 완료된 증폭산물을 GeneMapper ID 소프트웨어를 이용해 분석하고, 그 결과를 도 2에 나타내었다.It was verified through STR profiling analysis that the PCR product was detected correctly in the STR-based detection method. The size of the PCR product obtained as a result of PCR was confirmed by using a capillary electrophoresis method. The DNA concentration of the PCR amplification product was diluted with distilled water to 600 ng/ul. Specifically, 9.3 μl of Hi-Di foramide, 0.05 μl of GeneScan-500LIZ (ABI, USA) and 0.3 μl of the PCR product were mixed, and heated at 95° C. for 3 minutes to transform the PCR product into a single base strand. The obtained single nucleotide strand was applied to a capillary tube of 3130XL Genetic Analyzer or 3730 Genetic Analyzer, and the amplification product developed by electrophoresis was analyzed using GeneMapper ID software, and the results are shown in FIG. 2 .

도 2에 나타난 바와 같이, chelex의 농도가 증가함에 따라 좌위별 STR peak의 증가 경향은 보이지 않으나, 낮은 농도의 chelex에서 일부 좌위 (D3S1358, TH01, D21S11, Amelogenin)의 peak이 매우 낮게 나타났다. 최소 5% chelex 농도부터 구분가능한 STR peak이 보여졌다. 용해 온도에 따른 STR peak 차이는 크게 나타나지 않아 95℃ 용해조건으로 고정하였다.As shown in FIG. 2 , as the concentration of chelex increased, there was no tendency to increase the STR peak by locus, but the peaks of some loci (D3S1358, TH01, D21S11, Amelogenin) at low concentrations of chelex were very low. A distinguishable STR peak was observed from a minimum of 5% chelex concentration. The difference in STR peak according to the dissolution temperature did not show much, so the dissolution condition was fixed at 95°C.

2-3. 용해 시간 및 효소처리에 따른 용해조건 최적화2-3. Optimization of dissolution conditions according to dissolution time and enzyme treatment

용해 시간 및 proteinase K와 같은 효소 처리에 의한 생체시료 용해조건 최적화를 위하여, 용해시간을 기존 5분에서 10분, 20분으로 증가하였으며 proteinase K 처리 유무에 따른 용해결과 개선을 확인하였다. 용해 결과 확인은 앞선 방법과 동일하게 수행하였으나 chelex 용해 과정 이후 proteinase K 처리 과정을 추가하였다. 용해 이후, proteinase K (Biofact, Korea)를 첨가한 다음 63℃에서 10분 또는 20분 반응시켰다. 용해과정을 모두 마친 시료는 2% 아가로즈 겔 상에 로딩하여 PCR 산물의 DNA 밴드를 확인하고, 그 결과를 도 3에 나타내었다.In order to optimize the dissolution time and the dissolution conditions of biological samples by enzyme treatment such as proteinase K, the dissolution time was increased from 5 minutes to 10 minutes and 20 minutes, and the dissolution results were confirmed with or without proteinase K treatment. The dissolution result was confirmed in the same manner as in the previous method, but proteinase K treatment was added after the chelex dissolution process. After dissolution, proteinase K (Biofact, Korea) was added and reacted at 63° C. for 10 minutes or 20 minutes. After the dissolution process was completed, the sample was loaded on a 2% agarose gel to confirm the DNA band of the PCR product, and the results are shown in FIG. 3 .

한편, PCR 결과 얻어진 PCR 산물은 모세관(capillary) 전기영동 방법을 이용하여 증폭산물의 크기를 확인하였다. PCR증폭 산물의 DNA 농도를 600 ng/ul로 증류수를 이용해 희석하였다. 구체적으로, 9.3 ㎕의 Hi-Di foramide와 0.05 ㎕의 GeneScan-500LIZ(ABI, 미국) 및 0.3 ㎕의 PCR 산물을 혼합하고, 95℃에서 3분 동안 가열하여 PCR 산물을 단일 염기가닥으로 변형시켰다. 수득된 단일 염기가닥을 3130XL Genetic Analyzer 또는 3730 Genetic Analyzer의 모세관에 적용시키고, 전기영동에 의해 전개가 완료된 증폭산물을 GeneMapper ID 소프트웨어를 이용해 분석하고, 그 결과를 도 4에 나타내었다.Meanwhile, the size of the PCR product obtained as a result of PCR was confirmed by using a capillary electrophoresis method. The DNA concentration of the PCR amplification product was diluted with distilled water to 600 ng/ul. Specifically, 9.3 μl of Hi-Di foramide, 0.05 μl of GeneScan-500LIZ (ABI, USA) and 0.3 μl of the PCR product were mixed, and heated at 95° C. for 3 minutes to transform the PCR product into a single base strand. The obtained single nucleotide strand was applied to a capillary of 3130XL Genetic Analyzer or 3730 Genetic Analyzer, and the amplification product developed by electrophoresis was analyzed using GeneMapper ID software, and the results are shown in FIG. 4 .

도 3 및 4에 나타낸 바와 같이, STR 분석결과 상에서는 용해 시간을 기존 5분에서 10분으로 증가하였을 때, 일부 좌위 (TH01, D21S11)의 STR peak가 증가하였다. 용해시간이 10분 이상으로 증가한 시료에서는 추가적인 STR peak 증폭 경향이 보이지 않았다. Proteinase K 첨가 유무에 따른 생체시료 용해율 측면에서는 protease K를 첨가하였을 때, 첨가하지않는 시료의 STR peak보다 전체적인 peak 수준이 증가하였다. 특히, 이전 조건에서 낮게 peak가 나타난 좌위 (D3S1358, TH01, D21S11, Amelogenin)의 peak가 이전보다 높게 나타났다. 최종 생체시료 용해를 위한 용해 시약조건은 5% chelex, proteinase K로, 용해 조건은 95℃에서 10분 처리 이후 63℃에서 10분 용해 조건으로 선정하였다.3 and 4, when the dissolution time was increased from 5 minutes to 10 minutes on the STR analysis result, the STR peaks of some loci (TH01, D21S11) were increased. In the sample in which the dissolution time was increased to more than 10 minutes, no additional STR peak amplification tendency was observed. In terms of dissolution rate of biological samples according to the presence or absence of proteinase K addition, when protease K was added, the overall peak level increased compared to the STR peak of the sample without addition of proteinase K. In particular, the peak of the locus (D3S1358, TH01, D21S11, Amelogenin) that showed a low peak under the previous conditions was higher than before. The dissolution reagent conditions for dissolution of the final biological sample were 5% chelex and proteinase K, and the dissolution conditions were selected as the dissolution conditions at 95°C for 10 minutes and then at 63°C for 10 minutes.

실험예 3. DNA 앱타머의 SARS-CoV-2 검출력 확인Experimental Example 3. Confirmation of SARS-CoV-2 detection power of DNA aptamer

상기에서 선정된 각각의 항원 단백질(spike protein (S1, S2, S1+S2), Receptor Binding Domain (RBD), nucleocapsid protein, RNA-dependent RNA polymerase (RdRp))과 높은 친화력을 가지는 앱타머 쌍을 이용하여 SARS-CoV-2 항원 단백질에 대한 검출력을 실험을 통해 확인하였다. NOS group (N-oxysuccinimide esters group) 으로 코팅된 각 well에 아민기(NH2)로 표지 된 CoV-1-5, CoV-S2-2, CoV-S1+2-5, CoV-RBD-2, CoV-NP-1, Cov-RdRp-5 앱타머를 1uM 농도로 계산하여 앱타머 선별용액과 섞어 반응 부피를 100ul로 맞춰 넣어주고 상온에서 30분동안 교반하여 plate의 바닥에 앱타머를 고정시킨 뒤 용액을 제거하였다. CoV-1-5, CoV-S2-2, CoV-S1+2-5, CoV-RBD-2, CoV-NP-1, Cov-RdRp-5이 고정 된 well을 1X PBS 버퍼 100ul로 3회 씻어내 준 뒤 각각의 앱타머에 특이적으로 결합하는 항원 단백질을 각각 100nM 농도 만큼 계산하여 총 100ul이 되도록 1X PBS 버퍼와 섞은 뒤, 각각 해당되는 well에 넣어 4℃에서 1시간동안 반응하였다. 네가티브 컨트롤로는 항원 단백질 대신 100ul의 1X PBS를 넣었다. 그 후, well에 들어있는 모든 용액을 제거하고 1X PBS 버퍼 100ul로 well을 3번 씻어주었다. 선택되어진 또 다른 앱타머인 CoV-1-1, CoV-S2-4, CoV-S1+2-3, CoV-RBD-3, CoV-NP-5, Cov-RdRp-4는 5’ 말단에 Cy5 형광물질을 표지하였으며, 1uM로 계산하고 1X 앱타머 선별용액과 섞어 최종 부피가 100ul가 되도록 하였다. 각각 특이적으로 반응하는 목표 항원 단백질을 고정시킨 well에 100ul씩 분주한 뒤 plate를 호일로 싸 빛을 차단한 후 상온에서 20분동안 반응시켰다. Well에 들어있는 모든 용액을 제거하고 1X PBS 버퍼 100ul로 씻어낸 뒤 Microplate reader로 Exitation 646 nm, Emission 662 nm에서 각 well마다 형광값을 측정하였다. 네가티브 컨트롤로 Cy5 형광물질로 표지된 DNA 앱타머, 아민기 표지된 DNA 앱타머만 처리한 시료도 측정하였다.Using an aptamer pair having high affinity with each antigen protein selected above (spike protein (S1, S2, S1+S2), Receptor Binding Domain (RBD), nucleocapsid protein, RNA-dependent RNA polymerase (RdRp)) Thus, the detection ability for the SARS-CoV-2 antigen protein was confirmed through an experiment. CoV-1-5, CoV-S2-2, CoV-S1+2-5, CoV-RBD-2, CoV labeled with an amine group (NH2) in each well coated with NOS group (N-oxysuccinimide esters group) -NP-1, Cov-RdRp-5 aptamer was calculated at a concentration of 1uM, mixed with the aptamer screening solution, adjusted to 100ul of reaction volume, stirred at room temperature for 30 minutes to fix the aptamer on the bottom of the plate, and then the solution was removed. Wash wells in which CoV-1-5, CoV-S2-2, CoV-S1+2-5, CoV-RBD-2, CoV-NP-1, and Cov-RdRp-5 are fixed with 100ul of 1X PBS buffer 3 times After giving out, the antigen protein binding specifically to each aptamer was calculated at a concentration of 100 nM, respectively, and mixed with 1X PBS buffer to make a total of 100 ul, and then put into each well and reacted at 4 ° C. for 1 hour. As a negative control, 100ul of 1X PBS was added instead of the antigen protein. After that, all solutions in the wells were removed and the wells were washed 3 times with 100ul of 1X PBS buffer. Another selected aptamer, CoV-1-1, CoV-S2-4, CoV-S1+2-3, CoV-RBD-3, CoV-NP-5, Cov-RdRp-4, is Cy5 at the 5' end. The fluorescent material was labeled, calculated as 1 uM, and mixed with 1X aptamer selection solution so that the final volume was 100 ul. After dispensing 100 μl of each target antigen protein to a well in which each specific antigen protein was immobilized, the plate was wrapped in foil to block light, and then reacted at room temperature for 20 minutes. After removing all the solutions in the wells and washing with 100ul of 1X PBS buffer, the fluorescence values were measured for each well at Exitation 646 nm and Emission 662 nm with a microplate reader. As a negative control, a sample treated with only the DNA aptamer labeled with the Cy5 fluorescent substance and the DNA aptamer labeled with an amine group was also measured.

그 결과, 도 5에 나타난 바와 같이, 항원단백질을 넣지않은 well에서는 형광값이 거의 나타나지 않았으나 항원단백질을 고정한 well에서는 높은 형광값이 측정되었다. 또한 항원단백질과 형광물질을 함께 처리하였으나 아민기 표지된 앱타머를 고정시키지 않은 well에서도 형광값이 거의 나타나지 않았다.As a result, as shown in FIG. 5 , fluorescence values were hardly observed in the wells to which the antigenic protein was not added, but high fluorescence values were measured in the wells in which the antigenic proteins were fixed. In addition, although the antigen protein and the fluorescent substance were treated together, the fluorescence value was hardly observed even in the wells to which the amine-labeled aptamer was not immobilized.

<110> HPBIO Inc. <120> DNA APTAMER SPECIFICALLY BINDING TO CORONAVIRUS AND USING THE SAME <130> DP-2020-0310-KR <160> 33 <170> KoPatentIn 3.0 <210> 1 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CoV-S1-1 <400> 1 tcatcacgca actttcatca gttcagtact aacatcgcgc 40 <210> 2 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1-2 <400> 2 cgtctgccag atccaccaca ccagtgcccc tgactagcta 40 <210> 3 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1-3 <400> 3 ccctaggcaa gtatacgctg caatggcact gtgcttcagg 40 <210> 4 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1-4 <400> 4 tggaacgctg cagttgcgat aatgggagga aggtttaga 39 <210> 5 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1-5 <400> 5 ggcagcgtgt tttgcggttg tagttgcccc cagttctgca 40 <210> 6 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S2-1 <400> 6 cggtacggtg acaatctctg gaatgttggg agagtttttg 40 <210> 7 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S2-2 <400> 7 cacgtatagg tgaatgtgcc atgtcatgcc ctcatgccag 40 <210> 8 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S2-3 <400> 8 accgggatgc ggtgcggcga tagctcttgg gagtgttccg 40 <210> 9 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S2-4 <400> 9 ggcgcggggg gcagctctgc cgtgtgttgt ttggccagag 40 <210> 10 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S2-5 <400> 10 agtgtctgcg atttcattat acggcttgcc ccgaagcacg 40 <210> 11 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1+2-1 <400> 11 aaaggagtgg gtagcatgtt caggactatt ctgagttacc 40 <210> 12 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1+2-2 <400> 12 cgcctcttca gtgtgatcga ggttgacctt accaaatcta 40 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1+2-3 <400> 13 cactcagatg cgccgcccga aggtatgtca cgcgtgagga 40 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1+2-4 <400> 14 acccacaacg gcgagtttat cccatgaagt tcttgcttgg 40 <210> 15 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1+2-5 <400> 15 aaaaaaacta tatcccaggc atcgtgggtg tattgcgaag 40 <210> 16 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-RBD-1 <400> 16 ctgcagtata ggaaaacacc aagatatcat gatactcgag 40 <210> 17 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-RBD-2 <400> 17 ctgagagcca ccagacgtta gaagtggtgt tgaaatgggg 40 <210> 18 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-RBD-3 <400> 18 tgtataaaca aaccaattga catgctgtcc acctgccgac 40 <210> 19 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-RBD-4 <400> 19 cacttggcct ctgttgtagt ctggtagtgg taaacatagg 40 <210> 20 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-RBD-5 <400> 20 cggccgacta cccttttgac tttttgtagc tagctgggca 40 <210> 21 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-NP-1 <400> 21 acgtagccat gctgtgttat cagaatcgtt ggatattttc 40 <210> 22 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-NP-2 <400> 22 tcagttcagt actaacatcg cgctcatcac gcaactttca 40 <210> 23 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-NP-3 <400> 23 tgccaaaagg ccgcgttgct ggcgtttttc cataggctcc 40 <210> 24 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-NP-4 <400> 24 cctattcctt attatatttt ctttttttgt aatttggtcg 40 <210> 25 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-NP-5 <400> 25 ggtgcgaaca atgcctggtt gagaatgctc agaatgggcg 40 <210> 26 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CoV-RdRp-1 <400> 26 gctttatgca cacgattgtt atcatattcg ctcctacgtc 40 <210> 27 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CoV-RdRp-2 <400> 27 gcacagactt ttcaatccgg ttgttaaggg gtaaagggcg 40 <210> 28 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CoV-RdRp-3 <400> 28 ggacgacgac gcactgatag ggtgttgtgg caattgctcg 40 <210> 29 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CoV-RdRp-4 <400> 29 ccagcactcg atcgtattcc atttcggcta atgcgttcta 40 <210> 30 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CoV-RdRp-5 <400> 30 cgcgtggtga attttaagca tccgaaatgg tattcagcta 40 <210> 31 <211> 100 <212> DNA <213> Artificial Sequence <220> <223> template DNA <400> 31 ggtaatacga ctcactatag ggagatacca gcttattcaa ttnnnnnnnn nnnnnnnnnn 60 nnnnnnnnnn nnnnnnnnnn nnagatagta agtgcaatct 100 <210> 32 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 32 ggtaatacga ctcactatag ggagatacca gcttattcaa tt 42 <210> 33 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 33 agattgcact tactatct 18 <110> HPBIO Inc. <120> DNA APTAMER SPECIFICALLY BINDING TO CORONAVIRUS AND USING THE SAME <130> DP-2020-0310-KR <160> 33 <170> KoPatentIn 3.0 <210> 1 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CoV-S1-1 <400> 1 tcatcacgca actttcatca gttcagtact aacatcgcgc 40 <210> 2 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1-2 <400> 2 cgtctgccag atccaccaca ccagtgcccc tgactagcta 40 <210> 3 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1-3 <400> 3 ccctaggcaa gtatacgctg caatggcact gtgcttcagg 40 <210> 4 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1-4 <400> 4 tggaacgctg cagttgcgat aatgggagga aggtttaga 39 <210> 5 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1-5 <400> 5 ggcagcgtgt tttgcggttg tagttgcccc cagttctgca 40 <210> 6 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S2-1 <400> 6 cggtacggtg acaatctctg gaatgttggg agagtttttg 40 <210> 7 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S2-2 <400> 7 cacgtatagg tgaatgtgcc atgtcatgcc ctcatgccag 40 <210> 8 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S2-3 <400> 8 accgggatgc ggtgcggcga tagctcttgg gagtgttccg 40 <210> 9 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S2-4 <400> 9 ggcgcggggg gcagctctgc cgtgtgttgt ttggccagag 40 <210> 10 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S2-5 <400> 10 agtgtctgcg atttcattat acggcttgcc ccgaagcacg 40 <210> 11 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1+2-1 <400> 11 aaaggagtgg gtagcatgtt caggactatt ctgagttacc 40 <210> 12 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1+2-2 <400> 12 cgcctcttca gtgtgatcga ggttgacctt accaaatcta 40 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1+2-3 <400> 13 cactcagatg cgccgcccga aggtatgtca cgcgtgagga 40 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1+2-4 <400> 14 acccacaacg gcgagtttat cccatgaagt tcttgcttgg 40 <210> 15 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-S1+2-5 <400> 15 aaaaaaacta tatcccaggc atcgtgggtg tattgcgaag 40 <210> 16 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-RBD-1 <400> 16 ctgcagtata ggaaaacacc aagatatcat gatactcgag 40 <210> 17 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-RBD-2 <400> 17 ctgagagcca ccagacgtta gaagtggtgt tgaaatgggg 40 <210> 18 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-RBD-3 <400> 18 tgtataaaca aaccaattga catgctgtcc acctgccgac 40 <210> 19 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-RBD-4 <400> 19 cacttggcct ctgttgtagt ctggtagtgg taaacatagg 40 <210> 20 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-RBD-5 <400> 20 cggccgacta cccttttgac tttttgtagc tagctgggca 40 <210> 21 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-NP-1 <400> 21 acgtagccat gctgtgttat cagaatcgtt ggatattttc 40 <210> 22 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-NP-2 <400> 22 tcagttcagt actaacatcg cgctcatcac gcaactttca 40 <210> 23 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-NP-3 <400> 23 tgccaaaagg ccgcgttgct ggcgtttttc cataggctcc 40 <210> 24 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-NP-4 <400> 24 cctattcctt attatatttt ctttttttgt aatttggtcg 40 <210> 25 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cov-NP-5 <400> 25 ggtgcgaaca atgcctggtt gagaatgctc agaatgggcg 40 <210> 26 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CoV-RdRp-1 <400> 26 gctttatgca cacgattgtt atcatattcg ctcctacgtc 40 <210> 27 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CoV-RdRp-2 <400> 27 gcacagactt ttcaatccgg ttgttaaggg gtaaagggcg 40 <210> 28 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CoV-RdRp-3 <400> 28 ggacgacgac gcactgatag ggtgttgtgg caattgctcg 40 <210> 29 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CoV-RdRp-4 <400> 29 ccagcactcg atcgtattcc atttcggcta atgcgttcta 40 <210> 30 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CoV-RdRp-5 <400> 30 cgcgtggtga attttaagca tccgaaatgg tattcagcta 40 <210> 31 <211> 100 <212> DNA <213> Artificial Sequence <220> <223> template DNA <400> 31 ggtaatacga ctcactatag ggagatacca gcttattcaa ttnnnnnnnn nnnnnnnnnn 60 nnnnnnnnnn nnnnnnnnnn nnagatagta agtgcaatct 100 <210> 32 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 32 ggtaatacga ctcactatag ggagatacca gcttattcaa tt 42 <210> 33 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 33 agattgcact tactatct 18

Claims (5)

코로나 바이러스에 특이적으로 결합하는 DNA 앱타머.
DNA aptamer that specifically binds to coronavirus.
제1항의 DNA 앱타머를 포함하는 조성물.
A composition comprising the DNA aptamer of claim 1.
제1항의 DNA 앱타머를 포함하는 코로나 바이러스 검출용 조성물.
A composition for detecting a coronavirus comprising the DNA aptamer of claim 1.
제1항의 DNA 앱타머를 이용하여 코로나 바이러스를 검출하는 방법.
A method of detecting a coronavirus using the DNA aptamer of claim 1.
제1항의 DNA 앱타머를 이용하여 코로나 바이러스 감염에 의한 질병의 진단에 필요한 정보를 제공하는 방법.A method of providing information necessary for diagnosis of a disease caused by coronavirus infection using the DNA aptamer of claim 1.
KR1020200170986A 2020-12-09 2020-12-09 Dna aptamer specifically binding to coronavirus and using the same KR20220082125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200170986A KR20220082125A (en) 2020-12-09 2020-12-09 Dna aptamer specifically binding to coronavirus and using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200170986A KR20220082125A (en) 2020-12-09 2020-12-09 Dna aptamer specifically binding to coronavirus and using the same

Publications (1)

Publication Number Publication Date
KR20220082125A true KR20220082125A (en) 2022-06-17

Family

ID=82268971

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200170986A KR20220082125A (en) 2020-12-09 2020-12-09 Dna aptamer specifically binding to coronavirus and using the same

Country Status (1)

Country Link
KR (1) KR20220082125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116286830A (en) * 2022-12-30 2023-06-23 中国人民解放军军事科学院军事医学研究院 Aptamer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102145197B1 (en) 2020-03-10 2020-08-18 부광약품 주식회사 Use of l-nucleosides for treating corona virus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102145197B1 (en) 2020-03-10 2020-08-18 부광약품 주식회사 Use of l-nucleosides for treating corona virus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116286830A (en) * 2022-12-30 2023-06-23 中国人民解放军军事科学院军事医学研究院 Aptamer

Similar Documents

Publication Publication Date Title
US20220307080A1 (en) Methods and reagents for nucleic acid amplification and/or detection
US7595163B2 (en) Method for detecting SARS coronavirus
WO2006049061A1 (en) Method of detecting h5 or h7 avian influenza virus
JP4047395B2 (en) Method for simultaneous amplification of nucleic acids
US20230193273A1 (en) Signal boost cascade assay
JP2016531561A (en) Detection of rare microbiological nucleic acids
WO2009098789A1 (en) Method of detecting pathogenic virus in crustacean by lamp method and reagent kit for detection
JP2019013248A (en) Compositions and methods for detecting hev nucleic acid
Mota et al. Recombinase polymerase amplification in the molecular diagnosis of microbiological targets and its applications
JP2022546443A (en) Compositions and methods for amplification and detection of hepatitis B virus RNA, including HBV RNA transcribed from cccDNA
JP2006335764A (en) Method for preparation of plasma product
KR20220082125A (en) Dna aptamer specifically binding to coronavirus and using the same
CN113512548A (en) Novel coronavirus detection kit based on CRISPR-Cas12a system and application thereof
KR20200047384A (en) A primer set for detection of severe fever with thrombocytopenia syndrome (sfts) virus
JP3449961B2 (en) Pathogen detection by multi-primer PCR
JP2022161989A (en) Compositions and methods for detecting zika virus nucleic acid
KR20190041314A (en) Oligonucleotide set for detection of chikungunya virus and uses thereof
CN113981072A (en) Primers, probes, kit and method for detecting HLA-A29 gene
CN114317689A (en) Method for synthesizing nucleic acid under constant temperature condition for non-diagnosis purpose, kit and application
JP2006061134A (en) Primer for detection of mycobacterium tuberculosis and method for detecting and identifying the same bacterium
KR101938557B1 (en) Primers for LAMP based detection of skeletal disease causing pathogen in chicken and its use
JP2004344065A (en) Oligonucleotide and method for detecting mycobacterium tuberculosis group using the same
KR101498176B1 (en) Primer set for the detection of mycoplasma pulmonis, and method and kit for the detection of mycoplasma pulmonis by using the primer set
KR20190065687A (en) DEVELOPMENT OF SINGLEPLEX REAL-TIME PCR KIT FOR RAPID DETECTION OF CLOSTRIDIUM PERFRINGENS USING cpa, cpe TARGET GENE
JP2007000040A (en) Method for detecting b-type hepatitis virus