KR20220079198A - 원적외선 검출 소자, 원적외선 검출 소자 어레이 구조, 원적외선 온도 검출 장치 및 열화상 표시 장치 - Google Patents
원적외선 검출 소자, 원적외선 검출 소자 어레이 구조, 원적외선 온도 검출 장치 및 열화상 표시 장치 Download PDFInfo
- Publication number
- KR20220079198A KR20220079198A KR1020200168727A KR20200168727A KR20220079198A KR 20220079198 A KR20220079198 A KR 20220079198A KR 1020200168727 A KR1020200168727 A KR 1020200168727A KR 20200168727 A KR20200168727 A KR 20200168727A KR 20220079198 A KR20220079198 A KR 20220079198A
- Authority
- KR
- South Korea
- Prior art keywords
- infrared
- far
- magnetic field
- plate
- magneto
- Prior art date
Links
- 238000001931 thermography Methods 0.000 title description 2
- 238000001514 detection method Methods 0.000 claims abstract description 229
- 239000000758 substrate Substances 0.000 claims abstract description 113
- 230000008859 change Effects 0.000 claims abstract description 86
- 238000006243 chemical reaction Methods 0.000 claims abstract description 86
- 238000010521 absorption reaction Methods 0.000 claims abstract description 68
- 230000005855 radiation Effects 0.000 claims abstract description 65
- 239000012535 impurity Substances 0.000 claims description 82
- 238000012545 processing Methods 0.000 claims description 35
- 239000000463 material Substances 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 29
- 238000002513 implantation Methods 0.000 claims description 24
- 230000007423 decrease Effects 0.000 claims description 15
- 239000004065 semiconductor Substances 0.000 claims description 15
- 230000003287 optical effect Effects 0.000 claims description 13
- 239000010410 layer Substances 0.000 claims description 12
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 9
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 5
- 239000011241 protective layer Substances 0.000 claims description 4
- 230000003321 amplification Effects 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 description 41
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 14
- 229910052698 phosphorus Inorganic materials 0.000 description 14
- 239000011574 phosphorus Substances 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 7
- 230000005355 Hall effect Effects 0.000 description 6
- 230000008014 freezing Effects 0.000 description 6
- 238000007710 freezing Methods 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- -1 210meV) Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004297 night vision Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 238000005773 Enders reaction Methods 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/34—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/20—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/0022—Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/04—Casings
- G01J5/046—Materials; Selection of thermal materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/007—Environmental aspects, e.g. temperature variations, radiation, stray fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/07—Hall effect devices
- G01R33/072—Constructional adaptation of the sensor to specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/091—Constructional adaptation of the sensor to specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J2005/0077—Imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/20—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
- G01J2005/202—Arrays
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Toxicology (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
일 실시예는, 자기장을 생성하는 자기장 발생부, 상기 자기장 발생부 상에 마련되는 기판, 상기 기판과 이격되어 배치되며, 상기 자기장 발생부에 의해 생성된 상기 자기장에 따라 생성되는 전기 신호를 검출하는 자기-전기 변환부 및 상기 기판 상에 마련되어, 상기 자기-전기 변환부를 상기 기판으로부터 이격시켜 지지하고, 외부로부터의 적외선 복사 에너지를 흡수하여 열을 발생시키는 적외선 흡수 지지부를 포함하는 원적외선 검출 소자를 제공한다.
상기 전기 신호는, 상기 자기-전기 변환부에 직접 흡수되는 상기 외부로부터의 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화와 상기 적외선 흡수 지지부가 흡수한 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화에 따라 변할 수 있다.
상기 전기 신호는, 상기 자기-전기 변환부에 직접 흡수되는 상기 외부로부터의 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화와 상기 적외선 흡수 지지부가 흡수한 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화에 따라 변할 수 있다.
Description
본 개시의 예시적인 실시예는 원적외선 검출 소자, 원적외선 검출 소자 어레이 구조, 원적외선 온도 검출 장치 및 열화상 표시 장치에 관한 것으로서, 더욱 상세하게는 흡수된 적외선 복사 에너지에 비례하여 전기적 신호를 발생시키는 원적외선 검출 소자, 원적외선 검출 소자 어레이 구조, 원적외선 온도 검출 장치 및 열화상 표시 장치에 관한 것이다.
적외선 복사 에너지를 검출하기 위해 비냉각형(uncooled) 적외선 검출 장치가 많이 사용되고 있다. 비냉각형 적외선 검출 장치는 적외선 입사에 따른 물질의 저항 변화를 이용한 볼로미터형(bolometer) 적외선 검출 장치, 적외선 입사에 따른 물질의 자발 분극 변화를 이용한 초전형(pyroeletric) 적외선 검출 장치, 적외선 입사에 따른 측정 접점부와 레퍼런스 접점부 사이의 기전력 변화를 이용한 열전대형(thermopile) 적외선 검출 장치 등으로 분류될 수 있다.
다양한 방식의 적외선 검출 장치는 비접촉 온도 센서, 군용 야시경, 자동차 나이트 비젼, 의료용 열화상 카메라 등 다양한 분야에 응용되어 사용되고 있다. 이를 위해서는, 시스템의 부피가 작고 가벼워 휴대하기에 편리하고, 전력 소모가 적으며, 가격이 저렴하고, 상온에서 빠른 응답 속도를 가지는 비냉각형 적외선 검출 장치가 필요하다.
본 개시의 다양한 실시예에 따라, 자기장이 인가된 상태에서 온도 변화에 따라 변하는 전기 신호를 검출하는 자기-전기 변환부를 이용하여 적외선 복사 에너지를 검출하는 원적외선 검출 소자, 원적외선 검출 소자 어레이 구조, 원적외선 온도 검출 장치 및 열화상 표시 장치를 제공한다.
본 개시의 다양한 실시예에 따라, 입사된 적외선 복사 에너지가 열-전자기 변환부에서 효율적으로 전기 에너지로 변환될 수 있는 구조를 포함하는 원적외선 검출 소자와 이를 포함하는 원적외선 검출 소자 어레이 구조, 원적외선 온도 검출 장치 및 열화상 표시 장치를 제공한다.
일 실시예는,
자기장을 생성하는 자기장 발생부, 상기 자기장 발생부 상에 마련되는 기판;
상기 기판과 이격되어 배치되며, 상기 자기장 발생부에 의해 생성된 상기 자기장에 따라 생성되는 전기 신호를 검출하는 자기-전기 변환부 및 상기 기판 상에 마련되어, 상기 자기-전기 변환부를 상기 기판으로부터 이격시켜 지지하고, 외부로부터의 적외선 복사 에너지를 흡수하여 열을 발생시키는 적외선 흡수 지지부를 포함하는 원적외선 검출 소자를 제공한다,
상기 전기 신호는, 상기 자기-전기 변환부에 직접 흡수되는 상기 외부로부터의 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화와 상기 적외선 흡수 지지부가 흡수한 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화에 따라 변할 수 있다.
상기 자기-전기 변환부는, 도전성의 홀 플레이트, 상기 홀 플레이트의 제1 방향으로의 양단에 마련되는 한 쌍의 바이어스 전극 및 상기 홀 플레이트의 상기 제1 방향과 수직한 제2 방향으로의 양단에 마련되는 적어도 한 쌍의 검출 전극을 포함할 수 있다.
상기 제1 방향 및 상기 제2 방향 모두는 상기 자기장 발생부로부터의 자기장의 방향과 수직한 방향일 수 있다.
상기 홀 플레이트는 불순물이 주입된 외인성 반도체 물질을 포함할 수 있다.
상기 한 쌍의 바이어스 전극 사이에 일정한 전압이 인가되는 전압 바이어스 모드에서, 상기 홀 플레이트에서 생성되는 홀 전압은 상기 홀 플레이트의 온도가 증가함에 따라 감소할 수 있다.
상기 한 쌍의 바이어스 전극 사이에 일정한 전압이 인가되는 전압 바이어스 모드에서, 상기 홀 플레이트에서 생성되는 홀 전압의 감도의 온도에 대한 변화율이 상온에서 -0.5%/K 내지 -1.0%/K 범위 내에 포함되도록, 상기 불순물의 주입 농도가 정해질 수 있다.
상기 홀 플레이트의 저항값이 상온에서 800Ω 내지 7000kΩ 범위 내에 포함되도록, 상기 불순물의 주입 농도가 정해질 수 있다.
상기 한 쌍의 바이어스 전극 사이에 일정한 전류가 인가되는 전류 바이어스 모드에서, 상기 홀 플레이트에서 생성되는 홀 전압이 250K 내지 400K의 온도 범위에서 상기 홀 플레이트의 온도가 증가함에 따라 감소하도록, 상기 불순물의 이온화 에너지가 정해질 수 있다.
상기 한 쌍의 바이어스 전극 사이에 일정한 전류가 인가되는 전류 바이어스 모드에서, 상기 홀 플레이트에서 생성되는 홀 전압의 온도에 대한 변화율이 상온에서 -1.0%/K 내지 -2.0%/K 범위 내에 포함되도록, 상기 불순물의 이온화 에너지가 정해질 수 있다.
상기 불순물의 주입 농도는 1012 cm-3 내지 1017 cm-3 일 수 있다.
상기 기판에는 상기 기판의 일부가 식각되어 형성된 트렌치가 마련되고, 상기 홀 플레이트는 상기 트렌치에 상에 마련될 수 있다.
상기 적외선 흡수 지지부는, 상기 홀 플레이트를 받치도록 상기 트렌치 상에 마련되는 지지 플레이트, 상기 지지 플레이트와 이격되어 상기 지지 플레이트를 둘러싸도록 형성되는 가장자리 요소 및 상기 지지 플레이트와 상기 가장자리 요소를 연결하는 적어도 하나의 연결부를 포함할 수 있다.
상기 한 쌍의 바이어스 전극과 상기 한 쌍의 검출 전극은 모두 상기 홀 플레이트로부터 멀어지는 일 방향으로 연장되어 형성될 수 있다.
상기 적어도 하나의 연결부는, 상기 한 쌍의 바이어스 전극과 상기 한 쌍의 검출 전극을 각각에 받치는 제1 연결부, 제2 연결부, 제3 연결부 및 제4 연결부를 포함할 수 있다.
상기 지지 플레이트는, 실리콘 질화물 또는 실리콘 산화물 중 어느 하나를 포함할 수 있다.
상기 홀 플레이트는 상기 지지 플레이트의 일부 영역에 삽입되어 형성되고, 상기 한 쌍의 바이어스 전극 및 상기 한 쌍의 검출 전극은 상기 지지 플레이트, 상기 제1 내지 제4 연결부 및 상기 가장자리 요소의 일부 영역에 삽입되어 형성될 수 있다.
상기 홀 플레이트는 상기 지지 플레이트의 상기 일부 영역에 불순물을 주입하여 형성될 수 있다.
상기 적외선 흡수 지지부와 기판 사이에 마련되는 절연층을 더 포함할 수 있다.
상기 적외선 흡수 지지부는, 상기 홀 플레이트를 받치는 지지 플레이트, 상기 기판의 상면으로부터 수직 방향으로 돌출되어 형성되는 지지 기둥 및 상기 지지 플레이트와 상기 지지 기둥의 상부를 연결시키는 연결부를 포함하고, 상기 지지 플레이트와 상기 지지 기둥은 상기 수직 방향과 수직한 평면 상에 서로 이격되도록 마련될 수 있다.
상기 한 쌍의 바이어스 전극과 상기 한 쌍의 검출 전극은 모두 상기 홀 플레이트로부터 연장되어 형성되는 패턴을 포함할 수 있다.
상기 연결부는, 상기 한 쌍의 바이어스 전극과 상기 한 쌍의 검출 전극을 각각 받치는 제1 연결부, 제2 연결부, 제3 연결부 및 제4 연결부를 포함할 수 있다.
상기 지지 기둥은, 상기 제1 내지 제4 연결부와 각각 연결되는 제1 지지 기둥, 제2 지지 기둥, 제3 지지 기둥 및 제4 지지 기둥을 포함할 수 있다..
상기 연결부의 면적은 상기 지지 플레이트의 면적보다 작을 수 있다.
상기 한 쌍의 바이어스 전극과 상기 한 쌍의 검출 전극은 미앤더 패턴을 포함할 수 있다.
상기 기판의 상부 표면 상에 마련되는 반사판을 더 포함할 수 있다.
상기 원적외선 검출 소자는, 도전성의 기준 플레이트, 상기 기준 플레이트를 덮는 보호층, 상기 기준 플레이트의 제1 방향으로의 양단에 마련되는 한 쌍의 바이어스 전극 및 상기 기준 플레이트의 상기 제1 방향과 수직한 제2 방향으로의 양단에 마련되는 적어도 한 쌍의 검출 전극을 구비하는 기준 변환부를 포함할 수 있다.
상기 제1 방향 및 상기 제2 방향 모두는 상기 자기장 발생부로부터의 자기장의 방향과 수직할 수 있다.
상기 자기-전기 변환부는 상기 기준 변환부와 차분 증폭 회로를 구성할 수 있다.
일 실시예는,
복수 개의 원적외선 검출 소자를 포함하는 원적외선 검출 소자 어레이 구조를 제공한다.
상기 원적외선 검출 소자 어레이 구조에 포함된 상기 복수 개의 원적외선 검출 소자 각각은,
자기장을 생성하는 자기장 발생부, 상기 자기장 발생부 상에 마련되는 기판, 상기 기판과 이격되어 배치되며, 상기 자기장 발생부에 의해 생성된 상기 자기장에 따라 생성되는 전기 신호를 검출하는 자기-전기 변환부 및 상기 기판 상에 마련되어, 상기 자기-전기 변환부를 상기 기판으로부터 이격시켜 지지하고, 외부로부터의 적외선 복사 에너지를 흡수하여 열을 발생시키는 적외선 흡수 지지부를 포함할 수 있다.
상기 전기 신호는, 상기 자기-전기 변환부에 직접 흡수되는 상기 외부로부터의 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화와 상기 적외선 흡수 지지부가 흡수한 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화에 따라 변할 수 있다.
상기 자기장 발생부 및 상기 기판은 각각 일체형으로 형성될 있다.
일 실시예는,
외부로부터의 적외선 복사 에너지를 흡수하고, 상기 적외선 복사 에너지에 따라 변화하는 전기 신호를 검출하는 원적외선 검출 소자, 상기 원적외선 검출 소자로부터의 전기 신호를 처리하는 신호처리부 및 상기 신호처리부에 의해 처리된 전기 신호에 의해 생성된 이미지를 표시하는 디스플레이 소자를 포함하는 원적외선 온도 검출 장치를 제공한다.
상기 원적외선 검출 소자는, 자기장을 생성하는 자기장 발생부, 상기 자기장 발생부 상에 마련되는 기판, 상기 기판과 이격되어 배치되며, 상기 자기장 발생부에 의해 생성된 상기 자기장에 따라 생성되는 전기 신호를 검출하는 자기-전기 변환부 및 상기 기판 상에 마련되어, 상기 자기-전기 변환부를 상기 기판으로부터 이격시켜 지지하고, 상기 외부로부터의 적외선 복사 에너지를 흡수하여 열을 발생시키는 적외선 흡수 지지부를 포함할 수 있다.
상기 전기 신호는, 상기 자기-전기 변환부에 직접 흡수되는 상기 외부로부터의 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화와 상기 적외선 흡수 지지부에서 흡수한 상기 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화에 따라 변할 수 있다.
상기 원적외선 온도 검출 장치는, 상기 외부로부터의 적외선을 상기 원적외선 검출 소자로 집광하는 집광 렌즈, 상기 집광 렌즈와 상기 원적외선 검출 소자 사이에 마련되어, 상기 적외선의 광량을 조절하는 조리개 및 상기 집광 렌즈와 상기 원적외선 검출 소자 사이에 마련되어, 상기 집광 렌즈를 통과한 상기 적외선의 일부 파장 영역을 필터링하는 광학 필터를 더 포함할 수 있다.
일 실시예는,
외부로부터의 적외선을 집광하는 광학계, 상기 광학계로부터의 적외선을 검출하도록 구성된 복수 개의 원적외선 검출 소자를 포함하는 원적외선 검출 소자 어레이 구조, 상기 복수 개의 원적외선 검출 소자의 동작을 제어하는 제어부, 상기 원적외선 검출 소자 어레이 구조로부터의 전기 신호를 처리하는 신호처리부 및 상기 신호처리부에 의해 처리된 상기 전기 신호에 의해 생성된 이미지를 표시하는 디스플레이 소자를 포함하는 열화상 표시 장치를 제공한다.
상기 열화상 표시 장치에 포함된 상기 복수 개의 원적외선 검출 소자 각각은, 자기장을 생성하는 자기장 발생부, 상기 자기장 발생부 상에 마련되는 기판, 상기 기판과 이격되어 배치되며, 상기 자기장 발생부로부터의 자기장에 따라 생성되는 전기 신호를 검출하는 자기-전기 변환부 및 상기 기판 상에 마련되어, 상기 자기-전기 변환부를 상기 기판으로부터 이격시켜 지지하고, 상기 외부로부터의 적외선 복사 에너지를 흡수하여 열을 발생시키는 적외선 흡수 지지부를 포함할 수 있다.
상기 전기 신호는, 상기 자기-전기 변환부에 직접 흡수되는 상기 외부로부터의 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화와 상기 적외선 흡수 지지부에서 흡수한 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화에 따라 변할 수 있다.
본 개시의 다양한 실시예에 따라, 자기장이 인가된 상태에서 흡수되는 적외선 복사 에너지의 변화에 따라 변하는 전기 신호를 검출하는 열-전자기 검출부를 이용함으로써, 소형화된 원적외선 검출 소자, 원적외선 검출 소자 어레이 구조, 원적외선 온도 검출 장치 및 열화상 표시 장치를 제공할 수 있다.
본 개시의 다양한 실시예에 따라, 열-전자기 검출부에 포함된 외인성 반도체 물질을 포함하는 홀 플레이트의 불순물 농도 또는 불순물의 이온화 에너지를 조절함으로써, 상온 환경에서 흡수환 적외선 복사 에너지에 따라 전기 신호를 검출할 수 있도록 형성된 원적외선 검출 소자, 원적외선 검출 소자 어레이 구조, 원적외선 온도 검출 장치 및 열화상 표시 장치를 제공할 수 있다.
본 개시의 다양한 실시예에 따라, 열-전자기 검출부가 흡수한 적외선 복사 에너지가 효율적으로 전기 에너지로 변환될 수 있는 구조를 포함함으로써, 실시간으로 원적외선을 검출할 수 있는 원적외선 검출 소자와 이를 포함하는 원적외선 검출 소자 어레이 구조, 원적외선 온도 검출 장치 및 열화상 표시 장치를 제공할 수 있다.
도 1은 일 실시예에 따른 원적외선 검출 소자의 예시적인 구성을 간략하게 도시한 블록도이다.
도 2는 다른 일 실시예에 따른 원적외선 검출 소자의 예시적인 구성을 간략하게 도시한 사시도이다.
도 3은 도 2의 A-A'를 따라 자른 단면을 간략하게 도시한 것이다.
도 4는 도 2의 원적외선 검출 소자에 포함되는 적외선 흡수 지지부의 예시적인 구성을 간략하게 도시한 평면도이다.
도 5는 홀 효과를 설명하기 위한 것이다.
도 6은 도 2의 원적외선 검출 소자에 포함될 수 있는 오프셋을 제거하는 데에 사용되는 기준 변환부의 구성을 간략하게 도시한 것이다.
도 7은 온도에 따른 도 2의 홀 플레이트의 전자 농도와 정공 농도의 변화를 설명하기 위한 그래프이다.
도 8은 온도에 따른 도 2의 홀 플레이트의 비저항 및 저항의 변화를 설명하기 위한 그래프이다.
도 9는 전류 바이어스 모드에서 온도에 따른 도 2의 홀 플레이트의 전류-구동 홀 감도의 변화를 설명하기 위한 그래프이다.
도 10은 전압 바이어스 모드에서 온도에 따른 도 2의 홀 플레이트의 전압-구동 홀 감도의 변화를 설명하기 위한 그래프이다.
도 11은 불순물의 주입 농도에 따른 도 2의 홀 플레이트의 전류-구동 홀 감도의 변화를 설명하기 위한 그래프이다.
도 12는 불순물의 주입 농도에 따른 도 2의 홀 플레이트의 전압-구동 홀 감도의 변화를 설명하기 위한 그래프이다.
도 13은 불순물의 주입 농도에 따른 도 2의 홀 플레이트의 저항값의 변화를 설명하기 위한 그래프이다.
도 14는 상온에서 불순물의 주입 농도에 따른 도 2의 홀 플레이트의 저항값들과 전압-구동 홀 감도의 변화율을 포함하는 표이다.
도 15는 불순물의 이온화 에너지에 따른 도 2의 홀 플레이트의 전자 농도의 변화를 설명하기 위한 그래프이다.
도 16은 불순물의 이온화 에너지에 따라 도 2의 홀 플레이트의 온도에 따른 전류-구동 홀 감도의 변화를 설명하기 위한 그래프이다.
도 17은 상온에서 불순물의 이온화 에너지에 따른 도 2의 홀 플레이트의 전류-구동 홀 감도의 변화율을 포함하는 표이다.
도 18은 또 다른 일 실시예에 따른 원적외선 검출 소자의 예시적인 구성을 간략하게 도시한 것이다.
도 19는 또 다른 일 실시예에 따른 원적외선 검출 소자의 예시적인 구성을 간략하게 도시한 것이다.
도 20은 도 19의 원적외선 검출 소자의 예시적인 구성을 간략하게 도시한 것이다.
도 21은 또 다른 일 실시예에 따른 원적외선 검출 소자의 예시적인 구성을 간략하게 도시한 것이다.
도 22는 또 다른 일 실시예에 따른 원적외선 검출 소자의 예시적인 구성을 간략하게 도시한 것이다.
도 23은 도 22의 B-B'를 따라 자른 단면을 간략하게 도시한 것이다.
도 24는 일 실시예에 따른 원적외선 검출 소자 어레이 구조의 예시적인 구성을 간략하게 도시한 사시도이다.
도 25는 일 실시예에 따른 원적외선 온도 검출 장치의 예시적인 구성을 간략하게 도시한 것이다.
도 26은 일 실시예에 따른 열화상 표시 장치의 예시적인 구성을 간략하게 도시한 블록도이다.
도 2는 다른 일 실시예에 따른 원적외선 검출 소자의 예시적인 구성을 간략하게 도시한 사시도이다.
도 3은 도 2의 A-A'를 따라 자른 단면을 간략하게 도시한 것이다.
도 4는 도 2의 원적외선 검출 소자에 포함되는 적외선 흡수 지지부의 예시적인 구성을 간략하게 도시한 평면도이다.
도 5는 홀 효과를 설명하기 위한 것이다.
도 6은 도 2의 원적외선 검출 소자에 포함될 수 있는 오프셋을 제거하는 데에 사용되는 기준 변환부의 구성을 간략하게 도시한 것이다.
도 7은 온도에 따른 도 2의 홀 플레이트의 전자 농도와 정공 농도의 변화를 설명하기 위한 그래프이다.
도 8은 온도에 따른 도 2의 홀 플레이트의 비저항 및 저항의 변화를 설명하기 위한 그래프이다.
도 9는 전류 바이어스 모드에서 온도에 따른 도 2의 홀 플레이트의 전류-구동 홀 감도의 변화를 설명하기 위한 그래프이다.
도 10은 전압 바이어스 모드에서 온도에 따른 도 2의 홀 플레이트의 전압-구동 홀 감도의 변화를 설명하기 위한 그래프이다.
도 11은 불순물의 주입 농도에 따른 도 2의 홀 플레이트의 전류-구동 홀 감도의 변화를 설명하기 위한 그래프이다.
도 12는 불순물의 주입 농도에 따른 도 2의 홀 플레이트의 전압-구동 홀 감도의 변화를 설명하기 위한 그래프이다.
도 13은 불순물의 주입 농도에 따른 도 2의 홀 플레이트의 저항값의 변화를 설명하기 위한 그래프이다.
도 14는 상온에서 불순물의 주입 농도에 따른 도 2의 홀 플레이트의 저항값들과 전압-구동 홀 감도의 변화율을 포함하는 표이다.
도 15는 불순물의 이온화 에너지에 따른 도 2의 홀 플레이트의 전자 농도의 변화를 설명하기 위한 그래프이다.
도 16은 불순물의 이온화 에너지에 따라 도 2의 홀 플레이트의 온도에 따른 전류-구동 홀 감도의 변화를 설명하기 위한 그래프이다.
도 17은 상온에서 불순물의 이온화 에너지에 따른 도 2의 홀 플레이트의 전류-구동 홀 감도의 변화율을 포함하는 표이다.
도 18은 또 다른 일 실시예에 따른 원적외선 검출 소자의 예시적인 구성을 간략하게 도시한 것이다.
도 19는 또 다른 일 실시예에 따른 원적외선 검출 소자의 예시적인 구성을 간략하게 도시한 것이다.
도 20은 도 19의 원적외선 검출 소자의 예시적인 구성을 간략하게 도시한 것이다.
도 21은 또 다른 일 실시예에 따른 원적외선 검출 소자의 예시적인 구성을 간략하게 도시한 것이다.
도 22는 또 다른 일 실시예에 따른 원적외선 검출 소자의 예시적인 구성을 간략하게 도시한 것이다.
도 23은 도 22의 B-B'를 따라 자른 단면을 간략하게 도시한 것이다.
도 24는 일 실시예에 따른 원적외선 검출 소자 어레이 구조의 예시적인 구성을 간략하게 도시한 사시도이다.
도 25는 일 실시예에 따른 원적외선 온도 검출 장치의 예시적인 구성을 간략하게 도시한 것이다.
도 26은 일 실시예에 따른 열화상 표시 장치의 예시적인 구성을 간략하게 도시한 블록도이다.
아래에서는 첨부한 도면을 참조하여 원적외선 검출 소자, 원적외선 검출 소자 어레이, 원적외선 온도 검출 장치 및 열화상 표시 장치가 속하는 기술 분야에서의 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 원적외선 검출 소자, 원적외선 검출 소자 어레이, 원적외선 온도 검출 장치 및 열화상 표시 장치의 실시예를 상세히 설명한다. 도면에서 동일한 참조 부호는 동일한 구성 요소를 지칭하며, 도면 상에서 각 구성 요소의 크기나 두께는 설명의 명료성을 위하여 과장되어 있을 수 있다. 한편, 이하에서 설명되는 전 원적외선 검출 소자, 원적외선 검출 소자 어레이, 원적외선 온도 검출 장치 및 열화상 표시 장치의 다양한 실시예는 예시적인 것으로서, 원적외선 검출 소자, 원적외선 검출 소자 어레이, 원적외선 온도 검출 장치 및 열화상 표시 장치는 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
이하에서, "상부" 나 "상"이라고 기재된 것은 접촉하여 바로 위에 있는 것뿐만 아니라 비접촉으로 위에 있는 것도 포함할 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
“상기”의 용어 및 이와 유사한 지시 용어의 사용은 단수 및 복수 모두에 해당하는 것일 수 있다. 모든 예들 또는 예시적인 용어의 사용은 단순히 기술적 사상을 상세히 설명하기 위한 것으로서 청구범위에 의해 한정되지 않는 이상 상기 예들 또는 예시적인 용어로 인해 범위가 한정되는 것은 아니다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성 요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
도 1은 일 실시예에 따른 원적외선 검출 소자(1000)의 예시적인 구성을 간략하게 도시한 블록도이다.
도 1을 참조하면, 원적외선 검출 소자(1000)는 자기장을 생성하는 자기장 발생부(100), 자기장 발생부(100) 상에 마련되는 기판(200), 기판(200) 상에 마련되어 외부로부터 입사된 적외선 복사 에너지를 흡수하고, 이 적외선 복사 에너지에 의한 온도 변화에 따른 전기 신호의 변화를 검출하는 열-전자기 검출부(300)를 포함할 수 있다.
열-전자기 검출부(300)는, 기판(200)과 이격되어 배치되며, 자기장 발생부(100)에 의해 생성된 자기장(H)에 따라 생성되는 전기 신호를 검출하는 자기-전기 변환부(10), 기판(200) 상에 마련되어, 자기-전기 변환부(10)를 기판(200)으로부터 이격시켜 지지하고, 외부로부터의 적외선 복사 에너지를 흡수하여 열을 발생시키는 적외선 흡수 지지부(20)를 포함할 수 있다.
자기장 발생부(100)는 수직 방향으로 균일한 세기의 자기장(H)을 생성할 수 있다. 기판(200) 및 열-전자기 검출부(300)는 자기장 발생부(100) 상에 자기장(H)의 방향과 나란한 방향으로 순차적으로 마련될 수 있다. 자기장 발생부(100)는 예를 들어, 전자석, 영구 자석 등을 포함할 수 있다. 그러나 이에 한정되는 것은 아니며, 자기장 발생부(100)는 전자석, 영구 자석 이외의 자기장을 생성하는 다양한 구성을 포함할 수 있다.
도 1에 도시된 바와 같이, 자기장 발생부(100)는 기판(200)으로부터 이격되어 형성될 수 있다. 그러나 이에 한정되는 것은 아니며, 자기장 발생부(100)는 기판(200)의 하면과 접촉하도록 마련될 수 있다.
기판(200)은 열-전자기 검출부(300)를 형성하기 위한 베이스층일 수 있다. 기판(200)은 예를 들어 실리콘(Si) 기판을 포함할 수 있다. 그러나 이에 한정되는 것은 아니며, 기판(200)은 다양한 물질을 포함할 수 있다.
열-전자기 검출부(300)는 외부로부터 입사되어 흡수된 적외선 복사 에너지에 의한 온도 변화에 따른 전기 신호의 변화를 검출하도록 구성될 수 있다. 예를 들어, 열-전자기 검출부(300)는 자기장 발생부(100)에 의해 생성된 자기장(H)에 따라 생성되는 전기 신호를 검출하도록 구성되는 자기-전기 변환부(10)를 포함할 수 있다. 자기-전기 변환부(10)에 생성되는 전기 신호는, 자기-전기 변환부(10)에 직접 흡수되는 외부로부터의 적외선 복사 에너지에 의한 자기-전기 변환부(10)의 온도 변화와 적외선 흡수 지지부(20)가 흡수한 적외선 복사 에너지에 의한 자기-전기 변환부(10)의 온도 변화에 따라 변할 수 있다.
예를 들어, 자기-전기 변환부(10)는 홀 효과를 이용하여 전기 신호를 검출하는 홀 센서를 포함할 수 있다. 홀 센서는 자기장의 방향과 수직한 방향으로 흐르는 전류에 로렌츠 힘이 작용함으로써 발생하는 홀 전압을 측정하는 장치일 수 있다. 이 경우, 홀 전압의 세기는 홀 센서에 포함된 물질의 종류에 따라, 온도의 영향을 받아 변할 수 있다. 도 2 및 도 5를 참조하여, 홀 센서의 구성 및 기능에 대해 후술한다. 다만, 이에 한정되는 것은 아니며, 자기-전기 변환부(10)는 예를 들어, 온도 가변 저항 소자를 포함할 수도 있다. 온도 가변 저항 소자는 온도 변화에 따라 저항이 변하는 성질을 가질 수 있다.
나아가, 열-전자기 검출부(300)는 자기-전기 변환부(10)를 기판(200)으로부터 이격시켜 지지하는 적외선 흡수 지지부(20)를 포함할 수 있다. 적외선 흡수 지지부(20)는 외부로부터의 적외선 복사 에너지를 흡수하도록 구성될 수 있다. 적외선 흡수 지지부(20)는 흡수된 적외선 복사 에너지로 인하여 발생하는 열 에너지를 자기-전기 변환부(10)에 전달할 수 있다. 자기-전기 변환부(10)는 적외선 흡수 지지부(20)에 의해 기판(200)과 이격되므로, 적외선 흡수 지지부(20)의 열 에너지가 자기-전기 변환부(10)에 효율적으로 전달될 수 있다. 이에 따라, 자기-전기 변환부(10)의 온도가 실시간으로 변화할 수 있다. 이러한 자기-전기 변환부(10)의 온도의 변화에 따라 자기-전기 검출 소차(30)에 발생하는 전기 신호가 변할 수 있다.
도 2는 다른 일 실시예에 따른 원적외선 검출 소자(1100)의 예시적인 구성을 간략하게 도시한 사시도이다. 도 3은 도 2의 A-A'를 따라 자른 단면을 간략하게 도시한 것이다. 도 4는 도 2의 원적외선 검출 소자(1100)에 포함되는 적외선 흡수 지지부(21)의 예시적인 구성을 간략하게 도시한 평면도이다. 도 5는 홀 효과를 설명하기 위한 것이다.
도 2 및 도 3을 참조하면, 원적외선 검출 소자(1100)는 자기장을 생성하는 자기장 발생부(100), 자기장 발생부(100) 상에 마련되는 기판(210), 기판(210) 상에 마련되어 외부로부터 입사되는 적외선 복사 에너지를 흡수하고, 이 적외선 복사 에너지에 의한 온도 변화에 따른 전기 신호의 변화를 검출하는 열-전자기 검출부(310)를 포함할 수 있다. 자기장 발생부(100)는 도 1을 참조하여 설명한 바와 같다. 예를 들어, 자기장 발생부(100)는 수직 방향(z축 방향)으로 균일한 세기의 자기장(H)을 생성할 수 있다. 자기장(H)은 열-전자기 검출부(310)에 작용할 수 있다. 이하에서는 기판(210) 및 열-전자기 검출부(310)에 대해 설명한다.
기판(210)은 열-전자기 검출부(310)를 형성하기 위한 베이스층일 수 있다. 기판(210)은 예를 들어 실리콘(Si) 기판을 포함할 수 있다. 그러나 이에 한정되는 것은 아니며, 기판(210)은 다양한 물질을 포함할 수 있다.
기판(210)에는 기판(210)의 일부가 식각되어 형성된 트렌치(T)가 마련될 수 있다. 도 2 및 도 3에 도시된 바와 같이, 트렌치(T) 내부에는 소정의 빈 공간(ES)이 형성될 수 있다. 트렌치(T)를 통해, 도 2에 도시된 바와 같이, 자기장 발생부(100)의 일부가 외부로 노출될 수 있다. 트렌치(T)의 깊이(h1)는 적외선 흡수 지지부(21)로 입사하는 적외선(IR)의 파장의 1/4에 해당할 수 있다. 예를 들어, 적외선 흡수 지지부(21)로 입사하는 적외선의 파장이 10μm이 경우, 트렌치(T)의 깊이(h1)는 2.5μm일 수 있다. 이에 따라, 적외선 흡수 지지부(21)와 자기장 발생부(100)가 트렌치(T)의 깊이(h1)만큼 이격되어 형성될 수 있다. 이 경우, 적외선 흡수 지지부(21)와 자기장 발생부(100) 사이에서 적외선(IR) 공진이 일어날 수 있고, 적외선 흡수 지지부(21)로 적외선(IR) 흡수가 더 활발히 일어날 수 있다.
열-전자기 검출부(310)는, 기판(210)과 이격되어 배치되며, 자기장 발생부(100)에 의해 생성된 자기장(H)에 따라 생성되는 전기 신호를 검출하는 자기-전기 변환부(11) 및 기판(210) 상에 마련되어, 자기-전기 변환부(11)를 기판(210)으로부터 이격시켜 지지하고, 외부로부터의 적외선 복사 에너지를 흡수하는 적외선 흡수 지지부(21)를 포함할 수 있다.
자기-전기 변환부(11)는 자기장 발생부(100)에 의해 생성된 자기장(H)에 따라 생성되는 전기 신호를 검출하도록 구성될 수 있다. 자기-전기 변환부(11)는 기판(200)과 이격되어 마련될 수 있다. 예를 들어, 자기-전기 변환부(11)는 적외선 흡수 지지부(21) 상에 마련될 수 있다.
자기-전기 변환부(11)는 도전성의 홀 플레이트(11a), 홀 플레이트(11a)의 제1 방향(x축 방향)으로의 양단에 마련되는 한 쌍의 바이어스 전극(11b, 11c) 및 홀 플레이트(11a)의 제1 방향(x축 방향)과 수직한 제2 방향(y축 방향)으로의 양단에 마련되는 적어도 한 쌍의 검출 전극(11d, 11e)을 포함할 수 있다. 이 경우, 제1 방향(x축 방향) 및 제2 방향(y축 방향) 모두는 자기장 발생부(100)로부터의 자기장(H)의 방향(z축 방향)과 수직한 방향일 수 있다.
홀 플레이트(11a)는 도전성 물질을 포함할 수 있다. 예를 들어, 홀 플레이트(11a)는 불순물이 주입된 외인성 반도체(Extrinsic semiconductor) 물질을 포함할 수 있다. 예를 들어, 홀 플레이트(11a)는 실리콘(Si), 갈륨비소(GaAs), 게르마늄(Ge) 등의 반도체 물질에 인(P), 붕소(B) 등의 불순물을 일정량 주입한 외인성 반도체 물질을 포함할 수 있다. 그러나 이에 한정되는 것은 아니며, 홀 플레이트(11a)가 포함하는 반도체 물질 및 불순물의 종류는 상기한 예시 이외에도 다양한 물질을 포함할 수 있다. 한편, 홀 플레이트(11a)에 주입되는 불순물의 농도 또는 이온화 에너지를 조절하여, 홀 플레이트(11a)에서 발생할 수 있는 (도 5를 참조하여 후술하는)홀 전압(VH)이 상온 환경에서 온도에 따라 변하도록 할 수 있다. 홀 플레이트(11a)에 주입되는 불순물의 농도 또는 이온화 에너지에 따라 상온 환경에서 온도에 따른 홀 전압(VH)의 변화 경향이 어떤 방식으로 바뀌는지에 대해서는 도 7 내지 도 17을 참조하여 설명한다.
홀 플레이트(11a)의 상부 표면은 직사각형일 수 있다. 예를 들어, 홀 플레이트(11a)는 직육면체 형상을 포함할 수 있다. 그러나 이에 한정되는 것은 아니며, 홀 플레이트(11a)는 다양한 형상을 가질 수 있다. 또한, 홀 플레이트(11a)의 제1 방향(x축 방향)으로의 길이는 제2 방향(y축 방향)으로의 길이의 3배보다 클 수 있다. 그러나 이에 한정되는 것은 아니며, 홀 플레이트(11a)의 제1 방향(x축 방향)으로의 길이와 제2 방향(y축 방향)으로의 길이의 비는 다양할 수 있다.
홀 플레이트(11a)가 직육면체 형상을 포함하는 경우, 한 쌍의 바이어스 전극(11b, 11c)은 홀 플레이트(11a)의 제1 방향(x축 방향)으로 서주 마주하는 두 모서리를 각각 덮도록 형성될 수 있다. 한 쌍의 바이어스 전극(11b, 11c)은 제1 방향(x축 방향)과 나란한 일직선 상에 마련될 수 있다. 예를 들어, 한 쌍의 바이어스 전극(11b, 11c)은 제2 방향(y축 방향)으로 연장되어 형성되고, 홀 플레이트(11a)의 제1 방향(x축 방향)으로 서주 마주하는 두 모서리를 각각 덮을 수 있다. 또한, 한 쌍의 바이어스 전극(11b, 11c)은 계단식으로 형성되어, 홀 플레이트(11a)의 제1 방향(x축 방향)으로 서주 마주하는 두 모서리를 덮음과 동시에, 후술하는 지지 플레이트(22a)의 상부 표면의 일부와도 접할 수 있다. 또한, 한 쌍의 바이어스 전극(11b, 11c)은 홀 플레이트(11a)로부터 연장되어 형성되는 패턴을 포함할 수 있다. 예를 들어, 한 쌍의 바이어스 전극(11b, 11c)은 제1 방향(x축 방향)과 나란하며, 홀 플레이트(11a)로부터 멀어지는 일 방향으로 연장되어 형성된 막대 패턴을 포함할 수 있다.
이 경우, 한 쌍의 검출 전극(11d, 11e)은 홀 플레이트(11a)의 제2 방향(y축 방향)으로 서주 마주하는 두 모서리 각각의 일부와 접하도록 형성될 수 있다. 한 쌍의 검출 전극(11d, 11e)은 제2 방향(y축 방향)과 나란한 일직선 상에 마련될 수 있다. 나아가, 한 쌍의 검출 전극(11d, 11e)은 홀 플레이트(11a)와 접한 상태에서, 홀 플레이트(11a)로부터 멀어지는 방향으로 연장되어 형성될 수 있다. 예를 들어, 한 쌍의 검출 전극(11d, 11e)는 제2 방향(y축 방향)과 나란하며, 홀 플레이트(11a)로부터 멀어지는 일 방향으로 연장되어 형성된 막대 패턴을 포함할 수 있다. 한 쌍의 검출 전극(11d, 11e)은 계단식으로 형성되어, 홀 플레이트(11a)의 제2 방향(y축 방향)으로 서주 마주하는 두 모서리 각각과 접함과 동시에, 후술하는 지지 플레이트(22a)의 상부 표면의 일부와도 접할 수 있다.
한 쌍의 바이어스 전극(11b, 11c) 사이에는 일정한 세기의 전류 또는 전압이 인가될 수 있다. 이에 따라, 홀 플레이트(11a)에는 제1 방향(x축 방향)으로 전류가 흐를 수 있다. 홀 플레이트(11a)에 자기장 발생부(100)로부터의 자기장(H)이 수직 방향(z축 방향)으로 인가되면, 한 쌍의 바이어스 전극(11b, 11c)에 의해 홀 플레이트(11a)에 제2 방향(y축 방향)으로 전하 분포가 비균일해진다. 이러한 현상을 홀 효과(Hall effect)라 한다. 도 5를 참조하여, 홀 효과에 대해 더 자세히 후술한다.
적외선 흡수 지지부(21)는 홀 플레이트(11a)를 받치도록 트렌치(T) 상에 마련되는 지지 플레이트(21a), 지지 플레이트(21a)와 이격되어 지지 플레이트(21a)를 둘러싸도록 마련되는 가장자리 요소(21f) 및 지지 플레이트(21)와 가장자리 요소(21f)를 연결하는 적어도 하나의 연결부(21b, 21c. 21d, 21e)를 포함할 수 있다.
지지 플레이트(21a)는 직육면체 형상을 포함할 수 있다. 예를 들어, 지지 플레이트(21a)는 얇은 판형일 수 있다. 지지 플레이트(21a)는 트렌치(T)가 형성된 영역의 중앙에 위치할 수 있다. 또한, 지지 플레이트(21a)는 홀 플레이트(11a) 뿐만 아니라, 한 쌍의 바이어스 전극(11b, 11c)과 한 쌍의 검출 전극(11d, 11e)의 일부도 받치도록 형성될 수 있다.
가장자리 요소(21f)는 기판(210)의 상부 표면을 덮도록 마련될 수 있다. 이 경우, 가장자리 요소(21f)는 트렌치(T)가 형성되고 남은 기판(210)의 가장자리 상부 표면을 덮도록 마련될 수 있다. 이와 같이, 지지 플레이트(21a)는 트렌치(T)가 형성된 영역의 중앙에 위치하고, 가장자리 요소(21f)는 기판(210)의 가장자리 상부 표면을 덮도록 마련되므로, 가장자리 요소(21f)는 지지 플레이트(21a)를 둘러싸도록 마련될 수 있다. 또한, 지지 플레이트(21a)와 가장자리 요소(21f)는 동일 평면 상에 마련될 수 있다. 이 경우, 도 4에 도시된 바와 같이, 지지 플레이트(25a)와 가장자리 요소(21f) 사이에는 갭(G)이 형성될 수 있다. 갭(G)을 두고 서로 이격되어 있는 지지 플레이트(21a)와 가장자리 요소(21f) 사이에는 적어도 하나의 연결부(21b, 21c, 21d, 21e)가 마련될 수 있다. 제1 내지 제4 연결부(21b, 21c, 21d, 21e)의 제1 폭(w1)은 지지 플레이트(21a)의 제2 폭(w2)보다 작을 수 있다. 또한, 제1 내지 제4 연결부(21b, 21c, 21d, 21e)의 면적은 지지 플레이트(21a)의 면적보다 작을 수 있다. 이 이와 같은 적외선 흡수 지지부(21)의 열적 고립 구조를 통해 효율적으로 적외선 복사 에너지에 의한 열 에너지가 전기-자기 변환부(11)로 전달될 수 있고, 이에 따라 결과적으로 적외선 복사 에너지의 전기 에너지로의 효율적인 변환이 이루어질 수 있다.
예를 들어, 적외선 흡수 지지부(21)는 지지 플레이트(21a)의 제1 방향(x축 방향)으로의 양단과 가장자리 요소(21f)를 연결하는 제1 연결부(21b)와 제2 연결부(21c)를 포함할 수 있다. 또한, 적외선 흡수 지지부(21)는 지지 플레이트(21a)의 제2 방향(y축 방향)으로의 양단과 가장자리 요소(21f)를 연결하는 제3 연결부(21d)와 제4 연결부(21e)를 포함할 수 있다. 제1 내지 제4 연결부(21b, 21c, 21d, 21e)는 각각 한 쌍의 바이어스 전극(11b, 11c)와 한 쌍의 검출 전극(11d, 11e)를 받치도록 마련될 수 있다. 예를 들어, 한 쌍의 바이어스 전극(11b, 11c)과 한 쌍의 검출 전극(11d, 11e) 각각의 홀 플레이트(11a)로부터 일 방향으로 연장되어 형성된 부분은 각각 제1 연결부(21b), 제2 연결부(21c), 제3 연결부(21d) 및 제4 연결부(21e)에 의해 지지될 수 있다.
지지 플레이트(21a), 제1 내지 제4 연결부(21b, 21c, 21d, 21e) 및 가장자리 요소(21f)는 동일 평면 상에 마련될 수 있다. 또한, 지지 플레이트(21a), 제1 내지 제4 연결부(21b, 21c, 21d, 21e) 및 가장자리 요소(21f)는 일체형으로 형성될 수 있다.
적외선 흡수 지지부(21)는 실리콘 산화물, 실리콘 질화물 중 적어도 어느 하나를 포함할 수 있다. 실리콘 산화물은 예를 들어, SiO2를 포함할 수 있다. 실리콘 질화물은 예를 들어, Si3N4를 포함할 수 있다. 그러나 이에 한정되는 것은 아니며, 적외선 흡수 지지부(21)는 자기-전기 변환부(11)를 지지할 수 있을 정도의 강성을 가지며, 열 에너지를 효율적으로 흡수할 수 있는 다양한 물질을 포함할 수 있다.
이처럼, 적외선 흡수 지지부(21)에 의해, 자기-전기 변환부(11)가 기판(210)의 트렌치(T) 내부에 형성된 빈 공간(ES) 상에 마련되고, 기판(210)으로부터 이격되는 경우, 기판(210)과 자기-전기 변환부(11)가 직접 접하고 있는 경우에 비해, 열 에너지가 보다 효율적으로 자기-전기 변환부(11)에 전달될 수 있다.
이하에서는 도 5를 참조하여, 자기-전기 변환부(11)의 홀 효과에 대해 설명한다. 도 5에는 설명의 편의를 위해, 한 쌍의 바이어스 전극(11b, 11c)과 한 쌍의 검출 전극(11d, 11e)은 생략되었다.
도 5를 참조하면, 두께(t)를 가지는 홀 플레이트(11a)에 제1 방향(x축 방향)으로 일정한 세기의 전류가 흐르도록 구성될 수 있다. 예를 들어, 홀 플레이트(11a)에 제1 방향(x축 방향)으로 의 일정한 크기의 전압(VX)이 인가되고, 음(-)전하(charge)가 홀 플레이트(11a) 내부에서 제1 방향(x축 방향)으로 이동할 수 있다. 이 경우, 홀 플레이트(11a)에 수직 방향(z축 방향)으로 자기장(Hz)이 인가되면, 전하(charge)는 로렌츠 힘(Lorentz force)을 받아 제1 방향(x축 방향)과 수직 방향(z축 방향) 모두와 수직한 방향, 예를 들어, 제2 방향(y축 방향)으로 이동하게 될 수 있다. 이 경우, 수직 방향(z축 방향)의 자기장(Hz)은 자기장 발생부(100)에 의해 홀 플레이트(11a)에 인가될 수 있다. 이에 따라, 홀 플레이트(11a)의 제2 방향(y축 방향)으로의 전하 분포가 불균일해지고, 홀 플레이트(11a)에 제2 방향(y축 방향)으로 전위차가 발생하게 된다. 이 경우, 홀 플레이트(11a)의 제2 방향(y축 방향)으로의 전위차를 홀 전압(VH)이라 한다. 홀 플레이트(11a)에 제2 방향(y축 방향)으로 발생한 홀 전압(VH)은 홀 플레이트(11a)의 제2 방향(y축 방향)으로의 양단에 서로 마주하도록 마련된 한 쌍의 검출 전극(11d, 11e)을 통해 측정될 수 있다. 예를 들어, 한 쌍의 검출 전극(11d, 11e)과 연결된 전압 측정 장치(미도시)를 통해 홀 플레이트(11a)에 제2 방향(y축 방향)으로 발생한 홀 전압(VH)이 측정될 수 있다. 이 경우, 홀 전압(VH)은 홀 플레이트(11a)의 제1 방향(x축 방향)으로의 제1 길이(L)의 제2 방향(y축 방향)으로의 제2 길이(W)에 대한 비율(L/W)에 따라 결정될 수 있다. 예를 들어, 비율(L/W)은 3보다 클 수 있다. 그러나 이에 한정되는 것은 아니며, 비율(L/W) 3보다 작을 수도 있다.
도 6은 도 2의 원적외선 검출 소자(1100)에 포함될 수 있는 오프셋을 제거하는 데에 사용되는 기준 변환부(11')의 구성을 간략하게 도시한 것이다.
도 2 및 도 6을 참조하여 설명한 바와 같이, 자기-전기 변환부(11)는 홀 센서를 포함할 수 있다. 일반적으로 외부 자기장이 없는 상태에서 홀 센서의 홀 전압은 0이어야 하지만, 공정 이슈 등의 다양한 요인(e.g. 홀 센서 내부의 불균일한 전기적 특성, 홀 센서에 비대칭적으로 마련된 전극 구조)에 따라, 오프셋이 발생할 수 있다. 이 오프셋을 최소화하기 위해, 도 2의 원적외선 검출 소자(1100)는 자기-전기 변환부(11)와 연결되는 기준 변환부(11')를 더 포함할 수 있다.
기준 변환부(11')는 자기-전기 변환부(11)와 기본적으로 동일한 구성 요소들을 포함할 수 있다. 예를 들어, 기준 변환부(11')는 도전성의 기준 플레이트(11a), 기준 플레이트(11a)의 제1 방향(x축 방향)으로의 양단에 마련되는 한 쌍의 바이어스 전극(11b', 11c') 및 기준 플레이트(11a)의 제1 방향(x축 방향)과 수직한 제2 방향(y축 방향)으로의 양단에 마련되는 적어도 한 쌍의 검출 전극(11d', 11e')을 구비할 수 있다. 나아가, 기준 변환부(11')는 기준 플레이트(11a)를 덮는 보호층(SD)을 더 포함할 수 있다. 제1 방향(x축 방향) 및 상기 제2 방향(y축 방향) 모두는 자기장 발생부(도 2 의 100)로부터의 자기장(도 2 의 H)의 방향(z축 방향)과 수직할 수 있다. 자기-전기 변환부(11)와 기준 변환부(11')는 서로 연결되어 차분 증폭 회로를 구성할 수 있다. 기준 변환부(11')는 자기-전기 변환부(11)와 동일한 공정 과정에서 함께 제작되어 동일한 오프셋을 가질 수 있다. 다만 기준 변환부(11')는 외부로부터의 열 에너지(e.g. 적외선)를 차단할 수 있는 보호층(SD)을 포함할 수 있다. 보호층(SD)은 기준 플레이트(11a') 뿐만 아니라, 한 쌍의 바이어스 전극(11b', 11c')과 한 쌍의 검출 전극(11d', 11e')도 덮도록 구성될 수 있다. 자기-전기 변환부(11)의 제1 홀 전압(VH1)과 기준 변환부(11')의 제2 홀 전압(VH2)을 차분 증폭을 통해 검출할 경우, 공정상 문제 등 여러 요인들에 의한 오프셋을 보상할 수 있다. 예를 들어, 차분 증폭 전압(Vout)은 아래의 식 (1)과 같을 수 있다.
위 식에서, R1, Rf는 자기-전기 변환부(11) 측과 연결된 저항들의 값이고, R2, Rg는 기준 변환부(11') 측과 연결된 저항들의 값이다.
도 7은 온도(T)에 따른 도 2의 홀 플레이트(11a)의 전자 농도(n)와 정공 농도(p)의 변화를 설명하기 위한 그래프이다. 도 8은 온도(T)에 따른 도 2의 홀 플레이트(11a)의 비저항 및 저항의 변화를 설명하기 위한 그래프이다. 도 8의 결과는 홀 플레이트(11a)의 두께(도 5의 t)는 3.5μm 이고, W/L(도 5참조) 비는 0.54인 경우의 결과이다.
도 7의 결과는 실리콘(Si) 물질에 1015 cm-3 의 농도로 N형 불순물(또는 주개(donor))을 주입하여 형성한 도 2의 홀 플레이트(11a)에 대한 결과이다. 도 8의 결과는 실리콘(Si), 갈륨비소(GaAs) 및 게르마늄(Ge) 물질 등의 반도체 물질에 1015 cm-3 의 농도로 N형 불순물을 주입하여 형성한 도 2의 홀 플레이트(11a)에 대한 결과이다.
도 7을 참조하면, 온도(T)에 따른 홀 플레이트(11a)의 전자 농도의 변화 구간은 크게 세 가지 온도 구간으로 나누어질 수 있다. 상온(TRT)이 포함된 일정 온도 구간(e.g. 약 100K 내지 450K)에서는 홀 플레이트(11a)에 주입된 N형 불순물은 전도대로 전자를 공급하고 자신은 양으로 이온화되는 반면 진성 캐리어 농도(ni)는 매우 작으므로 전도대(conduction band) 내의 전자 농도(n)는 주입된 N형 불순물의 농도(Nd)와 실질적으로 같게 된다. 이러한 특성을 띠는 온도 구간을 외인성 구간(extrinsic region)이라고 한다. 외인성 구간보다 저온인 구간에서는 홀 플레이트(11a)에 주입된 불순물이 열에너지를 받아 전도대로 전자를 공급하지만 그 농도는 주입된 N형 불순물의 농도(Nd)에 비해 적으며, 온도(T)가 증가함에 따라 전도대 내의 전자 농도(n)가 증가한다. 이러한 특성을 띠는 온도 구간을 동결 구간(freeze-out region)이라 한다. 외인성 구간보다 높은 온도에서는 진성 캐리어 농도(ni)가 N형 불순물 농도(Nd)보다 커서 전자 농도(n)는 진성 캐리어 농도(ni)에 의해 좌우된다. 이러한 특성을 띠는 온도 구간을 진성 구간(intrinsic region)이라 한다.
도 8을 참조하면, 실리콘(Si) 물질을 포함하는 홀 플레이트(11a)의 경우, 외인성 구간(e.g. 100K 내지 450K, 도 7 참조)에서 홀 플레이트(11a)의 비저항 및 저항은 온도(T)가 증가함에 따라 커진다. 즉, 온도(T)에 따라 홀 플레이트(11a)의 비저항 및 저항이 커지는 구간은 도 7의 외인성 구간에 대응된다.
홀 플레이트(11a)에 포함된 반도체 물질의 종류에 따라, 온도에 따라 홀 플레이트(11a)의 비저항 또는 저항이 증가하는 온도 구간, 즉 외인성 구간이 달라질 수 있다. 예를 들어, 갈륨비소(GaAs) 물질을 포함하는 홀 플레이트(11a)의 경우, 약 50K 내지 730K의 온도 구간이 외인성 구간일 수 있다. 또한, 게르마늄(Ge) 물질을 포함하는 홀 플레이트(11a)의 경우, 약 50K 내지 350K의 온도 구간이 외인성 구간일 수 있다.
이상에서 도 7 및 도 8을 참조하여 설명한 바와 같이, 반도체 물질(Si, GaAs, Ge 등)에 불순물을 주입하여 형성한 홀 플레이트(11a)의 전자 농도의 변화 구간이나 비저항 및 저항의 변화 구간은 크게 세 가지 구간으로 나누어질 수 있다.
도 9는 전류 바이어스 모드에서 온도(T)에 따른 도 2의 홀 플레이트(11a)의 전류-구동 홀 감도(SI)의 변화를 설명하기 위한 그래프이다. 도 10은 전압 바이어스 모드에서 온도(T)에 따른 도 2의 홀 플레이트(11a)의 전압-구동 홀 감도(SV)의 변화를 설명하기 위한 그래프이다.
도 9 및 도 10의 결과는 실리콘(Si), 갈륨비소(GaAs) 및 게르마늄(Ge) 물질 등의 반도체 물질에 1015 cm-3 의 임의의 불순물을 주입하여 형성한 도 2의 홀 플레이트(11a)에 대한 결과이다.
전류 바이어스 모드란, 홀 플레이트(11a)에 마련된 한 쌍의 바이어스 전극(11b, 11c) 사이에 일정한 전류를 인가한 경우를 의미한다. 전류-구동 홀 감도(SI)는 전류 바이어스 모드에서 단위 자기장 세기와 단위 바이어스 전류에 의해 발생하는 홀 전압(VH)을 의미하는 것으로, 다음의 식 (1)과 같이 정의된다.
위 식에서, VH는 전류 바이어스 모드에서의 홀 플레이트(11a)의 홀 전압, HZ는 수직 방향(도 5의 z축 방향)의 자기장의 세기, Ix는 전류 바이어스 모드에서의 홀 플레이트(11a)에 흐르는 제1 방향(x축 방향)으로의 전류의 세기를 의미한다. rH는 홀 플레이트(11a)의 홀 계수로서, 홀 플레이트(11a)에 주입되는 불순물의 농도와 온도(T)의 함수이다. G는 홀 플레이트(11a)의 형상 계수이다.
전압 바이어스 모드란, 홀 플레이트(11a)에 마련된 한 쌍의 바이어스 전극(11b, 11c) 사이에 일정한 전압을 인가한 경우를 의미한다. 전압-구동 홀 감도(SV)는 전압 바이어스 모드에서 단위 자기장 세기와 단위 바이어스 전압에 의해 발생하는 홀 전압(VH)을 의미하는 것으로, 다음의 식 (2)와 같이 정의된다.
위 식에서, VH는 전압 바이어스 모드에서의 홀 플레이트(11a)의 홀 전압, HZ는 수직 방향(도 5의 z축 방향)의 자기장, Vx는 전압 바이어스 모드에서의 한 쌍의 바이어스 전극(11b, 11c) 사이의 일정한 전위차를 의미한다. rH는 홀 플레이트(11a)의 홀 계수로서, 홀 플레이트(11a)에 주입되는 불순물의 농도와 온도(T)의 함수이다. ρ는 홀 플레이트(11a)의 비저항을 의미하고, L, W는 각각 홀 플레이트(11a)의 제1 및 제2 방향(x축 방향 및 y축 방향)으로의 길이(도 5 참조)를 의미한다. G는 홀 플레이트(11a)의 형상 계수이다.
도 9를 참조하면, 전류 바이어스 모드에서, 홀 플레이트(11a)는 온도(T)에 따라 전류-구동 홀 감도(SI)가 일정한 구간을 포함한다. 이처럼 온도(T)에 따라 전류 감도(SI)가 일정한 구간은 도 7의 외인성 구간에 대응된다. 또한, 외인성 구간보다 저온인 구간에서 홀 플레이트(11a)의 전류-구동 홀 감도(SI)가 온도(T)에 따라 감소하는 구간은 도 7의 동결 구간에 대응되고, 외인성 구간보다 고온인 구간에서 홀 플레이트(11a)의 전류-구동 홀 감도(SI)가 온도(T)에 따라 감소하는 구간은 도 7의 진성 구간에 대응된다. 이처럼, 전류 바이어스 모드에서, 홀 플레이트(11a)의 전류-구동 홀 감도(SI)의 변화 경향은 온도 구간에 따라 달라질 수 있다. 이와 달리, 도 10을 참조하면, 전압 바이어스 모드에서, 전 온도 구간에 걸쳐 홀 플레이트(11a)의 전압-구동 홀 감도(SV)는 온도(T)가 증가함에 따라 감소한다.
도 11은 불순물의 주입 농도에 따른 도 2의 홀 플레이트(11a)의 전류-구동 홀 감도(SI)의 변화를 설명하기 위한 그래프이다. 도 12는 불순물의 주입 농도에 따른 도 2의 홀 플레이트(11a)의 전압-구동 홀 감도(SV)의 변화를 설명하기 위한 그래프이다. 도 13은 불순물의 주입 농도에 따른 도 2의 홀 플레이트(11a)의 저항값(R)의 변화를 설명하기 위한 그래프이다. 도 14는 상온(TRT)에서 불순물의 주입 농도에 따른 도 2의 홀 플레이트(11a)의 저항값들과 전압-구동 홀 감도(SV)의 온도에 따른 변화율을 포함하는 표이다.
도 11 내지 도 14의 결과는 실리콘(Si) 물질에 인(P)을 주입하여 형성한 홀 플레이트(11a)에 대한 결과이다.
도 11을 참조하면, 홀 플레이트(11a)에 대한 불순물의 주입 농도를 조절하면, 상온(TRT)이 포함된 일정 온도 구간에서 전류-구동 홀 감도(SI)가 일정하게 할 수 있다. 다시 말해, 전류 바이어스 모드에서, 홀 플레이트(11a)에서 생성되는 홀 전압(VH)이 약 250K 내지 380K 온도 범위에서 홀 플레이트(11a)의 온도(T)와 무관하게 일정하도록, 홀 플레이트(11a)에 대한 불순물의 주입 농도가 정해질 수 있다. 예를 들어, 도 11에 도시된 바와 같이, 홀 플레이트(11a)에 주입된 불순물(e.g. 인)의 농도가 1012 cm-3 내지 1016 cm-3 인 경우, 전류 바이어스 모드에서 홀 플레이트(11a)의 전류-구동 홀 감도(SI)가 약 250K 내지 380K 온도 범위에서 자기-전기 변환부(11)의 온도(T)와 무관하게 일정할 수 있다. 이와 달리, 홀 플레이트(11a)에 주입된 불순물(e.g. 인)의 농도가 1012 cm-3보다 작아지게 되면, 약 250K 내지 380K 온도 범위에서 홀 플레이트(11a)에서 생성되는 홀 전압(VH)이 온도가 증가함에 따라 감소하는 구간이 발생할 수 있다.
도 12를 참조하면, 홀 플레이트(11a)에 대한 불순물의 주입 농도와 무관하게, 전 온도 구간에 걸쳐, 전압-구동 홀 감도(SV)는 온도(T)가 증가함에 따라 감소할 수 있다. 다시 말해, 전압 바이어스 모드에서, 홀 플레이트(11a)에서 생성되는 홀 전압(VH)은 홀 플레이트(11a)의 온도(T)가 증가함에 따라 감소할 수 있다. 다만, 도 12에 도시된 바와 같이, 같은 온도에서 홀 플레이트(11a)에 주입되는 불순물의 주입 농도에 따라 전압-구동 홀 감도(SV)의 온도(T)에 대한 변화율이 변할 수 있다. 예를 들어, 도 12 및 도 14에 도시된 바와 같이, 상온(TRT)에서 홀 플레이트(11a)에 주입된 불순물(e.g. 인)의 주입 농도(Nd)가 1018 cm-3 인 경우, 전압-구동 홀 감도(SV)의 온도(T)에 대한 변화율은 -0.18%/K일 수 있다. 또한, 상온(TRT)에서 홀 플레이트(11a)에 주입된 불순물(e.g. 인)의 농도(Nd)가 1010 cm-3 인 경우, 전압-구동 홀 감도(SV)의 온도(T)에 대한 변화율은 -1.32%/K일 수 있다. 홀 플레이트(11a)에 대한 불순물의 주입 농도(Nd)에 따라, 전압 바이어스 모드에서 온도를 검출하는 데에 적절한 전압-구동 홀 감도(SV)의 온도에 대한 변화율이 정해질 수 있다. 예를 들어, 전압 바이어스 모드에서, 전압-구동 홀 감도(SV)의 온도에 대한 변화율이 상온에서 -0.5%/K 내지 -1.0%/K 범위 내에 포함되도록, 상기 불순물(e.g. 인)의 주입 농도가 정해질 수 있다. 예를 들어, 홀 플레이트(11a)에 주입된 불순물(e.g. 인)의 농도가 1012 cm-3 내지 1016 cm-3 인 경우, 전압 바이어스 모드에서, 전압-구동 홀 감도(SV)의 온도에 대한 변화율이 상온에서 -0.5%/K 내지 -1.0%/K 범위 내에 포함될 수 있다.
도 13을 참조하면, 홀 플레이트(11a)에 대한 불순물(e.g. 인)의 주입 농도가 증가함에 따라, 홀 플레이트(11a)의 저항값이 감소한다. 또한, 홀 플레이트(11a)에 대한 불순물(e.g. 인)의 주입 농도가 특정 범위 안에 있을 때, 상온(TRT)이 포함되는 특정 온도 구간에서 온도(T)에 따라 홀 플레이트(11a)의 저항값(R)이 증가하는 외인성 구간이 나타날 수 있다. 예를 들어, 홀 플레이트(11a)에 주입된 불순물(e.g. 인)의 농도가 1012 cm-3 내지 1016 cm-3 인 경우, 약 250K 내지 380K 온도 범위에서 온도(T)에 따라 저항값(R)이 증가할 수 있다. 또한, 도 14에 도시된 바와 같이, 홀 플레이트(11a)에 주입된 불순물(e.g. 인)의 농도가 1012 cm-3 내지 1016 cm-3 인 경우, 홀 플레이트(11a)의 저항값(R)이 상온에서 800Ω 내지 7000kΩ 범위 내에 포함될 수 있다. 홀 플레이트(11a)에 주입된 불순물(e.g. 인)의 농도가 1012 cm-3보다 작아지게 되면, 홀 플레이트(11a)의 저항값(R)이 108 Ω 이상이 되어, 홀 전압(VH)을 검출하는 데에 적절치 않을 수 있다.
이상에서 도 11 내지 도 14를 참조하여 설명한 바와 같이, 상온(TRT)이 포함된 특정 온도 구간에서, 홀 플레이트(11a)가 홀 전압(VH)을 검출하는 데에 적절한 저항값(R)을 갖도록 하고, 홀 플레이트(11a)가 전압 바이어스 모드에서 온도를 검출하는 데에 적절한 전압-구동 홀 감도(SV)의 변화율을 갖도록 하며, 홀 플레이트(11a)가 전류 바이어스 모드에서 외인성 구간을 띠게 하기 위한 홀 플레이트(11a)에 대한 불순물의 주입 농도가 정해질 수 있다. 도 11 내지 도 14를 참조하면, 예를 들어, 홀 플레이트(11a)에 대한 불순물(e.g. 인)의 주입 농도는 1012 cm-3 내지 1016 cm-3로 정해질 수 있다.
도 15는 불순물의 이온화 에너지에 따른 도 2의 홀 플레이트(11a)의 전자 농도의 변화를 설명하기 위한 그래프이다. 도 16은 불순물의 이온화 에너지에 따라 도 2의 홀 플레이트(11a)의 온도(T)에 따른 전류-구동 홀 감도(SI)의 변화를 설명하기 위한 그래프이다. 도 17은 상온(TRT)에서 불순물의 이온화 에너지에 따른 도 2의 홀 플레이트(11a)의 전류-구동 홀 감도(SI)의 변화율을 포함하는 표이다.
도 15 내지 도 17의 결과는 실리콘(Si) 물질에 1017 cm-3 의 다양한 이온화 에너지를 가지는 불순물들을 주입하여 형성한 홀 플레이트(11a)에 대한 결과이다. 그러나 이에 한정되는 것은 아니며, 홀 플레이트(11a)에 주입되는 다양한 이온화 에너지를 가지는 불순물들의 주입 농도는 약 1012 cm-3 내지 1017 cm-3 범위에 포함될 수 있다. 이처럼, 다양한 이온화 에너지를 가지는 불순물들을 홀 플레이트(11a)에 주입한 경우에도, 전압 바이어스 모드에서 홀 플레이트(11a)의 전압-구동 홀 감도(SV)는, 홀 플레이트(11a)의 온도(T)의 전 범위에 걸쳐서, 온도(T)가 증가함에 따라 감소할 수 있다.
앞서 도 9를 참조하여 설명한 바와 같이, 홀 플레이트(11a)의 전류-구동 홀 감도(SI)의 변화 경향은 온도 구간에 따라 달라질 수 있다. 이에 따라, 상온(TRT)이 포함된 일정 온도 구간에서 동결 구간이나 진성 구간이 나타나도록 할 수 있다면, 상온(TRT)이 포함된 일정 온도 구간에서 온도(T)에 따른 전류-구동 홀 전압(VH)의 변화를 검출할 수 있다.
도 15를 참조하면, 홀 플레이트(11a)에 대한 불순물의 이온화 에너지가 큰 경우, 상온(TRT)을 포함하는 일정 온도 구간에서, 홀 플레이트(11a)에 주입된 불순물이 충분히 이온화되지 못하고 온도(T)가 증가함에 따라 전도대 내의 전자 농도(n)가 증가하는 동결 구간이 나타날 수 있다. 예를 들어, 도 15에 도시된 바와 같이, 이온화 에너지가 비교적 큰 탄소(C, 250meV), 티타늄(Ti, 210meV), 황(S, 180meV) 및 질소(N, 140meV)를 홀 플레이트(11a)에 주입(1017 cm-3만큼)하는 경우, 상온(TRT)에서, 동결 구간이 나타날 수 있다.
도 16을 참조하면, 홀 플레이트(11a)에 대한 불순물의 이온화 에너지가 큰 경우, 상온(TRT)을 포함하는 일정 온도 구간에서, 전류 바이어스 모드에서, 홀 플레이트(11a)의 온도(T)가 증가함에 따라 전류 감도(SI)가 감소하는 동결 구간이 나타날 수 있다. 다시 말해, 불순물의 이온화 에너지에 따라, 상온(TRT)을 포함하는 일정 온도 구간에서, 홀 플레이트(11a)에서 생성되는 전류-구동 홀 전압(VH)이 홀 플레이트(11a)의 온도가 증가함에 따라 감소할 수 있다. 예를 들어, 홀 플레이트(11a)에서 생성되는 전류-구동 홀 전압(VH)이 약 250K 내지 400K의 온도 범위에서 홀 플레이트(11a) 의 온도(T)가 증가함에 따라 감소하도록, 불순물의 이온화 에너지가 정해질 수 있다. 예를 들어, 도 16에 도시된 바와 같이, 이온화 에너지가 비교적 큰 탄소(C, 250meV), 티타늄(Ti, 210meV), 황(S, 180meV) 및 질소(N, 140meV)를 홀 플레이트(11a)에 주입(1017 cm-3만큼)하는 경우, 상온(TRT)에서, 홀 플레이트(11a)의 온도(T)가 증가함에 따라 전류-구동 홀 감도(SI)가 감소하는 동결 구간이 나타날 수 있다.
도 17을 참조하면, 홀 플레이트(11a)에 대한 불순물의 이온화 에너지(Ed)에 따라, 온도를 검출하는 데에 적절한 전류-구동 홀 감도(SI)의 온도에 대한 변화율이 정해질 수 있다. 예를 들어, 홀 플레이트(11a)의 전류-구동 홀 감도(SI)의 온도에 대한 변화율이 상온에서 -1.0%/K 내지 -2.0%/K 범위 내에 포함되도록, 불순물의 이온화 에너지가 정해질 수 있다. 예를 들어, 홀 플레이트(11a)에 주입된 불순물의 이온화 에너지가 약 170meV 내지 270meV인 경우, 전류-구동 홀 감도(SI)의 온도에 대한 변화율이 상온에서 -1.0%/K 내지 -2.0%/K 범위 내에 포함될 수 있다.
이상에서 도 15 내지 도 17을 참조하여 설명한 바와 같이, 홀 플레이트(11a)에 주입하는 불순물의 이온화 에너지를 조절하여, 상온(TRT)이 포함된 특정 온도 구간에서, 홀 플레이트(11a)의 전류-구동 홀 감도(SI)가 홀 플레이트(11a)의 온도(T)에 따라 감소하는 동결 구간이 나타나도록 할 수 있다. 또한, 홀 플레이트(11a)에 주입하는 불순물의 이온화 에너지를 조절하여, 전류-구동 홀 감도(SI)의 온도에 대한 변화율이 온도를 검출하는 데에 적합해지도록 할 수 있다. 도 15 내지 도 17을 참조하면, 홀 플레이트(11a)에 주입되는 불순물의 이온화 에너지가 약 170meV 내지 270meV로 정해질 수 있다. 예를 들어, 홀 플레이트(11a)에 주입되는 불순물은 탄소(C, 250meV), 티타늄(Ti, 210meV) 및 황(S, 180meV) 등으로 정해질 수 있다.
도 18은 또 다른 일 실시예에 따른 원적외선 검출 소자(1200)의 예시적인 구성을 간략하게 도시한 것이다. 도 18의 원적외선 검출 소자(1200)는 자기장 발생부(100)가 트렌치(T)를 통해 외부로 노출되지 않는다는 점을 제외하고는 도 2 및 도 3의 원적외선 검출 소자(1100)와 실질적으로 동일할 수 있다. 도 18을 설명함에 있어, 도 2 내지 도 17과 중복되는 내용은 생략한다.
도 18을 참조하면, 기판(220)에는 기판(220)의 일부가 식각되어 형성된 트렌치(T)가 마련될 수 있다. 트렌치(T) 내부에는 소정의 빈 공간(ES)이 형성될 수 있다. 트렌치(T)는 기판(220)을 완전히 관통하지는 않도록 형성될 수 있다. 이에 따라, 도 18에 도시된 바와 같이, 자기장 발생부(100)는 기판(220)에 의해 덮힐 수 있고, 외부로 노출되지 않을 수 있다. 트렌치(T)의 깊이(h2)는 적외선 흡수 지지부(21)로 입사하는 적외선(IR)의 파장의 1/4에 해당할 수 있다. 예를 들어, 적외선 흡수 지지부(21)로 입사하는 적외선의 파장이 10μm이 경우, 트렌치(T)의 깊이(h2)는 2.5μm일 수 있다. 이에 따라, 적외선 흡수 지지부(21)와 기판(220)이 트렌치(T)의 깊이(h2)만큼 이격되어 형성될 수 있다. 이 경우, 적외선 흡수 지지부(21)와 기판(220) 사이에서 적외선(IR) 공진이 일어날 수 있고, 적외선 흡수 지지부(21)로 적외선(IR) 흡수가 더 활발히 일어날 수 있다.
도 19는 또 다른 일 실시예에 따른 원적외선 검출 소자(1300)의 예시적인 구성을 간략하게 도시한 것이다. 도 20은 도 19의 원적외선 검출 소자(1300)의 예시적인 구성을 간략하게 도시한 것이다. 도 19 및 도 20의 원적외선 검출 소자(1300)는 절연층(33)을 더 포함한다는 점, 자기-전기 변환부(13)가 적외선 흡수 지지부(23)의 일부 영역에 삽입되어 형성된다는 점, 적외선 흡수 지지부(23)가 도 2 및 도 3의 적외선 흡수 지지부(21)와는 다른 물질을 포함한다는 점을 제외하고는, 도 2 및 도 3의 원적외선 검출 소자(1100)와 실질적으로 동일할 수 있다. 도 19 및 20을 설명함에 있어, 도 2 내지 도 17과 중복되는 내용은 생략한다.
도 19 및 도 20을 참조하면, 자기-전기 변환부(13)의 홀 플레이트(13a)는 지지 플레이트(23a)의 일부 영역에 삽입되어 형성될 수 있다. 예를 들어, 지지 플레이트(23a)의 상부의 일부 영역에 불순물을 주입하여 홀 플레이트(13a)를 형성할 수 있다. 이 경우, 지지 플레이트(23a)는 진성 반도체 물질을 포함할 수 있다. 예를 들어, 지지 플레이트(23a)는 실리콘(Si) 물질을 포함할 수 있으나, 이에 한정되는 것은 아니다. 지지 플레이트(23a)의 일부에 불순물을 주입함으로써, 지지 플레이트(23a)의 일부 영역은 외인성 반도체 물질을 포함할 수 있다. 이 외인성 반도체 물질로 형성된 영역이 홀 플레이트(13a)로 지칭될 수 있다.
또한, 한 쌍의 바이어스 전극(13b, 13c) 및 한 쌍의 검출 전극(13d, 13e)은 지지 플레이트(23a), 제1 내지 제4 연결부(23b, 23c, 23d, 23e) 및 가장자리 요소(23f)의 일부 영역에 삽입되어 형성될 수 있다. 예를 들어, 지지 플레이트(23a), 제1 내지 제4 연결부(23b, 23c, 23d, 23e) 및 가장자리 요소(23f)의 상부의 일부 영역에 금속 또는 불순물을 주입함으로써 한 쌍의 바이어스 전극(13b, 13c) 및 한 쌍의 검출 전극(13d, 13e)을 형성할 수 있다.
원적외선 검출 소자(1300)는 기판(210)과 열-전자기 검출부(330) 사이에 마련된 절연층(33)을 더 포함할 수 있다. 절연층(33)은 진성 반도체 물질을 포함하는 적외선 흡수 지지부(23)와 기판(210) 사이를 절연시킬 수 있다. 또한, 절연층(33)은 도 2 및 도 3의 적외선 흡수 지지부(21)와 같이, 외부로부터의 적외선(IR)을 흡수하도록 구성될 수 있다. 예를 들어, 절연층(33)은 실리콘 산화물, 실리콘 질화물 중 적어도 어느 하나를 포함할 수 있다. 실리콘 산화물은 예를 들어, SiO2를 포함할 수 있다. 실리콘 질화물은 예를 들어, Si3N4를 포함할 수 있다. 그러나 이에 한정되는 것은 아니며, 절연층(33)은 절연성을 가지며 열 에너지를 효율적으로 흡수할 수 있는 다양한 물질을 포함할 수 있다.
도 21은 또 다른 일 실시예에 따른 원적외선 검출 소자(1400)의 예시적인 구성을 간략하게 도시한 것이다. 도 21의 원적외선 검출 소자(1400)는 자기장 발생부(100)가 트렌치(T)를 통해 외부로 노출되지 않는다는 점을 제외하고는 도 19 및 도 20의 원적외선 검출 소자(1300)와 실질적으로 동일할 수 있다. 도 21을 설명함에 있어, 도 2 내지 도 17과 도 19 및 도 20과 중복되는 내용은 생략한다.
도 21을 참조하면, 기판(220)에는 기판(220)의 일부가 식각되어 형성된 트렌치(T)가 마련될 수 있다. 트렌치(T) 내부에는 소정의 빈 공간(ES)이 형성될 수 있다. 트렌치(T)는 기판(220)을 완전히 관통하지는 않도록 형성될 수 있다. 이에 따라, 도 21에 도시된 바와 같이, 자기장 발생부(100)는 기판(220)에 의해 덮힐 수 있고, 외부로 노출되지 않을 수 있다. 트렌치(T)의 깊이(h2)는 적외선 흡수 지지부(23)로 입사하는 적외선(IR)의 파장의 1/4에 해당할 수 있다. 예를 들어, 적외선 흡수 지지부(23)로 입사하는 적외선의 파장이 10μm이 경우, 트렌치(T)의 깊이(h2)는 2.5μm일 수 있다. 이에 따라, 적외선 흡수 지지부(23)와 기판(220)이 트렌치(T)의 깊이(h2)만큼 이격되어 형성될 수 있다. 이 경우, 적외선 흡수 지지부(23)와 기판(220) 사이에서 적외선(IR) 공진이 일어날 수 있고, 적외선 흡수 지지부(23)로 적외선(IR) 흡수가 더 활발히 일어날 수 있다.
도 22는 또 다른 일 실시예에 따른 원적외선 검출 소자(1500)의 예시적인 구성을 간략하게 도시한 것이다. 도 23은 도 22의 B-B'를 따라 자른 단면을 간략하게 도시한 것이다.
도 22 및 도 23에 도시된 자기-전기 변환부(14)의 기능은 도 2 및 도 3에 도시된 자기-전기 변환부(11)의 기능과 실질적으로 동일할 수 있다. 도 22 및 도 23을 설명함에 있어, 도 2 내지 도 18과 중복되는 내용은 생략한다.
도 22 및 도 23을 참조하면, 원적외선 검출 소자(1500)는 자기장을 생성하는 자기장 발생부(100), 자기장 발생부 상에 마련되는 기판(230), 기판(230) 상에 마련되어 외부로부터 입사된 적외선 복사 에너지를 흡수하고, 이 적외선 복사 에너지에 의한 온도 변화에 따른 전기 신호의 변화를 검출하는 열-전자기 검출부(340)를 포함할 수 있다. 자기장 발생부(100)와 기판(230)은 도 1을 참조하여 설명한 바와 같다. 예를 들어, 자기장 발생부(100)는 수직 방향(z축 방향)으로 균일한 세기의 자기장(H)을 생성할 수 있다. 자기장(H)은 기판(230)을 통과하여 열-전자기 검출부(340)에 작용할 수 있다. 이하에서는 열-전자기 검출부(340)에 대해 설명한다.
열-전자기 검출부(340)는, 기판(230)과 이격되어 배치되며, 자기장 발생부(100)에 의해 생성된 자기장(H)에 따라 생성되는 전기 신호를 검출하는 자기-전기 변환부(14) 및 기판(230) 상에 마련되어, 자기-전기 변환부(14)를 기판(200)으로부터 이격시켜 지지하고, 외부로부터의 적외선 복사 에너지를 흡수하여 열을 발생시키는 적외선 흡수 지지부(24)를 포함할 수 있다.
자기-전기 변환부(14)는 자기장 발생부(100)로부터의 자기장(H)에 따라 생성되는 전기 신호를 검출하도록 구성될 수 있다. 자기-전기 변환부(14)는 기판(230)과 이격되어 마련될 수 있다. 예를 들어, 자기-전기 변환부(14)는 적외선 흡수 지지부(24) 상에 마련될 수 있다.
자기-전기 변환부(14)는 도전성의 홀 플레이트(14a), 홀 플레이트(14a)의 제1 방향(x축 방향)으로의 양단에 마련되는 한 쌍의 바이어스 전극(14b, 14c) 및 홀 플레이트(14a)의 제1 방향(x축 방향)과 수직한 제2 방향(y축 방향)으로의 양단에 마련되는 적어도 한 쌍의 검출 전극(14d, 14e)을 포함할 수 있다. 이 경우, 제1 방향(x축 방향) 및 제2 방향(y축 방향) 모두는 자기장 발생부(100)로부터의 자기장(H)의 방향(z축 방향)과 수직한 방향일 수 있다.
홀 플레이트(14a)가 직육면체 형상을 포함하는 경우, 한 쌍의 바이어스 전극(14b, 14c)은 홀 플레이트(14a)의 제1 방향(x축 방향)으로 서주 마주하는 두 모서리를 각각 덮도록 형성될 수 있다. 예를 들어, 한 쌍의 바이어스 전극(14b, 14c)은 제2 방향(y축 방향)으로 연장되어 형성되고, 홀 플레이트(32a)의 제1 방향(x축 방향)으로 서주 마주하는 두 모서리를 각각 덮을 수 있다. 한 쌍의 바이어스 전극(14b, 14c)은 제1 방향(x축 방향)과 나란한 일직선 상에 마련될 수 있다. 또한, 한 쌍의 바이어스 전극(14b, 14c)은 계단식으로 형성되어, 홀 플레이트(14a)의 제1 방향(x축 방향)으로 서주 마주하는 두 모서리를 덮음과 동시에, 후술하는 지지 플레이트(24a)의 상부 표면의 일부와도 접할 수 있다.
한 쌍의 바이어스 전극(14b, 14c)은 홀 플레이트(14a)로부터 연장되어 형성되는 패턴을 포함할 수 있다. 예를 들어, 한 쌍의 바이어스 전극(14b, 14c)은 미앤더 패턴을 포함할 수 있다. 이에 따라, 한 쌍의 바이어스 전극(14b, 14c)은 홀 플레이트(14a)의 제1 방향(x축 방향)으로 서주 마주하는 두 모서리를 덮음과 동시에, 홀 플레이트(14a)로부터 연장되어 형성되는 미앤더 패턴을 포함할 수 있다. 그러나 이에 한정되는 것은 아니며, 한 쌍의 바이어스 전극(14b, 14c)는 일 방향으로 연장되어 형성된 막대 패턴을 포함할 수도 있다.
이 경우, 한 쌍의 검출 전극(14d, 14e)은 홀 플레이트(14a)의 제2 방향(y축 방향)으로 서주 마주하는 두 모서리를 각각의 일부와 접하도록 형성될 수 있다. 한 쌍의 검출 전극(14d, 14e)은 제2 방향(y축 방향)과 나란한 일직선 상에 마련될 수 있다. 나아가, 한 쌍의 검출 전극(14d, 14e)은 홀 플레이트(14a)와 접한 상태에서, 홀 플레이트(14a)로부터 연장되어 형성되는 패턴을 포함할 수 있다. 예를 들어, 한 쌍의 바이어스 전극(14d, 14e)은 미앤더 패턴을 포함할 수 있다. 그러나 이에 한정되는 것은 아니며, 한 쌍의 검출 전극(14d, 14e)는 일 방향으로 연장되어 형성된 막대 패턴을 포함할 수도 있다. 한 쌍의 검출 전극(14d, 14e)은 계단식으로 형성되어, 홀 플레이트(14a)의 제2 방향(y축 방향)으로 서주 마주하는 두 모서리 각각과 접함과 동시에, 후술하는 지지 플레이트(24a)의 상부 표면의 일부와도 접할 수 있다.
적외선 흡수 지지부(24)는 홀 플레이트(14a)를 받치는 지지 플레이트(24a), 기판(230)의 상면으로부터 수직 방향(z축 방향)으로 돌출되어 형성되는 지지 기둥(24f, 24g, 24h, 24i) 및 지지 플레이트(22a)와 지지 기둥(24f, 24g, 24h, 24i)의 상부를 연결시키는 연결부(24b, 24c, 24d, 24e)를 포함할 수 있다.
지지 기둥(24f, 24g, 24h, 24i)의 높이는 적외선 흡수 지지부(24)로 입사하는 적외선(IR)의 파장의 1/4에 해당할 수 있다. 예를 들어, 적외선 흡수 지지부(24)로 입사하는 적외선(IR)의 파장이 10μm이 경우, 지지 기둥(24f, 24g, 24h, 24i)의 높이는 2.5μm일 수 있다. 이에 따라, 적외선 흡수 지지부(24)와 기판(230) 사이의 이격 거리(h3)는 적외선 흡수 지지부(24)로 입사하는 적외선(IR)의 파장의 1/4에 해당할 수 있다. 이 경우, 적외선 흡수 지지부(24)와 기판(230) 사이에서 적외선(IR) 공진이 일어날 수 있고, 적외선 흡수 지지부(24)로 적외선(IR) 흡수가 더 활발히 일어날 수 있다.
지지 플레이트(24a)와 지지 기둥(24f, 24g, 24h, 24i)은 수직 방향(z축 방향)과 수직한 평면 상에 서로 이격되도록 마련될 수 있다. 예를 들어, 지지 기둥(24f, 24g, 24h, 24i)는 기판(230)의 상부 표면의 네 개의 코너 영역에 각각 마련된 제1 내지 제4 지지 기둥(24f, 24g, 24h, 24i)을 포함할 수 있다. 또한, 예를 들어, 연결부(24b, 24c, 24d, 24e)는 제1 지지 기둥(24f)의 상부와 지지 플레이트(24a)를 연결하는 제1 연결부(24b), 제2 지지 기둥(24g)의 상부와 지지 플레이트(24a)를 연결하는 제2 연결부(24c), 제3 지지 기둥(24h)의 상부와 지지 플레이트(24a)를 연결하는 제3 연결부(24d), 제4 지지 기둥(24i)의 상부와 지지 플레이트(24a)를 연결하는 제4 연결부(24e)를 포함할 수 있다.
적외선 흡수 지지부(24)는 직사각형의 상부 표면을 가지는 지지 플레이트(24a)를 포함할 수 있다. 예를 들어, 지지 플레이트(24a)는 직육면체 형상을 포함할 수 있다. 예를 들어, 지지 플레이트(24a)는 얇은 판형일 수 있다. 그러나 이에 한정되는 것은 아니며, 지지 플레이트(24a)는 직육면체 형상 이외의 다양한 형상을 포함할 수 있다. 또한, 지지 플레이트(24a)는 홀 플레이트(14a) 뿐만 아니라, 한 쌍의 바이어스 전극(14b, 14c)과 한 쌍의 검출 전극(14d, 14e)의 일부도 받치도록 형성될 수 있다.
적외선 흡수 지지부(24)는 한 쌍의 바이어스 전극(14b, 14c)과 한 쌍의 검출 전극(14d, 14e)을 각각 받치는 제1 연결부(24b), 제2 연결부(24c), 제3 연결부(24d) 및 제4 연결부(24e)를 포함할 수 있다. 제1 내지 제4 연결부(24b, 24c, 24d, 24e)는 한 쌍의 바이어스 전극(14b, 14c) 및 한 쌍의 검출 전극(14d, 14e) 각각의 미앤더 패턴 영역을 받치도록 구성될 수 있다. 예를 들어, 제1 내지 제4 연결부(24b, 24c, 24d, 24e)는 한 쌍의 바이어스 전극(14b, 14c) 및 한 쌍의 검출 전극(14d, 14e) 각각과 대응되는 미앤더 패턴을 포함할 수 있다. 그러나 이에 한정되는 것은 아니며, 제1 내지 제4 연결부(24b, 24c, 24d, 24e)는 일 방향으로 연장되어 형성된 막대 패턴을 포함할 수도 있다. 또한, 제1 내지 제4 연결부(24b, 24c, 24d, 24e)의 면적은 지지 플레이트(24a)의 면적보다 작을 수 있다. 이와 같은 적외선 흡수 지지부(24)의 열적 고립 구조를 통해 효율적으로 적외선 복사 에너지에 의한 열 에너지가 전기-자기 변환부(14)로 전달될 수 있고, 이에 따라 결과적으로 적외선 복사 에너지의 전기 에너지로의 효율적인 변환이 이루어질 수 있다.
적외선 흡수 지지부(24)는 실리콘 산화물, 실리콘 질화물 중 적어도 어느 하나를 포함할 수 있다. 실리콘 산화물은 예를 들어, SiO2를 포함할 수 있다. 실리콘 질화물은 예를 들어, Si3N4를 포함할 수 있다. 그러나 이에 한정되는 것은 아니며, 적외선 흡수 지지부(24)는 자기-전기 변환부(14)를 지지할 수 있을 정도의 강성을 가지며, 열 에너지를 효율적으로 흡수할 수 있는 다양한 물질을 포함할 수 있다.
또한, 지지 플레이트(24a), 연결부(24b, 24c, 24d, 24e) 및 지지 기둥(24f, 24g, 24h, 24i) 모두 실리콘 산화물, 실리콘 질화물 중 적어도 어느 하나를 포함할 수 있다. 이 경우, 지지 플레이트(24a), 연결부(24b, 24c, 24d, 24e) 및 지지 기둥(24f, 24g, 24h, 24i)은 일체로 형성될 수 있다. 그러나 이에 한정되는 것은 아니며, 지지 플레이트(24a)와 연결부(24b, 24c, 24d, 24e)가 일체로 형성되고, 지지 기둥(24f, 24g, 24h, 24i)은 별도의 공정 과정에서 형성될 수 있다.
이처럼, 적외선 흡수 지지부(24)에 의해 자기-전기 변환부(14)가 기판(230)으로부터 소정의 높이만큼 이격되어 마련되는 경우, 기판(230)과 자기-전기 변환부(14)가 직접 접하고 있는 경우에 비해, 열 에너지가 보다 효율적으로 자기-전기 변환부(14)에 전달될 수 있다.
한편, 원적외선 검출 소자(1500)는 기판(230)의 상부 표면 상에 마련되는 반사판(40)을 더 포함할 수 있다. 반사판(40)은 지지 플레이트(24a)에 대응되는 영역에 마련될 수 있다. 또한, 반사판(40)의 면적은 지지 플레이트(24a)의 면적과 동일할 수 있다. 반사판(40)은 금(Au), 알루미늄(Al) 등의 금속을 포함할 수 있다. 그러나 이에 한정되는 것은 아니고, 반사판(40)은 반사율이 높은 다양한 물질을 포함할 수 있다. 반사판(40)에 의해 외부로부터 입사된 적외선(IR)이 반사되어 적외선 흡수 지지부(24)로 향할 수 있다. 이에 따라, 적외선 흡수 지지부(24)에 의한 적외선(IR) 흡수가 더욱 활발히 일어날 수 있다. 그러나 이에 한정되는 것은 아니며, 원적외선 검출 소자(1500)는 반사판(40)을 구비하지 않을 수도 있다.
도 24는 일 실시예에 따른 원적외선 검출 소자 어레이 구조(2000)의 예시적인 구성을 간략하게 도시한 사시도이다.
도 24를 참조하면, 원적외선 검출 소자 어레이 구조(2000)는 복수 개의 원적외선 검출 소자(TE)를 포함할 수 있다. 예를 들어, 복수 개의 원적외선 검출 소자(TE)는 2차원 평면 상에 서로 연결되어 형성될 수 있다. 도 24에는 9개의 원적외선 검출 소자(TE)가 도시되어 있으나, 이에 한정되는 것은 아니며, 원적외선 검출 소자 어레이 구조(2000)는 무수히 많은 원적외선 검출 소자(TE)를 포함할 수 있다. 예를 들어, 원적외선 검출 소자 어레이 구조(2000)는 160Х120개 또는 640Х480개의 원적외선 검출 소자(TE)를 포함할 수 있다.
복수 개의 원적외선 검출 소자(TE) 각각은 적외선 흡수 지지부(20a) 상에 마련된 자기-전기 변환부(10a)를 이용하여, 외부로부터의 적외선 복사 에너지에 의한 온도 변화에 따라 변하는 전기 신호를 측정함으로써, 적외선 복사 에너지를 검출할 수 있다. 복수 개의 원적외선 검출 소자(TE) 각각은, 도 1 내지 도 22을 참조하여 설명한 다양한 원적외선 검출 소자(1000, 1100, 1200, 1300, 1400, 1500) 중 어느 하나를 포함할 수 있다. 원적외선 검출 소자 어레이 구조(2000)는 일체형의 자기장 발생부(140)와 일체형의 기판(240)을 포함할 수 있다.
도 25는 일 실시예에 따른 원적외선 온도 검출 장치(3000)의 예시적인 구성을 간략하게 도시한 것이다.
도 25를 참조하면, 원적외선 온도 검출 장치(3000)는 대상체(OBJ)로부터 방출되는 적외선 복사 에너지를 흡수하고, 적외선 복사 에너지에 따라 변화하는 전기 신호를 검출하는 원적외선 검출 소자(3010), 원적외선 검출 소자(3010)로부터의 전기 신호를 처리하는 신호처리부(3020) 및 신호처리부(3020)에 의해 처리된 전기 신호에 의해 생성된 이미지를 표시하는 디스플레이 소자(3030)를 포함할 수 있다.
원적외선 검출 소자(3010)는 자기-전기 변환부를 이용하여 대상체(OBJ)로부터 방출되는 적외선 복사 에너지에 따라 변한느 전기 신호를 측정함으로써, 대상체(OBJ)로부터 방출되는 적외선 복사 에너지량을 검출할 수 있다. 원적외선 검출 소자(3010)는, 도 1 내지 도 23을 참조하여 설명한 다양한 원적외선 검출 소자(1000, 1100, 1200, 1300, 1400, 1500) 중 어느 하나를 포함할 수 있다.
원적외선 온도 검출 장치(3000)는 적외선(IR)을 원적외선 검출 소자(3010)로 효율적으로 전달하도록 구성되는 소정의 광학계를 포함할 수 있다. 예를 들어, 온도 검출 장치(3000)는 외부로부터의 적외선(IR)을 원적외선 검출 소자(3010)로 집광하는 집광 렌즈(3040)를 포함할 수 있다. 집광 렌즈(3040)는 적외선 집광 렌즈를 포함할 수 있다. 또한, 온도 검출 장치(3000)는 집광 렌즈(3040)와 원적외선 검출 소자(3010) 사이에 마련되어, 적외선(IR)의 광량을 조절하는 조리개(3050) 및 집광 렌즈(3040)와 원적외선 검출 소자(3010) 사이에 마련되어, 집광 렌즈(3040)를 통과한 적외선(IR)의 일부 파장 영역을 필터링하는 광학 필터(3050)를 더 포함할 수 있다. 예를 들어, 광학 필터(3050)는 대략 8㎛ ~ 14㎛ 정도의 파장 대역의 적외선(IR)을 통과시킬 수 있다. 그러나 이에 한정되는 것은 아니고, 광학 필터(3050)의 통과 파장 대역은 다양하게 설정될 수 있다.
신호처리부(3020)는 원적외선 검출 소자(3010)로부터의 전기 신호를 처리할 수 있다. 예를 들어, 신호처리부(3020)는 아날로그-디지털 컨버터(Analog-to-digital convertor; ADC)를 이용하여 원적외선 검출 소자(3010)로부터의 아날로그 신호를 디지털 신호로 변환할 수 있다. 신호처리부(3020)는 원적외선 검출 소자(3010)가 측정한 대상체(OBJ)의 적외선 복사 에너지량과 흑체(blackbody)의 복사 에너지량을 상대 비교하여 대상체(OBJ)의 온도를 추정할 수 있다. 신호처리부(3020)에 의해 처리된 온도 신호는 디스플레이 소자(3030)로 전달될 수 있다. 디스플레이 소자(3030)는 신호처리부(3020)로부터의 온도 신호를 이용하여 온도를 나타내는 영상을 표시할 수 있다.
디스플레이 소자(3030)는 액정 디스플레이 소자, 유기 발광 디스플레이 소자 등을 포함할 수 있다. 그러나 이에 한정되는 것은 아니며, 디스플레이 소자(3030)는 액정 디스플레이 소자, 유기 발광 디스플레이 소자 이외의 전기 신호를 이용하여 이미지를 표시하는 다양한 구조를 포함할 수 있다.
도 26은 일 실시예에 따른 열화상 표시 장치(4000)의 예시적인 구성을 간략하게 도시한 블록도이다.
도 26을 참조하면, 열화상 표시 장치(4000)는 외부로부터의 적외선을 집광하는 광학계(4010), 광학계(4010)로부터의 적외선을 검출하도록 구성된 복수 개의 원적외선 검출 소자를 포함하는 원적외선 검출 소자 어레이 구조(4020), 원적외선 검출 소자 어레이 구조(4020)에 포함된 복수 개의 원적외선 검출 소자의 동작을 제어하는 제어부(4030), 원적외선 검출 소자 어레이 구조(4020)로부터의 전기 신호를 처리하는 신호처리부(4040) 및 신호처리부(4040)에 의해 처리된 전기 신호에 의해 생성된 이미지를 표시하는 디스플레이 소자(4050)를 포함할 수 있다.
광학계(4010)는 예를 들어, 적외선 집광 렌즈를 포함할 수 있다. 적외선 집광 렌즈는 외부로부터의 적외선을 원적외선 검출 소자 어레이 구조(4020)에 집광시킬 수 있다.
원적외선 검출 소자 어레이 구조(4020)는 자기-전기 변환부를 이용하여, 외부로부터의 적외선 복사 에너지에 의한 온도 변화에 따라 변화하는 전기 신호를 측정함으로써, 적외선 복사 에너지량을 검출하는 복수 개의 원적외선 검출 소자를 포함할 수 있다. 원적외선 검출 소자 어레이 구조(4020)는 도 24를 참조하여 설명한 원적외선 검출 소자 어레이 구조(2000)를 포함할 수 있다. 원적외선 검출 소자 어레이 구조(4020)에 포함된 복수 개의 원적외선 검출 소자 각각은 하나의 화소가 될 수 있다. 이에 따라, 원적외선 검출 소자 어레이 구조(4020)는 복수 개의 화소를 포함할 수 있다. 원적외선 검출 소자 어레이 구조(4020)의 복수 개의 화소는 디스플레이 소자(4050)에 포함된 복수 개의 화소에 각각 대응될 수 있다.
제어부(4030)는 원적외선 검출 소자 어레이 구조(4020)의 동작을 제어할 수 있다. 예를 들어, 원적외선 검출 소자 어레이 구조(4020)에 포함되는 복수 개의 원적외선 검출 소자각각에 대한 전류 신호 또는 전압 신호 인가를 독립적으로 제어할 수 있다. 이에 따라, 원적외선 검출 소자 어레이 구조(4020)에 포함된 복수 개의 원적외선 검출 소자의 구동이 순차적으로 일어날 수 있다. 그러나 이에 한정되는 것은 아니고, 제어부(4030)는 원적외선 검출 소자 어레이 구조(4020)에 복수 개의 원적외선 검출 소자의 구동을 다양한 방식으로 제어할 수 있다.
제어부(4030)는 예를 들어, 중앙 처리 장치(Central Processing Unit), 마이크로 프로세서(microprocessor), 그래픽 프로세서(Graphic Processing Unit), ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), 및 FPGAs(Field Programmable Gate Arrays) 중 적어도 하나의 하드웨어를 포함할 수 있으나, 이에 한정되는 것은 아니다.
신호처리부(4040)는 원적외선 검출 소자 어레이 구조(4020)로부터의 전기 신호를 처리할 수 있다. 예를 들어, 신호처리부(4020)는 아날로그-디지털 컨버터(Analog-to-digital convertor; ADC)를 이용하여 원적외선 검출 소자 어레이 구조(4020)로부터의 아날로그 신호를 디지털 신호로 변환할 수 있다. 또한, 신호처리부(4040)의 신호 처리 동작은 제어부(4030)의 원적외선 검출 소자 어레이 구조(4020)에 대한 제어의 기초가 될 수 있다. 예를 들어, 신호처리부(4040)의 신호 처리 양상에 따라, 제어부(4030)가 원적외선 검출 소자 어레이 구조(4020)를 제어하는 양상이 정해질 수 있다. 나아가, 신호처리부(4040)의 신호 처리는 제어부(4030)에 의해 제어될 수 있다. 신호처리부(4040)에 의해 처리된 신호는 디스플레이 소자(4050)로 전달될 수 있다. 디스플레이 소자(4050)는 신호처리부(4040)로부터의 신호를 이용하여 대상체의 온도를 나타내는 영상을 표시할 수 있다.
디스플레이 소자(4050)는 액정 디스플레이 소자, 유기 발광 디스플레이 소자 등을 포함할 수 있다. 그러나 이에 한정되는 것은 아니며, 디스플레이 소자(4050)는 액정 디스플레이 소자, 유기 발광 디스플레이 소자 이외의 전기 신호를 이용하여 이미지를 표시하는 다양한 구조를 포함할 수 있다.
열화상 표시 장치(4000)는 원적외선 검출 소자 어레이 구조(4020)가 일정한 온도 하에서 동작할 수 있도록, 주변 온도를 일정하게 유지시키도록 구성되는 온도 안정부(4060)를 더 포함할 수 있다. 예를 들어, 온도 안정부(4060)는 원적외선 검출 소자 어레이 구조(4020)에 포함되는 복수 개의 원적외선 검출 소자의 자기장 발생부 하부에 마련될 수 있다.
상기한 다양한 실시예들은 예시적인 것에 불과한 것으로, 당해 기술분야의 통상을 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 것을 이해할 수 있다. 따라서, 예시적인 다양한 실시예에 따른 진정한 기술적 보호범위는 하기의 특허청구범위에 기재된 발명의 기술적 사상에 의해 정해져야만 할 것이다.
10, 11, 13, 14: 자기-전기 변환부
20, 21, 23, 24: 적외선 흡수 지지부
33: 절연층
40: 반사판
100, 140: 자기장 발생부
200, 210, 220, 230, 240: 기판
300, 310, 330, 340: 열-전자기 검출부
1000, 1100, 1200, 1300, 1400, 1500: 원적외선 검출 소자
2000: 원적외선 검출 소자 어레이 구조
3000: 원적외선 온도 검출 장치
4000: 열화상 표시 장치
20, 21, 23, 24: 적외선 흡수 지지부
33: 절연층
40: 반사판
100, 140: 자기장 발생부
200, 210, 220, 230, 240: 기판
300, 310, 330, 340: 열-전자기 검출부
1000, 1100, 1200, 1300, 1400, 1500: 원적외선 검출 소자
2000: 원적외선 검출 소자 어레이 구조
3000: 원적외선 온도 검출 장치
4000: 열화상 표시 장치
Claims (27)
- 자기장을 생성하는 자기장 발생부;
상기 자기장 발생부 상에 마련되는 기판;
상기 기판과 이격되어 배치되며, 상기 자기장 발생부에 의해 생성된 상기 자기장에 따라 생성되는 전기 신호를 검출하는 자기-전기 변환부; 및
상기 기판 상에 마련되어, 상기 자기-전기 변환부를 상기 기판으로부터 이격시켜 지지하고, 외부로부터의 적외선 복사 에너지를 흡수하여 열을 발생시키는 적외선 흡수 지지부; 를 포함하며,
상기 전기 신호는, 상기 자기-전기 변환부에 직접 흡수되는 상기 외부로부터의 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화와 상기 적외선 흡수 지지부가 흡수한 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화에 따라 변하는, 원적외선 검출 소자. - 제1 항에 있어서,
상기 자기-전기 변환부는,
도전성의 홀 플레이트, 상기 홀 플레이트의 제1 방향으로의 양단에 마련되는 한 쌍의 바이어스 전극 및 상기 홀 플레이트의 상기 제1 방향과 수직한 제2 방향으로의 양단에 마련되는 적어도 한 쌍의 검출 전극을 포함하고,
상기 제1 방향 및 상기 제2 방향 모두는 상기 자기장 발생부로부터의 자기장의 방향과 수직한 방향인, 원적외선 검출 소자. - 제2 항에 있어서,
상기 홀 플레이트는 불순물이 주입된 외인성 반도체 물질을 포함하는, 원적외선 검출 소자. - 제3 항에 있어서,
상기 한 쌍의 바이어스 전극 사이에 일정한 전압이 인가되는 전압 바이어스 모드에서, 상기 홀 플레이트에서 생성되는 홀 전압은 상기 홀 플레이트의 온도가 증가함에 따라 감소하는, 원적외선 검출 소자. - 제3 항에 있어서,
상기 한 쌍의 바이어스 전극 사이에 일정한 전압이 인가되는 전압 바이어스 모드에서, 상기 홀 플레이트에서 생성되는 홀 전압의 온도에 대한 변화율이 상온에서 -0.5%/K 내지 -1.0%/K 범위 내에 포함되도록, 상기 불순물의 주입 농도가 정해지는, 원적외선 검출 소자. - 제5 항에 있어서,
상기 홀 플레이트의 저항값이 상온에서 800Ω 내지 7000kΩ 범위 내에 포함되도록, 상기 불순물의 주입 농도가 정해지는, 원적외선 검출 소자. - 제3 항에 있어서,
상기 한 쌍의 바이어스 전극 사이에 일정한 전류가 인가되는 전류 바이어스 모드에서, 상기 홀 플레이트에서 생성되는 홀 전압이 250K 내지 400K의 온도 범위에서 상기 홀 플레이트의 온도가 증가함에 따라 감소하도록, 상기 불순물의 이온화 에너지가 정해지는, 원적외선 검출 소자. - 제7 항에 있어서,
상기 한 쌍의 바이어스 전극 사이에 일정한 전류가 인가되는 전류 바이어스 모드에서, 상기 홀 플레이트에서 생성되는 홀 전압의 온도에 대한 변화율이 상온에서 -1.0%/K 내지 -2.0%/K 범위 내에 포함되도록, 상기 불순물의 이온화 에너지가 정해지는, 원적외선 검출 소자. - 제7 항에 있어서,
상기 불순물의 주입 농도는 1012 cm-3 내지 1017 cm-3 인, 원적외선 검출 소자. - 제2 항에 있어서,
상기 기판에는 상기 기판의 일부가 식각되어 형성된 트렌치가 마련되고, 상기 홀 플레이트는 상기 트렌치에 상에 마련되는, 원적외선 검출 소자. - 제10 항에 있어서,
상기 적외선 흡수 지지부는,
상기 홀 플레이트를 받치도록 상기 트렌치 상에 마련되는 지지 플레이트, 상기 지지 플레이트와 이격되어 상기 지지 플레이트를 둘러싸도록 형성되는 가장자리 요소 및 상기 지지 플레이트와 상기 가장자리 요소를 연결하는 적어도 하나의 연결부를 포함하는, 원적외선 검출 소자. - 제11 항에 있어서,
상기 한 쌍의 바이어스 전극과 상기 한 쌍의 검출 전극은 모두 상기 홀 플레이트로부터 멀어지는 일 방향으로 연장되어 형성되고,
상기 적어도 하나의 연결부는, 상기 한 쌍의 바이어스 전극과 상기 한 쌍의 검출 전극을 각각에 받치는 제1 연결부, 제2 연결부, 제3 연결부 및 제4 연결부를 포함하는, 원적외선 검출 소자. - 제11 항에 있어서,
상기 지지 플레이트는, 실리콘 질화물 또는 실리콘 산화물 중 어느 하나를 포함하는, 원적외선 검출 소자. - 제12 항에 있어서,
상기 홀 플레이트는 상기 지지 플레이트의 일부 영역에 삽입되어 형성되고,
상기 한 쌍의 바이어스 전극 및 상기 한 쌍의 검출 전극은 상기 지지 플레이트, 상기 제1 내지 제4 연결부 및 상기 가장자리 요소의 일부 영역에 삽입되어 형성되는, 원적외선 검출 소자. - 제14 항에 있어서,
상기 홀 플레이트는 상기 지지 플레이트의 상기 일부 영역에 불순물을 주입하여 형성되는, 원적외선 검출 소자. - 제14 항에 있어서,
상기 적외선 흡수 지지부와 기판 사이에 마련되는 절연층을 더 포함하는, 원적외선 검출 소자. - 제2 항에 있어서,
상기 적외선 흡수 지지부는,
상기 홀 플레이트를 받치는 지지 플레이트, 상기 기판의 상면으로부터 수직 방향으로 돌출되어 형성되는 지지 기둥 및 상기 지지 플레이트와 상기 지지 기둥의 상부를 연결시키는 연결부를 포함하고,
상기 지지 플레이트와 상기 지지 기둥은 상기 수직 방향과 수직한 평면 상에 서로 이격되도록 마련되는, 원적외선 검출 소자. - 제17 항에 있어서,
상기 한 쌍의 바이어스 전극과 상기 한 쌍의 검출 전극은 모두 상기 홀 플레이트로부터 연장되어 형성되는 패턴을 포함하고,
상기 연결부는, 상기 한 쌍의 바이어스 전극과 상기 한 쌍의 검출 전극을 각각 받치는 제1 연결부, 제2 연결부, 제3 연결부 및 제4 연결부를 포함하며,
상기 지지 기둥은, 상기 제1 내지 제4 연결부와 각각 연결되는 제1 지지 기둥, 제2 지지 기둥, 제3 지지 기둥 및 제4 지지 기둥을 포함하는, 원적외선 검출 소자. - 제17 항에 있어서,
상기 연결부의 면적은 상기 지지 플레이트의 면적보다 작은, 원적외선 검출 소자. - 제18 항에 있어서,
상기 한 쌍의 바이어스 전극과 상기 한 쌍의 검출 전극은 미앤더 패턴을 포함하는, 원적외선 검출 소자. - 제17 항에 있어서,
상기 기판의 상부 표면 상에 마련되는 반사판을 더 포함하는, 원적외선 검출 소자. - 제2 항에 있어서,
도전성의 기준 플레이트, 상기 기준 플레이트를 덮는 보호층, 상기 기준 플레이트의 제1 방향으로의 양단에 마련되는 한 쌍의 바이어스 전극 및 상기 기준 플레이트의 상기 제1 방향과 수직한 제2 방향으로의 양단에 마련되는 적어도 한 쌍의 검출 전극을 구비하는 기준 변환부를 포함하고,
상기 제1 방향 및 상기 제2 방향 모두는 상기 자기장 발생부로부터의 자기장의 방향과 수직하며,
상기 자기-전기 변환부는 상기 기준 변환부와 차분 증폭 회로를 구성하는, 원적외선 검출 소자. - 복수 개의 원적외선 검출 소자를 포함하는 원적외선 검출 소자 어레이 구조에 있어서,
상기 복수 개의 원적외선 검출 소자 각각은,
자기장을 생성하는 자기장 발생부;
상기 자기장 발생부 상에 마련되는 기판;
상기 기판과 이격되어 배치되며, 상기 자기장 발생부에 의해 생성된 상기 자기장에 따라 생성되는 전기 신호를 검출하는 자기-전기 변환부; 및
상기 기판 상에 마련되어, 상기 자기-전기 변환부를 상기 기판으로부터 이격시켜 지지하고, 외부로부터의 적외선 복사 에너지를 흡수하여 열을 발생시키는 적외선 흡수 지지부; 를 포함하며,
상기 전기 신호는, 상기 자기-전기 변환부에 직접 흡수되는 상기 외부로부터의 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화와 상기 적외선 흡수 지지부가 흡수한 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화에 따라 변하는, 원적외선 검출 소자 어레이 구조. - 제23 항에 있어서,
상기 자기장 발생부 및 상기 기판은 각각 일체형으로 형성되는, 원적외선 검출 소자 어레이 구조. - 외부로부터의 적외선 복사 에너지를 흡수하고, 상기 적외선 복사 에너지에 따라 변화하는 전기 신호를 검출하는 원적외선 검출 소자;
상기 원적외선 검출 소자로부터의 전기 신호를 처리하는 신호처리부; 및
상기 신호처리부에 의해 처리된 전기 신호에 의해 생성된 이미지를 표시하는 디스플레이 소자; 를 포함하고,
상기 원적외선 검출 소자는,
자기장을 생성하는 자기장 발생부;
상기 자기장 발생부 상에 마련되는 기판;
상기 기판과 이격되어 배치되며, 상기 자기장 발생부에 의해 생성된 상기 자기장에 따라 생성되는 전기 신호를 검출하는 자기-전기 변환부; 및
상기 기판 상에 마련되어, 상기 자기-전기 변환부를 상기 기판으로부터 이격시켜 지지하고, 상기 외부로부터의 적외선 복사 에너지를 흡수하여 열을 발생시키는 적외선 흡수 지지부; 를 포함하며,
상기 전기 신호는, 상기 자기-전기 변환부에 직접 흡수되는 상기 외부로부터의 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화와 상기 적외선 흡수 지지부에서 흡수한 상기 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화에 따라 변하는, 원적외선 온도 검출 장치. - 제25 항에 있어서,
상기 온도 검출 장치는,
상기 외부로부터의 적외선을 상기 원적외선 검출 소자로 집광하는 집광 렌즈, 상기 집광 렌즈와 상기 원적외선 검출 소자 사이에 마련되어, 상기 적외선의 광량을 조절하는 조리개 및 상기 집광 렌즈와 상기 원적외선 검출 소자 사이에 마련되어, 상기 집광 렌즈를 통과한 상기 적외선의 일부 파장 영역을 필터링하는 광학 필터를 더 포함하는, 원적외선 온도 검출 장치. - 외부로부터의 적외선을 집광하는 광학계;
상기 광학계로부터의 적외선을 검출하도록 구성된 복수 개의 원적외선 검출 소자를 포함하는 원적외선 검출 소자 어레이 구조;
상기 복수 개의 원적외선 검출 소자의 동작을 제어하는 제어부;
상기 원적외선 검출 소자 어레이 구조로부터의 전기 신호를 처리하는 신호처리부; 및
상기 신호처리부에 의해 처리된 상기 전기 신호에 의해 생성된 이미지를 표시하는 디스플레이 소자; 를 포함하며,
상기 복수 개의 원적외선 검출 소자 각각은,
자기장을 생성하는 자기장 발생부;
상기 자기장 발생부 상에 마련되는 기판;
상기 기판과 이격되어 배치되며, 상기 자기장 발생부로부터의 자기장에 따라 생성되는 전기 신호를 검출하는 자기-전기 변환부; 및
상기 기판 상에 마련되어, 상기 자기-전기 변환부를 상기 기판으로부터 이격시켜 지지하고, 상기 외부로부터의 적외선 복사 에너지를 흡수하여 열을 발생시키는 적외선 흡수 지지부; 를 포함하며,
상기 전기 신호는, 상기 자기-전기 변환부에 직접 흡수되는 상기 외부로부터의 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화와 상기 적외선 흡수 지지부에서 흡수한 적외선 복사 에너지에 의한 상기 자기-전기 변환부의 온도 변화에 따라 변하는, 열화상 표시 장치.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200168727A KR20220079198A (ko) | 2020-12-04 | 2020-12-04 | 원적외선 검출 소자, 원적외선 검출 소자 어레이 구조, 원적외선 온도 검출 장치 및 열화상 표시 장치 |
US17/479,682 US11604099B2 (en) | 2020-12-04 | 2021-09-20 | Long-wave infrared detecting element, array structure of long-wave infrared detecting elements, long-wave infrared temperature detecting device, and thermal imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200168727A KR20220079198A (ko) | 2020-12-04 | 2020-12-04 | 원적외선 검출 소자, 원적외선 검출 소자 어레이 구조, 원적외선 온도 검출 장치 및 열화상 표시 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220079198A true KR20220079198A (ko) | 2022-06-13 |
Family
ID=81850480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200168727A KR20220079198A (ko) | 2020-12-04 | 2020-12-04 | 원적외선 검출 소자, 원적외선 검출 소자 어레이 구조, 원적외선 온도 검출 장치 및 열화상 표시 장치 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11604099B2 (ko) |
KR (1) | KR20220079198A (ko) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2222425A (en) | 1938-08-20 | 1940-11-19 | Bell Telephone Labor Inc | Magnetic structure |
US3513313A (en) | 1968-12-06 | 1970-05-19 | Sanders Associates Inc | Radiation detection apparatus |
US3727053A (en) | 1971-05-03 | 1973-04-10 | R Walser | Method and apparatus for detecting radiation by means of the pyromagnetic effect |
JP2593939B2 (ja) | 1989-05-29 | 1997-03-26 | 松下電器産業株式会社 | 温度センサ |
JP2000047083A (ja) | 1998-07-31 | 2000-02-18 | Matsushita Electric Ind Co Ltd | 撮像装置 |
JP5783167B2 (ja) * | 2010-03-25 | 2015-09-24 | 日本電気株式会社 | 熱型センサ及びプラットフォーム |
KR101594256B1 (ko) | 2014-08-19 | 2016-02-17 | 세종대학교산학협력단 | 열 감지 마그네틱 센서 |
WO2019079270A1 (en) | 2017-10-16 | 2019-04-25 | White Thomas P | MICRO HALL EFFECT DEVICES FOR SIMULTANEOUS CURRENT AND TEMPERATURE MEASUREMENTS FOR HIGH AND LOW TEMPERATURE ENVIRONMENTS |
-
2020
- 2020-12-04 KR KR1020200168727A patent/KR20220079198A/ko unknown
-
2021
- 2021-09-20 US US17/479,682 patent/US11604099B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US11604099B2 (en) | 2023-03-14 |
US20220178757A1 (en) | 2022-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6300632B1 (en) | Uncooled infrared focal plane imager and microelectromechanical infrared detector for use therein | |
US20130206990A1 (en) | Background Limited Focal Plane Array Assembly | |
US11609122B1 (en) | Silicon nitride-carbon nanotube-graphene nanocomposite microbolometer IR detector | |
US20120091342A1 (en) | MONOLITHIC PASSIVE THz DETECTOR WITH ENERGY CONCENTRATION ON SUB-PIXEL SUSPENDED MEMS THREMAL SENSOR | |
US9117726B2 (en) | Application of reduced dark current photodetector | |
US9199838B2 (en) | Thermally shorted bolometer | |
KR20150090028A (ko) | Cmos 볼로미터 | |
Dem’yanenko et al. | Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral range | |
US9766130B2 (en) | Application of reduced dark current photodetector with a thermoelectric cooler | |
US12055441B2 (en) | Thermographic sensor with thermo-couples on a suspended grid and processing circuits in frames thereof | |
KR20220079198A (ko) | 원적외선 검출 소자, 원적외선 검출 소자 어레이 구조, 원적외선 온도 검출 장치 및 열화상 표시 장치 | |
JP2016524313A (ja) | 赤外線放射のため半導体光センサ | |
JP2020150001A (ja) | 受光回路、受光素子及びapdアレイ装置 | |
US9274003B2 (en) | Image pixel apparatus for detecting electromagnetic radiation, sensor array for detecting electromagnetic radiation and method for detecting electromagnetic radiation by means of an image pixel apparatus | |
US20220178754A1 (en) | Long-wave infrared detecting element, long-wave infrared detecting element array structure, long-wave infrared temperature detecting device, and thermal imaging device | |
KR20140011251A (ko) | 인체 적외선 감지소자 및 그를 구비한 전자장치 | |
Sizov et al. | Sub-THz radiation room temperature sensitivity of long-channel silicon field effect transistors | |
JP2020150002A (ja) | 受光回路、及びapdアレイ装置 | |
Love et al. | 1K X 1K Si: As IBC detector arrays for JWST MIRI and other applications | |
Love et al. | 1024 x 1024 Si: As IBC detector arrays for JWST MIRI | |
Honda et al. | A 320 x 240pixel uncooled TEC-less infrared radiation focal plane array with the reset noise canceling algorithm | |
Ericsson et al. | Design and evaluation of a quantum-well-based resistive far-infrared bolometer | |
US10158040B2 (en) | Polaritonic hot electron infrared photodetector | |
WO2019143294A1 (en) | Optical device, gas sensor, methods of forming and operating the same | |
Fujiwara et al. | Development of far-infrared Ge: Ga photoconductor 2D array for 3-THz imaging |