KR20220077147A - 원자로로부터의 열 제거와 같은 열 제거를 위한 히트 파이프 네트워크와, 관련 시스템 및 방법 - Google Patents

원자로로부터의 열 제거와 같은 열 제거를 위한 히트 파이프 네트워크와, 관련 시스템 및 방법 Download PDF

Info

Publication number
KR20220077147A
KR20220077147A KR1020227015463A KR20227015463A KR20220077147A KR 20220077147 A KR20220077147 A KR 20220077147A KR 1020227015463 A KR1020227015463 A KR 1020227015463A KR 20227015463 A KR20227015463 A KR 20227015463A KR 20220077147 A KR20220077147 A KR 20220077147A
Authority
KR
South Korea
Prior art keywords
heat pipe
heat
region
reflector
evaporator
Prior art date
Application number
KR1020227015463A
Other languages
English (en)
Inventor
프레데릭 보쓰아
잭슨 케펜
아자트 유마딜로비치 갈리모프
Original Assignee
뉴스케일 파워, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 뉴스케일 파워, 엘엘씨 filed Critical 뉴스케일 파워, 엘엘씨
Publication of KR20220077147A publication Critical patent/KR20220077147A/ko

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • G21C1/022Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders characterised by the design or properties of the core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • G21C1/022Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders characterised by the design or properties of the core
    • G21C1/026Reactors not needing refueling, i.e. reactors of the type breed-and-burn, e.g. travelling or deflagration wave reactors or seed-blanket reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • G21C15/182Emergency cooling arrangements; Removing shut-down heat comprising powered means, e.g. pumps
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/257Promoting flow of the coolant using heat-pipes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/60Metallic fuel; Intermetallic dispersions
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/18Moderator or core structure; Selection of materials for use as moderator characterised by the provision of more than one active zone
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/28Control of nuclear reaction by displacement of the reflector or parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0054Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for nuclear applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S376/00Induced nuclear reactions: processes, systems, and elements
    • Y10S376/90Particular material or material shapes for fission reactors
    • Y10S376/901Fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S376/00Induced nuclear reactions: processes, systems, and elements
    • Y10S376/90Particular material or material shapes for fission reactors
    • Y10S376/904Moderator, reflector, or coolant materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Fuel Cell (AREA)

Abstract

원자로 시스템과 관련 장치 및 방법이 여기에 설명된다. 대표적인 원자로 시스템은 증발기 영역, 단열 영역, 및 응축기 영역을 가지는 히트 파이프 네트워크를 포함한다. 상기 히트 파이프 네트워크는 상기 증발기 영역으로부터 상기 응축기 영역으로 향하는 방향으로 증가하는 유동 단면적을 가지는 다수의 유동 경로들을 형성할 수 있다. 상기 시스템은 상기 증발기 영역의 적어도 부분에 열적으로 결합된 핵연료를 더 포함할 수 있다. 상기 히트 파이프 네트워크는 상기 증발기 영역에서 상기 연료로부터 수용된 열을 상기 응축기 영역으로 전달하도록 배치된다. 상기 시스템은 전기를 발생시키는 것과 같은 하나 이상의 공정들에서 사용하기 위해 상기 시스템 외부로 열을 이송하기 위해 상기 증발기 영역에 열적으로 결합된 하나 이상의 열교환기들을 더 포함할 수 있다.

Description

원자로로부터의 열 제거와 같은 열 제거를 위한 히트 파이프 네트워크와, 관련 시스템 및 방법
연방 지원 연구에 관한 진술
본 발명은 에너지부에 의해 수여된 계약 번호 DE-NE0000633 하에 정부 지원으로 이루어졌다. 정부는 본 발명에 대해 특정 권리를 가진다.
관련 출원에 대한 상호 참조
본 출원은 2019년 10월 15일에 "HEAT PIPE NETWORKS FOR HEAT REMOVAL, SUCH AS HEAT REMOVAL FROM NUCLEAR REACTORS, AND ASSOCIATED SYSTEMS AND METHODS"라는 명칭으로 출원된 미국 임시특허출원번호 제62/915,467호에 대한 우선권을 주장하며, 이 임시특허출원은 그 전체가 여기에 참조로 통합된다.
본 기술은 일반적으로 원자로와 관련 시스템 및 방법에 관한 것으로, 보다 상세하게는, 핵연료에 의해 발생된 열을 제거하기 위한 히트 파이프들을 가지는 원자로에 관한 것이다.
발전소는 다양한 형상과 크기로 들어선다. 대형 발전소는 지리적 영역에 전기를 공급하기 위해 사용될 수 있으며, 반면에 비교적 소형 발전소는, 예를 들어, 지역, 잠수함, 우주선, 등에 전력을 공급하기 위해 사용될 수 있다. 전기를 제공하는 것에 추가하여, 발전소는 해수 담수화로부터 의료 목적을 위한 핵 동위원소들의 생성에 이르기까지 무수한 추가적인 또는 상이한 목적들을 위해 사용될 수 있다. 마찬가지로 이용 가능한 발전소들의 유형들은 몇 가지만 열거하면 가스-동력, 석탄-화력, 및 핵-동력을 포함하는 광범위한 기술들을 커버한다.
지금까지, 핵 물질의 노심(core)으로부터 열 제거 수단으로서 히트 파이프들을 사용하는 원자로 설계는 은닉된(discreet) 연결되지 않은 히트 파이프들 내에 일정한 히트 파이프 유동 면적을 유지한다. 주어진 원자로 노심 기하구조에서, 열 제거는 총 유효 히트 파이프 유동 면적과 히트 파이프들에 의해 점유된 노심 부피의 비율에 의해 제한된다. 예를 들어, 더 많은 수의 히트 파이프들은 총 유효 유동 면적과 열 제거 용량을 증가시키지만, 연료 및 다른 노심 재료를 대체할 것이고, 이는 노심의 열 생산 가능성을 감소시킬 것이다.
다음의 예들은 본 기술의 몇몇의 실시예들의 예시이다.
1. 원자로(nuclear reactor)로서:
증발기 영역, 단열 영역, 및 응축기 영역을 포함하는 히트 파이프 네트워크로서, 상기 히트 파이프 네트워크는 상기 증발기 영역으로부터 상기 응축기 영역으로 향하는 방향으로 증가하는 유동 단면적을 가지는 다수의 유동 경로들을 형성하는, 히트 파이프 네트워크; 및
상기 증발기 영역의 적어도 부분에 열적으로 결합된 핵연료;를 포함하며,
상기 히트 파이프 네트워크는 상기 증발기 영역에서 상기 연료로부터 수용된 열을 상기 응축기 영역으로 전달하도록 배치된다.
2. 예 1의 원자로에 있어서, 상기 핵연료는 상기 증발기 영역에 직접 부착된다.
3. 예 2의 원자로에 있어서, 상기 핵연료는 상기 증발기 영역 상에 압축된 우라늄 몰리브덴 합금이다.
4. 예 1-3의 원자로에 있어서, 상기 원자로는 상기 증발기 영역을 적어도 부분적으로 둘러싸는 액체 금속 감속재를 더 포함하며, 상기 액체 금속 감속재는 상기 핵연료의 반응성을 제어하기 위해 배치된다.
5. 예 1-4의 원자로에 있어서, 상기 원자로는 상기 핵연료의 핵분열로 인한 중성자들을 반사하도록 배치된 반사기를 더 포함하며, 상기 히트 파이프 네트워크의 적어도 부분은 상기 반사기를 관통하도록 연장된다.
6. 예 5의 원자로에 있어서, 상기 단열 영역은 상기 반사기를 관통하여 상기 증발기 영역으로부터 멀어지게 연장되며, 상기 응축기 영역은 상기 반사기의 외부에 배치된다.
7. 예 1-6의 원자로에 있어서, 상기 응축기 영역에 열적으로 결합된 열교환기를 더 포함한다.
8. 예 1-7의 원자로에 있어서, 상기 유동 경로들 중 개별의 유동 경로는 상기 증발기 영역으로부터 상기 응축기 영역으로 향하는 방향으로 2개 이상의 부분들로 분기한다.
9. 예 1-8의 원자로에 있어서, 상기 유동 경로들의 개별 유동 경로들은 (a) 상기 히트 파이프 네트워크의 중심축에 근접한 제1 부분, (b) 상기 제1 부분으로부터 분기된 한 쌍의 제2부분들, (c) 상기 제2 부분들 각각으로부터 분기된 한 쌍의 제3 부분들, 및 (d) 상기 제3 부분들 각각으로부터 분기된 한 쌍의 제4 부분들을 포함한다.
10. 예 9의 원자로에 있어서, 상기 핵연료는 상기 유동 경로들의 제1 부분, 제2 부분들, 및 제3 부분들에 열적으로 결합된다.
11. 예 10의 원자로에 있어서, 상기 원자로는 상기 핵연료의 핵분열로 인한 중성자들을 반사하도록 배치된 반사기를 더 포함하며, 상기 제4 부분들은 상기 반사기를 관통하도록 연장된다.
12. 예 1-11의 원자로에 있어서, 상기 히트 파이프 네트워크는 (a) 상기 히트 파이프 네트워크의 중심축으로부터 반경방향으로 멀어지게 연장되는 동맥 유동 경로들, 및 (b) 상기 중심축을 중심으로 원주방향으로 연장되고 상기 동맥 유동 경로들 중 인접한 쌍들에 원주방향으로 연결되는 분기(off-branching) 유동 경로들을 포함한다.
13. 예 12의 원자로에 있어서, 상기 분기 유동 경로들의 개별 유동 경로는 하나 이상의 증발기 헤드들을 포함하며, 상기 핵연료는 상기 증발기 헤드들에 직접 부착된다.
14. 원자로로서:
다수의 히트 파이프 층들로서, 상기 히트 파이프 층들의 개별 히트 파이프 층은 (a) 중심축으로부터 반경방향 바깥쪽으로 연장된 히트 파이프 네트워크 및 (b) 상기 히트 파이프 네트워크의 적어도 부분에 열적으로 결합된 핵분열성 물질을 포함하며, 상기 히트 파이프 네트워크는 상기 중심축으로부터 반경방향 바깥쪽 방향으로 증가하는 유동 단면적을 가지는, 다수의 히트 파이프 층들;
상기 핵분열성 물질의 핵분열로 인한 중성자들을 상기 중심축을 향해 반경방향 안쪽 방향으로 반사하도록 배치된 반사기로서, 상기 히트 파이프 층들의 개별 히트 파이프 층 내의 히트 파이프 네트워크들은 적어도 부분적으로 상기 반사기를 관통하여 연장되는, 반사기; 및
상기 히트 파이프 층들에 열적으로 결합된 열 교환기;를 포함하며,
상기 히트 파이프 층들은 상기 핵분열성 물질로부터 수용된 열을 상기 열교환기로 전달하도록 배치된다.
15. 예 14의 원자로에 있어서, 상기 히트 파이프 층들은 하나의 층이 다른 층 위에 적층된다.
16. 예 14 또는 예 15의 원자로에 있어서, 상기 히트 파이프 층들은 프레임에 결합되고 상기 프레임에 의해 지지된다.
17. 예 14-16의 원자로에 있어서, 상기 반사기는 고체 물질을 포함하며, 상기 열교환기는 상기 반사기의 반경방향 외부에 배치된다.
18. 예 14-17의 원자로에 있어서, 상기 반사기는 유체를 포함하며, 상기 열교환기는 상기 유체 내에 적어도 부분적으로 배치되고, 상기 유체는 상기 히트 파이프 네트워크들로부터 상기 열교환기로 열을 전달하기 위해 상기 유체 및 상기 히트 파이프 층들과 열적으로 접촉된다.
19. 원자로 구성요소를 형성하는 방법으로서, 상기 방법은:
압력 용기 내에 히트 파이프를 배치하는 단계;
상기 히트 파이프의 적어도 부분 상에 분말 핵연료 물질을 제공하는 단계; 및
상기 핵연료 물질을 응고시키고 상기 핵연료 물질을 상기 히트 파이프에 직접 부착시키기 위해 상기 압력 용기 내의 압력과 온도를 증가시키는 단계;를 포함한다.
20. 예 19의 방법에 있어서, 상기 핵연료 물질은 핵분열성 물질이다.
21. 예 19 또는 예 20의 방법에 있어서, 상기 핵연료 물질은 우라늄 몰리브덴 합금이다.
22. 예 19-21의 방법에 있어서, 상기 압력 용기 내의 압력을 증가시키는 단계는 상기 압력 용기 내부로 불활성 가스를 펌핑하는 것을 포함한다.
23. 예 19-22의 방법에 있어서, 상기 히트 파이프의 적어도 부분 상에 분말 핵연료 물질을 제공하는 단계는 상기 히트 파이프의 증발기 영역 상에 분말 핵연료 물질을 제공하는 것을 포함하며, 상기 히트 파이프는 응축기 영역을 더 포함하고, 상기 히트 파이프는 상기 증발기 영역으로부터 상기 응축기 영역으로 향하는 방향으로 증가하는 유동 단면적을 가지는 유동 경로를 형성한다.
본 기술의 많은 양태들은 다음의 도면들을 참조하여 더 잘 이해될 수 있다. 도면들의 구성요소들은 반드시 축척과 일치하지는 않는다. 대신에, 본 기술의 원리를 명확하게 도시하는 데 중점을 둔다.
도 1은 본 기술의 실시예들에 따라 구성된 원자로 시스템의 개략적인 부분 측단면도이다.
도 2a와 도 2b는 각각 본 기술의 실시예들에 따라 구성된 원자로 시스템의 반사기 영역과 노심 영역의 상부 단면도와 확대된 상부 단면도이다.
도 2c는 본 기술의 실시예들에 따라 구성된 원자로 시스템의 히트 파이프의단면 사시도이다.
도 3은 본 기술의 실시예들에 따라 열간 등압 압축(HIP) 공정을 사용하여 원자로 시스템의 히트 파이프 상에 핵연료를 형성하기 위한 공정 또는 방법의 흐름도이다.
도 4a와 4b는 본 기술의 실시예들에 따라 구성된 원자로 시스템의 열 교환기를 도시하며 도 2b에 도시된 원자로 시스템의 부분의 확대된 상부 단면도이다.
도 5a-도 5c는 각각 본 기술의 추가 실시예들에 따라 구성된 원자로 시스템의 노심 영역의 상부 단면도, 확대된 상부 단면도, 및 더 확대된 상부 단면도이다.
본 개시의 양태들은 일반적으로 원자로 시스템들에 관한 것이다. 아래에서 설명되는 몇몇 실시예들에서, 대표적인 원자로 시스템은 증발기 영역, 단열 영역, 및 응축기 영역을 가지는 상호연결된 히트 파이프들의 네트워크를 포함한다. 상기 히트 파이프들은 작동 유체를 담도록 구성되며, 상기 히트 파이프들의 네트워크는 상기 증발기 영역으로부터 응축기 영역을 향하는 방향으로 작동 유체를 위한 증가하는 유동 단면적을 형성할 수 있다. 상기 시스템은, 열을 발생시키도록 구성되고 상기 증발기 영역의 적어도 부분에 열적으로 결합된 핵 연료, 예컨대 핵분열성 물질을 더 포함할 수 있다. 상기 히트 파이프들의 네트워크는 상기 증발기 영역으로부터 응축기 영역으로 열을 전달하도록 구성된다. 상기 시스템은, 전기 발생을 포함하지만 이에 제한되지 않는 하나 이상의 공정들에서 사용하기 위해, 상기 시스템 외부로 열을 전달하기 위해 상기 응축기 영역에 열적으로 결합된 하나 이상의 열교환기들을 더 포함할 수 있다.
본 기술의 하나의 양태에서, 상기 히트 파이프들의 증가하는 유동 면적은, 예를 들어, 일정한 유동 면적의 단일 파이프를 가지는 종래의 히트 파이프들과 비교할 때, 상기 히트 파이프들의 열 제거 능력을 증가시킬 수 있다. 몇몇 실시예들에서, 상기 히트 파이프들은 히트 파이프들의 네트워크의 유동 영역을 증가시키기 위해 상기 증발기 영역으로부터 응축기 영역을 향하는 방향으로 분기되거나 두 갈래로 나뉠 수 있다.
몇몇 실시예들에서, 상기 히트 파이프들의 네트워크는 히트 파이프 층들 내에 제공될 수 있으며, 상기 원자로 시스템은 다수의 적층된 히트 파이프 층들을 포함할 수 있다. 본 기술의 하나의 양태에서, 상기 히트 파이프 층들의 수는, 예를 들어, 상기 시스템 내의 연료의 양과, 이에 따른 시스템의 전력/열 출력에 따라 변할 수 있다. 본 기술의 다른 양태에서, 상기 히트 파이프 층들은 공통 프레임 및/또는 히트 파이프 층들 중 다른 층들에 느슨하게 결합될 수 있다. 이는 열 및/또는 조사(irradiation)로 인해 상기 히트 파이프 층들이 독립적으로 팽창/수축되도록 허용할 수 있으며, 이에 의해 히트 파이프 층들, 프레임, 및/또는 시스템의 다른 구성요소들의 기계적 응력을 감소시킨다. 몇몇 실시예들에서, 상기 시스템에 연료를 보급하기 위해, 히트 파이프 층들 중 하나 이상(및 이에 부착되거나 이에 관련된 연료)은, 예를 들어, 전체 히트 파이프들의 네트워크를 제거할 필요 없이, 제거되어 교체될 수 있으며 및/또는 히트 파이프 층들의 스택 내부의 다른 위치로 이동될 수 있다.
몇몇 실시예들에서, 연료는 히트 파이프들의 증발기 영역에 직접 부착될 수 있으며, 이는 연료와 히트 파이프들 사이에 높은 열적 결합을 제공할 수 있다. 예를 들어, 연료는 열간 등압 압축(HIP: Hot Isostatic Pressing) 공정을 사용하여 히트 파이프들 상에 형성될 있다.
본 기술의 다양한 실시예에 대한 완전한 이해를 제공하기 위해 특정 세부사항들이 다음의 설명과 도 1-5c에서 제시된다. 다른 예들에서, 원자로, 히트 파이프, 열교환기, 등과 관련된 잘 알려진 구조, 재료, 작동, 및/또는 시스템은 본 기술의 다양한 실시예들의 설명을 불필요하게 모호하게 하는 것을 피하기 위해 다음의 개시에서 상세히 도시되거나 설명되지 않는다. 그러나, 본 기술 분야의 통상의 지식을 가진 자는 본 기술이 여기에 제시된 세부 사항들 중 하나 이상을 가지지 않으면서 및/또는 다른 구조들, 방법들, 구성요소들, 등으로 실시될 수 있음을 인식할 것이다.
아래에서 사용된 용어는 비록 본 기술의 실시예들의 특정 예들의 상세한 설명과 함께 사용되더라도 가장 광범위하고 합리적인 방식으로 해석되어야 한다. 실제로, 특정 용어들은 아래에서 강조될 수도 있지만, 임의의 제한된 방식으로 해석되도록 의도된 임의의 용어는 이 상세한 설명의 섹션에서와 같이 명시적이고 구체적으로 정의될 것이다.
첨부된 도면은 본 기술의 실시예들을 도시하고 명시적으로 나타내지 않는 한 그 범위를 제한하도록 의도되지 않았다. 다양한 묘사된 요소들의 크기가 반드시 축척에 맞춰 그려지는 것은 아니며, 이러한 다양한 요소들은 가독성을 향상시키기 위해 확대될 수 있다. 구성요소의 세부사항들은, 이러한 세부사항들이 본 기술을 만들고 사용하는 방법을 완전히 이해하는 데 필요하지 않을 때, 구성요소들의 위치와 이러한 구성요소들 사이의 특정한 정확한 연결과 같은 세부사항들을 제외하기 위해 도면들에서 추상화될 수 있다. 도면들에 도시된 많은 세부사항들, 치수들, 각도들 및 다른 특징들은 단지 본 개시의 특정 실시예들을 예시하는 것이다. 따라서, 다른 실시예들들들은 본 기술로부터 벗어남이 없이 다른 세부사항들, 치수들, 각도들 및 특징들을 가질 수 있다. 또한, 본 기술 분야의 통상의 지식을 가진 자는 본 기술의 추가 실시예들이 아래에서 설명되는 세부사항들 중 몇몇이 없이도 실시될 수 있음을 이해할 것이다.
도 1은 본 기술의 대표적인 실시예들에 따라 구성된 원자로 시스템(100)("시스템(100)")의 개략적인 부분 측단면도이다. 도시된 실시예에서, 도시된 실시예에서, 상기 시스템(100)은 원자로 용기(102)와 상기 원자로 용기(102)를 둘러싸는/에워싸는 방사선 차폐 용기(104)를 포함한다. 몇몇 실시예들에서, 원자로 용기(102)와 방사선 차폐 용기(104)는 대략 원통-형상 또는 캡슐-형상일 수 있다. 상기 시스템(100)은 원자로 용기(102) 내부의 다수의 히트 파이프 층들(106)을 더 포함한다. 도시된 실시예에서, 상기 히트 파이프 층들(106)은 서로로부터 이격되고 서로의 위에 적층된다. 몇몇 실시예들에서, 상기 히트 파이프 층들(106)은 공통 프레임(109), 원자로 용기(102)의 부분(예컨대, 그 벽), 및/또는 원자로 용기(102) 내부의 다른 적합한 구조물에 장착/고정될 수 있다. 다른 실시예들들에서, 히트 파이프 층들(106)은, 히트 파이프 층들(106) 각각이 히트 파이프 층들(106) 중 하나 이상을 지지하도록 및/또는 히트 파이프 층들(106) 중 하나 이상에 의해 지지되도록 서로의 상부에 직접 적층될 수 있다.
도시된 실시예에서, 상기 시스템(100)은 노심 영역(core region)(116)을 적어도 부분적으로 둘러싸는 차폐 또는 반사기 영역(shield or reflector region)(114)을 더 포함한다. 상기 히트 파이프 층들(106)은 원형, 직선형, 다각형, 및/또는 다른 형상들을 가질 수 있으며, 이에 의해 상기 노심 영역(116)은 대응되는 3차원 형상(예컨대, 원통형, 구형, 등)을 가진다. 몇몇 실시예들에서, 상기 노심 영역(116)은 금속 벽과 같은 노심 장벽(core barrier)(115)에 의해 반사기 영역(114)으로부터 분리된다. 상기 노심 영역(116)은 히트 파이프 층들(106)을 가열하기 위한 핵분열성 물질과 같은 하나 이상의 연료 소스들을 포함할 수 있다. 상기 반사기 영역(114)은 상기 시스템(100)의 작동 중에 노심 영역(116) 내의 연료를 연소시킴으로써 발생되는 생성물을 함유/반사하도록 구성된 하나 이상의 물질들을 포함할 수 있다. 예를 들어, 상기 반사기 영역(114)은 중성자들 및/또는 다른 핵분열 생성물들을 노심 영역(116)을 향해 반경방향 안쪽으로 반사하도록 구성된 액체 또는 고체 물질을 포함할 수 있다. 몇몇 실시예들에서, 상기 반사기 영역(114)은 노심 영역(116)을 완전히 둘러쌀 수 있다. 다른 실시예들에서, 상기 반사기 영역(114)은 노심 영역(116)을 부분적으로만 둘러쌀 수 있다. 몇몇 실시예들에서, 상기 노심 영역(116)은 감속재 및/또는 냉각제와 같은 제어 물질(117)을 포함할 수 있다. 상기 제어 물질(117)은 노심 영역(116) 내의 히트 파이프 층들(106)을 적어도 부분적으로 둘러쌀 수 있으며 이들 사이에서 열을 전달할 수 있다. 몇몇 실시예들에서, 아래에서 더 상세히 설명되는 바와 같이, 상기 제어 물질(117)은 상기 시스템(100)의 반응성을 제어하도록 구성된 액체 감속재(예컨대, 액체 금속 합금, 액체 금속 수소화물)일 수 있다.
도시된 실시예에서, 상기 시스템(100)은 히트 파이프 층들(106) 둘레에 위치한 적어도 하나의 열교환기(108)를 더 포함한다. 상기 히트 파이프 층들(106)은 노심 영역(116)으로부터 적어도 부분적으로 반사기 영역(114) 내부로 연장될 수 있으며, 열교환기(108)에 열적으로 결합된다. 도 4a와 4b를 참조하여 아래에서 더 상세히 설명되는 바와 같이, 상기 열교환기(108)는 반사기 영역(114)의 외부에 또는 부분적으로 반사기 영역(114)의 내부에 위치할 수 있다. 도 2a-5c를 참조하여 아래에서 더 상세히 설명되는 바와 같이, 상기 히트 파이프 층들(106)은 각각 노심 영역(116)으로부터 열교환기(108)로의 열 전달 경로를 제공하는 히트 파이프들의 어레이를 포함할 수 있다. 상기 시스템(100)의 작동 중에, 상기 노심 영역(116) 내의 연료는 히트 파이프 층들(106) 내의 히트 파이프들 내부의 유체를 가열 및 기화시킬 수 있으며, 상기 유체는 열 교환기(108)로 열을 전달할 수 있다.
몇몇 실시예들에서, 상기 열교환기(108)는 히트 파이프 층들(106) 둘레를 감싸는 하나 이상의 나선형으로 감긴 튜브들을 포함할 수 있다. 상기 열교환기(108)의 튜브들은 전기, 증기, 등을 발생시키는 데 사용하기 위해 히트 파이프 층들(106)로부터 원자로 용기(102)와 방사선 차폐 용기(104) 외부로 열을 운반하는 작동 유체(예컨대, 물 또는 다른 유체와 같은 냉각제)를 포함하거나 운반할 수 있다. 예를 들어, 도시된 실시예에서, 상기 열교환기(108)는 터빈(110), 발전기(111), 응축기(112), 및 펌프(113)에 작동 가능하게 결합된다. 상기 열교환기(108) 내부의 작동 유체의 온도가 증가함에 따라, 작동 유체는 끓어서 기화되기 시작할 수 있다. 기화된 작동 유체(예컨대, 증기)는 작동 유체의 열 위치 에너지(thermal potential energy)를 발전기(111)를 통해 전기 에너지로 변환하기 위해 터빈(110)을 구동시키는 데 사용될 수 있다. 상기 응축기(112)는 작동 유체가 터빈(110)을 통과한 후 작동 유체를 응축시킬 수 있고, 상기 펌프(113)는 작동 유체를 다시 열교환기(108)로 안내할 수 있으며, 여기서 작동 유체는 또 다른 열 사이클을 시작할 수 있다.
도 2a와 2b는 각각 본 기술의 대표적인 실시예들에 따라 구성된 반사기 영역(114)과 노심 영역(116)의 상부 단면도와 확대된 상부 단면도이다. 보다 구체적으로, 도 2a는 히트 파이프 층들(106) 중 하나를 도시한다. 도시된 실시예에서, 상기 히트 파이프 층(106)은 적어도 부분적으로 상호 연결된 히트 파이프들(220)의 네트워크를 포함한다. 상기 히트 파이프들(220)은 별개의 튜브들, 하나 이상의 고체 부재들 내에/사이에 형성된 채널들, 및/또는 (예컨대, 그 내부에 담겨 있는 작동 유체를 위한) 하나 이상의 유동 경로들을 제공하도록 구성된(예컨대, 배치되고 형상화된) 다른 구조물들일 수 있다.
상기 히트 파이프들(220)은 원자로 용기(102)로부터 반사기 영역(114)을 향하는 방향으로(예컨대, 도 2a에서 화살표(R)로 표시된 바와 같이 히트 파이프 층(106)의 중심축(C)으로부터 멀어지는 방향으로) 반경방향 바깥쪽으로 연장됨에 따라 두 갈래로 나뉘는 분기되는/테이퍼지는 배치형태를 가질 수 있다. 보다 구체적으로, 도 2b를 참조하면, 상기 히트 파이프들(220)은 제2 부분들(222)의 반경방향 안쪽에 위치하고 제2 부분들(22)로 두 갈래로 분기되는(예컨대, 제2 부분들(22)로 분할되는, 제2 부분들(22)에 연결되는, 등) 제1 부분들(221)을 포함할 수 있다. 마찬가지로, 상기 제2 부분들(222)은 제3 부분들(223)의 반경방향 안쪽에 위치하고 제3 부분들(223)로 두 갈래로 분기될 수 있으며, 상기 제3 부분들(223)은 제4 부분들(224)의 반경방향 안쪽에 위치하며 제4 부분들(224)로 두 갈래로 분기될 수 있다. 몇몇 실시예들에서, 상기 히트 파이프들(220)은 더 많거나 더 적은 분기들을 포함할 수 있다. 상기 히트 파이프들(220)은 모두 함께 유체적으로 연결될 수 있거나, 또는 히트 파이프들(220)의 2개 이상의 상이한 서브세트들이 함께 유체적으로 연결될 수 있다. 예를 들어, 상기 제1 부분들(221) 중 하나와 그 자손(예컨대, 제2 부분들(222) 중 2개, 제3 부분들(223) 중 4개, 제4 부분들(224) 중 8개, 기타 등등)을 포함하는 상기 히트 파이프들(220)의 서브세트 또는 가지(branch)(예컨대, 도 2b에 도시된 쐐기-형상의 가지)는 함께 연결될 수 있다. 인접한 쐐기-형상의 가지들은 서로 독립적일 수 있으며, 또는 개별의 쐐기-형상의 가지들은 (예컨대, 제1 부분들(221)에 인접한 입구들에서) 함께 연결될 수 있다.
도 2c는 본 기술의 실시예들에 따라 구성된 히트 파이프들(220) 중 하나의 단면 사시도이다. 도시된 실시예에서, 상기 히트 파이프(220)는 외측 표면(232a) 및 내측 표면(232b)을 가지며 채널(234)을 형성하는 외부 벽(230)을 포함한다. 상기 히트 파이프(220)는 채널(234) 내부에 담긴 작동 유체(미도시)를 포함한다. 상기 작동 유체는, 예를 들어, 나트륨 또는 칼륨과 같은 2상(예컨대, 액상 및 증기상) 금속일 수 있다. 상기 벽(230)은, 예를 들어, 하나 이상의 금속 또는 세라믹 재료와 같은 임의의 적절하게 강하고, 열 전도성이며, 중성자 저항성 재료로 형성될 수 있다. 특정 실시예에서, 상기 벽(230)은 몰리브덴 합금을 포함한다. 도시된 실시예에서, 상기 벽(230)은 일반적으로 정사각형 단면 형상을 가지는 반면에, 다른 실시예들에서, 상기 벽(230)은 원형, 직사각형, 다각형, 불규칙한, 또는 다른 단면 형상을 가질 수 있다.
상기 히트 파이프(220)는 내측 표면(232b)의 부분, 예컨대 내측 표면(232b)의 (예컨대, 중력에 대해) 하부/바닥 부분을 따라서/위로 연장되는 제1 메쉬 또는 윅(mesh or wick)(236)을 더 포함한다. 상기 히트 파이프(220)는 제1 윅(236)과 내측 표면(232b)의 나머지의 전체 또는 부분을 따라서/위로 연장되는 제2 메쉬 또는 윅(238)을 더 포함할 수 있다. 몇몇 실시예들에서, 상기 제1 윅(236)은 제2 윅(238)과 비교하여 작동 유체의 상대적으로 높은 처리량이 가능한 코어스(coarse) 윅이다. 상기 제2 윅(238)은 제1 윅(236)보다 더 큰 압력 구배에서, 그러나 제1 윅(236)보다 짧은 거리에서 작동 유체를 펌핑하도록 구성된 미세 윅(fine wick)일 수 있다. 따라서, 제1 및 제2 윅들(236, 238)은 함께 (i) 제1 윅(236)이 작동 유체의 장거리 유동을 허용하고 (ii) 제2 윅(238)이 작동 유체의 국부적 유동을 허용하는 복합 윅을 형성할 수 있다. 다른 실시예들에서, 상기 히트 파이프(220)는 히트 파이프(220)의 채널(234)을 통한 작동 유체의 흐름을 촉진시키기 위한 다른 윅 배치형태(예컨대, 복합 또는 단일 윅 배치형태)를 포함할 수 있다.
도 2a-2c를 함께 참조하면, 상기 히트 파이프들(220)은, 적어도 부분적으로 (i) 노심 영역(116)과 그 내부의 제어 물질(117) 및 (ii) 반사기 영역(114)을 통해 중심축(C)으로부터 반경방향 바깥쪽으로 연장된다. 더 구체적으로, 몇몇 실시예들에서, 상기 히트 파이프들(220)의 제1, 제2 및 제3 부분들(221-223)은 노심 영역(116) 내부에 위치하며, 반면에 제4 부분들(224)은 반사기 영역(114)을 통해 연장된다. 도시된 실시예에서, 상기 히트 파이프들(220)의 제4 부분(224)은 히트 파이프들(220)의 외측 말단부들(225)이 반경방향으로 반사기 영역(114)의 외부에 위치하도록 반사기 영역(114)을 완전히 관통하도록 연장된다.
연료(226)(도 2b)는 노심 영역(116)내의 히트 파이프들(220) 둘레에/근처에(예컨대, 히트 파이프들(220)의 제1, 제2, 및 제3 부분들(221-223)에) 배치된다. 몇몇 실시예들에서, 연료(226)는 높은 열전도율을 가진 우라늄 몰리브덴 합금과 고밀도의 핵분열성 물질과 같은 핵분열성 물질을 포함하는 고체 금속 연료일 수 있다. 몇몇 실시예들에서, 상기 연료(226)는, 히트 파이프들(220)의 벽들(330)과 연료(226) 사이에 갭이 없거나 오직 작은 갭만 있도록, 히트 파이프들(220) 또는 히트 파이프들(220)을 지지하는 구조물(예컨대, 도 1에 도시된 프레임(109))을 따라서 슬롯들(미도시) 내부에 삽입될 수 있다. 이러한 실시예들에서, 상기 슬롯들은 연료(226)를 덮을 수 있으며 연료(226)의 성장 및/또는 핵분열 생성물의 탈출을 억제하거나 심지어 방지하는 클래딩(cladding)으로서 작용할 수 있다. 다른 실시예들에서, 연료(226)는, 예를 들어, 열간 등압 압축(HIP) 공정, 소결, 적층 제조, 및/또는 다른 적합한 공정을 사용하여 히트 파이프들(220) 상에 직접 형성/부착될 수 있다.
본 기술의 실시예들에 따라 HIP 공정을 사용하여 (예컨대, 원자로 구성요소를 형성하는) 히트 파이프들 상에 연료(226)를 형성하기 위한 공정 또는 방법(360)의 흐름도이다. 블록(362)에서, 상기 방법(360)은 압력 용기 내에 히트 파이프들(220) 중 하나 이상을 배치하는 단계를 포함한다. 블록(364)에서, 상기 방법(360)은 분말 연료 물질(예컨대, 핵분열성 물질)을 히트 파이프들(220)의 부분 상에 제공/증착하는 단계를 포함한다. 예를 들어, 상기 연료(226)는 노심 영역(116) 내에 배치될 히트 파이프들(220)의 벽들(230) 상에 금속 분말(예컨대, 우라늄 몰리브덴 합금의 분말)로서 제공될 수 있다. 상기 연료(226)는 히트 파이프들(220)이 압력 용기 내에 배치되기 전 또는 후에 히트 파이프들(220) 상에 제공될 수 있다. 블록(366)에서, 상기 방법(360)은 연료 물질을 고화/압축시키고 연료 물질을 히트 파이프들(220)에 직접 부착시키기 위해 압력 용기 내의 압력과 온도를 증가시키는 단계를 포함한다. 예를 들어, 증가된 온도와 압력은 분말 연료(226)를 히트 파이프들(220)의 벽들(330) 상에서 콤팩트한 고체로 압축시킬 수 있다. 몇몇 실시예들에서, 압력 용기 내의 압력을 증가시키는 단계는 히트 파이프들(220)의 재료 또는 연료(226)와 반응하지 않는 불활성 가스(예컨대, 아르곤)를 압력 용기 내부로 펌핑함으로써 압력 용기 내의 등방성 가스 압력을 증가시키는 것을 포함한다. 몇몇 실시예들에서, 상기 온도는 대략 450℃보다 높거나, 대략 1000℃보다 높거나, 대략 1300℃보다 높을 수 있으며, 또는 더 높을 수 있다. 몇몇 실시예들에서, 상기 압력은 대략 20MPa보다 높거나, 대략 50MPa보다 높거나, 대략 100MPa보다 높을 수 있으며, 또는 더 높을 수 있다.
따라서, 도 1-3을 함께 참조하면, 본 기술의 하나의 양태에서, 연료(226)는 히트 파이프들(220)의 벽들(330)에 물리적으로 부착/통합될 수 있으며, 이는 연료(226)와 히트 파이프들(220) 사이의 높은 열적 결합을 제공할 수 있다. 몇몇 실시예들에서, 클래딩 재료는 연료(226)를 히트 파이프들(220)에 부착시키기 위한 동일하거나 상이한 공정을 사용하여 연료(226) 둘레에 형성될 수 있다. 예를 들어, 연료(226) 둘레에 클래딩 층을 형성하기 위해 HIP 공정이 사용될 수 있다.
시스템 작동 중에(예컨대, 연료(226)와 히트 파이프들(220)이 상기 시스템(100) 내에 설치된 후), 연료(226)는 히트 파이프들(220) 내부의 작동 유체를 증발/기화시키기 위해 히트 파이프들(220)로 전달되는 열을 발생시킨다. 상기 노심 영역(116) 내의 히트 파이프들(220)의 제1, 제2 및 제3 부분들(221-223)은 작동 유체가 가열되고 증발/기화되는 히트 파이프들(220)의 증발기 영역을 형성할 수 있다. 증발된 작동 유체는 그 다음에, 작동 유체가 냉각되고 응축되는 히트 파이프들(220)의 외측 말단부들(225)(예컨대, 히트 파이프들(220)의 응축기 영역)을 향해, 반사기 영역(114)을 통과하는 히트 파이프들(220)의 제4 부분들(224)(예컨대, 히트 파이프들(220)의 단열 영역)을 따른 채널들(234)을 통해 반경방향 바깥쪽으로 흐른다. 상기 제1 및 제2 윅들(236, 238)은 응축되고/냉각된 작동 유체를 히트 파이프들(220) 내의 압력 구배에 대항하여 작동 유체가 다시 한번 가열되고 기화될 수 있는 히트 파이프들(220)의 증발기 영역으로 이송하도록 구성된다. 따라서, 몇몇 실시예들에서, 열은 히트 파이프들(220)의 증발기 영역 내부에 축적되고, 히트 파이프들(220)의 응축기 영역으로부터 제거되며, 단열 영역 내의 히트 파이프들(220)에 추가되거나 이로부터 제거되지 않는다. 작동 유체의 증기 질량 유량은 증발기 영역의 길이에 걸쳐 증가할 수 있으며 응축기 영역의 길이에 걸쳐 감소할 수 있다.
본 기술의 하나의 양태에서, 히트 파이프들(220)의 분기되는(예컨대, 분할되는, 두 갈래로 나눠지는) 배치형태는 반경방향으로(예컨대, 도 2a에서 화살표(R)로 표시된 방향으로) 증가하는 유동 면적(예컨대, 유동 단면적)을 제공한다. 즉, 히트파이프들(220)은 공통점(예컨대, 중심축(C)) 가까이로부터 시작하여 제1 부분들(221)로부터 제2 부분들(222)로, 제2 부분들(222)로부터 제3 부분들(223)로 분기됨으로써 유동 면적이 증가한다. 이러한 배치형태는 일정한 유동 면적의 단일 파이프를 가지는 종래의 히트 파이프들과 비교하여 히트 파이프들(220)의 열 제거 능력을 증가시킬 수 있다.
보다 구체적으로, 히트 파이프의 열 제거 능력에 영향을 미치는 적어도 두 가지 특성들, 즉 모세관 한계(capillary limit) 및 음속 한계(sonic limit)가 있다. 모세관 한계는 히트 파이프 길이에 걸친 압력 차이로부터의 힘이 히트 파이프의 윅 내부의 모세관력을 초과하여 냉각액이 히트 파이프의 단부에 도달하는 것을 방지할 때 발생한다. 이 한계는 윅을 개선함으로써 모세관력을 높이거나 증기 유동 경로를 개선함으로써 압력차를 감소시킴으로써 해결될 수 있다. 음속 한계는 초크 유동(choked flow)이 발생할 때의 속도를 나타내며, 이 지점에서는 히트 파이프에 의해 더 많은 유체가 이송될 수 없다. 이 한계는 더 큰 유동 면적이나 더 낮은 파워에 의해 해결될 수 있다. 상기 히트 파이프들(220)의 배치형태는 모세관 및 음속 한계들을 초과하지 않으면서 일정한 유동 면적을 가지는 종래의 히트 파이프들과 비교하여 히트 파이프들(220)의 길이를 따라 증기 및 액체 유동 면적을 증가시키며, 이에 따라 개선된 열 전달을 제공한다. 특히, 유동 면적의 증가는 일반적으로 히트 파이프의 증발기 섹션에서 발생하는 증기 속도의 증가를 제한한다. 이는 분기하는 히트 파이프들(220)이 작동 한계에 직면하기 전에 더 많은 열을 끌어들이는 것을 허용한다.
본 기술의 다른 양태에서, 상기 분기하는 히트 파이프들(220)은 또한 반경 방향(예컨대, 도 2a에서 화살표(R)로 표시된 방향)으로 증가하는 표면적을 가진다. 이는 히트 파이프들(220)과 연료(226) 사이에 비교적 높은 유효 접촉 표면적을 허용하며(연료(226)를 부착시키기 위해 더 많은 표면적을 제공하며), 이에 의해 연료(226)가 더 얇아지고 더 큰 표면적에 걸쳐 퍼지도록 허용한다. 또한, 분기하는 히트 파이프들(220)은 추가적인 표면적을 제공할 수 있으며, 이는 결국 외측 말단부들(225)에 가까운 응축기 영역에서 반경방향으로 더욱 균일한 냉각을 제공한다.
분기는 또한 노심 영역(116) 내에 필요한 개별 히트 파이프들(220)의 수를 감소시킨다. 예를 들어, 분기하는 히트 파이프들(220) 중 하나는 증발기 영역으로부터 다수의 유동 출구들로 노심 영역(116)의 섹션을 커버할 수 있다. 따라서, 분기하는 히트 파이프들(220)은 동일한 열 제거율(예컨대, 동일한 증발기 출구 유동 면적)에 대해 노심 영역(116) 내부의 파이프들의 체적을 감소시킨다. 더 적은 수의 파이프들이 사용될 수 있기 때문에, 열교환기(108)(도 1)는 더 콤팩트하게 만들어질 수 있으며 및/또는 더 많은 연료(226) 및/또는 제어 물질(117)(예컨대, 감속재)이 노심 영역(116) 내에 포함될 수 있다. 요약하면, 본 기술은 열 제거에 필요한 노심 영역(116)의 부피의 부분을 감소시키면서 상기 시스템(100)의 열 제거 용량을 증가시키기 위한 수단을 제공한다.
도 4a와 4b는 본 기술의 실시예들에 따라 구성된 열 교환기(108)를 도시하며 도 2b에 도시된 시스템(100)의 부분의 확대된 상부 단면도이다. 먼저, 도 4a를 참조하면, 몇몇 실시예들에서, 상기 열교환기(108)는 히트 파이프들(220)의 외측 말단부들(225)에 근접한(예컨대, 히트 파이프들(220)의 응축기 영역에 근접한) 반사기 영역(114) 내부에 배치될 수 있다.
이러한 몇몇의 실시예들에서, 반사기 영역(114)은 노심 영역(116)을 향해 안쪽으로 중성자들을 반사하도록 구성된 액체 금속 물질(예컨대, 액체 금속 합금, 액체 금속 수소화물)과 같은 액체(440)를 포함한다. 몇몇 실시예들에서, 열교환기(108)는 히트 파이프들(220) 및/또는 그 지지 구조물에 직접 결합/부착될 수 있으며, 반면에, 다른 실시예들에서, 열교환기(108)는 반사기 영역(114) 내의 히트 파이프들(220)로부터 이격될 수 있다. 예를 들어, 상기 액체(440)는 히트 파이프들(220)로부터 열 교환기(108)로 열을 전달하기 위한 열 전달 매체로서 작용할 수 있다. 몇몇 실시예들에서, 노심 장벽(115)은 반사기 영역(114) 내의 액체(440)를 노심 영역(116) 내의 제어 물질(117)로부터 분리시킬 수 있으며, 히트 파이프들(220)은 노심 장벽(115)을 관통할 수 있다. 본 기술의 하나의 양태에서, 반사기 영역(114) 내의 액체(440)의 열적 특성들은 열교환기(108) 둘레에 열을 분배하는 데 도움을 줄 수 있으며, 이에 의해 히트 파이프들(220) 중 임의의 것의 고장으로부터 열교환기(108)의 고장을 억제할 수 있다.
다음으로, 도 4b를 참조하면, 몇몇 실시예들에서, 열교환기(108)는 히트 파이프들(220)의 외측 말단부들(225)에 근접한(예컨대, 히트 파이프들(220)의 응축기 영역에 근접한) 반사기 영역(114)의 반경방향 외부에 배치될 수 있다. 이러한 몇몇 실시예들에서, 반사기 영역(114)은 중성자들을 노심 영역(116)을 향해 안쪽으로 반사하도록 구성된 고체 물질(442)을 포함한다. 따라서, 히트 파이프들(220)은 고체 물질(442)을 관통할 수 있다.
도 1-2c, 4a, 및 4b를 함께 참조하면, 몇몇 실시예들에서, 노심 영역(116)은 히트 파이프들(220)과 노심 영역(116) 내의 연료(226)를 적어도 부분적으로 둘러싸는 제어 물질(117)을 포함할 수 있다. 도시된 실시예에서, 제어 물질(117)은 노심 영역(116)의 가장자리에서 종결되며 이에 따라 연료(226)를 완전히 둘러싼다. 다른 실시예들에서, 제어 물질(117)은 반사기 영역(114) 내부로 적어도 부분적으로 연장될 수 있으며 반사기의 부분으로서 작용할 수 있다. 또 다른 실시예들에서, 제어 물질(117)은 생략될 수 있다.
상기 제어 물질(117)은 상기 시스템(100)의 반응성을 제어하도록 구성된 감속재 및/또는 히트 파이프 층들(106) 사이에 열을 분배하도록 구성된 냉각제일 수 있다. 몇몇 실시예들에서, 상기 제어 물질(117)은, 예를 들어, 시스템(100)으로부터 수소를 추가하거나 제거함으로써 연료(226)의 반응성을 제어하는데 사용될 수 있는 금속 수소화물을 포함하는 액체 감속재일 수 있다. 보다 구체적으로, 제어 물질(117)은 수소화칼슘(예컨대, CaH2), 칼슘 비스무트(Bi-Ca), 및/또는 다른 적합한 화합물의 혼합물일 수 있다. 이러한 혼합물은 시스템(100)의 수소 함량에 기초하여 금속과 금속 수소화물 사이의 가역적 변환을 겪을 수 있으며, 이에 따라 제어 물질(117)의 상태에 기초하여 연료(226)의 반응성을 제어하기 위한 감속재로서 사용될 수 있다. 예를 들어, 몇몇 실시예들에서, 상기 시스템(100)은 노심 영역(116)의 수소 함량 수준을 변경하여 제어 물질(117)의 상태 및 이에 따른 감속 특성을 제어하도록 구성된 수소 제어 시스템(119)(도 1)을 포함할 수 있다. 상기 제어 물질(117)은 또한 히트 파이프 층들(106) 사이에 열을 균일하게 분배하기 위해 냉각제로서 작용할 수 있다. 예를 들어, 히트 파이프들(220) 중 하나 이상이 고장난 경우에, 제어 물질(117)은 히트 파이프들(220) 중 고장난 것의 둘레의 연료(226)로부터의 열을 시스템(100)으로부터 제거하기 위해 다른 기능하는 히트 파이프들(220)로 전달하는 것을 도울 수 있다. 따라서, 본 기술의 하나의 양태에서, 제어 물질(117)은 히트 파이프 고장으로부터 발생하는 열-구배 유도된 응력을 감소시키고 노심 영역(116)의 구조적 설계를 단순화한다.
상기 제어 물질(117)에 대해 추가로 또는 대안으로서, 상기 시스템(100)은 연료(226)의 핵분열을 유도할 수 있는 노심 영역(116) 내의 (예컨대, 독(poison)) 중성자들을 흡수하도록 구성된 붕소 제어봉(control rod)과 같은 하나 이상의 제어봉(미도시)을 포함할 수 있다. 이러한 제어봉들은 상기 시스템(100)의 시동 및 정지를 용이하게 할 수 있다.
도 5a-도 5c는 각각 본 기술의 추가 실시예들에 따라 노심 영역에 배치된 히트 파이프 층들(106) 중 하나의 부분의 상부 단면도, 확대된 상부 단면도, 및 더 확대된 상부 단면도이다.
도 5a와 5b에 도시된 히트 파이프 층의 특징들 및 관련 기능 중 일부는 일반적으로 도 2a-4b와 관련하여 상세하게 설명된 히트 파이프 층의 특징들 및/또는 기능과 유사하거나 동일할 수 있다. 예를 들어, 도 5a-5c를 함께 참조하면, 히트 파이프 층(106)은 상호 연결된 히트 파이프들의 네트워크를 포함한다. 그러나, 도시된 실시예에서, 히트 파이프 층(106)은 (i) 히트 파이프 층(106)(도 5a)의 중심축(C)으로부터 멀어지는 화살표(R)로 표시된 방향으로 반경방향 바깥쪽으로 연장되는 동맥 히트 파이프들(520)(예컨대, 동맥 유동 경로들; 제1 내지 제3 동맥 히트 파이프들(520a-520c)로 개별적으로 식별됨)과 (ii) 중심축(C)에 대해 원주방향으로 연장되고 동맥 히트 파이프들(520) 중 두 개 이상에 연결되는 분기(off-branching) 히트 파이프들(552)(예컨대, 분기 유동 경로들)을 포함한다.
도시된 실시예에서, 제1 동맥 히트 파이프들(520a)은 제2 및 제3 동맥 히트 파이프들(520b,c)보다 반경방향 안쪽으로 더 연장되며, 제2 동맥 히트 파이프들(520b)는 제3 동맥 히트 파이프들(520c)보다 반경방향 안쪽으로 더 연장된다. 더욱이, 동맥 히트 파이프들(520)은 일반적으로 중심축(C)을 중심으로 원주방향으로 균등하게 이격될 수 있으며, 제3 동맥 히트 파이프들(520c)의 수는 제2 동맥 히트 파이프들(520b)의 수보다 더 많을(예컨대, 두 배) 수 있고, 제2 동맥 히트 파이프들(520b)의 수는 제1 동맥 히트 파이프들(520a)의 수보다 더 많을(예컨대, 두 배) 수 있다. 따라서, 동맥 히트 파이프들(520)은, 제1 동맥 히트 파이프들(520a) 각각이 제2 동맥 히트 파이프들(520b) 중 2개(예컨대, 한 쌍)에 직접 인접하고, 제2 동맥 히트 파이프들(520b) 각각이 제3 동맥 히트 파이프들(520c) 중 2개(예컨대, 한 쌍)에 직접 인접하는 교호하는(alternating)/끼워지는(interleaved) 배치형태를 형성할 수 있다. 다른 실시예들에서, 노심 영역(116)은 더 많거나 더 적은 동맥 히트 파이프(520)를 가질 수 있으며 및/또는 동맥 히트 파이프들(520)은 상이하게(예컨대, 비대칭적으로) 배치될 수 있다. 동맥 히트 파이프들(520)은 작동 유체를 담고 있으며 적어도 부분적으로 반사기 영역(114)(도 1)을 통해 열교환기(108)(도 1)로의 열 제거 경로를 제공한다.
상기 분기 히트 파이프들(552) 각각은 동맥 히트 파이프들(520)의 인접한 쌍(예컨대, 원주 방향으로 인접한 쌍) 사이에서 연장되어 인접한 쌍을 연결한다. 동맥 히트 파이프들(520)과 분기 히트 파이프들(552)(총칭하여 "히트 파이프들(520, 552)")은 모두 함께 유체적으로 연결되거나, 또는 히트 파이프들(520, 552) 중 2개 이상의 상이한 서브세트들이 함께 유체적으로 연결될 수 있다. 예를 들어, 히트 파이프들(520, 552)의 서브세트 또는 브랜치(branch)는, 제1 동맥 히트 파이프들(520a) 중 하나, 제2 동맥 히트 파이프들(520b) 중 인접한 두 개, 제3 동맥 히트 파이프들(520c) 중 인접한 4개, 등을 포함하는 도 5b에 도시된 쐐기-형상의 브랜치와 같이, 함께 연결될 수 있다.
도시된 실시예에서, 분기 히트 파이프들(552) 각각은 하나 이상의(예컨대, 둘 이상의) 증발기 헤드들(554)을 포함한다. 도 5c를 참조하면, 연료(226)는 증발기 헤드들(554) 둘레에/근처에 배치될 수 있다. 예를 들어, 도시된 실시예에서, 연료(226)는 증발기 헤드들(554)와 연료(226) 사이에 갭이 없거나 작은 갭이 있도록 (예컨대, HIP 공정을 통해) 증발기 헤드들(554)에 직접 부착된다. 다른 실시예들에서, 연료(226)는 증발기 헤드들(554)의 슬롯들 내부에 삽입될 수 있다. 몇몇 실시예들에서, 증발기 헤드들(554)은, 분기 히트 파이프들(552)의 길이 및/또는 수가 증가함에 따라 반경방향으로 증발기 헤드들(554)의 수가 증가하도록, 분기 히트 파이프들(552)을 따라서 다른 것으로부터 균일하게 이격될 수 있다.
도 5a-5c를 다시 함께 참조하면, 상기 시스템(100)의 작동 중에, 연료(226)는 열을 발생시키며, 이 열은 증발기 헤드들 및/또는 분기 히트 파이프들(552) 내의 작동 유체를 증발/기화시키기 위해 증발기 헤드들(554)로 전달된다. 그 다음에, 증발된 작동 유체는 연결된 동맥 히트 파이프들(520) 중 하나 또는 둘 다를 향해 원주 방향으로 흐른 다음 동맥 히트 파이프들(520)을 따라서 반사기 영역(114)(도 1)을 통해 열교환기(108)(도 1)를 향해 반경방향 바깥쪽으로 흐르며, 열교환기(108)에서 작동 유체는 냉각되고, 응축되며, 열 교환기(108)로 열을 전달한다. 히트 파이프들(520, 552)은, 히트 파이프들(520, 552) 내의 압력 구배에 대항하여 응축/냉각된 작동 유체를 증발기 헤드들(554)로 이송하도록 구성된 윅들(예컨대, 도 2c를 참조하여 상세히 설명됨)을 포함할 수 있으며, 증발기 헤드들에서 작동 유체는 다시 가열되고 기화된다. 따라서, 히트 파이프들(520, 552)은 연료(226)로부터 열을 제거하고 그 열을 열교환기(108)(도 1)를 향해 반경방향 바깥쪽으로 이송한다.
도 2a-4b를 참조하여 위에서 설명된 실시예들과 유사하게, 히트 파이프들(520, 552)의 배치형태는 반경방향(예컨대, 화살표(R)로 표시된 방향)으로 증가하는 유동 면적을 제공한다. 즉, 히트 파이프들(520, 552)의 네트워크는 공통 지점(예컨대, 중심 축(C)) 가까이로부터 시작되며 히트 파이프들(520, 552)의 수 및/또는 길이가 반경 방향으로 증가함에 따라 유동 면적이 증가한다. 위에서 상세하게 설명된 바와 같이, 이러한 배치형태는 일정한 유동 면적의 단일 파이프를 가지는 종래의 히트 파이프들과 비교하여 히트 파이프들(520, 552)의 열 제거 능력을 증가시킬 수 있다. 마찬가지로, 몇몇 실시예들에서, 제어 물질(117)은 노심 영역(116) 내의 히트 파이프들(520, 552)과 연료(226)를 적어도 부분적으로 둘러쌀 수 있다.
다시 도 1을 참조하면, 다른 실시예들에서, 히트 파이프 층들(106)은 각각 하나 이상의 디스크-형상의(예컨대, 원형의) 평면 히트 파이프들을 포함할 수 있다. 몇몇 실시예들에서, 대응되는 평평한 디스크 형상을 가지는 연료 요소들은 노심 영역(116) 내의 히트 파이프들에 부착될 수 있다. 즉, 히트 파이프들 층들(106)은 대응되는 평평한 연료 요소들 사이에 배치될 수 있다. 이러한 실시예들은 연료와의 접촉을 위해 비교적 넓은 증기 유동 면적 및 넓은 표면적을 여전히 제공하는 비교적 간단한 배치형태를 제공할 수 있다.
도 1-5c를 함께 참조하면, 히트 파이프 층들(106)은 각각 동일할 수 있다. 다른 실시예들에서, 히트 파이프 층들(106)의 구성은 변경될 수 있다. 예를 들어, 히트 파이프 층들(106) 중 몇몇은 도 2a-2c에 도시된 히트 파이프들(220)의 네트워크를 포함할 수 있으며, 반면에 히트 파이프 층들(106)의 몇몇은 도 5a-5c에 도시된 히트 파이프들(520, 552)의 네트워크를 포함하고, 및/또는 히트 파이프 층들(106) 중 몇몇은 평평한 디스크-형상의 히트 파이프들을 포함한다.
본 기술의 하나의 양태에서, 히트 파이프 층들(106)의 수는 시스템(100) 내의 연료(226)의 양, 이에 따라 시스템(100)의 파워/열 출력을 변화시키기 위해 변경될 수 있다. 본 기술의 다른 양태에서, 히트 파이프 층들(106)은 (예컨대, 다수의 유연성 조인트들을 통해) 프레임(109) 및/또는 히트 파이프 층들(106) 중 다른 층들에 느슨하게 결합될 수 있다. 이는 열 및/또는 조사(irradiation)로 인해 히트 파이프들 층(106)이 독립적으로 팽창/수축되도록 허용할 수 있으며, 이에 의해 히트 파이프 층들(106), 프레임(109), 및/또는 시스템(100)의 다른 구성요소들에 대한 기계적 응력을 감소시킨다. 유사하게, 히트 파이프 층들(106) 각각의 히트 파이프들의 서브세트 또는 모두는 열 및/또는 조사로 인해 독립적으로 팽창/수축될 수 있다. 예를 들어, 히트 파이프들(220)의 쐐기-형상의 브랜치들(예컨대, 도 2b에 도시된 브랜치) 또는 히트 파이프들(520, 552)의 쐐기-형상의 브랜치들(예컨대, 도 5b에 도시된 브랜치) 각각은 히트 파이프 층(106) 내의 다른 쐐기-형상의 브랜치들과는 독립적으로 움직일 수 있다.
몇몇 실시예들에서, 상기 시스템(100)에 연료를 공급하기 위해, 히트 파이프 층들(106) 중 하나 이상(및 이에 부착되거나 이와 연관된 연료(226))은 제거 및 교체되거나 및/또는 히트 파이프 층들(106)의 스택 내부의 다른 위치로 이동될 수 있다. 유사하게, 몇몇 실시예들에서, 히트 파이프들의 독립된 브랜치들 중 하나 이상은 연료 공급 공정 중에 이동될 수 있다. 본 기술의 다른 양태에서, 히트 파이프 층들(106)의 모듈식 특성은 히트 파이프 층들(106)이 병렬로 제조/제작되고 후속적으로 조립되는 것을 가능하게 할 수 있다.
상기한 본 기술의 실시예들의 상세한 설명은 본 기술을 위에서 개시된 정확한 형태들 전체를 포함하거나 이러한 정확한 형태들로 제한하도록 의도되지 않았다. 본 기술의 특정 실시예들과 예들이 예시의 목적으로 위에서 설명되었지만, 관련 기술 분야의 통상의 기술자가 인식하는 바와 같이 본 기술의 범위 내에서 다양한 등가 변형들이 가능하다. 예를 들어, 단계들이 주어진 순서로 제시되지만, 다른 실시예들은 단계들을 다른 순서로 수행할 수 있다. 여기에서 설명된 다양한 실시예들은 또한 추가 실시예들를 제공하기 위해 결합될 수 있다.
전술한 바로부터, 본 기술의 특정 실시예들은 예시의 목적으로 여기에서 설명되었지만, 잘 알려진 구조들과 기능들은 본 기술의 실시예들의 설명을 불필요하게 모호하게 하는 것을 피하기 위해 상세하게 도시되거나 설명되지 않았다는 것이 이해될 것이다. 문맥이 허용하는 경우, 단수 또는 복수 용어들은 각각 복수 또는 단수 용어를 포함할 수도 있다.
여기에서 사용된 바와 같이, "A 및/또는 B"에서와 같이 "및/또는"이라는 구는 A 단독, B 단독, 및 A와 B를 지칭한다. 여기에 참고로 통합된 임의의 물질들이 본 개시와 상충되는 범위까지, 본 개시는 지배한다. 또한, 전체적으로, "포함하는"이라는 용어는 임의의 더 많은 수의 동일한 특징들 및/또는 다른 특징들의 추가적인 유형들이 배제되지 않도록 적어도 기재된 특징(들)을 포함한다는 것을 의미하도록 사용된다. 또한, 특정 실시예들이 여기에서 예시의 목적으로 설명되었지만, 본 기술로부터 벗어나지 않고서도 다양한 수정들이 이루어질 수 있다는 것이 이해될 것이다. 또한, 본 기술의 몇몇 실시예들들과 관련된 이점들이 이러한 실시예들의 맥락에서 설명되었지만, 다른 실시예들도 이러한 이점을 나타낼 수 있으며, 모든 실시예들이 본 기술의 범위 내에 포함되기 위해 반드시 이러한 이점들을 나타낼 필요는 없다. 따라서, 본 개시 및 관련 기술은 여기에 명시적으로 도시되거나 설명되지 않은 다른 실시예들을 포괄할 수 있다.

Claims (23)

  1. 원자로(nuclear reactor)로서:
    증발기 영역, 단열 영역, 및 응축기 영역을 포함하는 히트 파이프 네트워크로서, 상기 히트 파이프 네트워크는 상기 증발기 영역으로부터 상기 응축기 영역으로 향하는 방향으로 증가하는 유동 단면적을 가지는 다수의 유동 경로들을 형성하는, 히트 파이프 네트워크; 및
    상기 증발기 영역의 적어도 부분에 열적으로 결합된 핵연료;를 포함하며,
    상기 히트 파이프 네트워크는 상기 증발기 영역에서 상기 연료로부터 수용된 열을 상기 응축기 영역으로 전달하도록 배치되는, 원자로.
  2. 제1항에 있어서,
    상기 핵연료는 상기 증발기 영역에 직접 부착되는, 원자로.
  3. 제2항에 있어서,
    상기 핵연료는 상기 증발기 영역 상에 압축된 우라늄 몰리브덴 합금인, 원자로.
  4. 제1항에 있어서,
    상기 원자로는 상기 증발기 영역을 적어도 부분적으로 둘러싸는 액체 금속 감속재를 더 포함하며, 상기 액체 금속 감속재는 상기 핵연료의 반응성을 제어하기 위해 배치되는, 원자로.
  5. 제1항에 있어서,
    상기 원자로는 상기 핵연료의 핵분열로 인한 중성자들을 반사하도록 배치된 반사기를 더 포함하며, 상기 히트 파이프 네트워크의 적어도 부분은 상기 반사기를 관통하도록 연장되는, 원자로.
  6. 제5항에 있어서,
    상기 단열 영역은 상기 반사기를 관통하여 상기 증발기 영역으로부터 멀어지게 연장되며, 상기 응축기 영역은 상기 반사기의 외부에 배치되는, 원자로.
  7. 제1항에 있어서,
    상기 응축기 영역에 열적으로 결합된 열교환기를 더 포함하는, 원자로.
  8. 제1항에 있어서,
    상기 유동 경로들 중 개별의 유동 경로는 상기 증발기 영역으로부터 상기 응축기 영역으로 향하는 방향으로 2개 이상의 부분들로 분기하는, 원자로.
  9. 제1항에 있어서,
    상기 유동 경로들의 개별 유동 경로들은 (a) 상기 히트 파이프 네트워크의 중심축에 근접한 제1 부분, (b) 상기 제1 부분으로부터 분기된 한 쌍의 제2 부분들, (c) 상기 제2 부분들 각각으로부터 분기된 한 쌍의 제3 부분들, 및 (d) 상기 제3 부분들 각각으로부터 분기된 한 쌍의 제4 부분들을 포함하는, 원자로.
  10. 제9항에 있어서,
    상기 핵연료는 상기 유동 경로들의 제1 부분, 제2 부분들, 및 제3 부분들에 열적으로 결합되는, 원자로.
  11. 제10항에 있어서,
    상기 원자로는 상기 핵연료의 핵분열로 인한 중성자들을 반사하도록 배치된 반사기를 더 포함하며, 상기 제4 부분들은 상기 반사기를 관통하도록 연장되는, 원자로.
  12. 제1항에 있어서,
    상기 히트 파이프 네트워크는 (a) 상기 히트 파이프 네트워크의 중심축으로부터 반경방향으로 멀어지게 연장되는 동맥 유동 경로들, 및 (b) 상기 중심축을 중심으로 원주방향으로 연장되고 상기 동맥 유동 경로들 중 인접한 쌍들에 원주방향으로 연결되는 분기(off-branching) 유동 경로들을 포함하는, 원자로.
  13. 제12항에 있어서,
    상기 분기 유동 경로들의 개별 유동 경로는 하나 이상의 증발기 헤드들을 포함하며, 상기 핵연료는 상기 증발기 헤드들에 직접 부착되는, 원자로.
  14. 원자로로서:
    다수의 히트 파이프 층들로서, 상기 히트 파이프 층들의 개별 히트 파이프 층은 (a) 중심축으로부터 반경방향 바깥쪽으로 연장된 히트 파이프 네트워크 및 (b) 상기 히트 파이프 네트워크의 적어도 부분에 열적으로 결합된 핵분열성 물질을 포함하며, 상기 히트 파이프 네트워크는 상기 중심축으로부터 반경방향 바깥쪽 방향으로 증가하는 유동 단면적을 가지는, 다수의 히트 파이프 층들;
    상기 핵분열성 물질의 핵분열로 인한 중성자들을 상기 중심축을 향해 반경방향 안쪽 방향으로 반사하도록 배치된 반사기로서, 상기 히트 파이프 층들의 개별 히트 파이프 층 내의 히트 파이프 네트워크들은 적어도 부분적으로 상기 반사기를 관통하여 연장되는, 반사기; 및
    상기 히트 파이프 층들에 열적으로 결합된 열 교환기;를 포함하며,
    상기 히트 파이프 층들은 상기 핵분열성 물질로부터 수용된 열을 상기 열교환기로 전달하도록 배치되는, 원자로.
  15. 제14항에 있어서,
    상기 히트 파이프 층들은 하나의 층이 다른 층 위에 적층되는, 원자로.
  16. 제14항에 있어서,
    상기 히트 파이프 층들은 프레임에 결합되고 상기 프레임에 의해 지지되는, 원자로.
  17. 제14항에 있어서,
    상기 반사기는 고체 물질을 포함하며, 상기 열교환기는 상기 반사기의 반경방향 외부에 배치되는, 원자로.
  18. 제14항에 있어서,
    상기 반사기는 유체를 포함하며, 상기 열교환기는 상기 유체 내에 적어도 부분적으로 배치되고, 상기 유체는 상기 히트 파이프 네트워크들로부터 상기 열교환기로 열을 전달하기 위해 상기 유체 및 상기 히트 파이프 층들과 열적으로 접촉하는, 원자로.
  19. 원자로 구성요소를 형성하는 방법으로서, 상기 방법은:
    압력 용기 내에 히트 파이프를 배치하는 단계;
    상기 히트 파이프의 적어도 부분 상에 분말 핵연료 물질을 제공하는 단계; 및
    상기 핵연료 물질을 응고시키고 상기 핵연료 물질을 상기 히트 파이프에 직접 부착시키기 위해 상기 압력 용기 내의 압력과 온도를 증가시키는 단계;를 포함하는 방법.
  20. 제19항에 있어서,
    상기 핵연료 물질은 핵분열성 물질인, 방법.
  21. 제19항에 있어서,
    상기 핵연료 물질은 우라늄 몰리브덴 합금인, 방법.
  22. 제19항에 있어서,
    상기 압력 용기 내의 압력을 증가시키는 단계는 상기 압력 용기 내부로 불활성 가스를 펌핑하는 것을 포함하는, 방법.
  23. 제19항에 있어서,
    상기 히트 파이프의 적어도 부분 상에 분말 핵연료 물질을 제공하는 단계는 상기 히트 파이프의 증발기 영역 상에 분말 핵연료 물질을 제공하는 것을 포함하며, 상기 히트 파이프는 응축기 영역을 더 포함하고, 상기 히트 파이프는 상기 증발기 영역으로부터 상기 응축기 영역으로 향하는 방향으로 증가하는 유동 단면적을 가지는 유동 경로를 형성하는, 방법.
KR1020227015463A 2019-10-15 2020-10-15 원자로로부터의 열 제거와 같은 열 제거를 위한 히트 파이프 네트워크와, 관련 시스템 및 방법 KR20220077147A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962915467P 2019-10-15 2019-10-15
US62/915,467 2019-10-15
PCT/US2020/055822 WO2021076784A2 (en) 2019-10-15 2020-10-15 Heat pipe networks for heat removal, such as heat removal from nuclear reactors, and associated systems and methods

Publications (1)

Publication Number Publication Date
KR20220077147A true KR20220077147A (ko) 2022-06-08

Family

ID=73943319

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227015463A KR20220077147A (ko) 2019-10-15 2020-10-15 원자로로부터의 열 제거와 같은 열 제거를 위한 히트 파이프 네트워크와, 관련 시스템 및 방법

Country Status (6)

Country Link
US (2) US11728053B2 (ko)
EP (1) EP4022651A2 (ko)
JP (1) JP2022552607A (ko)
KR (1) KR20220077147A (ko)
CA (1) CA3150359A1 (ko)
WO (1) WO2021076784A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7386100B2 (ja) * 2020-02-28 2023-11-24 三菱重工業株式会社 原子炉
US11508488B2 (en) * 2020-09-10 2022-11-22 Battelle Energy Alliance, Llc Heat transfer systems for nuclear reactor cores, and related systems

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA776219A (en) 1968-01-16 W. Ryon John Nuclear reactor with hydrogen-bearing vapor-cooling, moderating and controlling structure
US1690108A (en) * 1924-10-30 1928-11-06 Charles B Grady Heat exchanger
BE572515A (ko) * 1957-11-01
US3152260A (en) * 1961-01-30 1964-10-06 Thompson Ramo Wooldridge Inc Solar power plant
US3285822A (en) 1964-03-30 1966-11-15 Atomic Energy Authority Uk Nuclear reactor
FR1581632A (ko) 1968-07-03 1969-09-19
CA1066964A (en) 1976-09-28 1979-11-27 Edna A. Dancy Fabrication of ceramic heat pipes
US4245380A (en) * 1978-11-01 1981-01-20 Barber-Colman Company Multiple heat pipe heat exchanger and method for making
UST101204I4 (en) * 1980-10-16 1981-11-03 Compact fast nuclear reactor using heat pipes
US4478784A (en) * 1982-06-10 1984-10-23 The United States Of America As Represented By The United States Department Of Energy Passive heat transfer means for nuclear reactors
US4632179A (en) * 1982-09-20 1986-12-30 Stirling Thermal Motors, Inc. Heat pipe
US4755350A (en) 1987-03-11 1988-07-05 The United States Of America As Represented By The Secretary Of The Air Force Thermionic reactor module with thermal storage reservoir
US4903761A (en) * 1987-06-03 1990-02-27 Lockheed Missiles & Space Company, Inc. Wick assembly for self-regulated fluid management in a pumped two-phase heat transfer system
US4851183A (en) * 1988-05-17 1989-07-25 The United States Of America As Represented By The United States Department Of Energy Underground nuclear power station using self-regulating heat-pipe controlled reactors
US4869313A (en) * 1988-07-15 1989-09-26 General Electric Company Low pressure drop condenser/evaporator pump heat exchanger
US5117901A (en) * 1991-02-01 1992-06-02 Cullimore Brent A Heat transfer system having a flexible deployable condenser tube
US5195575A (en) * 1991-04-09 1993-03-23 Roger Wylie Passive three-phase heat tube for the protection of apparatus from exceeding maximum or minimum safe working temperatures
JPH07294174A (ja) 1994-04-26 1995-11-10 Asai Tekkosho:Kk 熱交換器における網状フィンと伝熱管の接合方法
US5647429A (en) * 1994-06-16 1997-07-15 Oktay; Sevgin Coupled, flux transformer heat pipes
IL115109A0 (en) * 1995-08-30 1995-12-08 Refmed Cryo Medical Products L Heat pipe
US5684848A (en) * 1996-05-06 1997-11-04 General Electric Company Nuclear reactor heat pipe
US5932885A (en) 1997-05-19 1999-08-03 Mcdermott Technology, Inc. Thermophotovoltaic electric generator
GB9820712D0 (en) * 1998-09-24 1998-11-18 Btr Industries Ltd Heat exchanger
US6353651B1 (en) * 1999-11-17 2002-03-05 General Electric Company Core catcher cooling by heat pipe
KR20030065686A (ko) 2002-01-30 2003-08-09 삼성전기주식회사 히트 파이프 및 그 제조 방법
US20080069289A1 (en) * 2002-09-16 2008-03-20 Peterson Otis G Self-regulating nuclear power module
KR100828414B1 (ko) * 2006-09-21 2008-05-09 한국원자력연구원 우라늄-지르코늄 분말 성형체의 저진공 소결 방법 및소결로
US8073096B2 (en) * 2007-05-14 2011-12-06 Stc.Unm Methods and apparatuses for removal and transport of thermal energy
WO2009049397A1 (en) 2007-10-19 2009-04-23 Metafoam Technologies Inc. Heat management device using inorganic foam
US9793014B2 (en) * 2008-05-15 2017-10-17 Terrapower, Llc Heat pipe fission fuel element
CN102149987A (zh) * 2008-07-10 2011-08-10 英飞尼亚有限公司 热能储存装置
US20100040187A1 (en) * 2008-08-12 2010-02-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Heat pipe nuclear fission deflagration wave reactor cooling
WO2010129836A1 (en) * 2009-05-08 2010-11-11 Academia Sinica Two-fluid molten-salt reactor
EP2758965B1 (de) 2011-09-21 2017-07-05 Huke, Armin Dual fluid reaktor
JP5876320B2 (ja) * 2012-02-23 2016-03-02 日立Geニュークリア・エナジー株式会社 原子力プラント
US20130309848A1 (en) 2012-05-16 2013-11-21 Alliance For Sustainable Energy, Llc High throughput semiconductor deposition system
WO2014204543A1 (en) * 2013-04-25 2014-12-24 Los Alamos National Security, Llc Electric fission reactor for space applications
US10643756B2 (en) * 2013-04-25 2020-05-05 Triad National Security, Llc Mobile heat pipe cooled fast reactor system
KR101503271B1 (ko) * 2013-07-18 2015-03-17 국립대학법인 울산과학기술대학교 산학협력단 일체형 히트파이프
US9754687B2 (en) * 2013-09-03 2017-09-05 Uchicago Argonne, Llc ALD coating of nuclear fuel actinides materials
CN104759627B (zh) 2014-01-03 2017-08-29 江苏格业新材料科技有限公司 一种通过还原氧化铜粉制造微型热管的方法
GB2527539A (en) * 2014-06-25 2015-12-30 Lancaster University Business Entpr Ltd Lubel Composite fuel
MX2017002430A (es) 2014-08-25 2017-05-15 Sylvan Source Inc Captura, transferencia y liberacion de calor para aplicaciones industriales.
US20160290235A1 (en) * 2015-04-02 2016-10-06 General Electric Company Heat pipe temperature management system for a turbomachine
US11359338B2 (en) * 2015-09-01 2022-06-14 Exotex, Inc. Construction products and systems for providing geothermal heat
JP6614991B2 (ja) * 2016-02-09 2019-12-04 三菱重工業株式会社 フローダンパおよび蓄圧注水装置ならびに原子力設備
WO2017184255A2 (en) * 2016-02-26 2017-10-26 Oklo, Inc. Passive inherent reactivity coefficient control in nuclear reactors
US10531307B2 (en) 2016-02-29 2020-01-07 Apple Inc. Mechanisms for LAA/LTE-U detection to mitigate impact on Wi-Fi performance
JP6633471B2 (ja) * 2016-08-01 2020-01-22 株式会社東芝 原子炉および原子炉の熱除去方法
CA3034283A1 (en) 2016-09-13 2018-03-22 Westinghouse Electric Company Llc Heat pipe molten salt fast reactor with stagnant liquid core
US11158432B1 (en) * 2016-12-09 2021-10-26 Triad National Security, Llc Heat pipe reactor core and heat exchangers formation and deployment
US10559389B2 (en) * 2017-02-06 2020-02-11 Battell Energy Alliance, LLC Modular nuclear reactors including fuel elements and heat pipes extending through grid plates, and methods of forming the modular nuclear reactors
US20180251406A1 (en) * 2017-03-06 2018-09-06 Applied Materials, Inc. Sintered ceramic protective layer formed by hot pressing
US10910116B2 (en) * 2017-03-16 2021-02-02 Battelle Energy Alliance, Llc Nuclear reactors including heat exchangers and heat pipes extending from a core of the nuclear reactor into the heat exchanger and related methods
RU2650885C1 (ru) 2017-08-03 2018-04-18 Акционерное общество "Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского Ядерный реактор с прямым преобразованием энергии за пределами активной зоны
US10903389B2 (en) 2018-01-15 2021-01-26 Alliance For Sustainable Energy, Llc Hydride enhanced growth rates in hydride vapor phase epitaxy
CN111128413B (zh) 2019-12-31 2022-04-19 中国核动力研究设计院 一种基于热光伏发电的多用途热管反应堆系统

Also Published As

Publication number Publication date
JP2022552607A (ja) 2022-12-19
US20230317306A1 (en) 2023-10-05
CA3150359A1 (en) 2021-04-22
US11728053B2 (en) 2023-08-15
WO2021076784A2 (en) 2021-04-22
WO2021076784A3 (en) 2021-05-27
US20210125737A1 (en) 2021-04-29
EP4022651A2 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
JP7514339B2 (ja) 原子炉の蒸気発生器
US20230317306A1 (en) Heat pipe networks for heat removal, such as heat removal from nuclear reactors, and associated systems and methods
KR102428565B1 (ko) 원자로 노심
WO2020036509A1 (ru) Активная зона ядерного реактора
JP2018520369A (ja) 原子炉
JP2023537888A (ja) ヒートパイプ及び光電池を含む熱電力変換システム
JP2022552608A (ja) 液体金属合金の燃料及び/又は減速材を有する原子炉
WO2021104994A1 (en) Thermal power reactor
US3188277A (en) Superheater reactor
RU2660942C1 (ru) Активная зона ядерного реактора
US20220049906A1 (en) Heat pipes including composite wicking structures, and associated methods of manufacture
CN114121315B (zh) 一种脉动热管冷却反应堆热管理系统
RU2510652C1 (ru) Атомный реактор
Pitts et al. Conceptual design of a 10-MWe nuclear Rankine system for space power
Tang et al. Thermal-Hydraulic Analysis of TOPAZ-II With Modified RELAP5