KR20220070466A - 지능적 음성 인식 방법 및 장치 - Google Patents
지능적 음성 인식 방법 및 장치 Download PDFInfo
- Publication number
- KR20220070466A KR20220070466A KR1020227013017A KR20227013017A KR20220070466A KR 20220070466 A KR20220070466 A KR 20220070466A KR 1020227013017 A KR1020227013017 A KR 1020227013017A KR 20227013017 A KR20227013017 A KR 20227013017A KR 20220070466 A KR20220070466 A KR 20220070466A
- Authority
- KR
- South Korea
- Prior art keywords
- voice recognition
- response
- utterance
- processor
- voice
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 71
- 230000004044 response Effects 0.000 claims abstract description 146
- 230000033001 locomotion Effects 0.000 claims description 36
- 238000013473 artificial intelligence Methods 0.000 abstract description 122
- 238000012545 processing Methods 0.000 abstract description 47
- 230000003190 augmentative effect Effects 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 description 45
- 238000003786 synthesis reaction Methods 0.000 description 45
- 238000013528 artificial neural network Methods 0.000 description 41
- 230000006870 function Effects 0.000 description 41
- 238000005516 engineering process Methods 0.000 description 36
- 230000008569 process Effects 0.000 description 29
- 238000012549 training Methods 0.000 description 28
- 238000004891 communication Methods 0.000 description 17
- 230000003993 interaction Effects 0.000 description 17
- 238000003062 neural network model Methods 0.000 description 16
- 238000004458 analytical method Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 12
- 238000010801 machine learning Methods 0.000 description 12
- 238000007781 pre-processing Methods 0.000 description 12
- 238000003058 natural language processing Methods 0.000 description 11
- 238000013135 deep learning Methods 0.000 description 10
- 210000002569 neuron Anatomy 0.000 description 10
- 230000004913 activation Effects 0.000 description 8
- 230000008451 emotion Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 238000013136 deep learning model Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 230000005236 sound signal Effects 0.000 description 4
- 210000000225 synapse Anatomy 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000000946 synaptic effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 206010048909 Boredom Diseases 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- APTZNLHMIGJTEW-UHFFFAOYSA-N pyraflufen-ethyl Chemical compound C1=C(Cl)C(OCC(=O)OCC)=CC(C=2C(=C(OC(F)F)N(C)N=2)Cl)=C1F APTZNLHMIGJTEW-UHFFFAOYSA-N 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/04—Segmentation; Word boundary detection
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/22—Procedures used during a speech recognition process, e.g. man-machine dialogue
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L13/00—Speech synthesis; Text to speech systems
- G10L13/02—Methods for producing synthetic speech; Speech synthesisers
- G10L13/027—Concept to speech synthesisers; Generation of natural phrases from machine-based concepts
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/24—Speech recognition using non-acoustical features
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/28—Constructional details of speech recognition systems
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L13/00—Speech synthesis; Text to speech systems
- G10L13/02—Methods for producing synthetic speech; Speech synthesisers
- G10L13/033—Voice editing, e.g. manipulating the voice of the synthesiser
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L13/00—Speech synthesis; Text to speech systems
- G10L13/06—Elementary speech units used in speech synthesisers; Concatenation rules
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L13/00—Speech synthesis; Text to speech systems
- G10L13/08—Text analysis or generation of parameters for speech synthesis out of text, e.g. grapheme to phoneme translation, prosody generation or stress or intonation determination
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L13/00—Speech synthesis; Text to speech systems
- G10L13/08—Text analysis or generation of parameters for speech synthesis out of text, e.g. grapheme to phoneme translation, prosody generation or stress or intonation determination
- G10L13/10—Prosody rules derived from text; Stress or intonation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification techniques
- G10L17/18—Artificial neural networks; Connectionist approaches
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/22—Procedures used during a speech recognition process, e.g. man-machine dialogue
- G10L2015/225—Feedback of the input speech
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/22—Procedures used during a speech recognition process, e.g. man-machine dialogue
- G10L2015/226—Procedures used during a speech recognition process, e.g. man-machine dialogue using non-speech characteristics
- G10L2015/228—Procedures used during a speech recognition process, e.g. man-machine dialogue using non-speech characteristics of application context
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/78—Detection of presence or absence of voice signals
Landscapes
- Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Traffic Control Systems (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
지능적 음성 인식 방법 및 장치가 개시된다. 본 발명의 일 실시예에 따른 지능적 음성 인식 장치는 사용자의 발화를 인식하고, 발화에 기반하여 결정된 응답을 출력하되, 발화와 관련된 복수의 후보 응답들이 존재하는 경우, 응답은 복수의 후보 응답들 중에서 음성 인식 장치의 기기 상태 정보에 기반하여 결정함으로써, 사용자와 음성 인식 장치 사이의 대화의 모호함을 줄일 수 있어, 더 자연스러운 대화 처리가 가능하다. 본 발명의 음성 인식 장치 및 AI 장치 중 하나 이상이 인공 지능(Artificial Intelligence) 모듈, 드론(Unmanned Aerial Vehicle, UAV), 로봇, 증강 현실(Augmented Reality, AR) 장치, 가상 현실(virtual reality, VR) 장치, 5G 서비스와 관련된 장치 등과 연계될 수 있다.
Description
본 발명은 지능적 음성 인식 방법 및 장치에 관한 것으로서, 보다 구체적으로는, 사용자를 인증하기 위한 지능적 음성 인식 방법 및 장치에 관한 것이다.
음성 인식 장치는 사용자의 음성을 텍스트로 변환하고, 텍스트에 포함된 메시지의 의미를 분석하며, 분석 결과에 기반하여 또 다른 형태의 소리를 출력할 수 있는 장치이다.
음성 인식 장치의 예로, 홈 IoT 시스템의 홈 로봇(Home Robot)이나, 인공지능 기술이 탑재된 인공지능 스피커(Artificial Intelligence(AI) Speaker)를 들 수 있다.
한편, 음성 인식 장치가 여러 가지 방식으로 인식될 수 있는 모호한 발화를 인식하여야 하는 경우가 있다. 종래의 경우, 음성 인식 장치는 사용자에게 해당 발화의 의미에 대하여 다시 질의하여야 하는 번거로움이 있다.
본 발명은 전술한 필요성 및/또는 문제점을 해결하는 것을 목적으로 한다.
또한, 본 발명은, 모호한 발화를 상황에 맞게 정확하게 인식하기 위한 지능적 음성 인식 방법 및 장치를 구현하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 지능적 음성 인식 방법은, 사용자의 발화를 인식하는 단계; 및 상기 인식된 발화에 기반하여 결정된 응답을 출력하는 단계;를 포함하되, 상기 발화와 관련된 복수의 후보 응답들이 존재하는 경우, 상기 응답은 상기 복수의 후보 응답들 중에서 상기 음성 인식 장치의 기기 상태 정보에 기반하여 결정되는 것을 특징으로 한다.
상기 응답을 출력하는 단계는, 상기 발화와 관련된 복수의 후보 응답들이 존재하는지 여부를 판단하는 단계, 및 상기 발화와 관련된 복수의 후보 응답들이 존재하는 경우, 상기 음성 인식 장치의 기기 상태 정보에 기반하여 상기 복수의 후보 응답들 중 하나의 응답을 결정하는 단계를 포함하며, 상기 복수의 후보 응답들이 존재하는지 여부를 판단하는 단계는, 상기 발화에 포함된 문장이 복수의 어플리케이션에서 처리 가능하거나, 또는, 상기 발화가 상기 음성 인식 장치의 복수의 운동 상태에서 처리 가능한지 여부를 판단하는 것을 특징으로 할 수 있다.
상기 기기 상태 정보는 상기 음성 인식 장치에서 실행되는 어플리케이션 식별 정보를 포함하는 것을 특징으로 할 수 있다.
상기 기기 상태 정보는 상기 음성 인식 장치의 운동 상태 정보를 포함하는 것을 특징으로 할 수 있다.
상기 출력하는 단계는, 상기 복수의 후보 응답들 중 상기 음성 인식 장치의 기기 상태 정보와 관련성이 가장 높은 제1 후보 응답을 상기 출력할 응답으로 결정하는 단계, 및 상기 제1 후보 응답에 대하여 상기 사용자로부터 특정 피드백을 획득하는 경우, 상기 복수의 후보 응답들 중 상기 제1 후보 응답을 제외한 나머지 응답들 중에서 상기 음성 인식 장치의 기기 상태 정보와 관련성이 가장 높은 제2 후보 응답을 상기 출력할 응답으로 결정하는 단계를 포함하는 것을 특징으로 할 수 있다.
본 발명의 실시예에 따른 지능적 음성 인식 장치는, 적어도 하나의 센서; 적어도 하나의 스피커; 적어도 하나의 마이크; 및, 상기 적어도 하나의 마이크를 통해 획득한 사용자의 발화를 인식하고, 상기 인식된 발화에 기반하여 결정된 응답을 상기 적어도 하나의 스피커를 통해 출력하는 프로세서;를 포함하되, 상기 프로세서는, 상기 발화와 관련된 복수의 후보 응답들이 존재하는 경우, 상기 복수의 후보 응답들 중에서 상기 음성 인식 장치의 기기 상태 정보에 기반하여 상기 응답을 결정하는 것을 특징으로 한다.
상기 프로세서는, 상기 발화와 관련된 복수의 후보 응답들이 존재하는지 여부를 판단하고, 상기 발화와 관련된 복수의 후보 응답들이 존재하는 경우, 상기 음성 인식 장치의 기기 상태 정보에 기반하여 상기 복수의 후보 응답들 중 하나의 응답을 결정하되, 상기 발화에 포함된 문장이 복수의 어플리케이션에서 처리 가능하거나, 또는, 상기 발화가 상기 음성 인식 장치의 복수의 운동 상태에서 처리 가능한지 여부를 판단하는 것을 특징으로 할 수 있다.
상기 기기 상태 정보는 상기 음성 인식 장치에서 실행되는 어플리케이션 식별 정보를 포함하는 것을 특징으로 할 수 있다.
상기 기기 상태 정보는 상기 적어도 하나의 센서를 통해 획득된 상기 음성 인식 장치의 운동 상태 정보를 포함하는 것을 특징으로 할 수 있다.
상기 프로세서는, 상기 복수의 후보 응답들 중 상기 음성 인식 장치의 기기 상태 정보와 관련성이 가장 높은 제1 후보 응답을 상기 출력할 응답으로 결정하고, 상기 제1 후보 응답에 대하여 상기 사용자로부터 특정 피드백을 획득하는 경우, 상기 복수의 후보 응답들 중 상기 제1 후보 응답을 제외한 나머지 응답들 중에서 상기 음성 인식 장치의 기기 상태 정보와 관련성이 가장 높은 제2 후보 응답을 상기 출력할 응답으로 결정하는 것을 특징으로 할 수 있다.
본 발명의 일 실시예에 따른 지능적 음성 인식 방법 및 장치의 효과에 대해 설명하면 다음과 같다.
본 발명은 사용자와 음성 인식 장치 사이의 대화의 모호함을 줄일 수 있어, 더 자연스러운 대화 처리가 가능하다.
또한, 본 발명에 따르면, 사용자의 모호한 발화에 대하여 사용자가 발화한 상황에 맞는 능동적인 대처가 가능하다.
또한, 본 발명에 따르면, 모호한 발화 후에 사용자에게 다시 되물어야 하는 질문의 단계를 줄임으로써, 종래 기술에 따른 가상 비서 서비스와 차별화되는 음성 인식 기술을 제공할 수 있다.
또한, 본 발명에 따르면, 사용자의 발화 패턴을 학습하여 모호한 상황에 더 유연하게 대처할수 있고, 사용자(개인) 별 맞춤의 음성 인식 기능을 제공할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명의 일 실시 예에 따른 AI 장치(100)를 나타낸다.
도 2는 본 발명의 일 실시 예에 따른 AI 서버(200)를 나타낸다.
도 3은 본 발명의 일 실시 예에 따른 AI 시스템(1)을 나타낸다.
도 4는 본 발명의 일 실시예에 따른 음성 인식 방법이 구현되는 개략적인 시스템의 블록 구성도를 예시한다.
도 5는 본 발명의 일 실시예들에 적용될 수 있는 AI 장치의 블록도이다.
도 6은 본 발명의 일 실시예에 따른 음성 인식 장치의 예시적인 블록도이다.
도 7은 본 발명의 일 실시예에 따른 음성 인식 시스템 환경에서 음성 인식 장치의 개략적인 블럭도를 도시한다.
도 8은 본 발명의 다른 실시예에 따른 음성 인식 시스템 환경에서 음성 인식 장치의 개략적인 블럭도를 도시한다.
도 9는 본 발명의 일 실시예에 따라 음성 인식을 구현할 수 있는 지능형 프로세서의 개략적인 블럭도를 도시한다.
도 10은 본 발명의 일 실시예에 따른 음성 인식 방법을 나타낸 흐름도이다.
도 11은 본 발명의 일 실시예에 따른 음성 인식 장치 사이의 데이터 흐름을 도시한다.
도 12는 본 발명의 일 실시예에 따른 어플리케이션 종류에 따른 응답 출력 과정을 나타낸 흐름도이다.
도 13은 본 발명의 일 실시예에 따른 기기 운동 상태 정보에 따른 응답 출력 과정을 나타낸 흐름도이다.
도 1은 본 발명의 일 실시 예에 따른 AI 장치(100)를 나타낸다.
도 2는 본 발명의 일 실시 예에 따른 AI 서버(200)를 나타낸다.
도 3은 본 발명의 일 실시 예에 따른 AI 시스템(1)을 나타낸다.
도 4는 본 발명의 일 실시예에 따른 음성 인식 방법이 구현되는 개략적인 시스템의 블록 구성도를 예시한다.
도 5는 본 발명의 일 실시예들에 적용될 수 있는 AI 장치의 블록도이다.
도 6은 본 발명의 일 실시예에 따른 음성 인식 장치의 예시적인 블록도이다.
도 7은 본 발명의 일 실시예에 따른 음성 인식 시스템 환경에서 음성 인식 장치의 개략적인 블럭도를 도시한다.
도 8은 본 발명의 다른 실시예에 따른 음성 인식 시스템 환경에서 음성 인식 장치의 개략적인 블럭도를 도시한다.
도 9는 본 발명의 일 실시예에 따라 음성 인식을 구현할 수 있는 지능형 프로세서의 개략적인 블럭도를 도시한다.
도 10은 본 발명의 일 실시예에 따른 음성 인식 방법을 나타낸 흐름도이다.
도 11은 본 발명의 일 실시예에 따른 음성 인식 장치 사이의 데이터 흐름을 도시한다.
도 12는 본 발명의 일 실시예에 따른 어플리케이션 종류에 따른 응답 출력 과정을 나타낸 흐름도이다.
도 13은 본 발명의 일 실시예에 따른 기기 운동 상태 정보에 따른 응답 출력 과정을 나타낸 흐름도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
<인공 지능(AI: Artificial Intelligence)>
인공 지능은 인공적인 지능 또는 이를 만들 수 있는 방법론을 연구하는 분야를 의미하며, 머신 러닝(기계 학습, Machine Learning)은 인공 지능 분야에서 다루는 다양한 문제를 정의하고 그것을 해결하는 방법론을 연구하는 분야를 의미한다. 머신 러닝은 어떠한 작업에 대하여 꾸준한 경험을 통해 그 작업에 대한 성능을 높이는 알고리즘으로 정의하기도 한다.
인공 신경망(ANN: Artificial Neural Network)은 머신 러닝에서 사용되는 모델로써, 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)들로 구성되는, 문제 해결 능력을 가지는 모델 전반을 의미할 수 있다. 인공 신경망은 다른 레이어의 뉴런들 사이의 연결 패턴, 모델 파라미터를 갱신하는 학습 과정, 출력값을 생성하는 활성화 함수(Activation Function)에 의해 정의될 수 있다.
인공 신경망은 입력층(Input Layer), 출력층(Output Layer), 그리고 선택적으로 하나 이상의 은닉층(Hidden Layer)를 포함할 수 있다. 각 층은 하나 이상의 뉴런을 포함하고, 인공 신경망은 뉴런과 뉴런을 연결하는 시냅스를 포함할 수 있다. 인공 신경망에서 각 뉴런은 시냅스를 통해 입력되는 입력 신호들, 가중치, 편향에 대한 활성 함수의 함숫값을 출력할 수 있다.
모델 파라미터는 학습을 통해 결정되는 파라미터를 의미하며, 시냅스 연결의 가중치와 뉴런의 편향 등이 포함된다. 그리고, 하이퍼파라미터는 머신 러닝 알고리즘에서 학습 전에 설정되어야 하는 파라미터를 의미하며, 학습률(Learning Rate), 반복 횟수, 미니 배치 크기, 초기화 함수 등이 포함된다.
인공 신경망의 학습의 목적은 손실 함수를 최소화하는 모델 파라미터를 결정하는 것으로 볼 수 있다. 손실 함수는 인공 신경망의 학습 과정에서 최적의 모델 파라미터를 결정하기 위한 지표로 이용될 수 있다.
머신 러닝은 학습 방식에 따라 지도 학습(Supervised Learning), 비지도 학습(Unsupervised Learning), 강화 학습(Reinforcement Learning)으로 분류할 수 있다.
지도 학습은 학습 데이터에 대한 레이블(label)이 주어진 상태에서 인공 신경망을 학습시키는 방법을 의미하며, 레이블이란 학습 데이터가 인공 신경망에 입력되는 경우 인공 신경망이 추론해 내야 하는 정답(또는 결과 값)을 의미할 수 있다. 비지도 학습은 학습 데이터에 대한 레이블이 주어지지 않는 상태에서 인공 신경망을 학습시키는 방법을 의미할 수 있다. 강화 학습은 어떤 환경 안에서 정의된 에이전트가 각 상태에서 누적 보상을 최대화하는 행동 혹은 행동 순서를 선택하도록 학습시키는 학습 방법을 의미할 수 있다.
인공 신경망 중에서 복수의 은닉층을 포함하는 심층 신경망(DNN: Deep Neural Network)으로 구현되는 머신 러닝을 딥 러닝(심층 학습, Deep Learning)이라 부르기도 하며, 딥 러닝은 머신 러닝의 일부이다. 이하에서, 머신 러닝은 딥 러닝을 포함하는 의미로 사용된다.
<로봇(Robot)>
로봇은 스스로 보유한 능력에 의해 주어진 일을 자동으로 처리하거나 작동하는 기계를 의미할 수 있다. 특히, 환경을 인식하고 스스로 판단하여 동작을 수행하는 기능을 갖는 로봇을 지능형 로봇이라 칭할 수 있다.
로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류할 수 있다.
로봇은 액츄에이터 또는 모터를 포함하는 구동부를 구비하여 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 이동 가능한 로봇은 구동부에 휠, 브레이크, 프로펠러 등이 포함되어, 구동부를 통해 지상에서 주행하거나 공중에서 비행할 수 있다.
<자율 주행(Self-Driving, Autonomous-Driving)>
자율 주행은 스스로 주행하는 기술을 의미하며, 자율 주행 차량은 사용자의 조작 없이 또는 사용자의 최소한의 조작으로 주행하는 차량(Vehicle)을 의미한다.
예컨대, 자율 주행에는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등이 모두 포함될 수 있다.
차량은 내연 기관만을 구비하는 차량, 내연 기관과 전기 모터를 함께 구비하는 하이브리드 차량, 그리고 전기 모터만을 구비하는 전기 차량을 모두 포괄하며, 자동차뿐만 아니라 기차, 오토바이 등을 포함할 수 있다.
이때, 자율 주행 차량은 자율 주행 기능을 가진 로봇으로 볼 수 있다.
<확장 현실(XR: eXtended Reality)>
확장 현실은 가상 현실(VR: Virtual Reality), 증강 현실(AR: Augmented Reality), 혼합 현실(MR: Mixed Reality)을 총칭한다. VR 기술은 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하고, AR 기술은 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 제공하며, MR 기술은 현실 세계에 가상 객체들을 섞고 결합시켜서 제공하는 컴퓨터 그래픽 기술이다.
MR 기술은 현실 객체와 가상 객체를 함께 보여준다는 점에서 AR 기술과 유사하다. 그러나, AR 기술에서는 가상 객체가 현실 객체를 보완하는 형태로 사용되는 반면, MR 기술에서는 가상 객체와 현실 객체가 동등한 성격으로 사용된다는 점에서 차이점이 있다.
XR 기술은 HMD(Head-Mount Display), HUD(Head-Up Display), 휴대폰, 태블릿 PC, 랩탑, 데스크탑, TV, 디지털 사이니지 등에 적용될 수 있고, XR 기술이 적용된 장치를 XR 장치(XR Device)라 칭할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 AI 장치(100)를 나타낸다.
AI 장치(100)는 TV, 프로젝터, 휴대폰, 스마트폰, 데스크탑 컴퓨터, 노트북, 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), DMB 수신기, 라디오, 세탁기, 냉장고, 데스크탑 컴퓨터, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.
도 1을 참조하면, 단말기(100)는 통신부(110), 입력부(120), 러닝 프로세서(130), 센싱부(140), 출력부(150), 메모리(170) 및 프로세서(180) 등을 포함할 수 있다.
통신부(110)는 유무선 통신 기술을 이용하여 다른 AI 장치(100a 내지 100e)나 AI 서버(200) 등의 외부 장치들과 데이터를 송수신할 수 있다. 예컨대, 통신부(110)는 외부 장치들과 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등을 송수신할 수 있다.
이때, 통신부(110)가 이용하는 통신 기술에는 GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), LTE(Long Term Evolution), 5G, WLAN(Wireless LAN), Wi-Fi(Wireless-Fidelity), 블루투스(Bluetooth™), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), ZigBee, NFC(Near Field Communication) 등이 있다.
입력부(120)는 다양한 종류의 데이터를 획득할 수 있다.
이때, 입력부(120)는 영상 신호 입력을 위한 카메라, 오디오 신호를 수신하기 위한 마이크로폰, 사용자로부터 정보를 입력 받기 위한 사용자 입력부 등을 포함할 수 있다. 여기서, 카메라나 마이크로폰을 센서로 취급하여, 카메라나 마이크로폰으로부터 획득한 신호를 센싱 데이터 또는 센서 정보라고 할 수도 있다.
입력부(120)는 모델 학습을 위한 학습 데이터 및 학습 모델을 이용하여 출력을 획득할 때 사용될 입력 데이터 등을 획득할 수 있다. 입력부(120)는 가공되지 않은 입력 데이터를 획득할 수도 있으며, 이 경우 프로세서(180) 또는 러닝 프로세서(130)는 입력 데이터에 대하여 전처리로써 입력 특징점(input feature)을 추출할 수 있다.
러닝 프로세서(130)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 여기서, 학습된 인공 신경망을 학습 모델이라 칭할 수 있다. 학습 모델은 학습 데이터가 아닌 새로운 입력 데이터에 대하여 결과 값을 추론해 내는데 사용될 수 있고, 추론된 값은 어떠한 동작을 수행하기 위한 판단의 기초로 이용될 수 있다.
이때, 러닝 프로세서(130)는 AI 서버(200)의 러닝 프로세서(240)과 함께 AI 프로세싱을 수행할 수 있다.
이때, 러닝 프로세서(130)는 AI 장치(100)에 통합되거나 구현된 메모리를 포함할 수 있다. 또는, 러닝 프로세서(130)는 메모리(170), AI 장치(100)에 직접 결합된 외부 메모리 또는 외부 장치에서 유지되는 메모리를 사용하여 구현될 수도 있다.
센싱부(140)는 다양한 센서들을 이용하여 AI 장치(100) 내부 정보, AI 장치(100)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 획득할 수 있다.
이때, 센싱부(140)에 포함되는 센서에는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 라이다, 레이더 등이 있다.
출력부(150)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다.
이때, 출력부(150)에는 시각 정보를 출력하는 디스플레이부, 청각 정보를 출력하는 스피커, 촉각 정보를 출력하는 햅틱 모듈 등이 포함될 수 있다.
메모리(170)는 AI 장치(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예컨대, 메모리(170)는 입력부(120)에서 획득한 입력 데이터, 학습 데이터, 학습 모델, 학습 히스토리 등을 저장할 수 있다.
프로세서(180)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 장치(100)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 프로세서(180)는 AI 장치(100)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다.
이를 위해, 프로세서(180)는 러닝 프로세서(130) 또는 메모리(170)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 상기 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 장치(100)의 구성 요소들을 제어할 수 있다.
이때, 프로세서(180)는 결정된 동작을 수행하기 위하여 외부 장치의 연계가 필요한 경우, 해당 외부 장치를 제어하기 위한 제어 신호를 생성하고, 생성한 제어 신호를 해당 외부 장치에 전송할 수 있다.
프로세서(180)는 사용자 입력에 대하여 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 사용자의 요구 사항을 결정할 수 있다.
이때, 프로세서(180)는 음성 입력을 문자열로 변환하기 위한 STT(Speech To Text) 엔진 또는 자연어의 의도 정보를 획득하기 위한 자연어 처리(NLP: Natural Language Processing) 엔진 중에서 적어도 하나 이상을 이용하여, 사용자 입력에 상응하는 의도 정보를 획득할 수 있다.
이때, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 적어도 일부가 머신 러닝 알고리즘에 따라 학습된 인공 신경망으로 구성될 수 있다. 그리고, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 러닝 프로세서(130)에 의해 학습된 것이나, AI 서버(200)의 러닝 프로세서(240)에 의해 학습된 것이거나, 또는 이들의 분산 처리에 의해 학습된 것일 수 있다.
프로세서(180)는 AI 장치(100)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리(170) 또는 러닝 프로세서(130)에 저장하거나, AI 서버(200) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.
프로세서(180)는 메모리(170)에 저장된 응용 프로그램을 구동하기 위하여, AI 장치(100)의 구성 요소들 중 적어도 일부를 제어할 수 있다. 나아가, 프로세서(180)는 상기 응용 프로그램의 구동을 위하여, AI 장치(100)에 포함된 구성 요소들 중 둘 이상을 서로 조합하여 동작시킬 수 있다.
도 2는 본 발명의 일 실시 예에 따른 AI 서버(200)를 나타낸다.
도 2를 참조하면, AI 서버(200)는 머신 러닝 알고리즘을 이용하여 인공 신경망을 학습시키거나 학습된 인공 신경망을 이용하는 장치를 의미할 수 있다. 여기서, AI 서버(200)는 복수의 서버들로 구성되어 분산 처리를 수행할 수도 있고, 5G 네트워크로 정의될 수 있다. 이때, AI 서버(200)는 AI 장치(100)의 일부의 구성으로 포함되어, AI 프로세싱 중 적어도 일부를 함께 수행할 수도 있다.
AI 서버(200)는 통신부(210), 메모리(230), 러닝 프로세서(240) 및 프로세서(260) 등을 포함할 수 있다.
통신부(210)는 AI 장치(100) 등의 외부 장치와 데이터를 송수신할 수 있다.
메모리(230)는 모델 저장부(231)를 포함할 수 있다. 모델 저장부(231)는 러닝 프로세서(240)을 통하여 학습 중인 또는 학습된 모델(또는 인공 신경망, 231a)을 저장할 수 있다.
러닝 프로세서(240)는 학습 데이터를 이용하여 인공 신경망(231a)을 학습시킬 수 있다. 학습 모델은 인공 신경망의 AI 서버(200)에 탑재된 상태에서 이용되거나, AI 장치(100) 등의 외부 장치에 탑재되어 이용될 수도 있다.
학습 모델은 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 조합으로 구현될 수 있다. 학습 모델의 일부 또는 전부가 소프트웨어로 구현되는 경우 학습 모델을 구성하는 하나 이상의 명령어(instruction)는 메모리(230)에 저장될 수 있다.
프로세서(260)는 학습 모델을 이용하여 새로운 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수 있다.
도 3은 본 발명의 일 실시 예에 따른 AI 시스템(1)을 나타낸다.
도 3을 참조하면, AI 시스템(1)은 AI 서버(200), 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상이 클라우드 네트워크(10)와 연결된다. 여기서, AI 기술이 적용된 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 등을 AI 장치(100a 내지 100e)라 칭할 수 있다.
클라우드 네트워크(10)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(10)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
즉, AI 시스템(1)을 구성하는 각 장치들(100a 내지 100e, 200)은 클라우드 네트워크(10)를 통해 서로 연결될 수 있다. 특히, 각 장치들(100a 내지 100e, 200)은 기지국을 통해서 서로 통신할 수도 있지만, 기지국을 통하지 않고 직접 서로 통신할 수도 있다.
AI 서버(200)는 AI 프로세싱을 수행하는 서버와 빅 데이터에 대한 연산을 수행하는 서버를 포함할 수 있다.
AI 서버(200)는 AI 시스템(1)을 구성하는 AI 장치들인 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상과 클라우드 네트워크(10)을 통하여 연결되고, 연결된 AI 장치들(100a 내지 100e)의 AI 프로세싱을 적어도 일부를 도울 수 있다.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)를 대신하여 머신 러닝 알고리즘에 따라 인공 신경망을 학습시킬 수 있고, 학습 모델을 직접 저장하거나 AI 장치(100a 내지 100e)에 전송할 수 있다.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)로부터 입력 데이터를 수신하고, 학습 모델을 이용하여 수신한 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성하여 AI 장치(100a 내지 100e)로 전송할 수 있다.
또는, AI 장치(100a 내지 100e)는 직접 학습 모델을 이용하여 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수도 있다.
이하에서는, 상술한 기술이 적용되는 AI 장치(100a 내지 100e)의 다양한 실시 예들을 설명한다. 여기서, 도 3에 도시된 AI 장치(100a 내지 100e)는 도 1에 도시된 AI 장치(100)의 구체적인 실시 예로 볼 수 있다.
<AI+로봇>
로봇(100a)은 AI 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
로봇(100a)은 동작을 제어하기 위한 로봇 제어 모듈을 포함할 수 있고, 로봇 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다.
로봇(100a)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 로봇(100a)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 사용자 상호작용에 대한 응답을 결정하거나, 동작을 결정할 수 있다.
여기서, 로봇(100a)은 이동 경로 및 주행 계획을 결정하기 위하여, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
로봇(100a)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 로봇(100a)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 동작을 결정할 수 있다. 여기서, 학습 모델은 로봇(100a)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 로봇(100a)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
로봇(100a)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 로봇(100a)을 주행시킬 수 있다.
맵 데이터에는 로봇(100a)이 이동하는 공간에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 벽, 문 등의 고정 객체들과 화분, 책상 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 로봇(100a)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 로봇(100a)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+자율주행>
자율 주행 차량(100b)은 AI 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
자율 주행 차량(100b)은 자율 주행 기능을 제어하기 위한 자율 주행 제어 모듈을 포함할 수 있고, 자율 주행 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다. 자율 주행 제어 모듈은 자율 주행 차량(100b)의 구성으로써 내부에 포함될 수도 있지만, 자율 주행 차량(100b)의 외부에 별도의 하드웨어로 구성되어 연결될 수도 있다.
자율 주행 차량(100b)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 자율 주행 차량(100b)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 동작을 결정할 수 있다.
여기서, 자율 주행 차량(100b)은 이동 경로 및 주행 계획을 결정하기 위하여, 로봇(100a)과 마찬가지로, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
특히, 자율 주행 차량(100b)은 시야가 가려지는 영역이나 일정 거리 이상의 영역에 대한 환경이나 객체는 외부 장치들로부터 센서 정보를 수신하여 인식하거나, 외부 장치들로부터 직접 인식된 정보를 수신할 수 있다.
자율 주행 차량(100b)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 자율 주행 차량(100b)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 주행 동선을 결정할 수 있다. 여기서, 학습 모델은 자율 주행 차량(100b)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 로봇(100a)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
로봇(100a)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 로봇(100a)을 주행시킬 수 있다.
맵 데이터에는 로봇(100a)이 이동하는 공간에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 벽, 문 등의 고정 객체들과 화분, 책상 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 로봇(100a)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 로봇(100a)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+자율주행>
자율 주행 차량(100b)은 AI 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
자율 주행 차량(100b)은 자율 주행 기능을 제어하기 위한 자율 주행 제어 모듈을 포함할 수 있고, 자율 주행 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다. 자율 주행 제어 모듈은 자율 주행 차량(100b)의 구성으로써 내부에 포함될 수도 있지만, 자율 주행 차량(100b)의 외부에 별도의 하드웨어로 구성되어 연결될 수도 있다.
자율 주행 차량(100b)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 자율 주행 차량(100b)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 동작을 결정할 수 있다.
여기서, 자율 주행 차량(100b)은 이동 경로 및 주행 계획을 결정하기 위하여, 로봇(100a)과 마찬가지로, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
특히, 자율 주행 차량(100b)은 시야가 가려지는 영역이나 일정 거리 이상의 영역에 대한 환경이나 객체는 외부 장치들로부터 센서 정보를 수신하여 인식하거나, 외부 장치들로부터 직접 인식된 정보를 수신할 수 있다.
자율 주행 차량(100b)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 자율 주행 차량(100b)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 주행 동선을 결정할 수 있다. 여기서, 학습 모델은 자율 주행 차량(100b)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 자율 주행 차량(100b)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
자율 주행 차량(100b)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 자율 주행 차량(100b)을 주행시킬 수 있다.
맵 데이터에는 자율 주행 차량(100b)이 주행하는 공간(예컨대, 도로)에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 가로등, 바위, 건물 등의 고정 객체들과 차량, 보행자 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 자율 주행 차량(100b)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 자율 주행 차량(100b)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+XR>
XR 장치(100c)는 AI 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수 있다.
XR 장치(100c)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 속성 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR 장치(100c)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
XR 장치(100c)는 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, XR 장치(100c)는 학습 모델을 이용하여 3차원 포인트 클라우드 데이터 또는 이미지 데이터에서 현실 객체를 인식할 수 있고, 인식한 현실 객체에 상응하는 정보를 제공할 수 있다. 여기서, 학습 모델은 XR 장치(100c)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, XR 장치(100c)는 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
<AI+로봇+자율주행>
로봇(100a)은 AI 기술 및 자율 주행 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
AI 기술과 자율 주행 기술이 적용된 로봇(100a)은 자율 주행 기능을 가진 로봇 자체나, 자율 주행 차량(100b)과 상호작용하는 로봇(100a) 등을 의미할 수 있다.
자율 주행 기능을 가진 로봇(100a)은 사용자의 제어 없이도 주어진 동선에 따라 스스로 움직이거나, 동선을 스스로 결정하여 움직이는 장치들을 통칭할 수 있다.
자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 이동 경로 또는 주행 계획 중 하나 이상을 결정하기 위해 공통적인 센싱 방법을 사용할 수 있다. 예를 들어, 자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 라이다, 레이더, 카메라를 통해 센싱된 정보를 이용하여, 이동 경로 또는 주행 계획 중 하나 이상을 결정할 수 있다.
자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)과 별개로 존재하면서, 자율 주행 차량(100b)의 내부 또는 외부에서 자율 주행 기능에 연계되거나, 자율 주행 차량(100b)에 탑승한 사용자와 연계된 동작을 수행할 수 있다.
이때, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)을 대신하여 센서 정보를 획득하여 자율 주행 차량(100b)에 제공하거나, 센서 정보를 획득하고 주변 환경 정보 또는 객체 정보를 생성하여 자율 주행 차량(100b)에 제공함으로써, 자율 주행 차량(100b)의 자율 주행 기능을 제어하거나 보조할 수 있다.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)에 탑승한 사용자를 모니터링하거나 사용자와의 상호작용을 통해 자율 주행 차량(100b)의 기능을 제어할 수 있다. 예컨대, 로봇(100a)은 운전자가 졸음 상태인 경우로 판단되는 경우, 자율 주행 차량(100b)의 자율 주행 기능을 활성화하거나 자율 주행 차량(100b)의 구동부의 제어를 보조할 수 있다. 여기서, 로봇(100a)이 제어하는 자율 주행 차량(100b)의 기능에는 단순히 자율 주행 기능뿐만 아니라, 자율 주행 차량(100b)의 내부에 구비된 네비게이션 시스템이나 오디오 시스템에서 제공하는 기능도 포함될 수 있다.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)의 외부에서 자율 주행 차량(100b)에 정보를 제공하거나 기능을 보조할 수 있다. 예컨대, 로봇(100a)은 스마트 신호등과 같이 자율 주행 차량(100b)에 신호 정보 등을 포함하는 교통 정보를 제공할 수도 있고, 전기 차량의 자동 전기 충전기와 같이 자율 주행 차량(100b)과 상호작용하여 충전구에 전기 충전기를 자동으로 연결할 수도 있다.
<AI+로봇+XR>
로봇(100a)은 AI 기술 및 XR 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇, 드론 등으로 구현될 수 있다.
XR 기술이 적용된 로봇(100a)은 XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇을 의미할 수 있다. 이 경우, 로봇(100a)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇(100a)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 로봇(100a) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 로봇(100a)은 XR 장치(100c)를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
예컨대, 사용자는 XR 장치(100c) 등의 외부 장치를 통해 원격으로 연동된 로봇(100a)의 시점에 상응하는 XR 영상을 확인할 수 있고, 상호작용을 통하여 로봇(100a)의 자율 주행 경로를 조정하거나, 동작 또는 주행을 제어하거나, 주변 객체의 정보를 확인할 수 있다.
<AI+자율주행+XR>
자율 주행 차량(100b)은 AI 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR 기술이 적용된 자율 주행 차량(100b)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.
XR 영상을 제공하는 수단을 구비한 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(100b)은 HUD를 구비하여 XR 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR 객체를 제공할 수 있다.
이때, XR 객체가 HUD에 출력되는 경우에는 XR 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR 객체가 자율 주행 차량(100b)의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(100b)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR 객체들을 출력할 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 자율 주행 차량(100b) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 자율 주행 차량(100b)은 XR 장치(100c) 등의 외부 장치를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
H. 음성 인식 시스템 및 AI 프로세싱
도 4는 본 발명의 일 실시예에 따른 음성 인식 방법이 구현되는 개략적인 시스템의 블록 구성도를 예시한다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 음성 인식 방법이 구현되는 시스템은, 음성 인식 장치(10), 네트워크 시스템(16), 음성 인식 엔진(Speech Synthesis Engine)으로서 TTS(Text-To-Speech) 시스템(18)을 포함할 수 있다.
적어도 하나의 음성 인식 장치(10)는 휴대폰(11), PC(12), 노트북 컴퓨터(13) 및 기타 서버 장치(14)들을 포함할 수 있다. 상기 PC(12), 노트북 컴퓨터(13)는 무선 엑세스 포인트(15)를 통해 적어도 하나의 네트워크 시스템(16)에 연결할 수 있다. 본 발명의 일 실시예에 의하면 상기 음성 인식 장치(10)는 오디오 북, 스마트 스피커를 포함할 수 있다.
한편, 상기 TTS 시스템(18)은 네트워크에 포함된 서버에 구현될 수도 있고, 온디바이스 프로세싱으로 구현되어 음성 인식 장치(10) 내에 임베딩되어 구현될 수도 있다. 본 발명의 일 실시예에서는 상기 TTS 시스템(18)이 음성 인식 장치(10)에 내장되어 구현되는 것을 전제로 설명한다.
도 5는 본 발명의 일 실시예들에 적용될 수 있는 AI 장치의 블록도이다.
상기 AI 장치(20)는 AI 프로세싱을 수행할 수 있는 AI 모듈을 포함하는 전자 기기 또는 상기 AI 모듈을 포함하는 서버 등을 포함할 수 있다. 또한, 상기 AI 장치(20)는 도 4에 도시된 음성 인식 장치(10)의 적어도 일부의 구성으로 포함되어 AI 프로세싱 중 적어도 일부를 함께 수행하도록 구비될 수도 있다.
상기 AI 프로세싱은, 도 5에 도시된 음성 인식 장치(10)의 음성 인식과 관련된 모든 동작들을 포함할 수 있다. 예를 들어, 상기 AI 프로세싱은, 음성 인식 장치(10)의 입력부를 통해 획득되는 데이터를 분석하여 새로운 데이터를 인식하는 과정일 수 있다.
상기 AI 장치(20)는 AI 프로세서(21), 메모리(25) 및/또는 통신부(27)를 포함할 수 있다.
상기 AI 장치(20)는 신경망을 학습할 수 있는 컴퓨팅 장치로서, 서버, 데스크탑 PC, 노트북 PC, 태블릿 PC 등과 같은 다양한 전자 장치로 구현될 수 있다.
AI 프로세서(21)는 메모리(25)에 저장된 프로그램을 이용하여 신경망을 학습할 수 있다.
특히, AI 프로세서(21)는 입력부를 통해 획득되는 데이터를 분석하여 새로운 데이터를 인식하기 위한 신경망을 학습할 수 있다. 여기서, 데이터를 인식하기 위한 신경망은 인간의 뇌 구조를 컴퓨터 상에서 모의하도록 설계될 수 있으며, 인간의 신경망의 뉴런(neuron)을 모의하는, 가중치를 갖는 복수의 네트워크 노드들을 포함할 수 있다.
복수의 네트워크 모드들은 뉴런이 시냅스(synapse)를 통해 신호를 주고받는 뉴런의 시냅틱 활동을 모의하도록 각각 연결 관계에 따라 데이터를 주고받을 수 있다. 여기서 신경망은 신경망 모델에서 발전한 딥러닝 모델을 포함할 수 있다. 딥 러닝 모델에서 복수의 네트워크 노드들은 서로 다른 레이어에 위치하면서 컨볼루션(convolution) 연결 관계에 따라 데이터를 주고받을 수 있다. 신경망 모델의 예는 심층 신경망(DNN, deep neural networks), 합성곱 신경망(CNN, convolutional deep neural networks), 순환 신경망(RNN, Recurrent Boltzmann Machine), 제한 볼츠만 머신(RBM, Restricted Boltzmann Machine), 심층 신뢰 신경망(DBN, deep belief networks), 심층 Q-네트워크(Deep Q-Network)와 같은 다양한 딥 러닝 기법들을 포함하며, 컴퓨터비젼, 음성인식, 자연어처리, 음성/신호처리 등의 분야에 적용될 수 있다.
한편, 전술한 바와 같은 기능을 수행하는 프로세서는 범용 프로세서(예를 들어, CPU)일 수 있으나, 인공지능 학습을 위한 AI 전용 프로세서(예를 들어, GPU)일 수 있다.
메모리(25)는 AI 장치(20)의 동작에 필요한 각종 프로그램 및 데이터를 저장할 수 있다. 메모리(25)는 비 휘발성 메모리, 휘발성 메모리, 플래시 메모리(flash-memory), 하드디스크 드라이브(HDD) 또는 솔리드 스테이트 드라이브(SDD) 등으로 구현할 수 있다. 메모리(25)는 AI 프로세서(21)에 의해 액세스되며, AI 프로세서(21)에 의한 데이터의 독취/기록/수정/삭제/갱신 등이 수행될 수 있다. 또한, 메모리(25)는 본 발명의 일 실시예에 따른 데이터 분류/인식을 위한 학습 알고리즘을 통해 생성된 신경망 모델(예를 들어, 딥 러닝 모델(26))을 저장할 수 있다.
한편, AI 프로세서(21)는 데이터 분류/인식을 위한 신경망을 학습하는 데이터 학습부(22)를 포함할 수 있다. 데이터 학습부(22)는 데이터 분류/인식을 판단하기 위하여 어떤 학습 데이터를 이용할지, 학습 데이터를 이용하여 데이터를 어떻게 분류하고 인식할지에 관한 기준을 학습할 수 있다. 데이터 학습부(22)는 학습에 이용될 학습 데이터를 획득하고, 획득된 학습데이터를 딥러닝 모델에 적용함으로써, 딥러닝 모델을 학습할 수 있다.
데이터 학습부(22)는 적어도 하나의 하드웨어 칩 형태로 제작되어 AI 장치(20)에 탑재될 수 있다. 예를 들어, 데이터 학습부(22)는 인공지능(AI)을 위한 전용 하드웨어 칩 형태로 제작될 수도 있고, 범용 프로세서(CPU) 또는 그래픽 전용 프로세서(GPU)의 일부로 제작되어 AI 장치(20)에 탑재될 수도 있다. 또한, 데이터 학습부(22)는 소프트웨어 모듈로 구현될 수 있다. 소프트웨어 모듈(또는 인스트럭션(instruction)을 포함하는 프로그램 모듈)로 구현되는 경우, 소프트웨어 모듈은 컴퓨터로 읽을 수 있는 판독 가능한 비일시적 판독 가능 기록 매체(non-transitory computer readable media)에 저장될 수 있다. 이 경우, 적어도 하나의 소프트웨어 모듈은 OS(Operating System)에 의해 제공되거나, 애플리케이션에 의해 제공될 수 있다.
데이터 학습부(22)는 학습 데이터 획득부(23) 및 모델 학습부(24)를 포함할 수 있다.
학습 데이터 획득부(23)는 데이터를 분류하고 인식하기 위한 신경망 모델에 필요한 학습 데이터를 획득할 수 있다. 예를 들어, 학습 데이터 획득부(23)는 학습 데이터로서, 신경망 모델에 입력하기 위한 데이터 및/또는 데이터로부터 추출한 특징값을 획득할 수 있다.
모델 학습부(24)는 상기 획득된 학습 데이터를 이용하여, 신경망 모델이 소정의 데이터를 어떻게 분류할지에 관한 판단 기준을 가지도록 학습할 수 있다. 이 때 모델 학습부(24)는 학습 데이터 중 적어도 일부를 판단 기준으로 이용하는 지도 학습(supervised learning)을 통하여, 신경망 모델을 학습시킬 수 있다. 또는 모델 학습부(24)는 지도 없이 학습 데이터를 이용하여 스스로 학습함으로써, 판단 기준을 발견하는 비지도 학습(unsupervised learning)을 통해 신경망 모델을 학습시킬 수 있다. 또한, 모델 학습부(24)는 학습에 따른 상황 판단의 결과가 올바른지에 대한 피드백을 이용하여 강화 학습(reinforcement learning)을 통하여, 신경망 모델을 학습시킬 수 있다. 또한, 모델 학습부(24)는 오류 역전파법(error back-propagation) 또는 경사 하강법(gradient decent)을 포함하는 학습 알고리즘을 이용하여 신경망 모델을 학습시킬 수 있다.
신경망 모델이 학습되면, 모델 학습부(24)는 학습된 신경망 모델을 메모리에 저장할 수 있다. 모델 학습부(24)는 학습된 신경망 모델을 AI 장치(20)와 유선 또는 무선 네트워크로 연결된 서버의 메모리에 저장할 수도 있다.
데이터 학습부(22)는 인식 모델의 분석 결과를 향상시키거나, 인식 모델의 생성에 필요한 리소스 또는 시간을 절약하기 위해 학습 데이터 전처리부(미도시) 및 학습 데이터 선택부(미도시)를 더 포함할 수도 있다.
학습 데이터 전처리부는 획득된 데이터가 새로운 데이터를 인식하기 위한 학습에 이용될 수 있도록, 획득된 데이터를 전처리할 수 있다. 예를 들어, 학습 데이터 전처리부는, 모델 학습부(24)가 새로운 데이터의 인식을 위한 학습을 위하여 획득된 학습 데이터를 이용할 수 있도록, 획득된 데이터를 기 설정된 포맷으로 가공할 수 있다.
또한, 학습 데이터 선택부는, 학습 데이터 획득부(23)에서 획득된 학습 데이터 또는 전처리부에서 전처리된 학습 데이터 중 학습에 필요한 데이터를 선택할 수 있다. 선택된 학습 데이터는 모델 학습부(24)에 제공될 수 있다. 예를 들어, 학습 데이터 선택부는, 음성 인식 장치(10)에서 획득한 데이터의 특징값 중 특정 영역을 검출함으로써, 특정 영역에 포함된 음절에 대한 데이터만을 학습 데이터로 선택할 수 있다.
또한, 데이터 학습부(22)는 신경망 모델의 분석 결과를 향상시키기 위하여 모델 평가부(미도시)를 더 포함할 수도 있다.
모델 평가부는, 신경망 모델에 평가 데이터를 입력하고, 평가 데이터로부터 출력되는 분석 결과가 소정 기준을 만족하지 못하는 경우, 모델 학습부(22)로 하여금 다시 학습하도록 할 수 있다. 이 경우, 평가 데이터는 인식 모델을 평가하기 위한 기 정의된 데이터일 수 있다. 일 예로, 모델 평가부는 평가 데이터에 대한 학습된 인식 모델의 분석 결과 중, 분석 결과가 정확하지 않은 평가 데이터의 개수 또는 비율이 미리 설정된 임계치를 초과하는 경우, 소정 기준을 만족하지 못한 것으로 평가할 수 있다.
통신부(27)는 AI 프로세서(21)에 의한 AI 프로세싱 결과를 외부 전자 기기로 전송할 수 있다.
여기서 전자 기기는 AI 프로세서(21)가 네트워크 시스템에 포함된 경우, 상기 외부 전자 기기는 본 발명의 일 실시예에 따른 음성 인식 장치가 될 수 있다.
한편, 도 5에 도시된 AI 장치(20)는 AI 프로세서(21)와 메모리(25), 통신부(27) 등으로 기능적으로 구분하여 설명하였지만, 전술한 구성요소들이 하나의 모듈로 통합되어 AI 모듈로 호칭될 수도 있음을 밝혀둔다.
도 6은 본 발명의 일 실시예에 따른 음성 인식 장치의 예시적인 블록도이다.
본 발명의 일 실시예는 상기 음성 인식 장치(10)에 포함될 수 있는 컴퓨터 판독 가능한 및 컴퓨터 실행 가능한 명령들을 포함할 수 있다. 도 6은 상기 음성 인식 장치(10)에 포함된 복수의 구성 요소들을 개시하지만, 상기 개시되지 않은 구성요소들이 상기 음성 인식 장치(10)에 포함될 수도 있음은 물론이다.
복수의 음성 인식 장치가 하나의 음성 인식 장치에 적용될 수도 있다. 그러한 다중 장치 시스템에서 상기 음성 인식 장치는 음성 인식 처리의 다양한 측면들을 수행하기 위한 서로 다른 구성요소들을 포함할 수 있다. 도 6에 도시된 음성 인식 장치(10)는 예시적인 것이며, 독립된 장치일 수 있으며, 보다 큰 장치 또는 시스템의 일 구성요소로 구현될 수도 있다.
본 발명의 일 실시예는 복수의 서로 다른 장치 및 컴퓨터 시스템 예를 들어, 범용 컴퓨팅 시스템, 서버-클라이언트 컴퓨팅 시스템, 전화(telephone) 컴퓨팅 시스템, 랩탑 컴퓨터, 휴대용 단말기, PDA, 테블릿 컴퓨터 등에 적용될 수 있다. 상기 음성 인식 장치(10)는 자동 입출금기(ATMs), 키오스크(kiosks), 글로벌 위치 시스템(GPS), 홈 어플라이언스(예를 들어, 냉장고, 오븐, 세탁기 등), 차량(vehicles), 전자 책 리더(ebook readers) 등의 음성 인식 기능을 제공하는 다른 장치 또는 시스템의 일 구성요소로 적용될 수도 있다.
도 6에 도시된 바와 같이, 음성 인식 장치(10)는 통신부(110), 입력부(120), 출력부(130), 메모리(140), 전원 공급부(190) 및/또는 프로세서(170)를 포함할 수 있다. 한편, 상기 음성 인식 장치(10)에 개시된 몇몇 구성요소들은 단일 구성요소로서, 하나의 장치에서 여러 번 나타날 수 있다.
상기 음성 인식 장치(10)는 상기 음성 인식 장치(10)의 구성요소들 사이에 데이터를 전달하기 위한 어드레스/데이터 버스(미도시)를 포함할 수 있다. 상기 음성 인식 장치(10) 내의 각 구성요소들은 상기 버스(미도시)를 통해 다른 구성요소들과 직접적으로 연결될 수 있다. 한편, 상기 음성 인식 장치(10) 내의 각 구성요소들은 프로세서(170)와 직접적으로 연결될 수도 있다.
통신부(110)는 무선 주파수(RF), 적외선(infrared), 블루투스(Bluetooth), 무선 근거리 통신망(WLAN)(Wi-Fi 등)과 같은 무선 통신 장치 또는 5G 네트워크, LTE(Long Term Evolution) 네트워크, WiMAN 네트워크, 3G 네트워크와 같은 무선 네트워크 무선 장치를 포함할 수 있다.
상기 입력부(120)는 마이크로폰, 터치 입력부, 키보드, 마우스, 스타일러스 또는 다른 입력부를 포함할 수 있다.
출력부(130)는 상기 음성 인식 장치(10) 또는 다른 장치에 의해 처리된 정보(예를 들면, 음성)을 출력할 수 있다. 상기 출력부(130)는 스피커(speaker), 헤드폰(headphone) 또는 음성을 전파하는 다른 적절한 구성요소를 포함할 수 있다. 다른 예를 들면, 출력부(130)는 오디오 출력부를 포함할 수 있다. 또한, 상기 출력부(130)는 디스플레이(visual display or tactile display), 오디오 스피커, 헤드폰, 프린터 또는 기타 출력부를 포함할 수 있다. 상기 출력부(130)는 상기 음성 인식 장치(10)에 통합되거나, 상기 음성 인식 장치(10)와 분리되어 구현될 수도 있다.
입력부(120) 및/또는 출력부(130)는 또한 USB(Universal Serial Bus), FireWire, Thunderbolt 또는 다른 연결 프로토콜과 같은 외부 주변 장치 연결용 인터페이스를 포함할 수 있다. 입력부(120) 및/또는 출력부(130)는 또한 이더넷 포트, 모뎀 등과 같은 네트워크 연결을 포함할 수 있다. 음성 인식 장치(10)는 입력부(120) 및/또는 출력부(130)를 통해 인터넷 또는 분산 컴퓨팅 환경(distributed computing environment)에 접속될 수도 있다. 또한, 음성 인식 장치(10)는 입력부(120) 또는 출력부(130)를 통해 착탈식 또는 외장 메모리(예를 들어, 분리형 메모리 카드, 메모리 키 드라이브, 네트워크 스토리지 등)에 접속될 수 있다.
메모리(140)는 데이터 및 명령을 저장할 수 있다. 상기 메모리(140)는 마그네틱 스토리지, 광학식 스토리지, 고체 상태(solid-state) 스토리지 타입 등을 포함할 수 있다. 상기 메모리(140)는 휘발성 RAM, 비휘발성 ROM 또는 다른 타입의 메모리를 포함할 수 있다.
음성 인식 장치(10)는 프로세서(170)를 포함할 수 있다. 프로세서(170)는 버스(미도시), 입력부(120), 출력부(130) 및/또는 음성 인식 장치(10)의 다른 구성요소에 접속될 수 있다. 상기 프로세서(170)는 데이터를 처리하기 위한 CPU, 데이터를 처리하는 컴퓨터 판독 가능한 명령 및 데이터 및 명령들을 저장하기 위한 메모리에 대응될 수 있다.
음성 인식 장치(10) 및 다양한 구성요소들을 동작시키기 위한 프로세서(170)에서 처리될 컴퓨터 명령(computer instructions)은, 프로세서(170)에 의해 실행될 수 있고, 메모리(140), 외부 디바이스 또는 후술할 프로세서(170)에 포함된 메모리나 스토리지에 저장될 수 있다. 대안적으로, 실행 가능한 명령의 전부 또는 일부는 소프트웨어에 추가하여 하드웨어 또는 펌웨어에 내장될 수도 있다. 본 발명의 일 실시예는 예를 들어, 소프트웨어, 펌웨어 및/또는 하드웨어의 다양한 조합으로 구현될 수 있다.
구체적으로, 프로세서(170)는 텍스트 데이터를 음성을 포함하는 오디오 파형으로 처리하거나, 오디오 파형을 텍스트 데이터로 처리할 수 있다. 텍스트 데이터(textual data)의 출처는 음성 인식 장치(10)의 내부 구성요소에 의해 생성된 것일 수 있다. 또한, 상기 텍스트 데이터의 출처는 키보드와 같이 입력부로부터 수신되거나, 네트워크 연결을 통해 음성 인식 장치(10)로 전송될 것일 수 있다. 텍스트는 프로세서(170)에 의해 스피치로 변환하기 위한 텍스트, 숫자 및/또는 문장 부호(punctuation)를 포함하는 문장의 형태일 수 있다. 입력 텍스트는 또한 프로세서(170)에 의한 처리를 위하여, 특수 주석(special annotation)을 포함할 수 있으며, 상기 특수 주석을 통해 특정 텍스트가 어떻게 발음되어야 하는지를 지시할 수 있다. 텍스트 데이터는 실시간으로 처리되거나 나중에 저장 및 처리될 수 있다.
또한, 도 6에 도시되지 않았으나, 프로세서(170)는 전처리부(Front End), 음성 합성 엔진(Speech Synthesis Engine) 및 TTS 저장부를 포함할 수 있다. 전처리부는 입력 테스트 데이터를 음성 합성 엔진에 의한 처리를 위해 기호 언어 표현(symbolic linguistic representation)으로 변환할 수 있다. 음성 합성 엔진은 주석된 음성 단위 모델(annotated phonetic units models)과 TTS 저장부에 저장된 정보를 비교하여 입력 텍스트를 음성으로 변환할 수 있다. 전처리부 및 음성 합성 엔진은 임베디드된 내부 프로세서 또는 메모리를 포함할 수 있거나, 음성 인식 장치(10)에 포함된 프로세서(170) 및 메모리(140)를 이용할 수 있다. 전처리부 및 음성 합성 엔진을 동작시키기 위한 명령들은 프로세서(170), 음성 인식 장치(10)의 메모리(140) 또는 외부 장치 내에 포함될 수도 있다.
프로세서(170)로의 텍스트 입력은 프로세싱을 위해 전처리부로 전송될 수 있다. 전처리부는 텍스트 정규화(text normalization), 언어 분석(linguistic analysis), 언어 운율 생성(linguistic prosody generation)을 수행하기 위한 모듈을 포함할 수 있다.
전처리부는 텍스트 정규화 동작을 수행하는 동안, 텍스트 입력을 처리하고 표준 텍스트(standard text)를 생성하여, 숫자(numbers), 약어(abbreviations), 기호(symbols)를 쓰여진 것과 동일하게 변환한다.
전처리부는 언어 분석 동작을 수행하는 동안, 정규화된 텍스트의 언어를 분석하여 입력 텍스트에 대응하는 일련의 음성학적 단위(phonetic units)를 생성할 수 있다. 이와 같은 과정은 발음 표기(phonetic transcription)로 호칭될 수 있다.
음성 단위(phonetic units)는 최종적으로 결합되어 음성(speech)으로서 음성 인식 장치(10)에 의해 출력되는 사운드 단위(sound units)의 심볼 표현을 포함한다. 다양한 사운드 유닛들이 음성 합성을 위해 텍스트를 분할하는데 사용될 수 있다.
프로세서(170)는 음소(phonemes, 개별 음향), 하프-음소(half-phonemes), 다이폰(di-phones, 인접한 음소의 전반과 결합된 하나의 음소의 마지막 절반), 바이폰(bi-phones, 두 개의 연속적인 음속), 음절(syllables), 단어(words), 문구(phrases), 문장(sentences), 또는 기타 단위들에 기초하여 음성을 처리할 수 있다. 각 단어는 하나 이상의 음성 단위(phonetic units)에 매핑될 수 있다. 이와 같은 매핑은 음성 인식 장치(10)에 저장된 언어 사전(language dictionary)을 이용하여 수행될 수 있다.
전처리부에 의해 수행되는 언어 분석은 또한 접두사(prefixes), 접미사(suffixes), 구(phrases), 구두점(punctuation), 구문론 경계(syntactic boundaries)와 같은 서로 다른 문법적 요소들 확인하는 과정을 포함할 수 있다. 이와 같은 문법적 구성요소는 프로세서(170)에 의해 자연스러운 오디오 파형 출력을 만드는데 사용될 수 있다. 상기 언어 사전은 또한 프로세서(170)에 의해 발생할 수 있는 이전에 확인되지 않은 단어 또는 문자 조합을 발음하는데 사용될 수 있는 문자 대 소리 규칙(letter-to-sound rules) 및 다른 도구들을 포함할 수 있다. 일반적으로 언어 사전에 포함된 정보들이 많을 수록 고 품질의 음성 출력을 보장할 수 있다.
상기 언어 분석에 기초하여, 전처리부는 음성 단위(phonetic units)에 최종 음향 단위가 최종 출력 음성에서 어떻게 발음되어야 하는지를 나타내는 운율 특성(prosodic characteristics)으로 주석 처리된 언어 운율 생성을 수행할 수 있다.
상기 운율 특성은 음향 특징(acoustic features)으로도 호칭될 수 있다. 이 단계의 동작을 수행하는 동안, 전처리부는 텍스트 입력을 수반하는 임의의 운율 주석(prosodic annotations)을 고려하여 프로세서(170)에 통합할 수 있다. 이와 같은 음향 특징(acoustic features)은 피치(pitch), 에너지(energy), 지속 시간(duration) 등을 포함할 수 있다. 음향 특징의 적용은 프로세서(170)이 이용할 수 있는 운율 모델(prosodic models)에 기초할 수 있다.
이러한 운율 모델은 특정 상황에서 음성 단위(phonetic units)가 어떻게 발음되어야 하는지를 나타낸다. 예를 들어, 운율 모델은 음절에서 음소의 위치(a phoneme's position in a syllable), 단어에서 음절의 위치(a syllable's position in a word), 문장 또는 구문에서 단어의 위치(a word's position in a sentence or phrase), 인접한 음운 단위(neighboring phonetic units) 등을 고려할 수 있다. 언어 사전과 마찬가지로, 운율 정보(prosodic model)의 정보가 많을수록 고품질의 음성 출력이 보장될 수 있다.
전처리부의 출력은, 운율 특성(prosodic characteristics)으로 주석 처리된 일련의 음성 단위를 포함할 수 있다. 상기 전처리부의 출력은 기호식 언어 표현(symbolic linguistic representation)으로 호칭될 수 있다. 상기 심볼릭 언어 표현은 음성 합성 엔진에 전송될 수 있다.
상기 음성 합성 엔진은 출력부(130)를 통해 사용자에게 출력하기 위해 스피치(speech)를 오디오 파형(audio waveform)으로의 변환 과정을 수행한다. 음성 합성 엔진은 입력 텍스트를 효율적인 방식으로 고품질의 자연스러운 음성으로 변환하도록 구성될 수 있다. 이러한 고품질의 스피치는 가능한 한 화자(human speaker)와 유사하게 발음되도록 구성될 수 있다.
음성 합성 엔진은 적어도 하나 이상의 다른 방법을 이용하여 음성 합성을 수행할 수 있다.
유닛 선택 엔진(Unit Selection Engine)은 녹음된 스피치 데이터 베이스(recorded speech database)를, 상기 전처리부에 의해 생성된 기호식 언어 표현(symbolic linguistic representation)과 대조한다. 유닛 선택 엔진은 상기 심볼 언어 표현과 스피치 데이터베이스의 음성 오디오 유닛을 매칭한다. 음성 출력(speech output)을 형성하기 위해 매칭 유닛이 선택되고, 선택된 매칭 유닛들이 함께 연결될 수 있다. 각 유닛은 .wav 파일(피치, 에너지 등)과 연관된 다양한 음향 특성들의 설명(description)과 함께, 특정 사운드의 짧은 .wav 파일과 같은 음성 유닛(phonetic unit)에 대응하는 오디오 파형(audio waveform) 뿐 아니라, 상기 음성 유닛이 단어, 문장 또는 문구, 이웃 음성 유닛에 표시되는 위치와 같은 다른 정보들을 포함할 수 있다.
유닛 선택 엔진은 자연스러운 파형을 생성하기 위하여 유닛 데이터 베이스 내의 모든 정보를 이용하여 입력 텍스트를 매칭시킬 수 있다. 유닛 데이터 베이스는 유닛들을 스피치로 연결하기 위해 서로 다른 옵션들을 음성 인식 장치(10)에 제공하는 다수의 음성 유닛들의 예시를 포함할 수 있다. 유닛 선택의 장점 중 하나는, 데이터 베이스의 크기에 따라 자연스러운 음성 출력이 생성될 수 있다는 것이다. 또한, 유닛 데이터 베이스가 클수록 음성 인식 장치(10)는 자연스러운 음성을 구성할 수 있게 된다.
한편, 음성 합성은 전술한 유닛 선택 합성 외에 파라미터 합성 방법이 존재한다. 파라미터 합성은 인공적인 음성 파형을 생성하기 위해 주파수, 볼륨, 잡음과 같은 합성 파라미터들이 파라미터 합성 엔진, 디지털 신호 프로세서, 또는 다른 오디오 생성 장치에 의해 변형될 수 있다.
파라미터 합성은, 음향 모델 및 다양한 통계 기법을 사용하여 기호식 언어 표현(symbolic linguistic representation) 원하는 출력 음성 파라미터와 일치시킬 수 있다. 파라미터 합성에는 유닛 선택과 관련된 대용량의 데이터베이스 없이도 음성을 처리할 수 있을 뿐 아니라, 높은 처리 속도로 정확한 처리가 가능하다. 유닛 선택 합성 방법 및 파라미터 합성 방법은 개별적으로 수행되거나 결합되어 수행되어 음성 오디오 출력을 생성할 수 있다.
파라미터 음성 합성은 다음과 같이 수행될 수 있다. 프로세서(170)는 오디오 신호 조작에 기초하여 기호식 언어 표현(symbolic linguistic representation)을 텍스트 입력의 합성 음향 파형(synthetic acoustic waveform)으로 변환이 가능한 음향 모델(acoustic model)을 포함할 수 있다. 상기 음향 모델은, 입력 음성 단위 및/또는 운율 주석(prosodic annotations)에 특정 오디오 파형 파라미터(specific audio waveform parameters)를 할당하기 위해 파라미터 합성 엔진에 의해 사용될 수 있는 규칙(rules)을 포함할 수 있다. 상기 규칙은 특정 오디오 출력 파라미터(주파수, 볼륨 등)가 전처리부로부터의 입력 기호식 언어 표현의 부분에 대응할 가능성을 나타내는 스코어를 계산하는데 이용될 수 있다.
파라미터 합성 엔진은 합성될 음성을 입력 음성 유닛 및/또는 운율 주석과 매칭시키기 위해 복수의 기술들이 적용될 수 있다. 일반적인 기술 중 하나는 HMM(Hidden Markov Model)을 사용한다, HMM은 오디오 출력이 텍스트 입력과 일치해야 하는 확률을 결정하는데 이용될 수 있다. HMM은 원하는 음성을 인공적으로 합성하기 위해, 언어 및 음향 공간의 파라미터들을 보코더(디지털 보이스 인코더)에 의해 사용될 파라미터들로 전환시키는데 이용될 수 있다.
또한, 음성 인식 장치(10)는 유닛 선택에 사용하기 위한 음성 유닛 데이터베이스를 포함할 수 있다. 상기 음성 유닛 데이터 베이스는 메모리(140) 또는 다른 스토리지 구성에 저장될 수 있다. 상기 음성 유닛 데이터 베이스는 레코딩된 스피치 발성을 포함할 수 있다. 상기 스피치 발성은 발화 내용에 대응되는 텍스트일 수 있다. 또한, 음성 유닛 데이터 베이스는 음성 인식 장치(10)에서 상당한 저장 공간을 차지하는 녹음된 음성(오디오 파형, 특징 벡터 또는 다른 포맷의 형태)을 포함할 수 있다. 음성 유닛 데이터베이스의 유닛 샘플들은 음성 단위(음소, 다이폰, 단어 등), 언어적 운율 레이블, 음향 특징 시퀀스, 화자 아이덴티티 등을 포함하는 다양한 방법으로 분류될 수 있다. 샘플 발화(sample utterance)는 특정 음성 유닛에 대한 원하는 오디오 출력에 대응하는 수학적 모델을 생성하는데 사용될 수 있다.
음성 합성 엔진은 기호화된 언어 표현을 매칭할 때, 입력 텍스트(음성 단위 및 운율 기호 주석 모두를 포함)와 가장 근접하게 일치하는 음성 유닛 데이터베이스 내의 유닛을 선택할 수 있다. 일반적으로 음성 유닛 데이터 베이스가 클 수록 선택 가능한 유닛 샘플 수가 많아서 정확한 스피치 출력이 가능하게 된다.
프로세서(170)는 음성 출력을 포함하는 오디오 파형(audio waveforms)은 사용자에게 출력하기 위해 출력부(130)로 전달할 수 있다. 프로세서(170)는 음성을 포함하는 오디오 파형을 일련의 특징 벡터(feature vectors), 비 압축 오디오 데이터(uncompressed audio data) 또는 압축 오디오 데이터와 같은 복수의 상이한 포맷으로 메모리(140)에 저장할 수 있다. 예를 들어, 프로세서(170)는 음성 출력을 상기 전송 전에 인코더/디코더를 이용하여 인코딩 및/또는 압축할 수 있다. 인코더/디코더는 디지털화된 오디오 데이터, 특징 벡터 등과 같은 오디오 데이터를 인코딩 및 디코딩할 수 있다. 또한 인코더/디코더의 기능은 별도의 컴포넌트 내에 위치될 수 있거나, 프로세서(170)에 의해 수행될 수도 있음은 물론이다.
한편, 상기 메모리(140)는 음성 인식(speech recognition)을 위해 다른 정보들을 저장할 수 있다. 메모리(140)의 컨텐츠는 일반적인 음성 인식 및 TTS 사용을 위해 준비될 수도 있고, 특정 애플리케이션에서 사용될 가능성이 있는 소리 및 단어를 포함하도록 맞춤화될 수 있다. 예를 들어, GPS 장치에 의해 TTS 처리를 위해 TTS 스토리지는 위치 및 내비게이션에 특화된 맞춤형 음성을 포함할 수 있다.
또한, 메모리(140)는 개인화된 원하는 음성 출력에 기초하여 사용자에게 커스터마이징될 수도 있다. 예를 들어, 사용자는 출력되는 보이스가 특정 성별, 특정 억양, 특정 속도, 특정 감정(예를 들어, 행복한 음성)을 선호할 수 있다. 음성 합성 엔진은 이와 같은 사용자 선호도를 설명하기 위하여 특수 데이터 베이스 또는 모델(specialized database or model)을 포함할 수 있다.
음성 인식 장치(10)는 또한 다중 언어로 TTS 처리를 수행하도록 구성될 수 있다. 각 언어에 대해, 프로세서(170)는 원하는 언어로 음성을 합성하기 위해 특별히 구성된 데이터, 명령 및/또는 구성 요소를 포함할 수 있다.
성능 향상을 위해 프로세서(170)은 TTS 처리 결과에 대한 피드백에 기초하여 메모리(140)의 내용을 수정하거나 갱신할 수 있으므로, 프로세서(170)이 훈련 코퍼스(training corpus)에서 제공되는 능력 이상으로 음성 인식을 향상시킬 수 있다.
음성 인식 장치(10)의 처리 능력이 향상됨에 따라, 입력 텍스트가 갖는 감정 속성을 반영하여 음성 출력이 가능하다. 또는 음성 인식 장치(10)는 상기 입력 텍스트에 감정 속성에 포함되어 있지 않더라도, 입력 텍스트를 작성한 사용자의 의도(감정 정보)를 반영하여 음성 출력이 가능하다.
실제로 TTS 처리를 수행하는 TTS 모듈에 통합될 모델이 구축될 때 TTS 시스템은, 위에서 언급한 다양한 구성요소와 다른 구성요소를 통합할 수 있다. 일 예로, 음성 인식 장치(10)는 화자 설정을 위한 블록을 포함할 수 있다.
화자 설정부는 스크립트에 등장하는 캐릭터 별로 각각 화자를 설정할 수 있다. 화자 설정부은 프로세서(170)에 통합되거나, 전처리부 또는 음성 합성 엔진의 일부로서 통합될 수 있다. 상기 화자 설정부는 화자 프로필에 대응하는 메타 데이터를 이용하여 복수의 캐릭터에 대응하는 텍스트를 설정된 화자의 음성으로 합성되도록 한다.
본 발명의 일 실시예에 의하면, 상기 메타 데이터는 마크업 언어(Markup Language)가 이용될 수 있으며, 바람직하게는 SSML(Speech Synthesis Markup Language)가 이용될 수 있다.
이하, 도 7 및 도 8를 통해 디바이스 환경(device environment) 및/또는 클라우드 환경(cloud environment or server environment)에서 수행되는 음성 처리 과정(음성 인식 및 음성 출력(TTS) 과정)을 설명한다. 도 7 및 도 8에서 디바이스 환경(50,70)는 클라이언트 디바이스로 호칭될 수 있으며, 클라우드 환경(60, 80)은 서버로 호칭될 수 있다. 도 7은 음성을 입력받는 것은 디바이스(50)에서 이루어질 수 있으나, 입력된 음성을 처리하여 음성을 합성하는 과정 즉 음성 처리의 전반적인 동작이 클라우드 환경(60)에서 이루어지는 예를 도시한 것이다. 이에 반해, 도 8은 전술한 입력된 음성을 처리하여 음성을 합성하는 음성 처리의 전반적인 동작이 디바이스(70)에서 이루어지는 온 디바이스 프로세싱(On-device processing)의 예를 도시한 것이다.
도 7은 본 발명의 일 실시예에 따른 음성 인식 시스템 환경에서 음성 인식 장치의 개략적인 블럭도를 도시한다.
엔드 투 엔드(end-to-end) 음성 UI 환경에서 음성 이벤트를 처리하기 위해서는 다양한 구성요소가 필요하다. 음성 이벤트를 처리하는 시퀀스는 음성 신호를 수집하여(Signal acquisition and playback), 음성 사전 처리(Speech Pre Processing), 음성 활성화(Voice Activation), 음성 인식(Speech Recognition), 자연어 이해(Natural Language Processing) 및 최종적으로 장치가 사용자에게 응답하는 음성 합성(Speech Synthesis) 과정을 수행한다.
클라이언트 디바이스(50)는 입력 모듈을 포함할 수 있다. 상기 입력 모듈은 사용자로부터 사용자 입력을 수신할 있다. 예를 들어, 입력 모듈은 연결된 외부 장치(예를 들어, 키보드, 헤드셋) 으로부터 사용자 입력을 수신할 수 있다. 또한 예를 들어, 입력 모듈은 터치 스크린을 포함할 수 있다. 또한 예를 들어, 입력 모듈은 사용자 단말에 위치한 하드웨어 키를 포함할 수 있다.
일 실시예에 의하면, 상기 입력 모듈은 사용자의 발화를 음성 신호로 수신할 수 있는 적어도 하나의 마이크를 포함할 수 있다. 상기 입력 모듈은 발화 입력 시스템(speech input system)을 포함하고, 상기 발화 입력 시스템을 통해 사용자의 발화를 음성 신호로 수신할 수 있다. 상기 적어도 하나의 마이크는 오디오 입력을 위한 입력 신호를 생성함으로써, 사용자의 발화에 대한 디지털 입력 신호를 결정할 수 있다. 일 실시예에 의하면, 복수의 마이크가 어레이로 구현될 수 있다. 어레이는 기하학적 패턴, 예를 들어, 선형 기하학적 형태, 원형 기하학적 형태 또는 임의의 다른 구성으로 배열될 수 있다. 예를 들어, 소정 지점에 대하여, 네 개의 센서들의 어레이는 네 개의 방향들로부터 사운드를 수신하기 위해 90도로 구분되어 원형의 패턴으로 배치될 수 있다. 일부 구현들에서, 상기 마이크는 데이터 통신 내 공간적으로 서로 다른 어레이의 센서들을 포함할 수 있는데, 센서들의 네트워크화된 어레이가 포함될 수 있다. 마이크는 무지향성(omnidirectional), 방향성(directional, 예를 들어, 샷건(shotgun) 마이크)등을 포함할 수 있다.
클라이언트 디바이스(50)는 상기 입력 모듈(예를 들어, 마이크)을 통해 수신된 사용자 입력(음성 신호)를 전처리할 수 있는 전처리 모듈(pre-processing module)(51)을 포함할 수 있다.
상기 전처리 모듈(51)은 적응 반향 제거(adaptive echo canceller, AEC) 기능을 포함함으로써, 상기 마이크를 통해 입력된 사용자 입력(음성 신호)에 포함된 에코(echo)를 제거할 수 있다. 상기 전처리 모듈(51)은 노이즈 억제(noise suppression, NS) 기능을 포함함으로써, 사용자 입력에 포함된 배경 잡음을 제거할 수 있다. 상기 전처리 모듈(51)은 종점 검출(end-point detect, EPD) 기능을 포함함으로써, 사용자 음성의 종점을 검출하여 사용자의 음성이 존재하는 부분을 찾을 수 있다. 또한, 상기 전처리 모듈(51)은 자동 이득 제어(automatic gain control, AGC) 기능을 포함함으로써, 상기 사용자 입력을 인식하여 처리하기 적합하도록 상기 사용자 입력의 음량을 조절할 수 있다.
클라이언트 디바이스(50)는 음성 인식 활성화(voice activation) 모듈(52)을 포함할 수 있다. 상기 음성 인식 활성화 모듈(52)은 사용자의 호출(예: 기동어(wake-up word))을 인식하는 웨이크업(wake up) 명령을 인식할 수 있다. 상기 음성 인식 활성화 모듈(52)은 전처리 과정을 거친 사용자 입력으로부터 소정의 키워드(ex, Hi LG)를 디텍트할 수 있다. 상기 음성 인식 활성화 모듈(52)은 대기 상태로 존재하여 올 웨이즈 온 키워드 디텍트(Always-on keyword detection) 기능을 수행할 수 있다.
클라이언트 디바이스(50)는 사용자 음성 입력을 클라우드 서버로 전송할 수 있다. 사용자 음성을 처리하기 위한 핵심 구성인 자동 음성 인식(ASR), 자연어 이해(NLU) 동작은 컴퓨팅, 저장, 전원 제약 등으로 인해 전통적으로 클라우드에서 실행되고 있는 것이 일반적이지만, 반드시 이에 한정될 필요는 없으며, 클라이언트 디바이스(50) 내에서 이루어질 수도 있다.
상기 클라우드는 클라이언트로부터 전송된 사용자 입력을 처리하는 클라우드 디바이스(60)를 포함할 수 있다. 상기 클라우드 디바이스(60)는 서버 형태로 존재할 수 있다.
클라우드 디바이스(60)는 자동 음성 인식(Auto Speech Recognition, ASR) 모듈(61), 지능형 프로세서(Artificial Intelligent Agent)(62), 자연어 이해(Natural Language Understanding, NLU) 모듈(63), 텍스트 음성 변환(Text-to-Speech, TTS) 모듈(64)과, 서비스 매니저(65)를 포함할 수 있다.
ASR 모듈(61)은 클라이언트 디바이스(50)로부터 수신된 사용자 음성 입력을 텍스트 데이터로 변환할 수 있다.
ASR 모듈(61)은 프론트-엔드 스피치 프리 프로세서(front-end speech pre-processor)를 포함한다. 프론트-엔드 스피치 프리프로세서는 스피치 입력으로부터 대표적인 특징을 추출한다. 예를 들어, 프론트-엔드 스피치 프리프로세서는 스피치 입력을 푸리에 변환을 수행하여 대표적인 다차원 벡터의 시퀀스로서 스피치 입력을 특징짓는 스펙트럼 특징을 추출한다. 또한, ASR 모듈(61)은 하나 이상의 스피치 인식 모델(예컨대, 음향 모델 및/또는 언어 모델)을 포함하고, 하나 이상의 스피치 인식 엔진을 구현할 수 있다. 스피치 인식 모델의 예는 은닉 마르코프 모델(hidden Markov models), 가우시안 혼합 모델(Gaussian-Mixture Models), 딥 신경망 모델(Deep Neural Network Models), n-gram 언어 모델, 및 기타 통계 모델을 포함한다. 스피치 인식 엔진의 예는 동적 시간 왜곡 기반 엔진 및 가중치 유한 상태 변환기(WFST) 기반 엔진을 포함한다. 하나 이상의 스피치 인식 모델 및 하나 이상의 스피치 인식 엔진은 중간 인식 결과들(예를 들어, 음소, 음소 문자열, 및 하위 단어들), 및 궁극적으로 텍스트 인식 결과들(예컨대, 단어, 단어 문자열, 또는 토큰들의 시퀀스)을 생성하기 위해 프론트-엔드 스피치 프리프로세서의 추출된 대표 특징들을 처리하는 데 사용될 수 있다.
ASR 모듈(61)이 텍스트 문자열(예를 들어, 단어들, 또는 단어들의 시퀀스, 또는 토큰들의 시퀀스)을 포함하는 인식 결과를 생성하면, 인식 결과는 의도 추론을 위해 자연 언어 처리 모듈(NLU)(63)로 전달된다. 일부 예들에서, ASR 모듈(61)은 스피치 입력의 다수의 후보 텍스트 표현들을 생성한다. 각각의 후보 텍스트 표현은 스피치 입력에 대응하는 단어들 또는 토큰들의 시퀀스이다.
NLU 모듈(63)은 문법적 분석(Syntactic analyze) 또는 의미적 분석(semantic analyze)을 수행하여 사용자 의도를 파악할 수 있다. 상기 문법적 분석은 문법 단위(예를 들어, 단어, 구, 형태소 등)를 나누고, 나누어진 단위가 어떠한 문법적인 요소를 갖는지 파악할 수 있다. 상기 의미적 분석은 의미(semantic) 매칭, 룰(rule) 매칭, 포뮬러(formula) 매칭 등을 이용하여 수행할 수 있다. 이에 따라, NUL 모듈(63)은 사용자 입력이 어느 도메인(domain), 의도(intent) 또는 상기 의도를 표현하는데 필요한 파라미터(parameter)를 획득할 수 있다.
상기 NLU 모듈(63)은 도메인, 의도 및 상기 의도를 파악하는데 필요한 파라미터로 나누어진 매핑 규칙을 이용하여 사용자의 의도 및 파라미터를 결정할 수 있다. 예를 들어, 하나의 도메인(예를 들어, 알람)은 복수의 의도(예를 들어, 알람 설정, 알람 해제)를 포함할 수 있고, 하나의 의도는 복수의 파라미터(예를 들어, 시간, 반복 횟수, 알람음 등)을 포함할 수 있다. 복수의 룰은, 예를 들어, 하나 이상의 필수 요소 파라미터를 포함할 수 있다. 상기 매칭 규칙은 자연어 이해 데이터 베이스(Natural Language Understanding Database)에 저장될 수 있다.
상기 NLU 모듈(63)은 형태소, 구 등의 언어적 특징(예를 들어, 문법적 요소)을 이용하여 사용자 입력으로부터 추출된 단어의 의미를 파악하고, 상기 파악된 단어의 의미를 도메인 및 의도에 매칭시켜 사용자의 의도를 결정한다.
예를 들어, NLU 모듈(63)은 각각의 도메인 및 의도에 사용자 입력에서 추출된 단어가 얼마나 포함되어 있는지를 계산하여 사용자 의도를 결정할 수 있다. 일 실시예에 따르면, NLU 모듈(63)은 상기 의도를 파악하는데 기초가 된 단어를 이용하여 사용자 입력의 파라미터를 결정할 수 있다.
일 실시예에 따르면, NLU 모듈(63)은 사용자 입력의 의도를 파악하기 위한 언어적 특징이 저장된 자연어 인식 데이터 베이스를 이용하여 사용자의 의도를 결정할 수 있다.
또한 일 실시예에 따르면, NLU 모듈(63)은 개인화 언어 모델(personal language model, PLM)을 이용하여 사용자의 의도를 결정할 수 있다. 예를 들어, NLU 모듈(63)은 개인화된 정보(예를 들어, 연락처 리스트, 음악 리스트, 스케줄 정보, 소셜 네트워크 정보 등)을 이용하여 사용자의 의도를 결정할 수 있다.
상기 개인화 언어 모델은, 예를 들어, 자연어 인식 데이터 베이스에 저장될 수 있다. 일 실시예에 따르면, NLU 모듈(63) 뿐 아니라 ASR 모듈(61)도 자연어 인식 데이터 베이스에 저장된 개인화 언어 모델을 참고하여 사용자 음성을 인식할 수 있다.
NLU 모듈(63)은 자연어 생성 모듈(미도시)을 더 포함할 수 있다. 상기 자연어 생성 모듈은 지정된 정보를 텍스트 형태로 변경할 수 있다. 상기 텍스트 형태로 변경된 정보는 자연어 발화의 형태일 수 있다. 상기 지정된 정보는 예를 들어, 추가 입력에 대한 정보, 사용자 입력에 대응되는 동작의 완료를 안내하는 정보 또는 사용자의 추가 입력을 안내하는 정보 등을 포함할 수 있다. 상기 텍스트 형태로 변경된 정보는 클라이언트 디바이스로 전송되어 디스플레이에 표시되거나, TTS 모듈로 전송되어 음성 형태로 변경될 수 있다.
음성 합성 모듈(TTS 모듈, 64)은 텍스트 형태의 정보를 음성 형태의 정보로 변경할 수 있다. TTS 모듈(64)은 NLU 모듈(63)의 자연어 생성 모듈로부터 텍스트 형태의 정보를 수신하고, 상기 텍스트 형태의 정보를 음성 형태의 정보로 변경하여 클라이언트 디바이스(50)로 전송할 수 있다. 상기 클라이언트 디바이스(50)는 상기 음성 형태의 정보를 스피커를 통해 출력할 수 있다.
음성 합성 모듈(64)은 제공된 텍스트에 기초하여 스피치 출력을 합성한다. 예를 들어, 음성 인식 모듈(ASR)(61)에서 생성된 결과는 텍스트 문자열의 형태이다. 음성 합성 모듈(64)은 텍스트 문자열을 가청 스피치 출력으로 변환한다. 음성 합성 모듈(64)은, 텍스트로부터의 스피치 출력을 생성하기 위하여 임의의 적절한 스피치 합성 기법을 사용하는데, 이는 편집 합성(concatenative synthesis), 단위 선택 합성(unit selection synthesis), 다이폰 합성, 도메인-특정 합성, 포먼트 합성(Formant synthesis), 조음 합성(Articulatory synthesis), HMM(hidden Markov model) 기반 합성, 및 정현파 합성(sinewave synthesis)을 포함하지만 이로 한정되지 않는다.
일부 예들에서, 음성 합성 모듈(64)은 단어들에 대응하는 음소 문자열에 기초하여 개별 단어들을 합성하도록 구성된다. 예를 들어, 음소 문자열은 생성된 텍스트 문자열의 단어와 연관된다. 음소 문자열은 단어와 연관된 메타데이터에 저장된다. 음성 합성 모듈(64)은 스피치 형태의 단어를 합성하기 위해 메타데이터 내의 음소 문자열을 직접 프로세싱하도록 구성된다.
클라우드 환경은 일반적으로 클라이언트 디바이스보다 많은 처리 능력 또는 리소스를 갖기 때문에, 클라이언트 측 합성에서 실제보다 높은 품질의 스피치 출력을 획득하는 것이 가능하다. 그러나, 본 발명은 이에 한정되지 않으며, 실제로 음성 합성 과정이 클라이언트 디바이스에서 이루어질 수 있음은 물론이다(도 8 참조).
한편, 본 발명의 일 실시예에 따라 클라우드 환경에는 지능형 프로세서(Artificial Intelligence Processor, AI 프로세서)(62)를 더 포함할 수 있다. 상기 지능형 프로세서(62)는 전술한 ASR 모듈(61), NLU 모듈(62) 및/또는 TTS 모듈(64)이 수행하는 기능 중 적어도 일부의 기능을 수행하도록 설계될 수 있다. 또한 상기 지능형 프로세서 모듈(62)은 ASR 모듈(61), NLU 모듈(62) 및/또는 TTS 모듈(64) 각각의 독립적인 기능을 수행하는데 기여할 수 있다.
상기 지능형 프로세서 모듈(62)은 심층학습(딥러닝)을 통해 전술한 기능들을 수행할 수 있다. 상기 심층학습은 어떠한 데이터가 있을 때 이를 컴퓨터가 알아 들을 수 있는 형태(예를 들어 이미지의 경우는 픽셀정보를 열벡터로 표현하는 등)로 표현(representation)하고 이를 학습에 적용하기 위해 많은 연구(어떻게 하면 더 좋은 표현기법을 만들고 또 어떻게 이것들을 학습할 모델을 만들지에 대한)가 진행되고 있으며, 이러한 노력의 결과로 심층 신경망(DNN, deep neural networks), 합성곱 신경망(CNN, convolutional deep neural networks), 순환 신경망(RNN, Recurrent Boltzmann Machine), 제한 볼츠만 머신(RBM, Restricted Boltzmann Machine), 심층 신뢰 신경망(DBN, deep belief networks), 심층 Q-네트워크(Deep Q-Network)와 같은 다양한 딥 러닝 기법들이 컴퓨터비젼, 음성인식, 자연어처리, 음성/신호처리 등의 분야에 적용될 수 있다.
현재 모든 주요 상업 음성인식 시스템(MS 코타나, 스카이프 번역기, 구글 나우, 애플 시리 등등)이 딥 러닝 기법에 기반하고 있다.
특히, 지능형 프로세서 모듈(62)은 자연어 처리 분야에서 심층 인공 신경망 구조를 이용하여 자동 번역(machine translation), 감정 분석(emotion analysis), 정보 검색(information retrieval)을 비롯한 다양한 자연언어처리 과정을 수행할 수 있다.
한편, 상기 클라우드 환경은 다양한 개인화된 정보를 수집하여 상기 지능형 프로세서(62)의 기능을 지원할 수 있는 서비스 매니저(service manager)(65)를 포함할 수 있다. 상기 서비스 매니저를 통해 획득되는 개인화된 정보는, 클라이언트 디바이스(50)가 클라우드 환경을 통해 이용하는 적어도 하나의 데이터(캘린더 애플리케이션, 메시징 서비스, 뮤직 애플리케이션 사용 등), 상기 클라이언트 디바이스(50) 및/또는 클라우드(60)가 수집하는 적어도 하나의 센싱 데이터들(카메라, 마이크로폰, 온도, 습도, 자이로 센서, C-V2X, 펄스(pulse), 조도(Ambient light), 홍채 인식(Iris scan) 등), 상기 클라이언트 디바이스(50)와 직접적으로 관련 없는 오프 디바이스 데이터들을 포함할 수 있다. 예를 들어, 상기 개인화된 정보는, 맵(maps), SMS, News, Music, Stock, Weather, Wikipedia 정보를 포함할 수 있다.
상기 지능형 프로세서(62)은 설명의 편의를 위해 ASR 모듈(61), NLU 모듈(63) 및 TTS 모듈(64)과 구분되도록 별도의 블럭으로 표현하였으나, 상기 지능형 프로세서(62)는 상기 각 모듈(61, 62,64)의 적어도 일부 또는 전부의 기능을 수행할 수도 있다.
상기 지능형 프로세서(62)는 도 5 및 도 6을 참조하여 설명한 AI 프로세서(21, 261)의 기능의 적어도 일부를 수행할 수도 있다.
도 8은 본 발명의 다른 실시예에 따른 음성 인식 시스템 환경에서 음성 인식 장치의 개략적인 블럭도를 도시한다.
도 8에 도시된 클라이언트 디바이스(70) 및 클라우드 환경(80)은 도 7에서 언급한 클라이언트 디바이스(50) 및 클라우드 환경(60)에 일부 구성 및 기능에 있어서 차이가 있을 뿐 대응될 수 있다. 이에 따라 대응되는 블럭의 구체적인 기능에 대해서는 도 7을 참조할 수 있다.
도 8를 참조하면, 클라이언트 디바이스(70)는 전처리 모듈(71), 음성 인식 활성화(voice activation) 모듈(72), ASR 모듈(73), 지능형 프로세서(74), NLU 모듈(75), TTS 모듈(76)을 포함할 수 있다. 또한, 클라이언트 디바이스(70)는 입력 모듈(적어도 하나의 마이크로 폰)과, 적어도 하나의 출력 모듈을 포함할 수 있다.
또한, 클라우드 환경(80)은 개인화된 정보를 지식(knowledge) 형태로 저장하는 클라우드 지식(Cloud Knowledge)을 포함할 수 있다.
도 8에 도시된 각 모듈의 기능은 도 7를 참조할 수 있다. 다만, ASR 모듈(73), NLU 모듈(75) 및 TTS 모듈(76)이 클라이언트 디바이스(70)에 포함되어 있어서 음성 인식 및 음성 합성 등의 음성 처리 과정을 위해 클라우드와의 통신이 필요 없을 수 있으며, 이에 따라 즉각적이고 실시간 음성 처리처리 동작이 가능하게 된다.
도 7 및 도 8에 도시된 각 모듈은 음성 처리 과정을 설명하기 위한 예시일 뿐이며, 도 7 및 도 8에 도시된 모듈보다 더 많거나 더 적은 모듈을 가질 수 있다. 또한, 둘 이상의 모듈을 조합할 수 있거나 또는 상이한 모듈 또는 상이한 배열의 모듈을 가질 수 있다는 것에 유의해야 한다. 도 7 및 도 8에 도시된 다양한 모듈들은 하나 이상의 신호 프로세싱 및/또는 주문형 직접 회로, 하드웨어, 하나 이상의 프로세서에 의한 실행을 위한 소프트웨어 명령어들, 펌웨어 또는 이들의 조합으로 구현될 수 있다.
도 9는 본 발명의 일 실시예에 따라 음성 인식을 구현할 수 있는 지능형 프로세서의 개략적인 블럭도를 도시한다.
도 9을 참조하면, 상기 지능형 프로세서(74)는 도 7 및 도 8를 통해 설명한 음성 처리 과정에서 ASR 동작, NLU 동작 및 TTS 동작을 수행하는 것 외에, 사용자와 상호 작용(interactive operation)을 지원할 수 있다. 또는 상기 지능형 프로세서(74)는 컨텍스트 정보를 이용하여, 도 7의 NLU 모듈(63)이 ASR 모듈(61)로부터 수신된 텍스트 표현들에 포함된 정보를 보다 명확하게 하고, 보완하거나 추가적으로 정의하는 동작을 수행하는데 기여할 수 있다.
여기서, 컨텍스트 정보는, 클라이언트 디바이스 사용자의 선호도, 클라이언트 디바이스의 하드웨어 및/또는 소프트웨어 상태들, 사용자 입력 전, 입력 중, 또는 입력 직후에 수집되는 다양한 센서 정보, 상기 지능형 프로세서와 사용자 사이의 이전 상호 작용들(예를 들어, 대화) 등을 포함할 수 있다. 본 문서에서 컨텍스트 정보는 동적이고, 시간, 위치, 대화의 내용 및 기타 요소들에 따라 가변되는 특징임을 물론이다.
지능형 프로세서(74)는 컨텍스트 퓨전 및 학습 모듈(741), 로컬 지식(742), 다이얼로그 매니지먼트(743)를 더 포함할 수 있다.
컨텍스트 퓨전 및 학습 모듈(741)은 적어도 하나의 데이터에 기초하여 사용자의 의도를 학습할 수 있다. 상기 적어도 하나의 데이터는 클라이언트 디바이스 또는 클라우드 환경에서 획득되는 적어도 하나의 센싱 데이터를 포함할 수 있다. 또한, 상기 적어도 하나의 데이터는 화자 식별(speaker identification), 음향 사건 인지(Acoustic event detection), 화자의 개인 정보(성별 및 나이)(Gender and age detection), 음성 활성도 검출(VAD, voice activity detection), 감정 정보(Emotion Classification) 을 포함할 수 있다.
상기 화자 식별은, 발화하는 사람을 음성에 의해 등록된 대화군 속에서 특정하는 것을 의미할 수 있다. 상기 화자 식별은 기 등록된 화자를 식별하거나, 새로운 화자로 등록하는 과정을 포함할 수 있다. 음향 사건 인지(Acoustic event detection)는 음성 인식 기술을 넘어서 음향 자체를 인식함으로써, 소리의 종류, 소리의 발생 장소를 인지할 수 있다. 음성 활성도 검출(VAD)은 음악, 잡음 또는 다른 사운드를 포함할 수 있는 오디오 신호에서 인간의 스피치(음성)의 존재 또는 부재가 검출되는 스피치 프로세싱 기술이다. 일 예에 따라 지능형 프로세서(74)는 상기 입력된 오디오 신호로부터 스피치의 존재 여부를 확인할 수 있다. 일 예에 따라 지능형 프로세서(74)는 심층 신경망(DNN, deep neural networks) 모델을 이용하여 스피치 데이터(speech data)와 비 스피치 데이터(non-speech data)를 구분할 수 있다. 또한, 지능형 프로세서(74)는 심층 신경망(DNN, deep neural networks) 모델을 이용하여 스피치 데이터에 대하여 감정 분류(Emotion Classification) 동작을 수행할 수 있다. 상기 감정 분류 동작에 따라 스피치 데이터는 화남(Anger), 지루함(Boredom), 무서움(Fear), 행복(Happiness), 슬픔(Sadness)으로 분류될 수 있다.
상기 컨텍스트 퓨전 및 학습 모듈(741)은 전술한 동작을 수행하기 위해 DNN 모델을 포함할 수 있으며, 상기 DNN 모델 및 클라이언트 디바이스 또는 클라우드 환경에서 수집되는 센싱 정보에 기초하여 사용자 입력의 의도를 확인할 수 있다.
상기 적어도 하나의 데이터는 예시적인 것에 불과하며 음성 처리 과정에서 사용자의 의도를 확인하는데 참조될수 있는 어떠한 데이터도 포함될 수 있음은 물론이다. 상기 적어도 하나의 데이터는, 전술한 DNN 모델을 통해 획득할 수 있음은 물론이다.
지능형 프로세서(74)는 로컬 지식(Local Knowledge)(742)을 포함할 수 있다. 상기 로컬 지식(742)은 사용자 데이터를 포함할 수 있다. 상기 사용자 데이터는 사용자의 선호도, 사용자 주소, 사용자의 초기 설정 언어, 사용자의 연락처 목록 등을 포함할 수 있다. 일 예에 따르면, 지능형 프로세서(74)는 사용자의 특정 정보를 이용하여 사용자의 음성 입력에 포함된 정보를 보완하여 사용자 의도를 추가적으로 정의할 수 있다. 예를 들어, "내 생일 파티에 내 친구들을 초대해주세요" 라는 사용자의 요청에 응답하여, 지능형 프로세서(74)는 "친구들"이 누구인지, "생일 파티"가 언제, 어디서 열리지를 결정하기 위해 사용자에게 보다 명확한 정보를 제공하도록 요구하지 않고, 상기 로컬 지식(742)을 이용할 수 있다.
지능형 프로세서(74)는 다이얼로그 관리(Dialog Management)(743)를 더 포함할 수 있다. 상기 지능형 프로세서(74)는 사용자와의 음성 대화가 가능하도록 다이얼로그 인터페이스를 제공할 수 있다. 상기 다이얼로그 인터페이스는 사용자의 음성 입력에 응답을 디스플레이 또는 스피커를 통해 출력하는 과정을 의미할 수 있다. 여기서 상기 다이얼로그 인터페이스를 통해 출력하는 최종 결과물은 전술한 ASR 동작, NLU 동작 및 TTS 동작에 기초할 수 있다.
I. 음성 인식 방법
도 10은 본 발명의 일 실시예에 따른 음성 인식 방법을 나타낸 흐름도이다.
도 10에 도시된 바와 같이, 본 발명의 일 실시예에 따른 지능적 음성 인식 장치의 지능적 음성 인식 방법은 도 10의 S100(S110, S130) 단계를 포함하며, 상세한 내용은 하기와 같다.
먼저, 지능적 음성 인식 장치(도 6의 음성 인식 장치(10))는 사용자의 발화에 대한 음성 인식을 수행한다(S110).
예를 들어, 지능적 음성 인식 장치의 프로세서(예: 도 6의 프로세서(170) 또는 AI 프로세서(261))는 적어도 하나의 마이크(예: 도 6의 입력부(120))를 통해 사용자의 발화를 수신할 수 있다. 여기서, 프로세서는 적어도 하나의 마이크를 통해 수신된 사용자의 발화에 대하여 도 7 내지 도 9를 참조하여 설명한 음성 인식을 수행할 수 있다.
여기서, 프로세서는 사용자의 발화를 ASR 모듈을 통해 텍스트 데이터로 변환할 수 있다. 그 다음, 프로세서는 사용자의 발화로부터 추출된 텍스트 문자열을 포함하는 인식 결과를 이용하여 자연어 처리 모듈을 통해 의도 추론을 수행할 수 있다. 예를 들면, 프로세서는 텍스트 문자열을 포함하는 인식 결과를 이용하여 사용자의 발화와 관련된 응답을 생성할 수 있다.
여기서, 사용자의 발화와 관련된 응답은 하나가 될 수도 있다. 또한, 사용자의 발화와 관련된 응답은 복수가 될 수 있다. 즉, 사용자의 발화와 관련된 응답은 복수의 어플리케이션과 관련될 수 있다. 또한, 사용자의 발화와 관련된 응답은 복수의 운동 상태와 관련될 수 있다.
예를 들어, 사용자의 발화와 관련된 응답은 음악 재생 어플리케이션과 관련되면서도, 동시에 전화 수/발신 어프리케이션과 관련될 수도 있다. 또한, 사용자의 발화와 관련된 응답은 음성 인식 장치가 움직이고 있는 동적인 상태인 운전 상황과 관련될 수도 있고, 동시에, 음성 인식 장치가 정지해 있는 정적인 상태인 업무 상황과 관련될 수 있다.
그 다음, 음성 인식 장치는 인식된 음ㄴ성에 기반하여 결정된 응답을 출력할 수 있다(S130).
예를 들어, 프로세서는 음성과 관련된 복수의 후보 응답들이 존재하는 경우, 복수의 후보 응답들 중에서 음성 인식 장치의 기기 상태 정보에 기반하여 하나의 응답을 결정하고, 결정된 하나의 응답을 출력할 수 있다. 예를 들어, 기기 상태 정보는 사용자의 발화를 수신할 당시 실행된 어플리케이션의 종류와 관련된 정보(또는 식별 정보)를 포함할 수 있다. 예를 들어, 기기 상태 정보는 사용자의 발화를 수신할 당시 음성 인식 장치의 운동 상태 정보를 포함할 수 있다.
도 11은 본 발명의 일 실시예에 따른 음성 인식 장치 사이의 데이터 흐름을 도시한다.
도 11에 도시된 바와 같이, 음성 인식 장치는 적어도 하나의 프로세서(1171, 1172)를 포함할 수 있다. 예를 들어, 적어도 하나의 프로세서는 도 6의 프로세서(170, 261)가 될 수 있다. 예를 들어, 적어도 하나의 프로세서는 어플리케이션을 실행하기 위한 AP(Application Processor)(1171) 및 음성 인식 장치 내의 복수의 모듈을 제어하기 위한 메인 프로세서(CP, Center Processor)(1172)를 포함할 수 있다. AP를 통해 어플리케이션이 실행되고 메인 프로세서가 AP로 실행중인 어플리케이션의 식별 정보를 요청하면, AP는 메인 프로세서로 현재 실행중인 어플리케이션의 식별 정보(1102)를 전달할 수 있다.
또한, 음성 인식 장치는 마이크(1121)를 포함할 수 있다. 여기서, 마이크는 도 1의 입력부(120) 또는 도 6의 입력부(120)의 하나의 구성요소가 될 수 있다. 예를 들어, 메인 프로세서는 마이크를 통해 수신된 사용자의 발화를 음성(1101) 데이터의 형태로 인식할 수 있다.
또한, 음성 인식 장치는 센서(1122)를 포함할 수 있다. 여기서, 센서는 도 1의 센싱부(140) 또는 도 6의 입력부(120)의 하나의 구성요소가 될 수 있다. 여기서, 센서는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 라이다, 레이더 등을 포함할 수 있다. 메인 프로세서는 센서에 의해 검출된 기기(음성 인식 장치)의 운동 상태 정보(1103)를 획득할 수 있다.
이어서, 메인 프로세서는 음성, 실행중인 어플리케이션의 식별 정보 및 기기의 운동 상태 정보에 기반하여, 음성과 관련된 하나의 응답(1104)을 생성할 수 있고, 생성된 응답을 스피커(1131)를 통해 소리의 형태로 출력할 수 있다. 여기서, 스피커는 도 1의 출력부(160) 또는 도 6의 출력부(130)의 구성요소 중 하나가 될 수 있다. 또한, 도 메인 프로세서는 생성된 응답을 디스플레이(도 1의 출력부(160) 또는 도 6의 출력부(130))를 통해 영상의 형태로 출력할 수 있다.
여기서, 메인 프로세서는 음성과 관련된 응답이 복수인지 여부를 판단하는 모호성 검출 어시스턴트 모듈(1173)을 포함할 수 있다.
도 12는 본 발명의 일 실시예에 따른 어플리케이션 종류에 따른 응답 출력 과정을 나타낸 흐름도이다.
도 12에 도시된 바와 같이, 먼저, 음성 인식 장치의 마이크는 "마이클 찾아줘"라는 사용자의 발화에 포함된 음성을 수신할 수 있다(S1201).
그 다음, 음성 인식 장치의 메인 프로세서는 "마이클 찾아줘"라는 음성과 관련된 응답이 복수인지 여부를 판단할 수 있다(S1203).
판단 결과 음성과 관련된 응답이 하나인 경우, 메인 프로세서는 음성 관련 응답을 출력할 수 있다(S1204).
판단 결과 음성과 관련된 응답이 복수인 경우, 메인 프로세서는 어플리케이션 프로세서로 현재 실행중인 어플리케이션의 식별 정보를 요청할 수 있다(S1205).
이어서, 메인 프로세서는 요청에 대응하여 어플리케이션 프로세서로부터 어플리케이션 식별 정보를 획득할 수 있다(S1207).
그 다음, 메인 프로세서는 어플리케이션 식별 정보에 기반하여 어플리케이션의 종류를 판단할 수 있다(S1209).
판단 결과, 현재 실행된 어플리케이션이 음악 재생 어플리케이션인 경우, 메인 프로세서는 "마이클 찾아줘"라는 음성이 음악 재생 어플리케이션 내에서 "마이클"이라는 이름의 가수 리스트를 알려달라는 의도를 포함한다고 판단하고, 음악 재생 어플리케이션을 통해 "마이클"이라는 이름의 가수 리스트를 출력할 수 있다(S1210).
판단 결과, 현재 실행된 어플리케이션이 전화 수/발신 어플리케이션인 경우, 메인 프로세서는 "마이클 찾아줘"라는 음성이 전화 수/발신 어플리케이션 내에서 "마이클"이라는 이름의 최근 연락 리스트를 알려달라는 의도를 포함한다고 판단하고, 전화 수/발신 어플리케이션을 통해 "마이클"이라는 이름의 최근 연락 리스트를 출력할 수 있다(S1211).
도 13은 본 발명의 일 실시예에 따른 기기 운동 상태 정보에 따른 응답 출력 과정을 나타낸 흐름도이다.
도 13에 도시된 바와 같이, 먼저, 음성 인식 장치의 마이크는 "집 안내해줘"라는 사용자의 발화에 포함된 음성을 수신할 수 있다(S1301).
그 다음, 음성 인식 장치의 메인 프로세서는 "집 안내해줘"라는 음성과 관련된 응답이 복수인지 여부를 판단할 수 있다(S1303).
판단 결과 음성과 관련된 응답이 하나인 경우, 메인 프로세서는 음성 관련 응답을 출력할 수 있다(S1304).
판단 결과 음성과 관련된 응답이 복수인 경우, 메인 프로세서는 센싱부로 현재 음성 인식 장치의 기기 운동 상태 정보를 요청할 수 있다(S1305).
이어서, 메인 프로세서는 요청에 대응하여 센싱부로부터 기기의 운동 상태 정보를 획득할 수 있다(S1307).
그 다음, 메인 프로세서는 기기 운동 상태 정보에 기반하여 현재 기기의 운동 상태를 판단할 수 있다(S1309).
판단 결과, 현재 기기의 운동 상태가 동적인 운전중인 경우, 메인 프로세서는 "집 안내해줘"라는 음성이 차량 경로 안내 어플리케이션(또는 네비게이션 어플리케이션) 내에서 집으로 가는 차량 경로를 알려달라는 의도를 포함한다고 판단하고, 차량 경로 안내 어플리케이션을 통해 집으로 가는 차량 경로를 출력할 수 있다(S1310).
판단 결과, 현재 기기의 운동 상태가 정적인 업무중인 경우, 메인 프로세서는 "집 안내해줘"라는 음성이 대중교통 어플리케이션 내에서 집으로 가는 대중 교통 경로를 알려달라는 의도를 포함한다고 판단하고, 대중교통 어플리케이션 내에서 집으로 가는 대중 교통 경로를 출력할 수 있다(S1311).
J. 실시예 요약
실시예 1: 지능적 음성 인식 방법은, 사용자의 발화를 인식하는 단계; 및 상기 인식된 발화에 기반하여 결정된 응답을 출력하는 단계;를 포함하되, 상기 발화와 관련된 복수의 후보 응답들이 존재하는 경우, 상기 응답은 상기 복수의 후보 응답들 중에서 상기 음성 인식 장치의 기기 상태 정보에 기반하여 결정되는 것을 특징으로 한다.
실시예 2: 실시예 1에 있어서, 상기 응답을 출력하는 단계는, 상기 발화와 관련된 복수의 후보 응답들이 존재하는지 여부를 판단하는 단계, 및 상기 발화와 관련된 복수의 후보 응답들이 존재하는 경우, 상기 음성 인식 장치의 기기 상태 정보에 기반하여 상기 복수의 후보 응답들 중 하나의 응답을 결정하는 단계를 포함하며, 상기 복수의 후보 응답들이 존재하는지 여부를 판단하는 단계는, 상기 발화에 포함된 문장이 복수의 어플리케이션에서 처리 가능하거나, 또는, 상기 발화가 상기 음성 인식 장치의 복수의 운동 상태에서 처리 가능한지 여부를 판단하는 것을 특징으로 할 수 있다.
실시예 3: 실시예 1에 있어서, 상기 기기 상태 정보는 상기 음성 인식 장치에서 실행되는 어플리케이션 식별 정보를 포함하는 것을 특징으로 할 수 있다.
실시예 4: 실시예 1에 있어서, 상기 기기 상태 정보는 상기 음성 인식 장치의 운동 상태 정보를 포함하는 것을 특징으로 할 수 있다.
실시예 5: 실시예 1에 있어서, 상기 출력하는 단계는, 상기 복수의 후보 응답들 중 상기 음성 인식 장치의 기기 상태 정보와 관련성이 가장 높은 제1 후보 응답을 상기 출력할 응답으로 결정하는 단계, 및 상기 제1 후보 응답에 대하여 상기 사용자로부터 특정 피드백을 획득하는 경우, 상기 복수의 후보 응답들 중 상기 제1 후보 응답을 제외한 나머지 응답들 중에서 상기 음성 인식 장치의 기기 상태 정보와 관련성이 가장 높은 제2 후보 응답을 상기 출력할 응답으로 결정하는 단계를 포함하는 것을 특징으로 할 수 있다.
실시예 6: 지능적 음성 인식 장치는, 적어도 하나의 센서; 적어도 하나의 스피커; 적어도 하나의 마이크; 및, 상기 적어도 하나의 마이크를 통해 획득한 사용자의 발화를 인식하고, 상기 인식된 발화에 기반하여 결정된 응답을 상기 적어도 하나의 스피커를 통해 출력하는 프로세서;를 포함하되, 상기 프로세서는, 상기 발화와 관련된 복수의 후보 응답들이 존재하는 경우, 상기 복수의 후보 응답들 중에서 상기 음성 인식 장치의 기기 상태 정보에 기반하여 상기 응답을 결정하는 것을 특징으로 한다.
실시예 7: 실시예 6에 있어서, 상기 프로세서는, 상기 발화와 관련된 복수의 후보 응답들이 존재하는지 여부를 판단하고, 상기 발화와 관련된 복수의 후보 응답들이 존재하는 경우, 상기 음성 인식 장치의 기기 상태 정보에 기반하여 상기 복수의 후보 응답들 중 하나의 응답을 결정하되, 상기 발화에 포함된 문장이 복수의 어플리케이션에서 처리 가능하거나, 또는, 상기 발화가 상기 음성 인식 장치의 복수의 운동 상태에서 처리 가능한지 여부를 판단하는 것을 특징으로 할 수 있다.
실시예 8: 실시예 6에 있어서, 상기 기기 상태 정보는 상기 음성 인식 장치에서 실행되는 어플리케이션 식별 정보를 포함하는 것을 특징으로 할 수 있다.
실시예 9: 실시예 6에 있어서, 상기 기기 상태 정보는 상기 적어도 하나의 센서를 통해 획득된 상기 음성 인식 장치의 운동 상태 정보를 포함하는 것을 특징으로 할 수 있다.
실시예 10: 실시예 6에 있어서, 상기 프로세서는, 상기 복수의 후보 응답들 중 상기 음성 인식 장치의 기기 상태 정보와 관련성이 가장 높은 제1 후보 응답을 상기 출력할 응답으로 결정하고, 상기 제1 후보 응답에 대하여 상기 사용자로부터 특정 피드백을 획득하는 경우, 상기 복수의 후보 응답들 중 상기 제1 후보 응답을 제외한 나머지 응답들 중에서 상기 음성 인식 장치의 기기 상태 정보와 관련성이 가장 높은 제2 후보 응답을 상기 출력할 응답으로 결정하는 것을 특징으로 할 수 있다.
전술한 본 발명은, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
Claims (10)
- 지능적 음성 인식 장치의 음성 인식 방법에 있어서,
사용자의 발화를 인식하는 단계; 및
상기 인식된 발화에 기반하여 결정된 응답을 출력하는 단계;를 포함하되,
상기 발화와 관련된 복수의 후보 응답들이 존재하는 경우, 상기 응답은 상기 복수의 후보 응답들 중에서 상기 음성 인식 장치의 기기 상태 정보에 기반하여 결정되는 것을 특징으로 하는,
방법. - 제1항에 있어서,
상기 응답을 출력하는 단계는,
상기 발화와 관련된 복수의 후보 응답들이 존재하는지 여부를 판단하는 단계, 및
상기 발화와 관련된 복수의 후보 응답들이 존재하는 경우, 상기 음성 인식 장치의 기기 상태 정보에 기반하여 상기 복수의 후보 응답들 중 하나의 응답을 결정하는 단계를 포함하며,
상기 복수의 후보 응답들이 존재하는지 여부를 판단하는 단계는,
상기 발화에 포함된 문장이 복수의 어플리케이션에서 처리 가능하거나, 또는, 상기 발화가 상기 음성 인식 장치의 복수의 운동 상태에서 처리 가능한지 여부를 판단하는 것을 특징으로 하는,
방법. - 제1항에 있어서,
상기 기기 상태 정보는 상기 음성 인식 장치에서 실행되는 어플리케이션 식별 정보를 포함하는 것을 특징으로 하는,
방법. - 제1항에 있어서,
상기 기기 상태 정보는 상기 음성 인식 장치의 운동 상태 정보를 포함하는 것을 특징으로 하는,
방법. - 제1항에 있어서,
상기 출력하는 단계는,
상기 복수의 후보 응답들 중 상기 음성 인식 장치의 기기 상태 정보와 관련성이 가장 높은 제1 후보 응답을 상기 출력할 응답으로 결정하는 단계, 및
상기 제1 후보 응답에 대하여 상기 사용자로부터 특정 피드백을 획득하는 경우, 상기 복수의 후보 응답들 중 상기 제1 후보 응답을 제외한 나머지 응답들 중에서 상기 음성 인식 장치의 기기 상태 정보와 관련성이 가장 높은 제2 후보 응답을 상기 출력할 응답으로 결정하는 단계를 포함하는 것을 특징으로 하는,
방법. - 지능적 음성 인식 장치에 있어서,
적어도 하나의 센서;
적어도 하나의 스피커;
적어도 하나의 마이크; 및,
상기 적어도 하나의 마이크를 통해 획득한 사용자의 발화를 인식하고, 상기 인식된 발화에 기반하여 결정된 응답을 상기 적어도 하나의 스피커를 통해 출력하는 프로세서;를 포함하되,
상기 프로세서는,
상기 발화와 관련된 복수의 후보 응답들이 존재하는 경우, 상기 복수의 후보 응답들 중에서 상기 음성 인식 장치의 기기 상태 정보에 기반하여 상기 응답을 결정하는 것을 특징으로 하는,
음성 인식 장치. - 제6항에 있어서,
상기 프로세서는,
상기 발화와 관련된 복수의 후보 응답들이 존재하는지 여부를 판단하고,
상기 발화와 관련된 복수의 후보 응답들이 존재하는 경우, 상기 음성 인식 장치의 기기 상태 정보에 기반하여 상기 복수의 후보 응답들 중 하나의 응답을 결정하되,
상기 발화에 포함된 문장이 복수의 어플리케이션에서 처리 가능하거나, 또는, 상기 발화가 상기 음성 인식 장치의 복수의 운동 상태에서 처리 가능한지 여부를 판단하는 것을 특징으로 하는,
음성 인식 장치. - 제6항에 있어서,
상기 기기 상태 정보는 상기 음성 인식 장치에서 실행되는 어플리케이션 식별 정보를 포함하는 것을 특징으로 하는,
음성 인식 장치. - 제6항에 있어서,
상기 기기 상태 정보는 상기 적어도 하나의 센서를 통해 획득된 상기 음성 인식 장치의 운동 상태 정보를 포함하는 것을 특징으로 하는,
음성 인식 장치. - 제6항에 있어서,
상기 프로세서는,
상기 복수의 후보 응답들 중 상기 음성 인식 장치의 기기 상태 정보와 관련성이 가장 높은 제1 후보 응답을 상기 출력할 응답으로 결정하고,
상기 제1 후보 응답에 대하여 상기 사용자로부터 특정 피드백을 획득하는 경우, 상기 복수의 후보 응답들 중 상기 제1 후보 응답을 제외한 나머지 응답들 중에서 상기 음성 인식 장치의 기기 상태 정보와 관련성이 가장 높은 제2 후보 응답을 상기 출력할 응답으로 결정하는 것을 특징으로 하는,
음성 인식 장치.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2019/014332 WO2021085661A1 (ko) | 2019-10-29 | 2019-10-29 | 지능적 음성 인식 방법 및 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220070466A true KR20220070466A (ko) | 2022-05-31 |
Family
ID=75714524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227013017A KR20220070466A (ko) | 2019-10-29 | 2019-10-29 | 지능적 음성 인식 방법 및 장치 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220375469A1 (ko) |
KR (1) | KR20220070466A (ko) |
WO (1) | WO2021085661A1 (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021171956A1 (ja) * | 2020-02-25 | 2021-09-02 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 話者識別装置、話者識別方法、及び、プログラム |
US20210109881A1 (en) * | 2020-12-21 | 2021-04-15 | Intel Corporation | Device for a vehicle |
US20230079775A1 (en) * | 2021-07-03 | 2023-03-16 | Jay N. Ruparel | Deep neural networks-based voice-ai plugin for human-computer interfaces |
CN114005438B (zh) * | 2021-12-31 | 2022-05-17 | 科大讯飞股份有限公司 | 语音识别方法、语音识别模型的训练方法以及相关装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000250588A (ja) * | 1999-03-03 | 2000-09-14 | Toyota Motor Corp | 車両用音声認識装置 |
JP2004233542A (ja) * | 2003-01-29 | 2004-08-19 | Honda Motor Co Ltd | 音声認識装置 |
KR20080052304A (ko) * | 2006-12-06 | 2008-06-11 | 한국전자통신연구원 | 응답 문장 생성 장치 및 방법 |
US9679568B1 (en) * | 2012-06-01 | 2017-06-13 | Google Inc. | Training a dialog system using user feedback |
US9798799B2 (en) * | 2012-11-15 | 2017-10-24 | Sri International | Vehicle personal assistant that interprets spoken natural language input based upon vehicle context |
KR101619966B1 (ko) * | 2014-09-24 | 2016-05-11 | 엠앤서비스 주식회사 | 경로안내를 위한 음성분석 장치, 방법 및 시스템 |
US10446137B2 (en) * | 2016-09-07 | 2019-10-15 | Microsoft Technology Licensing, Llc | Ambiguity resolving conversational understanding system |
US10741175B2 (en) * | 2016-11-30 | 2020-08-11 | Lenovo (Singapore) Pte. Ltd. | Systems and methods for natural language understanding using sensor input |
US10762903B1 (en) * | 2017-11-07 | 2020-09-01 | Amazon Technologies, Inc. | Conversational recovery for voice user interface |
WO2021040092A1 (ko) * | 2019-08-29 | 2021-03-04 | 엘지전자 주식회사 | 음성 인식 서비스 제공 방법 및 장치 |
-
2019
- 2019-10-29 US US17/773,528 patent/US20220375469A1/en active Pending
- 2019-10-29 KR KR1020227013017A patent/KR20220070466A/ko unknown
- 2019-10-29 WO PCT/KR2019/014332 patent/WO2021085661A1/ko active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2021085661A1 (ko) | 2021-05-06 |
US20220375469A1 (en) | 2022-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11908468B2 (en) | Dialog management for multiple users | |
US11514886B2 (en) | Emotion classification information-based text-to-speech (TTS) method and apparatus | |
US12087299B2 (en) | Multiple virtual assistants | |
JP6802005B2 (ja) | 音声認識装置、音声認識方法及び音声認識システム | |
US11282522B2 (en) | Artificial intelligence apparatus and method for recognizing speech of user | |
US11270694B2 (en) | Artificial intelligence apparatus and method for recognizing speech by correcting misrecognized word | |
US11211047B2 (en) | Artificial intelligence device for learning deidentified speech signal and method therefor | |
KR102449875B1 (ko) | 음성 신호 번역 방법 및 그에 따른 전자 장치 | |
KR102281600B1 (ko) | 합성 음성에 대한 보정을 수행하는 인공 지능 장치 및 그 방법 | |
US11195528B2 (en) | Artificial intelligence device for performing speech recognition | |
US11443747B2 (en) | Artificial intelligence apparatus and method for recognizing speech of user in consideration of word usage frequency | |
KR20220070466A (ko) | 지능적 음성 인식 방법 및 장치 | |
KR20210155401A (ko) | 인공 지능을 이용하여, 합성 음성의 품질을 평가하는 음성 합성 장치 및 그의 동작 방법 | |
US11508358B2 (en) | Artificial intelligence apparatus and method for recognizing speech in consideration of utterance style | |
US11211059B2 (en) | Artificial intelligence apparatus and method for recognizing speech with multiple languages | |
KR20210094323A (ko) | 감성을 포함하는 음성을 제공하는 인공 지능 장치, 인공 지능 서버 및 그 방법 | |
KR20200132645A (ko) | 음성 인식 서비스를 제공하는 장치 및 방법 | |
US11922538B2 (en) | Apparatus for generating emojis, vehicle, and method for generating emojis | |
US11922938B1 (en) | Access to multiple virtual assistants | |
CN117882131A (zh) | 多个唤醒词检测 | |
US11763809B1 (en) | Access to multiple virtual assistants | |
US12100383B1 (en) | Voice customization for synthetic speech generation | |
US11978438B1 (en) | Machine learning model updating | |
KR20230149894A (ko) | 개인화 가능한 기계학습 기반의 운전자 이상행동 감지 시스템 |