KR20220052762A - Novel lactose oxidase from Pseudomonas and method for producing lactobionic acid using the same - Google Patents

Novel lactose oxidase from Pseudomonas and method for producing lactobionic acid using the same Download PDF

Info

Publication number
KR20220052762A
KR20220052762A KR1020200137071A KR20200137071A KR20220052762A KR 20220052762 A KR20220052762 A KR 20220052762A KR 1020200137071 A KR1020200137071 A KR 1020200137071A KR 20200137071 A KR20200137071 A KR 20200137071A KR 20220052762 A KR20220052762 A KR 20220052762A
Authority
KR
South Korea
Prior art keywords
lactobionic acid
recombinant
lactose
pseudomonas
enzyme
Prior art date
Application number
KR1020200137071A
Other languages
Korean (ko)
Other versions
KR102520671B1 (en
Inventor
엄경태
오유리
장영아
이승수
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020200137071A priority Critical patent/KR102520671B1/en
Publication of KR20220052762A publication Critical patent/KR20220052762A/en
Application granted granted Critical
Publication of KR102520671B1 publication Critical patent/KR102520671B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/58Aldonic, ketoaldonic or saccharic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/99Oxidoreductases acting on the CH-OH group of donors (1.1) with other acceptors (1.1.99)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention provides a method for producing lactobionic acid industrially utilizing a recombinant strain producing lactobionic acid. Furthermore, the present invention identifies the characteristics of a lactose-oxidizing enzyme by isolating the lactose-oxidizing enzyme from a microorganism of the genus Pseudomonas and purifying the same, and is configured such that a recombinant strain producing lactobionic acid is produced by cloning a gene which encodes the lactose-oxidizing enzyme.

Description

슈도모나스 속 미생물로부터 유래한 락토오스 옥시데이즈 효소 및 이를 이용한 락토비온산 생산방법{Novel lactose oxidase from Pseudomonas and method for producing lactobionic acid using the same}Lactose oxidase enzyme derived from microorganisms of the genus Pseudomonas and lactobionic acid production method using the same

본 발명은 슈도모나스 속 미생물로부터 유래한 락토오스 옥시데이즈 효소 및 이를 이용한 락토비온산 생산 방법에 관한 것이다.The present invention relates to a lactose oxidase enzyme derived from a microorganism of the genus Pseudomonas and a method for producing lactobionic acid using the same.

차세대 피부미백 소재로서의 폴리하이드록시 비온산(Polyhydroxy bionic acid)의 한 종류인 락토비온산(Lactobionic acid)은 α-하이드록시산이 가지고 있는 각질제거, 주름개선, 피부미백 효과 외에 생분해성, 생체친화성, 항노화성, 항산화성, 보습성, 킬레이트성 등의 다양한 특성을 가지고 있으며, 피부에 대한 자극이 적어 글리콜릭산, 젖산을 대체할 수 있는 차세대 화장품 소재로서 매우 주목 받고 있으며, 락토비온산이 함유된 화장품이 상용화되어 현재 판매되고 있다.Lactobionic acid, a type of polyhydroxy bionic acid as a next-generation skin whitening material, is biodegradable and biocompatible in addition to the exfoliating, anti-wrinkle, and skin whitening effects of α-hydroxy acid. , anti-aging, antioxidant, moisturizing, chelating, etc., and has little irritation to the skin, attracting great attention as a next-generation cosmetic material that can replace glycolic acid and lactic acid. Cosmetics containing lactobionic acid It has been commercialized and is now on sale.

락토비온산은 갈락토오스(Galactose)와 글루콘산(Gluconic acid)이 β-1,4 결합으로 형성된 물질로서, 분자량은 358.3이고, 수용성 백색 결정질 화합물이다. 락토비온산은 락토스 중의 유리 알데히드기의 산화반응에 의해 합성될 수 있는데, 이에 현재 화학적, 전기화학적, 촉매반응 또는 생물학적 산화에 의한 생산 연구가 많이 되고 있다. [문헌 Satory et al., Biotechnology letters 19(12) 1205-08, 1997]. Lactobionic acid is a substance formed by β-1,4 bonds of galactose and gluconic acid, and has a molecular weight of 358.3 and is a water-soluble white crystalline compound. Lactobionic acid can be synthesized by the oxidation reaction of the free aldehyde group in lactose, and thus, research on production by chemical, electrochemical, catalytic or biological oxidation is currently being conducted. [Satory et al., Biotechnology letters 19(12) 1205-08, 1997].

이중 식품과 화장품 원료로 락토비온산의 관심과 쓰임에 대응하기 위하여 환경친화적인 미생물 배양법을 통한 생물학적 락토비온산 생산 연구가 집중적으로 진행되고 있으며, 현재까지 대표적인 락토비온산 생산 미생물 균주로 Pseudomonas taetrolens, Buckholderia cepacia, 및 Zymomonas mobilis 등이 보고되고 있다. 하지만 지금까지 보고된 락토비오산 생산성이 가장 높은 균주는 Buckholderia cepacia 으로 이는 병원성 균주로 분류되어있는 균주로써 산업적인 활용이 불가능하다는 문제점을 가지고있다.Among them, in order to respond to the interest and use of lactobionic acid as a raw material for food and cosmetics, research on biological lactobionic acid production through an environmentally friendly microbial culture method is being intensively conducted. Buckholderia cepacia, and Zymomonas mobilis have been reported. However, the strain with the highest lactobioic acid productivity reported so far is Buckholderia cepacia, which is classified as a pathogenic strain and has a problem in that it cannot be used industrially.

이에 따라, 본 발명자들의 선행 출원인, 대한민국 공개특허 제 10-2018-0047470호는 비병원성 슈도모나스 테트로렌스 (Pseudomonas taetrolens) 균주의 배양 방법 최적화 연구를 통해 젖당으로부터 락토비온산 산화반응을 촉진시킴으로써 락토비온산 생산성을 증가시키는 방법을 개시한 바 있다. Accordingly, the prior applicant of the present inventors, Republic of Korea Patent Publication No. 10-2018-0047470, promotes the lactobionic acid oxidation reaction from lactose through a culture method optimization study of a non-pathogenic Pseudomonas taetrolens strain, thereby lactobionic acid productivity A method of increasing the .

한편, 락토비온산 생산에 있어 문제점은 공정 개발의 어려움도 있지만 우수한 균주 확보의 어려움이 크게 작용한다. 앞선 선행 연구를 통해 야생형 슈도모나스 테트로렌스의 배양 공정 개발을 통해 락토비온산 생산증가 가능성을 확인한 바에 이어, 재조합 균주 개발을 통해 락토비온산 전환 반응의 속도를 촉진하여 락토비온산 생산성을 증가시킬 수 있는 가능성에 따른 균주 개발을 통한 생산성 향상 연구가 필요하다. 또한, 현재 밝혀진 락토비온산 생산하는 미생물의 종류에 따라 생산된 효소의 작용과 환경 조건에 따라 그 활성이 매우 다르므로, 락토비온산 생산능력이 우수한 새로운 효소 발견 및 본 효소의 활성을 향상시키기 위한 특성 연구가 필요하며, 본 효소를 과발현 시켜 락토비온산 생산능력을 향상시킨 균주 개발의 필요성이 크고 이를 이용한 생산 기술 연구가 매우 중요하다. On the other hand, the problem in the production of lactobionic acid is that there is a difficulty in process development, but the difficulty in securing an excellent strain plays a large role. After confirming the possibility of increasing lactobionic acid production through the development of a culture process of wild-type Pseudomonas tetrorence through previous studies, the development of a recombinant strain promotes the rate of the lactobionic acid conversion reaction to increase the lactobionic acid productivity. It is necessary to study productivity improvement through strain development according to the possibility. In addition, since the activity of the produced enzyme is very different depending on the type of lactobionic acid-producing microorganism, which is currently known, and the environmental conditions, it is necessary to discover a new enzyme with excellent lactobionic acid production ability and to improve the activity of this enzyme. Characteristic studies are required, and there is a great need to develop a strain that has improved lactobionic acid production capacity by overexpressing this enzyme, and research on production technology using it is very important.

본 명세서 전체에 걸쳐 다수의 문헌이 참조되고 그 인용이 표시되어 있다. 인용된 문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다. Numerous references are referenced throughout this specification and citations thereof are indicated. The disclosures of the cited documents are incorporated herein by reference in their entirety to more clearly describe the content of the present invention and the level of the art to which the present invention pertains.

대한민국 등록특허공보 제10-2030776호Republic of Korea Patent Publication No. 10-2030776

본 발명자들은 락토비온산(Lactobionic acid) 생산 능력이 있는 슈도모나스 속 미생물로부터 락토오스 옥시다이징 활성을 갖는(Lactose oxidizing enzyme) 효소를 분리, 정제하여 특성을 밝혀 내고, 상기 슈도모나스 균주가 생산하는 락토오스 옥시다이징 활성 효소를 코딩하는 유전자를 클로닝하여 재조합 균주에 성공적으로 발현해내었다. The present inventors areolate and purify an enzyme having a lactose oxidizing activity from a microorganism of the genus Pseudomonas having the ability to produce lactobionic acid, reveal the characteristics, and lactose oxidase produced by the Pseudomonas strain A gene encoding an easing active enzyme was cloned and expressed successfully in a recombinant strain.

따라서, 본 발명의 목적은 산업적으로 락토비온산 생산에 활용할 수 있는 재조합 균주 및 이를 이용한 고효율 락토비온산 생산 방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a recombinant strain that can be industrially used for lactobionic acid production and a highly efficient lactobionic acid production method using the same.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다. Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 하나의 관점은 슈도모나스 속 미생물로부터 유래한 말레이트 탈수소효소(malate dehydrogenase)를 코딩하는 핵산 서열을 포함하는, 락토비온산을 생산하는 재조합 균주 제조용 재조합 벡터를 제공하는 것이다. One aspect of the present invention is to provide a recombinant vector for producing a recombinant strain for producing lactobionic acid, comprising a nucleic acid sequence encoding malate dehydrogenase derived from a microorganism of the genus Pseudomonas.

락토비온산 생산에 있어 문제점은 공정 개발의 어려움도 있지만 우수한 균주 확보의 어려움이 크게 작용한다. 현재 밝혀진 락토비온산 생산하는 미생물의 종류에 따라 생산된 효소의 작용과 기질에 대한 산화 능력이 매우 다르므로, 이중 락토비온산 생산능력이 우수한 새로운 효소를 밝혀내고, 이에 따른 재조합 균주의 개발 및 이를 이용한 생산 기술 연구가 매우 중요하다.The problem in the production of lactobionic acid is that there is a difficulty in process development, but the difficulty in securing an excellent strain plays a large role. Since the action of the produced enzyme and the oxidizing ability of the substrate are very different depending on the type of microorganism that produces lactobionic acid, which is currently known, a new enzyme with excellent lactobionic acid production capacity has been discovered, and the development of a recombinant strain and it Research on the production technology used is very important.

이에 본 발명자들은 야생형 슈도모나스 속 미생물의 배양을 통한 락토비온산 생산량의 한계를 해결하고자, 본 균주 내의 락토오스 옥시다이징 효소(Lactose oxidizing enzyme)를 정제하여 본 효소의 특성을 파악한 결과, 말레이트 탈수소효소(malate dehydrogenase)가 슈도모나스 속 미생물 유래 락토비온산 생산 관여 효소임을 밝혀내었다.Accordingly, the present inventors purified the lactose oxidizing enzyme in this strain in order to solve the limitation of lactobionic acid production through culturing of wild-type Pseudomonas microorganisms, and as a result of identifying the characteristics of this enzyme, malate dehydrogenase (malate dehydrogenase) was found to be an enzyme involved in the production of lactobionic acid derived from microorganisms of the genus Pseudomonas.

상기 슈도모나스 속 미생물은 슈도모나스 플로로스캔스(Pseudomonas fluorescens), 슈도모나스 모라비언시스(Pseudomonas moraviensis), 슈도모나스 그라나덴시스(Pseudomonas granadensis), 슈도모나스 코레언시스 (Pseudomonas Koreensis) 등을 포함하며, 슈도모나스 테트로렌스(Pseudomonas taetrolens)에 제한되는 것은 아니다.The Pseudomonas genus microorganisms are Pseudomonas fluorescens ( Pseudomonas fluorescens ), Pseudomonas moraviensis ( Pseudomonas moraviensis ), Pseudomonas granadensis ( Pseudomonas granadensis ), Pseudomonas Correhensis ( Pseudomonas Koreensis ) and the like, including Pseudomonas Koreensis ( Pseudomonas ) Pseudomonas taetrolens ) is not limited.

일 구현예에서, 상기 말레이트 탈수소효소(malate dehydrogenase)를 코딩하는 핵산 서열은 서열목록 제3서열에 기재된 폴리뉴클레오타이드를 포함할 수 있으며, 상기 말레이트 탈수소효소는 서열목록 제4서열로 표시되는 아미노산 서열을 포함하는 것일 수 있다.In one embodiment, the nucleic acid sequence encoding malate dehydrogenase may include the polynucleotide set forth in SEQ ID NO: 3, wherein the malate dehydrogenase is an amino acid represented by SEQ ID NO: 4 It may include a sequence.

다른 구현예에서, 상기 말레이트 탈수소효소는 말레이트:퀴논 옥시도리덕타아제(malate:quinone oxidoreductase, EC 1. 1. 99. 16, GenBank accession number WP_048378186.1)일 수 있다.In another embodiment, the malate dehydrogenase may be malate:quinone oxidoreductase (EC 1. 1. 99. 16, GenBank accession number WP_048378186.1).

상기 슈도모나스 속 미생물로부터 유래한 말레이트 탈수소효소는 락토오스 옥시다이징 활성을 가지며, 상기 말레이트 탈수소효소는 작용 온도가 15℃ 내지 45℃이고, pH 6.5 내지 pH 9.0의 조건에서 상대 효소 활성이 60% 이상 유지되는 것일 수 있다.The malate dehydrogenase derived from the microorganism of the genus Pseudomonas has lactose oxidizing activity, and the malate dehydrogenase has an action temperature of 15° C. to 45° C., and a relative enzyme activity of 60% under the conditions of pH 6.5 to pH 9.0. It may be maintained longer.

상기 말레이트 탈수소효소를 코딩하는 핵산 서열을 포함하는 재조합 벡터는 플라스미드 벡터일 수 있고, 바람직하게는 pDSK519일 수 있다.The recombinant vector comprising the nucleic acid sequence encoding the malate dehydrogenase may be a plasmid vector, preferably pDSK519.

본 발명의 다른 관점은 상기 재조합 벡터가 도입된 말레이트 탈수소효소를 발현하는 재조합 균주를 제공하는 것이다.Another aspect of the present invention is to provide a recombinant strain expressing malate dehydrogenase into which the recombinant vector is introduced.

일 구현예에서, 상기 균주는 그람음성균일 수 있는데, 예컨대 테라박테리아, 프로테오박테리아, 나선상균, 스핑고박테리아, 부유군류를 포함하나 이에 제한되는 것은 아니며, 바람직하게는 상기 균주는 대장균에 상기 재조합 벡터가 도입된 것이다. 상기 재조합 대장균은 야생형 대장균과 달리 락토오스 옥시다이징 효소를 생산하여 락토오스로부터 락토비온산 생산이 가능한 것을 특징으로 한다.In one embodiment, the strain may be a Gram-negative bacteria, for example, including but not limited to Terrabacteria, proteobacteria, helical bacteria, sphingobacteria, and supergroups, preferably, the strain is the recombinant vector in E. coli. has been introduced The recombinant E. coli is characterized in that it is possible to produce lactobionic acid from lactose by producing a lactose oxidizing enzyme, unlike wild-type E. coli.

본 발명의 또 다른 관점은 슈도모나스 속 미생물로부터 유래한 말레이트 탈수소효소를 코딩하는 핵산 서열을 포함하는 재조합 벡터를 수득하는 단계; 및 상기 재조합 벡터를 그람음성균에 도입하는 단계를 포함하는 락토비온산 생산용 재조합 균주의 제조방법을 제공하는 것이다.Another aspect of the present invention is to obtain a recombinant vector comprising a nucleic acid sequence encoding a malate dehydrogenase derived from a microorganism of the genus Pseudomonas; And to provide a method for producing a recombinant strain for producing lactobionic acid comprising the step of introducing the recombinant vector into Gram-negative bacteria.

또한 본 발명은 전술한 재조합 균주를 사용하여 락토비온산을 생산하는 방법 및/또는 슈도모나스 속 미생물로부터 유래한 락토오스 옥시다이징 활성을 갖는 말레이트 탈수소효소를 사용하여 락토비온산을 생산하는 방법을 제공한다.The present invention also provides a method for producing lactobionic acid using the aforementioned recombinant strain and/or a method for producing lactobionic acid using a malate dehydrogenase having lactose oxidizing activity derived from a microorganism of the genus Pseudomonas. do.

상기 방법은 상기 재조합 균주 및/또는 슈도모나스 속 미생물로부터 유래한 락토오스 옥시다이징 활성을 갖는 말레이트 탈수소효소에 조효소 PQQ (pyrroloquinoline quinone)를 첨가하는 단계를 포함하여 수행될 수 있다. The method may include adding a coenzyme PQQ (pyrroloquinoline quinone) to the recombinant strain and/or malate dehydrogenase having lactose oxidizing activity derived from the microorganism of the genus Pseudomonas.

일 구현예에서, 상기 락토비온산 생산 방법은 1) 슈도모나스 테트로렌스 유래 락토비온산 생산 관여 효소를 분리 정제하는 단계; 2) 본 효소의 활성 유지를 위한 효소 안정성 및 활성도 최적화 단계; 3) 재조합 플라스미드를 제작하여 상기 플라스미드를 포함한 재조합 대장균을 형질전환하여 락토비온산 생산 대장균 제작 및 락토비온산 생산 관여 여부 확립하는 단계를 포함하는 것일 수 있다. In one embodiment, the lactobionic acid production method comprises the steps of 1) separating and purifying an enzyme involved in the production of lactobionic acid derived from Pseudomonas tetrorence; 2) optimizing enzyme stability and activity for maintaining the activity of the enzyme; 3) constructing a recombinant plasmid and transforming the recombinant E. coli including the plasmid to establish whether it is involved in the production of lactobionic acid producing E. coli and the production of lactobionic acid.

본 발명의 재조합 미생물을 제조하기 위하여, 슈도모나스 테트로렌스 유래 말레이트 탈수소효소 MQO(malate:quinone oxidoreductase, EC 1. 1. 99. 16)를 코딩하는 유전자를 PCR을 통하여 특정 프라이머를 통하여 증폭하였다.In order to prepare the recombinant microorganism of the present invention, a gene encoding Pseudomonas tetrorence-derived malate dehydrogenase MQO (malate:quinone oxidoreductase, EC 1. 1. 99. 16) was amplified through specific primers through PCR.

이후, 상기 유전자를 대장균용 발현 벡터 pDSK519에 제한효소(XbaI, BamHI)를 이용하여 삽입시킨 재조합 플라스미드를 제작하였으며, 이를 pDSK519-MQO라고 명명하였다.Thereafter, a recombinant plasmid was prepared in which the gene was inserted into the expression vector pDSK519 for E. coli using restriction enzymes ( Xba I, BamHI ), which was named pDSK519-MQO.

상기 재조합 된 플라스미드 pDSK519-MQO을 대장균(E.coli DH5α)에 형질전환하여 재조합 대장균을 제작하였으며, 본 재조합 균주를 젖당을 포함한 배양액에서 락토비온산 생산을 확인하였다.The recombinant plasmid pDSK519-MQO was transformed into E. coli DH5α to prepare a recombinant E. coli, and the production of lactobionic acid was confirmed with the recombinant strain in a culture medium containing lactose.

본 발명의 일 구현예에 있어서 슈도모나스 및 대장균을 배양하는 단계에서는 1 내지 20 부피 % 농도의 젖당을 포함하고, 0.2 % 효모추출물과 0.5 % 펩톤 그리고 0.1 % 소고기추출물을 포함하고, 0.5 % NaCl을 포함할 수 있다.In one embodiment of the present invention, in the step of culturing Pseudomonas and E. coli, it contains lactose at a concentration of 1 to 20% by volume, 0.2% yeast extract, 0.5% peptone, and 0.1% beef extract, and 0.5% NaCl can do.

상기 배양하는 단계는 NB 배지 50 ml 내지 2.0L, 20℃ 내지 37℃에서 48 내지 120시간 동안 배양시키는 것일 수 있다.The culturing step may be culturing for 48 to 120 hours at 50 ml to 2.0L of NB medium, 20°C to 37°C.

필요에 따라, 배양은 젖당 농도에 따라 배양 할 수 있고, pH 보정 물질인 CaCO3 존재 하의 배양 배지에서, 예를 들면 배지에 젖당 농도를 10 g/L 에서 200 g/L까지 다양하게 사용할 수 있고, CaCO3 첨가 또는 미첨가 상태로 수행될 수 있다.If necessary, the culture can be cultured according to the lactose concentration, and in a culture medium in the presence of CaCO 3 as a pH correction material, for example, the lactose concentration in the medium can be varied from 10 g/L to 200 g/L, and , CaCO 3 It can be carried out with or without addition.

바람직한 구현 예에서, 본 발명의 배양은 회분식 배양 (batch culture) 방법에 의하여 수행될 수 있으나, 이에 제한 된 것은 아니다. In a preferred embodiment, the culturing of the present invention may be performed by a batch culture method, but is not limited thereto.

또한, 본 발명의 구현 예에 있어서, 상기 슈도모나스 테트로렌스 균주의 배양을 통한 생산성 향상 방법은 대한민국특허공개공보 10-2018-0047470에 개시된 내용과 같이 개발 될 수 있으며, 대한민국특허공개공보 10-2018-0047470에 개시된 내용 전체는 본원 명세서에 참고로서 포함된다.In addition, in an embodiment of the present invention, the method for improving productivity through culturing of the Pseudomonas tetrorence strain may be developed as disclosed in Korean Patent Application Laid-Open No. 10-2018-0047470, and Korean Patent Application Laid-Open No. 10-2018- The entire disclosure of 0047470 is incorporated herein by reference.

본 발명은, 기존 락토오스 옥시다이징 활성을 갖는 슈도모나스 테트로렌스 균주의 락토비온산 전환에 효과적인 효소 단백질을 분리, 정제하였고, 그 특성을 명확히 밝힘으로써, 본 효소의 활성을 향상시키는 배양 방법을 확인하였다. 또한, 본 발명의 효소 단백질을 코딩하는 유전자 서열을 포함하는 재조합 벡터 및 재조합 균주를 제작함으로써 야생형 균주보다 락토비온산 생산성이 우수한 균주를 개발하여 락토비온산 전환 속도를 향상시킬 수 있다. 이에 따른 신규한 재조합 균주는 락토비온산 대량생산 공정에서 생산속도를 향상시킴으로써 다양한 산업분야에 효율적으로 이용될 수 있다. The present invention isolates and purifies an enzyme protein effective for lactobionic acid conversion of a Pseudomonas tetrorence strain having an existing lactose oxidizing activity, and by clarifying its characteristics, a culture method for improving the activity of this enzyme was confirmed. . In addition, by preparing a recombinant vector and a recombinant strain comprising the gene sequence encoding the enzyme protein of the present invention, it is possible to develop a strain with superior lactobionic acid productivity than the wild-type strain, thereby improving the lactobionic acid conversion rate. Accordingly, the novel recombinant strain can be efficiently used in various industrial fields by improving the production rate in the lactobionic acid mass production process.

도 1은 락토오스 옥시다이징 효소의 SDS-PAGE 전기영동 사진이다(Lane M; Mw standard, Lane 1; Crude enzyme, Lane 2; Ammonium sulfate 분획 샘플, Lane 3; Hitrap Q 크로마토그래피 분획 샘플, Lane 4; Sephadex G-100 크로마토그래피 분획 샘플).
도 2는 락토오스 옥시다이징 효소 활성 발현 최적 온도 및 pH 그래프이다. A) 온도에 따른 상대적 활성도, B) 열안정성, C) pH에 따른 상대적 활성도, D) pH에 대한 안정성
도 3은 pDSK519벡터를 이용해 대장균에서의 MQO 발현을 위한 재조합 플라스미드 모식도를 나타낸 것이다.
도 4는 젖당 존재 하에 야생형 대장균과 재조합 대장균의 조효소 첨가에 따른 락토비온산 전환 여부를 나타낸 결과이다.
도 5는 호기 발효조건에서 야생형 대장균과 본 발명을 통해 제조된 재조합 대장균의 락토비온산 생산 결과를 나타낸 그래프이다.
1 is an SDS-PAGE electrophoresis picture of lactose oxidizing enzyme (Lane M; Mw standard, Lane 1; Crude enzyme, Lane 2; Ammonium sulfate fraction sample, Lane 3; Hitrap Q chromatography fraction sample, Lane 4; Sephadex G-100 chromatography fraction samples).
2 is a graph showing the optimal temperature and pH of lactose oxidizing enzyme activity expression. A) Relative activity as a function of temperature, B) Thermal stability, C) Relative activity as a function of pH, D) Stability at pH
Figure 3 shows a schematic diagram of a recombinant plasmid for MQO expression in E. coli using the pDSK519 vector.
4 is a result showing whether or not lactobionic acid conversion according to the addition of coenzyme in wild-type E. coli and recombinant E. coli in the presence of lactose.
5 is a graph showing the lactobionic acid production results of wild-type E. coli and recombinant E. coli prepared through the present invention under aerobic fermentation conditions.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명 하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those of ordinary skill in the art to which the present invention pertains that the scope of the present invention is not limited by these examples.

실시예Example

실시예 1: 락토오스 옥시다이징 효소의 정제, 분리 및 분자량Example 1: Purification, Isolation and Molecular Weight of Lactose Oxidizing Enzyme

슈도모나스 테트로렌스 유래 락토비온산 생산 관여 효소를 분리 및 정제하기 위하여, 다음과 같이 실험을 수행하였다. In order to isolate and purify the enzyme involved in the production of lactobionic acid derived from Pseudomonas tetrorence, an experiment was performed as follows.

실험예 1: 조효소 추출액(crude enzyme extract) 제조Experimental Example 1: Preparation of crude enzyme extract

슈도모나스 테트로렌스(한국생명공학연구원 생물자원센터에서 Pseudomonas taetrolens Haynes 1957, KCTC 12501 균주를 분양받음)로부터 생산되는 배양액으로부터 락토비온산 생산 관여 효소를 분리하기 위해, 먼저 상기 미생물을 배양배지로 Nutrient broth (NB) (1 g/L beef extract, 2 g/L yeast extract, 5 g/L 펩톤, 5 g/L NaCl)를 사용하였고, 상기 젖당 농도 변화와 pH 보정 실험결과를 바탕으로 200 g/L 젖당과 pH 보정을 위해 30g/L CaCO3를 첨가하여 발효시 pH6.5이상을 유지하여 진탕배양기에서 교반속도 200 rpm, 25℃에서 1일간 배양하였다. 본 배양액 1L를 13000rpm, 4℃에서 10분간 원심분리하여 미생물을 취하고, 수집한 세포 펠렛은 20mM 인산 완충액 (pH 7.2)에 재현탁하여 농도가 10%가 되게 한 다음 초음파분쇄기 (VCX-750, vibra cell, USA)로 앰플리튜드 (amplitude) 30 %, 10 sec pulse on, 30 sec pulse off로 20분간 세포의 세포벽을 깼다. 이후 4℃, 13000 rpm으로 10분간 원심분리하여 상등액을 취한 후, 이를 조효소 추출액(crude enzyme extract)으로 지칭하였다.In order to isolate the enzyme involved in the production of lactobionic acid from the culture medium produced from Pseudomonas tetrolence ( Pseudomonas taetrolens Haynes 1957, KCTC 12501 strain received from the Korea Institute of Bioscience and Biotechnology Biological Resource Center), first, the microorganism is used as a culture medium in Nutrient broth ( NB) (1 g/L beef extract, 2 g/L yeast extract, 5 g/L peptone, 5 g/L NaCl) was used, and 200 g/L lactose For pH correction, 30 g/L CaCO 3 was added to maintain pH 6.5 or higher during fermentation, and incubated for 1 day at a stirring speed of 200 rpm and 25° C. in a shaker incubator. 1L of this culture solution was centrifuged at 13000rpm, 4℃ for 10 minutes to collect microorganisms, and the collected cell pellet was resuspended in 20mM phosphate buffer (pH 7.2) to make the concentration 10%, and then sonicator (VCX-750, vibra cell, USA) at an amplitude of 30%, 10 sec pulse on, and 30 sec pulse off to break the cell wall of the cell for 20 minutes. After centrifugation at 4° C. and 13000 rpm for 10 minutes to obtain a supernatant, this was referred to as a crude enzyme extract.

실험예 2: 락토오스 옥시다이징 효소 정제Experimental Example 2: Lactose oxidizing enzyme purification

조효소액에 무게 대 부피비로 50 % 되는 유안((NH4)2SO4)을 4℃에서 가하고 4시간 동안 잘 교반하여 주었다. 상기 효소액을 원심분리하여 용액만을 모으고, 이 용액에 최종 농도가 무게 대 부피비로 70 % 되는 유안을 4℃에서 가하고 4시간 동안 잘 교반하였다. 상기 효소액을 원심분리하여 침전물만을 모은 후, 이 침전물을 20 mM 인산화칼륨 완충용액 pH 7.5에 녹이고 같은 완충용액에서 하루 밤 동안 투석하였다. 이 효소액을 다시 원심분리하여 불용성 물질을 제거한 다음 0.22 μm필터로 정제하여 효소액으로 사용하였다. To the crude enzyme solution, 50% by weight to volume ratio ((NH 4 ) 2 SO 4 ) was added at 4° C. and stirred well for 4 hours. The enzyme solution was centrifuged to collect only the solution, and to the solution, an oil having a final concentration of 70% by weight to volume ratio was added at 4° C. and stirred well for 4 hours. After centrifuging the enzyme solution to collect only the precipitate, the precipitate was dissolved in 20 mM potassium phosphate buffer, pH 7.5, and dialyzed overnight in the same buffer. The enzyme solution was centrifuged again to remove insoluble substances, and then purified with a 0.22 μm filter to be used as an enzyme solution.

본 단계에서 효소 활성은 1.350 ml의 0.075mM의 2,6-디클로로페놀 인도페놀 (2, 6-dichlorophenol indophenol, DCIP)과 5mM의 젖당 그리고 4mM의 sodium fluoride를 포함한 100mM 아세테이트 완충 용액 (pH 5.5)을 0.15ml의 효소 용액을 30℃에서 10분간 반응시켜 측정하였으며, 단백질 농도는 알부민을 표준으로 사용하여 Bradford 방법(Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254)으로 측정했다. In this step, the enzyme activity was evaluated by adding 1.350 ml of 0.075 mM 2,6-dichlorophenol indophenol (2,6-dichlorophenol indophenol, DCIP), 5 mM lactose, and 100 mM acetate buffer solution (pH 5.5) containing 4 mM sodium fluoride. 0.15 ml of enzyme solution was reacted for 10 minutes at 30 ° C., and protein concentration was measured by the Bradford method (Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-) dye binding. Anal. Biochem. 1976, 72, 248-254).

락토비온산 전환 활성을 포함한 분획 효소 샘플은 이온교환수지로 HiTrap-Q(GE Healthcare Life Sciences) 컬럼을 사용하여, 0-1M NaCl의 선형 구배(linear gradient)로 녹여서 분획되었으며, 이는 4.0 ml의 분획을 매 2분 마다 수집하였고, 각 분획에 효소활성도를 측정하여 분획을 선별하였다.Fractionated enzyme samples including lactobionic acid conversion activity were fractionated by dissolving them in a linear gradient of 0-1M NaCl using a HiTrap-Q (GE Healthcare Life Sciences) column as an ion exchange resin, which was a fraction of 4.0 ml. was collected every 2 minutes, and fractions were selected by measuring enzyme activity in each fraction.

최종 정제 단계에서, 단백질은 그들의 분자량에 기초하여 0.1M의 붕산 나트륨 완충액 (pH 7.0)으로 평형화한 세파덱스 G-100 (Sephadex G-100, 1.5 Х 20cm, Bio-Rad 사)로 겔 여과하여 분리된다. 각 정제 단계를 통해 분획 된 샘플의 활성 및 단백질 농도는 표 1에 표시하였다. In the final purification step, proteins were separated by gel filtration with Sephadex G-100 (Sephadex G-100, 1.5 Х 20 cm, Bio-Rad) equilibrated with 0.1M sodium borate buffer (pH 7.0) based on their molecular weight. do. Table 1 shows the activity and protein concentration of the samples fractionated through each purification step.


Active fractionactive fraction

총 단백질(μg)Total protein (μg)

총 활성total activity
(U)(U)

특이활성specific activity
(U/μg)(U/μg)

산출량output
(%)(%)

정제 배수 purification drainage
Crude enzyme extractCrude enzyme extract 36.2 36.2 15.2 15.2 0.4 0.4 100.0 100.0 1.0 1.0 50 ~ 70 % ammonium sulfate50 to 70 % ammonium sulfate 2.5 2.5 6.7 6.7 2.7 2.7 44.1 44.1 6.4 6.4 HitrapQ 이온교환크로마토그래피HitrapQ ion exchange chromatography 1.1 1.1 4.2 4.2 3.8 3.8 27.6 27.6 9.1 9.1 Sephadex G-100 Sephadex G-100
겔 여과 크로마토그래피gel filtration chromatography
0.3 0.3 2.8 2.8 9.3 9.3 18.4 18.4 22.2 22.2

실험예 3: 락토오스 옥시다이징 효소 분리 및 분자량 확인Experimental Example 3: Separation of lactose oxidizing enzyme and confirmation of molecular weight

본 발명에서 정제된 효소의 순도 및 분자량을 측정하기 위해서 10% SDS-polyacrylamide gel 상에서 전기영동을 한 후, 단백질 marker와의 이동속도를 비교하여 분자량을 계산하였다. SDS-PAGE는 Laemmli의 방법에 따라 조제 하였으며, Bio-rad사의 protein marker (10-250 kDa)를 이용하였다. 도 1에 서 보여진 것과 같이 단일 밴드를 나타내었으며, 표준 단백질들로 구성된 분자량 marker들과 비교하여 분자량을 측정한 결과, 슈도모나스 테트로렌스가 생산하는 락토비온 생산 관여 효소의 분자량은 약 45 kDa으로 확인되었다. In order to measure the purity and molecular weight of the enzyme purified in the present invention, electrophoresis was performed on 10% SDS-polyacrylamide gel, and the molecular weight was calculated by comparing the movement speed with the protein marker. SDS-PAGE was prepared according to Laemmli's method, and Bio-rad's protein marker (10-250 kDa) was used. As shown in FIG. 1, a single band was shown, and as a result of measuring the molecular weight compared to molecular weight markers composed of standard proteins, the molecular weight of the lactobion production-related enzyme produced by Pseudomonas tetrorence was confirmed to be about 45 kDa. .

단백질 밴드를 쿠마시 염색을 수행하여 비교한 후, 단일 단백질 밴드를 잘라낸 펩타이드 분획에 대한 질량분석법으로 단백질 서열에 대한 정보로 본 효소는 malate:quinone oxidoreductase(MQO, EC 1. 1. 99. 16, GenBank accession number WP_04837818.1)라는 것을 확인하였다.After comparing the protein bands by performing Coomassie staining, mass spectrometry was performed on the peptide fraction from which a single protein band was cut. This enzyme was malate:quinone oxidoreductase (MQO, EC 1. 1. 99. 16, GenBank accession number WP_04837818.1) was confirmed.

실시예 2: 락토오스 옥시다이징 효소의 최적 온도 및 pHExample 2: Optimal temperature and pH of lactose oxidizing enzyme

실시예 1에서 확인한 락토오스 옥시다이징 효소의 효소 반응 최적 온도를 결정하기 위해서 15~65 ℃범위에서 5 ℃간격으로 10분 반응시켜 효소의 상대 활성으로 표시하였다. 열 안정성은 효소액을 15~65 ℃범위에서 5 ℃간격으로 하여 효소액을 1시간 단위로 열처리를 해서 효소의 잔존 활성도를 측정하였다. 본 효소의 최적 pH 측정은 0.1 M acetate buffer (pH 3.5-5.5), 0.1 M phosphate buffer (pH 5.5-8.0), 0.1 M Tris-HCl buffer (pH 8.0-9.0), 0.1 M glycine-NaOH buffer (pH 9.0-12.0)을 사용하였다. pH에 대한 안정성은 효소액에 각각의 pH의 buffer를 첨가하여 실온에서 1시간 방치 후 잔존하는 효 소의 활성을 측정하였고, pH에 대한 활성도는 활성 측정 시 사용되는 버퍼를 위 조성으로 하여 측정하여 분석되었다. 기타 방법은 실험예 <1-2>의 액체배양 효소활성 측정 방법과 동일하게 하였다. 본 발명에서 정제된 효소의 온도 및 pH에 대한 활성도 변화에 대한 결과는 도 2에 나타내었다. 온도에 대한 활성도는 55 ℃까지 최대활성도의 50 %이상 유지되었으며, 열에 대한 안정성은 45 ℃ 이상의 온도에서 급격히 감소하였다. pH에 대한 활성도는 pH 7.0에서 가장 높았으며, pH 6.0~pH 9.0 에서 상대적 활성도가 최대 활성도의 80 % 유지되는 성질을 확인할 수 있었다. In order to determine the optimum temperature for the enzyme reaction of the lactose oxidizing enzyme confirmed in Example 1, the reaction was carried out in the range of 15 to 65 °C at 5 °C intervals for 10 minutes, and the relative activity of the enzyme was expressed. For thermal stability, the enzyme solution was heat-treated at intervals of 5°C in the range of 15 to 65°C, and the enzyme solution was heat-treated in units of 1 hour, and the residual activity of the enzyme was measured. The optimal pH measurement of this enzyme is 0.1 M acetate buffer (pH 3.5-5.5), 0.1 M phosphate buffer (pH 5.5-8.0), 0.1 M Tris-HCl buffer (pH 8.0-9.0), 0.1 M glycine-NaOH buffer (pH 9.0-12.0) was used. The stability to pH was measured by adding each pH buffer to the enzyme solution and leaving it at room temperature for 1 hour, then the remaining enzyme activity was measured. . Other methods were the same as those of the liquid culture enzyme activity measurement method of Experimental Example <1-2>. The results of the activity changes with respect to the temperature and pH of the enzyme purified in the present invention are shown in FIG. 2 . The activity against temperature was maintained at more than 50% of the maximum activity up to 55 ℃, and the stability to heat decreased rapidly at a temperature of 45 ℃ or higher. The activity to pH was the highest at pH 7.0, and it was confirmed that the relative activity was maintained at 80% of the maximum activity at pH 6.0 to pH 9.0.

실시예 3: 락토오스 옥시다이징 효소의 활성에 미치는 금속 이온 영향과 기질 특이성Example 3: Effects of metal ions on the activity of lactose oxidizing enzymes and substrate specificity

본 정제된 효소의 다양한 금속이온(표 2)과 기질에 따른 특이성(표 3)에 활성도를 나타냈다. The activity of the purified enzyme was shown in the specificity (Table 3) according to various metal ions (Table 2) and substrates.

DCIP 활성측정법을 통해 1mM의 다양한 금속 이온 및 시약과 함께 효소를 1시간 미리 배양하여 결정했다. 그런 다음 금속 이온 또는 시약의 존재 하에 활성도를 측정했다. 금속 이온 및 시약 없이 검정된 활성을 100%로 기록했다. 본 락토오스 옥시다이징 효소의 활성은 ZnCl2 , AlCl3, CuCl2등에 의하여 최대 활성의 30% 이상으로 저해되는 영향을 받았으며, FeCl2에 의해서는 활성이 향상되는 반응을 보여주었다. The DCIP activity assay was determined by pre-incubation of the enzyme with 1 mM of various metal ions and reagents for 1 hour. The activity was then measured in the presence of metal ions or reagents. The assayed activity without metal ions and reagents was reported as 100%. The activity of this lactose oxidizing enzyme was inhibited by more than 30% of the maximum activity by ZnCl 2 , AlCl 3 , CuCl 2 , etc., and the activity was improved by FeCl 2 .

다양한 기질에 따른 본 효소의 반응 특이성은, 락토오스, 셀로비오스, 말토오스와 같은 이당류에 반응을 보이는 반면, 다른 화합물들은 기질로서 작용하지 않았다. 락토오스 생산 관여 효소의 미카엘리스 상수 (Michaelis constant) (Km) 및 최대 속도(maximum velocity) (Vmax)의 수치를 0.2 내지 4.5 mM 범위 농도의 당 기질로서 사용하여 결정했다. Km 및 Vmax 의 수치를 표준 선형회귀 기술을 사용하여 라인위버-버크 플롯(Lineweaver-Burk plots)으로부터 결정했다.The reaction specificity of this enzyme according to various substrates shows that it reacts with disaccharides such as lactose, cellobiose and maltose, while other compounds do not act as substrates. The values of Michaelis constant (K m ) and maximum velocity (V max ) of enzymes involved in lactose production were determined using a sugar substrate at a concentration ranging from 0.2 to 4.5 mM. Values of K m and V max were determined from Lineweaver-Burk plots using standard linear regression techniques.

하기 표 2는 금속이온이 락토오스 옥시다이징 효소에 미치는 영향을 나타낸 것이다.Table 2 below shows the effect of metal ions on lactose oxidizing enzymes.

Inhibitor (1 mM)Inhibitor (1 mM) Relative activity (%)Relative activity (%) Control Control 100100 CaCl2 CaCl 2 72.8±0.872.8±0.8 MgCl2 MgCl 2 67.3±1.667.3±1.6 ZnCl2 ZnCl 2 29.7±2.129.7±2.1 FeCl2 FeCl 2 109.4±1.2109.4±1.2 AlCl3 AlCl 3 30.1±3.830.1±3.8 CuCl2 CuCl 2 12.4±2.712.4±2.7 MnCl2 MnCl 2 75.2±1.175.2±1.1 NiCl2 NiCl 2 65.1±2.465.1±2.4 CoCl2 CoCl 2 63.7±0.763.7±0.7 KClKCl 97.5±0.497.5±0.4 NaClNaCl 95.3±0.995.3±0.9

하기 표 3은 락토오스 옥시다이징 효소의 상대적 기질 특이성을 나타낸 것이다.Table 3 below shows the relative substrate specificity of the lactose oxidizing enzyme.

SubstrateSubstrate Relative activity (%)Relative activity (%) VV max (mM/min)max (mM/min) KK mm (mM) (mM) KK catcat (S (S -1-One )) KK catcat /K/K mm
(S(S -1-One ·mM·mM -1-One ))
LactoseLactose 100100 0.05 ± 0.0180.05 ± 0.018 0.46 ± 0.170.46 ± 0.17 12.6212.62 27.4327.43 CellobioseCellobiose 64.3464.34 0.03 ± 0.0140.03 ± 0.014 0.22 ± 0.190.22 ± 0.19 7.577.57 34.4134.41 MaltoseMaltose 49.2649.26 0.02 ± 0.0070.02 ± 0.007 0.66 ± 0.210.66 ± 0.21 5.055.05 7.657.65 SucroseSucrose - a - a -- -- -- -- D-glucoseD-glucose -- -- -- -- -- D-galactoseD-galactose -- -- -- -- -- D-xyloseD-xylose -- -- -- -- -- D-mannoseD-mannose -- -- -- -- -- L-ArabinoseL-Arabinose -- -- -- -- -- D-fructoseD-fructose -- -- -- -- --

a: 전환이 이뤄지지 않음. a : No conversion.

실시예 4: 형질전환 대장균으로부터 락토비온산 생산Example 4: Lactobionic acid production from transformed E. coli

대장균(E. coil)를 이용하여 본 정제된 효소가 락토비온산 생산에 관여하는 효소임을 선별하고 이를 락토비온산 생산을 위한 재조합 균주를 제조하기 위해 다음과 같이 실험을 수행하였다.Using E. coli ( E. coil ), the purified enzyme was selected as an enzyme involved in the production of lactobionic acid, and an experiment was performed as follows to prepare a recombinant strain for the production of lactobionic acid.

실험예 1: 재조합 플라스미드 제조Experimental Example 1: Recombinant plasmid preparation

젖당(락토오스, lactose) 산화반응을 통해 락토비온산 생산 능력이 우수한 슈도모나스 테트로렌스로부터 락토비온산 생산에 관여하는 효소 malate:quinone oxidoreductase (MQO, EC 1. 1. 99. 16, GenBank accession number WP_048378186.1)를 암호화하는 뉴클레오티드를 슈도모나스 테트로렌스 게놈 유전자 주형으로부터 정방향(서열목록 제1서열: MQO_XbaI_F 5'-TCTAGAAGGAATATGATATGGCGCATAACGAAGCAGTC-3'), 역방향(서열목록 제2서열: MQO_BamHI_R 5'-GGATCCTTACGCGATGCTGGTGTTCGGTTC-3') 프라이머를 사용하여 중합효소연쇄반응 (94℃ 5분동안 1회; 94℃ 30초간, 55℃ 2분 20초간, 72℃ 30초간 반응을 30회; 72℃ 7분간 1회)을 통하여 정방향 프라이머에는 XbaI 인식부위가 역방향 프라이머에는 BamHI 인식 부위가 존재하여 MQO 유전자를 증폭시켰다. 증폭된 유전자를 한천 겔 전기영동법을 통해 분리하였고, 증폭 분리된 DNA 단편을 XbaI와 BamHI으로 절단한 후에, XbaI와 BamHI로 절단된 통상의 대장균용 플라스미드 벡터인 pDSK519에 도입하여 재조합 플라스미드를 제작하였다. Enzyme malate:quinone oxidoreductase (MQO, EC 1. 1. 99. 16, GenBank accession number WP_048378186) involved in the production of lactobionic acid from Pseudomonas tetrorence, which has excellent lactobionic acid production ability through lactose (lactose) oxidation. 1) From the Pseudomonas tetrorence genome gene template, forward (SEQ ID NO: 1 SEQ ID NO: MQO_ Xba I_F 5'-TCTAGAAGGAATATGATATGGCGCATAACGAAGCAGTC-3 '), reverse (SEQ ID NO: 2 SEQ ID NO: MQO_ BamH I_R 5'-GGATCCTTACGCGATGCTGG 3') through a polymerase chain reaction using a primer (once at 94°C for 5 minutes; 30 times at 94°C for 30 seconds, at 55°C for 2 minutes for 20 seconds, at 72°C for 30 seconds; once at 72°C for 7 minutes) Xba I as a forward primer The BamHI recognition site was present in the reverse primer to amplify the MQO gene. The amplified gene was isolated through agar gel electrophoresis, and the amplified and isolated DNA fragment was digested with Xba I and BamH I, and then introduced into pDSK519, a conventional plasmid vector for E. coli cleaved with Xba I and BamHI , into a recombinant plasmid was produced.

실험예 2: 재조합 균주 제조Experimental Example 2: Preparation of Recombinant Strain

상기 실험예 1에서 제조된 플라스미드 pDSK519- MQO를 열충격 (42℃) 방법에 의해 재조합 대장균(E. coli JM109 △gcd)에 도입하여 형질전환시켰다. 대장균 또한 조효소 PQQ 존재 하에 락토비온산 생산에 관여하는 효소인 gdh (Quinoprotein glucose dehydrogenase) 유전자를 보유하고 있어 상기 유전자를 the Quick and Easy Conditional Knockout Kit (Gene Bridges, Heidelberg, Germany)방법으로 제거 (Knock-Out) 하여 음성대조군(negative control)으로 활용하였다. pDSK519 플라스미드는 선택표지로서 카나마이신(kanamycin) 저항성 유전자를 가지고 있으며, 카나마이신이 들어있는 LB-agar배지에서 pDSK519가 도입된 콜로니들을 선별하였고, 선별된 콜로니들의 콜로니 PCR을 통해 PCR산물의 DNA 시퀀싱(마크로젠, 한국) 확인하여 MQO 유전자 형질전환을 확인하였으며, 재조합 대장균을 LB(Luria-Bertani) 플레이트(1 % tryptone, 0.5 % yeast extract, 1 % NaCl, 1,5 % agar)에 도말하여 37℃ 정치배양기에서 24시간 동안 배양하였다. LB 플레이트에서 자란 균주의 콜로니를 항생제가 포함된 LB 액체배지 200mL에 접종하고, 37℃ 교반배양기에서 200rpm으로 OD(600nm)가 0.6 (분광광도계 (spectrophotometer)로 측정)이 될 때까지 배양하였다. 이를 통해 재조합 플라스미드인 pDSK519- MQO를 대장균에 형질전환한 재조합 균주를 개발하였다. The plasmid pDSK519-MQO prepared in Experimental Example 1 was introduced into recombinant E. coli ( E. coli JM109 Δgcd) by heat shock (42° C.) and transformed. Escherichia coli also possesses the gene for Quinoprotein glucose dehydrogenase (gdh), which is an enzyme involved in the production of lactobionic acid in the presence of the coenzyme PQQ, so the gene was removed by the Quick and Easy Conditional Knockout Kit (Gene Bridges, Heidelberg, Germany) method (Knock- Out) and used as a negative control. The pDSK519 plasmid has a kanamycin resistance gene as a selection marker, colonies into which pDSK519 has been introduced in LB-agar medium containing kanamycin were selected, and the DNA sequencing of the PCR product through colony PCR of the selected colonies (Macrogen, Korea) was confirmed to confirm MQO gene transformation, and recombinant E. coli was plated on an LB (Luria-Bertani) plate (1 % tryptone, 0.5 % yeast extract, 1 % NaCl, 1,5 % agar) in a stationary incubator at 37 ° C. Incubated for 24 hours. Colonies of strains grown on LB plates were inoculated into 200 mL of LB broth containing antibiotics, and OD (600 nm) was 0.6 (measured with a spectrophotometer) at 200 rpm in a stirred incubator at 37 ° C. It was cultured. Through this, a recombinant strain was developed in which the pDSK519-MQO, a recombinant plasmid, was transformed into E. coli.

실시예 5: MQO 과발현된 재조합 대장균 제조 및 이를 이용한 락토비온산 생산 능력 확인Example 5: Preparation of MQO-overexpressed recombinant E. coli and confirmation of lactobionic acid production capacity using the same

야생형 슈도모나스 테트로렌스 종으로부터 얻은 MQO(malate:quinone oxidoreductase)는 피롤로퀴놀린퀴논(PQQ)을 조효소로 하는 수용성 글루코스 탈수소효소로써, 상기 유전자가 젖당으로부터 락토비온산 전환에 필수적인 효소를 코딩하는 유전자인지의 여부를 확인하기 위해 대조군의 대장균(E.coli △gcd-pDSK)과 형질전환된 신규 대장균(E.coli △gcd-pDSK519-MQO)을 PQQ 및 NAD등 조효소가 포함된 젖당 배지에서 배양하고 균체 성장 및 락토비온산 전환 산물을 확인하였다. MQO (malate:quinone oxidoreductase) obtained from wild-type Pseudomonas tetrorence species is a water-soluble glucose dehydrogenase using pyrroloquinolinequinone (PQQ) as a coenzyme. To check whether or not the control group E. coli ( E.coli △ gcd-pDSK) and the new transformed E. coli (E. coli △gcd-pDSK519-MQO) were cultured in a lactose medium containing coenzymes such as PQQ and NAD, the cells were grown and lactobionic acid conversion products were identified.

MQO 유전자를 도입한 대장균 (E. coil △gcd /pDSK519-MQO)주와 대조군 (E. coil △gcd /pDSK519)을 각각 2ml의 LB배지 (Tryptone 10g, Yeast Extract 5g, NaCl 5g) 에 항생제 앰피실린 50 ㎍/ml을 포함하여 온도조건 30℃으로 16시간 배양하였고, 그 후, 각 균체를 초기 OD(600nm)가 0.2 가 되도록 대조군 대장균과 형질전환 대장균은 5ml의 LB배지 에 lactose 25g/L, CaCO3 3 g/L 및 PQQ 또는 NAD 20μM을 접종하여 30℃, 200rpm 조건으로 교반배양기에서 배양하고, 배양 개시로부터 4시간 후에 IPTG(이소프로필-β-D-티오갈락토피라노시드)를 최종 농도 1mM가 되도록 첨가하여 총 24시간 배양하였다. 젖당과 락토비온산의 분석은 Refractive Index Detector(RID)가 장착된 Agilent사의 고성능 액체크로마토그래피 (HPLC 1260 모델)을 이용하였다. 컬럼은 Coregel ION 300 column을 사용하였고, 컬럼 온도는 70℃를 유지하였다. 이동상은 0.5mM H2SO4를 이용하였고, flow는 0.3 ml/min이었다. 상기 조건에서 젖당과 락토비온산은 retention time은 도3에서 나타나는 것처럼 각각 19.2분, 20.4분으로 분리되어 확인되었다. E. coli ( E. coil △gcd /pDSK519-MQO) strain introduced with MQO gene and control ( E. coil △ gcd /pDSK519) were each added to 2ml of LB medium (Tryptone 10g, Yeast Extract 5g, NaCl 5g) with antibiotic ampicillin. Including 50 μg/ml, incubated for 16 hours at 30°C, and after that, control E. coli and transformed E. coli were lactose 25 g/L, CaCO in 5 ml of LB medium so that the initial OD (600 nm) of each cell was 0.2. 3 3 g/L and 20 μM of PQQ or NAD were inoculated and cultured in a stirred incubator at 30° C. and 200 rpm, and IPTG (isopropyl-β-D-thiogalactopyranoside) was added to the final concentration after 4 hours from the start of the culture. 1 mM was added and cultured for a total of 24 hours. Lactose and lactobionic acid were analyzed using Agilent's high-performance liquid chromatography (HPLC 1260 model) equipped with a Refractive Index Detector (RID). A Coregel ION 300 column was used as the column, and the column temperature was maintained at 70°C. The mobile phase was 0.5mM H 2 SO 4 , and the flow was 0.3 ml/min. Under the above conditions, the retention times of lactose and lactobionic acid were confirmed to be 19.2 minutes and 20.4 minutes, respectively, as shown in FIG. 3 .

이와 같은 방법으로 슈도모나스 테트로렌스 유래 락토비온산 생산에 관여하는 MQO를 과발현시킨 대장균에서도 조효소 PQQ를 넣어준 조건에서만, 대조균 대장균에서는 나타나지 않는 락토비온산 피크가 나타나는 것으로 확인 되었고 이에 본 발명에서 제조된 재조합 대장균은 gdh3 유전자의 도입에 의해 젖당을 대사하여 락토비온산 전환 능력이 있음을 확인하였다(도 4).In E. coli, which overexpressed MQO involved in the production of Pseudomonas tetrorence-derived lactobionic acid in this way, it was confirmed that a lactobionic acid peak not appearing in the control E. coli appeared only under the condition in which the coenzyme PQQ was added. It was confirmed that recombinant E. coli had the ability to convert lactobionic acid by metabolizing lactose by the introduction of the gdh3 gene (FIG. 4).

야생형균주와 재조합 균주의 젖당 25 g/L 발효를 통해 락토비온산 생산성을 비교한 결과(도 5), 조효소 PQQ를 넣어준 배양 조건에서 37시간 때 23 g/L의 젖당 대사 전환이 완료 되어 23 g/L의 락토비온산 생산이 되었으며, 이는 0.62 g/L/h의 생산성을 보이는 락토비온산 대사 가능한 재조합 대장균 균주를 개발할 수 있었다. As a result of comparing the lactobionic acid productivity through lactose 25 g/L fermentation of the wild-type strain and the recombinant strain (Fig. 5), the conversion of lactose metabolism of 23 g/L was completed at 37 hours in the culture condition in which the coenzyme PQQ was added. g/L of lactobionic acid was produced, and it was possible to develop a recombinant E. coli strain capable of metabolizing lactobionic acid with a productivity of 0.62 g/L/h.

<110> KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY <120> Novel lactose oxidase from Pseudomonas and method for producing lactobionic acid using the same <130> P20-124 <160> 4 <170> KoPatentIn 3.0 <210> 1 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> MQO XbaI F <400> 1 tctagaagga atatgatatg gcgcataacg aagcagtc 38 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> MQO BamHI R <400> 2 ggatccttac gcgatgctgg tgttcggttc 30 <210> 3 <211> 1500 <212> DNA <213> Pseudomonas taetrolens <400> 3 atggcgcata acgaagcagt cgacgtagta ctggttggag cgggcatcat gagtgccacc 60 ctcgccgtac tgctcaaaga gctcgacccc ggcattaagc tggaagttgt tgagcagatg 120 gactcaggtg ctgcggagag ttccaacccg tggaacaacg caggcaccgg ccacgccggg 180 ctgtgcgaat tgaactatac gccgcaagcg gctgacggtt cgatcgacat caaaaaggct 240 gtgcatatca atgcacagtt cgaagtctcg aaacagtttt gggcctacct ggcgcaacaa 300 gggaccttcg gctcatgcaa atccttcatc agcccagtgc ctcacctgag ctacgtgcaa 360 ggtgaaaaag gtgtgtcctt cctgaaaaaa cgttttgaag tgctgagcaa gcaccatgcg 420 ttttcagaca tggaatacac cgaagacaag gcaaaaatgg ctgaatggat gccattgatg 480 atgccgggcc gcccggcaga cgaagtcatc tccgccaccc gtgtcatgca cggcaccgac 540 gtcaacttcg gcgccctgac ccagcaactg ctcaagcatt tggccagcgc tcccgacacg 600 cagatcaaat acagcaaaaa agtcactggc ctcaagcgca atggcagcgg ctggacagtg 660 agcatcaaag acaccaacag cggcaacacg cgccacatcg atgccaaatt cgtgttcctc 720 ggtgccggtg gcgcggcctt gccgctgctg caagcctcgg gcattgagga aagcaaaggc 780 tacggcggtt tcccggtcag cggccagtgg ctgcgttgcg acaacccgga agtggtcaag 840 cttcaccagg ccaaggtcta cagccaggcg gccgtaggct ccccaccgat gtcggtaccg 900 catctggaca cccgtgtcgt ggacggcaag aagtccctgt tgtttggacc gtatgccggc 960 ttcacgacca agttcctcaa gcacggttcg ttcatggacc tgccgatgtc gattcgcttg 1020 ggtaatatcg gaccaatgct cgccgtcgcc cgtgacaaca tggatctgac caagtacctg 1080 gtcagtgagg tccgtcaatc gatggagcaa cgcctggact ccctgcgtcg cttctatcca 1140 caggccaagg ccgaagactg gcgtcttgag atcgcgggcc aacgggttca gatcatcaag 1200 aaagacccga aaaaaggcgg cgtgctgcag ttcggtaccg aactggttgc agccaaggac 1260 ggctcattgg ccgccctgct cggcgcctct ccgggcgctt cggtgacggt atcgatcatg 1320 ctcgacctga tcgagcgctg cttcccgcaa aaagcagctg gcgagtgggc gaccaagctc 1380 aaggaaattt tcccggcacg ggaaaaaacc cttgagaccg acgctgagtt gtaccgtgaa 1440 atcagcaccc gcaactccga gttgctggaa ctggtagaac cgaacaccag catcgcgtaa 1500 1500 <210> 4 <211> 499 <212> PRT <213> Pseudomonas taetrolens <400> 4 Met Ala His Asn Glu Ala Val Asp Val Val Leu Val Gly Ala Gly Ile 1 5 10 15 Met Ser Ala Thr Leu Ala Val Leu Leu Lys Glu Leu Asp Pro Gly Ile 20 25 30 Lys Leu Glu Val Val Glu Gln Met Asp Ser Gly Ala Ala Glu Ser Ser 35 40 45 Asn Pro Trp Asn Asn Ala Gly Thr Gly His Ala Gly Leu Cys Glu Leu 50 55 60 Asn Tyr Thr Pro Gln Ala Ala Asp Gly Ser Ile Asp Ile Lys Lys Ala 65 70 75 80 Val His Ile Asn Ala Gln Phe Glu Val Ser Lys Gln Phe Trp Ala Tyr 85 90 95 Leu Ala Gln Gln Gly Thr Phe Gly Ser Cys Lys Ser Phe Ile Ser Pro 100 105 110 Val Pro His Leu Ser Tyr Val Gln Gly Glu Lys Gly Val Ser Phe Leu 115 120 125 Lys Lys Arg Phe Glu Val Leu Ser Lys His His Ala Phe Ser Asp Met 130 135 140 Glu Tyr Thr Glu Asp Lys Ala Lys Met Ala Glu Trp Met Pro Leu Met 145 150 155 160 Met Pro Gly Arg Pro Ala Asp Glu Val Ile Ser Ala Thr Arg Val Met 165 170 175 His Gly Thr Asp Val Asn Phe Gly Ala Leu Thr Gln Gln Leu Leu Lys 180 185 190 His Leu Ala Ser Ala Pro Asp Thr Gln Ile Lys Tyr Ser Lys Lys Val 195 200 205 Thr Gly Leu Lys Arg Asn Gly Ser Gly Trp Thr Val Ser Ile Lys Asp 210 215 220 Thr Asn Ser Gly Asn Thr Arg His Ile Asp Ala Lys Phe Val Phe Leu 225 230 235 240 Gly Ala Gly Gly Ala Ala Leu Pro Leu Leu Gln Ala Ser Gly Ile Glu 245 250 255 Glu Ser Lys Gly Tyr Gly Gly Phe Pro Val Ser Gly Gln Trp Leu Arg 260 265 270 Cys Asp Asn Pro Glu Val Val Lys Leu His Gln Ala Lys Val Tyr Ser 275 280 285 Gln Ala Ala Val Gly Ser Pro Pro Met Ser Val Pro His Leu Asp Thr 290 295 300 Arg Val Val Asp Gly Lys Lys Ser Leu Leu Phe Gly Pro Tyr Ala Gly 305 310 315 320 Phe Thr Thr Lys Phe Leu Lys His Gly Ser Phe Met Asp Leu Pro Met 325 330 335 Ser Ile Arg Leu Gly Asn Ile Gly Pro Met Leu Ala Val Ala Arg Asp 340 345 350 Asn Met Asp Leu Thr Lys Tyr Leu Val Ser Glu Val Arg Gln Ser Met 355 360 365 Glu Gln Arg Leu Asp Ser Leu Arg Arg Phe Tyr Pro Gln Ala Lys Ala 370 375 380 Glu Asp Trp Arg Leu Glu Ile Ala Gly Gln Arg Val Gln Ile Ile Lys 385 390 395 400 Lys Asp Pro Lys Lys Gly Gly Val Leu Gln Phe Gly Thr Glu Leu Val 405 410 415 Ala Ala Lys Asp Gly Ser Leu Ala Ala Leu Leu Gly Ala Ser Pro Gly 420 425 430 Ala Ser Val Thr Val Ser Ile Met Leu Asp Leu Ile Glu Arg Cys Phe 435 440 445 Pro Gln Lys Ala Ala Gly Glu Trp Ala Thr Lys Leu Lys Glu Ile Phe 450 455 460 Pro Ala Arg Glu Lys Thr Leu Glu Thr Asp Ala Glu Leu Tyr Arg Glu 465 470 475 480 Ile Ser Thr Arg Asn Ser Glu Leu Leu Glu Leu Val Glu Pro Asn Thr 485 490 495 Ser Ile Ala <110> KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY <120> Novel lactose oxidase from Pseudomonas and method for producing lactobionic acid using the same <130> P20-124 <160> 4 <170> KoPatentIn 3.0 <210> 1 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> MQO XbaI F <400> 1 tctagaagga atatgatatg gcgcataacg aagcagtc 38 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> MQO BamHI R <400> 2 ggatccttac gcgatgctgg tgttcggttc 30 <210> 3 <211> 1500 <212> DNA <213> Pseudomonas taetrolens <400> 3 atggcgcata acgaagcagt cgacgtagta ctggttggag cgggcatcat gagtgccacc 60 ctcgccgtac tgctcaaaga gctcgacccc ggcattaagc tggaagttgt tgagcagatg 120 gactcaggtg ctgcggagag ttccaacccg tggaacaacg caggcaccgg ccacgccggg 180 ctgtgcgaat tgaactatac gccgcaagcg gctgacggtt cgatcgacat caaaaaggct 240 gtgcatatca atgcacagtt cgaagtctcg aaacagtttt gggcctacct ggcgcaacaa 300 gggaccttcg gctcatgcaa atccttcatc agcccagtgc ctcacctgag ctacgtgcaa 360 ggtgaaaaag gtgtgtcctt cctgaaaaaa cgttttgaag tgctgagcaa gcaccatgcg 420 ttttcagaca tggaatacac cgaagacaag gcaaaaatgg ctgaatggat gccattgatg 480 atgccgggcc gcccggcaga cgaagtcatc tccgccaccc gtgtcatgca cggcaccgac 540 gtcaacttcg gcgccctgac ccagcaactg ctcaagcatt tggccagcgc tcccgacacg 600 cagatcaaat acagcaaaaa agtcactggc ctcaagcgca atggcagcgg ctggacagtg 660 agcatcaaag acaccaacag cggcaacacg cgccacatcg atgccaaatt cgtgttcctc 720 ggtgccggtg gcgcggcctt gccgctgctg caagcctcgg gcattgagga aagcaaaggc 780 tacggcggtt tcccggtcag cggccagtgg ctgcgttgcg acaacccgga agtggtcaag 840 cttcaccagg ccaaggtcta cagccaggcg gccgtaggct ccccaccgat gtcggtaccg 900 catctggaca cccgtgtcgt ggacggcaag aagtccctgt tgtttggacc gtatgccggc 960 ttcacgacca agttcctcaa gcacggttcg ttcatggacc tgccgatgtc gattcgcttg 1020 ggtaatatcg gaccaatgct cgccgtcgcc cgtgacaaca tggatctgac caagtacctg 1080 gtcagtgagg tccgtcaatc gatggagcaa cgcctggact ccctgcgtcg cttctatcca 1140 caggccaagg ccgaagactg gcgtcttgag atcgcgggcc aacgggttca gatcatcaag 1200 aaagacccga aaaaaggcgg cgtgctgcag ttcggtaccg aactggttgc agccaaggac 1260 ggctcattgg ccgccctgct cggcgcctct ccgggcgctt cggtgacggt atcgatcatg 1320 ctcgacctga tcgagcgctg cttcccgcaa aaagcagctg gcgagtgggc gaccaagctc 1380 aaggaaattt tcccggcacg ggaaaaaacc cttgagaccg acgctgagtt gtaccgtgaa 1440 atcagcaccc gcaactccga gttgctggaa ctggtagaac cgaacaccag catcgcgtaa 1500 1500 <210> 4 <211> 499 <212> PRT <213> Pseudomonas taetrolens <400> 4 Met Ala His Asn Glu Ala Val Asp Val Val Leu Val Gly Ala Gly Ile 1 5 10 15 Met Ser Ala Thr Leu Ala Val Leu Leu Lys Glu Leu Asp Pro Gly Ile 20 25 30 Lys Leu Glu Val Val Glu Gln Met Asp Ser Gly Ala Ala Glu Ser Ser 35 40 45 Asn Pro Trp Asn Asn Ala Gly Thr Gly His Ala Gly Leu Cys Glu Leu 50 55 60 Asn Tyr Thr Pro Gln Ala Ala Asp Gly Ser Ile Asp Ile Lys Lys Ala 65 70 75 80 Val His Ile Asn Ala Gln Phe Glu Val Ser Lys Gln Phe Trp Ala Tyr 85 90 95 Leu Ala Gln Gln Gly Thr Phe Gly Ser Cys Lys Ser Phe Ile Ser Pro 100 105 110 Val Pro His Leu Ser Tyr Val Gln Gly Glu Lys Gly Val Ser Phe Leu 115 120 125 Lys Lys Arg Phe Glu Val Leu Ser Lys His His Ala Phe Ser Asp Met 130 135 140 Glu Tyr Thr Glu Asp Lys Ala Lys Met Ala Glu Trp Met Pro Leu Met 145 150 155 160 Met Pro Gly Arg Pro Ala Asp Glu Val Ile Ser Ala Thr Arg Val Met 165 170 175 His Gly Thr Asp Val Asn Phe Gly Ala Leu Thr Gln Gln Leu Leu Lys 180 185 190 His Leu Ala Ser Ala Pro Asp Thr Gln Ile Lys Tyr Ser Lys Lys Val 195 200 205 Thr Gly Leu Lys Arg Asn Gly Ser Gly Trp Thr Val Ser Ile Lys Asp 210 215 220 Thr Asn Ser Gly Asn Thr Arg His Ile Asp Ala Lys Phe Val Phe Leu 225 230 235 240 Gly Ala Gly Gly Ala Ala Leu Pro Leu Leu Gln Ala Ser Gly Ile Glu 245 250 255 Glu Ser Lys Gly Tyr Gly Gly Phe Pro Val Ser Gly Gln Trp Leu Arg 260 265 270 Cys Asp Asn Pro Glu Val Val Lys Leu His Gln Ala Lys Val Tyr Ser 275 280 285 Gln Ala Ala Val Gly Ser Pro Pro Met Ser Val Pro His Leu Asp Thr 290 295 300 Arg Val Val Asp Gly Lys Lys Ser Leu Leu Phe Gly Pro Tyr Ala Gly 305 310 315 320 Phe Thr Thr Lys Phe Leu Lys His Gly Ser Phe Met Asp Leu Pro Met 325 330 335 Ser Ile Arg Leu Gly Asn Ile Gly Pro Met Leu Ala Val Ala Arg Asp 340 345 350 Asn Met Asp Leu Thr Lys Tyr Leu Val Ser Glu Val Arg Gln Ser Met 355 360 365 Glu Gln Arg Leu Asp Ser Leu Arg Arg Phe Tyr Pro Gln Ala Lys Ala 370 375 380 Glu Asp Trp Arg Leu Glu Ile Ala Gly Gln Arg Val Gln Ile Ile Lys 385 390 395 400 Lys Asp Pro Lys Lys Gly Gly Val Leu Gln Phe Gly Thr Glu Leu Val 405 410 415 Ala Ala Lys Asp Gly Ser Leu Ala Ala Leu Leu Gly Ala Ser Pro Gly 420 425 430 Ala Ser Val Thr Val Ser Ile Met Leu Asp Leu Ile Glu Arg Cys Phe 435 440 445 Pro Gln Lys Ala Ala Gly Glu Trp Ala Thr Lys Leu Lys Glu Ile Phe 450 455 460 Pro Ala Arg Glu Lys Thr Leu Glu Thr Asp Ala Glu Leu Tyr Arg Glu 465 470 475 480 Ile Ser Thr Arg Asn Ser Glu Leu Leu Glu Leu Val Glu Pro Asn Thr 485 490 495 Ser Ile Ala

Claims (12)

슈도모나스(Pseudomonas) 속 미생물로부터 유래한 말레이트 탈수소효소(malate dehydrogenase)를 코딩하는 핵산 서열을 포함하는, 락토비온산을 생산하는 재조합 균주 제조용 재조합 벡터. A recombinant vector for producing a recombinant strain for producing lactobionic acid, comprising a nucleic acid sequence encoding malate dehydrogenase derived from a microorganism of the genus Pseudomonas. 제1항에 있어서, 상기 말레이트 탈수소효소는 락토오스 옥시다이징 활성을 갖는 것을 특징으로 하는 재조합 벡터.The recombinant vector according to claim 1, wherein the malate dehydrogenase has lactose oxidizing activity. 제1항에 있어서, 상기 말레이트 탈수소효소는 작용 온도가 15℃ 내지 45℃이고, pH 6.5 내지 pH 9.0의 조건에서 상대 효소 활성이 60% 이상 유지되는 것을 특징으로 하는 재조합 벡터.The recombinant vector according to claim 1, wherein the maleate dehydrogenase has an action temperature of 15°C to 45°C, and a relative enzyme activity of 60% or more is maintained at a pH of 6.5 to pH 9.0. 제1항에 있어서, 상기 핵산 서열은 서열목록 제3서열로 표시되는 것을 특징으로 하는 재조합 벡터. [Claim 3] The recombinant vector according to claim 1, wherein the nucleic acid sequence is represented by the third sequence in SEQ ID NO: 3. 제1항에 있어서, 상기 말레이트 탈수소효소는 서열목록 제4서열로 표시되는 아미노산 서열을 포함하는 것을 특징으로 하는 재조합 벡터.The recombinant vector according to claim 1, wherein the malate dehydrogenase comprises an amino acid sequence represented by SEQ ID NO: 4 in SEQ ID NO:. 제1항에 있어서, 상기 말레이트 탈수소효소는 말레이트:퀴논 옥시도리덕타아제(malate:quinone oxidoreductase, EC 1. 1. 99. 16, GenBank accession number WP_048378186.1)인 것을 특징으로 하는 특징으로 하는 재조합 벡터.The method according to claim 1, wherein the malate dehydrogenase is malate:quinone oxidoreductase (EC 1. 1. 99. 16, GenBank accession number WP_048378186.1). Recombinant Vector. 제1항에 따른 재조합 벡터로 형질전환된, 락토비온산 생산용 재조합 균주.A recombinant strain for producing lactobionic acid, transformed with the recombinant vector according to claim 1 . 제5항에 있어서, 상기 재조합 균주는 재조합 대장균이고, 이는 야생형 대장균과 달리 락토오스 옥시다이징 효소를 생산하여 락토오스로부터 락토비온산 생산이 가능한 것을 특징으로 하는 재조합 균주.The recombinant strain according to claim 5, wherein the recombinant strain is recombinant E. coli, which, unlike wild-type E. coli, produces a lactose oxidizing enzyme to produce lactobionic acid from lactose. 슈도모나스(Pseudomonas) 속 미생물로부터 유래한 말레이트 탈수소효소(malate dehydrogenase)를 코딩하는 핵산 서열을 포함하는 재조합 벡터를 수득하는 단계; 및
상기 재조합 벡터를 그람음성균에 도입하는 단계
를 포함하는 락토비온산 생산용 재조합 균주의 제조방법.
Pseudomonas ( Pseudomonas ) Obtaining a recombinant vector comprising a nucleic acid sequence encoding malate dehydrogenase (malate dehydrogenase) derived from a microorganism; and
introducing the recombinant vector into Gram-negative bacteria
A method for producing a recombinant strain for lactobionic acid production comprising a.
제7항에 따른 재조합 균주를 사용하여 락토비온산을 생산하는 방법.A method for producing lactobionic acid using the recombinant strain according to claim 7. 제10항에 있어서, 상기 방법은 상기 재조합 균주에 조효소 PQQ (pyrroloquinoline quinone)를 첨가하는 것을 특징으로 하는 락토비온산을 생산하는 방법.11. The method of claim 10, wherein the method for producing lactobionic acid, characterized in that the addition of the coenzyme PQQ (pyrroloquinoline quinone) to the recombinant strain. 슈도모나스(Pseudomonas) 속 미생물로부터 유래한 말레이트 탈수소효소(malate dehydrogenase)를 사용하여 락토비온산을 생산하는 방법으로서, 상기 말레이트 탈수소효소는 락토오스 옥시다이징 활성을 갖는 것을 특징으로 하는 락토비온산을 생산하는 방법.A method for producing lactobionic acid using malate dehydrogenase derived from a microorganism of the genus Pseudomonas, wherein the malate dehydrogenase has lactose oxidizing activity. How to produce.
KR1020200137071A 2020-10-21 2020-10-21 Novel lactose oxidase from Pseudomonas and method for producing lactobionic acid using the same KR102520671B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200137071A KR102520671B1 (en) 2020-10-21 2020-10-21 Novel lactose oxidase from Pseudomonas and method for producing lactobionic acid using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200137071A KR102520671B1 (en) 2020-10-21 2020-10-21 Novel lactose oxidase from Pseudomonas and method for producing lactobionic acid using the same

Publications (2)

Publication Number Publication Date
KR20220052762A true KR20220052762A (en) 2022-04-28
KR102520671B1 KR102520671B1 (en) 2023-04-10

Family

ID=81448092

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200137071A KR102520671B1 (en) 2020-10-21 2020-10-21 Novel lactose oxidase from Pseudomonas and method for producing lactobionic acid using the same

Country Status (1)

Country Link
KR (1) KR102520671B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190127709A1 (en) * 2017-11-02 2019-05-02 National University Of Kaohsiung Myrmecridium flexuosum nuk-21, novel lactose oxidase isolated from myrmecridium flexuosum nuk-21, and method for conversion of lactose into lactobionic acid by novel lactose oxidase
KR102030776B1 (en) 2018-04-24 2019-10-10 한국화학연구원 A Method of Producing Lactobionic Acid Using Pseudomonas taetrolens By Optimization of Culture Condition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190127709A1 (en) * 2017-11-02 2019-05-02 National University Of Kaohsiung Myrmecridium flexuosum nuk-21, novel lactose oxidase isolated from myrmecridium flexuosum nuk-21, and method for conversion of lactose into lactobionic acid by novel lactose oxidase
KR102030776B1 (en) 2018-04-24 2019-10-10 한국화학연구원 A Method of Producing Lactobionic Acid Using Pseudomonas taetrolens By Optimization of Culture Condition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF BACTERIOLOGY, 2000, Vol. 182, No. 24, pp. 6892-6899.* *

Also Published As

Publication number Publication date
KR102520671B1 (en) 2023-04-10

Similar Documents

Publication Publication Date Title
Trcek et al. Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria
KR100753747B1 (en) Novel glucose dehydrogenase and process for producing the dehydrogenase
KR100872694B1 (en) Arabinose isomerase expressed from corynebacterium genus and tagatose manufacturing method by using it
CN110452845B (en) Escherichia coli for producing sucrose phosphorylase
Tsujimoto et al. Gene cloning, expression, and crystallization of a thermostable exo-inulinase from Geobacillus stearothermophilus KP1289
JPH10229885A (en) New alcohol/aldehyde dehydrogenase
CN113564136A (en) L-pantolactone dehydrogenase, mutant thereof, co-expression engineering bacterium and application
Oh et al. Identification of a lactose-oxidizing enzyme in Escherichia coli and improvement of lactobionic acid production by recombinant expression of a quinoprotein glucose dehydrogenase from Pseudomonas taetrolens
KR102338436B1 (en) Recombinant microorganism for producing lactobionic acid and method for producing lactobionic acid using the same
WO2003091430A1 (en) GLUCOSE DEHYDROGENASE β-SUBUNIT AND DNA ENCODING THE SAME
KR102520671B1 (en) Novel lactose oxidase from Pseudomonas and method for producing lactobionic acid using the same
JP5277482B2 (en) Method for producing flavin adenine dinucleotide-linked glucose dehydrogenase
CN116121215A (en) Mutant of glycerophosphate oxidase and application thereof
DE69130200T2 (en) Thermus Aquaticus xylose isomerase gene, xylose isomerase and method for producing fructose
JP6461793B2 (en) Method for producing flavin adenine dinucleotide-binding glucose dehydrogenase from Mucor
US6316242B1 (en) Method for producing nitrile hydratase
KR101479133B1 (en) A novel D-sorbitol dehydrogenase and L-sorbose production using the said enzyme
JP4336897B2 (en) Novel microorganism, maltose phosphorylase, trehalose phosphorylase and method for producing the same
Itoh et al. Identification and characterization of a novel (−)-vibo-quercitol 1-dehydrogenase from Burkholderia terrae suitable for production of (−)-vibo-quercitol from 2-deoxy-scyllo-inosose
KR101228974B1 (en) A thermostable H2O forming NADH oxidase from Lactobacillus rhamnosus and a preparation method thereof
JP2009089649A (en) Diaphorase gene of clostridium kluyveri and its application
KR102541634B1 (en) Methods of producing lactobionic acid by whole-cell bioconversion of microorganism
US7713718B1 (en) Process for producing glucose dehydrogenases
WO2020213374A1 (en) Recombinant production of peroxidase
JP4415247B2 (en) Novel glycerol kinase, gene and method for producing glycerol kinase using the gene

Legal Events

Date Code Title Description
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant