KR102338436B1 - Recombinant microorganism for producing lactobionic acid and method for producing lactobionic acid using the same - Google Patents
Recombinant microorganism for producing lactobionic acid and method for producing lactobionic acid using the same Download PDFInfo
- Publication number
- KR102338436B1 KR102338436B1 KR1020200067897A KR20200067897A KR102338436B1 KR 102338436 B1 KR102338436 B1 KR 102338436B1 KR 1020200067897 A KR1020200067897 A KR 1020200067897A KR 20200067897 A KR20200067897 A KR 20200067897A KR 102338436 B1 KR102338436 B1 KR 102338436B1
- Authority
- KR
- South Korea
- Prior art keywords
- lactobionic acid
- recombinant
- pseudomonas
- gdh3
- producing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/78—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Pseudomonas
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/44—Preparation of O-glycosides, e.g. glucosides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/05—Oxidoreductases acting on the CH-OH group of donors (1.1) with a quinone or similar compound as acceptor (1.1.5)
- C12Y101/05002—Quinoprotein glucose dehydrogenase (1.1.5.2)
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
본 발명은 재조합 미생물 및 이를 이용한 락토비온산 생산 방법에 관한 것이다.The present invention relates to a recombinant microorganism and a method for producing lactobionic acid using the same.
차세대 피부미백 소재로서의 폴리하이드록시 비온산(Polyhydroxy bionic acid)의 한 종류인 락토비온산(Lactobionic acid)은 α-하이드록시산이 가지고 있는 각질제거, 주름개선, 피부미백 효과 외에 생분해성, 생체친화성, 항노화성, 항산화성, 보습성, 킬레이트성 등의 다양한 특성을 가지고 있으며, 피부에 대한 자극이 적어 글리콜릭산, 젖산을 대체할 수 있는 차세대 화장품 소재로서 매우 주목 받고 있으며, 락토비온산이 함유된화장품이 상용화되어 현재 판매되고 있다.Lactobionic acid, a type of polyhydroxy bionic acid as a next-generation skin whitening material, is biodegradable and biocompatible in addition to the exfoliating, anti-wrinkle, and skin whitening effects of α-hydroxy acid. , anti-aging, antioxidant, moisturizing, chelating properties, etc., and has little irritation to the skin, drawing attention as a next-generation cosmetic material that can replace glycolic acid and lactic acid. Cosmetics containing lactobionic acid It has been commercialized and is now on sale.
락토비온산은 갈락토오스 (Galactose)와 글루콘산 (Gluconic acid)이 β-1,4 결합으로 형성된 물질로서, 분자량은 358.3이고, 수용성 백색 결정질 화합물이다. 락토비온산은 락토스 중의 유리 알데히드기의 산화반응에 의해 합성될 수 있는데, 이에 현재 화학적, 전기화학적, 촉매반응 또는 생물학적 산화에 의한 생산 연구가 많이 되고있다. [문헌 Satory et al., Biotechnology letters 19(12) 1205-08, 1997]. Lactobionic acid is a substance formed by β-1,4 bonds of galactose and gluconic acid, has a molecular weight of 358.3, and is a water-soluble white crystalline compound. Lactobionic acid can be synthesized by the oxidation reaction of the free aldehyde group in lactose, and there are currently many studies on production by chemical, electrochemical, catalytic or biological oxidation. [Satory et al., Biotechnology letters 19(12) 1205-08, 1997].
이중 식품과 화장품 원료로 락토비온산의 관심과 쓰임에 대응하기 위하여 환경친화적인 미생물 배양법을 통한 생물학적 락토비온산 생산 연구가 집중적으로 진행되고 있으며, 락토비온산과 같은 알돈산 생산 미생물 균주로 아세토박터 오리엔탈리스(Acetobacter orientalis), 브루크홀데리아 세파시아(Burkholderia cepacia), 글루코노박터(Gluconobacter) 속, 글루코나세토박터(Gluconacetobacter) 속, 파라코니티리움(Paraconiothyrium) KD-3, 페니실리움 크리소게눔(Penicillium chrysogenum), 슈도모나스 태트로렌스(Pseudomonas taetrolens), 스트렙토코커스 락티스(Streptococcus lactis) 및 자이모모나스 모빌리스(Zymomonas mobilis) 등이 알려져 있다.Among them, in order to respond to the interest and use of lactobionic acid as a raw material for food and cosmetics, research on biological lactobionic acid production through an environmentally friendly microbial culture method is being intensively conducted. Res ( Acetobacter orientalis ), Brookholderia cepacia ( Burkholderia cepacia ), Gluconobacter ( Gluconobacter ) genus, Gluconacetobacter ( Gluconacetobacter ) genus, Paraconiothyrium ) KD-3, Penicillium chrysoge Num ( Penicillium chrysogenum ), Pseudomonas tatrons ( Pseudomonas ) taetrolens ), Streptococcus lactis and Zymomonas mobilis mobilis ) are known.
본 명세서 전체에 걸쳐 다수의 문헌이 참조되고 그 인용이 표시되어 있다. 인용된 문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다. Numerous references are referenced throughout this specification and citations thereof are indicated. The disclosures of the cited documents are incorporated herein by reference in their entirety to more clearly describe the content of the present invention and the level of the art to which the present invention pertains.
본 발명이 해결하고자 하는 과제는 야생형 균주의 배양을 통한 락토비온산 생산량의 한계를 해결하고자 락토비온산 생산능이 향상된 재조합 미생물 및 이를 이용한 락토비온산 생산성 향상을 위한 방법을 제공하는 것이다.An object of the present invention is to provide a recombinant microorganism with improved lactobionic acid production ability and a method for improving lactobionic acid productivity using the same in order to solve the limitation of lactobionic acid production through culturing of wild-type strains.
구체적으로 본 발명은 gdh3 (Quinoprotein glucose dehydrogenase: 1.1.5.2) 유전자가 과발현된 재조합 벡터를 이용하여, 이를 야생형 미생물에 형질전환하여 재조합 균주를 만들고, 이 재조합 균주로부터 기존 균주보다 락토비온산 생산성이 향상된 생산 시스템을 제공하는 것이다. Specifically, the present invention uses a recombinant vector overexpressing the gdh3 (Quinoprotein glucose dehydrogenase: 1.1.5.2) gene, transforming it into a wild-type microorganism to make a recombinant strain, and from this recombinant strain, lactobionic acid productivity is improved compared to the existing strain to provide a production system.
따라서 본 발명의 목적은 gdh3(Quinoprotein glucose dehydrogenase) 효소를 코딩하는 핵산 서열을 포함하는 재조합 벡터를 제공하는데 있다.Accordingly, it is an object of the present invention to provide a recombinant vector comprising a nucleic acid sequence encoding a quinoprotein glucose dehydrogenase (gdh3) enzyme.
본 발명의 다른 목적은 재조합 벡터가 도입된 gdh3 유전자를 과발현하는 재조합 미생물 제공하는데 있다. Another object of the present invention is to provide a recombinant microorganism overexpressing the gdh3 gene into which the recombinant vector is introduced.
본 발명의 또 다른 목적은 상기 재조합 미생물의 제조방법을 제공하는데 있다. Another object of the present invention is to provide a method for producing the recombinant microorganism.
본 발명의 또 다른 목적은 상기 재조합 미생물을 사용하여 락토비온산을 생산하는 방법을 제공하는데 있다. Another object of the present invention is to provide a method for producing lactobionic acid using the recombinant microorganism.
본 발명의 또 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다. Further objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.
본 발명의 하나의 관점은 슈도모나스(Pseudomonas) 속 미생물로부터 유래한 gdh3(Quinoprotein glucose dehydrogenase) 효소를 코딩하는 핵산 서열을 포함하는 재조합 벡터를 제공하는 것이다. One aspect of the present invention is to provide a recombinant vector comprising a nucleic acid sequence encoding a Quinoprotein glucose dehydrogenase (gdh3) enzyme derived from a microorganism of the genus Pseudomonas.
락토비온산 생산에 있어 문제점은 공정 개발의 어려움도 있지만 우수한 균주 확보의 어려움이 크게 작용한다. 현재 밝혀진 락토비온산 생산하는 미생물의 종류에 따라 생산된 효소의 작용과 기질에 대한 산화 능력이 매우 다르므로, 이중 락토비온산 생산능력이 우수한 새로운 효소를 밝혀내고, 이에 따른 재조합 균주의 개발 및 이를 이용한 생산 기술 연구가 매우 중요하다.The problem in the production of lactobionic acid is that there is a difficulty in process development, but the difficulty in securing an excellent strain plays a large role. Since the action of the produced enzyme and the oxidizing ability of the substrate are very different depending on the type of microorganism that produces lactobionic acid, which is currently known, a new enzyme with excellent lactobionic acid production capacity has been discovered, and the development of a recombinant strain and it Research on the production technology used is very important.
종전 아세트산 박테리아는 락토비온산을 생산하는 미생물로 널리 알려져 있으나, 코마가테이박터(Komagataeibacter medellinensis)로부터 분리한 m-GDH 효소(membrane-bound quinoprotein glucose dehydrogenase)는 포도당 산화 활성을 100%로 했을 때 이에 대비한 젖당(lactose) 산화 능력이 5% 전후에 불과하여 젖당 산화 능력이 미미하고, 배지에 포도당이 존재하는 경우 젖당 산화를 통한 락토비온산 생산능력이 현저하게 억제되는 문제가 있다. 글루코노박터(Gluconobacter suboxydans)는 아세트산 박테리아로서 다양한 알도오스(Aldose) 산화 능력을 가짐에도 불구하고, 이로부터 유래한 Quinoprotein glucose dehydrogenase 효소는 젖당은 산화시키지 못하는 것으로 확인되었다. 또 다른 락토비온산 생산 균주인 아시네토박터(Acinetobacter calcoaceticus)의 경우, 이로부터 유래한 GDH 효소는 포도당을 산화시키는 활성 대비 젖당 산화 활성이 65% 정도에 불과한 것으로 확인되었다.Previously, acetic acid bacteria were widely known as lactobionic acid-producing microorganisms, but Komagataeibacter m-GDH enzyme (membrane-bound quinoprotein glucose dehydrogenase) isolated from medellinensis has only about 5% of lactose oxidation capacity when glucose oxidation activity is 100%, so its lactose oxidation ability is insignificant, When glucose is present in the medium, there is a problem in that the ability to produce lactobionic acid through lactose oxidation is significantly inhibited. Although Gluconobacter suboxydans is an acetic acid bacterium and has various aldose oxidizing abilities, it was confirmed that the Quinoprotein glucose dehydrogenase enzyme derived therefrom does not oxidize lactose. In the case of another lactobionic acid producing strain, Acinetobacter calcoaceticus , the GDH enzyme derived therefrom had only about 65% of the lactose oxidizing activity compared to the glucose oxidizing activity.
이러한 상황 하에서 본원발명자들은, 여러 알려진 락토비온산 생산 박테리아 중에서 특히 슈도모나스 속 박테리아로부터 분리한 gdh3(Quinoprotein glucose dehydrogenase) 효소의 경우, 다른 박테리아들로부터 분리한 Quinoprotein glucose dehydrogenase 효소와는 달리, 다양한 기질 중에서 선택적으로 젖당을 산화하는 능력이 있는 효소임을 밝혀내었다. Under this circumstance, the present inventors, in the case of gdh3 (Quinoprotein glucose dehydrogenase) enzyme isolated from Pseudomonas genus among various known lactobionic acid-producing bacteria, is selective among various substrates, unlike Quinoprotein glucose dehydrogenase enzyme isolated from other bacteria. was found to be an enzyme capable of oxidizing lactose.
일 구현예에서 본 발명의 슈도모나스 테트로렌스로부터 유래한 gdh3 효소의 경우, 포도당 산화 활성을 100%로 했을 때 이에 대비한 젖당(lactose) 산화 능력이 100% 초과, 바람직하게는 110% 초과, 120% 초과, 130% 초과, 140% 초과, 150% 초과, 160% 초과, 170% 초과, 180% 초과, 또는 190% 초과, 더욱 바람직하게는 200% 초과이다.In one embodiment, in the case of the gdh3 enzyme derived from Pseudomonas tetrorence of the present invention, when the glucose oxidation activity is 100%, the lactose oxidation ability is greater than 100%, preferably greater than 110%, 120% greater than, greater than 130%, greater than 140%, greater than 150%, greater than 160%, greater than 170%, greater than 180%, or greater than 190%, more preferably greater than 200%.
이와 같이, 본 발명의 슈도모나스 속 미생물로부터 분리한 gdh3 효소는 다양한 기질 중에서 선택적으로 젖당을 산화하는 능력이 있으므로, 포도당 존재 하에서도 젖당 산화 능력이 억제되지 아니하고, 젖당 산화를 통해 현저한 락토비온산 생산성을 나타내는 장점이 있다.As described above, since the gdh3 enzyme isolated from the microorganism of the genus Pseudomonas of the present invention has the ability to selectively oxidize lactose among various substrates, the lactose oxidation ability is not inhibited even in the presence of glucose, and significant lactobionic acid productivity is achieved through lactose oxidation. There are advantages to indicate.
상기 슈도모나스 속 미생물은 슈도모나스 플로로스캔스(Pseudomonas fluorescens), 슈도모나스 모라비언시스(Pseudomonas moraviensis), 슈도모나스 그라나덴시스(Pseudomonas granadensis), 슈도모나스 코레언시스 (Pseudomonas Koreensis) 등을 포함하며, 슈도모나스 테트로렌스(Pseudomonas taetrolens)에 제한되는 것은 아니다.The Pseudomonas genus microorganism is Pseudomonas florescens ( Pseudomonas fluorescens ), Pseudomonas Moraviansis ( Pseudomonas ) moraviensis), Pseudomonas Grana den sheath (Pseudomonas granadensis), Pseudomonas and the like collection Language System (Pseudomonas Koreensis), Pseudomonas Tet Lawrence (Pseudomonas taetrolens ) is not limited.
본 발명의 슈도모나스(Pseudomonas) 속 미생물로부터 유래한 gdh3(Quinoprotein glucose dehydrogenase) 효소를 코딩하는 핵산 서열은 테트로렌스 유래 gdh3 유전자를 합성하여 실행할 수도 있다.The nucleic acid sequence encoding a Quinoprotein glucose dehydrogenase (gdh3) enzyme derived from a microorganism of the genus Pseudomonas of the present invention may be performed by synthesizing a tetrorence-derived gdh3 gene.
상기 gdh3 효소를 코딩하는 핵산 서열을 포함하는 발현 벡터는 플라스미드 벡터일 수 있고, 바람직하게는 pDSK519일 수 있다.The expression vector including the nucleic acid sequence encoding the gdh3 enzyme may be a plasmid vector, preferably pDSK519.
본 발명의 다른 관점은 상기 재조합 벡터가 도입된 gdh3 유전자를 과발현하는 재조합 미생물을 제공하는 것이다.Another aspect of the present invention is to provide a recombinant microorganism overexpressing the gdh3 gene into which the recombinant vector is introduced.
일 구현예에서, 상기 미생물은 그람음성균일 수 있는데, 예컨대테라박테리아, 프로테오박테리아, 나선상균, 스핑고박테리아, 부유군류를 포함하나 이에 제한되는 것은 아니며, 바람직하게는 상기 미생물은 야생형 슈도모나스 속 미생물, 더욱 바람직하게는 야생형 슈도모나스 테트로렌스(Pseudomonas taetrolens)에 상기 재조합 벡터가 도입된 것이다. 상기 재조합 미생물은 야생형 슈도모나스 테트로렌스에 비해 gdh3 유전자의 발현량이 증가하거나, 또는 락토비온산 생산량이 증가한 것일 수 있다.In one embodiment, the microorganism may be a Gram-negative bacteria, for example, including but not limited to Terrabacteria, proteobacteria, spirals, sphingobacteria, and subgroups, preferably the microorganisms are wild-type Pseudomonas microorganisms, More preferably, wild-type Pseudomonas tetrorence ( Pseudomonas taetrolens ) the recombinant vector is introduced. The recombinant microorganism may have an increased expression level of the gdh3 gene or an increased production of lactobionic acid compared to wild-type Pseudomonas tetrorence.
본 발명의 또 다른 관점은 슈도모나스(Pseudomonas) 속 미생물로부터 유래한 gdh3(Quinoprotein glucose dehydrogenase) 효소를 코딩하는 핵산 서열을 포함하는 재조합 벡터를 수득하는 단계; 및 상기 재조합 벡터를 그람음성균에 도입하는 단계를 포함하는 락토비온산 생산능이 향상된 재조합 미생물의 제조방법을 제공하는 것이다.Another aspect of the present invention is to obtain a recombinant vector comprising a nucleic acid sequence encoding the enzyme gdh3 (Quinoprotein glucose dehydrogenase) derived from a microorganism of the genus Pseudomonas; And to provide a method for producing a recombinant microorganism having improved lactobionic acid production ability, comprising the step of introducing the recombinant vector into Gram-negative bacteria.
일 실시예에서, 본 발명의 재조합 미생물을 제조하기 위하여, 슈도모나스 테트로렌스 유래 수용성 글루코스 탈수소효소인 gdh3(Quinoprotein glucose dehydrogenase: 1.1.5.2)를 코딩하는 유전자를 PCR을 통하여 특정 프라이머를 통하여 증폭하였다.In one embodiment, in order to prepare the recombinant microorganism of the present invention, a gene encoding a soluble glucose dehydrogenase gdh3 (Quinoprotein glucose dehydrogenase: 1.1.5.2) derived from Pseudomonas tetrorence was amplified through a specific primer through PCR.
이후, 상기 유전자를 대장균용 발현벡터 pKK223-3 플라스미드 및 높은 복제능력을 지는 슈도모나스용 발현벡터 pDSK519에 제한효소(SphI, EcoRI) 이용하여 삽입시킨 재조합 플라스미드를 제작하였으며, 이를 pKK223-gdh3 및 pDSK519-gdh3라고 명명하였다.Thereafter, a recombinant plasmid was prepared in which the gene was inserted into the expression vector pKK223-3 plasmid for E. coli and the expression vector pDSK519 for Pseudomonas having high replication ability using restriction enzymes ( Sph I, EcoR I), which were pKK223-gdh3 and pDSK519 It was named -gdh3.
상기 재조합된 플라스미드 pKK223-gdh3을 대장균(E.coli DH5α)에 형질전환하여 재조합 대장균을 제작하였으며, pDSK519-gdh3를 슈도모나스테트로렌스에 형질전환하여 과발현 재조합 균주를 제작하였다. The recombinant plasmid pKK223-gdh3 was transformed into E. coli (E. coli DH5α) to prepare a recombinant E. coli, and pDSK519-gdh3 was transformed into Pseudomonas stetrorence to prepare an overexpressing recombinant strain.
본 발명의 또 다른 관점은 전술한 재조합 미생물을 사용하여 락토비온산을 생산하는 방법을 제공하는 것이다.Another aspect of the present invention is to provide a method for producing lactobionic acid using the aforementioned recombinant microorganism.
본 발명의 일 구현예에 있어서 슈도모나나스 배양하는 단계에서는 1 내지 20 부피 % 농도의 젖당을 포함하고, 0.2 % 효모추출물과 0.5 % 펩톤 그리고 0.1 % 소고기추출물을 포함하고, 0.5 % NaCl을 포함한다. 상기 슈도모나스 속 미생물은 슈도모나스 테트로렌스이고, 상기 배양하는 단계는 NB 배지 50 ml 내지 2.0L, 20℃ 내지 37℃에서 48 내지 120시간 동안 배양시키는 것일 수 있다.In one embodiment of the present invention, in the step of culturing Pseudomonas, it contains lactose at a concentration of 1 to 20% by volume, 0.2% yeast extract, 0.5% peptone, and 0.1% beef extract, and 0.5% NaCl. . The microorganism of the genus Pseudomonas is Pseudomonas tetrorence, and the culturing step may be culturing for 48 to 120 hours at 50 ml to 2.0L of NB medium, 20°C to 37°C.
필요에 따라, 배양은 젖당 농도에 따라 배양 할 수 있고, pH 보정물질인 CaCO3 존재 하의 배양 배지에서, 예를 들면 배지에 젖당 농도를 10 g/L 에서 200 g/L까지 다양하게 사용할 수 있고, CaCO3 첨가 또는 미첨가 상태로 수행될 수 있다.If necessary, the culture can be cultured according to the lactose concentration, and in a culture medium in the presence of CaCO3 as a pH corrector, for example, the lactose concentration in the medium can be varied from 10 g/L to 200 g/L, It can be carried out with or without CaCO3 added.
바람직한 구현 예에서, 본 발명의 배양은 유가식 배양(fed-batch culture) 방법에 의하여 수행될 수 있으나, 이에 제한되는 것은 아니다.In a preferred embodiment, the culture of the present invention may be performed by a fed-batch culture method, but is not limited thereto.
또한, 본 발명의 구현 예에 있어서, 상기 슈도모나스 테트로렌스 균주의 배양을 통한 생산성 향상 방법은 대한민국특허공개공보 10-2018-0047470에 개시된 내용과 같이 개발될 수 있으며, 대한민국특허공개공보 10-2018-0047470에 개시된 내용 전체는 본원 명세서에 참고로써 포함된다.In addition, in an embodiment of the present invention, the method of improving productivity through culturing of the Pseudomonas tetrorence strain may be developed as disclosed in Korean Patent Application Laid-Open No. 10-2018-0047470, and Korean Patent Application Laid-Open No. 10-2018- The entire disclosure of 0047470 is incorporated herein by reference.
본 발명에 의하여, 락토비온산 전환에 효과적인 유전자를 과발현 시킨 재조합 플라스미드 및 재조합 슈도모나스 테트로렌스 균주를 제작 함으로써 야생형 균주보다 락토비온산 생산성이 우수한 균주를 개발하여 락토비온산 전환 속도를 향상시킬 수 있다. 이에 따른 신규한 재조합 균주는 락토비온산 대량생산 공정에서 생산속도를 향상시킴으로써 다양한 산업분야에 효율적으로 이용될 수 있다. According to the present invention, by producing a recombinant plasmid and a recombinant Pseudomonas tetrorence strain overexpressing a gene effective for lactobionic acid conversion, a strain with superior lactobionic acid productivity than the wild-type strain can be developed, thereby improving the lactobionic acid conversion rate. Accordingly, the novel recombinant strain can be efficiently used in various industrial fields by improving the production rate in the lactobionic acid mass production process.
도 1은 pKK223벡터를 이용해 대장균에서의 gdh3 발현을 위한 재조합 플라스미드 모식도를 나타낸 것이다.
도 2는 pDSK519벡터를 이용해 슈도모나스 테트로렌스에서의 gdh3 발현을 위한 재조합 플라스미드 모식도를 나타낸 것이다.
도 3은 젖당 존재 하에 야생형 슈도모나스 테트로렌스과 야생형 대장균 (E.coli-pKK223) 그리고 재조합 대장균(E.coli-pKK223-gdh3) 의 락토비온산 전환 여부를 나타낸 결과이다.
도 4는 재조합 슈도모나스 테트로렌스 균주에의해 gdh3 과발현을 보여주는 SDS-PAGE전기영동 결과를 나타낸 그림이다. (lane M: SDS-PAGE standards Marker, Broad Range, Bio-Rad, lane 1: Pseudomonas taetrolens / pDSK519 , lane 2: Pseudomonas taetrolens / pDSK519-gdh3)
도 5는 호기 발효조건의 5L발효조에서 야생형 슈도모나스 테트로렌스와 본 발명을 통해 제조된 재조합 슈도모나스 테트로렌스의 젖당 대사(a)와 락토비온산 생산(b) 결과를 나타낸 그래프이다.1 shows a schematic diagram of a recombinant plasmid for gdh3 expression in E. coli using the pKK223 vector.
Figure 2 shows a schematic diagram of a recombinant plasmid for gdh3 expression in Pseudomonas tetrorence using the pDSK519 vector.
3 is a result showing the lactobionic acid conversion of wild-type Pseudomonas tetrorence wild-type E. coli (E.coli-pKK223) and recombinant E. coli (E.coli-pKK223-gdh3) in the presence of lactose.
4 is a diagram showing the results of SDS-PAGE electrophoresis showing gdh3 overexpression by recombinant Pseudomonas tetrorence strain. (lane M: SDS-PAGE standards Marker, Broad Range, Bio-Rad, lane 1: Pseudomonas taetrolens / pDSK519 , lane 2: Pseudomonas taetrolens / pDSK519-gdh3)
5 is a graph showing the results of lactose metabolism (a) and lactobionic acid production (b) of wild-type Pseudomonas tetrorence and recombinant Pseudomonas tetrorence prepared through the present invention in a 5L fermentation tank under aerobic fermentation conditions.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명 하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those of ordinary skill in the art to which the present invention pertains that the scope of the present invention is not limited by these examples.
실시예Example
실시예Example 1: 재조합 플라스미드 제조 및 재조합 균주 제조 1: Preparation of recombinant plasmid and preparation of recombinant strain
대장균(Ecoil)을 이용하여 락토비온산을 생산에 관여하는 유전자를 선별하고 이를 슈도모나스 테트로렌스 과발현 재조합 균주를 제조하기 위해 다음과 같이 실험을 수행하였다.Using Escherichia coli ( Ecoil ) to select the gene involved in the production of lactobionic acid, and to prepare this Pseudomonas tetrorence overexpression recombinant strain, the experiment was performed as follows.
실험예1Experimental Example 1 : 재조합 플라스미드 제조: Recombinant plasmid preparation
젖당(락토오스, lactose) 산화반응을 통해 락토비온산 생산 능력이 우수한 슈도모나스 테트로렌스로부터 락토비온산 생산에 필수적일 것으로 예상된 gdh3(Quinoprotein glucose dehydrogenase)을 슈도모나스 테트로렌스 게놈 유전자 주형으로부터 정방향 (5'- CTGCAGAGGAATATGATATGAGTACGCAAGCGAAAGGCTCAG-3', 서열번호1) 및 역방향 (5'- GAATTCTCATTTCTCTTTAGGATCGGGCAGCGCG-3', 서열번호2) 프라이머를 사용하여 중합효소연쇄반응(94℃ 5분동안 1회; 94℃ 30초간, 55℃ 2분 20초간, 72℃ 30초간 반응을 30회; 72℃ 7분간 1회)을 통하여 정방향 프라이머에는 EcoR°인식부위가 역방향프라이머에는 Pst°인식 부위가 존재하여 gdh3 유전자를 증폭시켰다. 증폭된 유전자를 한천 겔 전기영동법을 통해 분리하였고, 증폭 분리된 DNA 단편을 EcoR°와 Pst°으로 절단한 후에, EcoR°와 Pst°로 절단된 통상의 대장균용 플라스미드 벡터인 pKK223-3와 슈도모나스 플라스미드 벡터 pDSK519에 도입하여 도1 및 도2 에 표시된 재조합 플라스미드를 제작하였다. Gdh3 (Quinoprotein glucose dehydrogenase), which is expected to be essential for lactobionic acid production, from Pseudomonas tetrorence, which has excellent lactobionic acid production ability through lactose (lactose) oxidation reaction, was transferred from the Pseudomonas tetrorence genome gene template in the forward (5'-) direction. Polymerase chain reaction using primers CTGCAGAGGAATATGATATGAGTACGCAAGCGAAAGGCTCAG-3', SEQ ID NO: 1) and reverse (5'-GAATCTCATTTCTCTTTAGGATCGGGCAGCGCG-3', SEQ ID NO: 2) primers (once for 5 minutes at 94°C; once at 94°C for 30 seconds, at 55°C for 2 minutes The gdh3 gene was amplified by the presence of an EcoR ° recognition site in the forward primer and a Pst ° recognition site in the reverse primer through 30 reactions for 20 seconds and 30 seconds at 72 ° C; once for 7 minutes at 72 ° C). The amplified gene was isolated through agar gel electrophoresis, and the amplified and isolated DNA fragment was digested with EcoR ° and Pst °, and then pKK223-3 and Pseudomonas plasmids, which are conventional plasmid vectors for E. coli, cut with EcoR ° and Pst °. Recombinant plasmids shown in FIGS. 1 and 2 were prepared by introducing the vector pDSK519.
실험예2Experimental Example 2 : 재조합 균주 제조: Recombinant strain production
상기 실험예1에서 제조된 플라스미드 pKK223-3- gdh3와 pDSK519- gdh3를 열충격 (42℃) 방법에 의해 대장균(E. coli DH5a competent cell)에 도입하여 형질전환시켰다. pKK223-3플라스미드는 선택표지로서 앰피실린 저항성 유전자를 가지고 있으며, 앰피실린이 들어있는 LB-agar배지에서 pKK223-3이 도입된 콜로니들을 선별하였고, 선별된 콜로니들의 콜로니 PCR을 통해 PCR산물의 DNA 시퀀싱(Macrogen) 확인하여 gdh3 유전자 형질전환을 확인하였으며, pDSK519플라스미드는 카나마이신 (kanamycin) 저항성 유전자를 가지고 있기에 같은 이와 방법으로 형질전환 된 대장균을 선별하였다. Plasmids pKK223-3-gdh3 and pDSK519-gdh3 prepared in Experimental Example 1 were introduced into E. coli DH5a competent cells by heat shock (42° C.) and transformed. The pKK223-3 plasmid has an ampicillin resistance gene as a selection marker, and colonies into which pKK223-3 has been introduced were selected in LB-agar medium containing ampicillin. DNA sequencing of the PCR product through colony PCR of the selected colonies (Macrogen) to confirm the transformation of the gdh3 gene, and since the pDSK519 plasmid has a kanamycin resistance gene, E. coli transformed by the same method was selected.
슈도모나스 테트로렌스의 형질전환 방법에 있어서는 안정적 제조와 효율을 높이기 위해 전기천공법(electroporation)에 의한 형질전환방법을 사용하였다. 전기적 형질전환용 세포는 다음과 같은 과정을 통해 제조하였다.In the transformation method of Pseudomonas tetrorence, a transformation method by electroporation was used in order to improve the stable production and efficiency. Cells for electrical transformation were prepared through the following process.
슈도모나스 테트로렌스(한국생명공학연구원 생물자원센터에서 P. taetrolens KCTC 12501 균주를 구매함)를 LB(Luria-Bertani) 플레이트(1% tryptone, 0.5 % yeast extract, 1 % NaCl, 1,5 % agar)에 도말하여 25℃ 정치배양기에서 24시간 동안 배양하였다. LB 플레이트에서 자란 균주의 콜로니를 LB 액체배지 200mL에 접종하고, 25℃ 교반배양기에서 150rpm으로 OD(600nm)가 0.6 (분광광도계 (spectrophotometer)로 측정)이 될 때까지 배양하였다. 원심분리를 통해 배양액과 균주 세포를 분리하고 배양액을 버린 후 균주 세포를 10% 글리세롤 30mL에 풀어서 세척하였다. 원심분리를 통해 10% 글리세롤과 균주세포를 분리하고, 분리된 10% 글리세롤은 버렸다. 위 과정을 3번 반복하였고, 원심분리를 통해 얻은 세척된 균주세포를 10% 글리세롤 3mL에 풀어주었다. 상기 pDSK519-gdh3 플라스미드를 미생물 세포에 전기적 충격으로 도입할 때에는 전기 충격 형질전환용 큐벳에 상기 전기적 형질전환용 세포 80ul와 플라스미드 5ul를 넣고, 1.8kV 전압을 5ms 동안 가한 후, SOC 배지(2% tryptone, 0.5% yeast extract, 0.05% NaCl, 0.0186% KCl, 0.095% MgCl2, 0.6% glucose) 1ml을 첨가하여 25℃ 교반배양기에서 100rpm으로 1시간동안 배양하여 재조합 균주를 제조하였다. 제작된 재조합 균주는 LB 플레이트에 도말해 25℃에서 배양하였다. 이를 통해 재조합 플라스미드인 pDSK519-gdh3를 슈도모나스 테트로렌스에 형질전환한 재조합 균주를 개발하였다. Pseudomonas tetrolence (P. taetrolens KCTC 12501 strain was purchased from Korea Research Institute of Bioscience and Biotechnology Biological Resources Center) on LB (Luria-Bertani) plate (1% tryptone, 0.5 % yeast extract, 1 % NaCl, 1.5 % agar) It was plated and incubated for 24 hours in a stationary incubator at 25°C. Colonies of the strain grown on the LB plate were inoculated into 200 mL of LB broth, and cultured until OD (600 nm) became 0.6 (measured with a spectrophotometer) at 150 rpm in a stirred incubator at 25 ° C. The culture medium and the strain cells were separated by centrifugation, the culture medium was discarded, and the strain cells were washed with 30 mL of 10% glycerol. 10% glycerol and strain cells were separated by centrifugation, and the separated 10% glycerol was discarded. The above process was repeated 3 times, and the washed strain cells obtained through centrifugation were released in 3 mL of 10% glycerol. When introducing the pDSK519-gdh3 plasmid into microbial cells by electric shock, 80ul of the cells for electrical transformation and 5ul of the plasmid are put into a cuvette for electric shock transformation, and after applying a voltage of 1.8kV for 5ms, SOC medium (2% tryptone , 0.5% yeast extract, 0.05% NaCl, 0.0186% KCl, 0.095% MgCl2, 0.6% glucose) 1ml) was added and cultured for 1 hour at 100rpm in a stirred incubator at 25°C to prepare a recombinant strain. The prepared recombinant strain was spread on an LB plate and cultured at 25°C. Through this, a recombinant strain was developed in which pDSK519-gdh3, a recombinant plasmid, was transformed into Pseudomonas tetrorence.
실시예2Example 2 : : gdh3gdh3 과발현된 재조합 대장균 제조 및 이를 이용한 Preparation of overexpressed recombinant E. coli and using the same 락토비온산lactobionic acid 생산 능력 확인 Check production capacity
야생형 슈도모나스 테트로렌스 종으로부터 얻은 gdh3(Quinoprotein glucose dehydrogenase)은 피롤로퀴놀린퀴논(PQQ)을 조효소로 하는 수용성 글루코스 탈수소효소로써, 상기 유전자가 젖당으로부터 락토비온산 전환에 필수적인 효소를 코딩하는 유전자인지의 여부를 확인하기 위해 대조군의 대장균(E. coli-pKK223)과 형질전환된 신규 대장균(E.coli -pKK223-gdh3)을 PQQ 및 젖당이 포함된 LB배지에서 배양하고 균체 성장 및 락토비온산 전환 산물을 확인하였다.Quinoprotein glucose dehydrogenase (gdh3) obtained from wild-type Pseudomonas tetrorence species is a water-soluble glucose dehydrogenase using pyrroloquinolinequinone (PQQ) as a coenzyme. Whether the gene is a gene encoding an enzyme essential for the conversion of lactobionic acid from lactose E. coli of the control (E. coli -pKK223) and the new transformed E. coli (E. coli -pKK223-gdh3) were cultured in LB medium containing PQQ and lactose to confirm cell growth and lactobionic acid conversion product Confirmed.
gdh3 유전자를 도입한 대장균(E.coil DH5 α/pKK223- gdh3)주와 대조군(E.coil DH5 α/pKK223)을 각각 2ml의 LB배지(Tryptone 10g, Yeast Extract 5g, NaCl 5g)에 항생제 앰피실린 50 ㎍/ml을 포함하여 온도조건 30℃으로 16시간 배양하였고, 야생형 슈도모나스 테트로렌스는 LB배지 2ml에서 온도조건 25℃으로 16시간 배양하였다. 그 후, 각 균체를 초기 OD(600nm)가 0.2 가 되도록 대조군 대장균과 형질전환 대장균은 5ml의 LB배지 에 lactose 20g/L, CaCo3 3 g/L 및 PQQ 20μM을 접종하여 30℃, 200rpm 조건으로 교반배양기에서 배양하고, 배양 개시로부터 4시간 후에 IPTG(이소프로필-β-D-티오갈락토피라노시드)를 최종 농도 1mM가 되도록 첨가하여 총 24시간 배양하였다. 야생형 슈도모나스 테트로렌스도 5ml LB배지에 lactose 20g/L, CaCO3 3 g/L를 혼합하여 30℃ 교반 배양기에서 200rpm으로 24시간 배양하였다. Escherichia coli (E.coil DH5 α/pKK223- gdh3) strain introduced with the gdh3 gene and control ( E.coil DH5 α/pKK223) were each added to 2 ml of LB medium (Tryptone 10 g, Yeast Extract 5 g, NaCl 5 g) with the antibiotic ampicillin. Including 50 μg/ml, it was cultured for 16 hours at a temperature condition of 30°C, and wild-type Pseudomonas tetrorence was incubated for 16 hours at a temperature condition of 25°C in 2ml of LB medium. After that, control E. coli and transformed E. coli were inoculated with lactose 20 g/L, CaCo 3 3 g/L and
젖당과 락토비온산의 분석은 Refractive Index Detector(RID)가 장착된 Agilent사의 고성능 액체크로마토그래피 (HPLC 1260 모델)을 이용하였다. 컬럼은 Coregel ION 300 column을 사용하였고, 컬럼 온도는 70℃를 유지하였다. 이동상은 0.5mM H2SO4를 이용하였고, flow는 0.3 ml/min이었다. 상기 조건에서 젖당과 락토비온산은 retention time은 도3에서 나타나는 것처럼 각각 19.2분, 20.4분으로 분리되어 확인되었다. Lactose and lactobionic acid were analyzed using Agilent's high-performance liquid chromatography (HPLC 1260 model) equipped with a Refractive Index Detector (RID). A Coregel ION 300 column was used as the column, and the column temperature was maintained at 70°C. The mobile phase was 0.5mM H 2 SO 4 , and the flow was 0.3 ml/min. Under the above conditions, the retention times of lactose and lactobionic acid were confirmed to be 19.2 minutes and 20.4 minutes, respectively, as shown in FIG. 3 .
이와 같은 방법으로 슈도모나스 테트로렌스 유래 락토비온산 생산에 관여하는 gdh3을 과발현시킨 대장균에서만 대조균 대장균에서는 나타나지 않는 락토비온산 피크가 나타나는 것으로 확인 되었고 이에 본 발명에서 제조된 재조합 대장균은 gdh33 유전자의 도입에 의해 젖당을 대사하여 락토비온산 전환 능력이 있음을 확인하였다. In this way, it was confirmed that the lactobionic acid peak not appearing in the control E. coli appeared only in E. coli overexpressing gdh3 involved in the production of Pseudomonas tetrorence-derived lactobionic acid. By metabolizing lactose, it was confirmed that it has the ability to convert lactobionic acid.
실시예3Example 3 : : gdh3과발현된gdh3 overexpressed 재조합 슈도모나스 Recombinant Pseudomonas 테트로렌스에in tetrorence 제조 및 이를 이용한 manufacturing and using the same 락토비온산lactobionic acid 생산 능력 확인 Check production capacity
상기 재조합 슈도모나스 테트로렌스의 gdh3의 과발현 여부 및 락토비온산 생산성 증가를 확인하는 방법을 제공한다.It provides a method for determining whether the recombinant Pseudomonas tetrorence overexpression of gdh3 and the increase in lactobionic acid productivity.
실험예1Experimental Example 1 : 재조합 슈도모나스 : Recombinant Pseudomonas 테트로렌스의of tetrorence 단백질 확인 Protein identification
실시예3에서 재조한 재조합균주 Pseudomonas taetrolens / pDSK519-gdh3 의 단백질 발현을 확인하기 위하여 25℃의 NB배지에서 배양을 하였다. 0.8~1.0 OD 600nm 에서 플라스미드의 유전자 발현을 위한 이소프로필 티오-β-D 갈락토사이드(isopropyl-1-thio-β-D-galactopyranoside, IPTG)를 첨가하여 gdh3유전자를 10시간 동안 발현을 유도하였다. 배양된 균체로부터 생성된 단백질 분리를 위하여 원심분리 한 후 PBS완충용액으로 현탁 상태로 만들었다. 이후 10초 동안 초음파 처리하고 30초 동안 정지하는 과정을 총 20회 반복하여, 세포내효소(intracellular enzyme)을 추출하였다. 이를 5X SDS sample buffer로 현탁 한 후 끓는 물에서 5분간 처리 후 10% SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) 분석을 수행하고 그 결과를 도 에 나타내었다. 도4에 나타난 것과 같이, gdh3단백질의 발현(86kDa)이 확인 되었으며, gdh3유전자의 과발현이 일어났음을 확인하였다. Recombinant strain Pseudomonas reconstituted in Example 3 taetrolens / In order to check the protein expression of pDSK519-gdh3, it was cultured in NB medium at 25℃. The expression of the gdh3 gene was induced for 10 hours by adding isopropyl-1-thio-β-D-galactopyranoside (IPTG) for gene expression of the plasmid at 0.8~1.0 OD 600nm. . After centrifugation to separate the protein produced from the cultured cells, the suspension was made in PBS buffer solution. Then, the process of ultrasonication for 10 seconds and stopping for 30 seconds was repeated a total of 20 times to extract intracellular enzymes. This was suspended in 5X SDS sample buffer, treated in boiling water for 5 minutes, and then 10% SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) analysis was performed, and the results are shown in FIG. As shown in FIG. 4 , the expression (86 kDa) of the gdh3 protein was confirmed, and it was confirmed that the overexpression of the gdh3 gene occurred.
실험예2Experimental Example 2 : 재조합 슈도모나스 : Recombinant Pseudomonas 테트로렌스의of tetrorence 락토비온산lactobionic acid 생산 Produce
상기 재조합 Pseudomonas taetrolens / pDSK519-gdh3 균주의 gdh3 과발현에 따른 락토비온산 생산 증가를 확인하기 위해 야생형 균주의 대사전환 속도와 비교하여 생산성 여부를 확인하기 위함으로 5L 발효를 진행 하였다. remind Recombinant Pseudomonas taetrolens / In order to confirm the increase in lactobionic acid production according to the gdh3 overexpression of the pDSK519-gdh3 strain, 5L fermentation was performed to check the productivity compared to the metabolic conversion rate of the wild-type strain.
균주를 NB plate에 streaking 하고 25℃에서 48시간 배양 후 형성된 colony를 5 ml NB 배지에 접종하여 25℃에서 200 rpm으로 24시간 진탕 배양하였다. 배양된 seed culture를 100 ml NB 배지에 lactose 20 g/L를 포함하여 접종하여 25℃에서 200 rpm으로 24시간 진탕 배양한 후 발효 시작 시 초기 OD(600nm)는 0.2가 되도록 발효 배지에 접종하였다. 발효에 사용된 배지는 Nutrient broth (NB) (1 g/L beef extract, 2 g/L yeast extract, 5 g/L 펩톤, 5 g/L NaCl)을 사용하였고, 상기 젖당 농도 변화와 pH 보정 실험결과를 바탕으로 200 g/L 젖당과 pH 보정을 위해 30g/L CaCO3를 첨가하여 발효시 pH6.5 이상을 유지하여 진행하였다. 배양은 5 L 발효조에 2 L 배지를 첨가하여 온도는 25℃에서 실시하였다. 용존산소농도(Dissolved Oxygen, DO) 30%로 지정하였으며, 용존산소 농도 유지를 위하여 교반 속도를 200 ~ 500 rpm까지 조절하며 발효를 실시하였다.The strains were streaked on an NB plate and incubated at 25°C for 48 hours, then colonies formed were inoculated into 5 ml NB medium and cultured with shaking at 25°C at 200 rpm for 24 hours. The cultured seed culture was inoculated with lactose 20 g/L in 100 ml NB medium and cultured with shaking at 25 ° C. at 200 rpm for 24 hours. At the start of fermentation, the initial OD (600 nm) was inoculated into the fermentation medium to be 0.2. The medium used for fermentation was Nutrient broth (NB) (1 g/L beef extract, 2 g/L yeast extract, 5 g/L peptone, 5 g/L NaCl), and the lactose concentration change and pH correction experiment Based on the results, 200 g/L lactose and 30 g/L CaCO 3 were added for pH correction to maintain pH 6.5 or higher during fermentation. Cultivation was carried out at a temperature of 25 ℃ by adding 2 L medium to a 5 L fermenter. Dissolved oxygen concentration (Dissolved Oxygen, DO) was designated as 30%, and fermentation was carried out by controlling the stirring speed to 200 ~ 500 rpm to maintain the dissolved oxygen concentration.
재조합 Pseudomonas taetrolens / pDSK519-gdh3 균주의 경우 항생제 카나마이신을 첨가하였고, 배양 개시로부터 4시간 후에 IPTG(이소프로필-β-D-티오갈락토피라노시드)를 최종 농도 1 mM가 되도록 첨가하였으며 총 발효는 27시간 진행되었으며, 세포생장, pH, 젖당 소모량 그리고 락토비온산 생산량을 측정하였다.Recombinant Pseudomonas taetrolens / In the case of pDSK519-gdh3 strain, the antibiotic kanamycin was added, and IPTG (isopropyl-β-D-thiogalactopyranoside) was added to a final concentration of 1 mM after 4 hours from the start of the culture, and the total fermentation was carried out for 27 hours. cell growth, pH, lactose consumption and lactobionic acid production were measured.
야생형균주와 재조합 균주의 젖당 200 g/L 발효를 통해 락토비온산 생산성을 비교한 결과(도 5), 두 균주 모두 27시간 이내 대사 전환이 완료 되었으며, 재조합 균주의 경우 야생형보다 4시간 더 빠른 23시간 안에 전환이 완료 되었다. 이는 야생형 균주의 경우 7.77 g/L/h의 생산성을 보이는 반면, 재조합 균주의 경우 9.43 g/L/h의 생산성으로 21% 향상된 결과를 보였다.As a result of comparing the lactobionic acid productivity through lactose 200 g/L fermentation of the wild-type strain and the recombinant strain (FIG. 5), both strains completed metabolic conversion within 27 hours, and in the case of the recombinant strain, 4 hours faster than the wild-type 23 The conversion was completed in time. This shows a productivity of 7.77 g/L/h for the wild-type strain, while the recombinant strain shows a 21% improvement in productivity of 9.43 g/L/h.
Claims (10)
상기 재조합 벡터를 그람음성균에 도입하는 단계
를 포함하는 락토비온산 생산능이 향상된 락토비온산 생산용 재조합 미생물의 제조방법.Obtaining a recombinant vector comprising a nucleic acid sequence encoding the enzyme gdh3 (Quinoprotein glucose dehydrogenase) derived from Pseudomonas taetrolens; and
introducing the recombinant vector into Gram-negative bacteria
A method for producing a recombinant microorganism for lactobionic acid production with improved lactobionic acid production ability, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200067897A KR102338436B1 (en) | 2020-06-04 | 2020-06-04 | Recombinant microorganism for producing lactobionic acid and method for producing lactobionic acid using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200067897A KR102338436B1 (en) | 2020-06-04 | 2020-06-04 | Recombinant microorganism for producing lactobionic acid and method for producing lactobionic acid using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102338436B1 true KR102338436B1 (en) | 2021-12-09 |
Family
ID=78866014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200067897A KR102338436B1 (en) | 2020-06-04 | 2020-06-04 | Recombinant microorganism for producing lactobionic acid and method for producing lactobionic acid using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102338436B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220054115A (en) * | 2020-10-23 | 2022-05-02 | 한국화학연구원 | Screening method of microorganisms producing lactobionic acid |
WO2024165525A1 (en) * | 2023-02-06 | 2024-08-15 | Inbiose N.V. | Production of a saccharide, lactobionic acid and/or glycosylated forms of lactobionic acid |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102030776B1 (en) * | 2018-04-24 | 2019-10-10 | 한국화학연구원 | A Method of Producing Lactobionic Acid Using Pseudomonas taetrolens By Optimization of Culture Condition |
KR102085318B1 (en) | 2019-06-28 | 2020-03-05 | 주식회사 엠에스씨 | Lactobionic Acid Manufacturing Method |
KR102090063B1 (en) * | 2018-12-28 | 2020-03-17 | 한국화학연구원 | New microorganism having ability to produce aldonic acid and producing method for aldonic acid using the same |
-
2020
- 2020-06-04 KR KR1020200067897A patent/KR102338436B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102030776B1 (en) * | 2018-04-24 | 2019-10-10 | 한국화학연구원 | A Method of Producing Lactobionic Acid Using Pseudomonas taetrolens By Optimization of Culture Condition |
KR102090063B1 (en) * | 2018-12-28 | 2020-03-17 | 한국화학연구원 | New microorganism having ability to produce aldonic acid and producing method for aldonic acid using the same |
KR102085318B1 (en) | 2019-06-28 | 2020-03-05 | 주식회사 엠에스씨 | Lactobionic Acid Manufacturing Method |
Non-Patent Citations (4)
Title |
---|
BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY, Vol. 83, No. 6, pp. 1171-1179 (2019. 2. 19.) * |
BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY, 제83권, 제6호, 제1171-1179면(2019. 2. 19.)* |
Curr. Microbiol., Vol 72, pp. 198-206 (February 2019) * |
Curr. Microbiol., 제72권, 제198-206면(2019. 2.)* |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220054115A (en) * | 2020-10-23 | 2022-05-02 | 한국화학연구원 | Screening method of microorganisms producing lactobionic acid |
KR102516254B1 (en) | 2020-10-23 | 2023-03-29 | 한국화학연구원 | Screening method of microorganisms producing lactobionic acid |
WO2024165525A1 (en) * | 2023-02-06 | 2024-08-15 | Inbiose N.V. | Production of a saccharide, lactobionic acid and/or glycosylated forms of lactobionic acid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Trcek et al. | Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria | |
Zhou et al. | Functional replacement of the Escherichia coli D-(−)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici | |
US5981257A (en) | Polyester synthase gene and process for producing polyester | |
EP1124979B1 (en) | Production of 3-hydroxypropionic acid in recombinant organisms | |
JP6085023B2 (en) | Novel D-lactic acid producing strain and use thereof | |
Kwak et al. | Biosynthesis of 3-hydroxypropionic acid from glycerol in recombinant Escherichia coli expressing Lactobacillus brevis dhaB and dhaR gene clusters and E. coli K-12 aldH | |
CN101693896B (en) | Aldehyde dehydrogenase gene | |
KR102338436B1 (en) | Recombinant microorganism for producing lactobionic acid and method for producing lactobionic acid using the same | |
Yuan et al. | Enhancement of 5-keto-D-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy | |
Qiu et al. | Deciphering metabolic responses of biosurfactant lichenysin on biosynthesis of poly-γ-glutamic acid | |
KR101437042B1 (en) | Method of produciton for 3-hydroxypropionic aicd by using glycerol and glucose | |
KR102149044B1 (en) | Method of producing 2-hydroxy gamma butyrolactone or 2,4-dihydroxybutanoic acid | |
JP5245060B2 (en) | Modified peroxidase enzyme gene exhibiting improved expression characteristics and method for producing peroxidase using the same | |
KR20150045432A (en) | A microorganism modified for the production of 1,3-propanediol | |
Masud et al. | Cloning and functional analysis of adhS gene encoding quinoprotein alcohol dehydrogenase subunit III from Acetobacter pasteurianus SKU1108 | |
KR102331270B1 (en) | Transformed microorganism producing polyhydroxyalkanoate | |
JP6461793B2 (en) | Method for producing flavin adenine dinucleotide-binding glucose dehydrogenase from Mucor | |
KR102520671B1 (en) | Novel lactose oxidase from Pseudomonas and method for producing lactobionic acid using the same | |
KR102541634B1 (en) | Methods of producing lactobionic acid by whole-cell bioconversion of microorganism | |
CN111500614A (en) | Plasmid for efficiently catalyzing L-threonine to synthesize 2,5-DMP (dimethyl formamide) and construction and application thereof | |
KR20230106041A (en) | Novel Enterobacter cloacae sp. producing lactobionic acid and method for production of lactobionic acid using the Same | |
CN117946984B (en) | Pantothenate synthetase mutant and preparation method thereof, construction method thereof, pantothenate production strain and application thereof, and pantothenate preparation method | |
KR20160145562A (en) | - 14- microorganism having increased -ketoglutarate decarboxylase activity and method for producing 14-butanediol using same | |
KR101561390B1 (en) | Recombinant microorganisms metabolizing 3,6-anhydro-L-galactose and use thereof | |
JP4083455B2 (en) | Aconitase gene of acetic acid bacteria, acetic acid bacteria bred using the gene, and method of producing vinegar using the acetic acid bacteria |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GRNT | Written decision to grant |