KR20220048060A - 변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치 - Google Patents

변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치 Download PDF

Info

Publication number
KR20220048060A
KR20220048060A KR1020227012010A KR20227012010A KR20220048060A KR 20220048060 A KR20220048060 A KR 20220048060A KR 1020227012010 A KR1020227012010 A KR 1020227012010A KR 20227012010 A KR20227012010 A KR 20227012010A KR 20220048060 A KR20220048060 A KR 20220048060A
Authority
KR
South Korea
Prior art keywords
information
transform
size
skip
transform skip
Prior art date
Application number
KR1020227012010A
Other languages
English (en)
Other versions
KR102610233B1 (ko
Inventor
유선미
최정아
최장원
김승환
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020237041499A priority Critical patent/KR20240000610A/ko
Publication of KR20220048060A publication Critical patent/KR20220048060A/ko
Application granted granted Critical
Publication of KR102610233B1 publication Critical patent/KR102610233B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/507Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction using conditional replenishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/107Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Abstract

본 문서에 따른 영상 디코딩 방법은 비트스트림으로부터 예측 모드 정보 및 레지듀얼 관련 정보를 획득하는 단계, 상기 예측 모드 정보를 기반으로 예측을 수행하여 현재 블록의 예측 샘플들을 도출하는 단계, 상기 레지듀얼 관련 정보를 기반으로 상기 현재 블록의 레지듀얼 샘플들을 도출하는 단계 및 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 상기 현재 블록의 복원 샘플들을 생성하는 단계를 포함하고, 상기 현재 블록의 사이즈 및 최대 변환 스킵 사이즈를 기반으로 상기 레지듀얼 관련 정보가 변환 스킵 플래그를 포함하고, 상기 변환 스킵 플래그는 상기 현재 블록에 변환 스킵이 적용되었는지 여부를 나타내고, 상기 최대 변환 스킵 사이즈에 대한 정보는 상기 비트스트림으로부터 획득되는 것을 특징으로 한다.

Description

변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치 {IMAGE CODING METHOD AND DEVICE USING TRANSFORM SKIP FLAG}
본 문서는 영상 코딩 기술에 관한 것으로서 보다 상세하게는 영상 코딩 시스템에서 변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 전송되는 정보량 또는 비트량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 영상 데이터를 저장하는 경우, 전송 비용과 저장 비용이 증가된다.
이에 따라, 고해상도, 고품질 영상의 정보를 효과적으로 전송하거나 저장하고, 재생하기 위해 고효율의 영상 압축 기술이 요구된다.
본 문서의 기술적 과제는 영상 코딩 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 다른 기술적 과제는 레지듀얼 코딩의 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 변환 스킵의 적용 여부에 따라 레지듀얼 코딩의 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 최대 변환 스킵 사이즈를 가변적으로 설정하여 레지듀얼 코딩의 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 실시예에 따르면, 디코딩 장치에 의하여 수행되는 영상 디코딩 방법이 제공된다. 상기 방법은 비트스트림으로부터 예측 모드 정보 및 레지듀얼 관련 정보를 획득하는 단계, 상기 예측 모드 정보를 기반으로 예측을 수행하여 현재 블록의 예측 샘플들을 도출하는 단계, 상기 레지듀얼 관련 정보를 기반으로 상기 현재 블록의 레지듀얼 샘플들을 도출하는 단계 및 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 상기 현재 블록의 복원 샘플들을 생성하는 단계를 포함하고, 상기 현재 블록의 사이즈 및 최대 변환 스킵 사이즈를 기반으로 상기 레지듀얼 관련 정보가 변환 스킵 플래그를 포함하고, 상기 변환 스킵 플래그는 상기 현재 블록에 변환 스킵이 적용되었는지 여부를 나타내고, 상기 최대 변환 스킵 사이즈에 대한 정보는 상기 비트스트림으로부터 획득되는 것을 특징으로 한다.
본 문서의 다른 실시예에 따르면, 영상 디코딩을 수행하는 디코딩 장치가 제공된다. 상기 디코딩 장치는 비트스트림으로부터 예측 모드 정보 및 레지듀얼 관련 정보를 획득하는 엔트로피 디코딩부, 상기 예측 모드 정보를 기반으로 예측을 수행하여 현재 블록의 예측 샘플들을 도출하는 예측부, 상기 레지듀얼 관련 정보를 기반으로 상기 현재 블록의 레지듀얼 샘플들을 도출하는 레지듀얼 처리부 및 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 상기 현재 블록의 복원 샘플들을 생성하는 가산부를 포함하고, 상기 현재 블록의 사이즈 및 최대 변환 스킵 사이즈를 기반으로 상기 레지듀얼 관련 정보가 변환 스킵 플래그를 포함하고, 상기 변환 스킵 플래그는 상기 현재 블록에 변환 스킵이 적용되었는지 여부를 나타내고, 상기 최대 변환 스킵 사이즈에 대한 정보는 상기 비트스트림으로부터 획득되는 것을 특징으로 한다.
본 문서의 또 다른 실시예에 따르면, 인코딩 장치에 의하여 수행되는 비디오 인코딩 방법을 제공한다. 상기 방법은 현재 블록에 대하여 예측을 수행하여 예측 샘플들을 도출하는 단계, 상기 현재 블록에 대한 레지듀얼 샘플들을 도출하는 단계 및 상기 예측에 관한 예측 모드 정보 및 상기 레지듀얼 샘플들에 관한 레지듀얼 관련 정보를 포함하는 영상 정보를 인코딩하는 단계를 포함하고, 상기 현재 블록의 사이즈 및 최대 변환 스킵 사이즈를 기반으로 상기 레지듀얼 관련 정보가 변환 스킵 플래그를 포함하고, 상기 변환 스킵 플래그는 상기 현재 블록에 변환 스킵이 적용되었는지 여부를 나타내고, 상기 영상 정보는 상기 최대 변환 스킵 사이즈에 대한 정보를 포함하는 것을 특징으로 한다.
본 문서의 또 다른 실시예에 따르면, 비디오 인코딩 장치를 제공한다. 상기 인코딩 장치는 현재 블록에 대하여 예측을 수행하여 예측 샘플들을 도출하는 예측부, 상기 현재 블록에 대한 레지듀얼 샘플들을 도출하는 레지듀얼 처리부 및 상기 예측에 관한 예측 모드 정보 및 상기 레지듀얼 샘플들에 관한 레지듀얼 관련 정보를 포함하는 영상 정보를 인코딩하는 엔트로피 인코딩부를 포함하고, 상기 현재 블록의 사이즈 및 최대 변환 스킵 사이즈를 기반으로 상기 레지듀얼 관련 정보가 변환 스킵 플래그를 포함하고, 상기 변환 스킵 플래그는 상기 현재 블록에 변환 스킵이 적용되었는지 여부를 나타내고, 상기 영상 정보는 상기 최대 변환 스킵 사이즈에 대한 정보를 포함하는 것을 특징으로 한다.
본 문서의 또 다른 실시예에 따르면, 컴퓨터 판독 가능한 디지털 저장 매체를 제공한다. 상기 컴퓨터 판독 가능한 디지털 저장 매체는 상기 디코딩 방법을 수행하도록 야기하는 영상 정보가 저장된 것을 특징으로 한다.
본 문서의 또 다른 실시예에 따르면, 컴퓨터 판독 가능한 디지털 저장 매체를 제공한다. 상기 컴퓨터 판독 가능한 디지털 저장 매체는 상기 인코딩 방법에 의하여 생성된 영상 정보가 저장된 것을 특징으로 한다.
본 문서의 실시예에 따르면, 디코딩 장치에 의하여 수행되는 영상 디코딩 방법이 제공된다. 상기 방법은 비트스트림으로부터 예측 모드 정보 및 레지듀얼 관련 정보를 획득하는 단계, 상기 예측 모드 정보를 기반으로 예측을 수행하여 현재 블록의 예측 샘플들을 도출하는 단계, 상기 레지듀얼 관련 정보를 기반으로 상기 현재 블록의 레지듀얼 샘플들을 도출하는 단계 및 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 상기 현재 블록의 복원 샘플들을 생성하는 단계를 포함하고, 상기 현재 블록의 사이즈 및 최대 변환 스킵 사이즈를 기반으로 상기 레지듀얼 관련 정보가 변환 스킵 플래그를 포함하고, 상기 변환 스킵 플래그는 상기 현재 블록에 변환 스킵이 적용되었는지 여부를 나타내고, 상기 최대 변환 스킵 사이즈에 대한 정보는 상기 비트스트림으로부터 획득되는 것을 특징으로 한다.
본 문서의 다른 실시예에 따르면, 영상 디코딩을 수행하는 디코딩 장치가 제공된다. 상기 디코딩 장치는 비트스트림으로부터 예측 모드 정보 및 레지듀얼 관련 정보를 획득하는 엔트로피 디코딩부, 상기 예측 모드 정보를 기반으로 예측을 수행하여 현재 블록의 예측 샘플들을 도출하는 예측부, 상기 레지듀얼 관련 정보를 기반으로 상기 현재 블록의 레지듀얼 샘플들을 도출하는 레지듀얼 처리부 및 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 상기 현재 블록의 복원 샘플들을 생성하는 가산부를 포함하고, 상기 현재 블록의 사이즈 및 최대 변환 스킵 사이즈를 기반으로 상기 레지듀얼 관련 정보가 변환 스킵 플래그를 포함하고, 상기 변환 스킵 플래그는 상기 현재 블록에 변환 스킵이 적용되었는지 여부를 나타내고, 상기 최대 변환 스킵 사이즈에 대한 정보는 상기 비트스트림으로부터 획득되는 것을 특징으로 한다.
본 문서의 또 다른 실시예에 따르면, 인코딩 장치에 의하여 수행되는 비디오 인코딩 방법을 제공한다. 상기 방법은 현재 블록에 대하여 예측을 수행하여 예측 샘플들을 도출하는 단계, 상기 현재 블록에 대한 레지듀얼 샘플들을 도출하는 단계 및 상기 예측에 관한 예측 모드 정보 및 상기 레지듀얼 샘플들에 관한 레지듀얼 관련 정보를 포함하는 영상 정보를 인코딩하는 단계를 포함하고, 상기 현재 블록의 사이즈 및 최대 변환 스킵 사이즈를 기반으로 상기 레지듀얼 관련 정보가 변환 스킵 플래그를 포함하고, 상기 변환 스킵 플래그는 상기 현재 블록에 변환 스킵이 적용되었는지 여부를 나타내고, 상기 영상 정보는 상기 최대 변환 스킵 사이즈에 대한 정보를 포함하는 것을 특징으로 한다.
본 문서의 또 다른 실시예에 따르면, 비디오 인코딩 장치를 제공한다. 상기 인코딩 장치는 현재 블록에 대하여 예측을 수행하여 예측 샘플들을 도출하는 예측부, 상기 현재 블록에 대한 레지듀얼 샘플들을 도출하는 레지듀얼 처리부 및 상기 예측에 관한 예측 모드 정보 및 상기 레지듀얼 샘플들에 관한 레지듀얼 관련 정보를 포함하는 영상 정보를 인코딩하는 엔트로피 인코딩부를 포함하고, 상기 현재 블록의 사이즈 및 최대 변환 스킵 사이즈를 기반으로 상기 레지듀얼 관련 정보가 변환 스킵 플래그를 포함하고, 상기 변환 스킵 플래그는 상기 현재 블록에 변환 스킵이 적용되었는지 여부를 나타내고, 상기 영상 정보는 상기 최대 변환 스킵 사이즈에 대한 정보를 포함하는 것을 특징으로 한다.
본 문서의 또 다른 실시예에 따르면, 컴퓨터 판독 가능한 디지털 저장 매체를 제공한다. 상기 컴퓨터 판독 가능한 디지털 저장 매체는 상기 디코딩 방법을 수행하도록 야기하는 영상 정보가 저장된 것을 특징으로 한다.
본 문서의 또 다른 실시예에 따르면, 컴퓨터 판독 가능한 디지털 저장 매체를 제공한다. 상기 컴퓨터 판독 가능한 디지털 저장 매체는 상기 인코딩 방법에 의하여 생성된 영상 정보가 저장된 것을 특징으로 한다.
도 1은 본 문서가 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 2는 본 문서가 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3은 본 문서가 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 4는 역양자화 및 역변환부의 일 예를 나타낸다.
도 5는 2차 역변환부 및 1차 역변환부의 일 예를 나타낸다.
도 6은 변환 관련 파라미터에 기반한 역변환 방법의 일 예이다.
도 7은 구체적인 역변환 방법의 일 예이다.
도 8은 일 실시예에 따른 CABAC 인코딩 시스템의 블록도를 도시하는 도면이다.
도 9는 4x4 블록 내 변환 계수들의 예시를 도시하는 도면이다.
도 10은 본 문서의 일 실시예에 따른 잔차 신호 복호화부를 도시한 도면이다.
도 11은 본 문서의 일 실시예에 따른 변환 스킵 플래그 파싱 결정부를 도시한 도면이다.
도 12는 본 문서의 일 실시예에 따른 변환 스킵 여부 플래그를 코딩하는 방법을 설명하기 위한 순서도이다.
도 13 및 도 14는 본 문서의 실시예(들)에 따른 비디오/영상 인코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다.
도 15 및 도 16은 본 문서의 실시예(들)에 따른 비디오/영상 인코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다.
도 17은 컨텐츠 스트리밍 시스템 구조를 개략적으로 나타낸다.
본 문서는 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 문서를 특정 실시예에 한정하려고 하는 것이 아니다. 본 명세서에서 상용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 문서의 기술적 사상을 한정하려는 의도로 사용되는 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 도는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 문서에서 설명되는 도면상의 각 구성들은 서로 다른 특징적인 기능들에 관한 설명의 편의를 위해 독립적으로 도시된 것으로서, 각 구성들이 서로 별개의 하드웨어나 별개의 소프트웨어로 구현된다는 것을 의미하지는 않는다. 예컨대, 각 구성 중 두 개 이상의 구성이 합쳐져 하나의 구성을 이룰 수도 있고, 하나의 구성이 복수의 구성으로 나뉘어질 수도 있다. 각 구성이 통합 및/또는 분리된 실시예도 본 문서의 본질에서 벗어나지 않는 한 본 문서의 권리범위에 포함된다.
이하, 첨부한 도면들을 참조하여, 본 문서의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성 요소에 대해서 중복된 설명은 생략될 수 있다.
도 1은 본 문서를 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 1을 참조하면, 비디오/영상 코딩 시스템은 제1 장치(소스 디바이스) 및 제2 장치(수신 디바이스)를 포함할 수 있다. 소스 디바이스는 인코딩된 비디오(video)/영상(image) 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스로 전달할 수 있다.
상기 소스 디바이스는 비디오 소스, 인코딩 장치, 전송부를 포함할 수 있다. 상기 수신 디바이스는 수신부, 디코딩 장치 및 렌더러를 포함할 수 있다. 상기 인코딩 장치는 비디오/영상 인코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 비디오/영상 디코딩 장치라고 불릴 수 있다. 송신기는 인코딩 장치에 포함될 수 있다. 수신기는 디코딩 장치에 포함될 수 있다. 렌더러는 디스플레이부를 포함할 수도 있고, 디스플레이부는 별개의 디바이스 또는 외부 컴포넌트로 구성될 수도 있다.
비디오 소스는 비디오/영상의 캡쳐, 합성 또는 생성 과정 등을 통하여 비디오/영상을 획득할 수 있다. 비디오 소스는 비디오/영상 캡쳐 디바이스 및/또는 비디오/영상 생성 디바이스를 포함할 수 있다. 비디오/영상 캡쳐 디바이스는 예를 들어, 하나 이상의 카메라, 이전에 캡쳐된 비디오/영상을 포함하는 비디오/영상 아카이브 등을 포함할 수 있다. 비디오/영상 생성 디바이스는 예를 들어 컴퓨터, 타블렛 및 스마트폰 등을 포함할 수 있으며 (전자적으로) 비디오/영상을 생성할 수 있다. 예를 들어, 컴퓨터 등을 통하여 가상의 비디오/영상이 생성될 수 있으며, 이 경우 관련 데이터가 생성되는 과정으로 비디오/영상 캡쳐 과정이 갈음될 수 있다.
인코딩 장치는 입력 비디오/영상을 인코딩할 수 있다. 인코딩 장치는 압축 및 코딩 효율을 위하여 예측, 변환, 양자화 등 일련의 절차를 수행할 수 있다. 인코딩된 데이터(인코딩된 비디오/영상 정보)는 비트스트림(bitstream) 형태로 출력될 수 있다.
전송부는 비트스트림 형태로 출력된 인코딩된 비디오/영상 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스의 수신부로 전달할 수 있다. 디지털 저장 매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장 매체를 포함할 수 있다. 전송부는 미리 정해진 파일 포멧을 통하여 미디어 파일을 생성하기 위한 엘리먼트를 포함할 수 있고, 방송/통신 네트워크를 통한 전송을 위한 엘리먼트를 포함할 수 있다. 수신부는 상기 비트스트림을 수신/추출하여 디코딩 장치로 전달할 수 있다.
디코딩 장치는 인코딩 장치의 동작에 대응하는 역양자화, 역변환, 예측 등 일련의 절차를 수행하여 비디오/영상을 디코딩할 수 있다.
렌더러는 디코딩된 비디오/영상을 렌더링할 수 있다. 렌더링된 비디오/영상은 디스플레이부를 통하여 디스플레이될 수 있다.
이 문서는 비디오/영상 코딩에 관한 것이다. 예를 들어 이 문서에서 개시된 방법/실시예는 VVC (versatile video coding) 표준, EVC (essential video coding) 표준, AV1 (AOMedia Video 1) 표준, AVS2 (2nd generation of audio video coding standard) 또는 차세대 비디오/영상 코딩 표준(ex. H.267 or H.268 등)에 개시되는 방법에 적용될 수 있다.
이 문서에서는 비디오/영상 코딩에 관한 다양한 실시예들을 제시하며, 다른 언급이 없는 한 상기 실시예들은 서로 조합되어 수행될 수도 있다.
이 문서에서 비디오(video)는 시간의 흐름에 따른 일련의 영상(image)들의 집합을 의미할 수 있다. 픽처(picture)는 일반적으로 특정 시간대의 하나의 영상을 나타내는 단위를 의미하며, 슬라이스(slice)/타일(tile)는 코딩에 있어서 픽처의 일부를 구성하는 단위이다. 슬라이스/타일은 하나 이상의 CTU(coding tree unit)을 포함할 수 있다. 하나의 픽처는 하나 이상의 슬라이스/타일로 구성될 수 있다. 하나의 픽처는 하나 이상의 타일 그룹으로 구성될 수 있다. 하나의 타일 그룹은 하나 이상의 타일들을 포함할 수 있다. 브릭은 픽처 내 타일 이내의 CTU 행들의 사각 영역을 나타낼 수 있다(a brick may represent a rectangular region of CTU rows within a tile in a picture). 타일은 다수의 브릭들로 파티셔닝될 수 있고, 각 브릭은 상기 타일 내 하나 이상의 CTU 행들로 구성될 수 있다(A tile may be partitioned into multiple bricks, each of which consisting of one or more CTU rows within the tile). 다수의 브릭들로 파티셔닝되지 않은 타일은 또한 브릭으로 불릴 수 있다(A tile that is not partitioned into multiple bricks may be also referred to as a brick). 브릭 스캔은 픽처를 파티셔닝하는 CTU들의 특정한 순차적 오더링을 나타낼 수 있으며, 상기 CTU들은 브릭 내에서 CTU 래스터 스캔으로 정렬될 수 있고, 타일 내 브릭들은 상기 타일의 상기 브릭들의 래스터 스캔으로 연속적으로 정렬될 수 있고, 그리고 픽처 내 타일들은 상기 픽처의 상기 타일들의 래스터 스캔으로 연속적으로 정렬될 수 있다(A brick scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a brick, bricks within a tile are ordered consecutively in a raster scan of the bricks of the tile, and tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture). 타일은 특정 타일 열 및 특정 타일 열 이내의 CTU들의 사각 영역이다(A tile is a rectangular region of CTUs within a particular tile column and a particular tile row in a picture). 상기 타일 열은 CTU들의 사각 영역이고, 상기 사각 영역은 상기 픽처의 높이와 동일한 높이를 갖고, 너비는 픽처 파라미터 세트 내의 신택스 요소들에 의하여 명시될 수 있다(The tile column is a rectangular region of CTUs having a height equal to the height of the picture and a width specified by syntax elements in the picture parameter set). 상기 타일 행은 CTU들의 사각 영역이고, 상기 사각 영역은 픽처 파라미터 세트 내의 신택스 요소들에 의하여 명시되는 너비를 갖고, 높이는 상기 픽처의 높이와 동일할 수 있다(The tile row is a rectangular region of CTUs having a height specified by syntax elements in the picture parameter set and a width equal to the width of the picture). 타일 스캔은 픽처를 파티셔닝하는 CTU들의 특정 순차적 오더링을 나타낼 수 있고, 상기 CTU들은 타일 내 CTU 래스터 스캔으로 연속적으로 정렬될 수 있고, 픽처 내 타일들은 상기 픽처의 상기 타일들의 래스터 스캔으로 연속적으로 정렬될 수 있다(A tile scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a tile whereas tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture). 슬라이스는 픽처의 정수개의 브릭들을 포함할 수 있고, 상기 정수개의 브릭들은 하나의 NAL 유닛에 포함될 수 있다(A slice includes an integer number of bricks of a picture that may be exclusively contained in a single NAL unit). 슬라이스는 다수의 완전한 타일들로 구성될 수 있고, 또는 하나의 타일의 완전한 브릭들의 연속적인 시퀀스일 수도 있다(A slice may consists of either a number of complete tiles or only a consecutive sequence of complete bricks of one tile). 이 문서에서 타일 그룹과 슬라이스는 혼용될 수 있다. 예를 들어 본 문서에서 tile group/tile group header는 slice/slice header로 불리 수 있다.
픽셀(pixel) 또는 펠(pel)은 하나의 픽처(또는 영상)을 구성하는 최소의 단위를 의미할 수 있다. 또한, 픽셀에 대응하는 용어로서 '샘플(sample)'이 사용될 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 루마(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 크로마(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다.
유닛(unit)은 영상 처리의 기본 단위를 나타낼 수 있다. 유닛은 픽처의 특정 영역 및 해당 영역에 관련된 정보 중 적어도 하나를 포함할 수 있다. 하나의 유닛은 하나의 루마 블록 및 두개의 크로마(ex. cb, cr) 블록을 포함할 수 있다. 유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들(또는 샘플 어레이) 또는 변환 계수(transform coefficient)들의 집합(또는 어레이)을 포함할 수 있다.
이 문서에서 "/"와 ","는 "및/또는"으로 해석된다. 예를 들어, "A/B"는 "A 및/또는 B"로 해석되고, "A, B"는 "A 및/또는 B"로 해석된다. 추가적으로, "A/B/C"는 "A, B 및/또는 C 중 적어도 하나"를 의미한다. 또한, "A, B, C"도 "A, B 및/또는 C 중 적어도 하나"를 의미한다. (In this document, the term "/" and "," should be interpreted to indicate "and/or." For instance, the expression "A/B" may mean "A and/or B." Further, "A, B" may mean "A and/or B." Further, "A/B/C" may mean "at least one of A, B, and/or C." Also, "A/B/C" may mean "at least one of A, B, and/or C.")
추가적으로, 본 문서에서 "또는"는 "및/또는"으로 해석된다. 예를 들어, "A 또는 B"은, 1) "A" 만을 의미하고, 2) "B" 만을 의미하거나, 3) "A 및 B"를 의미할 수 있다. 달리 표현하면, 본 문서의 "또는"은 "추가적으로 또는 대체적으로(additionally or alternatively)"를 의미할 수 있다. (Further, in the document, the term "or" should be interpreted to indicate "and/or." For instance, the expression "A or B" may comprise 1) only A, 2) only B, and/or 3) both A and B. In other words, the term "or" in this document should be interpreted to indicate "additionally or alternatively.")
도 2는 본 문서가 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다. 이하 비디오 인코딩 장치라 함은 영상 인코딩 장치를 포함할 수 있다.
도 2를 참조하면, 인코딩 장치(200)는 영상 분할부(image partitioner, 210), 예측부(predictor, 220), 레지듀얼 처리부(residual processor, 230), 엔트로피 인코딩부(entropy encoder, 240), 가산부(adder, 250), 필터링부(filter, 260) 및 메모리(memory, 270)를 포함하여 구성될 수 있다. 예측부(220)는 인터 예측부(221) 및 인트라 예측부(222)를 포함할 수 있다. 레지듀얼 처리부(230)는 변환부(transformer, 232), 양자화부(quantizer 233), 역양자화부(dequantizer 234), 역변환부(inverse transformer, 235)를 포함할 수 있다. 레지듀얼 처리부(230)은 감산부(subtractor, 231)를 더 포함할 수 있다. 가산부(250)는 복원부(reconstructor) 또는 복원 블록 생성부(recontructged block generator)로 불릴 수 있다. 상술한 영상 분할부(210), 예측부(220), 레지듀얼 처리부(230), 엔트로피 인코딩부(240), 가산부(250) 및 필터링부(260)는 실시예에 따라 하나 이상의 하드웨어 컴포넌트(예를 들어 인코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(270)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(270)을 내/외부 컴포넌트로 더 포함할 수도 있다.
영상 분할부(210)는 인코딩 장치(200)에 입력된 입력 영상(또는, 픽쳐, 프레임)를 하나 이상의 처리 유닛(processing unit)으로 분할할 수 있다. 일 예로, 상기 처리 유닛은 코딩 유닛(coding unit, CU)이라고 불릴 수 있다. 이 경우 코딩 유닛은 코딩 트리 유닛(coding tree unit, CTU) 또는 최대 코딩 유닛(largest coding unit, LCU)으로부터 QTBTTT (Quad-tree binary-tree ternary-tree) 구조에 따라 재귀적으로(recursively) 분할될 수 있다. 예를 들어, 하나의 코딩 유닛은 쿼드 트리 구조, 바이너리 트리 구조, 및/또는 터너리 구조를 기반으로 하위(deeper) 뎁스의 복수의 코딩 유닛들로 분할될 수 있다. 이 경우 예를 들어 쿼드 트리 구조가 먼저 적용되고 바이너리 트리 구조 및/또는 터너리 구조가 나중에 적용될 수 있다. 또는 바이너리 트리 구조가 먼저 적용될 수도 있다. 더 이상 분할되지 않는 최종 코딩 유닛을 기반으로 본 문서에 따른 코딩 절차가 수행될 수 있다. 이 경우 영상 특성에 따른 코딩 효율 등을 기반으로, 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 또는 필요에 따라 코딩 유닛은 재귀적으로(recursively) 보다 하위 뎁스의 코딩 유닛들로 분할되어 최적의 사이즈의 코딩 유닛이 최종 코딩 유닛으로 사용될 수 있다. 여기서 코딩 절차라 함은 후술하는 예측, 변환, 및 복원 등의 절차를 포함할 수 있다. 다른 예로, 상기 처리 유닛은 예측 유닛(PU: Prediction Unit) 또는 변환 유닛(TU: Transform Unit)을 더 포함할 수 있다. 이 경우 상기 예측 유닛 및 상기 변환 유닛은 각각 상술한 최종 코딩 유닛으로부터 분할 또는 파티셔닝될 수 있다. 상기 예측 유닛은 샘플 예측의 단위일 수 있고, 상기 변환 유닛은 변환 계수를 유도하는 단위 및/또는 변환 계수로부터 레지듀얼 신호(residual signal)를 유도하는 단위일 수 있다.
유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들 또는 변환 계수(transform coefficient)들의 집합을 나타낼 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 휘도(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 채도(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다. 샘플은 하나의 픽처(또는 영상)을 픽셀(pixel) 또는 펠(pel)에 대응하는 용어로서 사용될 수 있다.
인코딩 장치(200)는 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 인터 예측부(221) 또는 인트라 예측부(222)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)를 감산하여 레지듀얼 신호(residual signal, 잔여 블록, 잔여 샘플 어레이)를 생성할 수 있고, 생성된 레지듀얼 신호는 변환부(232)로 전송된다. 이 경우 도시된 바와 같이 인코더(200) 내에서 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 예측 신호(예측 블록, 예측 샘플 어레이)를 감산하는 유닛은 감산부(231)라고 불릴 수 있다. 예측부는 처리 대상 블록(이하, 현재 블록이라 함)에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 현재 블록 또는 CU 단위로 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있다. 예측부는 각 예측모드에 대한 설명에서 후술하는 바와 같이 예측 모드 정보 등 예측에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(240)로 전달할 수 있다. 예측에 관한 정보는 엔트로피 인코딩부(240)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
인트라 예측부(222)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 비방향성 모드는 예를 들어 DC 모드 및 플래너 모드(Planar 모드)를 포함할 수 있다. 방향성 모드는 예측 방향의 세밀한 정도에 따라 예를 들어 33개의 방향성 예측 모드 또는 65개의 방향성 예측 모드를 포함할 수 있다. 다만, 이는 예시로서 설정에 따라 그 이상 또는 그 이하의 개수의 방향성 예측 모드들이 사용될 수 있다. 인트라 예측부(222)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(221)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 예를 들어, 인터 예측부(221)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 사용되는지를 지시하는 정보를 생성할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 머지 모드의 경우에, 인터 예측부(221)는 주변 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)을 시그널링함으로써 현재 블록의 움직임 벡터를 지시할 수 있다.
예측부(220)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC) 예측 모드에 기반할 수도 있고 또는 팔레트 모드(palette mode)에 기반할 수도 있다. 상기 IBC 예측 모드 또는 팔레트 모드는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 팔레트 모드는 인트라 코딩 또는 인트라 예측의 일 예로 볼 수 있다. 팔레트 모드가 적용되는 경우 팔레트 테이블 및 팔레트 인덱스에 관한 정보를 기반으로 픽처 내 샘플 값을 시그널링할 수 있다.
상기 예측부 (인터 예측부(221) 및/또는 상기 인트라 예측부(222) 포함)를 통해 생성된 예측 신호는 복원 신호를 생성하기 위해 이용되거나 레지듀얼 신호를 생성하기 위해 이용될 수 있다. 변환부(232)는 레지듀얼 신호에 변환 기법을 적용하여 변환 계수들(transform coefficients)를 생성할 수 있다. 예를 들어, 변환 기법은 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), KLT(Karhunen-Loeve Transform), GBT(Graph-Based Transform), 또는 CNT(Conditionally Non-linear Transform) 중 적어도 하나를 포함할 수 있다. 여기서, GBT는 픽셀 간의 관계 정보를 그래프로 표현한다고 할 때 이 그래프로부터 얻어진 변환을 의미한다. CNT는 이전에 복원된 모든 픽셀(all previously reconstructed pixel)를 이용하여 예측 신호를 생성하고 그에 기초하여 획득되는 변환을 의미한다. 또한, 변환 과정은 정사각형의 동일한 크기를 갖는 픽셀 블록에 적용될 수도 있고, 정사각형이 아닌 가변 크기의 블록에도 적용될 수 있다.
양자화부(233)는 변환 계수들을 양자화하여 엔트로피 인코딩부(240)로 전송되고, 엔트로피 인코딩부(240)는 양자화된 신호(양자화된 변환 계수들에 관한 정보)를 인코딩하여 비트스트림으로 출력할 수 있다. 상기 양자화된 변환 계수들에 관한 정보는 레지듀얼 정보라고 불릴 수 있다. 양자화부(233)는 계수 스캔 순서(scan order)를 기반으로 블록 형태의 양자화된 변환 계수들을 1차원 벡터 형태로 재정렬할 수 있고, 상기 1차원 벡터 형태의 양자화된 변환 계수들을 기반으로 상기 양자화된 변환 계수들에 관한 정보를 생성할 수도 있다. 엔트로피 인코딩부(240)는 예를 들어 지수 골롬(exponential Golomb), CAVLC(context-adaptive variable length coding), CABAC(context-adaptive binary arithmetic coding) 등과 같은 다양한 인코딩 방법을 수행할 수 있다. 엔트로피 인코딩부(240)는 양자화된 변환 계수들 외 비디오/이미지 복원에 필요한 정보들(예컨대 신택스 요소들(syntax elements)의 값 등)을 함께 또는 별도로 인코딩할 수도 있다. 인코딩된 정보(ex. 인코딩된 비디오/영상 정보)는 비트스트림 형태로 NAL(network abstraction layer) 유닛 단위로 전송 또는 저장될 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 본 문서에서 인코딩 장치에서 디코딩 장치로 전달/시그널링되는 정보 및/또는 신택스 요소들은 비디오/영상 정보에 포함될 수 있다. 상기 비디오/영상 정보는 상술한 인코딩 절차를 통하여 인코딩되어 상기 비트스트림에 포함될 수 있다. 상기 비트스트림은 네트워크를 통하여 전송될 수 있고, 또는 디지털 저장매체에 저장될 수 있다. 여기서 네트워크는 방송망 및/또는 통신망 등을 포함할 수 있고, 디지털 저장매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장매체를 포함할 수 있다. 엔트로피 인코딩부(240)로부터 출력된 신호는 전송하는 전송부(미도시) 및/또는 저장하는 저장부(미도시)가 인코딩 장치(200)의 내/외부 엘리먼트로서 구성될 수 있고, 또는 전송부는 엔트로피 인코딩부(240)에 포함될 수도 있다.
양자화부(233)로부터 출력된 양자화된 변환 계수들은 예측 신호를 생성하기 위해 이용될 수 있다. 예를 들어, 양자화된 변환 계수들에 역양자화부(234) 및 역변환부(235)를 통해 역양자화 및 역변환을 적용함으로써 레지듀얼 신호(레지듀얼 블록 or 레지듀얼 샘플들)를 복원할 수 있다. 가산부(155)는 복원된 레지듀얼 신호를 인터 예측부(221) 또는 인트라 예측부(222)로부터 출력된 예측 신호에 더함으로써 복원(reconstructed) 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)가 생성될 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다. 가산부(250)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편 픽처 인코딩 및/또는 복원 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(260)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(260)은 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(270), 구체적으로 메모리(270)의 DPB에 저장할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다. 필터링부(260)은 각 필터링 방법에 대한 설명에서 후술하는 바와 같이 필터링에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(240)로 전달할 수 있다. 필터링 관한 정보는 엔트로피 인코딩부(240)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
메모리(270)에 전송된 수정된 복원 픽처는 인터 예측부(221)에서 참조 픽처로 사용될 수 있다. 인코딩 장치는 이를 통하여 인터 예측이 적용되는 경우, 인코딩 장치(100)와 디코딩 장치에서의 예측 미스매치를 피할 수 있고, 부호화 효율도 향상시킬 수 있다.
메모리(270) DPB는 수정된 복원 픽처를 인터 예측부(221)에서의 참조 픽처로 사용하기 위해 저장할 수 있다. 메모리(270)는 현재 픽처 내 움직임 정보가 도출된(또는 인코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(221)에 전달할 수 있다. 메모리(270)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(222)에 전달할 수 있다.
도 3은 본 문서가 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3을 참조하면, 디코딩 장치(300)는 엔트로피 디코딩부(entropy decoder, 310), 레지듀얼 처리부(residual processor, 320), 예측부(predictor, 330), 가산부(adder, 340), 필터링부(filter, 350) 및 메모리(memoery, 360)를 포함하여 구성될 수 있다. 예측부(330)는 인터 예측부(331) 및 인트라 예측부(332)를 포함할 수 있다. 레지듀얼 처리부(320)는 역양자화부(dequantizer, 321) 및 역변환부(inverse transformer, 321)를 포함할 수 있다. 상술한 엔트로피 디코딩부(310), 레지듀얼 처리부(320), 예측부(330), 가산부(340) 및 필터링부(350)는 실시예에 따라 하나의 하드웨어 컴포넌트(예를 들어 디코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(360)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(360)을 내/외부 컴포넌트로 더 포함할 수도 있다.
비디오/영상 정보를 포함하는 비트스트림이 입력되면, 디코딩 장치(300)는 도 2의 인코딩 장치에서 비디오/영상 정보가 처리된 프로세스에 대응하여 영상을 복원할 수 있다. 예를 들어, 디코딩 장치(300)는 상기 비트스트림으로부터 획득한 블록 분할 관련 정보를 기반으로 유닛들/블록들을 도출할 수 있다. 디코딩 장치(300)는 인코딩 장치에서 적용된 처리 유닛을 이용하여 디코딩을 수행할 수 있다. 따라서 디코딩의 처리 유닛은 예를 들어 코딩 유닛일 수 있고, 코딩 유닛은 코딩 트리 유닛 또는 최대 코딩 유닛으로부터 쿼드 트리 구조, 바이너리 트리 구조 및/또는 터너리 트리 구조를 따라서 분할될 수 있다. 코딩 유닛으로부터 하나 이상의 변환 유닛이 도출될 수 있다. 그리고, 디코딩 장치(300)를 통해 디코딩 및 출력된 복원 영상 신호는 재생 장치를 통해 재생될 수 있다.
디코딩 장치(300)는 도 2의 인코딩 장치로부터 출력된 신호를 비트스트림 형태로 수신할 수 있고, 수신된 신호는 엔트로피 디코딩부(310)를 통해 디코딩될 수 있다. 예를 들어, 엔트로피 디코딩부(310)는 상기 비트스트림을 파싱하여 영상 복원(또는 픽처 복원)에 필요한 정보(ex. 비디오/영상 정보)를 도출할 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 디코딩 장치는 상기 파라미터 세트에 관한 정보 및/또는 상기 일반 제한 정보를 더 기반으로 픽처를 디코딩할 수 있다. 본 문서에서 후술되는 시그널링/수신되는 정보 및/또는 신택스 요소들은 상기 디코딩 절차를 통하여 디코딩되어 상기 비트스트림으로부터 획득될 수 있다. 예컨대, 엔트로피 디코딩부(310)는 지수 골롬 부호화, CAVLC 또는 CABAC 등의 코딩 방법을 기초로 비트스트림 내 정보를 디코딩하고, 영상 복원에 필요한 신택스 엘리먼트의 값, 레지듀얼에 관한 변환 계수의 양자화된 값 들을 출력할 수 있다. 보다 상세하게, CABAC 엔트로피 디코딩 방법은, 비트스트림에서 각 구문 요소에 해당하는 빈을 수신하고, 디코딩 대상 구문 요소 정보와 주변 및 디코딩 대상 블록의 디코딩 정보 혹은 이전 단계에서 디코딩된 심볼/빈의 정보를 이용하여 문맥(context) 모델을 결정하고, 결정된 문맥 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 디코딩(arithmetic decoding)를 수행하여 각 구문 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 디코딩 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 디코딩된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다. 엔트로피 디코딩부(310)에서 디코딩된 정보 중 예측에 관한 정보는 예측부(인터 예측부(332) 및 인트라 예측부(331))로 제공되고, 엔트로피 디코딩부(310)에서 엔트로피 디코딩이 수행된 레지듀얼 값, 즉 양자화된 변환 계수들 및 관련 파라미터 정보는 레지듀얼 처리부(320)로 입력될 수 있다. 레지듀얼 처리부(320)는 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플들, 레지듀얼 샘플 어레이)를 도출할 수 있다. 또한, 엔트로피 디코딩부(310)에서 디코딩된 정보 중 필터링에 관한 정보는 필터링부(350)으로 제공될 수 있다. 한편, 인코딩 장치로부터 출력된 신호를 수신하는 수신부(미도시)가 디코딩 장치(300)의 내/외부 엘리먼트로서 더 구성될 수 있고, 또는 수신부는 엔트로피 디코딩부(310)의 구성요소일 수도 있다. 한편, 본 문서에 따른 디코딩 장치는 비디오/영상/픽처 디코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 정보 디코더(비디오/영상/픽처 정보 디코더) 및 샘플 디코더(비디오/영상/픽처 샘플 디코더)로 구분할 수도 있다. 상기 정보 디코더는 상기 엔트로피 디코딩부(310)를 포함할 수 있고, 상기 샘플 디코더는 상기 역양자화부(321), 역변환부(322), 가산부(340), 필터링부(350), 메모리(360), 인터 예측부(332) 및 인트라 예측부(331) 중 적어도 하나를 포함할 수 있다.
역양자화부(321)에서는 양자화된 변환 계수들을 역양자화하여 변환 계수들을 출력할 수 있다. 역양자화부(321)는 양자화된 변환 계수들을 2차원의 블록 형태로 재정렬할 수 있다. 이 경우 상기 재정렬은 인코딩 장치에서 수행된 계수 스캔 순서를 기반하여 재정렬을 수행할 수 있다. 역양자화부(321)는 양자화 파라미터(예를 들어 양자화 스텝 사이즈 정보)를 이용하여 양자화된 변환 계수들에 대한 역양자화를 수행하고, 변환 계수들(transform coefficient)를 획득할 수 있다.
역변환부(322)에서는 변환 계수들를 역변환하여 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플 어레이)를 획득하게 된다.
예측부는 현재 블록에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 엔트로피 디코딩부(310)로부터 출력된 상기 예측에 관한 정보를 기반으로 상기 현재 블록에 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있고, 구체적인 인트라/인터 예측 모드를 결정할 수 있다.
예측부(320)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC) 예측 모드에 기반할 수도 있고 또는 팔레트 모드(palette mode)에 기반할 수도 있다. 상기 IBC 예측 모드 또는 팔레트 모드는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 팔레트 모드는 인트라 코딩 또는 인트라 예측의 일 예로 볼 수 있다. 팔레트 모드가 적용되는 경우 팔레트 테이블 및 팔레트 인덱스에 관한 정보가 상기 비디오/영상 정보에 포함되어 시그널링될 수 있다.
인트라 예측부(331)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 인트라 예측부(331)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(332)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 예를 들어, 인터 예측부(332)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 수신한 후보 선택 정보를 기반으로 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 상기 예측에 관한 정보는 상기 현재 블록에 대한 인터 예측의 모드를 지시하는 정보를 포함할 수 있다.
가산부(340)는 획득된 레지듀얼 신호를 예측부(인터 예측부(332) 및/또는 인트라 예측부(331) 포함)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)에 더함으로써 복원 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)를 생성할 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다.
가산부(340)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 출력될 수도 있고 또는 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편, 픽처 디코딩 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(350)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(350)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(360), 구체적으로 메모리(360)의 DPB에 전송할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다.
메모리(360)의 DPB에 저장된 (수정된) 복원 픽처는 인터 예측부(332)에서 참조 픽쳐로 사용될 수 있다. 메모리(360)는 현재 픽처 내 움직임 정보가 도출된(또는 디코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(260)에 전달할 수 있다. 메모리(360)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(331)에 전달할 수 있다.
본 명세서에서, 인코딩 장치(200)의 필터링부(260), 인터 예측부(221) 및 인트라 예측부(222)에서 설명된 실시예들은 각각 디코딩 장치(300)의 필터링부(350), 인터 예측부(332) 및 인트라 예측부(331)에도 동일 또는 대응되도록 적용될 수 있다.
상술한 바와 같이 비디오 코딩을 수행함에 있어 압축 효율을 높이기 위하여 예측을 수행한다. 이를 통하여 코딩 대상 블록인 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록을 생성할 수 있다. 여기서 상기 예측된 블록은 공간 도메인(또는 픽셀 도메인)에서의 예측 샘플들을 포함한다. 상기 예측된 블록은 인코딩 장치 및 디코딩 장치에서 동일하게 도출되며, 상기 인코딩 장치는 원본 블록의 원본 샘플 값 자체가 아닌 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼에 대한 정보(레지듀얼 정보)를 디코딩 장치로 시그널링함으로써 영상 코딩 효율을 높일 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 레지듀얼 샘플들을 포함하는 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록과 상기 예측된 블록을 합하여 복원 샘플들을 포함하는 복원 블록을 생성할 수 있고, 복원 블록들을 포함하는 복원 픽처를 생성할 수 있다.
상기 레지듀얼 정보는 변환 및 양자화 절차를 통하여 생성될 수 있다. 예를 들어, 인코딩 장치는 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록에 포함된 레지듀얼 샘플들(레지듀얼 샘플 어레이)에 변환 절차를 수행하여 변환 계수들을 도출하고, 상기 변환 계수들에 양자화 절차를 수행하여 양자화된 변환 계수들을 도출하여 관련된 레지듀얼 정보를 (비트스트림을 통하여) 디코딩 장치로 시그널링할 수 있다. 여기서 상기 레지듀얼 정보는 상기 양자화된 변환 계수들의 값 정보, 위치 정보, 변환 기법, 변환 커널, 양자화 파라미터 등의 정보를 포함할 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 역양자화/역변환 절차를 수행하고 레지듀얼 샘플들(또는 레지듀얼 블록)을 도출할 수 있다. 디코딩 장치는 예측된 블록과 상기 레지듀얼 블록을 기반으로 복원 픽처를 생성할 수 있다. 인코딩 장치는 또한 이후 픽처의 인터 예측을 위한 참조를 위하여 양자화된 변환 계수들을 역양자화/역변환하여 레지듀얼 블록을 도출하고, 이를 기반으로 복원 픽처를 생성할 수 있다.
본 문서에서는 도 2에서 상기 인코딩 장치의 변환부, 양자화부, 역양자화부 또는 역변환부, 또는 도 3에서의 상기 디코딩 장치의 역양자화부 또는 역변환부에 대하여 상세히 설명하겠다. 여기서, 상기 인코딩 장치는 엔트로피 인코딩을 통해 변환 및 양자화된 정보로부터 비트스트림을 도출할 수 있고, 상기 디코딩 장치는 엔트로피 디코딩을 통해 비트스트림으로부터 변환 및 양자화된 정보를 도출할 수 있다. 이하에서는 역양자화부 및 역변환부에 대하여 설명하겠으며, 변환부 및 양화부는 상기 역양자화부 및 역변환부과 동일한 동작을 역으로 수행할 수 있다. 또한, 역양자화부 및 역변환부는 영양자화 및 역변환부로 나타낼 수 있고, 변환부 및 양자화부는 변환 및 양자화부로 나타낼 수도 있다.
또한, 본 문서에서 MTS(Multiple Transform Selection)은 적어도 2개 이상의 변환 타입을 이용하여 변환을 수행하는 방법을 의미할 수 있다. 이는 AMT(Adaptive Mutliple Transform) 또는 EMT(Explicit Multiple Transform)로도 표현될 수 있으며, 마찬가지로, mts_idx 도 AMT_idx, EMT_idx, AMT_TU_idx EMT_TU_idx, 변환 인덱스 또는 변환 조합 인덱스 등과 같이 표현될 수 있으며, 본 문서는 이러한 표현에 한정되지 않는다.
도 4는 역양자화 및 역변환부의 일 예를 나타낸다.
도 4를 참조하면, 역양자화 및 역변환부(400)는 역양자화부(410), 2차 역변환부(inverse secondary transform unit)(420) 및 1차 역변환부(inverse primary transform unit)(430)를 포함할 수 있다.
상기 역양자화부(410)에서는 양자화 스텝 사이즈 정보를 이용하여 엔트로피 디코딩된 신호(또는 양자화된 변환 계수)에 대해 역양자화를 수행하여 변환 계수(transform coefficient)를 획득할 수 있고, 상기 2차 역변환부(420)에서는 상기 변환 계수에 대해 2차 역변환을 수행할 수 있다. 또한, 1차 역변환부(430)는 2차 역변환된 신호 또는 블록(또는 변환 계수)에 대해 1차 역변환을 수행할 수 있고, 1차 역변환을 통해 디코딩된 레지듀얼 신호가 획득될 수 있다. 여기서, 2차 역변환은 2차 변환(secondary transform)의 역변환을 나타낼 수 있고, 1차 역변환은 1차 변환(primary transform)의 역변환을 나타낼 수 있다.
본 문서에서는 예측 모드, 블록 크기 또는 블록 모양(block shape) 중 적어도 하나에 의해 구분되는 변환 설정 그룹(transform configuration group) 별로 변환 조합(transform combination)을 구성할 수 있으며, 상기 1차 역변환부(430)는 본 문서에 의해 구성된 변환 조합을 기반으로 역변환을 수행할 수 있다. 또한, 본 문서에서 후술하는 실시예들이 적용될 수 있다.
도 5는 2차 역변환부 및 1차 역변환부의 일 예를 나타낸다.
도 5를 참조하여 역변환 과정을 구체적으로 살펴보면, 역변환 과정은 2차 역변환 적용 여부 결정부(또는 이차 역변환의 적용 여부를 결정하는 요소)(510) 및 2차 역변환 결정부(또는 이차 역변환을 결정하는 요소)(520), 2차 역변환부(530) 및 1차 역변환부(540)가 이용될 수 있다. 여기서, 도 4의 2차 역변환부(420)는 도 5의 2차 역변환부(530)와 동일할 수 있고, 도 5의 2차 역변환 적용 여부 결정부(510), 2차 역변환 결정부(520) 및 2차 역변환부(530) 중 적어도 하나를 포함할 수도 있으나, 표현에 따라 달라질 수 있으므로, 이에 한정되는 것은 아니다. 또한, 도 4의 1차 역변환부(430)는 도 5의 1차 역변환부(540)와 동일할 수 있으나, 표현에 따라 달라질 수 있으므로, 이에 한정되는 것은 아니다.
2차 역변환 적용 여부 결정부(510)는 2차 역변환의 적용 여부를 결정할 수 있다. 예를 들어, 2차 역변환은 NSST 또는 RST일 수 있다. 일 예로, 2차 역변환 적용 여부 결정부(510)는 인코딩 장치로부터 수신한 2차 변환 플래그에 기초하여 2차 역변환의 적용 여부를 결정할 수 있다. 다른 일 예로, 2차 역변환 적용 여부 결정부(510)는 레지듀얼 블록의 변환 계수에 기초하여 2차 역변환의 적용 여부를 결정할 수도 있다.
2차 역변환 결정부(520)는 2차 역변환을 결정할 수 있다. 이때, 2차 역변환 결정부(520)는 인트라 예측 모드에 따라 지정된 NSST(또는 RST) 변환 셋(set)에 기초하여 현재 블록에 적용되는 2차 역변환을 결정할 수 있다.
또한, 일 예로, 1차 변환 결정 방법에 의존적으로 2차 변환 결정 방법이 결정될 수 있다. 인트라 예측 모드에 따라 1차 변환과 2차 변환의 다양한 여러 조합이 결정될 수 있다.
또한, 일 예로, 2차 역변환 결정부(520)는 현재 블록의 크기에 기초하여 2차 역변환이 적용되는 영역을 결정할 수도 있다.
2차 역변환부(530)는 결정된 2차 역변환을 이용하여 역양자화된 레지듀얼 블록에 대하여 2차 역변환을 수행할 수 있다.
1차 역변환부(540)는 2차 역변환된 레지듀얼 블록에 대하여 1차 역변환을 수행할 수 있다. 1차 변환(primary transform)은 코어 변환(core transform)으로 지칭될 수 있다. 일 예로, 1차 역변환부(540)는 전술한 MTS를 이용하여 1차 변환을 수행할 수 있다. 또한, 일 예로, 1차 역변환부(540)는 현재 블록에 MTS가 적용되는지 여부를 결정할 수 있다.
일 예로, 현재 블록에 MTS가 적용되는 경우(또는 tu_mts_flag 신택스 요소의 값이 1인 경우), 1차 역변환부(540)는 현재 블록의 인트라 예측 모드에 기초하여 MTS 후보를 구성할 수 있다. 또한, 1차 역변환부(540)는 구성된 MTS 후보들 중에서 특정 MTS를 지시하는 mts_idx 신택스 요소를 이용하여 현재 블록에 적용되는 1차 변환를 결정할 수 있다.
도 6은 변환 관련 파라미터에 기반한 역변환 방법의 일 예이다.
도 6을 참조하면, 일 실시예는 sps_mts_intra_enabled_flag 신택스 요소 또는 sps_mts_inter_enabled_flag 신택스 요소를 획득할 수 있다(S600). 여기서, sps_mts_intra_enabled_flag 신택스 요소는 tu_mts_flag 신택스 요소가 인트라 코딩 유닛의 레지듀얼 코딩 신택스에 포함되는지에 대한 정보를 나타낼 수 있다. 예를 들어, sps_mts_intra_enabled_flag 신택스 요소의 값이 0인 경우, tu_mts_flag 신택스 요소가 인트라 코딩 유닛의 레지듀얼 코딩 신택스에 포함되지 않을 수 있고, sps_mts_intra_enabled_flag 신택스 요소가 1인 경우, tu_mts_flag 신택스 요소 인트라 코딩 유닛의 레지듀얼 코딩 신택스에 포함될 수 있다.
또한, sps_mts_inter_enabled_flag 신택스 요소는 tu_mts_flag 신택스 요소가가 인터 코딩 유닛의 레지듀얼 코딩 신택스에 포함되는지에 대한 정보를 나타낼 수 있다. 예를 들어, sps_mts_inter_enabled_flag 신택스 요소의 값이 0인 경우, tu_mts_flag 신택스 요소가 인터 코딩 유닛의 레지듀얼 코딩 신택스에 포함되지 않을 수 있고, sps_mts_inter_enabled_flag 신택스 요소의 값이 1인 경우, tu_mts_flag 신택스 요소가 인터 코딩 유닛의 레지듀얼 코딩 신택스에 포함될 수 있다.
여기서, 상기 tu_mts_flag 신택스 요소는 다변환 선택(MTS: Multiple Transform Selection)이 루마 변환 블록의 레지듀얼 샘플에 적용되는지 여부를 나타낼 수 있다.
일 실시예는 sps_mts_intra_enabled_flag 신택스 요소 또는 sps_mts_inter_enabled_flag 신택스 요소를 기반으로 tu_mts_flag 신택스 요소를 획득할 수 있다(S610). 예를 들어, sps_mts_intra_enabled_flag 신택스 요소 또는 sps_mts_inter_enabled_flag 신택스 요소의 값이 1인 경우, 일 실시예는 tu_mts_flag 신택스 요소를 획득할 수 있다. 예를 들어, tu_mts_flag 신택스 요소의 값이 0인 경우, MTS가 루마 변환 블록의 레지듀얼 샘플에 적용되지 않을 수 있으며, tu_mts_flag 신택스 요소의 값이 1인 경우, MTS가 루마 변환 블록의 레지듀얼 샘플에 적용될 수 있다.
일 실시예는 tu_mts_flag 신택스 요소를 기반으로 mts_idx 신택스 요소를 획득할 수 있다(S620). 여기서, mts_idx 신택스 요소는 어떠한 변환 커널(transform kernel)이 현재 (루마) 변환 블록의 수평 및/또는 수직 방향에 따른 루마 레지듀얼 샘플들에 적용되는지에 대한 정보를 나타낼 수 있다. 예를 들어, tu_mts_flag 신택스 요소의 값이 1인 경우, 일 실시예는 mts_idx 신택스 요소를 획득할 수 있다. 또는 tu_mts_flag 신택스 요소의 값이 0인 경우, 일 실시예는 mts_idx 신택스 요소를 획득할 수 없을 수 있다.
일 실시예는 mts_idx 신택스 요소에 대응되는 변환 커널을 유도할 수 있다(S630). 또는 일 실시예는 mts_idx 신택스 요소를 기반으로 변환 커널을 도출할 수 있다.
한편, 다른 일 실시예로, 상기 tu_mts_flag 신택스 요소 및/또는 상기 mts_idx 신택스 요소에 대해 본 문서의 실시예들 중 적어도 하나가 적용될 수도 있다.
예를 들어, tu_mts_flag 신택스 요소는 sps_mts_intra_enabled_flag 신택스 요소 또는 sps_mts_inter_enabled_flag 신택스 요소를 기반으로 레지듀얼 코딩 신택스에 포함될 수 있고, mts_idx 신택스 요소는 tu_mts_flag 신택스 요소를 기반으로 변환 유닛 신택스에 포함될 수 있다.
또는 예를 들어, 상기 sps_mts_intra_enabled_flag 신택스 요소는 sps_explicit_mts_intra_enabled_flag 신택스 요소로 나타낼 수 있고, sps_mts_inter_enabled_flag 신택스 요소는 sps_explicit_mts_inter_enabled_flag 신택스 요소로 나타낼 수 있다. 또는 상기 tu_mts_flag 신택스 요소는 생략될 수 있고, 상기 mts_idx 신택스 요소가 상기 sps_explicit_mts_intra_enabled_flag 신택스 요소 또는 sps_explicit_mts_inter_enabled_flag 신택스 요소를 기반으로 코딩 유닛 신택스에 포함될 수도 있다.
예를 들어, 상기 mts_idx 신택스 요소에 대응되는 변환 커널은 수평 변환 및 수직 변환으로 구분되어 정의될 수 있다. 또는 상기 mts_idx 신택스 요소를 기반으로 결정되는 변환 커널을 수평 변환 및 수직 변환이 구분될 수 있다. 한편, 상기 수평 변환 및 수직 변환은 서로 다른 변환 커널이 적용될 수 있으나, 동일한 변환 커널이 적용될 수도 있으므로, 이에 한정되는 것은 아니다.
예를 들어, mts_idx 신택스 요소를 기반으로 결정되는 수평 변환 및 수직 변환에 적용되는 변환 커널에 대한 정보는 표 1 또는 표 2와 같을 수 있다.
Figure pat00001
Figure pat00002
일 실시예는 상기 변환 커널을 긱반으로 역변환을 수행할 수 있다(S640). 본 문서에서 역변환은 변환으로 나타낼 수 있고, 변환의 역을 나타낼 수도 있다.
도 7은 구체적인 역변환 방법의 일 예이다.
도 7을 참조하면, 일 실시예는 변환 크기(nTbS)를 확인할 수 있다(S710). 예를 들어, 상기 변환 크기(nTbS)는 스케일된(scaled) 변환 계수들의 수평 샘플 크기를 나타내는 변수일 수 있다.
일 실시예는 변환 커널 타입(trType)을 확인할 수 있다(S720). 예를 들어, 상기 변환 커널 타입(trType)은 변환 커널의 타입을 나타내는 변수일 수 있으며, 본 문서의 다양한 실시예들이 적용될 수 있다. 예를 들어, 변환 커널 타입은 도 6에서 설명한 trTypeHor 또는 trTypeVer를 나타낼 수도 있다.
일 실시예는 변환 크기(nTbS) 또는 변환 커널 타입(trType) 중 적어도 하나를 기반으로 변환 행렬 곱셈을 수행할 수 있다(S730). 예를 들어, 변환 커널 타입(trType)을 기반으로 특정 연산이 적용될 수 있다. 또는 예를 들어, 변환 크기(nTbS) 및 변환 커널 타입(trType)를 기반으로 기결정된 변환 행렬이 적용될 수도 있다.
일 실시예는 상기 변환 행렬 곱셈을 기반으로 변환 샘플을 도출할 수 있다(S740).
인코딩 장치/디코딩 장치는 상술한 역변환 과정을 수행할 수 있으며, 인코딩 장치는 상술한 역변환 과정의 역인 변환 과정도 수행할 수 있다.
도 8은 일 실시예에 따른 CABAC 인코딩 시스템의 블록도를 도시하는 도면으로, 단일 구문 요소를 코딩하기 위한 CABAC(context-adaptive binary arithmetic coding)의 블록도를 나타낸다.
CABAC의 인코딩 과정은 먼저 입력 신호가 이진값이 아닌 구문요소(syntax)인 경우에 이진화를 통해 입력 신호를 이진값로 변환한다. 입력 신호가 이미 이진값인 경우에는 이진화를 거치지 않고 바이패스, 즉 코딩 엔진으로 입력될 수 있다. 여기서, 이진값을 구성하는 각각의 이진수 0 또는 1을 빈(bin)이라고 할 수 있다. 예를 들어, 이진화된 후의 이진 스트링이 110인 경우, 1, 1, 0 각각을 하나의 빈이라고 한다. 하나의 구문요소에 대한 상기 빈(들)은 해당 구문요소의 값을 나타낼 수 있다.
이진화된 빈들은 정규(regular) 코딩 엔진 또는 바이패스 코딩 엔진으로 입력될 수 있다.
정규 코딩 엔진은 해당 빈에 대해 확률값을 반영하는 문맥을 모델을 할당하고, 할당된 문맥 모델에 기반해 해당 빈을 코딩할 수 있다. 정규 코딩 엔진에서는 각 빈에 대한 코딩를 수행한 뒤에 해당 빈에 대한 확률 모델을 갱신할 수 있다. 이렇게 코딩되는 빈들을 문맥 코딩된 빈(context-coded bin)이라 할 수 있다.
바이패스 코딩 엔진은 입력된 빈에 대해 확률을 추정하는 절차와 코딩 후에 해당 빈에 적용했던 확률 모델을 갱신하는 절차를 생략한다. 문맥을 할당하는 대신 균일한 확률 분포를 적용해 입력되는 빈을 코딩함으로써 코딩 속도를 향상시킨다. 이렇게 코딩되는 빈들을 바이패스 빈(bypass bin)이라 한다.
엔트로피 인코딩은 정규 코딩 엔진을 통해 코딩을 수행할 것인지, 바이패스 코딩 엔진을 통해 코딩을 수행할 것인지를 결정하고, 코딩 경로를 스위칭할 수 있다. 엔트로피 디코딩은 엔트로피 인코딩과 동일한 과정을 역순으로 수행한다.
한편, 일 실시예에서, (양자화된) 변환 계수는 transform_skip_flag, last_sig_coeff_x_prefix, last_sig_coeff_y_prefix, last_sig_coeff_x_suffix, last_sig_coeff_y_suffix, coded_sub_block_flag, sig_coeff_flag, abs_level_gt1_flag, par_level_flag, abs_level_gt3_flag, abs_remainder, dec_abs_level, coeff_sign_flag 및/또는 mts_idx 등의 신택스 요소들(syntax elements)을 기반으로 부호화 및/또는 복호화될 수 있다.
예를 들어, 레지듀얼 관련 정보 또는 레지듀얼 관련 정보에 포함된 신택스 요소들은 표 3 내지 표 5와 같이 나타낼 수 있다. 또는 레지듀얼 관련 정보에 포함된 레지듀얼 코딩 정보 또는 레지듀얼 코딩 신택스에 포함된 신택스 요소들은 표 3 내지 표 5와 같이 나타낼 수 있다. 표 3 내지 표 5는 하나의 신택스를 연속하여 나타낼 수 있다.
Figure pat00003
Figure pat00004
Figure pat00005
예를 들어, 레지듀얼 관련 정보는 레지듀얼 코딩 정보(또는 레지듀얼 코딩에 신택스에 포함된 신택스 요소들) 또는 변환 유닛 정보(또는 변환 유닛 신택스에 포함된 신택스 요소들)를 포함할 수 있고, 레지듀얼 코딩 정보는 표 6 내지 표 9와 같이 나타낼 수 있고, 변환 유닛 정보는 표 10 또는 표 11과 같이 나타낼 수 있다. 표 6 내지 표 9는 하나의 신택스를 연속하여 나타낼 수 있다.
Figure pat00006
Figure pat00007
Figure pat00008
Figure pat00009
Figure pat00010
Figure pat00011
상기 신택스 요소 transform_skip_flag는 연관된 블록(associated block)에 변환이 생략되는지 여부를 나타낸다. 상기 연관된 블록은 CB(coding block) 또는 TB(Transform block)일 수 있다. 변환(및 양자화) 및 레지듀얼 코딩 절차에 관하여, CB와 TB는 혼용될 수 있다. 예를 들어, CB에 대하여 레지듀얼 샘플들이 도출되고, 상기 레지듀얼 샘플들에 대한 변환 및 양자화를 통하여 (양자화된) 변환 계수들이 도출될 수 있음은 상술한 바와 같으며, 레지듀얼 코딩 절차를 통하여 상기 (양자화된) 변환 계수들의 위치, 크기, 부호 등을 효율적으로 나타내는 정보(예를 들어, 신텍스 요소들)이 생성되고 시그널링 될 수 있다. 양자화된 변환 계수들은 간단히 변환 계수들이라고 불릴 수 있다. 일반적으로 CB가 최대 TB보다 크지 않은 경우 CB의 사이즈는 TB의 사이즈와 같을 수 있으며, 이 경우 변환(및 양자화) 및 레지듀얼 코딩되는 대상 블록은 CB 또는 TB라고 불릴 수 있다. 한편, CB가 최대 TB보다 큰 경우에는 변환(및 양자화) 및 레지듀얼 코딩되는 대상 블록은 TB라고 불릴 수 있다. 이하 레지듀얼 코딩에 관련된 신텍스 요소들이 변환 블록(TB) 단위로 시그널링되는 것으로 설명하나, 이는 예시로서 상기 TB는 코딩 블록(CB)과 혼용될 수 있음은 상술한 바와 같다.
상기 표 3 내지 5에서 상기 신택스 요소 transform_skip_flag는 레지듀얼 코딩 신택스에서 시그널링되는 것으로 나타내었으나, 이는 예시이며, 상기 신택스 요소 transform_skip_flag는 상기 표 10 또는 11과 같이 변환 유닛 신택스에서 시그널링될 수도 있다. 상기 레지듀얼 코딩 신택스 및 상기 변환 유닛 신텍스는 상기 레지듀얼 (관련) 정보로 통칭할 수 있다. 예를 들어, 상기 신택스 요소 transform_skip_flag는 루마 성분 (루마 성분 블록)에 대하여만 시그널링될 수 있다(표 10 참조). 구체적으로 예를 들어, 상기 휘도 성분 블록에 0이 아닌 유효 계수가 존재하는 경우에, 상기 레지듀얼 관련 정보는 상기 휘도 성분 블록에 대한 상기 변환 스킵 플래그(transform_skip_flag)를 포함할 수 있다. 이 경우, 상기 레지듀얼 관련 정보는 상기 색차 성분 블록에 대한 상기 변환 스킵 플래그를 포함하지 않는다. 즉, 상기 레지듀얼 관련 정보는 상기 휘도 성분 블록에 대한 상기 변환 스킵 플래그를 포함하고, 상기 색차 성분 블록에 대한 상기 변환 스킵 플래그를 포함하지 않을 수 있다. 다시 말하면, 이 경우, 상기 색차 성분 블록에 대한 상기 변환 스킵 플래그는 명시적으로 시그널링되지 않고, 상기 색차 성분 블록에 대한 상기 변환 스킵 플래그의 값은 0으로 도출/추론(infer)될 수 있다.
또는 다른 예로, 상기 신택스 요소 transform_skip_flag는 휘도 성분 (휘도 성분 블록) 및 색차 성분 (색차 성분 블록)에 대하여 각각 시그널링될 수도 있다(표 11 참조).
다시 상기 표 3 내지 5 또는 6 내지 9를 참조하면, 일 실시예에서, 신택스 요소 last_sig_coeff_x_prefix, last_sig_coeff_y_prefix, last_sig_coeff_x_suffix 및 last_sig_coeff_y_suffix를 기반으로 변환 블록 내의 마지막 0이 아닌 변환 계수의 (x, y) 위치 정보를 코딩할 수 있다. 보다 구체적으로, 신택스 요소 last_sig_coeff_x_prefix는 변환 블록 내 스캔 순서(scanning order)에서의 마지막(last) 유효 계수(significant coefficient)의 열 위치(column position)의 프리픽스(prefix)를 나타내고, last_sig_coeff_y_prefix는 상기 변환 블록 내 상기 스캔 순서(scanning order)에서의 마지막(last) 유효 계수(significant coefficient)의 행 위치(row position)의 프리픽스(prefix)를 나타내고, 신택스 요소 last_sig_coeff_x_suffix는 상기 변환 블록 내 상기 스캔 순서(scanning order)에서의 마지막(last) 유효 계수(significant coefficient)의 열 위치(column position)의 서픽스(suffix)를 나타내고, 신택스 요소 last_sig_coeff_y_suffix는 상기 변환 블록 내 상기 스캔 순서(scanning order)에서의 마지막(last) 유효 계수(significant coefficient)의 행 위치(row position)의 서픽스(suffix)를 나타낸다. 여기서, 유효 계수는 상기 0이 아닌 계수를 나타낼 수 있다. 상기 스캔 순서는 우상향 대각 스캔 순서일 수 있다. 또는 상기 스캔 순서는 수평 스캔 순서, 또는 수직 스캔 순서일 수 있다. 상기 스캔 순서는 대상 블록(CB, 또는 TB를 포함하는 CB)에 인트라/인터 예측이 적용되는지 여부 및/또는 구체적인 인트라/인터 예측 모드를 기반으로 결정될 수 있다.
그 다음, 변환 블록을 4x4 서브 블록(sub-block)들로 분할한 후, 각 4x4 서브 블록마다 1비트의 신택스 요소 coded_sub_block_flag를 사용하여 현재 서브 블록 내에 0이 아닌 계수가 존재하는지 여부를 나타낼 수 있다. 상기 서브 블록은 CG(Coefficient Group)과 혼용되어 사용될 수 있다.
신택스 요소 coded_sub_block_flag의 값이 0이면 더 이상 전송할 정보가 없으므로 현재 서브 블록에 대한 코딩 과정을 종료할 수 있다. 반대로, 신택스 요소 coded_sub_block_flag의 값이 1이면 신택스 요소 sig_coeff_flag에 대한 코딩 과정을 계속해서 수행할 수 있다. 마지막 0이 아닌 계수를 포함하는 서브 블록은 신택스 요소 coded_sub_block_flag에 대한 코딩이 불필요하고, 변환 블록의 DC 정보를 포함하고 있는 서브 블록은 0이 아닌 계수를 포함할 확률이 높으므로, 신택스 요소 coded_sub_block_flag는 코딩되지 않고 그 값이 1이라고 가정될 수 있다.
만약 신택스 요소 coded_sub_block_flag의 값이 1이어서 현재 서브 블록 내에 0이 아닌 계수가 존재한다고 판단되는 경우, 역으로 스캔된 순서에 따라 이진값을 갖는 신택스 요소 sig_coeff_flag를 코딩할 수 있다. 스캔 순서에 따라 각각의 계수에 대해 1비트 신택스 요소 sig_coeff_flag를 코딩할 수 있다. 만약 현재 스캔 위치에서 변환 계수의 값이 0이 아니면 신택스 요소 sig_coeff_flag의 값은 1이 될 수 있다. 여기서, 마지막 0이 아닌 계수를 포함하고 있는 서브 블록의 경우, 마지막 0이 아닌 계수에 대해서는 신택스 요소 sig_coeff_flag를 코딩할 필요가 없으므로 상기 서브 블록에 대한 코딩 과정이 생략될 수 있다. 신택스 요소 sig_coeff_flag가 1인 경우에만 레벨 정보 코딩이 수행될 수 있으며, 레벨 정보 코딩 과정에는 네 개의 신택스 요소를 사용할 수 있다. 보다 구체적으로, 각 신택스 요소 sig_coeff_flag[xC][yC]는 현재 TB내 각 변환 계수 위치 (xC, yC)에서의 해당 변환 계수의 레벨(값)이 0이 아닌지(non-zero) 여부를 나타낼 수 있다. 일 실시예에서, 상기 신택스 요소 sig_coeff_flag는 양자화된 변환 계수가 0이 아닌 유효 계수인지 여부를 나타내는 유효 계수 플래그의 일 예시에 해당할 수 있다.
신택스 요소 sig_coeff_flag에 대한 코딩 이후의 남은 레벨 값은 아래의 수학식 1과 같을 수 있다. 즉, 코딩해야 할 레벨 값을 나타내는 신택스 요소 remAbsLevel은 아래의 수학식 1과 같을 수 있다. 여기서, coeff는 실제 변환 계수값을 의미할 수 있다.
Figure pat00012
신택스 요소 abs_level_gt1_flag는 해당 스캐닝 위치(n)에서의 remAbsLevel'이 1보다 큰 지 여부를 나타낼 수 있다. abs_level_gt1_flag의 값이 0이면 해당 위치의 계수의 절댓값은 1일 수 있다. abs_level_gt1_flag의 값이 1이면, 이후 코딩해야 할 레벨 값 remAbsLevel은 아래의 수학식 2와 같을 수 있다.
Figure pat00013
신택스 요소 par_level_flag을 통하여 아래의 수학식 3과 같이, 수학식 2에 기재된 remAbsLevel의 least significant coefficient (LSB) 값을 코딩할 수 있다. 여기서, 신택스 요소 par_level_flag[n]는 스캐닝 위치 n에서의 변환 계수 레벨(값)의 패리티(parity)를 나타낼 수 있다. 신택스 요소 par_level_flag 코딩 후에 코딩해야 할 변환 계수 레벨 값 remAbsLevel을 아래의 수학식 4와 같이 업데이트할 수 있다.
Figure pat00014
Figure pat00015
신택스 요소 abs_level_gt3_flag는 해당 스캐닝 위치(n)에서의 remAbsLevel'이 3보다 큰 지 여부를 나타낼 수 있다. 신택스 요소 abs_level_gt3_flag가 1인 경우에만 신택스 요소 abs_remainder의 코딩이 수행될 수 있다. 실제 변환 계수값인 coeff와 각 구문 요소(syntax)들의 관계를 정리하면 아래의 수학식 5와 같을 수 있으며, 아래의 표 12는 수학식 5와 관련된 예시들을 나타낼 수 있다. 마지막으로, 각 계수의 부호는 1비트 심볼인 신택스 요소 coeff_sign_flag를 이용해 코딩될 수 있다. |coeff|는 변환 계수 레벨(값)을 나타낼 수 있으며, 변환 계수에 대한 AbsLevel이라고 표시될 수도 있다.
Figure pat00016
Figure pat00017
일 실시예에서 상기 par_level_flag는 상기 양자화된 변환 계수에 대한 변환 계수 레벨의 패리티에 대한 패리티 레벨 플래그의 일 예시를 나타내고, 상기 abs_level_gt1_flag는 변환 계수 레벨 또는 코딩해야 할 레벨(값)이 제1 임계치보다 큰지 여부에 대한 제1 변환 계수 레벨 플래그의 일 예시를 나타내고, 상기 abs_level_gt3_flag는 변환 계수 레벨 또는 코딩해야 할 레벨(값)이 제2 임계치보다 큰지 여부에 대한 제2 변환 계수 레벨 플래그의 일 예시를 나타낼 수 있다.
도 9는 4x4 블록 내 변환 계수들의 예시를 도시하는 도면이다.
도 9의 4x4 블록은 양자화된 계수들의 일 예를 나타낼 수 있다. 도 9에 도시된 블록은 4x4 변환 블록이거나, 또는 8x8, 16x16, 32x32, 64x64 변환 블록의 4x4 서브 블록일 수 있다. 도 9의 4x4 블록은 휘도 블록 또는 색차 블록을 나타낼 수 있다. 도 9의 역 대각선 스캔되는 계수들에 대한 코딩 결과는, 예를 들어 표 13과 같을 수 있다. 표 13에서 scan_pos는 역 대각선 스캔에 따른 계수의 위치를 나타낼 수 있다. scan_pos 15는 4x4 블록에서 가장 먼저 스캔되는, 즉 우측하단 코너의 계수를 나타낼 수 있고 scan_pos 0은 가장 나중에 스캔되는, 즉 좌측상단 코너의 계수를 나타낼 수 있다. 한편, 일 실시예에서 상기 scan_pos는 스캔 위치라고 지칭될 수도 있다. 예를 들어, 상기 scan_pos 0은 스캔 위치 0이라고 지칭될 수 있다.
Figure pat00018
한편, CABAC은 높은 성능을 제공하지만 처리량(throughput) 성능이 좋지 않다는 단점을 갖는다. 이는 CABAC의 정규 코딩 엔진으로 인한 것인데, 정규 코딩은 이전 빈의 코딩을 통해 업데이트된 확률 상태와 범위를 사용하기 때문에 높은 데이터 의존성을 보이며, 확률 구간을 읽고 현재 상태를 판단하는데 많은 시간이 소요될 수 있다. 이는 문맥 코딩된 빈(context-coded bin)의 수를 제한함으로써 CABAC의 처리량 문제를 해결할 수 있다. 따라서, 표 3 내지 표 5 또는 표 6 내지 표 9과 같이 신택스 요소 sig_coeff_flag, abs_level_gt1_flag, par_level_flag를 표현하기 위해 사용된 빈의 합이 서브 블록의 크기에 따라 4x4 서브 블록일 경우 28, 2x2 서브 블록일 경우 6(remBinsPass1)으로 제한될 수 있으며, 신택스 요소 abs_level_gt3_flag의 문맥 코딩된 빈의 수가 4x4 서브 블록일 경우 4, 2x2 서브 블록일 경우 2(remBinsPass2)로 제한될 수 있다. 문맥 요소를 코딩하는 데에 제한된 문맥 코딩된 빈을 모두 사용할 경우, 나머지 계수들은 CABAC을 사용하지 않고 이진화하여 bypass 코딩을 수행할 수 있다.
한편, 본 문서의 일 실시예는 통합 변환 타입 시그널링(unified transform type signaling) 방법을 제안할 수 있다.
예를 들어, MTS 적용 여부에 대한 정보는 tu_mts_flag 신택스 요소로 나타낼 수 있고, 적용되는 변환 커널에 대한 정보는 mts_idx 신택스 요소로 나타낼 수 있다. 또한, tu_mts_flag 신택스 요소는 변환 유닛 신택스에 포함될 수 있고, mts_idx 신택스 요소는 레지듀얼 코딩 신택스에 포함될 수 있으며, 예를 들어, 표 14 및 표 15와 같이 나타낼 수 있다.
Figure pat00019
Figure pat00020
다만, 본 문서의 일 실시예는 통합 변환 타입 시그널링으로써, 하나의 정보만으로 MTS 적용 여부에 대한 정보 및 적용되는 변환 커널에 대한 정보를 나타낼 수 있다. 예를 들어, 상기 하나의 정보는 통합 변환 타입에 대한 정보라 나타낼 수도 있으며, tu_mts_idx 신택스 요소로 나타낼 수도 있다. 이 경우, 상기 tu_mts_flag 신택스 요소 및 상기 mts_idx 신택스 요소는 생략될 수 있다. tu_mts_idx 신택스 요소는 변환 유닛 신택스에 포함될 수 있으며, 예를 들어, 표 16과 같이 나타낼 수 있다.
Figure pat00021
MTS 플래그(또는 tu_mts_flag 신택스 요소)를 먼저 파싱하고, TS(Transform Skip) 플래그(또는 tranform_skip_flag 신택스 요소)의 다음에 MTS 인덱스(또는 mts_idx 신택스 요소)를 위하여 2개의 빈(bin)들을 가지는 고정 길이 코딩(fixed length coding)이 수행되는 것 대신에, 본 문서의 일 실시예에 따른서는 TU(Truncated Unary) 이진화(binarization)를 이용하는 새로운 조인트(joint) 신택스 요소인 tu_mts_idx 신택스 요소가 이용될 수 있다. 1번 빈은 TS, 제2 MTS 및 다음의 모든 MTS 인덱스를 나타낼 수 있다.
예를 들어, tu_mts_idx 신택스 요소의 시맨틱스 및 이진화는 표 17 또는 표 18과 같이 나타낼 수 있다.
Figure pat00022
Figure pat00023
예를 들어, 컨텍스트 모델들의 개수는 변경될 수 없고, tu_mts_idx 신택스 요소의 각 빈(bin)을 위한 컨텍스트 인덱스 증감(context index increment)인 ctxInc의 할당은 표 19와 같이 나타낼 수 있다.
Figure pat00024
한편, 본 문서의 일 실시예는 변환 스킵을 위한 레지듀얼 코딩 방법을 제안할 수 있다.
예를 들어, 양자화된 예측 레지듀얼(공간 도메인)을 나타내는 변환 스킵 레벨의 통계 및 신호 특성에 레지듀얼 코딩을 적응시키기 위해, 아래의 항목들이 수정될 수 있다.
(1) 마지막 유효 스캐닝 포지션 없음(no last significant scanning position): 레지듀얼 신호가 예측 이후의 공간적 레지듀얼을 반영하고, 변환에 의한 에너지 압축(energy compaction)이 TS(Transform Skip)에 대해 수행되지 않기 때문에, 변환 블록의 우하측(bottom-right) 코너에서 트레일링 제로(trailing zero)들 또는 유효하지 않은(insignificant) 레벨들을 위한 높은 확률이 더 이상 제공되지 않을 수 있다. 따라서, 마지막 유효 스캐닝 포지션 시그널링은 생략될 수 있다. 대신, 처리될 첫 번째 서브 블록은 변환 블록 내에서 가장 우하측 서브 블록일 수 있다.
(2) 서브 블록 CBFs: 마지막 유효 스캐닝 포지션 시그널링의 부재로 인하여 TS를 위한 coded_sub_block_flag 신택스 요소를 가지는 서브 블록 CBF 시그널링은 다음과 같이 수정될 수 있다.
- 양자화로 인해, 상술한 유효하지 않은 시퀀스는 여전히 변환 블록 내에서 국부적으로(locally) 발생할 수 있다. 따라서, 마지막 유효 스캐닝 포지션은 상술한 바와 같이 제거될 수 있고, coded_sub_block_flag 신택스 요소는 모든 서브 블록에 대해 코딩될 수 있다.
- DC 주파수 위치를 커버하는 서브 블록(좌상단 서브 블록)에 대한 coded_sub_block_flag 신택스 요소는 특별한 케이스로 나타날 수 있다. 예를 들어, 해당 서브 블록에 대한 coded_sub_block_flag 신택스 요소는 시그널링되지 않으며, 항상 1로 추론될 수 있다. 마지막 유효 스캐닝 포지션이 다른 서브 블록에 위치하는 경우, DC 서브 블록(DC 주파수 위치를 커버하는 서브 블록) 밖에 적어도 하나의 유효 레벨이 있는 것을 의미할 수 있다. 결과적으로, DC 서브 블록은 해당 서브 블록에 대한 coded_sub_block_flag 신택스 요소의 값이 1인 것으로 추론되지만 0/유효하지 않은 레벨만을 포함할 수 있다. TS에 마지막 스캐닝 포지션 정보가 없는 경우, 각 서브 블록에 대한 coded_sub_block_flag 신택스 요소가 시그널링될 수 있다. 이는 다른 모든 coded_sub_block_flag 신택스 요소의 값이 이미 0인 경우를 제외하고, DC 서브 블록에 대한 coded_sub_block_flag 신택스 요소가 포함될 수 있다. 이 경우, DC 서브 블록에 대한 coded_sub_block_flag 신택스 요소의 값이 1로 추론될 수 있다(inferDcSbCbf = 1). 이 DC 서브 블록에는 적어도 하나의 유효 레벨이 있어야하므로, DC 서브 블록 내의 다른 모든 sig_coeff_flag 신택스 요소들의 값이 0인 대신에 첫 번째 포지션 (0, 0)에 대한 sig_coeff_flag 신택스 요소가 시그널링되지 않을 수 있고, sig_coeff_flag 신택스 요소의 값은 1로 도출될 수 있다(inferSbDcSigCoeffFlag = 1).
- coded_sub_block_flag 신택스 요소에 대한 컨텍스트 모델링이 변경될 수 있다. 컨텍스트 모델 인덱스는 현재 서브 블록 대신 오른쪽의 coded_sub_block_flag 신택스 요소 및 아래쪽의 coded_sub_block_flag 신택스 요소의 합 및 둘의 논리합(logical disjunction)으로 계산될 수 있다.
(3) sig_coeff_flag 신택스 요소의 컨텍스트 모델링: sig_coeff_flag 신택스 요소의 컨텍스트 모델링의 로컬 템플릿은 현재 스캐닝 포지션의 우측 주변(NB0) 및 하측 주변(NB1)을 포함하도록 수정될 수 있다. 컨텍스트 모델 오프셋은 유효한 주변 포지션 sig_coeff_flag[NB0] + sig_coeff_flag[NB1]의 개수일 수 있다. 따라서, 현재 변환 블록 내의 대각선(diagonal) d에 따라 다른 컨텍스트 세트(set)들의 선택이 제거될 수 있다. 이는 sig_coeff_flag 신택스 요소를 코딩하기 위한 3개의 컨텍스트 모델들 및 단일(single) 컨텍스트 모델 세트를 야기할 수 있다.
(4) abs_level_gt1_flag 신택스 요소 및 par_level_flag 신택스 요소의 컨텍스트 모델링: abs_level_gt1_flag 신택스 요소 및 par_level_flag 신택스 요소에는 단일(single) 컨텍스트 모델이 사용될 수 있다.
(5) abs_remainder 신택스 요소의 코딩: 변환 스킵 레지듀얼 절대 레벨들의 경험적 분포(empirical distribution)는 일반적으로 여전히 라플라시안(laplacian) 또는 기하 분포(geometricl distribution)에 적합하지만, 변환 계수 절대 레벨들보다 더 큰 인스테이셔너리티(instationarity)가 존재할 수 있다. 특히, 연속적인 구현(realization)의 윈도우 내의 분산(variance)는 레지듀얼 절대 레벨들에 대해 더 높을 수 있다. 이로 인해, abs_remainder 신택스 요소의 이진화 및 컨텍스 모델링은 다음과 같이 수정될 수 있다.
- 이진화에 더욱 높은 컷오프(cutoff) 값을 이용하는 것, 즉 sig_coeff_flag 신택스 요소, abs_level_gt1_flag 신택스 요소, par_level_flag 신택스 요소 및 abs_level_gt3_flag 신택스 요소에 사용한 코딩으로부터 abs_remainder 신택스 요소에 대한 라이스 코드(rice code)로의 전환점(transition point) 및 각 빈 포지션에 대한 전용 컨텍스트 모델들은 더욱 높은 압축 효율을 야기할 수 있다. 컷오프를 증가시키는 것은 예를 들어, 컷오프에 도달할 때까지 abs_level_gt5_flag 신택스 요소 및 abs_level_gt7_flag 신택스 요소 등을 도입하는 것과 같이, "X보다 큰"플래그를 야기할 수 있다. 컷오프 자체는 5로 고정될 수 있다(numGtFlags = 5).
- 라이스 파라미터(rice parameter) 도출을 위한 템플릿이 수정될 수 있다. 즉, 현재 스캐닝 포지션의 좌측 주변 및 하측 주변만이 sig_coeff_flag 신택스 요소의 컨텍스트 모델링을 위한 로컬 템플릿에 유사하게 고려될 수 있다.
(6) coeff_sign_flag 신택스 요소의 컨텍스트 모델링: 부호들의 시퀀스 내의 인스테이셔너리티(instationarity) 및 예측 레지듀얼이 자주 바이어스(bias)되는 사실로 인하여, 글로벌 경험적 분포(empirical distribution)가 거의 균일하게 분포된 경우에도 부호들은 컨텍스트 모델들을 이용하여 코딩될 수 있다. 단일의 전용 컨텍스트 모델은 부호의 코딩에 사용될 수 있고, 부호는 모든 컨텍스트 코딩된 빈들을 함께 유지하기 위해 sig_coeff_flag 신택스 요소 이후에 파싱될 수 있다.
(7) 컨텍스트 코딩된 빈들의 감소(reduction): 첫 번째 스캐닝 패스, 즉 sig_coeff_flag 신택스 요소, abs_level_gt1_flag 신택스 요소 및 par_level_flag 신택스 요소의 전송(transmission)은 변경되지 않을 수 있다. 다만, 샘플 당 컨텍스트 코딩된 빈(CCB: Context Coded Bin)들의 최대 개수에 대한 한계(limit)는 제거될 수 있고, 다르게 처리될 수 있다. CCB들의 감소는 CCB > k가 유효하지 않은 것(CCB < k as invalid)으로 모드를 지정하여 보장될 수 있다. 여기서, k는 양의 정수일 수 있다. 예를 들어, 정규 레벨 코딩 모드에 대한 k는 2일 수 있으나, 이에 한정되는 것은 아니다. 이러한 한계는 양자화 공간의 감소에 대응될 수 있다.
예를 들어, 변환 스킵 레지듀얼 코딩 신택스는 표 20과 같이 나타낼 수 있다.
Figure pat00025
도 10은 본 문서의 일 예에 따른 잔차 신호 복호화부를 도시한 도면이다.
한편, 상기 표 3 내지 표 5 또는 표 6 내지 표 8를 참조하여 설명한 것과 같이, 잔차 신호, 특히 레지듀얼 신호를 코딩하기 전 해당 블록의 변환 적용 여부를 우선 전달할 수 있다. 변환 도메인에서의 잔차 신호 간 상관성을 표현함으로써 데이터의 압축(compaction)이 이루어지고 이를 디코딩 장치로 전달하는데, 만일 잔차 신호간 상관성이 부족할 경우 데이터 압축이 충분히 발생하지 않을 수 있다. 이러한 경우는 복잡한 계산 과정을 포함하는 변환 과정을 생략하고, 픽셀 도메인(공간 도메인)의 잔차 신호를 디코딩 장치로 전달할 수 있다.
변환을 거치지 않은 픽셀 도메인의 잔차 신호는 일반적인 변환 도메인의 잔차 신호와 특성 (잔차 신호의 분포도, 각 잔차 신호의 절대값 레벨(absolute level) 등)이 다르므로, 이하에서는 본 문서의 일 실시예에 따라 이러한 신호를 디코딩 장치로 효율적으로 전달하기 위한 잔차 신호 코딩 방법을 제안한다.
도 10에서 도시된 바와 같이, 잔차 신호 복호화부(1000)에는 해당 변환 블록에 변환이 적용되는지 여부를 나타내는 변환 적용 여부 플래그와 비트스트림(또는 코딩된 이진화 코드에 대한 정보)이 입력될 수 있고, (복호화된) 잔차 신호가 출력될 수 있다.
변환 적용 여부 플래그는 변환 여부 플래그, 변환 스킵 여부 플래그 또는 신택스 요소 transform_skip_flag에 의해 나타낼 수 있다. 코딩된 이진화 코드는 이진화 과정을 거쳐 잔차 신호 복호화부(1000)로 입력될 수도 있다.
잔차 신호 복호화부(1000)는 디코딩 장치의 엔트로피 디코딩부에 포함될 수 있다. 또한, 도 10에서 상기 변환 적용 여부 플래그는 설명의 편의를 위해 비트스트림과 구분하였으나, 상기 변환 적용 여부 플래그는 상기 비트스트림에 포함될 수 있다. 또는 상기 비트스트림은 상기 변환 적용 여부 플래그뿐만 아니라 변환 계수들에 관한 정보(변환이 적용되는 경우, 신택스 요소 transform_skip_flag = 0) 또는 잔차 샘플(의 값)에 관한 정보(변환이 적용되지 않은 경우, transform_skip_flag = 1)를 포함할 수 있다. 상기 변환 계수들에 관한 정보는 예를 들어, 상기 표 3 내지 표 5 또는 표 6 내지 표 9에서 나타낸 정보들(또는 신택스 요소들)을 포함할 수 있다.
변환 스킵 여부 플래그는 변환 블록 단위로 전송될 수 있으며, 예를 들어 표 3 내지 표 5에서는 변환 스킵 여부 플래그를 특정 블록 크기로 한정하나(변환 블록의 크기가 4x4 이하일 때만 transform_skip_flag를 파싱하는 조건이 포함됨), 일 실시예에서는 변환 스킵 여부 플래그의 파싱 여부를 결정하는 블록의 크기를 다양하게 구성할 수 있다. log2TbWidth 및 log2TbHeight의 크기는 변수 wN과 hN으로 결정될 수 있며, wN 및 hN은 예를 들어 수학식 6에서 나타낸 다음 중 하나의 값을 가질 수 있다.
Figure pat00026
예를 들어, 수학식 6에 따른 값을 가지는 wN 및 hN이 적용될 수 있는 신택스 요소는 표 21과 같이 나타낼 수 있다.
Figure pat00027
예를 들어, wN 및 hN은 각각 5의 값을 가질 수 있으며, 이 경우 너비가 32보다 작거나 같고, 높이가 32보다 작거나 같은 블록에 대하여 상기 변환 스킵 여부 플래그가 시그널링될 수 있다. 또는 wN 및 hN은 각각 6의 값을 가질 수 있으며, 이 경우 너비가 64보다 작거나 같고, 높이가 64보다 작거나 같은 블록에 대하여 상기 변환 스킵 여부 플래그가 시그널링될 수 있다. 예를 들어, wN 및 hN은 수학식 6과 같이 2, 3, 4, 5 또는 6의 값을 가질 수 있으며, 서로 같은 값을 가질 수 있고, 서로 다른 값을 가질 수도 있다. 또한, wN 및 hN의 값을 기반으로 변환 스킵 여부 플래그가 시그널링될 수 있는 블록의 너비 및 높이가 결정될 수 있다.
상술된 바와 같이, 변환 스킵 여부 플래그에 따라, 잔차 신호를 디코딩 하는 방법이 결정될 수 있다. 제안하는 방법을 통하여, 서로 통계적 특성이 다른 신호를 효율적으로 처리함으로써 엔트로피 복호화 과정에서의 복잡도를 절감하고 코딩 효율을 향상시킬 수 있다.
도 11은 본 문서의 일 예에 따른 변환 스킵 플래그 파싱 결정부를 도시한 도면이다.
한편, 상기 표 3 내지 표 5 또는 표 6 내지 표 9를 참조하여 설명한 것과 같이, 일 실시예는 잔차 신호를 코딩하기 전 해당 블록의 변환 적용 여부를 우선 전달할 수 있다. 변환 도메인에서의 잔차 신호 간 상관성을 표현함으로써 데이터의 압축(compaction)이 이루어지고, 이를 디코더로 전달하는데, 만일 잔차 신호간 상관성이 부족할 경우 데이터 압축이 충분히 발생하지 않을 수 있다. 이러한 경우는 복잡한 계산과정을 포함하는 변환 과정을 생략하고 픽셀 도메인(공간 도메인)의 잔차 신호를 디코더로 전달할 수 있다. 변환을 거차지 않은 픽셀 도메인의 잔차 신호는 일반적인 변환 도메인의 잔차 신호와 특성 (잔차 신호의 분포도, 각 잔차 신호의 absolute level 등)이 다르므로, 이러한 신호를 디코더에 효율적으로 전달하기 위한 잔차 신호 부호화 방법을 제안한다.
변환 스킵 여부 플래그는 변환 블록 단위로 전송될 수 있으며, 예를 들어 변환 스킵 여부 플래그의 시그널링을 특정 블록 크기로 한정하나(변환 블록의 크기가 4x4 이하일 때만 transform_skip_flag를 파싱하는 조건이 포함됨), 일 실시예에서는 변환 스킵 여부 플래그의 파싱 여부를 결정하는 조건을 블록의 너비 또는 높이에 대한 정보가 아닌 블록 내의 픽셀 또는 샘플의 개수로 정의할 수 있다. 즉, 변환 스킵 여부 플래그(예를 들어, 신택스 요소 transform_skip_flag)를 파싱하기 위하여 사용하는 조건 중 log2TbWidth 및 log2TbHeight의 곱을 이용하는 것으로 정의할 수 있다. 또는 변환 스킵 여부 플래그는 블록의 너비(예를 들어, log2TbWidth) 및 높이(예를 들어, log2TbHeight)의 곱을 기반으로 파싱될 수 있다. 또는 변환 스킵 여부 플래그는 블록의 너비(예를 들어, log2TbWidth) 및 높이(예를 들어, log2TbHeight)를 곱한 값에 따라 파싱 여부가 결정될 수 있다. 예를 들어, log2TbWidth 및 log2TbHeight는 수학식 7에서 나타낸 다음 중 하나의 값을 가질 수 있다.
Figure pat00028
일 실시예에 따르면, 블록 내 샘플의 개수를 기반으로 변환 스킵 여부 플래그의 파싱 여부를 결정할 경우, 블록의 너비 및 높이를 기반으로 상기 파싱 여부를 결정하는 것보다 다양한 모양의 블록을 (변환 스킵 여부 플래그를 파싱하지 않는) 변환 제외 블록에 포함시킬 수 있다.
예를 들어, log2TbWidth 및 log2TbHeight가 모두 2로 정의된 경우, 2x4, 4x2 및 4x4의 블록만 변환 제외 블록에 포함될 수 있으나, 샘플 개수로 제어할 경우 블록 내에 샘플의 개수가 16개 이하인 블록이 변환 제외 블록에 포함되므로, 상기 2x4, 4x2 및 4x4의 블록뿐만 아니라 2x8 및 8x2 크기의 블록도 변환 제외 블록에 포함시킬 수 있다.
상기의 변환 스킵 여부 플래그에 따라 잔차 신호를 디코딩 하는 방법이 결정될 수 있으며, 상술한 실시예에 따라 서로 통계적 특성이 다른 신호를 효율적으로 처리함으로써 엔트로피 디코딩 과정에서의 복잡도를 절감하고 코딩 효율을 향상시킬 수 있다.
예를 들어, 도 11에서 도시된 바와 같이, 변환 스킵 플래그 파싱 결정부(1100)에는 고급 문법 내 변환 스킵 허용 여부에 대한 정보, 블록 크기 정보 및 MTS(Multiple Transform Selection) 적용 여부에 대한 정보가 입력될 수 있고, 변환 스킵 플래그가 출력될 수 있다. 또는, 변환 스킵 플래그 파싱 결정부에는 고급 문법 내 변환 스킵 허용 여부에 대한 정보 및 블록 크기 정보가 입력될 수 있고, 이를 기반으로 변환 스킵 플래그가 출력될 수도 있다. 즉, 상기 변환 스킵 플래그는 상기 고급 문법 내 변환 스킵 허용 여부에 대한 정보에 따라 변환 스킵이 허용되는 경우, 상기 블록 크기 정보를 기반으로 출력(또는 파싱)될 수 있다. 상술한 정보들은 비트스트림 또는 신택스에 포함될 수 있다. 변환 스킵 플래그 파싱 결정부(1100)는 디코딩 장치의 엔트로피 디코딩부에 포함될 수 있다. 예를 들어, 상술한 정보들을 기반으로 변환 스킵 플래그가 결정되는 방법은 다음과 같을 수 있다.
도 12는 본 문서의 일 실시예에 따른 변환 스킵 여부 플래그를 코딩하는 방법을 설명하기 위한 순서도이다.
상술한 실시예를 도 12를 참조하여 다시 설명하면 다음과 같다.
우선, 고급 문법(high level syntax) 내 변환 스킵이 허용(enable)되는지가 판단될 수 있다(S1200). 예를 들어, 상기 고급 문법 내 변환 스킵 허용 여부에 대한 정보(예를 들어, transform_skip_enabled_flag 신택스 요소)를 기반으로 상기 고급 문법 내 변환 스킵이 허용되는지가 판단될 수 있다. 예를 들어, 상기 변환 스킵 허용 여부에 대한 정보(예를 들어, transform_skip_enabled_flag 신택스 요소)는 SPS(sequence parameter set)에서 시그널링될 수 있다. 또는 상기 변환 스킵 허용 여부에 대한 정보는 SPS 신택스에 포함되어 시그널링될 수 있다. 또는 상기 변환 스킵 허용 여부에 대한 정보는 PPS(picture parameter set)에서 또는 PPS 신택스에 포함되어 시그널링될 수도 있으나, 이에 한정되는 것은 아니다. 여기서 상기 고급 문법 내 변환 스킵이 허용된다 함은 해당 고급 문법을 참조하는 슬라이스/블록에 변환 스킵이 허용됨을 나타낼 수 있다. 상기 변환 스킵이 허용되는 블록에 실질적으로 변환 스킵이 적용되는지 여부는 상술한 변환 스킵 플래그를 기반으로 결정될 수 있다.
예를 들어, 상기 고급 문법 내 변환 스킵이 허용되는 경우, 신택스 내에 cu_mts_flag 신택스 요소의 값이 0인지가 판단될 수 있다(S1210). 예를 들어, MTS(Multiple Transform Selection) 허용 여부에 대한 정보를 기반으로 상기 cu_mts_flag 신택스 요소의 값이 0인지가 판단될 수 있다. 또는 상기 MTS 허용 여부에 대한 정보는 sps_mts_enabled_flag 신택스 요소를 기반으로 판단될 수 있다.
예를 들어, 상기 cu_mts_flag 신택스 요소의 값이 0인 경우, log2TbWidth 및 log2TbHeight의 곱이 임계치(threshold)보다 작거나 같은지가 판단될 수 있다(S1220). 또는 현재 블록의 너비의 밑이 2인 로그 값 및 상기 현재 블록의 높이의 밑이 2인 로그 값을 곱한 값이 상기 임계치보다 작은지 판단될 수 있다. 또는 현재 블록의 너비 및 높이를 곱한 값이 임계치보다 작은지 판단될 수 있다. 예를 들어, 상기 블록 크기 정보를 기반으로 log2TbWidth 및 log2TbHeight의 곱이 임계치(threshold)보다 작거나 같은지가 판단될 수 있다. 상기 블록 크기 정보는 상기 현재 블록의 너비 및 높이에 대한 정보를 포함할 수 있다. 또는 상기 블록 크기 정보는 상기 현재 블록의 너비 및 높이의 밑이 2인 로그 값에 대한 정보를 포함할 수 있다.
예를 들어, 상기 log2TbWidth 및 log2TbHeight의 곱이 임계치보다 작거나 같은 경우, 변환 스킵 여부 플래그(또는 transform_skip_flag 신택스 요소)의 값은 1로 결정될 수 있다(S1230). 또는 1의 값을 가지는 변환 스킵 여부 플래그가 파싱될 수 있다. 또는 예를 들어, 설정 또는 조건에 따라 상기 log2TbWidth 및 log2TbHeight의 곱이 임계치보다 작거나 같은 경우, 변환 스킵 여부 플래그(또는 transform_skip_flag 신택스 요소)의 값은 0로 결정될 수 있다. 또는 0의 값을 가지는 변환 스킵 여부 플래그가 파싱될 수 있다. 또는 변환 스킵 여부 플래그가 파싱되지 않을 수 있다. 다시 말해, 상기 결정되는 변환 스킵 여부 플래그의 값은 일 예로서, 설정 또는 조건에 따라 달라질 수 있다. 즉, 상기 변환 스킵 여부 플래그는 상기 log2TbWidth 및 log2TbHeight의 곱이 임계치보다 작거나 같은 경우, 현재 블록에 변환 스킵이 적용된다는 정보를 나타낼 수 있다. 또는 상기 변환 스킵 여부 플래그를 기반으로 현재 블록은 변환 제외 블록에 포함될 수 있으며, 변환이 적용되지 않을 수 있다.
예를 들어, 상기 고급 문법 내 변환 스킵이 허용되지 않는 경우, 상기 cu_mts_flag 신택스 요소의 값이 0이 아닌 경우, 또는 상기 log2TbWidth 및 log2TbHeight의 곱이 임계치보다 큰 경우, 변환 스킵 여부 플래그(또는 transform_skip_flag 신택스 요소)의 값은 0으로 결정될 수 있다(S1240). 또는 0의 값을 가지는 변환 스킵 여부 플래그가 파싱될 수 있다. 또는 변환 스킵 여부 플래그가 파싱되지 않을 수 있다. 또는 예를 들어, 설정 또는 조건에 따라 상기 고급 문법 내 변환 스킵이 허용되지 않는 경우, 상기 cu_mts_flag 신택스 요소의 값이 0이 아닌 경우, 상기 log2TbWidth 및 log2TbHeight의 곱이 임계치보다 큰 경우, 변환 스킵 여부 플래그(또는 transform_skip_flag 신택스 요소)의 값은 1로 결정될 수 있다. 또는 1의 값을 가지는 변환 스킵 여부 플래그가 파싱될 수 있다. 다시 말해, 상기 결정되는 변환 스킵 여부 플래그의 값은 일 예로서, 설정 또는 조건에 따라 달라질 수 있다. 즉, 상기 변환 스킵 여부 플래그는 고급 문법 내 변환 스킵이 허용되지 않는 경우, 상기 cu_mts_flag 신택스 요소의 값이 0이 아닌 경우, 상기 log2TbWidth 및 log2TbHeight의 곱이 임계치보다 큰 경우, 현재 블록에 변환 스킵이 적용되지 않는다는 정보를 나타낼 수 있다. 또는 상기 변환 스킵 여부 플래그를 기반으로 현재 블록은 변환 제외 블록에 포함되지 않을 수 있으며, 변환이 적용될 수 있다.
또는 예를 들어, cu_mts_flag 신택스 요소는 MTS tu_mts_flag 신택스 요소 또는 mts_flag 요소로 나타낼 수도 있으며, sps_mts_enabled_flag 신택스 요소를 기반으로 sps_mts_intra_enabled_flag 신택스 요소(또는 sps_explicit_mts_intra_enabled_flag 신택스 요소) 또는 sps_mts_inter_enabled_flag 신택스 요소(또는 sps_explicit_mts_inter_enabled_flag 신택스 요소)가 (SPS 신택스에 포함되어) 시그널링될 수 있다.
*한편, 본 문서의 다른 실시예에서는 변환 여부 정보를 포함하는 변환 커널 인덱스(transform kernel index) 사용 시 변환 스킵 크기의 정의 방법을 제안한다.
변환(또는 변환 코딩)을 수행하지 않은 블록은 일반적인 변환이 수행된 블록과 레지듀얼(residual) 데이터의 특성이 다르므로, 변환이 수행되지 않은 블록을 위한 효율적인 잔여 데이터 코딩 방법이 요구될 수 있다. 변환 수행 여부를 나타내는 변환 여부 플래그는 변환 블록(transform block) 또는 변환 유닛(transform unit) 단위로 전송될 수 있으며, 본 문서에서는 변환 블록의 크기를 한정하지 않는다. 예를 들어, 변환 여부 플래그가 1인 경우, 본 문서에서 제안하는 레지듀얼 (데이터) 코딩(예를 들어, 표 20과 변환 스킵을 위한 레지듀얼 코딩)이 수행될 수 있으며, 변환 여부 플래그가 0인 경우, 표 3 내지 표 5 또는 표 6 내지 표 9와 같은 레지듀얼 코딩이 수행될 수 있다. 예를 들어, 변환 여부 플래그는 레지듀얼 코딩 신택스 또는 변환 유닛 신택스에 포함되는 transform_skip_flag 신택스 요소를 포함할 수 있다. 또한, 상기 transform_skip_flag 신택스 요소는 값이 1인 경우, 본 문서의 일 실시예에서 제안하는 (변환 스킵을 위한) 레지듀얼 코딩 방법이 수행될 수 있다.
또는 예를 들어 상기 transform_skip_flag 신택스 요소의 값이 1인 경우, if(!transform_skip_flag) 조건에 따라 변환 스킵 레지듀얼 코딩(residual_ts_coding) 신택스를 기반으로 변환이 수행되지 않는 레지듀얼 코딩이 수행될 수도 있다. 또는 상기 transform_skip_flag 신택스 요소는 값이 0인 경우, if(!transform_skip_flag) 조건에 따라 레지듀얼 코딩(residual_coding) 신택스를 기반으로 변환이 수행되는 레지듀얼 코딩이 수행될 수 있다.
또는 예를 들어, coded_sub_block_flag 신택스 요소 이하에서 coeff_sign_flag 신택스 요소를 제외한 레지듀얼 코딩은 상기 본 문서의 일 실시예에서 제안하는 (변환 스킵을 위한) 레지듀얼 코딩 방법의 일부 또는 전부를 따를 수 있다.
또는 예를 들어, 본 문서의 일 실시예에서 제안하는 통합 변환 타입 시그널링(unified transform type signaling) 방법이 수행될 수 있고, 이 때에는 tu_mts_idx 신택스 요소의 값이 1인 경우(또는 tu_mts_idx 신택스 요소가 대상 블록에 변환이 적용되지 않는다는 정보를 나타내는 경우), 상기 본 문서의 일 실시예에서 제안하는 (변환 스킵을 위한) 레지듀얼 코딩 방법이 수행될 수 있다. 또는 tu_mts_idx 신택스 요소의 값이 0인 경우(또는 tu_mts_idx 신택스 요소의 값이 1이 아닌 값인 경우), 표 3 내지 표 5 또는 표 6 내지 표 9와 같은 레지듀얼 코딩 또는 레지듀얼 코딩(residual_coding) 신택스를 기반으로 변환이 수행되는 레지듀얼 코딩이 수행될 수 있다. 이 경우, 본 문서의 일 실시예에서 제안하는 통합 변환 타입 시그널링(unified transform type signaling) 방법과 함께 설명한 바와 같이, 표 3 내지 표 5에서 변환 여부 플래그(또는 transform_skip_flag 신택스 요소) 및/또는 변환 인덱스(또는 mts_idx 신택스 요소)는 생략될 수 있다.
또는 예를 들어, 값이 0인 tu_mts_idx 신택스 요소가 대상 블록에 변환이 적용되지 않음(또는 변환 스킵)을 나타낸다고 가정하면, tu_mts_idx 신택스 요소의 값이 0인 경우, 상기 본 문서의 일 실시예에서 제안하는 (변환 스킵을 위한) 레지듀얼 코딩 방법이 수행될 수 있다. 또는 tu_mts_idx 신택스 요소의 값이 0이 아닌 경우, 표 3 내지 표 5 또는 표 6 내지 표 9와 같이 레지듀얼 코딩(residual_coding) 신택스를 기반으로 변환이 수행되는 레지듀얼 코딩이 수행될 수 있다. 이 경우, 변환 여부 플래그(또는 transform_skip_flag 신택스 요소) 및/또는 변환 인덱스(또는 mts_idx 신택스 요소)는 생략될 수 있다. 이 경우, "tu_mts_idx == 1 ?" 판단 절차 또는 조건은 "tu_mts_idx == 0 ?" 판단 절차 또는 조건으로 대체될 수 있다.
본 문서의 일 실시예에서 제안하는 통합 변환 타입 시그널링(unified transform type signaling) 방법과 함께 설명한 바와 같이, 변환 여부 플래그(또는 transform_skip_flag 신택스 요소) 또는 변환 인덱스(또는 mts_idx 신택스 요소)에 대한 이진화는 예를 들어, 표 17 또는 표 18과 같이 MTS & TS enabled, MTS enabled 및 TS enabled인 경우 각각 다르게 정의될 수 있다. 또는 변환 스킵이 정의되는 크기(또는 변환 스킵이 가능한 크기)는 mts_enabled의 값이 0 또는 1인지에 따라 다르게 정의될 수도 있다. 또는 변환 스킵이 가능한 크기는 MTS enabled(또는 MTS가 허용되는지에 대한 정보)를 기반으로 정의될 수도 있다. 예를 들어, MTS enabled는 MTS가 허용되는지에 대한 정보를 나타낼 수 있고, sps_mts_enabled_flag 신택스 요소를 기반으로 도출될 수 있다. 예를 들어, MTS enabled의 값이 1인 것은 sps_mts_enabled_flag 신택스 요소의 값이 1인 것을 나타낼 수 있다. 또는, MTS enabled의 값이 1인 것은 MTS가 허용된다는 정보를 나타낼 수도 있다. 또는, MTS enabled의 값이 0인 것은 sps_mts_enabled_flag 신택스 요소의 값이 0인 것을 나타낼 수 있다. 또는, MTS enabled의 값이 0인 것은 MTS가 허용되지 않는다는 정보를 나타낼 수도 있다.
예를 들어, MTS enabled의 값이 1인 경우, 변환 스킵의 크기(또는 변환 스킵이 가능한 블록의 크기)는 허용된 MTS에 종속적일 수 있다. 예를 들어, MTS의 크기가 32 이하에서 허용될 경우(또는 블록 크기가 32 이하인 경우에만 MTS가 허용되는 경우), 변환 스킵는 이와 동일하게 크기가 32 이하인 블록에 대해서 항상 정의될 수 있다.
또는 예를 들어, MTS enabled의 값이 1인 경우, 인코딩 장치 및 디코딩 장치는 미리 약속된 또는 기설정된 최대 크기를 사용할 수 있다. 또한, 상기 최대 크기에 따라 TS enabled가 정의될 수 있다. 예를 들어, 인코딩 장치 및 디코딩 장치는 한 변의 길이가 8보다 작거나 같은 블록에 대하여 변환 스킵을 사용하도록 정의할 수 있다. 이 경우에는 블록의 한 변의 길이가 8보다 큰 블록에 대해서는 TS enabled의 값이 0으로 정의됨으로서 상기 표 17 또는 표 18의 이진화 테이블을 유효하게 적용할 수 있다. 또는 블록의 한 변의 최대 길이가 아닌 최대 샘플의 개수를 이용하여 변환 스킵 블록(또는 변환 스킵이 가능한)의 최대 크기 정보를 나타낼 수도 있다.
또는 예를 들어, MTS enabled의 값이 1인 경우, MTS의 크기(또는 MTS가 허용되는 블록의 크기)와는 별도로 변환 스킵(또는 변환 스킵이 가능한 블록)의 최대 크기가 정의될 수 있다. 이 경우, MTS의 크기(또는 MTS가 허용되는 블록의 크기)를 정의하기 위해 변환 스킵(또는 변환 스킵이 가능한 블록)의 크기에 대한 정보가 시그널링될 수 있다. 또는 인코딩 장치로부터 디코딩 장치로 전송될 수 있다. 예를 들어, MTS의 크기가 32 이하에서 허용될 경우(또는 블록 크기가 32 이하인 경우에만 MTS가 허용되는 경우), MTS의 크기(또는 MTS가 허용되는 블록의 크기)를 따르는지의 여부에 대한 플래그를 시그널링할 수 있고, MTS의 최대 크기(또는 MTS가 허용되는 블록의 최대 크기)를 따르지 않을 경우, 변환 스킵(또는 변환 스킵이 가능한 블록)의 최대 크기를 16까지 허용하도록 하는 정보를 시그널링할 수 있다. 이 경우에는 블록 한 변의 길이가 16 이상일 경우 TS enabled의 값이 0으로 정의됨으로써 상기 표 17 또는 표 18의 이진화 테이블을 유효하게 적용할 수 있다. 또는 블록의 한 변의 최대 크기가 아닌 최대 샘플의 개수를 이용하여 변환 스킵 블록(또는 변환 스킵이 가능한)의 최대 크기 정보를 나타낼 수도 있다.
또는 예를 들어, MTS enabled의 값이 0인 경우, 인코딩 장치 및 디코딩 장치는 미리 약속된 또는 기설정된 최대 크기를 사용할 수 있다. 예를 들어, MTS enabled의 값이 0이며, TS enabled의 값이 1인 경우, 인코딩 장치 및 디코딩 장치는 한 변의 길이가 8보다 작거나 같은 블록에 대하여 변환 스킵을 사용하도록 정의할 수 있다. 또는 블록의 한 변의 최대 크기가 아닌 최대 샘플의 개수를 이용하여 변환 스킵 블록(또는 변환 스킵이 가능한)의 최대 크기 정보를 나타낼 수도 있다.
또는 예를 들어, MTS enabled의 값이 0인 경우, 변환 스킵(또는 변환 스킵이 가능한 블록)의 최대 크기 정보를 전송할 수 있다. 예를 들어, 변환 스킵(또는 변환 스킵이 가능한 블록)의 최대 크기를 16까지 허용하도록 하는 정보를 고급 구문(high level syntax)으로 시그널링할 수 있다. 이 경우에는 블록의 한 변의 길이가 16 이상이면 TS enabled의 값이 0으로 정의됨으로서 상기 표 17 또는 표 18의 이진화 테이블을 유효하게 적용할 수 있다. 또는 블록의 한 변의 최대 크기가 아닌 최대 샘플의 개수를 이용하여 변환 스킵 블록(또는 변환 스킵이 가능한)의 최대 크기 정보를 나타낼 수도 있다.
예를 들어, 상기 tu_mts_idx 신택스 요소는 상술한 CABAC 기반으로 인코딩/디코딩될 수 있다. 이 경우, 상기 tu_mts_idx 신택스 요소의 빈 스트링(bin string)은 예를 들어, 상기 표 17 또는 표 18에서 나타낸 바와 같은 빈들을 포함할 수 있다. 상기 tu_mts_idx 신택스 요소의 빈 스트링의 빈들 중 적어도 하나는 컨텍스트 정보(또는 컨텍스트 모델)를 기반으로 코딩(또는 정규 코딩)될 수 있다.
상기 정규 코딩되는 빈들 각각에 대한 컨텍스트 모델을 나타내는 컨텍스트 인덱스는 컨텍스트 인덱스 증감 및 컨텍스트 인덱스 오프셋을 기반으로 도출될 수 있다. 또는 예를 들어, 컨텍스트 인덱스는 ctxIdx로 나타낼 수 있으며, 컨텍스트 인덱스 증감(context index increment)은 ctxInc로 나타낼 수 있고, 컨텍스트 인덱스 오프셋(context index offset)은 ctxIdxOffset로 나타낼 수 있다. 또한, ctxIdx는 ctxInc 및 ctxIdxOffset의 합으로 도출될 수 있다. 예를 들어, 상기 ctxInc는 상기 표 19에서 나타낸 바와 같이 각 빈 별로 다르게 도출될 수 있다. 상기 ctxIdxOffset는 상기 ctxIdx의 최소값(the lowest value)을 나타낼 수 있다 또는 예를 들어, 상기 표 19에서 나타낸 바와 같이 cqtDepth(coded quad-tree depth)를 기반으로 컨텍스트 인덱스가 결정될 수 있다. 또는 예를 들어, 블록의 크기, 블록의 너비-높이의 비율, 블록의 인트라 또는 인터 예측 여부, 주변의 변환 스킵 여부 등에 따라 컨텍스트 인덱스가 결정될 수 있다.
예를 들어, 블록의 크기가 8x8보다 작은 경우에는 인덱스 0번의 컨텍스트 모델을 사용할 수 있고, 8x8보다 크거나 같은 경우에는 인덱스 1번의 컨텍스트 모델을 사용할 수 있다.
또는 예를 들어, 블록의 너비-높이의 비율이 1인 경우에는 인덱스 0번의 컨텍스트 모델을 사용할 수 있고, 블록의 너비가 블록의 높이보다 큰 경우에는 인덱스 1번의 컨텍스트 모델을 사용할 수 있고, 블록의 높이가 블록의 너비보다 큰 경우에는 인덱스 2번의 컨텍스트 모델을 사용할 수 있다. 이 경우, 예를 들어, 블록의 너비 및 높이를 기반으로 결정되는 컨텍스트 인덱스는 다음의 표 22와 같을 수 있다.
Figure pat00029
또는 예를 들어, 현재 블록의 예측 모드가 인트라 모드인 경우 인덱스 0번의 컨텍스트 모델을 사용할 수 있고, 인터 모드인 경우 인덱스 1번의 컨텍스트 모델을 사용할 수 있다.
예를 들어, 상기 tu_mts_idx 신택스 요소는 상술한 바와 같이 결정된 인덱스에 따른 컨텍스트 모델을 이용하여 코딩될 수 있다. 컨텍스트 모델 및 모델의 개수는 확률 및 분포를 기반으로 다양하게 정의될 수 있으므로, 본 문서에서는 특정 컨텍스트 모델 및 컨텍스트 모델의 개수에 한정되지 않는다.
예를 들어, 상기 인덱스는 컨텍스트 인덱스를 나타낼 수 있으며, 인덱스 0번은 ctxIdx 값이 0인 것을 나타낼 수 있고, 인덱스 1번은 ctxIdx 값이 1인 것을 나타낼 수 있다.
예를 들어, 상기 ctxIdx의 최소값은 상기 ctxIdx의 초기값(initValue)으로 나타낼 수 있으며, 상기 ctxIdx의 초기값은 컨텍스트 테이블을 기반으로 결정될 수 있다. 또는, 상기 ctxIdx의 초기값은 상기 컨텍스트 테이블 및 초기 타입(initType)을 이용하여 결정될 수 있다. 상기 초기 타입은 미리 결정될 수 있다. 또는, 상기 초기 타입은 관련 정보가 시그널링되어 결정될 수도 있다. 예를 들어, 상기 초기 타입은 초기 타입 정보(예를 들어, cabac_init_flag 신택스 요소 또는 cabac_init_idx 신택스 요소)에 의하여 시그널링될 수 있다.
다시 말해, 상기 tu_mts_idx 신택스 요소의 빈 스트링의 빈들은 각 빈들에 대한 컨텍스트 모델을 기반으로 컨텍스트 기반 코딩(또는 정규 코딩)될 수 있다. 이 경우, 상기 컨텍스트 모델은 상기 ctxInc 및 ctxIdxOffset의 합으로 도출될 수 있다. 또한, 상기 ctxInc는 각 빈 별로 다르게 결정될 수 있다.
예를 들어, 인코딩 장치는 상기 tu_mts_idx 신택스 요소의 값을 도출하고, 이진화 절차를 통하여 상기 값에 대응하는 이진화 빈들을 도출할 수 있으며, 상기 빈들 각각에 대한 컨텍스트 모델을 도출하여 상기 빈들을 인코딩할 수 있다. 이 경우, 상기 컨텍스트 모델을 기반한 산술 코딩(arithmetic coding)에 따라 상기 빈들의 길이와 같거나 더 짧은 길이의 비트열(bitstring)이 출력될 수 있다.
예를 들어, 디코딩 장치는 상기 tu_mts_idx 신택스 요소에 대한 이진화 절차를 통하여 후보 빈 스트링들을 도출하고, 비트스트림으로부터 상기 tu_mts_idx 신택스 요소에 대한 비트들을 순차적으로 파싱하며 상기 tu_mts_idx 신택스 요소에 대한 빈들을 디코딩할 수 있다. 이 경우, 디코딩 장치는 상기 빈들 각각에 대한 컨텍스트 모델을 도출하여 상기 빈들을 디코딩할 수 있다. 상기 디코딩된 빈들은 상기 후보 빈 스트링들 중 하나에 대응하는지 판단될 수 있다. 상기 디코딩된 빈들이 상기 후보 빈 스트링들 중 하나에 대응되는 경우, 디코딩 장치는 상기 대응되는 빈 스트링이 나타내는 값을 상기 tu_mts_idx 신택스 요소의 값으로 도출할 수 있다. 상기 디코딩된 빈들이 상기 후보 빈 스트링들 중 하나에 대응되지 않는 경우, 디코딩 장치는 비트를 추가적으로 파싱하며 상술한 절차를 반복할 수 있다.
상술한 바와 같이, 본 문서의 일 실시예는 tu_mts_idx 신택스 요소를 코딩함에 있어서, 블록의 크기, 블록의 너비-높이의 비율, 블록의 인트라 또는 인터 예측 여부 또는 주변의 변환 스킵 여부 등 중 적어도 하나를 기반으로 ctxInc 및/또는 ctxIdx를 다르게 결정할 수 있으며, 이 경우, 추가적인 정보의 시그널링 없이 동일한 빈 인덱스(binIdx)의 빈에 대하여 다른 컨텍스트 모델을 적응적으로 적용할 수 있다.
예를 들어, 현재 픽처 내의 제1 블록에 대한 i번째 빈에 대하여는 제1 컨텍스트 정보을 도출하고, 상기 현재 픽처 내의 제2 블록에 대한 동일한 i번째 빈에 대하여는 제2 컨텍스트 정보을 도출할 수 있다. 여기서, i는 빈 인덱스에 대응될 수 있으며, 예를 들어, 상기 표 19 또는 표 22에서 나타낸 바와 같이 0 내지 4 중 하나의 값을 나타낼 수 있다. 예를 들어, 상기 컨텍스트 정보는 컨텍스트 인덱스 또는 컨텍스트 모델에 관한 정보를 포함할 수 있다.
한편, 예를 들어 본 문서의 상술한 실시예들에 따른 정보들 중 적어도 일부는 표 23 내지 표 27과 같이 하이레벨(high-level) 신택스에 포함될 수 있다. 또는 하이레벨 신택스에 포함되어 시그널링될 수 있다. 또는 상술한 실시예들에 따른 정보들 중 적어도 일부는 SPS(sequence parameter set) 신택스에 포함될 수 있다. 또는 SPS 신택스에 포함되어 시그널링될 수 있다. 예를 들어, 표 23 내지 표 27은 하나의 신택스를 연속하여 나타낼 수 있으며, 신택스에 포함된 신택스 요소들은 순차적으로 시그널링, 구성 또는 파싱될 수 있다.
Figure pat00030
Figure pat00031
Figure pat00032
Figure pat00033
Figure pat00034
예를 들어, 표 23 내지 표 27과 같이 SPS 신택스에 포함된 신택스 요소들이 나타내는 정보들 또는 상기 신택스 요소들의 시맨틱스는 표 28 내지 표 35와 같이 나타낼 수 있다.
Figure pat00035
Figure pat00036
Figure pat00037
Figure pat00038
Figure pat00039
Figure pat00040
Figure pat00041
Figure pat00042
한편, 예를 들어 본 문서의 상술한 실시예들에 따른 정보들 중 적어도 일부는 표 36 또는 표 37 내지 표 39와 같이 하이레벨(high-level) 신택스에 포함될 수 있다. 또는 하이레벨 신택스에 포함되어 시그널링될 수 있다. 또는 상술한 실시예들에 따른 정보들 중 적어도 일부는 PPS(picuture parameter set) 신택스에 포함될 수 있다. 또는 PPS 신택스에 포함되어 시그널링될 수 있다. 예를 들어, 표 37 내지 표 39은 하나의 신택스를 연속하여 나타낼 수 있으며, 신택스에 포함된 신택스 요소들은 순차적으로 시그널링, 구성 또는 파싱될 수 있다.
Figure pat00043
Figure pat00044
Figure pat00045
Figure pat00046
예를 들어, 표 36 또는 표 37 내지 표 39와 같이 PPS 신택스에 포함된 신택스 요소들이 나타내는 정보들 또는 상기 신택스 요소들의 시맨틱스는 표 40 내지 표 42와 같이 나타낼 수 있다.
Figure pat00047
Figure pat00048
Figure pat00049
한편, 예를 들어 본 문서의 상술한 실시예들에 따른 정보들 중 적어도 일부는 표 43 내지 표 47과 같이 코딩 유닛(coding unit) 신택스에 포함될 수 있다. 또는 코딩 유닛 신택스에 포함되어 시그널링될 수 있다. 예를 들어, 표 43 내지 표 47은 하나의 신택스를 연속하여 나타낼 수 있으며, 신택스에 포함된 신택스 요소들은 순차적으로 시그널링, 구성 또는 파싱될 수 있다.
Figure pat00050
Figure pat00051
Figure pat00052
Figure pat00053
Figure pat00054
예를 들어, 표 43 내지 표 47과 같이 코딩 유닛 신택스에 포함된 신택스 요소들이 나타내는 정보들 또는 상기 신택스 요소들의 시맨틱스는 표 48 내지 표 51과 같이 나타낼 수 있다.
Figure pat00055
Figure pat00056
Figure pat00057
Figure pat00058
한편, 예를 들어 본 문서의 상술한 실시예들에 따른 정보들 중 적어도 일부는 표 52 또는 표 53 내지 표 54와 같이 변환 유닛(transform unit) 신택스에 포함될 수 있다. 또는 변환 유닛 신택스에 포함되어 시그널링될 수 있다. 예를 들어, 표 53 내지 표 54는 하나의 신택스를 연속하여 나타낼 수 있으며, 신택스에 포함된 신택스 요소들은 순차적으로 시그널링, 구성 또는 파싱될 수 있다.
Figure pat00059
Figure pat00060
Figure pat00061
예를 들어, 표 52 또는 표 53 내지 표 54와 같이 변환 유닛 신택스에 포함된 신택스 요소들이 나타내는 정보들 또는 상기 신택스 요소들의 시맨틱스는 표 55와 같이 나타낼 수 있다.
Figure pat00062
한편, 예를 들어 본 문서의 상술한 실시예들에 따른 정보들 중 적어도 일부는 상술한 표 6 내지 표 9 또는 표 56 내지 표 59와 같이 레지듀얼 코딩(residual coding) 신택스에 포함될 수 있다. 또는 변환 유닛 신택스에 포함되어 시그널링될 수 있다. 예를 들어, 표 6 내지 표 9 또는 표 56 내지 표 59는 하나의 신택스를 연속하여 나타낼 수 있으며, 신택스에 포함된 신택스 요소들은 순차적으로 시그널링, 구성 또는 파싱될 수 있다.
Figure pat00063
Figure pat00064
Figure pat00065
Figure pat00066
예를 들어, 상술한 표 6 내지 표 9 또는 표 56 내지 표 59와 같이 레지듀얼 코딩 신택스에 포함된 신택스 요소들이 나타내는 정보들 또는 상기 신택스 요소들의 시맨틱스는 표 6 내지 표 9와 함께 상술한 바와 같이 나타낼 수 있다.
한편, 예를 들어 본 문서의 일 실시예는 상술한 신택스 또는 신택스 요소 중 적어도 일부를 기반으로 스케일링 또는 변환 절차를 수행할 수 있다. 예를 들어, 일 실시예는 표 60과 같이 현재 (변환) 블록의 샘플들에 대한 레지듀얼 샘플들(또는 레지듀얼 샘플 어레이)을 도출할 수 있다.
Figure pat00067
한편, 또는 예를 들어 본 문서의 일 실시예는 상술한 신택스 또는 신택스 요소 중 적어도 일부를 기반으로 변환 계수에 대한 변환 절차를 수행할 수 있다. 예를 들어, 일 실시예는 표 61과 같이 (스케일된) 변환 계수들에 대한 정보를 기반으로 레지듀얼 샘플들(또는 레지듀얼 샘플 어레이)을 도출할 수 있다.
Figure pat00068
한편, 예를 들어 본 문서의 일 실시예는 상술한 신택스 또는 신택스 요소 중 적어도 일부에 대하여 표 62 내지 표 63과 같은 이진화가 이용될 수 있다. 또는 일 실시예는 표 62 내지 표 63과 같은 이진화를 이용하여 상술한 신택스 요소 중 적어도 일부를 인코딩/디코딩할 수 있다.
Figure pat00069
Figure pat00070
한편, 예를 들어, 본 문서의 일 실시예는 상술한 신택스 또는 신택스 요소 중 적어도 일부에 대하여 표 64 내지 표 65와 같이 컨텍스트 인덱스(ctxIdx)를 도출하기 위해(또는 나타내기 위해) 컨텍스트 인덱스 증감(ctxInc)을 할당할 수 있다.
Figure pat00071
Figure pat00072
도 13 및 도 14는 본 문서의 실시예(들)에 따른 비디오/영상 인코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다.
도 13에서 개시된 방법은 도 2에서 개시된 인코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 13의 S1300은 도 14에서 상기 인코딩 장치의 예측부(220)에 의하여 수행될 수 있고, 도 13의 S1310은 도 14에서 상기 인코딩 장치의 레지듀얼 처리부(230)에 의하여 수행될 수 있고, 도 13의 S1320은 도 14에서 상기 인코딩 장치의 엔트로피 인코딩부(240)에 의하여 수행될 수 있다. 도 13에서 개시된 방법은 본 문서에서 상술한 실시예들을 포함할 수 있다.
도 13을 참조하면, 인코딩 장치는 현재 블록에 대하여 예측을 수행하여 예측 샘플들을 도출할 수 있다(S1300). 예를 들어, 인코딩 장치는 상기 현재 블록에 대하여 예측을 수행하여 예측 샘플들을 도출할 수 있으며, 예측을 수행한 예측 모드에 대한 정보를 도출할 수 있다. 예를 들어, 예측 모드는 인트라 예측 모드 또는 인터 예측 모드일 수 있다. 예를 들어, 인코딩 장치는 상기 예측 모드가 인트라 예측 모드인 경우, 현재 블록 주변의 샘플들을 기반으로 상기 예측 샘플들을 도출할 수 있다. 또는 인코딩 장치는 상기 예측 모드가 인터 예측 모드인 경우, 현재 블록의 참조 픽처 내의 참조 샘플들을 기반으로 상기 예측 샘플들을 도출할 수 있다.
인코딩 장치는 상기 현재 블록에 대한 레지듀얼 샘플들을 도출할 수 있다(S1310). 예를 들어, 인코딩 장치는 상기 현재 블록에 대한 원본 샘플들과 예측 샘플들(또는 예측된 블록)을 기반으로 상기 현재 블록에 대한 레지듀얼 샘플들(또는 레지듀얼 블록)을 도출할 수 있다. 여기서, 레지듀얼 샘플들은 레지듀얼 샘플 어레이라 나타낼 수도 있다. 또는 예를 들어 도 13에 도시하지 않았으나, 인코딩 장치는 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 상기 현재 블록의 복원 샘플들을 생성할 수 있다. 예를 들어, 인코딩 장치는 상기 예측 샘플들(또는 예측된 블록)에 레지듀얼 샘플들(또는 레지듀얼 블록)을 더하여 복원 샘플들(또는 복원 블록)을 생성할 수도 있다.
인코딩 장치는 상기 예측에 관한 예측 모드 정보 및 상기 레지듀얼 샘플들에 관한 레지듀얼 관련 정보를 포함하는 영상 정보를 인코딩할 수 있다(S1320).
예를 들어, 인코딩 장치는 상기 예측 모드를 기반으로 예측 모드 정보를 생성할 수 있으며, 상기 영상 정보는 상기 예측 모드 정보를 포함할 수 있다. 즉, 상기 현재 블록이 인트라 예측 모드를 통해 예측을 수행한 경우, 예측 모드 정보는 인트라 예측 모드에 관한 정보를 포함할 수 있고, 상기 현재 블록이 인터 예측 모드를 통해 예측을 수행한 경우, 에측 모드 정보는 인터 예측 모드에 관한 정보를 포함할 수 있다.
예를 들어, 인코딩 장치는 상기 레지듀얼 샘플들(또는 레지듀얼 샘플 어레이)에 관한 정보를 포함하는 레지듀얼 관련 정보를 생성할 수 있으며, 상기 영상 정보는 레지듀얼 관련 정보를 포함할 수 있다. 레지듀얼 샘플들에 관한 정보 또는 레지듀얼 관련 정보는 상기 레지듀얼 샘플들에 관한 변환 계수에 관한 정보를 포함할 수 있다.
예를 들어, 레지듀얼 관련 정보는 레지듀얼 코딩 정보(또는 레지듀얼 코딩 신택스)를 포함할 수 있다. 또는 레지듀얼 관련 정보는 변환 유닛 정보(또는 변환 유닛 신택스)를 포함할 수 있다. 또는 레지듀얼 관련 정보는 레지듀얼 코딩 정보 및 변환 유닛 정보를 포함할 수도 있다.
예를 들어, 상기 현재 블록의 사이즈 및 최대 변환 스킵 사이즈를 기반으로 상기 레지듀얼 관련 정보가 상기 변환 스킵 플래그를 포함할 수 있다. 또는 상기 현재 블록의 사이즈 및 최대 변환 스킵 사이즈를 기반으로 상기 레지듀얼 관련 정보가 변환 스킵 플래그를 포함하는지 여부가 결정될 수 있다. 예를 들어, 상기 변환 스킵 플래그는 상기 현재 블록에 변환 스킵이 적용되는지 여부를 나타낼 수 있다. 또는 상기 변환 스킵 플래그는 transform_skip_flag 신택스 요소로 나타낼 수도 있다. 예를 들어, 상기 transform_skip_flag 신택스 요소의 값이 0인 경우, 상기 현재 블록에 변환 스킵이 적용될 수 있고, 1인 경우, 상기 현재 블록에 변환 스킵이 적용되지 않을 수 있다. 또는 설정에 따라 상기 transform_skip_flag 신택스 요소의 값이 1인 경우, 상기 현재 블록에 변환 스킵이 적용될 수 있고, 0인 경우, 상기 현재 블록에 변환 스킵이 적용되지 않을 수 있다.
예를 들어, 상기 현재 블록의 사이즈는 상기 현재 블록의 너비 및/또는 상기 현재 블록의 높이를 나타낼 수 있다. 상기 최대 변환 스킵 사이즈는 변환 스킵(TS: Transform Skip)이 허용되는 블록의 최대 크기를 나타낼 수 있다. 또는 상기 최대 변환 스킵 사이즈는 MaxTsSize로 나타낼 수도 있다. 예를 들어, 상기 현재 블록의 너비 또는 상기 현재 블록의 높이가 상기 최대 변환 스킵 사이즈보다 작거나 같은 경우, 상기 레지듀얼 관련 정보가 상기 변환 스킵 플래그를 포함할 수 있다.
예를 들어, 상기 영상 정보는 상기 최대 변환 스킵 사이즈에 대한 정보를 포함할 수 있다. 또는 상기 최대 변환 스킵 사이즈에 대한 정보는 상기 영상 정보에 포함되어 (엔트로피) 인코딩될 수 있다. 예를 들어, 상기 최대 변환 사이즈는 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 나타낼 수 있다. 예를 들어, 상기 최대 변환 스킵 사이즈에 대한 정보는 하이레벨(high-level) 신택스에 포함될 수 있고, 상기 하이레벨 신택스는 영상 정보에 포함되어 (엔트로피) 인코딩될 수 있다. 예를 들어, 하이레벨 신택스는 NAL(Network Abstraction Layer) 유닛 신택스, SPS(Sequence Parameter Set) 신택스, PPS(Picture Parameter Set) 신택스 또는 슬라이스 헤더(slice header) 신택스일 수 있다.
또는 예를 들어, 상기 최대 변환 스킵 사이즈에 대한 정보는 SPS에 포함될 수 있고, 상기 최대 변환 사이즈는 상기 SPS에 포함된 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 나타낼 수 있다. 또는 예를 들어, 상기 최대 변환 스킵 사이즈에 대한 정보는 PPS에 포함될 수 있고, 상기 최대 변환 사이즈는 상기 PPS에 포함된 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 나타낼 수 있다. 여기서, SPS 또는 PPS는 SPS 신택스 또는 PPS 신택스를 나타낼 수 있으며, 다른 신택스들도 신택스라는 용어를 생략하고 사용될 수 있다.
예를 들어, 상기 최대 변환 스킵 사이즈에 대한 정보는 로그 값에 -2한 값에 대한 정보를 포함할 수 있고, 상기 로그 값은 상기 최대 변환 스킵 사이즈에 대한 밑이 2인 로그 값일 수 있다. 즉, 상기 최대 변환 스킵 사이즈에 대한 정보는 상기 최대 변환 스킵 사이즈의 밑이 2인 로그 값에 -2한 값에 대한 정보를 나타낼 수 있다. 또는 예를 들어, 상기 최대 변환 스킵 사이즈에 대한 정보는 상기 최대 변환 스킵 사이즈의 (밑이 2인) 로그값에 대한 정보를 포함할 수도 있다.
예를 들어, 상기 최대 변환 스킵 사이즈에 대한 정보는 log2_transform_skip_max_size_minus2 신택스 요소를 포함할 수 있다. 또는 상기 최대 변환 스킵 사이즈에 대한 정보는 log2_transform_skip_max_size_minus2 신택스 요소를 나타낼 수 있다. 예를 들어, 상기 log2_transform_skip_max_size_minus2 신택스 요소는 하이레벨 신택스, SPS 신택스 또는 PPS 신택스에 포함될 수 있다.
예를 들어, 표 41을 참조하면, 상기 최대 변환 스킵 사이즈는 MaxTsSize = 1 << (log2_transform_skip_max_size_minus2 + 2)를 기반으로 나타낼 수 있다. 여기서, 상기 MaxTsSize는 상기 최대 변환 스킵 사이즈를 나타낼 수 있고, 상기 log2_transform_skip_max_size_minus2는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값을 나타낼 수 있다. 또한, 상기 <<는 산술 시프트 연산자를 나타낼 수 있다. 다시 말해, 상기 log2_transform_skip_max_szie_minus2 신택스 요소는 MaxTsSize = 1 << (log2_transform_skip_max_size_minus2 + 2)를 이용하여 MaxTsSize를 나타낼 수 있다. 또는 MaxTsSize에 따른 log2_transform_skip_max_szie_minus2 신택스 요소의 값을 나타낼 수 있다. 또는 MaxTsSize에 대응하는 log2_transform_skip_max_szie_minus2 신택스 요소의 값을 나타낼 수 있다. 예를 들어, 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값은 0 내지 3의 후보 값들 중 하나로 나타낼 수 있으나, 이에 한정되는 것은 아니다. 또는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값은 0, 1, 2 또는 3으로 나타낼 수 있으나, 이에 한정되는 것은 아니다.
또한 예를 들어, 상기 최대 변환 스킵 사이즈는 4, 8, 16 또는 32를 포함하는 후보 사이즈들 중 하나로 나타낼 수 있다. 상기 최대 변환 스킵 사이즈는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값을 기반으로 나타낼 수 있다. 또는 상기 최대 변환 스킵 사이즈는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값을 기반으로 4, 8, 16 또는 32를 포함하는 후보 사이즈들 중 하나로 나타낼 수 있다. 예를 들어, 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값이 0인 경우, 상기 최대 변환 스킵 사이즈는 상술한 1 << (log2_transform_skip_max_size_minus2 + 2)를 기반으로 4로 나타낼 수 있다. 또는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값이 1인 경우, 상기 최대 변환 스킵 사이즈는 상술한 1 << (log2_transform_skip_max_size_minus2 + 2)를 기반으로 8로 나타낼 수 있다. 또는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값이 2인 경우, 상기 최대 변환 스킵 사이즈는 상술한 1 << (log2_transform_skip_max_size_minus2 + 2)를 기반으로 16으로 나타낼 수 있다. 또는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값이 3인 경우, 상기 최대 변환 스킵 사이즈는 상술한 1 << (log2_transform_skip_max_size_minus2 + 2)를 기반으로 32로 나타낼 수 있다.
예를 들어, 최대 변환 스킵 사이즈가 N이라는 것은 너비 및 높이가 모두 N보다 작거나 같은 사이즈를 나타낼 수 있다. 또는 최대 변환 스킵 사이즈가 N이라는 것은 너비 및 높이 중 큰 값이 N보다 작거나 같은 사이즈를 나타낼 수 있다. 또는 최대 변환 스킵 사이즈가 N이라는 것은 정방형 블록의 경우 한 변의 길이가 N보다 작거나 같은 사이즈를 나타낼 수 있다.
또는 예를 들어, 상기 최대 변환 스킵 사이즈에 대한 정보는 변환 스킵이 허용되는지에 대한 정보를 기반으로 하이레벨 신택스, SPS 신택스 또는 PPS 신택스에 포함될 수도 있다. 예를 들어, 상기 변환 스킵이 허용되는지에 대한 정보가 변환 스킵이 허용되는 정보를 나타내는 경우, 상기 최대 변환 스킵 사이즈에 대한 정보는 하이레벨 신택스, SPS 신택스 또는 PPS 신택스에 포함될 수 있다. 또는 상기 변환 스킵이 허용되는지에 대한 정보가 변환 스킵이 허용되지 않는다는 정보를 나타내는 경우, 상기 최대 변환 스킵 사이즈에 대한 정보는 하이레벨 신택스, SPS 신택스 또는 PPS 신택스에 포함되지 않을 수도 있다.
또는 예를 들어, 상기 최대 변환 스킵 사이즈는 MTS(Multiple Tranform Selection)가 허용되는지에 대한 정보를 기반으로 나타낼 수도 있다. 또는 MTS가 허용되는지에 대한 정보 및 TS가 허용되는지에 대한 정보를 기반으로 상기 최대 변환 스킵 사이즈를 나타낼 수 있다.
예를 들어, 상기 하이레벨 신택스는 MTS(Multiple Tranform Selection)가 허용되는지에 대한 정보 또는 TS가 허용되는지에 대한 정보를 포함할 수 있다. 또는 MTS가 허용되는지에 대한 정보 또는 상기 TS가 허용되는지에 대한 정보는 SPS 신택스 또는 PPS 신택스에 포함될 수 있다.
예를 들어, 상기 MTS가 허용되는지에 대한 정보는 sps_mts_enabled_flag 신택스 요소로 나타낼 수 있다. 또는 상기 MTS가 허용되는지에 대한 정보는 sps_mts_intra_enabled_flag 신택스 요소 또는 sps_mts_inter_enabled_flag 신택스 요소를 포함할 수 있다. 예를 들어, 상기 sps_mts_intra_enabled_flag 신택스 요소 또는 sps_mts_inter_enabled_flag 신택스 요소는 상기 sps_mts_enabled_flag 신택스 요소를 기반으로 상기 SPS 신택스에 포함될 수 있다. 상기 sps_mts_intra_enabled_flag 신택스 요소는 sps_explicit_mts_intra_enabled_flag 신택스 요소로 나타낼 수 있고, 상기 sps_mts_inter_enabled_flag 신택스 요소는 sps_explicit_mts_inter_enabled_flag 신택스 요소로 나타낼 수 있다. 예를 들어, 상기 MTS가 허용되는지에 대한 정보는 MTS enabled 정보로 나타낼 수도 있다.
예를 들어, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용된다는 정보를 나타내는 경우는 MTS enabled = 1 또는 상기 sps_mts_enabled_flag 신택스 요소의 값이 1인 것으로 나타낼 수 있다. 또는 상기 sps_mts_enabled_flag 신택스 요소의 값이 1이고, sps_explicit_mts_intra_enabled_flag 신택스 요소 또는 sps_explicit_mts_inter_enabled_flag 신택스 요소의 값이 1인 것으로 나타낼 수 있다. 또는 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용되지 않는다는 정보를 나타내는 경우는 MTS enabled = 0 또는 상기 sps_mts_enabled_flag 신택스 요소의 값이 0인 것으로 나타낼 수 있다. 또는 상기 sps_mts_enabled_flag 신택스 요소의 값이 1이고, sps_explicit_mts_intra_enabled_flag 신택스 요소 또는 sps_explicit_mts_inter_enabled_flag 신택스 요소의 값이 0인 것으로 나타낼 수 있다. 예를 들어, 설정에 따라 상기 값은 상기 값에 대응하는 정보를 역으로 나타낼 수도 있다.
예를 들어, 상기 TS가 허용되는지에 대한 정보는 TS enabled 정보 또는 sps_transform_skip_enabled_flag 신택스 요소로 나타낼 수 있다. 예를 들어, 상기 TS가 허용되는지에 대한 정보는 TS enabled 정보로 나타낼 수도 있다.
예를 들어, 상기 TS가 허용되는지에 대한 정보가 상기 TS가 허용된다는 정보를 나타내는 경우는 TS enabled = 1 또는 상기 sps_transform_skip_enabled_flag 신택스 요소의 값이 1인 것으로 나타낼 수 있다. 또는 상기 TS가 허용되는지에 대한 정보가 상기 TS가 허용되지 않는다는 정보를 나타내는 경우는 TS enabled = 0 또는 상기 sps_transform_skip_enabled_flag 신택스 요소의 값이 0인 것으로 나타낼 수 있다. 예를 들어, 설정에 따라 상기 값은 상기 값에 대응하는 정보를 역으로 나타낼 수도 있다.
예를 들어, 상기 최대 변환 스킵 사이즈는 상기 하이레벨 신택스를 기반으로 8, 16 및 32를 포함하는 후보 사이즈들 중 하나로 나타내어질 수 있다. 예를 들어, 후보 사이즈들은 4를 더 포함할 수 있다. 또는 예를 들어, 상기 변환 스킵 사이즈는 MTS가 허용되는지에 대한 정보를 기반으로 도출될 수 있다. 또는 예를 들어, 상기 최대 변환 스킵 사이즈는 MTS가 허용되는지에 대한 정보를 기반으로 8, 16 또는 32를 포함하는 후보 사이즈들 중 하나로 나타내어질 수 있다. 또는 상기 변환 스킵 사이즈는 상기 하이레벨 신택스에 포함된 상기 MTS가 허용되는지에 대한 정보를 기반으로 나타내어질 수 있다. 또는 예를 들어, 상기 변환 스킵 사이즈에 대한 정보가 상기 하이레벨 신택스에 포함될 수 있고, 상기 변환 스킵 사이즈는 상기 변환 스킵 사이즈에 대한 정보를 기반으로 나타낼 수 있다. 여기서, 상기 변환 스킵 사이즈에 대한 정보는 상기 변환 스킵 사이즈를 도출할 수 있는 정보로서 상기 MTS가 허용되는지에 대한 정보를 포함할 수도 있다.
예를 들어, 상기 MTS가 허용된다는 정보를 나타내는 상기 MTS가 허용되는지에 대한 정보를 기반으로, 상기 최대 변환 스킵 사이즈는 상기 MTS의 사이즈를 기반으로 결정될 수 있다. 즉, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용된다는 정보를 나타내는 경우, 상기 최대 변환 스킵 사이즈는 상기 MTS의 사이즈를 기반으로 결정될 수 있다. 다시 말해, 상기 최대 변환 스킵 사이즈는 상기 MTS에 종속적일 수 있다. 상기 MTS의 사이즈는 MTS가 허용되는 블록의 최대 사이즈를 나타낼 수 있다. 예를 들어, 상기 MTS의 사이즈가 32 이하인 경우, 변환 스킵도 32 이하의 사이즈의 블록에 대하여 허용될 수 있다.
또는 예를 들어, 상기 MTS가 허용된다는 정보를 나타내는 상기 MTS가 허용되는지에 대한 정보를 기반으로, 상기 최대 변환 스킵 사이즈는 기 설정된 사이즈로 결정될 수 있다. 즉, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용된다는 정보를 나타내는 경우, 상기 최대 변환 스킵 사이즈는 기 설정된 사이즈로 결정될 수 있다. 예를 들어, 기 설정된 사이즈가 8인 경우, 상기 최대 변환 스킵 사이즈는 상기 기 설정된 사이즈 8로 결정될 수 있다.
또는 예를 들어, 상기 MTS가 허용된다는 정보를 나타내는 상기 MTS가 허용되는지에 대한 정보를 기반으로, 상기 하이레벨 신택스는 상기 최대 변환 스킵 사이즈에 대한 정보를 포함할 수 있고, 상기 최대 변환 스킵 사이즈는 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 나타낼 수 있다. 즉, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용된다는 정보를 나타내는 경우, 상기 하이레벨 신택스는 상기 최대 변환 스킵 사이즈에 대한 정보를 별도로 포함할 수 있고, 상기 최대 변환 스킵 사이즈는 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 나타낼 수 있다. 또는 예를 들어, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용된다는 정보를 나타내는 경우, 상기 하이레벨 신택스는 상기 최대 변환 스킵 사이즈가 상기 MTS의 사이즈를 기반으로 나타내어지에 대한 정보를 포함할 수 있다. 상기 최대 변환 스킵 사이즈가 상기 MTS의 사이즈를 기반으로 나타내어지에 대한 정보가 상기 최대 변환 스킵 사이즈가 상기 MTS의 사이즈를 기반으로 나타내어지는 정보를 나타내는 경우, 상기 하이레벨 신택스는 상기 최대 변환 스킵 사이즈에 대한 정보를 포함할 수 있다. 상기 최대 변환 스킵 사이즈에 대한 정보는 SPS 신택스 또는 PPS 신택스에 포함될 수 있다. 예를 들어, 하이레벨 신택스에 포함된 상기 최대 변환 스킵 사이즈에 대한 정보가 32에 대한 정보를 나타내는 경우, 상기 최대 변환 스킵 사이즈는 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 32로 나타낼 수 있다. 또는 최대 변환 스킵 사이즈를 32로 결정한 경우, 상기 하이레벨 신택스에 포함된 상기 최대 변환 스킵 사이즈에 대한 정보를 32에 대한 정보로 나타낼 수 있다.
또는 예를 들어, 상기 MTS가 허용되지 않는다는 정보를 나타내는 상기 MTS가 허용되는지에 대한 정보를 기반으로, 상기 최대 변환 스킵 사이즈는 기 설정된 사이즈로 결정될 수 있다. 즉, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용되지 않는다는 정보를 나타내는 경우, 상기 최대 변환 스킵 사이즈는 기 설정된 사이즈로 결정될 수 있다. 예를 들어, 기 설정된 사이즈가 8인 경우, 상기 최대 변환 스킵 사이즈는 상기 기 설정된 사이즈 8로 결정될 수 있다.
또는 예를 들어, 상기 MTS가 허용되지 않는다는 정보를 나타내는 상기 MTS가 허용되는지에 대한 정보를 기반으로, 상기 하이레벨 신택스는 상기 최대 변환 스킵 사이즈에 대한 정보를 포함할 수 있고, 상기 최대 변환 스킵 사이즈는 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 나타낼 수 있다. 즉, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용되지 않는다는 정보를 나타내는 경우, 상기 하이레벨 신택스는 상기 최대 변환 스킵 사이즈에 대한 정보를 별도로 포함할 수 있고, 상기 최대 변환 스킵 사이즈는 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 나타낼 수 있다. 상기 최대 변환 스킵 사이즈에 대한 정보는 SPS 신택스 또는 PPS 신택스에 포함될 수 있다. 예를 들어, 하이레벨 신택스에 포함된 상기 최대 변환 스킵 사이즈에 대한 정보가 32에 대한 정보를 나타내는 경우, 상기 최대 변환 스킵 사이즈는 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 32로 나타낼 수 있다. 또는 최대 변환 스킵 사이즈를 32로 결정한 경우, 상기 하이레벨 신택스에 포함된 상기 최대 변환 스킵 사이즈에 대한 정보를 32에 대한 정보로 나타낼 수 있다.
예를 들어, 상기 레지듀얼 관련 정보는 상기 현재 블록에 적용하는 변환 타입에 관한 MTS 인덱스 정보를 포함할 수 있다. 예를 들어, MTS 인덱스 정보는 tu_mts_idx 신택스 요소 또는 mts_idx 신택스 요소로 나타낼 수 있다. 예를 들어, MTS 인덱스 정보는 변환 유닛 신택스 또는 코딩 유닛 신택스에 포함될 수 있다. 예를 들어, MTS 인덱스 정보는 상기 현재 블록에 적용하는 변환 타입 또는 변환 스킵에 관한 정보를 나타낼 수 있다. 또는 상기 MTS 인덱스 정보는 상기 MTS가 허용되는지에 대한 정보 및/또는 상기 변환 스킵이 허용되는지에 대한 정보를 기반으로 상기 현재 블록에 적용하는 변환 타입 또는 변환 스킵에 관한 정보를 나타낼 수 있다.
예를 들어, 상기 MTS 인덱스 정보가 나타내는 정보는 상기 MTS 인덱스 정보에 대한 빈 스트링의 빈을 기반으로 나타낼 수 있다. 또는 상기 MTS 인덱스 정보가 나타내는 정보는 상기 빈의 컨텍스트 인덱스의 값을 기반으로 나타낼 수 있다. 또는 상기 MTS 인덱스 정보가 나타내는 정보는 상기 빈 스트링의 첫 번째 빈의 컨텍스트 인덱스 값을 기반으로 나타낼 수 있다. 예를 들어, 컨텍스트 인덱스(ctxIdx)는 컨텍스트 인덱스 증감(ctxInc) 및 컨텍스트 인덱스 오프셋(ctxIdxOffset)을 기반으로 나타낼 수 있다.
예를 들어, 상기 MTS 인덱스 정보에 대한 첫 번째 빈의 컨텍스트 인덱스의 값은 상기 MTS가 허용되는지에 대한 정보, 상기 변환 스킵이 허용되는지에 대한 정보 및 상기 현재 블록의 사이즈를 기반으로 나타낼 수 있다. 예를 들어, 상기 MTS 인덱스 정보에 대한 첫 번째 빈의 컨텍스트 인덱스의 값은 표 19 또는 표 22를 기반으로 나타낼 수 있다.
예를 들어, 상기 MTS가 허용된다는 정보를 나타내는 상기 MTS가 허용되는지에 대한 정보 및 상기 변환 스킵이 허용된다는 정보를 나타내는 상기 변환 스킵이 허용되는지에 대한 정보를 기반으로, 상기 컨텍스트 인덱스의 값은 상기 현재 블록의 너비 및 상기 현재 블록의 높이를 비교하여 나타낼 수 있다. 즉, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용된다는 정보를 나타내고, 상기 TS가 허용되는지에 대한 정보가 상기 TS가 허용된다는 정보를 나타내는 경우, 상기 현재 블록의 너비 및 상기 현재 블록의 높이를 비교하여 나타낼 수 있다. 또는 상기 현재 블록의 너비 및 상기 현재 블록의 높이가 동일한 경우, 상기 컨텍스트 인덱스의 값은 0으로 나타낼 수 있다. 또는 상기 현재 블록의 너비가 상기 현재 블록의 높이보다 큰 경우, 상기 컨텍스트 인덱스의 값은 1로 나타낼 수 있고, 상기 현재 블록의 너비가 상기 현재 블록의 높이보다 작은 경우, 상기 컨텍스트 인덱스의 값은 2로 나타낼 수 있다.
또는 예를 들어, 상기 MTS가 허용된다는 정보를 나타내는 상기 MTS가 허용되는지에 대한 정보 및 cqtDepth(coded quad-tree depth)를 기반으로, 상기 컨텍스트 인덱스의 값을 나타낼 수 있다. 즉, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용된다는 정보를 나타내는 경우, cqtDepth를 기반으로 상기 컨텍스트 인덱스의 값을 나타낼 수 있다. 예를 들어, 상기 컨텍스트 인덱스의 값은 상기 cqtDepth의 값에 1을 더한 값으로 나타낼 수 있으며, 1, 2, 3, 4, 5 또는 6으로 나타낼 수 있다.
또는 예를 들어, 상기 변환 스킵이 허용된다는 정보를 나타내는 상기 변환 스킵이 허용되는지에 대한 정보를 기반으로, 상기 컨텍스트 인덱스의 값은 상기 현재 블록의 너비 및 상기 현재 블록의 높이를 비교하여 나타낼 수 있다. 즉, 상기 TS가 허용되는지에 대한 정보가 상기 TS가 허용된다는 정보를 나타내는 경우, 상기 현재 블록의 너비 및 상기 현재 블록의 높이를 비교하여 나타낼 수 있다. 또는 상기 현재 블록의 너비 및 상기 현재 블록의 높이가 동일한 경우, 상기 컨텍스트 인덱스의 값은 0으로 나타낼 수 있다. 또는 상기 현재 블록의 너비가 상기 현재 블록의 높이보다 큰 경우, 상기 컨텍스트 인덱스의 값은 1로 나타낼 수 있고, 상기 현재 블록의 너비가 상기 현재 블록의 높이보다 작은 경우, 상기 컨텍스트 인덱스의 값은 2로 나타낼 수 있다.
또는 예를 들어, 상기 컨텍스트 인덱스의 값은 블록의 크기, 블록의 폭-높이 비율, 블록의 인트라 또는 인터 예측 여부, 주변의 변환 스킵 여부 등 중 적어도 하나를 기반으로 ctxInc 및/또는 ctxIdx를 나타낼 수 있다. 또는 블록의 크기, 블록의 폭-높이 비율, 블록의 인트라 또는 인터 예측 여부, 주변의 변환 스킵 여부 등 중 적어도 하나에 기반한 컨텍스트 모델을 정의할 수 있으며, 이를 기반으로 컨텍스트 인덱스의 값을 나타낼 수 있다. 예를 들어, 현재 블록에 관한 변환 타입 또는 변환 스킵에 관한 정보는 상기 컨텍스트 인덱스 또는 컨텍스트 모델을 기반으로 획득될 수 있다.
예를 들어, 레지듀얼 관련 정보는 상술한 바에 따라 상기 변환 스킵 플래그를 포함할 수 있고, 포함하지 않을 수도 있다. 예를 들어, 상기 레지듀얼 관련 정보가 상기 변환 스킵 플래그를 포함하는 경우, 상기 현재 블록의 레지듀얼 샘플들은 변환 없이 도출된 것을 나타낼 수 있고, 상기 현재 블록에 대한 레지듀얼 신호(또는 레지듀얼에 관한 정보)는 변환 없이 픽셀 도메인(공간 도메인) 상에서 시그널링될 수 있다. 또는 상기 레지듀얼 관련 정보가 상기 변환 스킵 플래그를 포함하지 않는 경우, 상기 현재 블록의 레지듀얼 샘플들은 변환이 수행되어 도출된 것을 나타낼 수 있으며, 상기 현재 블록에 대한 레지듀얼 신호(또는 레지듀얼에 관한 정보)는 변환이 수행되어 변환 도메인 상에서 시그널링될 수 있다.
인코딩 장치는 상술한 정보들(또는 신택스 요소들) 모두 또는 일부를 포함하는 영상 정보를 인코딩하여 비트스트림을 생성할 수 있다. 또는 비트스트림 형태로 출력할 수 있다. 또한, 상기 비트스트림은 네트워크 또는 저장매체를 통하여 디코딩 장치로 전송될 수 있다. 또는, 상기 비트스트림은 컴퓨터 판독 가능한 저장 매체에 저장될 수 있다. 예를 들어, 비트스트림은 영상 정보 또는 비디오 정보로 나타낼 수도 있다.
도 15 및 도 16은 본 문서의 실시예(들)에 따른 비디오/영상 디코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다.
도 15 및 도 16은 본 문서의 실시예(들)에 따른 비디오/영상 디코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다. 도 15에서 개시된 방법은 도 3에서 개시된 디코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 15의 S1500은 도 16에서 상기 디코딩 장치의 엔트로피 디코딩부(310)에 의하여 수행될 수 있고, 도 15의 S1510은 도 16에서 상기 디코딩 장치의 예측부(330)에 의하여 수행될수 있고, 도 15의 S1520은 도 16에서 상기 디코딩 장치의 레지듀얼 처리부(320)에 의하여 수행될 수 있고, 도 15의 S1530은 도 16에서 상기 디코딩 장치의 가산부(340)에 의하여 수행될 수 있다. 도 15에서 개시된 방법은 본 문서에서 상술한 실시예들을 포함할 수 있다.
도 15를 참조하면, 디코딩 장치는 비트스트림으로부터 예측 모드 정보 및 레지듀얼 관련 정보를 획득할 수 있다(S1500). 또는 디코딩 장치는 비트스트림을 (엔트로피) 디코딩하여 예측 모드 정보 또는 레지듀얼 관련 정보를 획득할 수 있다.
예를 들어, 예측 모드 정보는 현재 블록의 예측 모드에 대한 정보를 포함할 수 있다. 또는 예측 모드 정보는 인트라 예측 모드 또는 인터 예측 모드에 대한 정보를 포함할 수 있다.
예를 들어, 레지듀얼 관련 정보는 레지듀얼 코딩 정보(또는 레지듀얼 코딩 신택스)를 포함할 수 있다. 또는 레지듀얼 관련 정보는 변환 유닛 정보(또는 변환 유닛 신택스)를 포함할 수 있다. 또는 레지듀얼 관련 정보는 레지듀얼 코딩 정보 및 변환 유닛 정보를 포함할 수도 있다.
예를 들어, 상기 현재 블록의 사이즈 및 최대 변환 스킵 사이즈를 기반으로 상기 레지듀얼 관련 정보가 상기 변환 스킵 플래그를 포함할 수 있다. 또는 상기 현재 블록의 사이즈 및 최대 변환 스킵 사이즈를 기반으로 상기 레지듀얼 관련 정보가 변환 스킵 플래그를 포함하는지 여부가 결정될 수 있다. 예를 들어, 상기 변환 스킵 플래그는 상기 현재 블록에 변환 스킵이 적용되는지 여부를 나타낼 수 있다. 또는 상기 변환 스킵 플래그는 transform_skip_flag 신택스 요소로 나타낼 수도 있다. 예를 들어, 상기 transform_skip_flag 신택스 요소의 값이 0인 경우, 상기 현재 블록에 변환 스킵이 적용될 수 있고, 1인 경우, 상기 현재 블록에 변환 스킵이 적용되지 않을 수 있다. 또는 설정에 따라 상기 transform_skip_flag 신택스 요소의 값이 1인 경우, 상기 현재 블록에 변환 스킵이 적용될 수 있고, 0인 경우, 상기 현재 블록에 변환 스킵이 적용되지 않을 수 있다.
예를 들어, 상기 현재 블록의 사이즈는 상기 현재 블록의 너비 및/또는 상기 현재 블록의 높이를 나타낼 수 있다. 상기 최대 변환 스킵 사이즈는 변환 스킵(TS: Transform Skip)이 허용되는 블록의 최대 크기를 나타낼 수 있다. 또는 상기 최대 변환 스킵 사이즈는 MaxTsSize로 나타낼 수도 있다. 예를 들어, 상기 현재 블록의 너비 또는 상기 현재 블록의 높이가 상기 최대 변환 스킵 사이즈보다 작거나 같은 경우, 상기 레지듀얼 관련 정보가 상기 변환 스킵 플래그를 포함할 수 있다.
예를 들어, 상기 최대 변환 스킵 사이즈에 대한 정보는 상기 비트스트림으로부터 획득될 수 있다. 또는 상기 최대 변환 스킵 사이즈에 대한 정보는 상기 비트스트림을 (엔트로피) 디코딩하여 획득될 수 있다. 예를 들어, 상기 최대 변환 사이즈는 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 도출될 수 있다. 예를 들어, 상기 최대 변환 스킵 사이즈에 대한 정보는 하이레벨(high-level) 신택스에 포함될 수 있고, 상기 하이레벨 신택스는 상기 비트스트림으로부터 획득될 수 있다. 또는 상기 하이레벨 신택스는 상기 비트스트림을 (엔트로피) 디코딩하여 획득될 수 있다. 예를 들어, 하이레벨 신택스는 NAL(Network Abstraction Layer) 유닛 신택스, SPS(Sequence Parameter Set) 신택스, PPS(Picture Parameter Set) 신택스 또는 슬라이스 헤더(slice header) 신택스일 수 있다.
또는 예를 들어, 상기 최대 변환 스킵 사이즈에 대한 정보는 SPS에 포함될 수 있고, 상기 최대 변환 사이즈는 상기 SPS에 포함된 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 도출될 수 있다. 또는 예를 들어, 상기 최대 변환 스킵 사이즈에 대한 정보는 PPS에 포함될 수 있고, 상기 최대 변환 사이즈는 상기 PPS에 포함된 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 도출될 수 있다. 여기서, SPS 또는 PPS는 SPS 신택스 또는 PPS 신택스를 나타낼 수 있으며, 다른 신택스들도 신택스라는 용어를 생략하고 사용될 수 있다.
예를 들어, 상기 최대 변환 스킵 사이즈에 대한 정보는 로그 값에 -2한 값에 대한 정보를 포함할 수 있고, 상기 로그 값은 상기 최대 변환 스킵 사이즈에 대한 밑이 2인 로그 값일 수 있다. 즉, 상기 최대 변환 스킵 사이즈에 대한 정보는 상기 최대 변환 스킵 사이즈의 밑이 2인 로그 값에 -2한 값에 대한 정보를 나타낼 수 있다. 또는 예를 들어, 상기 최대 변환 스킵 사이즈에 대한 정보는 상기 최대 변환 스킵 사이즈의 (밑이 2인) 로그값에 대한 정보를 포함할 수도 있다.
예를 들어, 상기 최대 변환 스킵 사이즈에 대한 정보는 log2_transform_skip_max_size_minus2 신택스 요소를 포함할 수 있다. 또는 상기 최대 변환 스킵 사이즈에 대한 정보는 log2_transform_skip_max_size_minus2 신택스 요소를 나타낼 수 있다. 예를 들어, 상기 log2_transform_skip_max_size_minus2 신택스 요소는 하이레벨 신택스, SPS 신택스 또는 PPS 신택스에 포함될 수 있다.
예를 들어, 표 41을 참조하면, 상기 최대 변환 스킵 사이즈는 MaxTsSize = 1 << (log2_transform_skip_max_size_minus2 + 2)를 기반으로 도출될 수 있다. 여기서, 상기 MaxTsSize는 상기 최대 변환 스킵 사이즈를 나타낼 수 있고, 상기 log2_transform_skip_max_size_minus2는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값을 나타낼 수 있다. 또한, 상기 <<는 산술 시프트 연산자를 나타낼 수 있다. 예를 들어, 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값은 0 내지 3의 후보 값들 중 하나로 나타내어 질 수 있으나, 이에 한정되는 것은 아니다. 또는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값은 0, 1, 2 또는 3으로 도출될 수 있으나, 이에 한정되는 것은 아니다.
또한 예를 들어, 상기 최대 변환 스킵 사이즈는 4, 8, 16 또는 32를 포함하는 후보 사이즈들 중 하나로 도출될 수 있다. 상기 최대 변환 스킵 사이즈는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값을 기반으로 도출될 수 있다. 또는 상기 최대 변환 스킵 사이즈는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값을 기반으로 4, 8, 16 또는 32를 포함하는 후보 사이즈들 중 하나로 도출될 수 있다. 예를 들어, 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값이 0인 경우, 상기 최대 변환 스킵 사이즈는 상술한 1 << (log2_transform_skip_max_size_minus2 + 2)를 기반으로 4로 도출될 수 있다. 또는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값이 1인 경우, 상기 최대 변환 스킵 사이즈는 상술한 1 << (log2_transform_skip_max_size_minus2 + 2)를 기반으로 8로 도출될 수 있다. 또는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값이 2인 경우, 상기 최대 변환 스킵 사이즈는 상술한 1 << (log2_transform_skip_max_size_minus2 + 2)를 기반으로 16으로 도출될 수 있다. 또는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값이 3인 경우, 상기 최대 변환 스킵 사이즈는 상술한 1 << (log2_transform_skip_max_size_minus2 + 2)를 기반으로 32로 도출될 수 있다.
예를 들어, 최대 변환 스킵 사이즈가 N이라는 것은 너비 및 높이가 모두 N보다 작거나 같은 사이즈를 나타낼 수 있다. 또는 최대 변환 스킵 사이즈가 N이라는 것은 너비 및 높이 중 큰 값이 N보다 작거나 같은 사이즈를 나타낼 수 있다. 또는 최대 변환 스킵 사이즈가 N이라는 것은 정방형 블록의 경우 한 변의 길이가 N보다 작거나 같은 사이즈를 나타낼 수 있다.
또는 예를 들어, 상기 최대 변환 스킵 사이즈에 대한 정보는 변환 스킵이 허용되는지에 대한 정보를 기반으로 하이레벨 신택스, SPS 신택스 또는 PPS 신택스에 포함될 수도 있다. 예를 들어, 상기 변환 스킵이 허용되는지에 대한 정보가 변환 스킵이 허용되는 정보를 나타내는 경우, 상기 최대 변환 스킵 사이즈에 대한 정보는 하이레벨 신택스, SPS 신택스 또는 PPS 신택스에 포함될 수 있다. 또는 상기 변환 스킵이 허용되는지에 대한 정보가 변환 스킵이 허용되지 않는다는 정보를 나타내는 경우, 상기 최대 변환 스킵 사이즈에 대한 정보는 하이레벨 신택스, SPS 신택스 또는 PPS 신택스에 포함되지 않을 수도 있다.
또는 예를 들어, 상기 최대 변환 스킵 사이즈는 MTS(Multiple Tranform Selection)가 허용되는지에 대한 정보를 기반으로 도출될 수도 있다. 또는 MTS가 허용되는지에 대한 정보 및 TS가 허용되는지에 대한 정보를 기반으로 상기 최대 변환 스킵 사이즈가 도출될 수 있다.
예를 들어, 상기 하이레벨 신택스는 MTS(Multiple Tranform Selection)가 허용되는지에 대한 정보 또는 TS가 허용되는지에 대한 정보를 포함할 수 있다. 또는 MTS가 허용되는지에 대한 정보 또는 상기 TS가 허용되는지에 대한 정보는 SPS 신택스 또는 PPS 신택스에 포함될 수 있다.
예를 들어, 상기 MTS가 허용되는지에 대한 정보는 sps_mts_enabled_flag 신택스 요소로 나타낼 수 있다. 또는 상기 MTS가 허용되는지에 대한 정보는 sps_mts_intra_enabled_flag 신택스 요소 또는 sps_mts_inter_enabled_flag 신택스 요소를 포함할 수 있다. 예를 들어, 상기 sps_mts_intra_enabled_flag 신택스 요소 또는 sps_mts_inter_enabled_flag 신택스 요소는 상기 sps_mts_enabled_flag 신택스 요소를 기반으로 상기 SPS 신택스에 포함될 수 있다. 상기 sps_mts_intra_enabled_flag 신택스 요소는 sps_explicit_mts_intra_enabled_flag 신택스 요소로 나타낼 수 있고, 상기 sps_mts_inter_enabled_flag 신택스 요소는 sps_explicit_mts_inter_enabled_flag 신택스 요소로 나타낼 수 있다. 예를 들어, 상기 MTS가 허용되는지에 대한 정보는 MTS enabled 정보로 나타낼 수도 있다.
예를 들어, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용된다는 정보를 나타내는 경우는 MTS enabled = 1 또는 상기 sps_mts_enabled_flag 신택스 요소의 값이 1인 것으로 나타낼 수 있다. 또는 상기 sps_mts_enabled_flag 신택스 요소의 값이 1이고, sps_explicit_mts_intra_enabled_flag 신택스 요소 또는 sps_explicit_mts_inter_enabled_flag 신택스 요소의 값이 1인 것으로 나타낼 수 있다. 또는 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용되지 않는다는 정보를 나타내는 경우는 MTS enabled = 0 또는 상기 sps_mts_enabled_flag 신택스 요소의 값이 0인 것으로 나타낼 수 있다. 또는 상기 sps_mts_enabled_flag 신택스 요소의 값이 1이고, sps_explicit_mts_intra_enabled_flag 신택스 요소 또는 sps_explicit_mts_inter_enabled_flag 신택스 요소의 값이 0인 것으로 나타낼 수 있다. 예를 들어, 설정에 따라 상기 값은 상기 값에 대응하는 정보를 역으로 나타낼 수도 있다.
예를 들어, 상기 TS가 허용되는지에 대한 정보는 TS enabled 정보 또는 sps_transform_skip_enabled_flag 신택스 요소로 나타낼 수 있다. 예를 들어, 상기 TS가 허용되는지에 대한 정보는 TS enabled 정보로 나타낼 수도 있다.
예를 들어, 상기 TS가 허용되는지에 대한 정보가 상기 TS가 허용된다는 정보를 나타내는 경우는 TS enabled = 1 또는 상기 sps_transform_skip_enabled_flag 신택스 요소의 값이 1인 것으로 나타낼 수 있다. 또는 상기 TS가 허용되는지에 대한 정보가 상기 TS가 허용되지 않는다는 정보를 나타내는 경우는 TS enabled = 0 또는 상기 sps_transform_skip_enabled_flag 신택스 요소의 값이 0인 것으로 나타낼 수 있다. 예를 들어, 설정에 따라 상기 값은 상기 값에 대응하는 정보를 역으로 나타낼 수도 있다.
예를 들어, 상기 MTS가 허용된다는 정보를 나타내는 상기 MTS가 허용되는지에 대한 정보를 기반으로, 상기 최대 변환 스킵 사이즈는 상기 MTS의 사이즈를 기반으로 도출될 수 있다. 즉, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용된다는 정보를 나타내는 경우, 상기 최대 변환 스킵 사이즈는 상기 MTS의 사이즈를 기반으로 도출될 수 있다. 다시 말해, 상기 최대 변환 스킵 사이즈는 상기 MTS에 종속적일 수 있다. 상기 MTS의 사이즈는 MTS가 허용되는 블록의 최대 사이즈를 나타낼 수 있다. 예를 들어, 상기 MTS의 사이즈가 32 이하인 경우, 변환 스킵도 32 이하의 사이즈의 블록에 대하여 허용될 수 있다.
또는 예를 들어, 상기 MTS가 허용된다는 정보를 나타내는 상기 MTS가 허용되는지에 대한 정보를 기반으로, 상기 최대 변환 스킵 사이즈는 기 설정된 사이즈로 도출될 수 있다. 즉, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용된다는 정보를 나타내는 경우, 상기 최대 변환 스킵 사이즈는 기 설정된 사이즈로 도출될 수 있다. 예를 들어, 기 설정된 사이즈가 8인 경우, 상기 최대 변환 스킵 사이즈는 상기 기 설정된 사이즈 8로 도출될 수 있다.
또는 예를 들어, 상기 MTS가 허용된다는 정보를 나타내는 상기 MTS가 허용되는지에 대한 정보를 기반으로, 상기 하이레벨 신택스는 상기 최대 변환 스킵 사이즈에 대한 정보를 포함할 수 있고, 상기 최대 변환 스킵 사이즈는 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 도출될 수 있다. 즉, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용된다는 정보를 나타내는 경우, 상기 하이레벨 신택스는 상기 최대 변환 스킵 사이즈에 대한 정보를 별도로 포함할 수 있고, 상기 최대 변환 스킵 사이즈는 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 도출될 수 있다. 또는 예를 들어, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용된다는 정보를 나타내는 경우, 상기 하이레벨 신택스는 상기 최대 변환 스킵 사이즈가 상기 MTS의 사이즈를 기반으로 도출되는지에 대한 정보를 포함할 수 있다. 상기 최대 변환 스킵 사이즈가 상기 MTS의 사이즈를 기반으로 도출되는지에 대한 정보가 상기 최대 변환 스킵 사이즈가 상기 MTS의 사이즈를 기반으로 도출된다는 정보를 나타내는 경우, 상기 하이레벨 신택스는 상기 최대 변환 스킵 사이즈에 대한 정보를 포함할 수 있다. 상기 최대 변환 스킵 사이즈에 대한 정보는 SPS 신택스 또는 PPS 신택스에 포함될 수 있다. 예를 들어, 하이레벨 신택스에 포함된 상기 최대 변환 스킵 사이즈에 대한 정보가 32를 나타내는 경우, 상기 최대 변환 스킵 사이즈는 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 32로 도출될 수 있다.
또는 예를 들어, 상기 MTS가 허용되지 않는다는 정보를 나타내는 상기 MTS가 허용되는지에 대한 정보를 기반으로, 상기 최대 변환 스킵 사이즈는 기 설정된 사이즈로 도출될 수 있다. 즉, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용되지 않는다는 정보를 나타내는 경우, 상기 최대 변환 스킵 사이즈는 기 설정된 사이즈로 도출될 수 있다. 예를 들어, 기 설정된 사이즈가 8인 경우, 상기 최대 변환 스킵 사이즈는 상기 기 설정된 사이즈 8로 도출될 수 있다.
또는 예를 들어, 상기 MTS가 허용되지 않는다는 정보를 나타내는 상기 MTS가 허용되는지에 대한 정보를 기반으로, 상기 하이레벨 신택스는 상기 최대 변환 스킵 사이즈에 대한 정보를 포함할 수 있고, 상기 최대 변환 스킵 사이즈는 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 도출될 수 있다. 즉, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용되지 않는다는 정보를 나타내는 경우, 상기 하이레벨 신택스는 상기 최대 변환 스킵 사이즈에 대한 정보를 별도로 포함할 수 있고, 상기 최대 변환 스킵 사이즈는 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 도출될 수 있다. 상기 최대 변환 스킵 사이즈에 대한 정보는 SPS 신택스 또는 PPS 신택스에 포함될 수 있다. 예를 들어, 하이레벨 신택스에 포함된 상기 최대 변환 스킵 사이즈에 대한 정보가 32를 나타내는 경우, 상기 최대 변환 스킵 사이즈는 상기 최대 변환 스킵 사이즈에 대한 정보를 기반으로 32로 도출될 수 있다.
예를 들어, 상기 레지듀얼 관련 정보는 상기 현재 블록에 적용하는 변환 타입에 관한 MTS 인덱스 정보를 포함할 수 있다. 예를 들어, MTS 인덱스 정보는 tu_mts_idx 신택스 요소 또는 mts_idx 신택스 요소로 나타낼 수있다. 예를 들어, MTS 인덱스 정보는 변환 유닛 신택스 또는 코딩 유닛 신택스에 포함될 수 있다. 예를 들어, MTS 인덱스 정보는 상기 현재 블록에 적용하는 변환 타입 또는 변환 스킵에 관한 정보를 나타낼 수 있다. 또는 상기 MTS 인덱스 정보는 상기 MTS가 허용되는지에 대한 정보 및/또는 상기 변환 스킵이 허용되는지에 대한 정보를 기반으로 상기 현재 블록에 적용하는 변환 타입 또는 변환 스킵에 관한 정보를 나타낼 수 있다.
예를 들어, 상기 MTS 인덱스 정보가 나타내는 정보는 상기 MTS 인덱스 정보에 대한 빈 스트링의 빈을 기반으로 도출될 수 있다. 또는 상기 MTS 인덱스 정보가 나타내는 정보는 상기 빈의 컨텍스트 인덱스의 값을 기반으로 도출될 수 있다. 또는 상기 MTS 인덱스 정보가 나타내는 정보는 상기 빈 스트링의 첫 번째 빈의 컨텍스트 인덱스 값을 기반으로 도출될 수 있다. 예를 들어, 컨텍스트 인덱스(ctxIdx)는 컨텍스트 인덱스 증감(ctxInc) 및 컨텍스트 인덱스 오프셋(ctxIdxOffset)을 기반으로 도출될 수 있다.
예를 들어, 상기 MTS 인덱스 정보에 대한 첫 번째 빈의 컨텍스트 인덱스의 값은 상기 MTS가 허용되는지에 대한 정보, 상기 변환 스킵이 허용되는지에 대한 정보 및 상기 현재 블록의 사이즈를 기반으로 도출될 수 있다. 예를 들어, 상기 MTS 인덱스 정보에 대한 첫 번째 빈의 컨텍스트 인덱스의 값은 표 19 또는 표 22를 기반으로 도출될 수 있다.
예를 들어, 상기 MTS가 허용된다는 정보를 나타내는 상기 MTS가 허용되는지에 대한 정보 및 상기 변환 스킵이 허용된다는 정보를 나타내는 상기 변환 스킵이 허용되는지에 대한 정보를 기반으로, 상기 컨텍스트 인덱스의 값은 상기 현재 블록의 너비 및 상기 현재 블록의 높이를 비교하여 도출될 수 있다. 즉, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용된다는 정보를 나타내고, 상기 TS가 허용되는지에 대한 정보가 상기 TS가 허용된다는 정보를 나타내는 경우, 상기 현재 블록의 너비 및 상기 현재 블록의 높이를 비교하여 도출될 수 있다. 또는 상기 현재 블록의 너비 및 상기 현재 블록의 높이가 동일한 경우, 상기 컨텍스트 인덱스의 값은 0으로 도출될 수 있다. 또는 상기 현재 블록의 너비가 상기 현재 블록의 높이보다 큰 경우, 상기 컨텍스트 인덱스의 값은 1로 도출될 수 있고, 상기 현재 블록의 너비가 상기 현재 블록의 높이보다 작은 경우, 상기 컨텍스트 인덱스의 값은 2로 도출될 수 있다.
또는 예를 들어, 상기 MTS가 허용된다는 정보를 나타내는 상기 MTS가 허용되는지에 대한 정보 및 cqtDepth(coded quad-tree depth)를 기반으로, 상기 컨텍스트 인덱스의 값이 도출될 수 있다. 즉, 상기 MTS가 허용되는지에 대한 정보가 상기 MTS가 허용된다는 정보를 나타내는 경우, cqtDepth를 기반으로 상기 컨텍스트 인덱스의 값이 도출될 수 있다. 예를 들어, 상기 컨텍스트 인덱스의 값은 상기 cqtDepth의 값에 1을 더한 값으로 도출될 수 있으며, 1, 2, 3, 4, 5 또는 6으로 도출될 수 있다.
또는 예를 들어, 상기 변환 스킵이 허용된다는 정보를 나타내는 상기 변환 스킵이 허용되는지에 대한 정보를 기반으로, 상기 컨텍스트 인덱스의 값은 상기 현재 블록의 너비 및 상기 현재 블록의 높이를 비교하여 도출될 수 있다. 즉, 상기 TS가 허용되는지에 대한 정보가 상기 TS가 허용된다는 정보를 나타내는 경우, 상기 현재 블록의 너비 및 상기 현재 블록의 높이를 비교하여 도출될 수 있다. 또는 상기 현재 블록의 너비 및 상기 현재 블록의 높이가 동일한 경우, 상기 컨텍스트 인덱스의 값은 0으로 도출될 수 있다. 또는 상기 현재 블록의 너비가 상기 현재 블록의 높이보다 큰 경우, 상기 컨텍스트 인덱스의 값은 1로 도출될 수 있고, 상기 현재 블록의 너비가 상기 현재 블록의 높이보다 작은 경우, 상기 컨텍스트 인덱스의 값은 2로 도출될 수 있다.
또는 예를 들어, 상기 컨텍스트 인덱스의 값은 블록의 크기, 블록의 폭-높이 비율, 블록의 인트라 또는 인터 예측 여부, 주변의 변환 스킵 여부 등 중 적어도 하나를 기반으로 ctxInc 및/또는 ctxIdx를 결정할 수 있다. 또는 블록의 크기, 블록의 폭-높이 비율, 블록의 인트라 또는 인터 예측 여부, 주변의 변환 스킵 여부 등 중 적어도 하나에 기반한 컨텍스트 모델을 정의할 수 있으며, 이를 기반으로 컨텍스트 인덱스의 값을 도출할 수 있다. 예를 들어, 현재 블록에 관한 변환 타입 또는 변환 스킵에 관한 정보는 상기 컨텍스트 인덱스 또는 컨텍스트 모델을 기반으로 획득될 수 있다.
디코딩 장치는 상기 예측 모드 정보를 기반으로 예측을 수행하여 현재 블록의 예측 샘플들을 도출할 수 있다(S1510). 예를 들어, 디코딩 장치는 상기 예측 모드 정보를 기반으로 상기 현재 블록의 예측 모드를 도출할 수 있다. 예를 들어, 상기 예측 모드 정보는 인트라 예측 모드에 관한 정보 또는 인터 예측 모드에 관한 정보를 포함할 수 있으며, 이를 기반으로 현재 블록의 예측 모드를 인트라 예측 모드 또는 인터 예측 모드로 도출할 수 있다.
예를 들어, 디코딩 장치는 상기 예측 모드를 기반으로 상기 현재 블록의 예측 샘플들을 도출할 수 있다. 예를 들어, 디코딩 장치는 상기 예측 모드가 인트라 예측 모드인 경우, 현재 블록 주변의 샘플들을 기반으로 상기 예측 샘플들을 도출할 수 있다. 또는 디코딩 장치는 상기 예측 모드가 인터 예측 모드인 경우, 현재 블록의 참조 픽처 내의 참조 샘플들을 기반으로 상기 상기 예측 샘플들을 도출할 수 있다.
디코딩 장치는 상기 레지듀얼 관련 정보를 기반으로 상기 현재 블록의 레지듀얼 샘플들을 도출할 수 있다(S1520). 예를 들어, 상기 레지듀얼 관련 정보는 상기 레지듀얼 샘플들에 관한 변환 계수에 관한 정보를 포함할 수 있다. 또는 상기 레지듀얼 관련 정보는 상기 변환 스킵 플래그를 포함할 수도 있다.
예를 들어, 상기 레지듀얼 관련 정보가 상기 변환 스킵 플래그를 포함하는 경우, 상기 현재 블록에 대한 레지듀얼 신호(또는 레지듀얼에 관한 정보)는 변환 없이 픽셀 도메인(공간 도메인) 상에서 시그널링될 수 있다. 또는 상기 레지듀얼 관련 정보가 상기 변환 스킵 플래그를 포함하지 않는 경우, 상기 현재 블록에 대한 레지듀얼 신호(또는 레지듀얼에 관한 정보)는 변환이 수행되어 변환 도메인 상에서 시그널링될 수 있다. 예를 들어, 디코딩 장치는 상기 변환 없이 또는 변환이 수행되어 시그널링된 레지듀얼 신호를 기반으로 레지듀얼 샘플들을 도출할 수 있다.
디코딩 장치는 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 상기 현재 블록의 복원 샘플들을 생성할 수 있다(S1530). 또는 디코딩 장치는 상기 복원 샘플들을 기반으로 복원 블록 또는 복원 픽처를 도출할 수 있다. 이후 디코딩 장치는 필요에 따라 주관적/객관적 화질을 향상시키기 위하여 디블록킹 필터링 및/또는 SAO 절차와 같은 인루프 필터링 절차를 상기 복원 픽처에 적용할 수 있음은 상술한 바와 같다.
디코딩 장치는 비트스트림을 디코딩하여 상술한 정보들(또는 신택스 요소들) 모두 또는 일부를 포함하는 영상 정보를 획득할 수 있다. 또한, 상기 비트스트림은 컴퓨터 판독 가능한 디지털 저장 매체에 저장될 수 있으며, 상술한 디코딩 방법이 수행되도록 야기할 수 있다. 예를 들어, 비트스트림은 영상 정보 또는 비디오 정보로 나타낼 수도 있다.
상술한 실시예에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 문서는 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타내어진 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 문서의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 본 문서에 따른 방법은 소프트웨어 형태로 구현될 수 있으며, 본 문서에 따른 인코딩 장치 및/또는 디코딩 장치는 예를 들어 TV, 컴퓨터, 스마트폰, 셋톱박스, 디스플레이 장치 등의 영상 처리를 수행하는 장치에 포함될 수 있다.
본 문서에서 실시예들이 소프트웨어로 구현될 때, 상술한 방법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다. 프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다.
도 17은 컨텐츠 스트리밍 시스템 구조를 개략적으로 나타낸다.
즉, 본 문서에서 설명한 실시예들은 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 예를 들어, 각 도면에서 도시한 기능 유닛들은 컴퓨터, 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다.
또한, 본 문서가 적용되는 디코딩 장치 및 인코딩 장치는 멀티미디어 방송 송수신 장치, 모바일 통신 단말, 홈 시네마 비디오 장치, 디지털 시네마 비디오 장치, 감시용 카메라, 비디오 대화 장치, 비디오 통신과 같은 실시간 통신 장치, 모바일 스트리밍 장치, 저장 매체, 캠코더, 주문형 비디오(VoD) 서비스 제공 장치, OTT 비디오(Over the top video) 장치, 인터넷 스트리밍 서비스 제공 장치, 3차원(3D) 비디오 장치, 화상 전화 비디오 장치, 및 의료용 비디오 장치 등에 포함될 수 있으며, 비디오 신호 또는 데이터 신호를 처리하기 위해 사용될 수 있다. 예를 들어, OTT 비디오(Over the top video) 장치로는 게임 콘솔, 블루레이 플레이어, 인터넷 접속 TV, 홈시어터 시스템, 스마트폰, 태블릿 PC, DVR(Digital Video Recorder) 등을 포함할 수 있다.
또한, 본 문서가 적용되는 처리 방법은 컴퓨터로 실행되는 프로그램의 형태로 생산될 수 있으며, 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 본 문서에 따른 데이터 구조를 가지는 멀티미디어 데이터도 또한 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 상기 컴퓨터가 판독할 수 있는 기록 매체는 컴퓨터로 읽을 수 있는 데이터가 저장되는 모든 종류의 저장 장치 및 분산 저장 장치를 포함한다. 상기 컴퓨터가 판독할 수 있는 기록 매체는, 예를 들어, 블루레이 디스크(BD), 범용 직렬 버스(USB), ROM, PROM, EPROM, EEPROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크 및 광학적 데이터 저장 장치를 포함할 수 있다. 또한, 상기 컴퓨터가 판독할 수 있는 기록 매체는 반송파(예를 들어, 인터넷을 통한 전송)의 형태로 구현된 미디어를 포함한다. 또한, 인코딩 방법으로 생성된 비트스트림이 컴퓨터가 판독할 수 있는 기록 매체에 저장되거나 유무선 통신 네트워크를 통해 전송될 수 있다. 또한, 본 문서의 실시예는 프로그램 코드에 의한 컴퓨터 프로그램 제품으로 구현될 수 있고, 상기 프로그램 코드는 본 문서의 실시예에 의해 컴퓨터에서 수행될 수 있다. 상기 프로그램 코드는 컴퓨터에 의해 판독 가능한 캐리어 상에 저장될 수 있다.
또한, 본 문서가 적용되는 컨텐츠 스트리밍 시스템은 크게 인코딩 서버, 스트리밍 서버, 웹 서버, 미디어 저장소, 사용자 장치 및 멀티미디어 입력 장치를 포함할 수 있다.
상기 인코딩 서버는 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들로부터 입력된 컨텐츠를 디지털 데이터로 압축하여 비트스트림을 생성하고 이를 상기 스트리밍 서버로 전송하는 역할을 한다. 다른 예로, 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들이 비트스트림을 직접 생성하는 경우, 상기 인코딩 서버는 생략될 수 있다. 상기 비트스트림은 본 문서가 적용되는 인코딩 방법 또는 비트스트림 생성 방법에 의해 생성될 수 있고, 상기 스트리밍 서버는 상기 비트스트림을 전송 또는 수신하는 과정에서 일시적으로 상기 비트스트림을 저장할 수 있다.
상기 스트리밍 서버는 웹 서버를 통한 사용자 요청에 기초하여 멀티미디어 데이터를 사용자 장치에 전송하고, 상기 웹 서버는 사용자에게 어떠한 서비스가 있는지를 알려주는 매개체 역할을 한다. 사용자가 상기 웹 서버에 원하는 서비스를 요청하면, 상기 웹 서버는 이를 스트리밍 서버에 전달하고, 상기 스트리밍 서버는 사용자에게 멀티미디어 데이터를 전송한다. 이때, 상기 컨텐츠 스트리밍 시스템은 별도의 제어 서버를 포함할 수 있고, 이 경우 상기 제어 서버는 상기 컨텐츠 스트리밍 시스템 내 각 장치 간 명령/응답을 제어하는 역할을 한다.
상기 스트리밍 서버는 미디어 저장소 및/또는 인코딩 서버로부터 컨텐츠를 수신할 수 있다. 예를 들어, 상기 인코딩 서버로부터 컨텐츠를 수신하게 되는 경우, 상기 컨텐츠를 실시간으로 수신할 수 있다. 이 경우, 원활한 스트리밍 서비스를 제공하기 위하여 상기 스트리밍 서버는 상기 비트스트림을 일정 시간동안 저장할 수 있다.
상기 사용자 장치의 예로는, 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)), 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등이 있을 수 있다. 상기 컨텐츠 스트리밍 시스템 내 각 서버들은 분산 서버로 운영될 수 있으며, 이 경우 각 서버에서 수신하는 데이터는 분산 처리될 수 있다.

Claims (18)

  1. 디코딩 장치에 의하여 수행되는 영상 디코딩 방법에 있어서,
    비트스트림으로부터 예측 모드 정보 및 레지듀얼 관련 정보를 획득하는 단계;
    상기 예측 모드 정보를 기반으로 현재 블록에 대한 예측 모드를 도출하는 단계;
    상기 예측 모드를 기반으로 상기 현재 블록의 예측 샘플들을 도출하는 단계;
    상기 레지듀얼 관련 정보를 기반으로 상기 현재 블록의 레지듀얼 샘플들을 도출하는 단계; 및
    상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 상기 현재 블록의 복원 샘플들을 생성하는 단계를 포함하고,
    상기 예측 모드 정보는 상기 현재 블록에 인터 예측 또는 인트라 예측이 적용되는지 여부와 관련되고,
    상기 레지듀얼 관련 정보는 상기 현재 블록의 사이즈 및 최대 변환 스킵 사이즈를 기반으로 변환 스킵 플래그를 포함하고,
    상기 변환 스킵 플래그는 상기 현재 블록에 변환 스킵이 적용되는지 여부와 관련되고,
    상기 최대 변환 스킵 사이즈에 대한 정보가 상기 비트스트림으로부터 획득되고,
    상기 최대 변환 스킵 사이즈에 대한 정보는 log2_transform_skip_max_size_minus2 신택스 요소를 포함하고,
    상기 최대 변환 스킵 사이즈는 다음의 식을 기반으로 도출되고,
    Figure pat00073
    ,
    상기 MaxTsSize는 상기 최대 변환 스킵 사이즈를 나타내고, 상기 log2_transform_skip_max_size_minus2는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값을 나타내는 것을 특징으로 하는, 영상 디코딩 방법.
  2. 제1항에 있어서,
    상기 최대 변환 스킵 사이즈는 4, 8, 16 또는 32를 포함하는 후보 사이즈들 중 하나로 도출되는 것을 특징으로 하는, 영상 디코딩 방법.
  3. 제1항에 있어서,
    상기 log2_transform_skip_max_size_minus2 신택스 요소의 값은 0 내지 3의 후보 값들 중 하나로 나타내어지는 것을 특징으로 하는, 영상 디코딩 방법.
  4. 제1항에 있어서,
    상기 최대 변환 스킵 사이즈에 대한 정보는 하이 레벨 신택스에 포함되는 것을 특징으로 하는, 영상 디코딩 방법.
  5. 제4항에 있어서,
    상기 하이 레벨 신택스는 시퀀스 파라미터 세트 신택스 또는 픽처 파라미터 세트 신택스 중 하나인 것을 특징으로 하는, 영상 디코딩 방법.
  6. 제5항에 있어서,
    상기 픽처 파라미터 세트 또는 상기 시퀀스 파라미터 세트 중 하나는 상기 변환 스킵이 가용한지(enabled) 여부를 나타내는 변환 스킵 가용 플래그를 포함하고,
    상기 최대 변환 스킵 사이즈에 대한 정보는 상기 변환 스킵 플래그의 값이 1임을 기반으로 상기 픽처 파라미터 세트 또는 상기 시퀀스 파라미터 세트 중 상기 하나에 포함됨을 특징으로 하는, 영상 디코딩 방법.
  7. 인코딩 장치에 의하여 수행되는 영상 인코딩 방법에 있어서,
    현재 블록에 대하여 예측을 수행하여 예측 샘플들을 도출하는 단계;
    상기 현재 블록에 대한 레지듀얼 샘플들을 도출하는 단계;
    상기 현재 블록에 대한 상기 예측에 관련된 예측 모드 정보를 생성하는 단계;
    상기 현재 블록에 대한 상기 레지듀얼 샘플들에 관련된 레지듀얼 관련 정보를 생성하는 단계; 및
    상기 예측 모드 정보 및 상기 레지듀얼 관련 정보를 포함하는 영상 정보를 인코딩하는 단계를 포함하고,
    상기 예측 모드 정보는 상기 현재 블록에 인터 예측 또는 인트라 예측이 적용되는지 여부와 관련되고,
    상기 레지듀얼 관련 정보는 상기 현재 블록의 사이즈 및 최대 변환 스킵 사이즈를 기반으로 변환 스킵 플래그를 포함하고,
    상기 변환 스킵 플래그는 상기 현재 블록에 변환 스킵이 적용되는지 여부와 관련되고,
    상기 영상 정보는 상기 최대 변환 스킵 사이즈에 대한 정보를 포함하고,
    상기 최대 변환 스킵 사이즈에 대한 정보는 log2_transform_skip_max_size_minus2 신택스 요소를 포함하고,
    상기 최대 변환 스킵 사이즈는 다음의 식을 기반으로 나타내어지고,
    Figure pat00074
    ,
    상기 MaxTsSize는 상기 최대 변환 스킵 사이즈를 나타내고, 상기 log2_transform_skip_max_size_minus2는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값을 나타내는 것을 특징으로 하는, 영상 인코딩 방법.
  8. 제7항에 있어서,
    상기 최대 변환 스킵 사이즈는 4, 8, 16 또는 32를 포함하는 후보 사이즈들 중 하나로 나타내어지는 것을 특징으로 하는, 영상 인코딩 방법.
  9. 제7항에 있어서,
    상기 log2_transform_skip_max_size_minus2 신택스 요소의 값은 0 내지 3의 후보 값들 중 하나로 나타내어지는 것을 특징으로 하는, 영상 인코딩 방법.
  10. 제7항에 있어서,
    상기 최대 변환 스킵 사이즈에 대한 정보는 하이 레벨 신택스에 포함되는 것을 특징으로 하는, 영상 인코딩 방법.
  11. 제10항에 있어서,
    상기 하이 레벨 신택스는 시퀀스 파라미터 세트 신택스 또는 픽처 파라미터 세트 신택스 중 하나인 것을 특징으로 하는, 영상 인코딩 방법.
  12. 제11항에 있어서,
    상기 픽처 파라미터 세트 또는 상기 시퀀스 파라미터 세트 중 하나는 상기 변환 스킵이 가용한지(enabled) 여부를 나타내는 변환 스킵 가용 플래그를 포함하고,
    상기 최대 변환 스킵 사이즈에 대한 정보는 상기 변환 스킵 플래그의 값이 1임을 기반으로 상기 픽처 파라미터 세트 또는 상기 시퀀스 파라미터 세트 중 상기 하나에 포함됨을 특징으로 하는, 영상 인코딩 방법.
  13. 비일시적 컴퓨터 판독 가능한 저장 매체에 있어서, 상기 저장 매체는 비트스트림을 저장하고, 상기 비트스트림은, 현재 블록에 대하여 예측을 수행하여 예측 샘플들을 도출하는 단계, 상기 현재 블록에 대한 레지듀얼 샘플들을 도출하는 단계, 상기 현재 블록에 대한 상기 예측에 관련된 예측 모드 정보를 생성하는 단계, 상기 현재 블록에 대한 상기 레지듀얼 샘플들에 관련된 레지듀얼 관련 정보를 생성하는 단계, 및 상기 예측 모드 정보 및 상기 레지듀얼 관련 정보를 포함하는 영상 정보를 인코딩하여 상기 비트스트림을 생성하는 단계를 수행하여 생성되고,
    상기 예측 모드 정보는 상기 현재 블록에 인터 예측 또는 인트라 예측이 적용되는지 여부와 관련되고,
    상기 레지듀얼 관련 정보는 상기 현재 블록의 사이즈 및 최대 변환 스킵 사이즈를 기반으로 변환 스킵 플래그를 포함하고,
    상기 변환 스킵 플래그는 상기 현재 블록에 변환 스킵이 적용되는지 여부와 관련되고,
    상기 영상 정보는 상기 최대 변환 스킵 사이즈에 대한 정보를 포함하고,
    상기 최대 변환 스킵 사이즈에 대한 정보는 log2_transform_skip_max_size_minus2 신택스 요소를 포함하고,
    상기 최대 변환 스킵 사이즈는 다음의 식을 기반으로 나타내어지고,
    Figure pat00075
    ,
    상기 MaxTsSize는 상기 최대 변환 스킵 사이즈를 나타내고, 상기 log2_transform_skip_max_size_minus2는 상기 log2_transform_skip_max_size_minus2 신택스 요소의 값을 나타내는 것을 특징으로 하는, 비일시적 컴퓨터 판독 가능한 저장 매체.
  14. 제13항에 있어서,
    상기 최대 변환 스킵 사이즈는 4, 8, 16 또는 32를 포함하는 후보 사이즈들 중 하나로 나타내어지는 것을 특징으로 하는, 비일시적 컴퓨터 판독 가능한 저장 매체.
  15. 제13항에 있어서,
    상기 log2_transform_skip_max_size_minus2 신택스 요소의 값은 0 내지 3의 후보 값들 중 하나로 나타내어지는 것을 특징으로 하는, 비일시적 컴퓨터 판독 가능한 저장 매체.
  16. 제13항에 있어서,
    상기 최대 변환 스킵 사이즈에 대한 정보는 하이 레벨 신택스에 포함되는 것을 특징으로 하는, 비일시적 컴퓨터 판독 가능한 저장 매체.
  17. 제16항에 있어서,
    상기 하이 레벨 신택스는 시퀀스 파라미터 세트 신택스 또는 픽처 파라미터 세트 신택스 중 하나인 것을 특징으로 하는, 비일시적 컴퓨터 판독 가능한 저장 매체.
  18. 제17항에 있어서,
    상기 픽처 파라미터 세트 또는 상기 시퀀스 파라미터 세트 중 하나는 상기 변환 스킵이 가용한지(enabled) 여부를 나타내는 변환 스킵 가용 플래그를 포함하고,
    상기 최대 변환 스킵 사이즈에 대한 정보는 상기 변환 스킵 플래그의 값이 1임을 기반으로 상기 픽처 파라미터 세트 또는 상기 시퀀스 파라미터 세트 중 상기 하나에 포함됨을 특징으로 하는, 비일시적 컴퓨터 판독 가능한 저장 매체.
KR1020227012010A 2019-01-15 2020-01-15 변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치 KR102610233B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237041499A KR20240000610A (ko) 2019-01-15 2020-01-15 변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962792423P 2019-01-15 2019-01-15
US62/792,423 2019-01-15
KR1020207013326A KR102392701B1 (ko) 2019-01-15 2020-01-15 변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치
PCT/KR2020/000757 WO2020149648A1 (ko) 2019-01-15 2020-01-15 변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020207013326A Division KR102392701B1 (ko) 2019-01-15 2020-01-15 변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020237041499A Division KR20240000610A (ko) 2019-01-15 2020-01-15 변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20220048060A true KR20220048060A (ko) 2022-04-19
KR102610233B1 KR102610233B1 (ko) 2023-12-05

Family

ID=71094257

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020227012010A KR102610233B1 (ko) 2019-01-15 2020-01-15 변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치
KR1020207013326A KR102392701B1 (ko) 2019-01-15 2020-01-15 변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치
KR1020237041499A KR20240000610A (ko) 2019-01-15 2020-01-15 변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020207013326A KR102392701B1 (ko) 2019-01-15 2020-01-15 변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치
KR1020237041499A KR20240000610A (ko) 2019-01-15 2020-01-15 변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치

Country Status (8)

Country Link
US (4) US10917637B2 (ko)
EP (1) EP3703376A1 (ko)
JP (2) JP2021513755A (ko)
KR (3) KR102610233B1 (ko)
CN (1) CN111699694B (ko)
BR (3) BR112021012366B1 (ko)
MX (1) MX2021008449A (ko)
WO (1) WO2020149648A1 (ko)

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740689B (zh) 2018-09-18 2024-04-12 华为技术有限公司 视频编码器、视频解码器及对应方法
WO2020057530A1 (en) 2018-09-18 2020-03-26 Huawei Technologies Co., Ltd. Coding method, device, system
US11218694B2 (en) * 2018-09-24 2022-01-04 Qualcomm Incorporated Adaptive multiple transform coding
TWI822863B (zh) * 2018-09-27 2023-11-21 美商Vid衡器股份有限公司 360度視訊寫碼樣本導出
WO2020084476A1 (en) 2018-10-22 2020-04-30 Beijing Bytedance Network Technology Co., Ltd. Sub-block based prediction
CN111083491A (zh) 2018-10-22 2020-04-28 北京字节跳动网络技术有限公司 细化运动矢量的利用
KR102653562B1 (ko) 2018-11-06 2024-04-02 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 위치에 따른 인트라 예측
WO2020098643A1 (en) 2018-11-12 2020-05-22 Beijing Bytedance Network Technology Co., Ltd. Simplification of combined inter-intra prediction
US11178396B2 (en) * 2018-11-14 2021-11-16 Tencent America LLC Constrained intra prediction and unified most probable mode list generation
CN113170171B (zh) 2018-11-20 2024-04-12 北京字节跳动网络技术有限公司 组合帧间帧内预测模式的预测细化
EP3861742A4 (en) 2018-11-20 2022-04-13 Beijing Bytedance Network Technology Co., Ltd. DIFFERENCE CALCULATION BASED ON SPATIAL POSITION
WO2020108591A1 (en) 2018-12-01 2020-06-04 Beijing Bytedance Network Technology Co., Ltd. Parameter derivation for intra prediction
JP7317965B2 (ja) 2018-12-07 2023-07-31 北京字節跳動網絡技術有限公司 コンテキストベースのイントラ予測
KR20210093891A (ko) * 2018-12-18 2021-07-28 엘지전자 주식회사 이차 변환에 기반한 영상 코딩 방법 및 그 장치
WO2020149648A1 (ko) 2019-01-15 2020-07-23 엘지전자 주식회사 변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치
US11025936B2 (en) * 2019-01-25 2021-06-01 Tencent America LLC Method and apparatus for video coding
US11523136B2 (en) * 2019-01-28 2022-12-06 Hfi Innovation Inc. Methods and apparatuses for coding transform blocks
EP3700205A1 (en) * 2019-02-19 2020-08-26 Nokia Technologies Oy Quantization parameter derivation for cross-channel residual encoding and decoding
CA3128429C (en) 2019-02-22 2023-11-21 Beijing Bytedance Network Technology Co., Ltd. Neighbouring sample selection for intra prediction
BR112021015017B1 (pt) 2019-02-24 2022-07-26 Bytedance Inc. Método e aparelho para codificar dados de vídeo, e, mídia de armazenamento
CA3127182A1 (en) 2019-03-05 2020-09-10 Huawei Technologies Co., Ltd. The method and apparatus for intra sub-partitions coding mode
WO2020177756A1 (en) * 2019-03-06 2020-09-10 Beijing Bytedance Network Technology Co., Ltd. Size dependent inter coding
CN113747156A (zh) * 2019-03-09 2021-12-03 杭州海康威视数字技术股份有限公司 进行编码和解码的方法、解码端、编码端和系统
US11202100B2 (en) * 2019-03-11 2021-12-14 Qualcomm Incorporated Coefficient coding for transform skip mode
KR20210128497A (ko) * 2019-03-11 2021-10-26 인터디지털 브이씨 홀딩스 인코포레이티드 비디오 인코딩 및 디코딩을 위한 엔트로피 코딩
US11128876B2 (en) * 2019-03-12 2021-09-21 Qualcomm Incorporated Joint coefficient coding of transform skip and BDPCM mode for 4:4:4 color formats
WO2020185027A1 (ko) * 2019-03-13 2020-09-17 현대자동차주식회사 데이터 블록에 변환 생략 모드를 효율적으로 적용하기 위한 방법 및 장치
CN113767631B (zh) 2019-03-24 2023-12-15 北京字节跳动网络技术有限公司 用于帧内预测的参数推导中的条件
EP3922014A4 (en) 2019-04-02 2022-04-06 Beijing Bytedance Network Technology Co., Ltd. DECODER SIDE MOTION VECTOR BYPASS
JP7260665B2 (ja) 2019-04-20 2023-04-18 エルジー エレクトロニクス インコーポレイティド Bdpcmに基づく映像コーディング方法、及びその装置
EP3942811A4 (en) * 2019-04-24 2022-06-15 ByteDance Inc. CONSTRAINTS ON THE REPRESENTATION OF A DIFFERENTIAL MODULATION BY CODED PULSES OF QUANTIFIED RESIDUE FOR A CODED VIDEO
KR20220002292A (ko) 2019-05-01 2022-01-06 바이트댄스 아이엔씨 양자화된 잔차 차동 펄스 코드 변조 코딩을 사용하는 인트라 코딩된 비디오
WO2020223615A1 (en) 2019-05-02 2020-11-05 Bytedance Inc. Coding mode based on a coding tree structure type
EP3949387A4 (en) * 2019-05-02 2022-05-18 ByteDance Inc. SIGNALING IN A TRANSFORM JUMP MODE
WO2020236719A2 (en) 2019-05-19 2020-11-26 Bytedance Inc. Transform design for large blocks in video coding
WO2020235961A1 (ko) * 2019-05-22 2020-11-26 엘지전자 주식회사 영상 디코딩 방법 및 그 장치
CN113950829A (zh) * 2019-06-06 2022-01-18 北京字节跳动网络技术有限公司 简化的变换编解码工具
CN116828176A (zh) * 2019-06-11 2023-09-29 Lg电子株式会社 解码设备、编码设备和发送设备
US11863787B2 (en) * 2019-06-19 2024-01-02 Qualcomm Incorporated Maximum allowed block size for BDPCM mode
BR112021025591A2 (pt) * 2019-06-19 2022-02-01 Lg Electronics Inc Codificação de informação sobre conjunto de núcleo de transformada
CN113596478B (zh) * 2019-06-21 2022-04-26 杭州海康威视数字技术股份有限公司 一种编解码方法、装置及其设备
US11212530B2 (en) * 2019-06-24 2021-12-28 Tencent America LLC Method for slice, tile and brick signaling
US11259016B2 (en) * 2019-06-30 2022-02-22 Tencent America LLC Method and apparatus for video coding
US11616962B2 (en) * 2019-07-15 2023-03-28 Tencent America LLC Method and apparatus for video coding
US11095916B2 (en) * 2019-07-23 2021-08-17 Qualcomm Incorporated Wraparound motion compensation in video coding
WO2021023262A1 (en) 2019-08-06 2021-02-11 Beijing Bytedance Network Technology Co., Ltd. Using screen content coding tool for video encoding and decoding
US11677984B2 (en) * 2019-08-20 2023-06-13 Qualcomm Incorporated Low-frequency non-separable transform (LFNST) signaling
CN114287135A (zh) 2019-08-23 2022-04-05 北京字节跳动网络技术有限公司 参考图片重采样中的剪切
WO2021040907A1 (en) * 2019-08-30 2021-03-04 Alibaba Group Holding Limited Method and system for signaling chroma quantization parameter table
US11909991B2 (en) * 2019-08-30 2024-02-20 Tencent America LLC Restrictions on picture width and height
CN114342400A (zh) 2019-09-02 2022-04-12 北京字节跳动网络技术有限公司 基于色彩格式的编解码模式确定
US11736720B2 (en) * 2019-09-03 2023-08-22 Tencent America LLC Motion vector refinement methods for video encoding
US11395014B2 (en) * 2019-09-18 2022-07-19 Qualcomm Incorporated Transform unit design for video coding
US11115671B2 (en) * 2019-09-18 2021-09-07 Panasonic Intellectual Property Corporation Of America System and method for video coding
US20220385888A1 (en) * 2019-09-20 2022-12-01 Electronics And Telecommunications Research Institute Image encoding/decoding method and device, and recording medium storing bitstream
KR102649584B1 (ko) 2019-09-21 2024-03-21 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 크로마 인트라 모드에 기초한 크기 제한
MX2022003566A (es) * 2019-09-24 2022-07-11 Hfi Innovation Inc Método y aparato de codificación de árbol para codificación separada con restricciones en tamaño de cu mínimo.
US11589044B2 (en) * 2019-10-14 2023-02-21 Hfi Innovation Inc. Video encoding and decoding with ternary-tree block partitioning
CN114641992B (zh) * 2019-10-23 2024-04-05 北京字节跳动网络技术有限公司 参考图片重采样的信令
JP7395727B2 (ja) 2019-10-23 2023-12-11 北京字節跳動網絡技術有限公司 ビデオ・データを処理する方法、装置及び記憶方法
MX2022005905A (es) * 2019-11-15 2022-06-24 Hfi Innovation Inc Metodo y aparato para se?alizacion de compensacion de movimiento envolvente horizontal en la codificacion de video vr360.
US11483549B2 (en) * 2019-11-21 2022-10-25 Hfi Innovation Inc. Methods and apparatuses for transform skip mode information signaling
WO2021100863A1 (en) * 2019-11-22 2021-05-27 Sharp Kabushiki Kaisha Systems and methods for signaling tiles and slices in video coding
US11375182B2 (en) * 2019-12-17 2022-06-28 Hfi Innovation Inc. Method and apparatus of constrained layer-wise video coding
US11589037B2 (en) * 2019-12-20 2023-02-21 Qualcomm Incorporated Motion compensation using size of reference picture
US11477450B2 (en) * 2019-12-20 2022-10-18 Zte (Uk) Limited Indication of video slice height in video subpictures
US11457229B2 (en) * 2019-12-23 2022-09-27 Qualcomm Incorporated LFNST signaling for chroma based on chroma transform skip
US11445208B2 (en) * 2019-12-23 2022-09-13 Tencent America LLC Method and apparatus for video coding
AU2020416341B2 (en) * 2019-12-31 2024-03-21 Lg Electronics Inc. Image encoding/decoding method and apparatus for performing prediction on basis of reconfigured prediction mode type of leaf node, and bitstream transmission method
CN116016956B (zh) * 2020-02-11 2023-09-01 华为技术有限公司 编码器、解码器和用于在序列参数集中指示子图像的对应方法
US11412253B2 (en) * 2020-02-24 2022-08-09 Alibaba Group Holding Limited Methods for combining decoder side motion vector refinement with wrap-around motion compensation
JP7400114B2 (ja) 2020-02-24 2023-12-18 バイトダンス インコーポレイテッド ビデオコーディングでのピクチャレベルスライスインデックスの使用
EP4097979A4 (en) 2020-02-29 2023-07-26 Beijing Bytedance Network Technology Co., Ltd. RESTRICTIONS ON HIGH-LEVEL SYNTAX ELEMENTS
CN115211044A (zh) * 2020-03-03 2022-10-18 字节跳动有限公司 使用条带头信令通知控制缩放处理
US11146806B2 (en) * 2020-03-11 2021-10-12 Tencent America LLC Coding unit level transform size restriction for adaptive color transform
CN113395524B (zh) * 2020-03-11 2023-04-28 腾讯美国有限责任公司 视频解码方法、装置和电子设备
EP4104438A4 (en) 2020-03-11 2023-08-16 Beijing Bytedance Network Technology Co., Ltd. ADAPTIVE LOOP FILTERING
CN114097243A (zh) * 2020-03-27 2022-02-25 株式会社迓廷试 影像的译码方法及装置
US11582491B2 (en) * 2020-03-27 2023-02-14 Qualcomm Incorporated Low-frequency non-separable transform processing in video coding
JP7442673B2 (ja) * 2020-04-10 2024-03-04 北京字節跳動網絡技術有限公司 ビデオコーディングにおけるスキップブロックの変換のための最小許容量子化
CN115349263A (zh) * 2020-05-19 2022-11-15 谷歌有限责任公司 质量归一化视频转码的动态参数选择
CN115804092A (zh) 2020-05-22 2023-03-14 抖音视界有限公司 通用约束标志的信令
US11659207B2 (en) * 2020-06-08 2023-05-23 Qualcomm Incorporated General constraints of syntax elements for video coding
US11818384B2 (en) * 2020-09-24 2023-11-14 Ofinno, Llc Affine intra block copy refinement
US11924471B2 (en) * 2020-11-12 2024-03-05 Qualcomm Incorporated Context-based transform index signaling in video coding
CN115633172A (zh) * 2020-12-06 2023-01-20 浙江大华技术股份有限公司 基于ibc模式编码方法、电子设备及存储介质
US11838551B2 (en) * 2020-12-30 2023-12-05 Ofinno, Llc Adaptive block level bit-depth prediction
US20220224927A1 (en) * 2021-01-14 2022-07-14 Samsung Electronics Co., Ltd. Video decoding apparatus and video decoding method
CN117157672A (zh) * 2021-04-21 2023-12-01 松下电器(美国)知识产权公司 三维数据编码方法、三维数据解码方法、三维数据编码装置及三维数据解码装置
KR20240019834A (ko) * 2021-06-28 2024-02-14 베이징 다지아 인터넷 인포메이션 테크놀로지 컴퍼니 리미티드 비디오 코딩을 위한 잔차 및 계수 코딩
US20230247209A1 (en) * 2022-01-18 2023-08-03 Tencent America LLC Signalling of eob for one dimensional transform skip
WO2024083197A1 (en) * 2022-10-20 2024-04-25 Douyin Vision Co., Ltd. Method, apparatus, and medium for video processing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150143585A (ko) * 2013-04-23 2015-12-23 퀄컴 인코포레이티드 비디오 코딩에서 예측 잔차 블록들의 재배치
WO2018128322A1 (ko) * 2017-01-03 2018-07-12 엘지전자(주) 영상 처리 방법 및 이를 위한 장치

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578574A (en) * 1978-12-09 1980-06-13 Victor Co Of Japan Ltd Manufacture of insulated-gate field-effect transistor
KR101830352B1 (ko) * 2011-11-09 2018-02-21 에스케이 텔레콤주식회사 스킵모드를 이용한 동영상 부호화 및 복호화 방법 및 장치
CN107580230B (zh) 2012-01-20 2021-08-20 韩国电子通信研究院 视频解码方法和视频编码方法
CN104380734B (zh) * 2012-06-07 2017-09-15 寰发股份有限公司 编码以及解码视频数据的方法和装置
FI2869557T3 (fi) * 2012-06-29 2023-11-02 Electronics & Telecommunications Res Inst Menetelmä ja laite kuvien koodaamiseksi/dekoodaamiseksi
TWI627857B (zh) * 2012-06-29 2018-06-21 Sony Corp Image processing device and method
US9451256B2 (en) * 2012-07-20 2016-09-20 Qualcomm Incorporated Reusing parameter sets for video coding
KR101462637B1 (ko) * 2013-02-28 2014-11-21 성균관대학교산학협력단 영상 부호화/복호화 방법 및 장치
US9247255B2 (en) * 2013-02-28 2016-01-26 Research & Business Foundation Sungkyunkwan University Method and apparatus for image encoding/decoding
KR101709775B1 (ko) * 2013-07-23 2017-02-23 인텔렉추얼디스커버리 주식회사 영상 부호화/복호화 방법 및 장치
AU2013228045A1 (en) * 2013-09-13 2015-04-02 Canon Kabushiki Kaisha Method, apparatus and system for encoding and decoding video data
JP6143866B2 (ja) 2013-09-30 2017-06-07 日本放送協会 画像符号化装置、画像復号装置及びそれらのプログラム
CN109076222B9 (zh) * 2016-05-13 2021-10-15 索尼公司 图像处理装置和方法
WO2018101288A1 (ja) * 2016-12-01 2018-06-07 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 符号化装置、符号化方法、復号装置および復号方法
JP6958571B2 (ja) * 2016-12-29 2021-11-02 株式会社村田製作所 負極活物質、負極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2020149648A1 (ko) 2019-01-15 2020-07-23 엘지전자 주식회사 변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150143585A (ko) * 2013-04-23 2015-12-23 퀄컴 인코포레이티드 비디오 코딩에서 예측 잔차 블록들의 재배치
WO2018128322A1 (ko) * 2017-01-03 2018-07-12 엘지전자(주) 영상 처리 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
BR122021012448A2 (pt) 2021-09-14
US11297310B2 (en) 2022-04-05
BR122021012456A2 (pt) 2021-09-14
US20220174269A1 (en) 2022-06-02
US20200260070A1 (en) 2020-08-13
CN111699694B (zh) 2022-07-08
WO2020149648A1 (ko) 2020-07-23
US10917637B2 (en) 2021-02-09
EP3703376A4 (en) 2020-09-02
KR102392701B1 (ko) 2022-04-28
BR112021012366B1 (pt) 2022-03-22
EP3703376A1 (en) 2020-09-02
KR20200090766A (ko) 2020-07-29
BR122021012448B1 (pt) 2022-03-22
CN111699694A (zh) 2020-09-22
MX2021008449A (es) 2021-11-03
US11979552B2 (en) 2024-05-07
BR122021012456B1 (pt) 2022-03-22
US20230370580A1 (en) 2023-11-16
JP2023118765A (ja) 2023-08-25
US11695917B2 (en) 2023-07-04
JP2021513755A (ja) 2021-05-27
KR20240000610A (ko) 2024-01-02
KR102610233B1 (ko) 2023-12-05
BR112021012366A2 (pt) 2021-08-31
US20210120231A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
KR102392701B1 (ko) 변환 스킵 플래그를 이용한 영상 코딩 방법 및 장치
KR102379676B1 (ko) 영상 코딩 시스템에서 컨텍스트 코딩된 사인 플래그를 사용하는 영상 디코딩 방법 및 그 장치
US11240533B2 (en) Video decoding method using residual information in video coding system, and apparatus thereof
US11463719B2 (en) Video decoding method using residual information in video coding system, and apparatus thereof
US11483587B2 (en) Video encoding/decoding method and device using BDPCM, and method for transmitting bitstream
US11350101B2 (en) Image decoding method using residual information in image coding system, and device for same
KR20220038121A (ko) 비디오/영상 코딩 시스템에서 라이스 파라미터 도출 방법 및 장치
KR20220131331A (ko) 사인 데이터 하이딩 관련 영상 디코딩 방법 및 그 장치
KR20220050907A (ko) 영상 코딩 시스템에서 레지듀얼 데이터 코딩에 대한 영상 디코딩 방법 및 그 장치
KR20220019256A (ko) 영상 코딩 시스템에서 레지듀얼 코딩 방법에 대한 플래그를 사용하는 영상 디코딩 방법 및 그 장치
JP7453347B2 (ja) 画像コーディングシステムで単純化されたレジデュアルデータコーディングを用いる画像デコード方法及びその装置
KR20210060498A (ko) 변환 계수 코딩 방법 및 장치
US20210321135A1 (en) Image coding method and apparatus using transform skip flag

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant