KR20220035847A - 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램 - Google Patents

반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램 Download PDF

Info

Publication number
KR20220035847A
KR20220035847A KR1020210120999A KR20210120999A KR20220035847A KR 20220035847 A KR20220035847 A KR 20220035847A KR 1020210120999 A KR1020210120999 A KR 1020210120999A KR 20210120999 A KR20210120999 A KR 20210120999A KR 20220035847 A KR20220035847 A KR 20220035847A
Authority
KR
South Korea
Prior art keywords
gas
impurity
substrate
containing gas
partial pressure
Prior art date
Application number
KR1020210120999A
Other languages
English (en)
Other versions
KR102517213B1 (ko
Inventor
케이타 이치무라
마사노리 나카야마
히로토 이가와
유이치로 타케시마
카츠노리 후나키
히로키 키시모토
유키 야마카도
야스토시 츠보타
타츠시 우에다
Original Assignee
가부시키가이샤 코쿠사이 엘렉트릭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 코쿠사이 엘렉트릭 filed Critical 가부시키가이샤 코쿠사이 엘렉트릭
Publication of KR20220035847A publication Critical patent/KR20220035847A/ko
Application granted granted Critical
Publication of KR102517213B1 publication Critical patent/KR102517213B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2236Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase from or into a plasma phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/327Arrangements for generating the plasma

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

플라즈마를 이용하여 기판으로의 도핑 처리를 수행할 때 퇴적물의 발생을 억제한다.
기판을 수용하는 처리실 내에 불순물을 함유하는 불순물 함유 가스와 희석 가스를 공급하는 가스 공급 공정; 불순물 함유 가스 및 희석 가스를 플라즈마 여기하는 공정; 및 플라즈마 여기에 의해 생성되는 불순물을 포함하는 활성종을 기판에 공급하는 공정을 수행하는 것에 의해 기판의 표면을 불순물 함유층으로 개질하고, 가스 공급 공정에서는 처리실 내에서의 불순물 함유 가스의 분압이 상기 처리실 내에서 불순물 함유 가스가 퇴적물을 형성하는 분압보다 작은 소정의 분압이 되도록 상기 불순물 함유 가스와 상기 희석 가스의 유량비를 제어한다.

Description

반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램{METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, SUBSTRATE PROCESSING APPARATUS AND PROGRAM}
본 개시(開示)는 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램에 관한 것이다.
반도체 장치의 제조 공정의 일 공정으로서 기판의 표면에 형성되는 막을 플라즈마에 의해 개질하는 처리가 수행되는 경우가 있다(예컨대 특허문헌 1 참조).
1. 일본 특개 2017-183487호 공보
전술한 반도체 장치의 제조 공정의 일 공정으로서 예컨대 붕소(B) 함유 가스를 이용하여 기판의 표면에 불순물(도펀트)로서 B를 주입(도핑)하는 기판 처리 공정이 수행되지만, B가 주입될 때 퇴적물이 생성되어 기판의 표면에 퇴적물이 부착되는 경우가 있었다.
본 개시의 목적은 플라즈마를 이용하여 기판으로의 도핑 처리를 수행할 때 퇴적물의 발생을 억제하는 것이 가능한 기술을 제공하는 데 있다.
본 개시의 일 형태에 따르면, 기판을 수용하는 처리실 내에 불순물을 함유하는 불순물 함유 가스와 희석 가스를 공급하는 가스 공급 공정; 상기 불순물 함유 가스 및 상기 희석 가스를 플라즈마 여기(勵起)하는 공정; 및 플라즈마 여기에 의해 생성되는 상기 불순물을 포함하는 활성종을 상기 기판에 공급하는 공정을 수행하는 것에 의해 상기 기판의 표면을 불순물 함유층으로 개질하고, 상기 가스 공급 공정에서는 상기 처리실 내에서의 상기 불순물 함유 가스의 분압이 상기 처리실 내에서 상기 불순물 함유 가스가 중합체를 포함하는 퇴적물을 형성하는 분압보다 작은 소정의 분압이 되도록 상기 불순물 함유 가스와 상기 희석 가스의 유량비를 제어하는 기술이 제공된다.
본 개시에 따르면, 플라즈마를 이용하여 기판으로의 도핑 처리를 수행할 때 퇴적물의 발생을 억제하는 것이 가능해진다.
도 1은 본 개시의 일 형태에서 바람직하게 이용되는 기판 처리 장치(100)의 개략 구성도이며, 처리로(202) 부분을 종단면도로 도시하는 도면.
도 2는 본 개시의 일 형태에서의 플라즈마의 발생 원리를 예시하는 도면.
도 3은 본 개시의 일 형태에서 바람직하게 이용되는 기판 처리 장치(100)의 컨트롤러(221)의 개략 구성도이며, 컨트롤러(221)의 제어계를 블록도로 도시하는 도면.
도 4는 다른 조건에 의해 각각 형성된 B 함유층의 발수성, 도스량 및 스텝 커버리지의 측정 결과를 도시한 도면.
도 5a는 기판 표면에 퇴적물이 있는 경우의 기판의 표면 상태를 도시한 도면.
도 5b는 기판 표면에 퇴적물이 없는 경우의 기판의 표면 상태를 도시한 도면.
도 6a는 기판에 대하여 3,500W, 2,000W, 500W의 고주파 전력을 각각 공급하여 형성된 B 함유층 중의 B 농도를 도시한 도면.
도 6b는 기판에 대하여 B 함유 가스의 공급 시간을 30초 또는 60초로 해서 각각 형성된 B 함유층 중의 B 농도를 도시한 도면.
도 6c는 기판에 대하여 B 함유 가스의 분압을 0.002Pa, 0.01Pa, 0.05Pa, 0.1Pa로 해서 각각 형성된 B 함유층 중의 B 농도를 도시한 도면.
도 7a는 기판에 대하여 3,500W, 2,000W, 500W의 고주파 전력을 각각 공급하여 형성된 B 함유층의 스텝 커버리지를 도시한 도면.
도 7b는 기판에 대하여 B 함유 가스의 공급 시간을 30초 또는 60초로 해서 각각 형성된 B 함유층의 스텝 커버리지를 도시한 도면.
도 7c는 기판에 대하여 B 함유 가스의 분압을 0.002Pa, 0.01Pa, 0.05Pa, 0.1Pa로 해서 각각 형성된 B 함유층의 스텝 커버리지를 도시한 도면.
<본 개시의 일 형태>
이하, 본 개시의 일 형태에 대해서 도 1 내지 도 3을 참조하면서 설명한다. 또한 이하의 설명에서 이용되는 도면은 모두 모식적인 것이며, 도면에 도시되는 각 요소의 치수의 관계, 각 요소의 비율 등은 현실의 것과 반드시 일치하지 않는다. 또한 복수의 도면의 상호간에서도 각 요소의 치수의 관계, 각 요소의 비율 등은 반드시 일치하지 않는다.
(1) 기판 처리 장치
도 1에 도시하는 바와 같이 기판 처리 장치(100)는 기판으로서의 웨이퍼(200)를 수용해서 플라즈마 처리하는 처리로(202)를 구비한다. 처리로(202)는 처리실(201)을 구성하는 처리 용기(203)를 구비한다. 처리 용기(203)는 돔형의 상측 용기(210)와 공기형의 하측 용기(211)를 구비한다. 상측 용기(210)가 하측 용기(211) 상에 피복되는 것에 의해 처리실(201)이 형성된다.
하측 용기(211)의 하부 측벽에는 반입출구(게이트 밸브)로서의 게이트 밸브(244)가 설치된다. 게이트 밸브(244)를 여는 것에 의해 반입출구(245)를 개재하여 처리실(201) 내외로 웨이퍼(200)를 반입출할 수 있다. 게이트 밸브(244)를 닫는 것에 의해 처리실(201) 내의 기밀성을 보지(保持)할 수 있다.
도 2에 도시하는 바와 같이 처리실(201)은 플라즈마 생성 공간(201a)과, 플라즈마 생성 공간(201a)에 연통하고, 웨이퍼(200)가 처리되는 기판 처리 공간(201b)을 포함한다. 플라즈마 생성 공간(201a)의 주위이며 처리 용기(203)의 외주측에는 후술하는 공진 코일(212)이 설치된다. 플라즈마 생성 공간(201a)은 플라즈마가 생성되는 공간이며, 처리실(201)의 내, 예컨대 공진 코일(212)의 하단(도 1에서의 일점쇄선)보다 상방(上方)측의 공간을 말한다. 한편, 기판 처리 공간(201b)은 웨이퍼(200)가 플라즈마로 처리되는 공간이며, 공진 코일(212)의 하단보다 하방(下方)측의 공간을 말한다.
처리실(201) 내의 저부(底部) 중앙에는 기판 재치부로서의 서셉터(217)가 배치된다. 서셉터(217)의 상면에는 웨이퍼(200)가 재치되는 기판 재치면이 설치된다. 서셉터(217)의 내부에는 가열 기구로서의 히터(217b)가 매립된다. 히터 전력 조정 기구(276)를 개재하여 히터(217b)에 전력이 공급되는 것에 의해 기판 재치면 상에 재치된 웨이퍼(200)를 예컨대 25℃ 내지 1,000℃의 범위 내의 소정의 온도로 가열할 수 있다.
서셉터(217)는 하측 용기(211)와 전기적으로 절연된다. 서셉터(217)의 내부에는 임피던스 조정 전극(217c)이 장비된다. 임피던스 조정 전극(217c)은 임피던스 조정부로서의 임피던스 가변 기구(275)를 개재하여 접지(接地)된다. 임피던스 가변 기구(275)의 임피던스를 소정의 범위 내에서 변화시키는 것에 의해 임피던스 조정 전극(217c) 및 서셉터(217)를 개재하여 플라즈마 처리 중의 웨이퍼(200)의 전위(바이어스 전압)를 제어하는 것이 가능해진다.
서셉터(217)의 하방에는 서셉터(217)를 승강시키는 서셉터 승강 기구(268)가 설치된다. 서셉터(217)에는 관통공(217a)이 3개 설치된다. 하측 용기(211)의 저면(底面)에는 웨이퍼(200)를 지지하는 지지체로서의 지지 핀(266)이 3개의 관통공(217a)의 각각 대응하도록 3개 설치된다. 서셉터(217)가 하강되었을 때, 3개의 지지 핀(266)의 각 선단(先端)이, 대응하는 각 관통공(217a)을 통과하고, 서셉터(217)의 기판 재치면보다 상면측에 각각 돌출한다. 이에 의해 웨이퍼(200)를 하방으로부터 보지하는 것이 가능해진다.
처리실(201)의 상방, 즉 상측 용기(210)의 상부에는 가스 공급 헤드(236)가 설치된다. 가스 공급 헤드(236)는 캡 형상의 개체(蓋體)(233)와 가스 도입구(234)와 버퍼실(237)과 개구(開口)(238)와 차폐 플레이트(240)와 가스 취출구(239)를 구비하고, 처리실(201) 내에 가스를 공급하도록 구성된다. 버퍼실(237)은 가스 도입구(234)로부터 도입되는 가스를 분산하는 분산 공간으로서 기능한다.
가스 공급관(232)의 가스 도입구(234)에는 디보란(B2H6) 가스 등의 불순물인 B를 함유하는 가스(B 함유 가스)를 공급하는 가스 공급관(232a)의 하류단과, 수소(H2) 가스 등의 수소(H) 함유 가스를 공급하는 가스 공급관(232b)의 하류단과, 산소(O2) 가스 등의 산소 함유 가스(O 함유 가스)를 공급하는 가스 공급관(232c)의 하류단이 합류하도록 접속된다. 가스 공급관(232a)에는 가스 흐름의 상류측부터 순서대로 B 함유 가스 공급원(250a), 유량 제어 장치로서의 매스 플로우 컨트롤러(MFC)(252a), 개폐 밸브로서의 밸브(253a)가 설치된다. 가스 공급관(232b)에는 가스 흐름의 상류측부터 순서대로 H 함유 가스 공급원(250b), MFC(252b), 밸브(253b)가 설치된다. 가스 공급관(232c)에는 가스 흐름의 상류측부터 순서대로 O 함유 가스 공급원(250c), MFC(252c), 밸브(253c)가 설치된다. 가스 공급관(232a 내지 232c)이 합류한 하류측에는 밸브(243a)가 설치된다. 밸브(253a 내지 253c, 243a)를 개폐시키는 것에 의해 MFC(252a 내지 252c)에 의해 유량을 조정하면서 B 함유 가스, H 함유 가스, O 함유 가스의 각각을 처리 용기(203) 내에 공급하는 것이 가능해진다. 또한 가스 공급관(232a 내지 232c)으로부터는 전술한 각종 가스 외에 불활성 가스로서의 N2 가스를 공급하는 것이 가능하도록 구성된다.
B 함유 가스는 불순물 함유 가스로서 이용되고, H 함유 가스는 희석 가스로서 이용된다. B 함유 가스와 H 함유 가스를 포함하는 혼합 가스는 후술하는 기판 처리 공정에서 플라즈마화되어, 실리콘(Si) 함유막(Si 함유막)인 실리콘(Si)막이 형성된 웨이퍼(200)에 대하여 공급되어, 웨이퍼(200)의 표면에 형성되는 Si막에 불순물인 B를 도핑해서 B를 포함하는 B 함유층(B 함유막)으로 개질되도록 작용한다. O 함유 가스는 후술하는 기판 처리 공정에서 플라즈마화되어 웨이퍼(200)에 대하여 공급되어, 웨이퍼(200)의 표면에 형성되는 B 함유층을 개질(산화)하도록 작용한다. O 함유 가스는 후술하는 기판 처리 공정에서 산화제(산화 가스)로서 작용한다. N2 가스는 후술하는 기판 처리 공정에서 플라즈마화되지 않고 이용되고, 퍼지 가스 등으로서 작용하는 경우가 있다.
주로 가스 공급 헤드(236)[개체(233), 가스 도입구(234), 버퍼실(237), 개구(238), 차폐 플레이트(240), 가스 취출구(239)], 가스 공급관(232a), MFC(252a), 밸브(253a, 243a)에 의해 제1 공급계(B 함유 가스 공급계, 불순물 함유 가스 공급계)가 구성된다. 또한 주로 가스 공급 헤드(236), 가스 공급관(232b), MFC(252b), 밸브(253b, 243a)에 의해 제2 공급계(H 함유 가스 공급계, 희석 가스 공급계)가 구성된다. 또한 주로 가스 공급 헤드(236), 가스 공급관(232c), MFC(252c), 밸브(253c, 243a)에 의해 제3 공급계(O 함유 가스 공급계, 산화제 공급계)가 구성된다. 제2 가스 공급계를 제1 가스 공급계에 포함시켜서 불순물 함유 가스 공급계로서 생각해도 좋다.
하측 용기(211)의 측벽에는 처리실(201) 내를 배기하는 배기구(235)가 설치된다. 배기구(235)에는 배기관(231)의 상류단이 접속된다. 배기관(231)에는 상류측부터 순서대로 압력 조정기(압력 조정부)로서의 APC(Auto Pressure Controller) 밸브(242), 밸브(243b), 진공 배기 장치로서의 진공 펌프(246)가 설치된다. 주로 배기구(235), 배기관(231), APC 밸브(242), 밸브(243b)에 의해 배기계가 구성된다. 진공 펌프(246)를 배기계에 포함시켜도 좋다.
처리실(201)의 외주부, 즉 상측 용기(210)의 측벽의 외측에는 처리 용기(203)를 둘러싸도록 나선 형상의 공진 코일(212)이 설치된다. 공진 코일(212)에는 RF(Radio Frequency) 센서(272), 고주파 전원(273) 및 주파수 정합기(주파수 제어부)(274)가 접속된다. 공진 코일(212)의 외주측에는 차폐판(223)이 설치된다.
고주파 전원(273)은 공진 코일(212)에 대하여 고주파 전력(RF 전력)을 공급하도록 구성된다. RF 센서(272)는 고주파 전원(273)의 출력측에 설치된다. RF 센서(272)는 고주파 전원(273)으로부터 공급되는 고주파 전력의 진행파나 반사파의 정보를 모니터 하도록 구성된다. 주파수 정합기(274)는 RF 센서(272)로 모니터 된 반사파의 정보에 기초하여 반사파가 최소가 되도록 고주파 전원(273)으로부터 출력되는 고주파 전력의 주파수를 조정하도록 구성된다.
공진 코일(212)의 양단(兩端)은 전기적으로 접지된다. 공진 코일(212)의 일단(一端)은 가동 탭(213)을 개재하여 접지된다. 공진 코일(212)의 타단(他端)은 고정 그라운드(214)를 개재하여 접지된다. 공진 코일(212)의 이들 양단 사이에는 고주파 전원(273)으로부터 급전(給電)을 받는 위치를 임의로 설정할 수 있는 가동 탭(215)이 설치된다.
차폐판(223)은 공진 코일(212)의 외측으로의 전자파의 누설을 차폐하는 것과 함께, 공진 회로를 구성하는 데 필요한 용량 성분을 공진 코일(212) 사이에 형성하도록 구성된다.
주로 공진 코일(212), RF 센서(272), 주파수 정합기(274)에 의해 플라즈마 생성부(플라즈마 생성 유닛)가 구성된다. 고주파 전원(273)이나 차폐판(223)을 플라즈마 생성부에 포함시켜도 좋다.
이하, 플라즈마 생성부의 동작이나 생성되는 플라즈마의 성질에 대해서 도 2를 이용하여 보충 설명한다.
공진 코일(212)은 고주파 유도 결합 플라즈마(ICP) 전극으로서 기능하도록 구성된다. 공진 코일(212)은 소정의 파장의 정재파를 형성하고, 전파장(全波長) 모드로 공진하도록, 그 권 지름, 권회 피치, 권수 등이 설정된다. 공진 코일(212)의 전기적 길이 즉 어스간의 전극 길이는 고주파 전원(273)으로부터 공급되는 고주파 전력의 파장의 정수배의 길이가 되도록 조정된다. 일례로서 공진 코일(212)의 유효 단면적은 50mm2 내지 300mm2이며, 코일 지름은 200mm 내지 500mm, 코일의 권횟수는 2회 내지 60회이다. 공진 코일(212)에 공급되는 고주파 전력의 크기는 0.5kW 내지 5kW, 바람직하게는 1.0kW 내지 4.0kW이며, 주파수는 800kHz 내지 50MHz이다. 공진 코일(212)로 발생시키는 자장은 0.01가우스 내지 10가우스이다. 본 실시 형태에서는 바람직한 예로서 고주파 전력의 주파수를 27.12MHz, 공진 코일(212)의 전기적 길이를 1파장의 길이(약 11미터)로 설정한다.
주파수 정합기(274)는 반사파 전력에 관한 전압 신호를 RF 센서(272)로부터 수신하고, 반사파 전력이 최소가 되도록 고주파 전원(273)이 출력하는 고주파 전력의 주파수(발진 주파수)를 증가 또는 감소시킬 수 있는 보정 제어를 수행한다. 발진 주파수의 보정은 주파수 정합기(274)가 구비하는 주파수 제어 회로를 이용하여 수행된다. 주파수 제어 회로는 플라즈마 점등 전은 공진 코일(212)의 무부하 공진 주파수로 발진하고, 플라즈마 점등 후는 반사파 전력이 최소가 되도록 미리 설정된 주파수(무부하 공진 주파수를 증가 또는 감소시킨 주파수)로 발진하도록 구성된다. 주파수 제어 회로는 보정후의 주파수를 포함하는 제어 신호를 고주파 전원(273)을 향하여 피드백한다. 고주파 전원(273)은 이 제어 신호에 기초하여 고주파 전력의 주파수를 보정한다. 고주파 전력의 주파수는 전송 선로에서의 반사파 전력이 제로가 될 수 있는 공진 주파수에 최적화된다.
이상의 구성에 의해 플라즈마 생성 공간(201a) 내에 여기되는 유도 플라즈마는 처리실(201)의 내벽이나 서셉터(217) 등과의 용량 결합이 거의 없는 양질의 것이 된다. 플라즈마 생성 공간(201a) 중에는 전기적 포텐셜이 지극히 낮은, 평면시가 도넛 형상의 플라즈마가 생성된다. 공진 코일(212)의 전기적 길이를 고주파 전력의 1파장의 길이로 하는 본 실시 형태의 예에서는 공진 코일의 전기적 중점에 상당하는 높이 위치의 근방에서 이러한 도넛 형상의 플라즈마가 생성된다.
도 3에 도시하는 바와 같이 제어부로서의 컨트롤러(221)는 CPU(Central Processing Unit)(221a), RAM(Random Access Memory)(221b), 기억 장치(221c), I/O 포트(221d)를 구비한 컴퓨터로서 구성된다. RAM(221b), 기억 장치(221c), I/O 포트(221d)는 내부 버스(221e)를 개재하여 CPU(221a)과 데이터 교환가능하도록 구성된다. 컨트롤러(221)에는 입출력 장치(225)로서 예컨대 터치패널, 마우스, 키보드, 조작 단말 등이 접속되어도 좋다. 컨트롤러(221)에는 표시부로서 예컨대 디스플레이 등이 접속되어도 좋다.
기억 장치(221c)는 예컨대 플래시 메모리, HDD(Hard Disk Drive), CD-ROM 등으로 구성된다. 기억 장치(221c) 내에는 기판 처리 장치(100)의 동작을 제어하는 제어 프로그램, 기판 처리의 순서나 조건 등이 기재된 프로세스 레시피 등이 판독 가능하도록 격납된다. 프로세스 레시피는 후술하는 기판 처리 공정에서의 각 순서를 컨트롤러(221)에 실행시켜 소정의 결과를 얻을 수 있도록 조합된 것이며, 프로그램으로서 기능한다. RAM(221b)은 CPU(221a)에 의해 판독된 프로그램이나 데이터 등이 일시적으로 보지되는 메모리 영역(work area)으로서 구성된다.
I/O 포트(221d)는 전술한 MFC(252a 내지 252c), 밸브(253a 내지 253c, 243a, 243b), 게이트 밸브(244), APC 밸브(242), 진공 펌프(246), 히터(217b), RF 센서(272), 고주파 전원(273), 주파수 정합기(274), 서셉터 승강 기구(268), 임피던스 가변 기구(275) 등에 접속된다.
CPU(221a)는 기억 장치(221c)로부터 제어 프로그램을 판독해서 실행하는 것과 함께, 입출력 장치(225)로부터의 조작 커맨드의 입력 등에 따라 기억 장치(221c)로부터 프로세스 레시피를 판독하도록 구성된다. 도 1에 도시하는 바와 같이 CPU(221a)는 판독한 프로세스 레시피의 내용을 따르도록 I/O 포트(221d) 및 신호선(A)을 통해서 APC 밸브(242)의 개도(開度) 조정 동작, 밸브(243b)의 개폐 동작 및 진공 펌프(246)의 기동 및 정지를 제어하고, 신호선(B)을 통해서 서셉터 승강 기구(268)의 승강 동작을 제어하고, 신호선(C)을 통해서 히터 전력 조정 기구(276)에 의한 온도 센서에 기초하는 히터(217b)로의 공급 전력량 조정 동작(온도 조정 동작) 및 임피던스 가변 기구(275)에 의한 임피던스 값 조정 동작을 제어하고, 신호선(D)을 통해서 게이트 밸브(244)의 개폐 동작을 제어하고, 신호선(E)을 통해서 RF 센서(272), 주파수 정합기(274) 및 고주파 전원(273)의 동작을 제어하고, 신호선(F)을 통해서 MFC(252a 내지 252c)에 의한 각종 가스의 유량 조정 동작 및 밸브(253a 내지 253c, 243a)의 개폐 동작을 제어하는 것이 가능하도록 구성된다.
(2) 기판 처리 공정
전술한 기판 처리 장치(100)를 이용하여 반도체 장치의 제조 공정의 일 공정으로서 웨이퍼(200)의 표면에 불순물의 일례인 B를 도핑해서 B 함유층을 형성하고, 도핑 처리 후의 B 함유층의 표면에 캡층으로서의 산화층을 형성하는 기판 처리 시퀀스 예에 대해서 설명한다. 이하의 설명에서 기판 처리 장치(100)를 구성하는 각 부의 동작은 컨트롤러(221)에 의해 제어된다.
본 형태의 기판 처리 시퀀스에서는, 기판을 수용하는 처리실(201) 내에 불순물 함유 가스로서의 B 함유 가스와, 희석 가스로서의 H 함유 가스를 공급하는 가스 공급 공정; B 함유 가스와 H 함유 가스의 혼합 가스를 플라즈마 여기하는 공정; 및 플라즈마 여기에 의해 생성되는 불순물로서의 B를 포함하는 활성종을 웨이퍼(200)에 공급하는 공정을 수행하는 것에 의해, 웨이퍼 표면에 불순물 함유층으로서의 B 함유층을 형성하고, 가스 공급 공정에서는 처리실(201) 내에서의 B 함유 가스의 분압이 처리실(201) 내에서 B 함유 가스가 중합체(다량체)를 포함하는 퇴적물을 형성하는 분압보다 작은 소정의 분압이 되도록 B 함유 가스와 H 함유 가스의 유량비를 제어한다.
그리고 본 형태의 기판 처리 시퀀스에서는, 웨이퍼 표면에 불순물 함유층으로서의 B 함유층을 형성한 후에, O 함유 가스를 플라즈마 여기하는 공정; 및 플라즈마 여기에 의해 생성되는 산소(O)를 포함하는 활성종을 웨이퍼 표면에 공급하는 공정을 수행하는 것에 의해 B 함유층의 표면에 산화층을 형성한다.
본 명세서에서 「웨이퍼」라는 단어를 사용한 경우는 웨이퍼 그 자체를 의미하는 경우나, 웨이퍼와 그 표면에 형성된 소정의 층이나 막과의 적층체를 의미하는 경우가 있다. 본 명세서에서 「웨이퍼의 표면」이라는 단어를 사용한 경우는 웨이퍼 그 자체의 표면을 의미하는 경우나, 웨이퍼 상에 형성된 소정의 층 등의 표면을 의미하는 경우가 있다. 본 명세서에서 「웨이퍼 상에 소정의 층을 형성한다」라고 기재한 경우는 웨이퍼 그 자체의 표면상에 소정의 층을 직접 형성하는 것을 의미하는 경우나, 웨이퍼 상에 형성되는 층 등 위에 소정의 층을 형성하는 것을 의미하는 경우가 있다. 본 명세서에서 「기판」이라는 단어를 사용한 경우도 「웨이퍼」라는 단어를 사용한 경우와 같은 의미이다.
(웨이퍼 반입)
서셉터(217)를 소정의 반송 위치까지 강하시킨 상태에서 게이트 밸브(244)를 열고 처리 대상의 웨이퍼(200)를 미도시의 반송 로봇에 의해 처리 용기(203) 내에 반입한다. 처리 용기(203) 내에 반입된 웨이퍼(200)는 서셉터(217)의 기판 재치면으로부터 상방에 돌출한 3개의 지지 핀(266) 상에 수평 자세로 지지된다. 처리 용기(203) 내로의 웨이퍼(200)의 반입이 완료된 후, 처리 용기(203) 내로부터 반송 로봇 암부를 퇴거시키고, 게이트 밸브(244)를 닫는다. 그 후, 서셉터(217)를 소정의 처리 위치까지 상승시키고, 처리 대상의 웨이퍼(200)를 지지 핀(266) 상으로부터 서셉터(217) 상에 이재시킨다.
처리 대상의 웨이퍼(200)의 표면에는 애스펙트비가 20 이상의 고(高)애스펙트비를 가지하는 구조가 형성되고, 이 고애스펙트비 구조의 내면을 포함하는 웨이퍼(200)의 표면에는 개질 대상의 막인 Si 함유막으로서의 실리콘(Si)막이 미리 형성된다. 고애스펙트비 구조란 예컨대 트렌치 등의 홈[溝] 구조나, 필라 홀 등의 통 형상 구조 등을 포함한다. 이하에서 웨이퍼 표면이란 웨이퍼(200) 상에 형성된 고애스펙트비 구조의 내측면이나 저면 등의 면을 포함한다.
(압력 조정, 온도 조정)
계속해서 처리 용기(203) 내가 원하는 처리 압력이 되도록 진공 펌프(246)에 의해 진공 배기된다. 처리 용기(203) 내의 압력은 압력 센서로 측정되고, 이 측정된 압력 정보에 기초하여 APC 밸브(242)가 피드백 제어된다. 또한 웨이퍼(200)가 원하는 처리 온도가 되도록 히터(217b)에 의해 가열된다. 처리 용기(203) 내가 원하는 처리 압력이 되고, 또한 웨이퍼(200)의 온도가 원하는 처리 온도에 도달해서 안정되면, 후술하는 도핑 처리를 시작한다.
(도핑 처리)
B 함유 가스인 B2H6 가스 및 H 함유 가스인 H2 가스를 처리 용기(203) 내에 공급해서 플라즈마 여기시키고, B를 포함하는 활성종과 H의 활성종을 생성한다. 구체적으로는 밸브(253a, 253b)를 열고 MFC(252a, 252b)에 의해 유량 조정하면서 가스 도입구(234), 버퍼실(237), 가스 취출구(239)를 개재하여 처리실(201) 내에 B 함유 가스, H 함유 가스를 혼합시키면서 공급한다. 이때 공진 코일(212)에 대하여 고주파 전원(273)으로부터 고주파 전력을 공급한다. 이에 의해 플라즈마 생성 공간(201a) 내에서의 공진 코일(212)의 전기적 중점에 상당하는 높이 위치에 평면시가 도넛 형상인 유도 플라즈마가 여기된다.
혼합 가스에 포함되는 B 함유 가스 및 H 함유 가스는 유도 플라즈마의 여기 등에 의해 활성화(여기)되어서 반응하고, 처리 용기(203) 내에서 B를 포함하는 활성종이 생성된다. B를 포함하는 활성종에는 여기 상태의 B 원자(B*),이온화된 B 원자 및 B 래디컬 중 적어도 어느 하나가 포함된다. 또한 혼합 가스에 포함되는 H 함유 가스도 유도 플라즈마의 여기 등에 의해 활성화되어 처리 용기(203) 내에서 H의 활성종이 생성된다. H의 활성종에는 여기 상태의 H 원자(H*),이온화된 H 원자 및 H래디컬 중 적어도 어느 하나가 포함된다.
그리고 생성된 B를 포함하는 활성종이 H의 활성종과 함께 웨이퍼(200)에 대하여 공급된다. 그 결과, 웨이퍼(200)의 표면에 미리 형성되는 Si막이 개질된다. 이와 같이 하여 개질 대상의 Si막 중에 불순물로서의 B가 주입되어서 웨이퍼(200) 표면에 B 함유층이 형성된다.
즉 처리실(201) 내에 공급된 불순물 함유 가스인 B 함유 가스 및 H 함유 가스를 플라즈마 여기하고, 플라즈마 여기에 의해 생성된 불순물인 B를 포함하는 활성종을 웨이퍼(200) 표면에 공급하여 웨이퍼(200) 표면에 불순물 함유층인 B 함유층을 형성한다.
본 공정에서의 처리 조건은 예컨대 다음과 같다.
B2H6 가스 공급 유량: 1sccm 내지 100sccm, 바람직하게는 2sccm 내지 10sccm
H2 가스 공급 유량: 100sccm 내지 3,000sccm, 바람직하게는 1,000sccm 내지 2,000sccm
각 가스 공급 시간: 1초 내지 300초, 바람직하게는 10초 내지 60초
고주파 전력: 100W 내지 5,000W, 바람직하게는 500W 내지 3,500W
처리 온도: 실온 내지 900℃, 바람직하게는 500℃ 내지 700℃
처리 압력: 5Pa 내지 150Pa, 보다 바람직하게는 30Pa 내지 150Pa
플라즈마 생성 공간으로부터 기판 표면까지의 거리: 10mm 내지 150mm, 바람직하게는 30mm 내지 100mm
또한 본 실시 형태에서는 B 함유 가스 공급계로부터 공급하는 B 함유 가스로서 H2 가스에 의해 2%에 희석된 B2H6 가스를 공급한다. 즉 전술한 처리 조건에서의 B2H6 가스 공급 유량은 H2 가스에 의해 2%에 희석된 B 함유 가스의 공급 유량을 도시한다.
특히 처리 압력을 30Pa 이상으로 하는 것에 의해 본 처리 조건 하에서의 처리 용기(203)의 내벽으로의 스퍼터링의 발생을 억제할 수 있다. 또한 전술한 「플라즈마 생성 공간에서 기판 표면까지의 거리」란 공진 코일(212)의 하단 위치부터 웨이퍼(200)의 표면까지의 거리이다. 또한 본 명세서에서의 「1sccm 내지 100sccm」와 같은 수치 범위의 표기는 「1sccm 이상100sccm 이하」를 의미한다. 다른 수치 범위에 대해서도 마찬가지이다.
여기서 처리실(201) 내에서의 혼합 가스(B 함유 가스, H 함유 가스)의 전압(全壓)에 대한 B 함유 가스의 분압을 처리실(201) 내에서 B 함유 가스가 중합체(다량체)를 포함하는 퇴적물을 형성하는 분압보다 작은 소정의 분압(즉 불순물인 B를 함유하는 퇴적물이 퇴적하지 않는 분압 이하의 범위 내의 소정의 분압)이며, 예컨대 0.01Pa 이하이며, 바람직하게는 0.002Pa 이하로 한다. 구체적으로는 B 함유 가스 공급계(불순물 함유 가스 공급계)에서의 MFC(252a) 및 H 함유 가스 공급계(희석 가스 공급계)에서의 MFC(252b)를 각각 제어하는 것에 의해 처리실(201) 내에서의 혼합 가스의 전압에 대한 B 함유 가스의 분압을 소정의 분압으로 하도록 조정한다. 이와 같이 도핑 처리에서의, 처리실 내의 전압에 대한 B 함유 가스의 분압을 0.01Pa 이하로 하는 것에 의해 B를 함유하는 퇴적물의 생성이 억제되고, 0.002Pa 이하로 하는 것에 의해 또한 B를 함유하는 퇴적물의 생성이 억제된다. 이 분압이 0.01Pa를 초과하면, 기판 표면에 부착된 B를 함유하는 퇴적물에 의해 표면거칠기(러프니스)가 현저하게 증대하여, 디바이스 특성을 저하시킬 가능성이 있으며, 또한 이 부착된 퇴적물이 도핑 처리 후의 다른 기판 처리(예컨대 성막 처리 등)에서 처리의 균일성을 저하시키는 등의 악영향을 미칠 가능성이 있다.
또한 B 함유 가스의 분압은 배기계를 제어하여 처리실(201) 내의 가스의 전압을 조정하는 것에 의해서도 조정 가능하다. 하지만 B 함유 가스의 분압을 낮추기 위해서 처리실(201) 내의 전압을 낮추는(예컨대 30Pa 미만으로 하는) 경우, 처리 용기(203)의 내벽으로의 스퍼터링이 발생하기 쉬워진다. 그렇기 때문에 B 함유 가스의 분압은 희석 가스인 H 함유 가스와의 공급 유량비를 제어하는 것에 의해 조정하는 것이 바람직하다.
불순물인 B를 함유하는 퇴적물은 불순물 함유 가스인 B 함유 가스의 중합체(다량체)를 적어도 포함한다. 특히 B 함유 가스인 B2H6은 데카보란(B10H14) 등의 중합체(다량체)를 생성하기 쉽고, 분압(농도)이 높을수록 중합체가 생성되기 쉬워진다. 중합체가 생성되면, 중합체가 막 표면에 퇴적해서 퇴적물이 된다. 또한 중합체 이외에도 불순물인 B 단체(單體)가 막 중에 도핑되지 않고 막 표면에 잔류하여 퇴적물이 되는 경우도 있다. 도핑 처리에서의 불순물 함유 가스의 전압에 대한 B 함유 가스의 분압을 전술한 바와 같이 0.01Pa 이하로 하는 것에 의해 B를 함유하는 중합체가 생성되기 어려지고, 0.002Pa 이하로 하는 것에 의해 B를 함유하는 중합체가 보다 생성되기 어려워져 B를 함유하는 퇴적물의 생성이 억제된다. 단, B 함유 가스의 분압이 0.0001Pa 미만이면, 막 표면으로의 B의 도핑이 실질적으로 발생하지 않게 된다. B 함유 가스의 분압을 0.0001Pa 이상으로 하는 것에 의해 막 표면으로의 B의 도핑을 실용적인 속도로 수행할 수 있다.
그리고 소정 시간이 경과하고, 웨이퍼(200) 중으로의 소정량의 B의 주입이 완료되면, 고주파 전원(273)에 의한 전력 공급을 정지하는 것과 함께, 밸브(253a, 253b)를 닫고 처리실(201) 내로의 B 함유 가스 및 H 함유 가스의 공급을 정지한다.
또한 플라즈마 여기에 의해 생성된 B를 포함하는 활성종은 등방성을 가지고 웨이퍼(200) 표면에 균일하게 공급되고, 애스펙트비가 20 이상인 고애스펙트비 구조의 웨이퍼(200)의 내면에 대하여 컨포멀로 불순물 함유층인 B 함유층을 형성한다. 여기서 형성되는 B 함유층의 스텝 커버리지는 70% 이상, 바람직하게는 80% 이상이다.
여기서 도핑 처리에서의 불순물 함유 가스(B 함유 가스) 및 희석 가스(H 함유 가스)를 플라즈마 여기하는 고주파 전력의 크기, 불순물 함유 가스 및 희석 가스의 공급 시간 또는 불순물 함유 가스의 분압의 적어도 어느 하나를 조정하는 것에 의해 웨이퍼 표면에 형성되는 B 함유층의 스텝 커버리지를 소정값 이상이 되도록 제어할 수 있다.
구체적으로는 도핑 처리에서 B 함유 가스 및 H 함유 가스를 플라즈마 여기하는 고주파 전력의 크기를 작게 하는 것에 의해 B 함유층의 스텝 커버리지를 크게 하도록 조정할 수 있고, 고주파 전력의 크기를 소정의 전력값 이하로 하는 것에 의해 B 함유층의 스텝 커버리지를 소정값 이상이 되도록 조정할 수 있다.
또한 도핑 처리에서 B 함유 가스 및 H 함유 가스의 공급 시간을 길게 하는 것에 의해 B 함유층의 스텝 커버리지를 크게 하도록 조정할 수 있고, 공급 시간을 소정의 시간 이상으로 하는 것에 의해 B 함유층의 스텝 커버리지를 소정값 이상이 되도록 조정할 수 있다.
(산화 처리)
다음으로 O 함유 가스로서의 O2 가스를 처리 용기(203) 내에 공급하여 플라즈마 여기시켜서 O의 활성종을 생성한다. 구체적으로는 밸브(253c)를 열고 MFC(252c)에 의해 유량 조정하면서 가스 도입구(234), 버퍼실(237), 가스 취출구(239)를 개재하여 처리실(201) 내에 O2 가스를 공급한다. 이때 공진 코일(212)에 대하여 고주파 전원(273)으로부터 고주파 전력을 공급한다. 이에 의해 플라즈마 생성 공간(201a) 내에서의 공진 코일(212)의 전기적 중점에 상당하는 높이 위치에 평면시가 도넛 형상인 유도 플라즈마가 여기된다.
O2 가스는 유도 플라즈마의 여기 등에 의해 활성화(여기)되어 반응하고, 처리 용기(203) 내에서 O를 포함하는 활성종이 생성된다. O를 포함하는 활성종에는 여기 상태의 O 원자(O*), 이온화된 O 원자 및 O 래디컬 중 적어도 어느 하나가 포함된다.
그리고 생성된 O를 포함하는 활성종이 웨이퍼(200)에 대하여 공급된다. 그 결과, 전술한 도핑 처리에 의해 웨이퍼(200)의 표면에 형성된 B 함유층의 표면이 산화되어서 산화층이 형성된다.
즉 웨이퍼 표면에 불순물 함유층인 B 함유층을 형성한 후에 처리실(201) 내에 공급된 O 함유 가스인 O2 가스를 플라즈마 여기하고, 플라즈마 여기에 의해 생성된 O를 포함하는 활성종을 웨이퍼(200) 표면에 공급하는 것에 의해 불순물 함유층인 B 함유층의 표면에 산화층(캡층)을 형성한다. 이에 의해 불순물 함유층인 B 함유층으로부터 불순물인 B가 탈리되는 것이 억제되어, B 함유층 중의 B 농도를 높게 유지할 수 있다.
본 공정에서의 처리 조건은 예컨대 다음과 같다.
O2 가스 공급 유량: 100sccm 내지 2,000sccm
O2 가스 공급 시간: 10초 내지 60초, 바람직하게는 10초 내지 30초
고주파 전력: 100W 내지 5,000W, 바람직하게는 500W 내지 3,500W
처리 온도: 실온 내지 900℃, 바람직하게는 500℃ 내지 700℃
처리 압력: 5 내지 100Pa, 보다 바람직하게는 30Pa 내지 100Pa
플라즈마 생성 공간에서 기판 표면까지의 거리: 10mm 내지 150mm, 바람직하게는 30mm 내지 100mm
이 산화 처리에 의해 애스펙트비가 20 이상인 고애스펙트비 구조의 웨이퍼(200)의 내면에 대하여 컨포멀하게 산화층이 형성된다. 여기서 형성되는 산화층의 스텝 커버리지는 70% 이상, 바람직하게는 80% 이상이다. 특히 본 실시 형태에서는 도핑 처리에서 고애스펙트비 구조의 내면에 B를 포함하는 퇴적물이 부착되는 것이 억제되기 때문에 퇴적물의 부착에 기인하는 산화층의 스텝 커버리지의 저하(균일성의 저하)를 방지할 수 있다.
또한 이 산화 처리에 따르면, O를 포함하는 활성종을 웨이퍼(200) 표면에 공급하는 것에 의해, 또한 웨이퍼(200) 표면에 부착된 퇴적물을 제거할 수도 있다. 즉 소량의 퇴적물이 웨이퍼(200) 표면에 부착된 경우에도 이 산화 처리를 수행하는 것에 의해 퇴적물을 제거할 수 있다. 단, 이 산화 처리에 의해 퇴적물의 제거를 수행하는 경우, 퇴적물이 제거될 때까지 산화 처리를 수행하기 때문에 퇴적물이 부착되지 않은 경우에 비해, 산화 처리를 수행하는 시간을 길게 할 필요가 있다. 결과적으로 산화층이 필요 이상의 두께가 되는 경우가 있으며, 또한 산화 처리에 의해 B 함유층으로부터 불순물인 B의 일부가 탈리되어, B 농도가 저하되는 경우가 있다. 따라서 이 산화 처리를 수행하는 경우에도 본 실시 형태와 같이, 웨이퍼(200) 표면으로의 퇴적물의 부착을 억제하도록 도핑 처리를 수행하는 것이 바람직하다.
(애프터 퍼지 및 대기압 복귀)
전술한 산화 처리가 완료된 후, 처리 용기(203) 내로의 O2 가스의 공급을 정지하는 것과 함께, 공진 코일(212)로의 고주파 전력의 공급을 정지한다. 그리고 퍼지 가스로서의 N2 가스를 처리 용기(203) 내에 공급하고 배기관(231)으로부터 배기한다. 이에 의해 처리 용기(203) 내가 퍼지되어 처리 용기(203) 내에 잔류하는 가스나 반응 부생성물이 처리 용기(203) 내로부터 제거된다. 그 후, 처리 용기(203) 내의 분위기가 N2 가스로 치환되고, 처리 용기(203) 내의 압력이 상압으로 복귀된다.
(웨이퍼 반출)
계속해서 서셉터(217)를 소정의 반송 위치까지 하강시켜 웨이퍼(200)를 서셉터(217) 상으로부터 지지 핀(266) 상으로 이재시킨다. 그 후, 게이트 밸브(244)를 열고 미도시의 반송 로봇을 이용하여 처리 후의 웨이퍼(200)를 처리 용기(203) 외로 반출한다. 이상에 의해 본 형태에게 따른 기판 처리 공정을 종료한다.
(3) 본 형태에 따른 효과
본 형태에 따르면, 이하에 나타내는 1개 또는 복수의 효과를 얻을 수 있다.
(a) 전술한 도핑 처리를 수행하는 것에 의해 불순물(B)을 함유하는 퇴적물의 생성 및 웨이퍼 상으로의 퇴적물의 부착이 억제된다. 그렇기 때문에 퇴적물을 제거하는 공정이 불필요해지거나 또는 제거하는 시간을 단축할 수 있다. 그 결과, 스루풋을 향상시킬 수 있다. 또한 도핑 처리 후에 O2 플라즈마 처리(산화 처리)를 수행하는 경우에도 퇴적물의 제거가 불필요해지거나 또는 제거하는 시간을 단축할 수 있으므로, O2 플라즈마 처리의 시간의 단축이 가능해지고, 산화층의 두께의 증대를 억제하고, 또한 불순물 함유층 중의 불순물 농도를 높게 유지할 수 있다.
(b) 처리 용기(203) 내에서의 퇴적물의 부착이 억제되어 처리 용기(203) 내나 처리 용기(203) 내의 기재(基材)의 메인터넌스의 빈도를 적게 할 수 있다.
(c) 전술한 도핑 처리에서의 고주파 전력의 크기 또는 불순물 함유 가스의 공급 시간, 불순물 함유 가스의 분압의 적어도 어느 하나를 조정하는 것에 의해 고(高)애스펙트비 구조에서의 불순물 함유층의 스텝 커버리지를 소정값 이상이 되도록 제어하는 것이 가능해진다.
(d) 전술한 도핑 처리 후에 산화 처리를 수행하는 것에 의해 불순물 함유층 상에 형성된 캡층(산화층)의 스텝 커버리지를 향상시키는 것이 가능해진다. 즉 도핑 처리에서의 퇴적물의 생성을 억제하는 것에 의해 도핑 처리 후의 산화 처리에서 퇴적물에 의한 스텝 커버리지의 저하나 캡층의 증대를 억제할 수 있다. 또한 캡층의 증대를 억제하는 것에 의해 결과적으로 불순물 농도를 높게 유지하는 것이 가능해진다.
(e) 또한 전술한 도핑 처리 후에 산화 처리를 수행하는 것에 의해 소량의 퇴적물이 퇴적한 경우에도 퇴적한 퇴적물을 제거할 수 있다.
(f) 전술한 효과는 B 함유 가스 이외의, 처리실 내에서 중합체를 포함하는 퇴적물을 형성하는 불순물 함유 가스를 이용하는 경우나, O2 가스 이외의 O 함유 가스를 이용하는 경우에도 마찬가지로 얻을 수 있다.
또한 상기 실시 형태의 도핑 처리에서는 B 함유 가스로서 B2H6 가스를 이용하는 경우를 이용하여 설명했지만 본 개시는 이에 한정되지 않고, 불순물 함유 가스로서 B2H6 가스 외에 예컨대 3염화붕소(BCl3) 가스, 3불화붕소(BF3) 가스 중 적어도 어느 하나를 포함하는 가스를 이용할 수 있다. 이와 같은 경우에도 전술한 기판 처리 시퀀스와 마찬가지의 효과를 얻을 수 있다.
또한 상기 실시 형태에서는 불순물로서 B를 도핑하는 경우를 이용하여 설명했지만 본 개시는 이에 한정되지 않고, 불순물로서 B 외에 예컨대 비소(As), 인(P), 갈륨(Ga) 중 적어도 어느 하나를 이용할 수 있다. 이와 같은 경우에도 전술한 기판 처리 시퀀스와 마찬가지의 효과를 얻을 수 있다.
또한 상기 실시 형태에서는 희석 가스로서 H 함유 가스를 이용하는 경우를 이용하여 설명했지만 본 개시는 이에 한정되지 않고, 헬륨(He), 아르곤(Ar), 네온(Ne), 크립톤(Kr), 크세논(Xe) 등의 희(希)가스를 이용할 수 있다. 이와 같은 경우에도 전술한 기판 처리 시퀀스와 마찬가지의 효과를 얻을 수 있다.
또한 상기 실시 형태의 산화 처리에서는 O 함유 가스로서 O2 가스를 이용하는 경우를 이용하여 설명했지만 본 개시는 이에 한정되지 않고, O 함유 가스로서 O2 가스 외에 예컨대 오존(O3) 가스, 수증기(H2O 가스), 일산화질소(NO) 가스 등을 이용할 수 있다. 이와 같은 경우에도 전술한 기판 처리 시퀀스와 마찬가지의 효과를 얻을 수 있다.
또한 상기 실시 형태에서는 개질 대상으로서 Si막이 표면에 형성된 웨이퍼를 이용하는 경우를 이용하여 설명했지만 본 개시는 이에 한정되지 않고, 개질 대상으로서 Si막 외에 실리콘산화(SiO)막, 실리콘질화(SiN)막, 실리콘산질화(SiON)막 등의 다른 Si 함유막이나, Si 기판에 의해 구성되는 Si 함유 하지(下地)나, Si 이외의 원소를 포함하는 다른 막이며, 금속 원소를 포함하는 막이어도 좋다. 또한 개질 대상으로서의 Si막은 어모퍼스실리콘(a-Si), 단결정(單結晶) 실리콘(c-Si), 다결정(多結晶) 실리콘(Poly-Si) 등에 의해 구성되는 막이어도 좋다. 또한 개질 대상은 Si막과 그 상면에 형성된 SiO막과 같이 복수의 막(층)이 적층된 것이어도 좋다. 이러한 경우에도 전술한 기판 처리 시퀀스와 마찬가지의 효과를 얻을 수 있다.
<다른 형태>
이상, 본 개시의 형태를 구체적으로 설명했다. 단, 본 개시는 전술한 형태에 한정되지 않고, 그 요지를 일탈하지 않는 범위에서 다양하게 변경이 가능하다.
[실시예 1]
표면에 Si막이 형성된 웨이퍼인 샘플 1 내지 샘플 7을 준비하고, 샘플 1 내지 샘플 7에 대하여 각각 도 4에 도시하는 조건으로 도핑 처리를 수행하여 도핑 처리 후의 웨이퍼 표면의 발수성과, B 도스량의 깊이 방향의 분포를 평가했다. 또한 이들의 샘플의 표면에는 자연산화막으로서의 SiO층이 형성된다.
샘플 1에 대하여, 처리 온도를 700℃, 고주파 전력을 3,500W, 처리 압력(전압)을 100Pa, B 함유 가스로서의 B2H6 가스의 분압을 0.002Pa, B2H6 가스와 H2 가스의 공급 시간을 30초로 하여 전술한 도핑 처리를 수행했다. 여기서는 H2 가스에 의해 2%에 희석된 B2H6 가스(2% B2H6 가스)의 공급 유량을 2sccm, H2 가스의 공급 유량을 1,998sccm로 하여 처리실 중에 공급되는 B2H6 가스와 H2 가스의 유량비를 1:50,000로 하는 것에 의해 B 함유 가스의 분압을 0.002Pa로 했다.
샘플 2에 대하여, 고주파 전력을 2,000W로 하여 도핑 처리를 수행했다. 다른 처리 조건은 전술한 샘플 1에서의 처리 조건과 공통의 조건으로 했다.
샘플 3에 대하여, 고주파 전력을 500W로 하여 도핑 처리를 수행했다. 다른 처리 조건은 전술한 샘플 1에서의 처리 조건과 공통의 조건으로 했다.
샘플 4에 대하여, B 함유 가스와 H 함유 가스의 공급 시간을 60초로 하여 도핑 처리를 수행했다. 다른 처리 조건은 전술한 샘플 1에서의 처리 조건과 공통의 조건으로 했다.
샘플 5에 대하여, B 함유 가스의 분압을 0.01Pa로 하여 전술한 도핑 처리를 수행했다. 여기서는 2% B2H6 가스의 공급 유량을 10sccm, H2 가스의 공급 유량을 1,990sccm로 하여 처리실 중에 공급되는 B2H6 가스와 H2 가스의 유량비를 1:10,000로 하는 것에 의해 B 함유 가스의 분압을 0.01Pa로 했다. 다른 처리 조건은 전술한 샘플 1에서의 처리 조건과 공통의 조건으로 했다.
샘플 6에 대하여, B 함유 가스의 분압을 0.05Pa로 하여 전술한 도핑 처리를 수행했다. 여기서는 2% B2H6 가스의 공급 유량을 50sccm, H2 가스의 공급 유량을 1,950sccm이라고 해서 처리실 중에 공급되는 B2H6 가스와 H2 가스의 유량비를 1:2000로 하는 것에 의해 B 함유 가스의 분압을 0.05 Pa로 했다. 다른 처리 조건은 전술한 샘플 1에서의 처리 조건과 공통의 조건으로 했다.
샘플 7에 대하여, B 함유 가스의 분압을 0.1Pa로 하여 전술한 도핑 처리를 수행했다. 여기서는 2% B2H6 가스의 공급 유량을 100sccm, H2 가스의 공급 유량을 1,900sccm로 하여 처리실 중에 공급되는 B2H6 가스와 H2 가스의 유량비를 1:1,000으로 하는 것에 의해 B 함유 가스의 분압을 0.1Pa로 했다. 다른 처리 조건은 전술한 샘플 1에서의 처리 조건과 공통의 조건으로 했다.
그리고 도핑 처리 후의 샘플 1 내지 샘플 7을 각각 1%의 불화수소(HF) 수용액을 이용하여 30초 세정한 후의 표면 상태를 비교했다. 도 5a에 도시하는 바와 같이 표면 상태가 친수성을 나타낸 경우에는 발수성을 「없음」으로 하고, 도 5b에 도시하는 바와 같이 표면 상태가 발수성을 나타낸 경우에는 발수성을 「있음」으로 했다. 또한 표면에 퇴적물이 없는 경우에는 HF로 자연산화막을 제거한 후에도 발수성을 나타내고, 표면에 퇴적물이 있는 경우에는 HF로 자연산화막을 제거한 후에도 발수성을 나타내지 않고 친수성을 나타내게 된다.
도 4에 도시되는 바와 같이 샘플 1 내지 샘플 4의 B 함유 가스의 분압을 0.002Pa로 한 경우와, 샘플 5의 B 함유 가스의 분압을 0.01Pa로 한 경우에는 발수성이 나타나고, 표면으로의 퇴적물의 부착이 충분히 억제된 것이 확인되었다. 샘플 6의 B 함유 가스의 분압을 0.05Pa로 한 경우와, 샘플 7의 B 함유 가스의 분압을 0.1Pa로 한 경우에는 발수성이 나타나지 않고, 표면에 퇴적물이 있는 것이 확인되었다.
즉 도핑 처리에서의 B 함유 가스의 분압을 0.01Pa 이하, 바람직하게는 0.002Pa 이하로 하는 것에 의해 퇴적물의 생성이 억제되어 웨이퍼 상에 퇴적물이 부착되는 것을 억제할 수 있다는 사실이 확인되었다.
다음으로 2차 이온 질량 분석법(Secondary Ion Mass Spectrometry, 약칭: SIMS)을 이용하여 샘플 1 내지 샘플 7에 각각 형성된 B 함유층 중에 포함되는 B의 깊이 방향의 농도(atom/cm3)의 분포를 분석했다.
도 6a는 샘플 1 내지 샘플 3에 각각 형성된 B 함유층 중에 포함되는 B의, 웨이퍼 표면으로부터의 깊이 방향에서의 SIMS 분석 결과를 도시한다.
도 6a에 도시하는 바와 같이 깊이 5nm에서 샘플 1의 3,500W의 고주파 전력을 공급하여 형성된 B 함유층은, 샘플 2의 2,000W의 고주파 전력을 공급하여 형성된 B 함유층에 비해 도스량이 증가하고, 샘플 2의 2,000W의 고주파 전력을 공급하여 형성된 B 함유층은 샘플 3의 500W의 고주파 전력을 공급하여 형성된 B 함유층에 비해 도스량이 증가했다. 즉 도스량은 고주파 전력의 크기에 의존하고, 고주파 전력의 크기에 의해 도스량이 제어된다는 사실이 확인되었다.
도 6b는 샘플 1과 샘플 4에 각각 형성된 B 함유층 중에 포함되는 B의, 웨이퍼 표면으로부터의 깊이 방향에서의 SIMS 분석 결과를 나타낸다.
도 6b에 도시하는 바와 같이, 깊이 5nm에서 샘플 4의 B 함유 가스와 H 함유 가스의 혼합 가스를 60초 공급하여 형성된 B 함유층은 샘플 1의 B 함유 가스와 H 함유 가스의 혼합 가스를 30초 공급하여 형성된 B 함유층에 비해 도스량이 증가했다. 즉 도스량은 B 함유 가스와 H 함유 가스의 혼합 가스의 공급 시간에 의존하고, B 함유 가스와 H 함유 가스의 혼합 가스의 공급 시간에 의해 도스량이 제어된다는 사실이 확인되었다.
도 6c는 샘플 1, 샘플 5 내지 샘플 7에 각각 형성된 B 함유층 중에 포함되는 B의, 웨이퍼 표면으로부터의 깊이 방향에서의 SIMS 분석 결과를 도시한다.
도 6c에 도시하는 바와 같이 깊이 5nm에서 샘플 1의 B 함유 가스의 분압을 0.002Pa로 해서 형성된 B 함유층은 샘플 5의 B 함유 가스의 분압을 0.01Pa로 해서 형성된 B 함유층에 비해 도스량이 증가했다. 또한 샘플 6의 B 함유 가스의 분압을 0.05Pa로 해서 형성된 B 함유층은 샘플 1의 B 함유 가스의 분압을 0.002Pa로 해서 형성된 B 함유층에 비해 도스량이 증가했다. 또한 샘플 7의 B 함유 가스의 분압을 0.1Pa로 해서 형성된 B 함유층은 샘플 6의 B 함유 가스의 분압을 0.05Pa로 해서 형성된 B 함유층에 비해 도스량이 증가했다. 즉 도스량은 B 함유 가스의 분압에 의존하고, B 함유 가스의 분압에 의해 도스량이 제어된다는 사실이 확인되었다.
다음으로 약 3.5nm의 깊이를 가지는 홈 형상 구조가 형성되고, 표면에 Si막이 형성된 웨이퍼인 샘플 1′ 내지 샘플 7′을 준비하고, 샘플 1′ 내지 샘플 7′에 대하여 전술한 샘플 1 내지 샘플 7과 마찬가지로 각각 도 4에 도시하는 조건으로 도핑 처리를 수행하고, 홈 형상 구조의 내면에서의 B 함유층의 스텝 커버리지(층 두께 균일성)를 평가했다.
스텝 커버리지는 웨이퍼 표면으로부터 깊이 방향으로 0.25nm 부근의 B 농도(atom/cm3)를 Ctop으로 하고, 3.5nm 부근의 B 농도를 Cbtm으로 했을 때 100×Cbtm/Ctop으로 산출했다.
도 7a는 샘플 1′ 내지 샘플 3′에 각각 형성된 B 함유층 중에 포함되는 B의, 웨이퍼 표면으로부터의 깊이 방향에서의 SIMS 분석 결과를 나타낸다.
샘플 1′의 3,500W의 고주파 전력을 공급하여 형성된 B 함유층의 스텝 커버리지는 26%이었다. 샘플 2′의 2,000W의 고주파 전력을 공급하여 형성된 B 함유층의 스텝 커버리지는 73%이었다. 샘플 3′의 500W의 고주파 전력을 공급하여 형성된 B 함유층의 스텝 커버리지는 81%이었다. 즉 도핑 처리에서의 고주파 전력의 크기를 낮게 하는 것에 의해 스텝 커버리지가 개선된다는 사실이 확인되었다.
즉 스텝 커버리지는 고주파 전력의 크기에 의존하고, 고주파 전력에 의해 제어된다는 사실이 확인되었다.
도 7b는 샘플 1′, 샘플 4′에 각각 형성된 B 함유층 중에 포함되는 B의, 웨이퍼 표면으로부터의 깊이 방향에서의 SIMS 분석 결과를 나타낸다.
샘플 1′의 B 함유 가스와 H 함유 가스의 혼합 가스를 30초 공급하여 형성된 B 함유층의 스텝 커버리지는 26%이었다. 샘플 4′의 B 함유 가스와 H 함유 가스의 혼합 가스를 60초 공급하여 형성된 B 함유층의 스텝 커버리지는 53%이었다. 즉 도핑 처리에서의 B 함유 가스와 H 함유 가스의 혼합 가스의 공급 시간을 길게 하는 것에 의해 스텝 커버리지가 개선된다는 사실이 확인되었다. 즉 스텝 커버리지는 B 함유 가스와 H 함유 가스의 혼합 가스의 공급 시간에 의존하고, B 함유 가스와 H 함유 가스의 혼합 가스의 공급 시간에 의해 제어된다는 사실이 확인되었다.
도 7c는 샘플 1′, 샘플 5′ 내지 샘플 7′에 각각 형성된 B 함유층 중에 포함되는 B의, 웨이퍼 표면으로부터의 깊이 방향에서의 SIMS 분석 결과를 나타낸다.
샘플 1′의 B 함유 가스의 분압을 0.002Pa로 해서 형성된 B 함유층의 스텝 커버리지는 26%이었다. 샘플 5′의 B 함유 가스의 분압을 0.01Pa로 해서 형성된 B 함유층의 스텝 커버리지는 49%이었다. 샘플 6′의 B 함유 가스의 분압을 0.05Pa로 해서 형성된 B 함유층의 스텝 커버리지는 87%이었다. 샘플 7의 B 함유 가스의 분압을 0.1Pa로 해서 형성된 B 함유층의 스텝 커버리지는 63%이었다. 즉 스텝 커버리지는 B 함유 가스의 분압에 의존하고, B 함유 가스의 분압에 의해 제어된다는 사실이 확인되었다.
즉 불순물로서의 B가 주입된 B 함유층의 도스량도 스텝 커버리지도 도핑 처리에서의 고주파 전력의 전력값, B 함유 가스와 H 함유 가스의 혼합 가스의 공급 시간 및 B 함유 가스의 분압에 의존하고, 도핑 처리에서의 고주파 전력의 전력값, B 함유 가스와 H 함유 가스의 공급 시간 및 B 함유 가스의 분압에 의해 제어된다는 사실이 확인되었다.
200: 웨이퍼(기판) 203: 처리 용기

Claims (15)

  1. 기판을 수용하는 처리실 내에 불순물을 함유하는 불순물 함유 가스와 희석 가스를 공급하는 가스 공급 공정;
    상기 불순물 함유 가스 및 상기 희석 가스를 플라즈마 여기(勵起)하는 공정; 및
    플라즈마 여기에 의해 생성되는 상기 불순물을 포함하는 활성종을 상기 기판에 공급하는 공정
    을 수행하는 것에 의해 상기 기판의 표면을 불순물 함유층으로 개질하고,
    상기 가스 공급 공정에서는 상기 처리실 내에서의 상기 불순물 함유 가스의 분압이 상기 처리실 내에서 상기 불순물 함유 가스가 중합체를 포함하는 퇴적물을 형성하는 분압보다 작은 소정의 분압이 되도록 상기 불순물 함유 가스와 상기 희석 가스의 유량비를 제어하는 반도체 장치의 제조 방법.
  2. 제1항에 있어서,
    상기 소정의 분압은 0.01Pa 이하인 반도체 장치의 제조 방법.
  3. 제1항에 있어서,
    상기 소정의 분압은 0.002Pa 이하인 반도체 장치의 제조 방법.
  4. 제1항에 있어서,
    상기 희석 가스는 수소 함유 가스 및 희가스로 이루어지는 군(群)으로부터 선택되는 적어도 어느 하나를 포함하는 반도체 장치의 제조 방법.
  5. 제1항에 있어서,
    상기 불순물은 붕소, 비소, 인 및 갈륨으로 이루어지는 군으로부터 선택되는 적어도 어느 하나인 반도체 장치의 제조 방법.
  6. 제1항에 있어서,
    상기 불순물 함유 가스는 디보란 가스, 3염화 붕소 가스 및 3불화 붕소 가스로 이루어지는 군으로부터 선택되는 적어도 어느 하나를 포함하는 반도체 장치의 제조 방법.
  7. 제1항에 있어서,
    상기 기판의 표면은 실리콘 함유막 및 실리콘 함유 하지(下地)로 이루어지는 군으로부터 선택되는 적어도 어느 하나에 의해 구성되는 반도체 장치의 제조 방법.
  8. 제7항에 있어서,
    상기 기판의 표면은 실리콘산화막, 실리콘질화막 및 실리콘산질화막으로 이루어지는 군으로부터 선택되는 적어도 어느 하나에 의해 구성되는 반도체 장치의 제조 방법.
  9. 제1항에 있어서,
    상기 플라즈마 여기하는 공정에서는 플라즈마 여기하는 고주파 전력의 크기를 조정하는 것에 의해, 상기 기판의 표면에 형성되는 상기 불순물 함유층의 스텝 커버리지를 제어하는 반도체 장치의 제조 방법.
  10. 제9항에 있어서,
    상기 플라즈마 여기하는 공정에서는 상기 고주파 전력의 크기를 작게 하는 것에 의해 상기 불순물 함유층의 스텝 커버리지를 크게 하도록 조정하는 반도체 장치의 제조 방법.
  11. 제1항 또는 제2항에 있어서,
    상기 기판의 표면에 상기 불순물 함유층을 형성한 후에,
    산소 함유 가스를 플라즈마 여기하는 공정; 및
    플라즈마 여기에 의해 생성되는 산소를 포함하는 활성종을 상기 기판의 표면에 공급하는 공정
    을 수행하는 것에 의해 상기 불순물 함유층의 표면을 산화층으로 개질하는 반도체 장치의 제조 방법.
  12. 제11항에 있어서,
    상기 기판 면상에는 애스펙트비가 20 이상의 고(高)애스펙트비 구조가 형성되고, 상기 고애스펙트비 구조의 내면에 대하여 등각(conformal)으로 상기 산화층을 형성하는 반도체 장치의 제조 방법.
  13. 제12항에 있어서,
    상기 고애스펙트비 구조의 내면에 형성되는 상기 산화층의 스텝 커버리지는 70% 이상인 반도체 장치의 제조 방법.
  14. 기판을 수용하는 처리실;
    상기 처리실 내에 불순물을 함유하는 불순물 함유 가스와 희석 가스를 공급하는 가스 공급계;
    상기 처리실 내를 배기하는 배기계;
    상기 처리실 내에 공급된 상기 불순물 함유 가스 및 상기 희석 가스를 플라즈마 여기하는 플라즈마 생성부; 및
    상기 가스 공급계, 상기 배기계 및 상기 플라즈마 생성부를 제어하여, 상기 처리실 내에 상기 불순물 함유 가스 및 상기 희석 가스를 공급하는 가스 공급 처리와, 상기 불순물 함유 가스 및 상기 희석 가스를 플라즈마 여기하는 처리와, 플라즈마 여기에 의해 생성되는 상기 불순물을 포함하는 활성종을 상기 기판에 공급하여 상기 기판의 표면을 불순물 함유층으로 개질하는 처리를 수행하고, 상기 가스 공급 처리에서는 상기 처리실 내에서의 상기 불순물 함유 가스의 분압이, 상기 처리실 내에서 상기 불순물 함유 가스가 중합체를 포함하는 퇴적물을 형성하는 분압보다 작은 소정의 분압이 되도록 상기 불순물 함유 가스와 상기 희석 가스의 유량비를 제어하는 것이 가능하도록 구성된 제어부
    를 구비하는 기판 처리 장치.
  15. 기판을 수용하는 처리실 내에 불순물을 함유하는 불순물 함유 가스와 희석 가스를 공급하는 가스 공급 단계;
    상기 불순물 함유 가스 및 상기 희석 가스를 플라즈마 여기하는 단계; 및
    플라즈마 여기에 의해 생성되는 상기 불순물을 포함하는 활성종을 상기 기판에 공급하는 단계
    를 수행하는 것에 의해, 상기 기판의 표면을 불순물 함유층으로 개질하는 단계를 컴퓨터에 의해 기판 처리 장치에 실행시키는 기록 매체에 기록된 프로그램으로서,
    상기 가스 공급 단계에서는 상기 처리실 내에서의 상기 불순물 함유 가스의 분압이 상기 처리실 내에서 상기 불순물 함유 가스가 중합체를 포함하는 퇴적물을 형성하는 분압보다 작은 소정의 데이터에 의해 상기 기판 처리 장치에 실행시키는 프로그램.
KR1020210120999A 2020-09-14 2021-09-10 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램 KR102517213B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2020-153951 2020-09-14
JP2020153951A JP7117354B2 (ja) 2020-09-14 2020-09-14 半導体装置の製造方法、基板処理装置、およびプログラム

Publications (2)

Publication Number Publication Date
KR20220035847A true KR20220035847A (ko) 2022-03-22
KR102517213B1 KR102517213B1 (ko) 2023-03-31

Family

ID=80539434

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210120999A KR102517213B1 (ko) 2020-09-14 2021-09-10 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램

Country Status (5)

Country Link
US (1) US20220084816A1 (ko)
JP (1) JP7117354B2 (ko)
KR (1) KR102517213B1 (ko)
CN (1) CN114188214A (ko)
TW (1) TWI807392B (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012890A (ja) * 1996-06-20 1998-01-16 Sony Corp 薄膜半導体装置の製造方法
JP2004179592A (ja) * 2002-11-29 2004-06-24 Matsushita Electric Ind Co Ltd プラズマドーピング方法およびデバイス
WO2005020306A1 (ja) * 2003-08-25 2005-03-03 Matsushita Electric Industrial Co., Ltd. 不純物導入層の形成方法及び被処理物の洗浄方法並びに不純物導入装置及びデバイスの製造方法
JP2011529275A (ja) * 2008-07-22 2011-12-01 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド 重いハロゲン化合物を用いたイオン注入
JP2017183487A (ja) 2016-03-30 2017-10-05 株式会社日立国際電気 半導体装置の製造方法および基板処理装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5357037B2 (ja) * 2007-03-23 2013-12-04 パナソニック株式会社 プラズマドーピング装置及び方法
JP5329865B2 (ja) * 2008-07-31 2013-10-30 パナソニック株式会社 半導体装置及びその製造方法
JP2012199417A (ja) * 2011-03-22 2012-10-18 Kyushu Institute Of Technology 高アスペクト比のトレンチ構造を有する半導体デバイスの製造方法
JP5700032B2 (ja) * 2012-12-26 2015-04-15 東京エレクトロン株式会社 プラズマドーピング装置、およびプラズマドーピング方法
KR102325148B1 (ko) * 2017-03-31 2021-11-10 가부시키가이샤 코쿠사이 엘렉트릭 반도체 장치의 제조 방법, 기판 처리 장치 및 컴퓨터 프로그램

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012890A (ja) * 1996-06-20 1998-01-16 Sony Corp 薄膜半導体装置の製造方法
JP2004179592A (ja) * 2002-11-29 2004-06-24 Matsushita Electric Ind Co Ltd プラズマドーピング方法およびデバイス
WO2005020306A1 (ja) * 2003-08-25 2005-03-03 Matsushita Electric Industrial Co., Ltd. 不純物導入層の形成方法及び被処理物の洗浄方法並びに不純物導入装置及びデバイスの製造方法
JP2011529275A (ja) * 2008-07-22 2011-12-01 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド 重いハロゲン化合物を用いたイオン注入
JP2017183487A (ja) 2016-03-30 2017-10-05 株式会社日立国際電気 半導体装置の製造方法および基板処理装置

Also Published As

Publication number Publication date
TWI807392B (zh) 2023-07-01
CN114188214A (zh) 2022-03-15
US20220084816A1 (en) 2022-03-17
JP7117354B2 (ja) 2022-08-12
TW202223996A (zh) 2022-06-16
KR102517213B1 (ko) 2023-03-31
JP2022047904A (ja) 2022-03-25

Similar Documents

Publication Publication Date Title
US9059229B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
US11189483B2 (en) Method of manufacturing semiconductor device and non-transitory computer-readable recording medium
CN111096082B (zh) 基板处理装置、半导体装置的制造方法和记录介质
KR101993070B1 (ko) 반도체 장치의 제조 방법 및 기록 매체
US11152476B2 (en) Method of manufacturing semiconductor device and non-transitory computer-readable recording medium
KR102517213B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
US11081362B2 (en) Method of manufacturing semiconductor device, and recording medium
US20230097621A1 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP7170890B2 (ja) 半導体装置の製造方法、基板処理方法、プログラム、及び基板処理装置
US20240194476A1 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
KR20200035140A (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
JP7393376B2 (ja) 半導体装置の製造方法、基板処理方法、プログラム及び基板処理装置
KR20240042456A (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant