KR20220035339A - Polar steel smelting method to control inclusions - Google Patents

Polar steel smelting method to control inclusions Download PDF

Info

Publication number
KR20220035339A
KR20220035339A KR1020217043397A KR20217043397A KR20220035339A KR 20220035339 A KR20220035339 A KR 20220035339A KR 1020217043397 A KR1020217043397 A KR 1020217043397A KR 20217043397 A KR20217043397 A KR 20217043397A KR 20220035339 A KR20220035339 A KR 20220035339A
Authority
KR
South Korea
Prior art keywords
steel
alloy
polar
inclusions
content
Prior art date
Application number
KR1020217043397A
Other languages
Korean (ko)
Other versions
KR102609009B1 (en
Inventor
밍 리
치앙 리
취엔후이 리
싱 진
이 판
허허 저우
위췬 인
루잉 판
바이지에 자오
쥐에페이 츄
Original Assignee
난징 아이론 앤드 스틸 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 난징 아이론 앤드 스틸 컴퍼니 리미티드 filed Critical 난징 아이론 앤드 스틸 컴퍼니 리미티드
Publication of KR20220035339A publication Critical patent/KR20220035339A/en
Application granted granted Critical
Publication of KR102609009B1 publication Critical patent/KR102609009B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/527Charging of the electric furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/04Removing impurities other than carbon, phosphorus or sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • C21C5/5217Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace equipped with burners or devices for injecting gas, i.e. oxygen, or pulverulent materials into the furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

개재물을 제어하는 극지용 철강 제련 방법으로서, 상기 방법은 Zr-Ti 탈산소 고강도 저합금강을 통해 응고 단계에서 먼저 형성된 미세하게 분포하는 Zr-Ti 복합산화물 핵입자상에서 MnS를 형성하고 생장시킨다. 따라서, 형성된 MnS는 미세한 구형 산화물 위를 덮고 철강 안에서 균일하게 분포되며, 상기 구조는 철강의 인성을 향상시킨다. 동시에, MnS 주변에 망간 고갈 구역이 생겨 바늘 형상 페라이트의 형성을 촉진하고, 미립자 강화를 통해 철강의 인성을 보다 향상시킨다. 또한, 미세하고 균일하게 분산된 다량의 산화물은 철강의 조직을 균일하게 하고 강도를 높이는 데 유리하다. 종래의 Al 탈산소와 비교하면, 강판의 연전성 및 인성이 상응하게 향상되었고, 부식 전류 밀도가 6mA/cm2보다 낮으며, 부식 활성 개재물이 절반 감소했고, 강판의 국부 부식 속도가 낮아졌다. 이로써, 강판의 사용 수명을 보장하고 극지용 36kg급 철강에 대한 수요를 만족한다.A polar steel smelting method that controls inclusions, the method forms and grows MnS on finely distributed Zr-Ti composite oxide core particles first formed in the solidification step through Zr-Ti deoxidized high-strength low-alloy steel. Accordingly, the formed MnS covers the fine spherical oxides and is distributed uniformly within the steel, and this structure improves the toughness of the steel. At the same time, a manganese depletion zone is created around MnS, which promotes the formation of needle-shaped ferrite and further improves the toughness of the steel through fine grain reinforcement. In addition, a large amount of finely and uniformly dispersed oxide is advantageous in uniformizing the structure of steel and increasing strength. Compared with conventional Al deoxidation, the malleability and toughness of the steel sheet are improved correspondingly, the corrosion current density is lower than 6mA/cm 2 , the corrosion active inclusions are reduced by half, and the local corrosion rate of the steel sheet is lowered. This ensures the service life of the steel plate and satisfies the demand for 36 kg steel for polar use.

Description

개재물을 제어하는 극지용 철강 제련 방법Polar steel smelting method to control inclusions

본 발명은 제강 기술분야에 속하며, 구체적으로는 개재물을 제어하는 극지용 철강 제련 방법에 관한 것이다.The present invention belongs to the field of steelmaking technology, and specifically relates to a method of smelting polar steel to control inclusions.

현재 국내에서는 극지 분야에 대한 연구가 부족하고, 아직 극지 쇄빙선 설계 능력이 없다. 쉐룽호 갑판 철강은 우크라이나에서 수입하고 쉐룽 2호는 핀란드에서 설계했다. 극지 쇄빙선은 취역 조건이 열악해, 강판이 높은 강인성, 높은 내식성, 높은 내마모성, 쉬운 용접 등의 특징을 구비할 것이 요구된다. 특히 해수 부식을 견디는 측면에 대해 요구가 매우 높아, 개재물, 석출물, 조직 및 미시적 결함 등에 대해 극도로 까다로운 제어 조치 및 능력을 필요로 한다. 철강 내부 및 표면에는 개재물이 분포되어 있어, 쇄빙선 외부 코팅층이 깨지면 열악한 취역 환경에서의 주요 부식 원인이 된다. 강종 모재 및 용접 이음매가 해수 부식에 견딜 수 있는 관건은 철강 안의 부식 활성 개재물을 제어하는 기술이다. 강판의 국부 부식 속도는 철강 안의 부식 활성 비금속 불순물 함량에 따라 결정되는데, 철강 안의 부식 활성 개재물이 2개/mm2보다 낮으면 강판의 국부 부식 속도를 효과적으로 낮춰 강판의 사용 수명을 보장할 수 있다.Currently, there is a lack of research in the polar field in Korea, and we do not yet have the ability to design polar icebreakers. The deck steel of the Sherung was imported from Ukraine, and the Sherung 2 was designed in Finland. Polar icebreakers have poor commissioning conditions, so steel plates are required to have characteristics such as high toughness, high corrosion resistance, high wear resistance, and easy welding. Particularly high demands are placed on resisting seawater corrosion, requiring extremely demanding control measures and capabilities for inclusions, precipitates, texture and microscopic defects. Inclusions are distributed inside and on the surface of steel, and if the outer coating layer of an icebreaker is broken, it becomes a major cause of corrosion in poor service environments. The key to ensuring that steel base materials and weld joints can withstand seawater corrosion is technology to control corrosion-active inclusions in steel. The local corrosion rate of a steel sheet is determined by the content of corrosion-active non-metallic impurities in the steel. If the corrosion-active inclusions in the steel are lower than 2/mm 2 , the local corrosion rate of the steel sheet can be effectively lowered to ensure the service life of the steel sheet.

종래기술의 결함을 극복하기 위해, 본 발명은 개재물을 제어하는 극지용 철강 제련 방법을 제공한다. 이 제련 방법은 철강 안의 부식 활성 개재물을 효과적으로 제어하고 강판의 국부 부식 속도를 낮춤으로써, 강판의 사용 수명을 보장하고 극지용 36kg급 철강에 대한 수요를 만족할 수 있다.To overcome the deficiencies of the prior art, the present invention provides a method for smelting polar steel with controlled inclusions. This smelting method effectively controls the corrosion active inclusions in the steel and reduces the local corrosion rate of the steel sheet, thereby ensuring the service life of the steel sheet and meeting the demand for 36 kg steel for polar use.

본 발명에 따른 개재물을 제어하는 극지용 철강 제련 방법에서, 용강을 제련하는 공정 노선은 KR 용철 전처리→BOF 상하 복합 블로잉 전로 →LF 정련로→RH 정련로를 포함하고,In the polar steel smelting method for controlling inclusions according to the present invention, the process route for smelting molten steel includes KR molten iron pretreatment → BOF upper and lower composite blowing converter → LF refining furnace → RH refining furnace,

다음과 같은 단계를 포함한다.It includes the following steps:

(1) 용철 중 비철 금속 질량백분율 함량을 Sn≤0.010%, Pb≤0.005%, As≤0.020, Sb≤0.010, Zn≤0.010로 선택하면 시험 제작을 진행한다. 용철 전처리에서 고로에 유입되는 용철은 S≤0.0020%, 슬래그 제거 90% 이상으로 보장한다.(1) If the mass percentage content of non-ferrous metal in molten iron is selected as Sn≤0.010%, Pb≤0.005%, As≤0.020, Sb≤0.010, Zn≤0.010, trial production is performed. During molten iron pretreatment, molten iron flowing into the blast furnace is guaranteed to have S≤0.0020% and slag removal of over 90%.

(2) 전로 저취 및 고로 상태가 양호한 상황에서 시험 제작을 진행하고, 전로는 활성 석회를 사용해 슬래그 형성 작업을 여러 회 진행하며, 종점 P, S를 모두 0.008% 이하로 제어한다. 출강 유리산소를 400~600ppm으로 제어하고, 최종 탄소의 질량백분율 함량을 0.04~0.06%로 제어한다.(2) Test production is carried out in a situation where the converter bottom smell and blast furnace conditions are good, the converter is subjected to slag formation work several times using activated lime, and the end points P and S are all controlled to less than 0.008%. The free oxygen in tap steel is controlled to 400 to 600 ppm, and the final carbon mass percentage content is controlled to 0.04 to 0.06%.

(3) 전로 출강 시 규소철과 미탄소망간철 또는 규소철과 망간을 사용해 1차 탈산소 및 합금화를 진행한다.(3) When tapping steel in a converter, primary deoxygenation and alloying are performed using silicon iron and uncarboned manganese iron or silicon iron and manganese.

(4) LF 정련로에 이른 후, 철강 안의 [O]함량을 측정 및 기록하고, 용강 안의 산소 함량을 20~60ppm으로 제어 및 유지한다. 그리고 나서, 저알루미늄 Fe-Ti 합금 및 Fe-Zr 합금을 첨가하고 탈산소 및 합금화를 진행한다.(4) After reaching the LF refining furnace, the [O] content in the steel is measured and recorded, and the oxygen content in the molten steel is controlled and maintained at 20 to 60 ppm. Then, low-aluminum Fe-Ti alloy and Fe-Zr alloy are added and deoxidation and alloying are performed.

(5) 저알루미늄 Fe-Ti 합금 및 Fe-Zr 합금은 탈산소 및 합금화를 진행한 후 3분 이상 정련한다. 철강 안의 [O]함량을 측정 및 기록해, 철강 안에 10ppm 이상의 유리산소가 존재할 경우 10~20kg의 Si-Ca-Ba 합금을 첨가하고 탈산소를 보충한다.(5) Low-aluminum Fe-Ti alloy and Fe-Zr alloy are refined for more than 3 minutes after deoxidation and alloying. Measure and record the [O] content in the steel, and if more than 10 ppm of free oxygen exists in the steel, add 10 to 20 kg of Si-Ca-Ba alloy and supplement deoxygenation.

(6) 탈S 공정 작업을 진행한다. 탈S 공정 과정에서는 알루미늄선 첨가를 금지한다. 탈S 공정이 완료되면 목표 성분에 따라 Al선을 첨가한다.(6) Proceed with the deS process. The addition of aluminum wire is prohibited during the deS process. When the deS process is completed, Al line is added according to the target component.

(7) RH 정련로에서는 개재물 제거 및 탈기 처리, 진공실 산소 블로잉을 진행한다. 산소 취입량 50m3, 진공도≤5.0mbar의 조건 하에 유지 시간≥20min으로 진행한다. RH 탈기 처리가 완료되면, 나오기 3분 전에 목표 성분에 따라 칼슘 처리를 진행한다.(7) In the RH refining furnace, inclusions are removed, degassed, and vacuum chamber oxygen blown. It is carried out with a holding time ≥ 20 min under the conditions of an oxygen intake amount of 50 m 3 and a vacuum level of ≤ 5.0 mbar. Once the RH degassing treatment is completed, calcium treatment is performed according to the target ingredient 3 minutes before exit.

여기에서, 전로 제련 과정에서, 순수 용철 작업을 선택하거나 비철 금속 성분이 요건을 만족하는 폐강을 고로 유입 재료로 사용하도록 선택한다.Here, in the converter smelting process, pure molten iron operation is selected or waste steel whose non-ferrous metal components meet the requirements is selected to be used as the blast furnace inlet material.

상기 단계(3)에서, 1차 탈산소 및 합금화 진행 시 Si는 0.10~0.18%로 규소철을 배합하고 Mn은 0.93~0.98%로 미탄소망간철 또는 금속망간을 배합한다.In step (3), during the first deoxygenation and alloying, silicon iron is mixed at 0.10 to 0.18% of Si, and uncarboned manganese iron or metal manganese is mixed at 0.93 to 0.98% of Mn.

상기 단계(4)에서, 용강 안의 산소 함량을 20~60ppm으로 제어하고 유지하는 방법은 다음과 같다. 용강 안의 산소 함량이 60ppm보다 많으면, 추산에 따라 용강 안의 산소 함량이 20~60ppm이 될 때까지 규소철을 첨가하고 탈산소를 진행한다.In step (4), the method of controlling and maintaining the oxygen content in the molten steel at 20 to 60 ppm is as follows. If the oxygen content in the molten steel is more than 60 ppm, ferrosilicon is added and deoxygenation is performed until the oxygen content in the molten steel reaches 20 to 60 ppm, depending on the estimate.

상기 단계(4)에서, 저알루미늄 Fe-Ti 합금 및 Fe-Zr 합금을 총 10 내지 70kg 첨가하고 탈산소 및 합금화를 진행한다.In step (4), a total of 10 to 70 kg of low aluminum Fe-Ti alloy and Fe-Zr alloy are added and deoxidation and alloying are performed.

상기 단계(4)에서, 저알루미늄 Fe-Ti 합금 및 Fe-Zr 합금을 함께 첨가하며, 양자의 첨가량을 목표 성분 및 합금 함량에 따라 환산했을 때 Zr 함량의 환산 계수는 60%이다.In step (4), the low aluminum Fe-Ti alloy and the Fe-Zr alloy are added together, and when the amount of both added is converted according to the target composition and alloy content, the conversion coefficient for the Zr content is 60%.

상기 단계(6)에서, 탈황 공정 과정 시, 슬래그면에 Al 분말을 적정량 균일하게 뿌리고 확산 탈산소를 진행한다. Al 분말을 첨가할 때, 아르곤가스는 정적 교반 방식에 따라 제어된다.In step (6), during the desulfurization process, an appropriate amount of Al powder is uniformly sprinkled on the slag surface and diffusion deoxygenation is performed. When adding Al powder, argon gas is controlled according to the static stirring method.

상기 제련 방법에서는 Zr-Ti 탈산소 고강도 저합금강을 통해 응고 단계에서 먼저 형성된 미세하게 분포하는 Zr-Ti 복합산화물 핵입자상에서 MnS를 형성하고 생장시킨다. 따라서, 형성된 MnS는 미세한 구형 산화물 위를 덮고 철강 안에서 균일하게 분포되며 이러한 구조는 철강의 인성을 향상시킨다. 또한 MnS는 Zr-Ti 산화물 위에 형성되며, 주변에 망간 고갈 구역이 생겨 바늘 형상 페라이트의 형성을 촉진하고 이로써 미립자 강화를 통해 철강의 인성을 보다 향상시킨다. 또한, 미세하고 균일하게 분산된 다량의 산화물은 철강의 조직을 균일하게 하고 강도를 높이는 데 유리하다. 종래의 Al 탈산소와 비교하면, Zr-Ti 탈산소 강판의 연전성 및 인성이 상응하게 향상되었고, 부식 전류 밀도가 6mA/cm2보다 낮고, 부식 활성 개재물이 절반 감소했다. 이에 따라 강판의 국부 부식 속도를 낮춤으로써, 강판의 사용 수명을 보장하고 극지용 36kg급 철강에 대한 수요를 만족할 수 있다.In the above smelting method, MnS is formed and grown on finely distributed Zr-Ti composite oxide core particles first formed in the solidification step through Zr-Ti deoxidized high-strength low-alloy steel. Therefore, the formed MnS covers the fine spherical oxide and is distributed uniformly within the steel, and this structure improves the toughness of the steel. In addition, MnS is formed on Zr-Ti oxide, which creates a manganese-depleted zone around it, promoting the formation of needle-shaped ferrite, which further improves the toughness of steel through fine particle strengthening. In addition, a large amount of finely and uniformly dispersed oxide is advantageous in uniformizing the structure of steel and increasing strength. Compared with conventional Al deoxidation, the ductility and toughness of Zr-Ti deoxidation steel sheet were improved correspondingly, the corrosion current density was lower than 6mA/cm 2 , and the corrosion active inclusions were reduced by half. Accordingly, by lowering the local corrosion rate of the steel plate, the service life of the steel plate can be guaranteed and the demand for 36kg steel for polar use can be satisfied.

도 1은 개재물 외관도이다.
도 2는 개재물 사이즈 분포도이다.
도 3은 실시예에 따른 개재물의 성분 에너지 스펙트럼 분석도이다.
1 is an external view of an inclusion.
Figure 2 is a distribution chart of inclusion sizes.
Figure 3 is a component energy spectrum analysis diagram of inclusions according to an example.

이하, 본 발명에서 설명한 방법으로 생산한 특수 갑판을 예로 들어 본 발명에 대해 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail, taking as an example a special deck produced by the method described in the present invention.

상기 특수 갑판을 생산하는 공정 순서는 KR 용철 전처리→BOF 상하 복합 블로잉 전로 →LF 정련로→RH 정련로→연속 주조기를 포함한다.The process sequence for producing the special deck includes KR molten iron pretreatment → BOF upper and lower composite blowing converter → LF refining furnace → RH refining furnace → continuous casting machine.

구체적인 단계는 다음과 같다.The specific steps are as follows.

(1) 용철 중 비철 금속 Sn, Pb, As, Bi, Sb, Zn의 질량백분율 함량이 낮을 때 시험 제작을 진행한다. 여기에서, Sn≤0.010%, Pb≤0.005%, As≤0.020, Sb≤0.010, Zn≤0.010이고, 용철 전처리에서 고로에 유입되는 용철은 S≤0.0020%, 슬래그 제거 90% 이상으로 보장한다.(1) Test production is conducted when the mass percentage content of non-ferrous metals Sn, Pb, As, Bi, Sb, and Zn in molten iron is low. Here, Sn ≤ 0.010%, Pb ≤ 0.005%, As ≤ 0.020, Sb ≤ 0.010, Zn ≤ 0.010, S ≤ 0.0020% of molten iron flowing into the blast furnace during molten iron pretreatment, and slag removal of over 90% are guaranteed.

(2) 원료 안의 각종 불순물 원소를 줄이기 위해, 순수 용철 작업을 선택하거나 비철 금속 성분이 요건을 만족하는 양질의 폐강을 고로 유입 재료로 사용하도록 선택한다. 전로 저취 및 고로 상태가 양호한 상황에서 시험 제작을 진행하고, 전로는 활성 석회를 사용해 슬래그 형성 작업을 여러 회 진행하며, 종점 P, S를 모두 0.008% 이하로 제어한다. 출강 유리산소를 400~600ppm으로 제어하고, 최종 탄소의 질량백분율 함량을 0.04~0.06%로 제어한다.(2) In order to reduce various impurity elements in the raw materials, choose to work with pure molten iron or choose to use high-quality waste steel whose non-ferrous metal components meet the requirements as the blast furnace inlet material. Test production is carried out in a situation where the converter bottom smell and blast furnace conditions are good, and the converter uses activated lime to form slag several times, and the end points P and S are all controlled to less than 0.008%. The free oxygen in tap steel is controlled to 400 to 600 ppm, and the final carbon mass percentage content is controlled to 0.04 to 0.06%.

(3) 전로 출강 시 규소철과 미탄소망간철 또는 규소철과 망간을 사용해 1차 탈산소 및 합금화를 진행한다. Si는 0.10~0.18%로 규소철을 배합하고 Mn은 0.93~0.98%로 미탄소망간철 또는 금속망간을 배합한다. 또한, Al 함유 재료를 사용하지 않고 탈산소 및 합금화를 진행한다.(3) When tapping steel in a converter, primary deoxygenation and alloying are performed using silicon iron and uncarboned manganese iron or silicon iron and manganese. Si is mixed with 0.10 to 0.18% of silicon iron, and Mn is mixed with 0.93 to 0.98% of uncarboned manganese iron or metal manganese. In addition, deoxidation and alloying are performed without using Al-containing materials.

(4) LF 정련로에 이른 후, 쾌속 산소 측정 탐침을 사용해 철강 안의 [O]함량을 측정 및 기록하고, 용강 안의 산소 함량을 20~60ppm으로 제어 및 유지한다. 용강 안의 산소 함량이 60ppm보다 많으면, 추산에 따라 용강 안의 산소 함량이 20~60ppm이 될 때까지 규소철을 첨가하고 탈산소를 진행한다. 그리고 나서, 저알루미늄 Fe-Ti 합금 및 Fe-Zr 합금 10 내지 70kg을 첨가하고 탈산소 및 합금화를 진행한다. 저알루미늄 Fe-Ti 합금 및 Fe-Zr 합금을 함께 첨가하며, 양자의 첨가량을 목표 성분 및 합금 함량에 따라 환산했을 때 Zr 함량의 환산 계수는 60%이다.(4) After reaching the LF refining furnace, the [O] content in the steel is measured and recorded using a rapid oxygen measuring probe, and the oxygen content in the molten steel is controlled and maintained at 20 to 60 ppm. If the oxygen content in the molten steel is more than 60 ppm, ferrosilicon is added and deoxygenation is performed until the oxygen content in the molten steel reaches 20 to 60 ppm, depending on the estimate. Then, 10 to 70 kg of low aluminum Fe-Ti alloy and Fe-Zr alloy are added and deoxidation and alloying are performed. Low-aluminum Fe-Ti alloy and Fe-Zr alloy are added together, and when the addition amount of both is converted according to the target composition and alloy content, the conversion coefficient for Zr content is 60%.

(5) 저알루미늄 Fe-Ti 합금 및 Fe-Zr 합금은 탈산소 및 합금화를 진행한 후 3분 이상 정련한다. 쾌속 산소 측정 탐침을 사용해 철강 안의 [O]함량을 측정 및 기록해, 철강 안에 10ppm 이상의 유리산소가 존재할 경우 10~20kg의 Si-Ca-Ba 합금을 첨가하고 탈산소를 보충한다.(5) Low-aluminum Fe-Ti alloy and Fe-Zr alloy are refined for more than 3 minutes after deoxidation and alloying. Measure and record the [O] content in the steel using a rapid oxygen measuring probe. If more than 10 ppm of free oxygen exists in the steel, add 10 to 20 kg of Si-Ca-Ba alloy and supplement deoxidation.

(6) 탈S 공정 작업을 진행한다. 탈S 공정 과정에서는 알루미늄선 첨가를 금지하며, 슬래그면에 Al 분말을 적정량 균일하게 뿌리고 확산 탈산소를 진행할 수 있다. Al 분말을 첨가할 때, 아르곤가스는 정적 교반 방식에 따라 제어된다.(6) Proceed with the deS process. During the deS process, the addition of aluminum wire is prohibited, and an appropriate amount of Al powder can be evenly sprinkled on the slag surface to perform diffusion deoxygenation. When adding Al powder, argon gas is controlled according to the static stirring method.

탈S 공정이 완료되면 목표 성분에 따라 Al선을 첨가한다.When the deS process is completed, Al line is added according to the target component.

(7) RH 정련로에서는 개재물 제거 및 탈기 처리, 진공실 산소 블로잉을 진행한다. 산소 취입량 50m3, 진공도≤5.0mbar의 조건 하에 유지 시간≥20min으로 진행한다. RH 탈기 처리가 완료되면, 나오기 3분 전에 목표 성분에 따라 칼슘 처리를 진행한다.(7) In the RH refining furnace, inclusions are removed, degassed, and vacuum chamber oxygen blown. It is carried out with a holding time ≥ 20 min under the conditions of an oxygen intake amount of 50 m 3 and a vacuum level of ≤ 5.0 mbar. Once the RH degassing treatment is completed, calcium treatment is performed according to the target ingredient 3 minutes before exit.

강판 충격 성능을 보면, 공정 개선 후 강판 충격 성능이 -120도 강판 충격≥200J으로 현저히 개선되었고, 강판 평균 인장 강도 605Mpa로 여유량이 크며, 강판 인장 요건은 490~620Mpa이므로 인장 강도가 상한선에 근접한다.Looking at the steel sheet impact performance, after the process improvement, the steel sheet impact performance has been significantly improved to -120 degree steel sheet impact≥200J, the average tensile strength of the steel sheet is 605Mpa, which has a large margin, and the steel sheet tensile requirement is 490~620Mpa, so the tensile strength is close to the upper limit. .

도 1 내지 도 3을 조합하면, 철강 안의 부식 활성 개재물은 1.87개/mm2, 평균 전류 밀도는 5.78mA/cm2로서, 강판의 국부 부식 속도를 효과적으로 낮춰 강판의 사용 수명을 보장할 수 있다.Combining Figures 1 to 3, the number of corrosion-active inclusions in the steel is 1.87/mm 2 and the average current density is 5.78 mA/cm 2 , which can effectively lower the local corrosion rate of the steel sheet and ensure the service life of the steel sheet.

Claims (7)

개재물을 제어하는 극지용 철강 제련 방법에 있어서,
용강을 제련하는 공정 노선은 KR 용철 전처리→BOF 상하 복합 블로잉 전로 →LF 정련로→RH 정련로를 포함하고,
이하의 단계,
(1) 용철 중 비철 금속 질량백분율 함량을 Sn≤0.010%, Pb≤0.005%, As≤0.020, Sb≤0.010, Zn≤0.010로 선택하면 시험 제작을 진행하고; 용철 전처리에서 고로에 유입되는 용철은 S≤0.0020%, 슬래그 제거 90% 이상으로 보장하는 단계;
(2) 전로 저취 및 고로 상태가 양호한 상황에서 시험 제작을 진행하고, 전로는 활성 석회를 사용해 슬래그 형성 작업을 여러 회 진행하며, 종점 P, S를 모두 0.008% 이하로 제어하고; 출강 유리산소를 400~600ppm으로 제어하고, 최종 탄소의 질량백분율 함량을 0.04~0.06%로 제어하는 단계;
(3) 전로 출강 시 규소철과 미탄소망간철 또는 규소철과 망간을 사용해 1차 탈산소 및 합금화를 진행하는 단계;
(4) LF 정련로에 이른 후, 철강 안의 [O]함량을 측정 및 기록하고, 용강 안의 산소 함량을 20~60ppm으로 제어 및 유지하고; 그런 다음, 저알루미늄 Fe-Ti 합금 및 Fe-Zr 합금을 첨가하고 탈산소 및 합금화를 진행하는 단계;
(5) 저알루미늄 Fe-Ti 합금 및 Fe-Zr 합금은 탈산소 및 합금화를 진행한 후 3분 이상 정련하고; 철강 안의 [O]함량을 측정 및 기록해, 철강 안에 10ppm 이상의 유리산소가 존재할 경우 10~20kg의 Si-Ca-Ba 합금을 첨가하고 탈산소를 보충하는 단계;
(6) 탈S 공정 작업을 진행한다. 탈S 공정 과정에서는 알루미늄선 첨가를 금지하고; 탈S 공정이 완료되면 목표 성분에 따라 Al선을 첨가하는 단계;
(7) RH 정련로에서는 개재물 제거 및 탈기 처리, 진공실 산소 블로잉을 진행하고, 산소 취입량 50m3, 진공도≤5.0mbar의 조건 하에 유지 시간≥20min으로 진행하고; RH 탈기 처리가 완료되면, 나오기 3분 전에 목표 성분에 따라 칼슘 처리를 진행하는 단계;를 포함하는 것을 특징으로 하는 개재물을 제어하는 극지용 철강 제련 방법.
In the polar steel smelting method for controlling inclusions,
The process route for smelting molten steel includes KR molten iron pretreatment → BOF upper and lower complex blowing converter → LF refining furnace → RH refining furnace,
The following steps,
(1) If the mass percentage content of non-ferrous metal in molten iron is selected as Sn≤0.010%, Pb≤0.005%, As≤0.020, Sb≤0.010, Zn≤0.010, trial production is performed; In the molten iron pretreatment, ensuring that the molten iron flowing into the blast furnace has S≤0.0020% and slag removal of 90% or more;
(2) Proceed with test production in a situation where the converter bottom and blast furnace conditions are good, the converter uses activated lime to form slag several times, and the end points P and S are all controlled to 0.008% or less; Controlling the tapping free oxygen to 400 to 600 ppm and controlling the final carbon mass percentage content to 0.04 to 0.06%;
(3) performing primary deoxygenation and alloying using silicon iron and uncarboned manganese iron or silicon iron and manganese when tapping steel in a converter;
(4) After reaching the LF refining furnace, measure and record the [O] content in the steel, and control and maintain the oxygen content in the molten steel at 20 to 60 ppm; Then, adding low-aluminum Fe-Ti alloy and Fe-Zr alloy and proceeding with deoxidation and alloying;
(5) low-aluminum Fe-Ti alloy and Fe-Zr alloy are deoxidized and alloyed and then refined for more than 3 minutes; Measure and record the [O] content in the steel, and if more than 10 ppm of free oxygen exists in the steel, add 10 to 20 kg of Si-Ca-Ba alloy and supplement deoxygenation;
(6) Proceed with the deS process work. During the deS process, the addition of aluminum wire is prohibited; When the deS process is completed, adding Al line according to the target component;
(7) In the RH refining furnace, inclusion removal and degassing treatment and vacuum chamber oxygen blowing are carried out, and the holding time is ≥ 20 min under the conditions of oxygen blowing amount of 50 m 3 and vacuum degree ≤ 5.0 mbar; A polar steel smelting method for controlling inclusions, comprising the step of performing calcium treatment according to the target composition 3 minutes before release when the RH degassing treatment is completed.
제1항에 있어서,
전로 제련 과정에서, 순수 용철 작업을 선택하거나 비철 금속 성분이 요건을 만족하는 폐강을 고로 유입 재료로 사용하도록 선택하는 것을 특징으로 하는 개재물을 제어하는 극지용 철강 제련 방법.
According to paragraph 1,
A polar steel smelting method for controlling inclusions, characterized in that in the converter smelting process, pure molten iron operation is selected or waste steel whose non-ferrous metal content satisfies the requirements is selected to be used as a blast furnace inlet material.
제1항에 있어서,
상기 단계(3)에서, 1차 탈산소 및 합금화 진행 시, Si는 0.10~0.18%로 규소철을 배합하고, Mn은 0.93~0.98%로 미탄소망간철 또는 금속망간을 배합하는 것을 특징으로 하는 개재물을 제어하는 극지용 철강 제련 방법.
According to paragraph 1,
In step (3), during the first deoxidation and alloying, silicon iron is mixed at 0.10 to 0.18% of Si, and uncarboned manganese iron or metal manganese is mixed at 0.93 to 0.98% of Mn. Polar steel smelting method to control inclusions.
제1항에 있어서,
상기 단계(4)에서, 용강 안의 산소 함량을 20~60ppm으로 제어하고 유지하는 방법은, 용강 안의 산소 함량이 60ppm보다 많으면, 추산에 따라 용강 안의 산소 함량이 20~60ppm이 될 때까지 규소철을 첨가하고 탈산소를 진행하는 것을 특징으로 하는 개재물을 제어하는 극지용 철강 제련 방법.
According to paragraph 1,
In the above step (4), the method of controlling and maintaining the oxygen content in the molten steel at 20 to 60 ppm is that, if the oxygen content in the molten steel is more than 60 ppm, ferrosilicon is added until the oxygen content in the molten steel reaches 20 to 60 ppm according to the estimate. A polar steel smelting method for controlling inclusions, characterized by adding and deoxidizing them.
제4항에 있어서,
상기 단계(4)에서, 저알루미늄 Fe-Ti 합금 및 Fe-Zr 합금을 총 10 내지 70kg 첨가하고 탈산소 및 합금화를 진행하는 것을 특징으로 하는 개재물을 제어하는 극지용 철강 제련 방법.
According to clause 4,
In step (4), a polar steel smelting method for controlling inclusions, characterized in that a total of 10 to 70 kg of low aluminum Fe-Ti alloy and Fe-Zr alloy are added and deoxidation and alloying are performed.
제5항에 있어서,
상기 단계(4)에서, 저알루미늄 Fe-Ti 합금 및 Fe-Zr 합금을 함께 첨가하며, 양자의 첨가량을 목표 성분 및 합금 함량에 따라 환산했을 때 Zr 함량의 환산 계수는 60%인 것을 특징으로 하는 개재물을 제어하는 극지용 철강 제련 방법.
According to clause 5,
In step (4), the low aluminum Fe-Ti alloy and the Fe-Zr alloy are added together, and when the addition amount of both is converted according to the target composition and alloy content, the conversion coefficient for the Zr content is 60%. Polar steel smelting method to control inclusions.
제1항에 있어서,
상기 단계(6)에서, 탈황 공정 과정 시, 슬래그면에 Al 분말을 적정량 균일하게 뿌리고 확산 탈산소를 진행하고; Al 분말을 첨가할 때, 아르곤가스는 정적 교반 방식에 따라 제어되는 것을 특징으로 하는 개재물을 제어하는 극지용 철강 제련 방법.
According to paragraph 1,
In step (6), during the desulfurization process, an appropriate amount of Al powder is uniformly sprinkled on the slag surface and diffusion deoxygenation is performed; A polar steel smelting method for controlling inclusions, characterized in that when adding Al powder, argon gas is controlled according to a static stirring method.
KR1020217043397A 2019-07-12 2020-06-19 Polar steel smelting method to control inclusions KR102609009B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910633355.7A CN110343937B (en) 2019-07-12 2019-07-12 Smelting method of steel for polar region for controlling inclusions
CN201910633355.7 2019-07-12
PCT/CN2020/096959 WO2021008299A1 (en) 2019-07-12 2020-06-19 Polar steel smelting process controlling inclusions

Publications (2)

Publication Number Publication Date
KR20220035339A true KR20220035339A (en) 2022-03-22
KR102609009B1 KR102609009B1 (en) 2023-12-04

Family

ID=68176195

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217043397A KR102609009B1 (en) 2019-07-12 2020-06-19 Polar steel smelting method to control inclusions

Country Status (3)

Country Link
KR (1) KR102609009B1 (en)
CN (1) CN110343937B (en)
WO (1) WO2021008299A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343937B (en) * 2019-07-12 2021-04-20 南京钢铁股份有限公司 Smelting method of steel for polar region for controlling inclusions
CN111519094A (en) * 2020-04-29 2020-08-11 南京钢铁股份有限公司 Steel for railway bogie and preparation method thereof
CN111455257A (en) * 2020-04-29 2020-07-28 南京钢铁股份有限公司 Control method of steel inclusion for railway bogie
CN114438407B (en) * 2021-12-29 2022-12-09 安徽工业大学 High-fatigue-strength girder steel thick plate and preparation method thereof
CN114622130A (en) * 2022-02-18 2022-06-14 包头钢铁(集团)有限责任公司 Rare earth alloy suitable for bainite steel inclusion control and adding process thereof
CN115029509A (en) * 2022-05-23 2022-09-09 包头钢铁(集团)有限责任公司 Heavy rail ultra-low sulfur control method
CN114959428B (en) * 2022-05-24 2023-08-11 武汉科技大学 Steelmaking method of free-cutting non-quenched and tempered steel and non-quenched and tempered steel
CN115011863A (en) * 2022-07-12 2022-09-06 攀钢集团攀枝花钢铁研究院有限公司 Control method for A-type inclusions of rail steel
CN115354108A (en) * 2022-08-24 2022-11-18 山东钢铁集团日照有限公司 Method for improving strip-type MnS inclusion in steel and steel plate produced by same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199740A (en) * 2011-05-12 2011-09-28 南京钢铁股份有限公司 Ti-Zr composite deoxidized steel used for ultrahigh-strength hull structure, and production process thereof
CN105463170A (en) * 2015-11-12 2016-04-06 内蒙古包钢钢联股份有限公司 Production method of steel plate for 36Kg level ocean platform

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951645A (en) * 1974-08-16 1976-04-20 Jones & Laughlin Steel Corporation Steelmaking practice for production of a virtually inclusion-free semi-killed product
CN101684534B (en) * 2008-09-23 2013-04-03 宝山钢铁股份有限公司 Steel plate adapting to large-linear energy welding and manufacturing method thereof
JP5397154B2 (en) * 2009-10-23 2014-01-22 新日鐵住金株式会社 Melting method of steel material for oil pipes with high strength and high corrosion resistance
CN102011050B (en) * 2010-07-15 2012-05-30 秦皇岛首秦金属材料有限公司 Steel for 36kg-grade ocean platform and production method thereof
CN103205652A (en) * 2013-04-23 2013-07-17 南京钢铁股份有限公司 Low-temperature low-compression ratio 36kg-strength grade ship board and production method thereof
CN103695777B (en) * 2013-12-20 2016-06-22 宝山钢铁股份有限公司 The steel plate of a kind of welding heat influence area toughness excellence and manufacture method thereof
CN105256095B (en) * 2015-10-26 2017-09-26 江苏省沙钢钢铁研究院有限公司 A kind of smelting process of the steel plate of high heat-input welding heat affected zone excellent performance
CN106435360A (en) * 2016-10-25 2017-02-22 武汉科技大学 High-strength, high-toughness, corrosion-resistant and weather-resistant steel plate and manufacturing method thereof
CN110343937B (en) * 2019-07-12 2021-04-20 南京钢铁股份有限公司 Smelting method of steel for polar region for controlling inclusions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199740A (en) * 2011-05-12 2011-09-28 南京钢铁股份有限公司 Ti-Zr composite deoxidized steel used for ultrahigh-strength hull structure, and production process thereof
CN105463170A (en) * 2015-11-12 2016-04-06 内蒙古包钢钢联股份有限公司 Production method of steel plate for 36Kg level ocean platform

Also Published As

Publication number Publication date
CN110343937B (en) 2021-04-20
KR102609009B1 (en) 2023-12-04
WO2021008299A1 (en) 2021-01-21
CN110343937A (en) 2019-10-18

Similar Documents

Publication Publication Date Title
KR102609009B1 (en) Polar steel smelting method to control inclusions
CN109252008B (en) Production method of low-carbon low-nitrogen ultra-low-sulfur steel
US8262767B2 (en) Method of producing steel for steel pipe excellent in sour-resistance performance
CN114085953B (en) Control method for acid dissolution of aluminum in aluminum-containing cold heading steel
CN109797345B (en) Steel for sulfur-resistant gas cylinder pipe and manufacturing method thereof
CN111098063B (en) Wire rod for gas shielded welding wire and production method thereof
CN113046638B (en) SNS acid-resistant steel high-quality casting blank for gas pipeline and production method thereof
CN101643882A (en) Clean steel smelting method of anti-S steel oil well pipe
CN110273105B (en) High-speed tool steel and preparation method thereof
CN105861775A (en) Smelting process for ultra-low phosphorus steel with high nickel content
CN111719080A (en) Inclusion control method for prestressed steel strand
CN108893683A (en) A kind of sulfur resistive pipe line steel and its production method
CN108893682B (en) Die steel billet and preparation method thereof
WO2023097979A1 (en) Corrosion-resistant high-strength steel sheet weldable with high heat input and used for ocean engineering, and preparation method therefor
CN102041433A (en) X70 steel plate for low-cost pipe fittings and production method thereof
CN108977612A (en) The smelting process of high-strength weather-resistant bolt steel
JP2009242912A (en) Method for melting and manufacturing titanium-added ultra-low carbon steel and method for producing titanium-added ultra-low carbon steel cast slab
CN110714161B (en) High-sulfur free-cutting steel for automobile and production process thereof
JP2012052224A (en) Steel material excelling in toughness of weld heat-affected zone
CN108286013A (en) A kind of cut deal Vessel Steels 15CrMnR steel-making continuous casting production methods
CN114921713B (en) Low-yield-ratio high-low-temperature-toughness steel plate and production method thereof
CN111101070A (en) Steel for low-temperature liquid container tank car and preparation method thereof
CN109097665A (en) The smelting process of high-strength weather-resistant bolt steel
CN109930064A (en) A kind of effective heat resisting steel of corrosion-resistant high-pressure boiler and its production method
WO2020093688A1 (en) Weather-resistant bridge steel and smelting process

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant