KR20220022466A - 전자파의 회절을 위한 시스템 및 방법 - Google Patents

전자파의 회절을 위한 시스템 및 방법 Download PDF

Info

Publication number
KR20220022466A
KR20220022466A KR1020210108492A KR20210108492A KR20220022466A KR 20220022466 A KR20220022466 A KR 20220022466A KR 1020210108492 A KR1020210108492 A KR 1020210108492A KR 20210108492 A KR20210108492 A KR 20210108492A KR 20220022466 A KR20220022466 A KR 20220022466A
Authority
KR
South Korea
Prior art keywords
transmission
transmission line
gap
electromagnetic wave
antenna
Prior art date
Application number
KR1020210108492A
Other languages
English (en)
Other versions
KR102515368B1 (ko
Inventor
성푸 창
치아찬 창
시쳉 린
유안춘 린
Original Assignee
내셔널 충 쳉 유니버시티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 내셔널 충 쳉 유니버시티 filed Critical 내셔널 충 쳉 유니버시티
Publication of KR20220022466A publication Critical patent/KR20220022466A/ko
Application granted granted Critical
Publication of KR102515368B1 publication Critical patent/KR102515368B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/145Passive relay systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/005Antennas or antenna systems providing at least two radiating patterns providing two patterns of opposite direction; back to back antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

전자파의 회절을 위한 시스템은 기판, 전송 유닛, 및 복수의 안테나를 포함한다. 기판은 제 2 매질로 구성된다. 전송 유닛은 기판 상에 배치된다. 전송 유닛은 복수의 전송 라인을 갖는다. 각각의 전송 라인은 동작 주파수와 관련된 제 1 매질 동작 파장과 관련된 전송 라인 길이를 갖는다. 전송 라인은 연속적으로 연결된다. 안테나는 각각 기판 상에 배치된다.

Description

전자파의 회절을 위한 시스템 및 방법{SYSTEM AND METHOD FOR DIFFRACTION OF ELECTROMAGNETIC WAVE}
본 개시는 제 1 항 및 제 19 항의 전문에 따른 전자파의 회절을 위한 시스템 및 방법에 관한 것이다. 따라서, 본 개시는 전송 유닛 및 복수의 안테나를 사용하여 입사 전자파가 장애물을 우회하게 하는 전자파의 회절을 위한 시스템 및 방법에 관한 것이다.
이동 통신 시스템에 있어서, 건물, 나무, 가구, 간판에 의한 차폐뿐만 아니라 단파장과 높은 전자파 손실로 인해 통신 데드 영역, 다크 존 또는 열등한 커버리지를 갖는 장소가 존재하는 경우가 있다. 이것에 대한 하나의 기존 솔루션은 더 많은 기지국이나 부스터를 추가하는 것이다. 따라서, 도시 환경에 있어서 수만개의 기지국이나 부스터가 집약적으로 배치되는 것이 일반적이다. 그러나, 이러한 솔루션은 구현 시에 비용이 많이 들고 노동력이 소요되며, 그것의 높은 전력 소비와 복잡한 유지 관리도 우려된다. 사용자의 관점으로부터, 기지국의 고밀도 네트워크는 심리적 스트레스의 원인이 될 수 있다.
본 개시의 일실시형태에 있어서의 전자파의 회절을 위한 시스템은 기판, 전송 유닛, 및 복수의 안테나를 갖는다.
기판은 제 1 매질의 공간 리프(space rife)에 설치되고, 기판은 제 2 매질로 구성되고, 전송 유닛은 기판 상에 배치되고, 전송 유닛은 복수의 전송 라인을 포함한다. 각각의 전송 라인은 전송 라인 길이를 갖는다. 전송 라인 길이는 제 1 매질 동작 파장과 관련된다. 제 1 매질 동작 파장은 동작 주파수와 관련된다. 전송 라인은 연속적으로 연결된다. 안테나는 각각 기판 상에 배치되어 안테나가 전송 라인의 적어도 일부에 근접하고, 대응하는 전송 라인에서 실질적으로 동일한 위상을 갖는 사이트 상에 위치된다. 각각의 안테나는 동작 주파수에서 수신한 전자파를 전송을 위해 대응하는 전송 라인에 공급하고, 대응하는 전송 라인의 전송된 전자파를 동작 주파수에서 외부로 방사하도록 구성된다.
본 개시의 일실시형태에 있어서의 전자파의 회절을 위한 방법은 이하의 단계를 포함한다.
전자파의 전파를 방해하고, 제 1 측면 및 제 2 측면을 포함하는 장애물을 시스템으로 덮는 단계; 전자파가 입사 방향으로 제 1 측면의 시스템에 진입하게 하는 단계로서, 여기서 입사 방향과 제 1 측면의 법선 벡터는 각도를 포함하는 단계; 제 1 측면의 안테나가 전자파를 수신하게 하고, 수신한 전자파를 전송을 위해 대응하는 전송 라인에 공급하게 하는 단계; 전송 라인이 전자파를 제 2 측면의 사이트로 전송하게 하는 단계; 및 제 2 측면의 안테나가 전자파를 제 2 측면의 법선 벡터와의 각도를 포함하는 방사 방향으로 외부로 방사하게 하는 단계.
본 개시의 일실시형태에 있어서의 시스템은 기판, 전송 유닛, 및 복수의 안테나를 갖는다.
기판은 제 1 매질의 공간 리프에 설치되고, 입사 영역 및 전송 영역을 포함한다. 기판은 제 2 매질로 구성된다. 전송 유닛은 기판 상에 배치되고, 전송 유닛은 복수의 전송 라인을 포함한다. 각각의 전송 라인은 전송 라인 길이를 갖는다. 전송 라인 길이는 제 1 매질 동작 파장과 관련된다. 제 1 매질 동작 파장은 동작 주파수와 관련된다. 전송 라인은 연속적으로 연결된다. 안테나는 각각 기판 상에 배치되어 안테나가 전송 라인의 일부에 근접하고, 대응하는 전송 라인에서 실질적으로 동일한 위상을 갖는 사이트 상에 위치된다. 각각의 안테나는 동작 주파수에서 수신한 전자파를 전송을 위해 대응하는 전송 라인에 공급하고, 대응하는 전송 라인의 전송된 전자파를 동작 주파수에서 외부로 방사하도록 구성된다.
본 개시의 일실시형태에 있어서의 전자파의 회절을 위한 방법은 이하의 단계를 포함한다.
장애물을 시스템으로 덮는 단계, 전자파가 입사 방향으로 제 1 측면의 시스템에 진입하게 하는 단계로서, 여기서 입사 방향과 입사 영역의 법선 벡터는 각도를 포함하는 단계, 입사 영역의 안테나가 전자파를 수신하게 하고, 수신한 전자파를 전송을 위해 대응하는 전송 라인에 공급하게 하는 단계, 전송 라인이 전자파를 전송 영역의 안테나로 전송하게 하는 단계, 및 전송 영역의 안테나가 전자파를 전송 영역의 법선 벡터와의 각도를 포함하는 방사 방향으로 외부로 방사하게 하는 단계.
도 1은 본 개시의 제 1 실시형태에 따른 시스템의 사시도이다.
도 1a는 제 1 실시형태의 부분 확대 사시도이다.
도 2는 제 1 실시형태의 전송 라인을 도시하는 개략도이다.
도 3은 제 1 실시형태가 장애물을 덮는 방법을 도시하는 개략도이다.
도 4는 제 1 실시형태가 장애물을 덮어 둘러싸고 있는 사시도이다.
도 5는 전자파를 회절시키는 제 1 실시형태를 나타내는 측면도이다.
도 6은 제 1 실시형태가 위에 덮인 장애물과 위에 덮이지 않은 장애물 사이의 그래픽 비교를 나타낸다.
도 7은 제 1 실시형태로 진입하는 전자파의 입사 각도가 전송 각도와 동일한 것을 나타내는 상면도이다.
도 8은 본 개시의 제 2 실시형태에 따른 시스템의 사시도이다.
도 9는 제 2 실시형태가 장애물을 덮고 있는 개략도이다.
도 10은 제 2 실시형태가 장애물을 덮고 있는 사시도이다.
도 11은 본 개시의 제 3 실시형태에 따른 시스템의 정면도이다.
도 12는 제 3 실시형태의 부분 확대 정면도이다.
도 13은 제 3 실시형태가 위에 덮인 장애물과 위에 덮이지 않은 장애물 사이의 그래픽 비교를 나타낸다.
도 14는 장애물의 상면도이다.
도 15는 장애물을 덮는 본 개시의 제 4 실시형태에 따른 시스템의 사시도이다.
도 16은 장애물을 덮는 본 개시의 제 5 실시형태에 따른 시스템의 사시도이다.
도 17은 장애물을 덮는 본 개시의 제 6 실시형태에 따른 시스템의 사시도이다.
도 18은 장애물을 덮는 본 개시의 제 7 실시형태에 따른 시스템의 사시도이다.
본 개시는 첨부 도면과 함께 읽힐 때 예시적인 실시형태의 이하의 상세한 설명을 참조하여 가장 잘 이해될 것이다
달리 언급되지 않는 한, 유사한 요소는 모든 도면에 걸쳐 동일한 번호에 의해 식별될 것이다.
도 1~도 3을 참조하여, 본 개시의 제 1 실시형태에 따른 전자파의 회절을 위한 시스템은 전자파의 전파를 차단할 수 있는 장애물(10)을 덮는 데 사용된다. 장애물(10)은 금속 시트일 수 있다. 장애물(10)은 서로 반대되는 제 1 측면(101) 및 제 2 측면(102)을 포함한다. 전자파는 제 1 측면(101)과 동일한 장애물(10)의 측면에 있는 소스로부터 나온다. 개시된 시스템에 의해 덮이지 않은 장애물(10)의 제 1 측면(101)으로 전자파가 들어올 때, 전자파는 장애물(10)에 의해 차단되어, 장애물(10)을 통과하여 제 2 측면(102) 너머에 도달할 수 없다. 전자파는 동작 주파수에서 동작한다. 본 실시형태에 있어서, 동작 주파수는 예를 들면, 6.8㎓이지만 이것에 한정되지 않는다. 개시된 시스템은 기판(1), 복수의 전송 유닛(2), 복수의 안테나(3), 및 복수의 절연 부재(4)를 포함한다. 개시된 시스템은 제 1 매질의 공간 리프에 설치된다. 본 실시형태에 있어서, 제 1 매질은 공기 또는 진공이다. 제 1 매체는 공기 또는 진공에 한정되지 않는다는 것에 주목해야 한다. 대안적으로, 물, 유리, 또는 임의의 복합 재료일 수 있다.
도 1, 도 1a 및 도 2를 참조하여, 기판(1)은 대략 직사각형이다. 기판은 제 2 매질로 구성된다. 본 실시형태에 있어서, 기판(1)은 0.508㎜의 두께를 갖는 유리 강화 탄화수소 및 세라믹으로 제조된 고주파 마이크로파 라미네이트이다.
전송 유닛(2)은 기판(1) 상에 배열 방향(X)으로 이격된다. 각각의 전송 유닛(2)은 연속적으로 연결된 복수의 전송 라인(21)을 포함한다. 각각의 전송 라인(21)은 전송 라인 길이(d)를 갖는다. 전송 라인 길이(d)는 동작 파장이다. 동작 파장은 제 1 매질 동작 파장과 관련된다. 제 1 매질 동작 파장은 동작 주파수와 관련된다. 본 실시형태에 있어서, 전송 라인 길이(d)는 연장 방향(Y)에 평행하다. 연장 방향(Y)은 배열 방향(X)에 수직이다. 전송 라인(21)은 연장 방향(Y)에 평행한 선형 방향으로 연속적으로 연결되어, 각각의 전송 유닛(2)은 연장 방향(Y)에 평행하다. 각각의 전송 라인(21)은 스푸프 표면 플라즈몬 폴라리톤 전송 라인(SSPP TL)이다. SSPP TL을 통해 전송된 전자파의 파수 벡터가, 자유 공간에서 전파된 전자파의 파수 벡터보다 크기 때문에 SSPP TL을 통해 전송된 전자기 에너지는 외부로 방사될 가능성이 낮다. 따라서, SSPP TL은 방사 손실이 매우 낮다. 각각의 전송 라인(21)은 제 1 전송 부분(211) 및 복수의 제 2 전송 부분(212)을 포함한다. 본 실시형태에 있어서, 예를 들면 6개의 제 2 전송 부분(212)이 존재한다. 제 1 전송 부분(211)은 사변형의 기하학적 형상을 갖고, 보다 구체적으로는 직사각형이다. 제 1 전송 부분(211)은 전송 라인 길이(d)인 길이를 갖고, 연장 방향(Y)에 평행하다. 제 2 전송 부분(212)은 연장 방향(Y)에 평행하고 제 1 전송 부분(211)에서 이격되어 있다. 또한, 각각의 제 2 전송 부분(212)은 사변형이고, 보다 구체적으로는 직사각형이다. 각각의 제 2 전송 부분(212)은 연장 방향(Y)에 수직인 길이를 갖고 제 1 전송 부분(211)에 대해 대칭이다. 여기서, 제 1 전송 부분(211)은 전송 라인 길이(d)인 길이를 갖고, 제 1 전송 부분(211)은 제 1 갭(a)보다 작은 폭을 갖는다. 모든 2개의 인접한 상기 제 2 전송 부분(212)은 제 1 갭(a)인 거리만큼 떨어져 있다. 하나의 제 2 전송 부분(212) 상의 대응하는 사이트와 그것의 인접한 제 2 전송 부분(212) 사이의 거리는 제 2 갭(p)이다. 연장 방향(Y)에 수직인 방향에 있어서 제 2 전송 부분(212)의 어느 단부와 제 1 전송 부분(211) 사이의 최소 거리는 제 3 갭(H)이다. 제 1 갭(a), 제 2 갭(p), 및 제 3 갭(H)은 이하의 식으로 나타내어지는 관계를 갖는다.
Figure pat00001
식 중, k sspp는 동작 주파수 파수이고, λ sspp는 제 1 매질 동작 파장과 관련된 동작 파장이고, ε r은 유전 상수이고, ω는 동작 주파수의 각주파수(angular frequency)이고, c는 광의 속도이고, a는 제 1 갭이고, p는 제 2 갭이고, H는 제 3 갭이다. 유전 상수(ε r)는 제 1 전송 부분(211)과 제 2 전송 부분(212) 사이에 충전된 매질의 유전 상수(ε r)인 것에 주목해야 한다. 본 실시형태에 있어서, 매질은 제 1 매질이다.
도 2~도 4를 참조하여, 안테나(3)는 각각 기판(1) 상에 배치된다. 안테나(3)는 전송 라인(21)에 근접하고, 대응하는 상기 전송 라인(21)에서 실질적으로 동일한 위상을 갖는 사이트 상에 위치된다. 여기서, 문구 "실질적으로 동일한 위상"은 30도 이하의 위상차를 갖는 2개의 위상을 지칭한다. 즉, 안테나(3)의 신호와 상기 전송 라인(21)의 신호 사이의 위상차는 2nπ+σ, 및 -π/6<σ<π/6이다. 각각의 안테나(3)는 동작 주파수에서 수신한 전자파를 전송을 위해 대응하는 전송 라인(21)에 공급하고, 대응하는 전송 라인(21)의 전송된 전자파를 동작 주파수에서 외부로 방사하도록 구성된다. 본 실시형태에 있어서, 각각의 안테나(3)는 다이폴 안테나이다. 본 실시형태의 다이폴 안테나는 제 1 매질 동작 파장의 1/2로 설정된 길이를 갖는다. 각각의 다이폴 안테나는 대응하는 전송 라인(21) 상에 배치되고, 그것의 일단은 대응하는 전송 라인(21)의 단부로부터 카운트된 제 2 전송 부분(212)과 정렬된다. 다이폴 안테나의 중심 간의 갭은 제 1 매질 동작 파장의 1/4~3/4의 범위이다. 본 실시형태에 있어서, 다이폴 안테나의 중심 간의 갭은 제 1 매질 동작 파장의 1/2이다. 식(1)을 이용하여 결정된 각각의 상기 전송 라인(21)의 제 1 갭(a), 제 2 갭(p), 및 제 3 갭(H)의 관계에 의해, 제 1 갭(a), 제 2 갭(p), 및 제 3 갭(H)의 값은 제 1 매질의 파동 임피던스에서 전송 라인(21)과, 대응하는 안테나(3) 사이의 일치를 달성하도록 조정가능하다는 것에 더욱 주목해야 한다.
절연 부재(4)는 각각 전송 라인(21)과 안테나(3) 사이에 배치된다. 각각의 절연 부재(4)는 전기적으로 비전도성인 재료로 구성된다. 본 실시형태에 있어서, 각각의 절연 부재(4)는 발포 재료로 구성된다. 절연 부재(4)는 안테가(3)가 전송 라인(21)에 근접하지만 접촉하지는 않도록 한다.
도 4 및 도 5를 참조하여, 개시된 시스템은 전자파의 회절을 위한 방법을 실행한다. 상기 방법은 장애물(10)을 개시된 시스템으로 둘러쌈으로써 실행되어, 입사 방향으로 제 1 측면(101) 상의 개시된 시스템으로 들어올 때, 전자파가 제 1 측면(101) 상의 안테나(3)에 도달한다. 여기서, 입사 방향은 법선 방향(Z)에 평행하다. 법선 방향은 배열 방향(X) 및 연장 방향(Y)에 수직이다. 그 후, 안테나(3)는 전자파를 대응하는 전송 라인(21)에 공급한다. 전자파는 전송 라인(21)을 따라 반대 방향으로 이동하는 2개의 TL 전자파로 분할된다. 전송 라인(21) 간의 연결에 의해, TL 전자파는 전송 라인(21)을 통해 제 1 측면(101) 상의 지점으로부터 전송되어 제 2 측면(102) 상의 지점에서 만난다. 제 2 측면(102) 상의 안테나(3)는 TL 전자파와 결합되어 동일한 위상의 TL 전자파를 생성한다. 이후에 이들 TL 전자파는 외부로 방사된다. 이것에 의해, 개시된 시스템은 제 1 측면(101)에 도달한 원래의 전자파가 장애물(10)을 우회하여 재전송을 위해 제 2 측면(102)에 도달하는 것을 허용하고, 결과적으로 장애물(10)에 의해 야기되는 통신 데드 존에 대한 문제를 해결한다.
제 1 실시형태는 전자기(EM) 시뮬레이션 소프트웨어에 의해 검증된다. 장애물(101)을 만나기 전의 전자파의 공간 전력값은 1.364㎼로 측정된다. 모델에 장애물(10)을 추가한 후, 장애물(10)의 제 2 측면(102)에서 측정된 전자파의 공간 전력값은 0.039㎼로, 원래의 공간 전력값의 2.86% 미만이다. 그 후, 개시된 시스템은 장애물(10)을 둘러싸는 방식으로 장애물(10)에 적용되었다. 이 때, 장애물(10)의 제 2 측면(102) 너머에서 측정된 전자파의 공간 전력값은 1㎼로, 원래의 전력값보다 불과 1.1dB 낮았다. 이것은 원래의 공간 전력의 77.8%가 장애물(10)을 통과했음을 의미한다.
도 5 및 도 6을 참조하여, 제 1 실시형태에 대해 수행된 테스트에 있어서, 사용된 장애물(10)은 알루미늄박 플레이트이었다. 전자파의 스루풋은 먼저, 개시된 시스템으로 장애물(10)을 덮지 않고 측정되었고, 장애물(10)이 개시된 시스템에 의해 둘러싸여진 후에 다시 측정되었다. 상기 측정에 의해 입증된 바와 같이, 개시된 시스템에 의해 덮인 장애물(10)에 의해, 6.8㎓의 전자파는 장애물(10)을 성공적으로 우회하였고, 장애물(10)의 제 2 측면(102) 너머에서 얻어진 전력 이득은 100배(약 20dB) 더 많았다. 이것은 0.7㎓의 실효 대역폭 이득만을 제공했다.
도 1 및 도 2를 참조하여, 각각의 전송 라인(21)의 제 2 전송 부분(212)이 제 1 전송 부분(211)에 배치되는 것에 더욱 주목해야 한다. 비제한적인 배열은 제 2 전송 부분(212)이 제 1 전송 부분(211)에 대해 대칭이고, 제 1 전송 부분(211)에 수직인 것이다. 대안적으로, 그들은 제 1 전송 부분(211)의 길이 방향을 따라 이격될 수 있다. 또한, 본 개시는 각각의 전송 라인(21)이 갖는 제 2 전송 부분(212)의 수에 제한을 두지 않는다.
도 7을 참조하여, 전자파가 제 1 측면(101) 상의 시스템에 비스듬히 도달하는 시나리오를 나타낸다. 여기서, 제 1 측면(101)의 법선 벡터는 법선 방향(Z)에 평행하고, 제 2 측면(102)의 법선 벡터도 법선 방향(Z)에 평행하다. 입사 방향은 제 1 측면(101)의 법선 벡터 또는 법선 방향(Z)과의 각도를 포함한다. 배열 방향(X), 연장 방향(Y) 및 법선 방향(Z)은 직각 좌표계를 나타낸다. 각도는 구면 좌표 각도(θ, φ)에 의해 나타내어진다. 구면 좌표 각도(θ, φ)는 +90도~-90도이다. 전송 라인(21)은 전자파를 제 2 측면(102) 상의 사이트로 전송한다. 제 2 측면 상의 안테나(3)는 제 2 측면(102)의 법선 벡터와 동일한 각도를 포함하는 방향으로 TL 전자파를 방출한다. 제 1 측면(101)과 제 2 측면(102)이 서로 평행하기 때문에 TL 전자파는 동일한 입사 방향으로 외부로 방사된다. 이것에 의해, 본 실시형태는 전자파의 전송 각도를 그것의 입사 각도와 동일하게 유지할 뿐만 아니라, 전자파와 입사 평면 및 방사 평면 사이의 일치도 유지한다.
도 8~도 10을 참조하여, 개시된 시스템의 제 2 실시형태는 안테나(3)가 각각 기판(1) 상에 배치되고, 전송 라인(21)의 일부에만 근접하다는 것을 제외하고는 제 1 실시형태와 유사하다. 안테나(3)는 절연 부재(4)를 통해 대응하는 전송 라인에서 실질적으로 동일한 위상을 갖는 사이트 상에 위치된다. 제 1 실시형태와 유사하게, 제 1 측면(101) 상의 안테나(3)는 전자파를 수신하고, 수신한 전자파를 전송을 위해 대응하는 전송 라인(21)에 공급한다. 전송 라인(21)은 TL 전자파를 제 2 측면(102) 상의 사이트로 전송한다. 제 2 측면(102) 상의 안테나(3)는 TL 전자파를 입사 방향으로 외부로 방사한다.
도 11~도 13은 개시된 시스템의 제 3 실시형태를 나타낸다. 각각의 상기 안테나(3)가 본원에서 패치 안테나인 것을 제외하고는 제 2 실시형태와 유사하다. 패치 안테나는 직경이 동작 주파수에 반비례하는 금속 버튼을 포함한다. 패치 안테나와 전송 유닛(2)은 동일 평면 상에 있다. 패치 안테나는 근접하고 엇갈린 배열로 전송 라인 길이(d)의 방향에 대해 전송 유닛(2)의 2개의 측면에 배치된다. 여기서, 전송 라인 길이(d)에 평행한 방향으로 각각의 2개의 인접한 상기 엇갈린 패치 안테나의 중심 간의 갭(d1)은 제 1 매질 동작 파장의 1/4~3/4의 범위이다. 본 실시형태에 있어서, 2개의 인접한 상기 엇갈린 패치 안테나 각각의 중심 간의 갭(d1)은 제 1 매질 동작 파장의 1/2이다. 패치 안테나와 전송 유닛(2)은 동일 평면 상에 있으므로, 제조가 단순화된다. 본 실시형태에 있어서, 동작 주파수는 예를 들면, 6.2㎓이다. 테스트는 제 3 실시형태에 대해 수행되었다. 전자파의 스루풋은 먼저, 개시된 시스템으로 장애물(10)을 덮지 않고 측정되었고, 장애물(10)이 개시된 시스템에 의해 덮인 후에 다시 측정되었다. 상기 측정에 의해 입증된 바와 같이, 개시된 시스템으로 덮인 장애물(10)에 의해, 6.8㎓의 전자파는 장애물(10)을 성공적으로 우회하였고, 장애물(10) 너머에서 얻어진 전력 이득은 최대 100배(약 20dB) 더 많았다.
도 14~도 15는 개시된 시스템의 제 4 실시형태를 도시한다. 본 시스템이 상애물(10)을 부분적으로만 덮는 것을 제외하고는 제 3 실시형태와 유사하다. 장애물(10)은 예를 들면, 벽 및 벽으로부터 융기된 기둥일 수 있다. 구현 시, 개시된 시스템은 장애물(100)을 완전히 둘러싸기에 충분히 크지 않을 수 있다. 대신에, 장애물(10)의 국부적인 영역만을 덮을 수 있다. 본 실시형태에 있어서, 시스템은 기둥의 일부분만을 덮는다. 들어오는 전자파가 안테나(3)에 의해 전송 라인(21)에 결합될 때, TL 전자파는 전송 유닛(2)의 단자로 전송되고, 이는 반사를 일으킨다. 반사된 TL 전자파와 유입하는 TL 전자파는 중첩되어 정지파를 형성해서 전송 유닛(2)의 단자에서 브로드사이드 어레이의 방사 효과를 일으킨다. 따라서, 시스템이 장애물(10)의 일부분만을 덮는 경우이어도 전자파는 여전히 장애물(10)을 우회하여 시스템의 도움으로 방사될 것이다. 개시된 시스템이 장애물(10)의 2개의 반대 측면을 덮는 경우, 전자파가 입사 방향으로 측면 중 하나에 도달할 때, 다른 측면에서 발생하는 방사도 동일 입사 방향이라는 것에 더욱 주목해야 한다.
도 16을 참조하여, 개시된 시스템의 제 5 실시형태는 전송 유닛(2)이 일부 특정 사이트에서 약간의 턴을 갖는 것을 제외하고는 제 4 실시형태와 유사하다. 즉, 전송 라인(21)의 연결은 이들 사이트에서 선형이 아니다. 대신에, 전송 유닛(2)은 연장될 때 제 1 방향(L1)으로부터, 제 1 방향(L1)에 수직인 제 2 방향(L2)으로 턴한다. 전송 유닛(2)의 곡률 반경은 제 1 매질 동작 파장의 적어도 1/5이다. 각각의 전송 라인(21)의 제 2 전송 부분(212)(도 2)은 제 1 전송 부분(211)(도 2)의 길이 방향을 따라 제 1 전송 부분(211)에서 이격되어 있다. 기판(1)은 입사 영역(11) 및 전송 영역(12)을 포함한다. 입사 영역(11) 및 전송 영역(12)은 장애물(10)의 2개의 반대 측면에 있다. 안테나(3)는 각각 장애물(1) 상의 입사 영역(11) 및 전송 영역(12)에 배치된다. 안테나(3)는 각각 입사 영역(11) 및 전송 영역(12)의 전송 라인(21)에 근접하고, 입사 영역(11) 및 전송 영역(12)의 대응하는 상기 전송 라인에서 실질적으로 동일한 위상을 갖는 사이트 상에 위치된다. 개시된 시스템이 장애물(10)을 부분적으로 덮을 때, 입사 영역(11) 및 전자파는 장애물(10)의 동일한 측면에 있다. 입사 영역(11)의 안테나(3)는 전자파를 대응하는 전송 라인(21)에 공급하여 TL 전자파를 형성한다. TL 전자파는 전송 라인(21)에 의해 전송 영역(12)으로 전송되고, 전송 영역(12)에서의 안테나(3)는 TL 전자파를 결합시켜 TL 전자파를 외부로 방사한다. 따라서, 기판(1) 상의 입사 영역(11) 및 전송 영역(12)의 위치 및 범위를 조정함으로써, 재전송을 위해 전자파가 회절되는 위치를 제어하는 것이 가능하다. 전자파는 수평 편광의 형태로 입사 영역(11)의 안테나(3)에 부딪히고, 수직 편광의 형태로 전송 영역(12)을 떠난다는 것에 주목해야 한다. 개시된 시스템은 전자파가 편광 변환을 달성하게 한다.
도 17은 개시된 시스템의 제 6 실시형태이다. 입사 영역(11) 및 전송 영역(12)이 장애물(10)의 2개의 인접한 표면에 있다는 것을 제외하고는 제 5 실시형태와 유사하다. 전송 유닛(2)은 입사 영역(11)으로부터, 입사 영역(11)과 반대 방향인 장애물(10)의 측면으로 연장된 후 전송 영역(12)으로 연장되지만, 전송 유닛(1)은 임의의 턴 없이도 전송 영역(12)으로 연장된다. 전자파는 제 5 실시형태에서 설명된 것과 유사한 방식으로 회절된다. 입사 영역(11)의 안테나(3)는 전자파를 대응하는 전송 라인(21)에 공급하여 TL 전자파를 형성한다. TL 전자파는 전송 라인(21)을 통해 전송 영역(12)으로 전송된다. 전송 영역(12)의 안테나(3)는 TL 전자파를 결합시켜 TL 전자파를 외부로 방사한다. 방사된 전자파는 그것의 이동 방향을 변경한다. 전송 유닛(2)은 벤딩되지 않기 때문에, 전자파는 편광 변환을 형성하지 않는다.
도 18은 개시된 시스템의 제 7 실시형태를 나타낸다. 전송 유닛(2)이 입사 영역(11)으로부터 벤딩 경로를 따라 전송 영역(12)으로 연장된다는 것을 제외하고는 제 6 실시형태와 유사하다. 전자파는 수평 편광 형태로 입사 영역(11)의 안테나(3)로 들어오고, 전자파는 수직 편광 형태로 전송 영역(12)으로부터 외부로 방사된다. 개시된 시스템은 전자파가 편광 변환을 달성하게 한다. 전자파가 입사 영역(11)의 법선 벡터와의 각도를 포함하는 방향으로 진입하는 경우, 전자파는 전송 영역(12)의 법선 벡터와 동일한 각도를 포함하는 방향으로 전송 영역(12)으로부터 외부로 방사된다는 것에 더욱 주목해야 한다.
요약하면, 장애물(10)을 덮는 개시된 시스템에 의해, 안테나(3)는 전자파를 전송 유닛(2)에 공급하여 TL 전자파를 형성하고, 이는 그 후, 추가 안테나(3)가 최후로 TL 전자파를 외부로 방사하기 전에 전송 유닛(2)에 의해 추가 안테나(3)로 전송된다. 이것은 전자파가 장애물(10)을 우회하도록 하여, 장애물(10)에 의해 야기되는 통신 데드 존에 대한 문제를 해결한다. 추가적으로, 전자파가 제 1 측면의 법선 벡터와의 각도를 포함하는 입사 방향으로 장애물(10)의 제 1 측면(101)에 진입할 때, 제 2 측면(102)의 전자파는 제 2 측면(102)의 법선 벡터와 동일한 각도를 포함하는 방향으로 외부로 방사되므로, 전자파의 이동 방향은 제어가능하다. 또한, 기판(1) 상의 입사 영역(11) 및 전송 영역(12)의 위치와 범위를 조정하고, 입사 영역 및 전송 영역의 전송 라인에 근접하게 안테나를 각각 배치함으로써, 재전송을 위해 전자파가 회절되는 위치를 제어하는 것이 가능하다. 또한, 전송 유닛이 제 1 방향(L1)으로부터, 제 1 방향(L1)에 수직인 제 2 방향(L2)으로 연장 및 턴되게 함으로써 시스템을 통한 전자파의 전송은 편광 변환을 달성한다.
본 개시는 상술한 실시형태를 참조하여 설명되었으며, 그것은 본 개시의 범위를 한정하려고 하는 것이 아님을 이해해야 한다. 또한, 본원에 개시된 내용은 당업자에 의해 쉽게 이해되고 구현될 수 있어야 하므로, 본 개시의 개념을 벗어나지 않는 모든 균등한 변경 또는 수정은 첨부된 청구범위에 의해 포함되어야 한다.

Claims (20)

  1. 제 1 매질의 공간 리프에 설치되고, 제 2 매질로 구성되는 기판;
    상기 기판 상에 배치되고, 복수의 전송 라인을 포함하는 전송 유닛으로서, 각각의 상기 전송 라인은 동작 주파수와 관련된 제 1 매질 동작 파장과 관련된 전송 라인 길이를 갖고, 상기 전송 라인은 연속적으로 연결되는 전송 유닛; 및
    상기 기판 상에 각각 배치되는 복수의 안테나로서, 상기 전송 라인의 적어도 일부에 근접하고, 대응하는 상기 전송 라인에서 실질적으로 동일한 위상을 갖는 사이트 상에 위치되어 각각의 상기 안테나는 상기 동작 주파수에서 수신하는 전자파를 전송을 위해 대응하는 상기 전송 라인에 공급할 수 있고, 대응하는 상기 전송 라인의 전송된 전자파를 상기 동작 주파수에서 외부로 방사할 수 있는 복수의 안테나를 포함하는 것을 특징으로 하는 전자파의 회절을 위한 시스템.
  2. 제 1 항에 있어서,
    각각의 상기 전송 라인은 스푸프 표면 플라즈몬 폴라리톤 전송 라인(SSPP TL)이고, 제 1 전송 부분 및 제 2 전송 부분을 포함하고, 상기 제 1 전송 부분은 사변형의 기학학적 형상을 갖고, 상기 제 2 전송 부분은 사변형의 기하학적 형상을 갖고 상기 제 1 전송 부분에 배치되는, 시스템.
  3. 제 1 항에 있어서,
    각각의 상기 전송 라인은 제 1 전송 부분 및 복수의 제 2 전송 부분을 포함하고, 상기 제 1 전송 부분은 사변형의 기하학적 형상을 갖고, 상기 제 2 전송 부분은 상기 제 1 전송 부분의 길이 방향을 따라 상기 제 1 전송 부분에서 이격되어 있고, 각각의 상기 제 2 전송 부분은 사변형의 기하학적 형상을 갖는, 시스템.
  4. 제 1 항에 있어서,
    각각의 상기 전송 라인은 제 1 전송 부분 및 복수의 제 2 전송 부분을 포함하고, 상기 제 1 전송 부분은 사변형의 기하학적 형상을 갖고, 연장 방향에 평행한 길이를 가지며, 상기 제 2 전송 부분은 상기 연장 방향에 평행한 방향을 따라 상기 제 1 전송 부분에서 이격되어 있고, 각각의 상기 제 2 전송 부분은 사변형의 기하학적 형상을 갖고, 상기 연장 방향에 수직인 길이를 갖고, 상기 제 1 전송 부분에 대해 대칭이며, 모든 2개의 인접한 상기 제 2 전송 부분은 제 1 갭(a)만큼 떨어져 있고, 하나의 상기 제 2 전송 부분 상의 사이트로부터 인접한 제 2 전송 부분 상의 대응하는 사이트까지의 거리는 제 2 갭(p)이고, 상기 연장 방향에 수직인 방향에 있어서 하나의 상기 제 2 전송 부분의 어느 단부로부터 상기 제 1 전송 부분까지의 최소 거리는 제 3 갭(H)이고, 상기 제 1 갭(a), 상기 제 2 갭(p) 및 상기 제 3 갭(H)은 하기 식에 의해 나타내어지는 관계를 갖는, 시스템.
    Figure pat00002

    (식 중, k sspp는 동작 주파수 파수이고, λ sspp는 제 1 매질 동작 파장과 관련된 동작 파장이고, ε r은 유전 상수이고, ω는 동작 주파수의 각주파수이고, c는 광의 속도이고, a는 제 1 갭이고, p는 제 2 갭이고, H는 제 3 갭이다)
  5. 제 1 항에 있어서,
    복수의 절연 부재를 더 포함하고, 상기 안테나는 각각 상기 전송 라인 상에 배열되고, 상기 절연 부재는 상기 전송 라인과 상기 안테나 사이에 배치되고, 각각의 상기 절연 부재는 전기적으로 비전도성인 재료로 구성되는, 시스템.
  6. 제 1 항에 있어서,
    각각의 상기 안테나는 다이폴 안테나이고, 각각의 2개의 인접한 상기 다이폴 안테나의 중심 간의 갭은 상기 제 1 매질 동작 파장의 1/4~3/4의 범위인, 시스템.
  7. 제 1 항에 있어서,
    각각의 상기 안테나는 상기 전송 유닛과 동일 평면 상에 있는 패치 안테나이고, 상기 패치 안테나는 근접하고 엇갈린 배열로 상기 전송 유닛의 길이 방향에 대해 상기 전송 유닛의 2개의 측면에 배치되는, 시스템.
  8. 제 7 항에 있어서,
    상기 전송 라인의 길이 방향에 평행한 방향으로 각각의 2개의 인접한 상기 엇갈린 패치 안테나의 중심 간의 갭은 상기 제 1 매질 동작 파장의 1/4~3/4의 범위인, 시스템.
  9. 제 1 항에 있어서,
    상기 전송 유닛은 상기 제 1 매질 동작 파장의 적어도 1/5인 곡률 반경으로 제 1 방향으로부터, 상기 제 1 방향에 수직인 제 2 방향으로 연장 및 턴되는, 시스템.
  10. 제 1 항에 기재된 시스템을 이용한 전자파의 회절을 위한 방법으로서,
    전자파의 전파를 방해하고, 제 1 측면 및 제 2 측면을 갖는 장애물을 상기 시스템으로 덮는 단계;
    상기 전자파가 입사 방향으로 상기 제 1 측면의 상기 시스템에 진입하게 하는 단계로서, 상기 입사 방향과 상기 제 1 측면의 법선 벡터 사이에 제 1 끼인각이 규정되는 단계;
    상기 제 1 측면의 안테나가 상기 전자파를 수신하게 하고, 수신한 전자파를 전송을 위해 상기 대응하는 전송 라인에 공급하게 하는 단계;
    상기 전송 라인이 상기 전자파를 상기 제 2 측면의 사이트로 전송하게 하는 단계; 및
    상기 제 2 측면의 안테나가 상기 전자파를 방사 방향으로 외부로 방사하게 하는 단계로서, 상기 방사 방향과 상기 제 2 측면의 법선 벡터 사이에 제 2 끼인각이 규정되고, 상기 제 2 끼인각은 상기 제 1 끼인각과 동일한 단계를 포함하는, 방법.
  11. 제 10 항에 있어서,
    각각의 상기 전송 라인은 스푸프 표면 플라즈몬 폴라리톤 전송 라인(SSPP TL)이고, 각각의 상기 전송 라인은 제 1 전송 부분 및 제 2 전송 부분을 포함하고, 상기 제 1 전송 부분은 사변형의 기하학적 형상을 갖고, 상기 제 2 전송 부분은 사변형의 기하학적 형상을 갖고 상기 제 1 전송 부분에 배치되는, 방법.
  12. 제 10 항에 있어서,
    각각의 상기 전송 라인은 제 1 전송 부분 및 복수의 제 2 전송 부분을 포함하고, 상기 제 1 전송 부분은 사변형의 기하학적 형상을 갖고, 상기 제 2 전송 부분은 상기 제 1 전송 부분의 길이 방향을 따라 상기 제 1 전송 부분에서 이격되어 있고, 각각의 상기 제 2 전송 부분은 사변형의 기하학적 형상을 갖는, 방법.
  13. 제 10 항에 있어서,
    각각의 상기 전송 라인은 제 1 전송 부분 및 복수의 제 2 전송 부분을 포함하고, 상기 제 1 전송 부분은 사변형의 기하학적 형상을 갖고, 연장 방향에 평행한 길이를 가지며, 상기 제 2 전송 부분은 상기 연장 방향에 평행한 방향을 따라 상기 제 1 전송 부분에서 이격되어 있고, 각각의 상기 제 2 전송 부분은 상기 연장 방향에 수직인 길이를 갖는 사변형의 기하학적 형상을 갖고, 상기 제 1 전송 부분에 대해 대칭이며, 모든 2개의 인접한 상기 제 2 전송 부분은 제 1 갭(a)만큼 떨어져 있고, 하나의 상기 제 2 전송 부분 상의 사이트로부터 인접한 제 2 전송 부분 상의 대응하는 사이트까지의 거리는 제 2 갭(p)이고, 상기 연장 방향에 수직인 방향에 있어서 하나의 상기 제 2 전송 부분의 어느 단부로부터 상기 제 1 전송 부분까지의 최소 거리는 제 3 갭(H)이고, 상기 제 1 갭(a), 상기 제 2 갭(p) 및 상기 제 3 갭(H)은 다음에 의해 나타내어지는 관계를 갖는, 방법.
    Figure pat00003

    (식 중, k sspp는 동작 주파수 파수이고, λ sspp는 제 1 매질 동작 파장과 관련된 동작 파장이고, ε r은 유전 상수이고, ω는 동작 주파수의 각주파수이고, c는 광의 속도이고, a는 제 1 갭이고, p는 제 2 갭이고, H는 제 3 갭이다)
  14. 제 10 항에 있어서,
    상기 시스템은 복수의 절연 부재를 더 포함하고, 상기 안테나는 각각 상기 전송 라인 상에 배치되고, 상기 절연 부재는 각각 상기 전송 라인과 상기 안테나 사이에 배치되고, 각각의 상기 절연 부재는 전기적으로 비전도성인 재료로 구성되는, 방법.
  15. 제 10 항에 있어서,
    각각의 상기 안테나는 다이폴 안테나이고, 각각의 2개의 인접한 상기 다이폴 안테나의 중심 간의 갭은 상기 제 1 매질 동작 파장의 1/4~3/4의 범위인, 방법.
  16. 제 10 항에 있어서,
    각각의 상기 안테나는 패치 안테나이고, 상기 패치 안테나 및 상기 전송 유닛은 동일 평면 상에 있고, 상기 패치 안테나는 근접하고 엇갈린 배열로 상기 전송 라인의 길이 방향에 대해 상기 전송 유닛의 2개의 측면 상에 배치되는, 방법.
  17. 제 16 항에 있어서,
    상기 전송 라인의 길이 방향에 평행한 방향으로 각각의 2개의 인접한 상기 엇갈린 패치 안테나의 중심 간의 갭은 상기 제 1 매질 동작 파장의 1/4~3/4의 범위인, 방법.
  18. 제 10 항에 있어서,
    상기 전송 유닛이 제 1 방향으로부터, 상기 제 1 방향에 수직인 제 2 방향으로 연장 및 턴될 때, 상기 전송 유닛의 턴되는 부분의 곡률 반경은 상기 제 1 매질 동작 파장의 적어도 1/5인, 방법.
  19. 제 1 매질의 공간 리프에 설치되고, 입사 영역 및 전송 영역을 포함하고, 제 2 매질로 구성되는 기판;
    상기 기판 상에 배치되고, 복수의 전송 라인을 포함하는 전송 유닛으로서, 각각의 상기 전송 라인은 동작 주파수와 관련된 제 1 매질 동작 파장과 관련된 전송 라인 길이를 갖고, 상기 전송 라인은 연속적으로 연결되는 전송 유닛; 및
    상기 기판의 입사 영역 및 전송 영역에 각각 배치되는 복수의 안테나로서, 상기 안테나는 각각 상기 입사 영역 및 전송 영역의 전송 라인에 근접하고, 상기 입사 영역 및 상기 전송 영역의 대응하는 상기 전송 라인에서 실질적으로 동일한 위상을 갖는 사이트 상에 위치되고, 각각의 상기 안테나는 상기 동작 주파수에서 수신한 전자파를 상기 대응하는 전송 라인에 공급하고, 상기 대응하는 전송 라인의 전송된 전자파를 상기 동작 주파수에서 외부로 방사하도록 구성되는 복수의 안테나를 포함하는, 전자파의 회절을 위한 시스템.
  20. 제 19 항에 기재된 시스템을 이용한 전자파의 회절을 위한 방법으로서,
    장애물을 상기 시스템으로 덮는 단계;
    상기 전자파가 입사 방향으로 상기 입사 영역에 진입하게 하는 단계로서, 상기 입사 방향과 상기 입사 영역의 법선 벡터 사이에 제 1 끼인각이 규정되는 단계;
    상기 입사 영역의 안테나가 상기 전자파를 수신하게 하고, 수신한 전자파를 전송을 위해 상기 대응하는 전송 라인에 공급하게 하는 단계;
    상기 전송 라인이 상기 전자파를 상기 전송 영역으로 전송하게 하는 단계; 및
    상기 전송 영역의 안테나가 상기 전자파를 방사 방향으로 외부로 방사하게 하는 단계로서, 상기 방사 방향과 상기 전송 영역의 법선 벡터 사이에 제 2 끼인각이 규정되고, 상기 제 2 끼인각은 상기 제 1 끼인각과 동일한 단계를 포함하는, 방법.
KR1020210108492A 2020-08-18 2021-08-18 전자파의 회절을 위한 시스템 및 방법 KR102515368B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW109128106A TWI755032B (zh) 2020-08-18 2020-08-18 電磁波繞行式結構及電磁波繞行方法
TW109128106 2020-08-18

Publications (2)

Publication Number Publication Date
KR20220022466A true KR20220022466A (ko) 2022-02-25
KR102515368B1 KR102515368B1 (ko) 2023-03-29

Family

ID=77206944

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210108492A KR102515368B1 (ko) 2020-08-18 2021-08-18 전자파의 회절을 위한 시스템 및 방법

Country Status (5)

Country Link
US (1) US11784703B2 (ko)
EP (1) EP3958400B1 (ko)
JP (1) JP7240017B2 (ko)
KR (1) KR102515368B1 (ko)
TW (1) TWI755032B (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115149258A (zh) * 2022-07-27 2022-10-04 重庆邮电大学 一种基于人工表面等离子体激元的异面不对称的毫米波圆极化端射天线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070040847A (ko) * 2003-05-12 2007-04-17 가부시키가이샤 고베 세이코쇼 무선 통신 rf 신호 전송 장치
KR20130021606A (ko) * 2011-08-23 2013-03-06 주식회사 만도 전송선로 및 어레이 안테나 장치
KR20130105949A (ko) * 2012-03-19 2013-09-27 삼성탈레스 주식회사 차량용 레이더를 위한 전자기 결합 마이크로스트립 다이폴 배열 안테나

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076655A (en) * 1990-07-19 1991-12-31 Hughes Aircraft Company Antenna-fed electro-optic modulator
JPH0597138U (ja) * 1992-05-28 1993-12-27 長野日本無線株式会社 通信システム
JP3833601B2 (ja) 2001-10-31 2006-10-18 株式会社神戸製鋼所 高周波マイクロストリップ線路
US8214003B2 (en) * 2009-03-13 2012-07-03 Pong Research Corporation RF radiation redirection away from portable communication device user
FI127914B (fi) * 2014-08-21 2019-05-15 Stealthcase Oy Sähkömagneettisia aaltoja ohjaava laite ja menetelmä
US9847584B2 (en) * 2014-12-02 2017-12-19 Ubiquiti Networks, Inc. Multi-panel antenna system
US10381738B2 (en) * 2017-06-12 2019-08-13 Fractal Antenna Systems, Inc. Parasitic antenna arrays incorporating fractal metamaterials
CN110797652B (zh) 2019-11-22 2020-09-01 电子科技大学 一种cpw结构的周期性漏波天线及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070040847A (ko) * 2003-05-12 2007-04-17 가부시키가이샤 고베 세이코쇼 무선 통신 rf 신호 전송 장치
KR20130021606A (ko) * 2011-08-23 2013-03-06 주식회사 만도 전송선로 및 어레이 안테나 장치
KR20130105949A (ko) * 2012-03-19 2013-09-27 삼성탈레스 주식회사 차량용 레이더를 위한 전자기 결합 마이크로스트립 다이폴 배열 안테나

Also Published As

Publication number Publication date
JP2022034530A (ja) 2022-03-03
JP7240017B2 (ja) 2023-03-15
TW202209760A (zh) 2022-03-01
US11784703B2 (en) 2023-10-10
EP3958400B1 (en) 2024-04-03
TWI755032B (zh) 2022-02-11
KR102515368B1 (ko) 2023-03-29
EP3958400A1 (en) 2022-02-23
US20220059947A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
Taheri et al. Integrated millimeter-wave wideband end-fire 5G beam steerable array and low-frequency 4G LTE antenna in mobile terminals
Balanis Modern antenna handbook
US5629713A (en) Horizontally polarized antenna array having extended E-plane beam width and method for accomplishing beam width extension
US11258182B2 (en) Meta-structure based reflectarrays for enhanced wireless applications
JPH11243314A (ja) アンテナ
CN109638422A (zh) 一种宽带圆极化共口径通信导航阵列天线
US9793973B2 (en) Non-feeding reradiating repeater and method for manufacturing of the same
CN104934700A (zh) 一种宽角覆盖低交叉极化电平天线辐射单元
CN110676560A (zh) 一种77GHz毫米波雷达天线
Lindmark et al. Dual-polarized array for signal-processing applications in wireless communications
CN114156627B (zh) 一种超宽带低剖面低散射曲面相控阵天线
KR20220131340A (ko) 향상된 무선 통신 커버리지 영역을 위한 반사어레이 안테나
KR102515368B1 (ko) 전자파의 회절을 위한 시스템 및 방법
US6275196B1 (en) Parabolic horn antenna for wireless high-speed internet access
CN114899612B (zh) 一种基于双列周期性排布的圆极化机载探测天线
CN210468092U (zh) 一种77GHz毫米波雷达天线
Yang et al. Wideband Quasi-Spherical Lens Antenna Module With Two-Dimensional Switched Beams for 5G Millimeter-Wave IoT Applications
CN104393399A (zh) 一种新型复合伞形微带振子
CN108767424A (zh) 基于多孔蜂窝板结构的宽带双向辐射天线
JP4611401B2 (ja) アンテナ装置
GB2389235A (en) Dielectric resonator antenna array for a location monitoring unit
Verma et al. Dual Radiator Based Low Profile Fan Beam Antenna for MM Wave Fencing System
Cao et al. Design of a frequency selective surface‐backed microstrip reflectarray antenna using Minkowski ring elements
Katare et al. ESPAR‐inspired mechanical beam steering antenna with high gain and wide bandwidth performance
CN114843761B (zh) 一种基于圆极化机载微波辐射计天线

Legal Events

Date Code Title Description
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right