KR20210154617A - High heat dissipation composition using mixed filler and manufacturing method thereof - Google Patents

High heat dissipation composition using mixed filler and manufacturing method thereof Download PDF

Info

Publication number
KR20210154617A
KR20210154617A KR1020200071799A KR20200071799A KR20210154617A KR 20210154617 A KR20210154617 A KR 20210154617A KR 1020200071799 A KR1020200071799 A KR 1020200071799A KR 20200071799 A KR20200071799 A KR 20200071799A KR 20210154617 A KR20210154617 A KR 20210154617A
Authority
KR
South Korea
Prior art keywords
heat dissipation
filler
composition
adhesive
expanded graphite
Prior art date
Application number
KR1020200071799A
Other languages
Korean (ko)
Other versions
KR102495653B1 (en
Inventor
황인성
박용수
황인찬
박경희
Original Assignee
주식회사 대신테크젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대신테크젠 filed Critical 주식회사 대신테크젠
Priority to PCT/KR2020/007678 priority Critical patent/WO2021251533A1/en
Priority to KR1020200071799A priority patent/KR102495653B1/en
Publication of KR20210154617A publication Critical patent/KR20210154617A/en
Application granted granted Critical
Publication of KR102495653B1 publication Critical patent/KR102495653B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention relates to a highly heat-dissipating composition using a mixture filler and a preparation method therefor. More specifically, the present invention relates to a heat-dissipating composition comprising: a filler including two or more among expanded graphite, carbon nanotubes, graphene, and metal nanoparticles; and a base polymer including a silicone-based resin.

Description

혼합 충전제를 이용한 고 방열성 조성물 및 이의 제조방법{HIGH HEAT DISSIPATION COMPOSITION USING MIXED FILLER AND MANUFACTURING METHOD THEREOF}HIGH HEAT DISSIPATION COMPOSITION USING MIXED FILLER AND MANUFACTURING METHOD THEREOF

본 발명은 혼합 충전제를 이용한 고 방열성 조성물 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 팽창 그라파이트, 탄소나노튜브, 그래핀 및 금속나노입자 중 둘 이상을 포함하는 충전제를 포함한 고 방열성 조성물 및 이의 제조방법에 관한 것이다.The present invention relates to a high heat dissipation composition using a mixed filler and a method for preparing the same, and more particularly, to a high heat dissipation composition including a filler including at least two of expanded graphite, carbon nanotubes, graphene, and metal nanoparticles, and preparation thereof it's about how

전세계 조명시장에서 LED(Light Emitting Diode)의 규모는 2010년 이후 지속적으로 증가하여 전체 조명 시장의 50%에 육박하는 점유율을 나타내고 있다.The size of LED (Light Emitting Diode) in the global lighting market has increased continuously since 2010, representing a market share approaching 50% of the total lighting market.

LED 광원은 순방향으로 전압을 가했을 때 발광하는 반도체 소자로 전계 발광 효과를 이용한다. LED가 전계 발광 효과를 이용하는 과정에서 사용하는 에너지의 80%를 열에너지로 방출하지만, LED자체는 온도가 올라가면 발광 효율이 떨어지는 특성을 갖고 있다. 일반적으로 LED조명의 접합부 온도가 10℃ 낮아지면 발광효율은 20%가량 향상되는 것으로 알려져 있다.The LED light source is a semiconductor device that emits light when a voltage is applied in the forward direction and uses the electroluminescence effect. Although the LED emits 80% of the energy used in the process of using the electroluminescence effect as thermal energy, the LED itself has a characteristic that the luminous efficiency decreases as the temperature rises. In general, it is known that when the junction temperature of LED lighting is lowered by 10°C, the luminous efficiency is improved by about 20%.

이러한 LED의 방열 문제를 해결하기 위해 종래 개질된 팽창 그라파이트를 충전제(Filler) 함유시켜 열전도성을 향상시키려는 노력이 있었다. 하지만 LED의 출력이 기술이 개발됨에 따라 높아지며, 그에 따라 방출하는 열 또한 증가하여 종래의 개질된 팽창 그라파이트를 충전제(Filler)를 함유한 방열 접착제로는 온도 상승으로 인한 발광효율 감소를 막기 힘들어지는 실정에 이르렀다.In order to solve the heat dissipation problem of the LED, there has been an effort to improve thermal conductivity by containing the conventionally modified expanded graphite as a filler. However, the output of the LED increases as the technology is developed, and the heat emitted accordingly increases, so that it is difficult to prevent the decrease in luminous efficiency due to the temperature increase with the conventional heat-dissipating adhesive containing the modified expanded graphite as a filler. reached

또한 방열 실리콘 시트를 부착하여 방열 효율을 높이려는 시도가 있었으나, 방열 시트는 굴곡 부분의 방열에는 취약한 단점이 존재하고 있었다.In addition, attempts have been made to increase heat dissipation efficiency by attaching a heat dissipation silicone sheet, but the heat dissipation sheet has a disadvantage in that the heat dissipation of the bent portion is weak.

본 발명의 목적은 열 전도성이 우수한 방열 조성물을 제공하는 것이다.It is an object of the present invention to provide a heat dissipation composition having excellent thermal conductivity.

본 발명의 다른 목적은 열 전도성이 우수한 방열 코팅제 및 방열 접착제를 제공하는 것이다.Another object of the present invention is to provide a heat dissipation coating agent and a heat dissipation adhesive having excellent thermal conductivity.

본 발명의 또 다른 목적은 열전도성이 우수한 방열 조성물의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a heat dissipation composition excellent in thermal conductivity.

상기 목적을 달성하기 위한 본 발명의 일 측면에 따른 방열 조성물은 팽창 그라파이트, 탄소나노튜브, 그래핀 및 금속나노입자 중 둘 이상을 포함하는 충전제(Filler);및 실리콘계 수지를 포함하는 기재고분자(Base Polymer);를 포함하는 방열 조성물 일 수 있다.A heat dissipation composition according to an aspect of the present invention for achieving the above object is a filler comprising at least two of expanded graphite, carbon nanotubes, graphene and metal nanoparticles; and a base polymer comprising a silicone-based resin (Base) Polymer); may be a heat dissipation composition comprising.

상기 팽창 그라파이트는 부피 팽창률이 200 이상이고, 평균 입도가 100 내지 200미크론인 것일 수 있고, 상기 충전제는, 상기 팽창 그라파이트와 상기 탄소나노튜브가 9:1 내지 5:5의 중량비로 혼합된 것일 수 있다.The expanded graphite may have a volume expansion rate of 200 or more and an average particle size of 100 to 200 microns, and the filler may be a mixture of the expanded graphite and the carbon nanotubes in a weight ratio of 9:1 to 5:5 have.

상기 금속나노입자는 평균 입도가 10 내지 300nm이고, 금, 은, 구리, 알루미늄, 은코팅니켈, 은코팅알루미늄, 산화알루미늄, 산화철, 산화마그네슘, 산화아연, 산화규소, 수산화알루미늄, 수산화마그네슘, 탄화규소, 질화알루미늄, 질화붕소, 질화규소 및 질화티타늄 중 한가지 이상의 금속나노입자 일 수 있다.The metal nanoparticles have an average particle size of 10 to 300 nm, gold, silver, copper, aluminum, silver-coated nickel, silver-coated aluminum, aluminum oxide, iron oxide, magnesium oxide, zinc oxide, silicon oxide, aluminum hydroxide, magnesium hydroxide, carbide It may be one or more metal nanoparticles of silicon, aluminum nitride, boron nitride, silicon nitride, and titanium nitride.

상기 충전제는 분산제 및 계면활성제 중 하나 이상을 더 포함할 수 있고, 상기 실리콘계 수지는 폴리비닐실록산 및 폴리디메틸실록산 중 하나 이상을 포함 할 수 있다.The filler may further include at least one of a dispersant and a surfactant, and the silicone-based resin may include at least one of polyvinylsiloxane and polydimethylsiloxane.

본 발명의 다른 일 측면인 방열 코팅제 및 방열 접착제는 팽창 그라파이트, 탄소나노튜브, 그래핀 및 금속나노입자 중 둘 이상을 포함하는 충전제(Filler) 및 실리콘계 수지를 포함하는 기재고분자(Base Polymer)를 포함할 수 있다.The heat dissipation coating agent and heat dissipation adhesive of another aspect of the present invention include a filler including two or more of expanded graphite, carbon nanotubes, graphene, and metal nanoparticles and a base polymer including a silicone-based resin. can do.

상기 방열 접착제는 금속-실리콘 소재 간 접착용도로 사용될 수 있으며, 바람직하게는 LED(Light Emitting Diode)조명의 접착제로 사용될 수 있다.The heat dissipation adhesive may be used for bonding between metal-silicon materials, and preferably may be used as an adhesive for LED (Light Emitting Diode) lighting.

본 발명의 방열 조성물을 포함하는 방열 코팅제 및 방열 접착제는 충전제의 우수한 분산성으로 인해 도포 시 일정한 열전도성을 가지며, 도포된 방열 코팅제 및 방열 접착제는 2.5W/mK 이상의 열전도도를 가진다. 또한 본 발명의 방열 조성물은 최고 150℃까지 물성을 유지할 수 있는 우수한 내열 성능을 가진다.The heat dissipation coating agent and heat dissipation adhesive comprising the heat dissipation composition of the present invention have constant thermal conductivity when applied due to the excellent dispersibility of the filler, and the applied heat dissipation coating agent and heat dissipation adhesive have a thermal conductivity of 2.5 W/mK or more. In addition, the heat dissipation composition of the present invention has excellent heat resistance performance that can maintain the physical properties up to 150 ℃.

도 1은 본 발명의 일 실시예에 따른 방열 코팅제를 LED조명 기판에 도포한 사진이다.
도 2는 본 발명의 일 실시예에 따른 방열 조성물을 나타낸 사진이다.
1 is a photograph of applying a heat dissipation coating agent according to an embodiment of the present invention to an LED lighting substrate.
2 is a photograph showing a heat dissipation composition according to an embodiment of the present invention.

본 발명의 실시예에 대하여 상세히 설명한다.An embodiment of the present invention will be described in detail.

그러나 본 발명의 실시 형태는 여러 가지의 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로만 한정되는 것은 아니다.However, the embodiment of the present invention may be modified in various other forms, and the scope of the present invention is not limited only to the embodiments described below.

또한, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.In addition, when a part "includes" a component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.

본 발명에 따른 방열 조성물은 팽창 그라파이트, 탄소나노튜브, 그래핀 및 금속나노입자 중 둘 이상을 포함하는 혼합 충전제를 사용한다. 상기 혼합 충전제는 기존의 단일 충전제를 사용한 경우 보다, 추가로 첨가되는 탄소나노튜브, 그래핀 등으로 인해 열전도성이 개선되는 효과가 있다. 혼합 충전제의 구성요소로 팽창 그라파이트와 탄소나노튜브 혼합물, 팽창 그라파이트와 그래핀 혼합물, 팽창 그라파이트와 금속나노입자 혼합물이 사용될 수 있으나, 분산성 측면에서 팽창 그라파이트와 탄소나노튜브 혼합물을 이용한 혼합 충전제가 분산성이 우수하여 일정한 물성을 가지므로 그라파이트와 탄소나노튜브 혼합물을 이용한 혼합 충전제가 바람직하다.The heat dissipation composition according to the present invention uses a mixed filler including two or more of expanded graphite, carbon nanotubes, graphene, and metal nanoparticles. The mixed filler has an effect of improving thermal conductivity due to additionally added carbon nanotubes, graphene, and the like, compared to the case where a conventional single filler is used. As components of the mixed filler, a mixture of expanded graphite and carbon nanotube, a mixture of expanded graphite and graphene, and a mixture of expanded graphite and metal nanoparticles can be used, but in terms of dispersibility, a mixed filler using a mixture of expanded graphite and carbon nanotube is powdered A mixed filler using a graphite and carbon nanotube mixture is preferable because it has excellent acidity and certain physical properties.

상기 팽창 그라파이트는 바람직하게 부피 팽창률이 200 이상이고, 평균 입도가 100 내지 200미크론(micron)이며, 기공의 직경은 1 내지 50 ㎛이고, 기공형상이 벌집 모양인 것을 사용할 수 있다. 상기 팽창 그라파이트의 부피 팽창률이 200 이상이 되어야 방열 조성물에 열이 가해진 경우 팽창 그라파이트의 부피 팽창으로 표면적이 크게 넓어지며 우수한 방열 효과를 가질 수 있다. 또한 상기 팽창 그라파이트의 평균 입도가 100미크론 미만인 경우 부피팽창으로 인한 방열효과가 떨어지며, 200미크론보다 큰 경우에는 충전제에서 다른 조성물과 혼합될 때 분산성이 떨어지고 방열 조성물의 균일한 물성을 기대하기 어려워진다. 하지만 본 발명 팽창 그라파이트은 상기 물성에 한정되지는 않는다.The expanded graphite preferably has a volume expansion rate of 200 or more, an average particle size of 100 to 200 microns, a pore diameter of 1 to 50 μm, and a honeycomb pore shape may be used. When the volume expansion rate of the expanded graphite is 200 or more, when heat is applied to the heat dissipation composition, the surface area is greatly increased due to volume expansion of the expanded graphite, and excellent heat dissipation effect can be obtained. In addition, when the average particle size of the expanded graphite is less than 100 microns, the heat dissipation effect due to volume expansion is reduced, and when it is larger than 200 microns, the dispersibility is reduced when mixed with other compositions in the filler, and it is difficult to expect uniform physical properties of the heat dissipation composition . However, the expanded graphite of the present invention is not limited to the above physical properties.

탄소계 소재인 팽창 그라파이트(Expanded graphite)는 열전도도가 높고 기계적 물성이 우수하며 가벼워서 고기능성 복합재료를 요하는 분야에서 응용이 기대 되는 신소재로 주목 받고 있다. 팽창 그라파이트는 천연 그라파이트 또는 인조 그라파이트 등의 그라파이트에 화학처리를 거치면 그라파이트 층간 화합물을 형성하고, 이에 대해 고온처리 과정을 거치면 급속히 분해된 후 다시 팽창하여, 체적이 기존의 수십 내지 수 백배로 증가되어 얻어진 것을 말한다. 상기 팽창 그라파이트를 적용한 복합재료의 열전도도는 팽창 그라파이트가 박리된 정도, 분산상태, 종횡비에 따라 달라진다고 보고되고 있다. 상기 팽창그라파이트를 사용하게 되면, 주재료인 실리콘 수지 내에서 분산이 안정적으로 이루어진다고 알려져 있다.Expanded graphite, a carbon-based material, is attracting attention as a new material that is expected to be applied in fields requiring high-functional composite materials because of its high thermal conductivity, excellent mechanical properties, and light weight. Expanded graphite forms a graphite interlayer compound when chemical treatment is performed on graphite such as natural graphite or artificial graphite. say that It is reported that the thermal conductivity of the composite material to which the expanded graphite is applied depends on the degree of exfoliation of the expanded graphite, the dispersion state, and the aspect ratio. When the expanded graphite is used, it is known that dispersion is stably made in the silicone resin, which is the main material.

상기 충전제는 전도성 물질인 팽창 그라파이트, 탄소나노튜브, 그래핀 및 금속나노입자 등을 포함하고 있어, 전도성을 가진다. 따라서 전류의 흐름이 필요한 접착 부위에서 본 발명의 방열 조성물을 포함하는 접착제만으로도 전류가 흐를 수 있고, 별도의 도선이 필요하지는 않은 장점이 있다.The filler contains conductive materials such as expanded graphite, carbon nanotubes, graphene, and metal nanoparticles, and thus has conductivity. Therefore, there is an advantage that current can flow only with the adhesive containing the heat dissipation composition of the present invention at the bonding site where the flow of current is required, and a separate conducting wire is not required.

상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 또는 이들의 혼합물로부터 선택될 수 있다. 예컨대 상기 탄소나노튜브는 다중벽 탄소나노튜브(multi wall carbon nanotube)일 수 있다. 상기 탄소나노튜브가 다중벽 탄소나노튜브일 때, 직경은 5 내지 30 nm일 수 있고, 길이는 3 내지 20 ㎛일 수 있다.The carbon nanotubes may be selected from single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, or mixtures thereof. For example, the carbon nanotube may be a multi-wall carbon nanotube. When the carbon nanotube is a multi-walled carbon nanotube, the diameter may be 5 to 30 nm, and the length may be 3 to 20 μm.

상기 충전제는 조성물로서 바람직하게 팽창 그라파이트와 상기 탄소나노튜브를 9:1 내지 5:5 의 중량비로 포함할 수 있다. 조성 비율은 필요한 물성에 따라 조절 가능하며, 상기 중량범위에서 5:5의 중량비와 가까운 중량비일 수록 전도성이 높아지는 특징이 있다. 하지만, 탄소나노튜브의 중량비가 상기 9:1 보다 적은 경우, 기존의 팽창 그라파이트만을 사용한 경우와 비교하여 열전도도 개선효과가 미미하며, 탄소나노튜브의 중량비가 상기 5:5 보다 많은 경우, 방열 조성물의 팽창성이 떨어져 부피 팽창으로 인한 열전도 효과가 떨어지는 단점이 있다.The filler may preferably include expanded graphite and the carbon nanotubes in a weight ratio of 9:1 to 5:5 as a composition. The composition ratio can be adjusted according to the required physical properties, and the closer the weight ratio to the 5:5 weight ratio in the above weight range, the higher the conductivity. However, when the weight ratio of carbon nanotubes is less than 9:1, the effect of improving thermal conductivity is insignificant compared to the case where only the conventional expanded graphite is used, and when the weight ratio of carbon nanotubes is greater than 5:5, the heat dissipation composition There is a disadvantage in that the thermal conductivity effect due to volume expansion is lowered due to the low expansion property of the material.

상기 충전제의 조성물로 포함될 수 있는 금속나노입자는 평균 입도가 10 내지 300nm인 것이 바람직하다. 상기 금속나노입자의 평균 입도가 10nm보다 작은 경우 열전도 개선 효과가 떨어지며, 300nm보다 큰 경우에는 팽창 그라파이트와의 관계에서 분산성이 저하되어 일정한 물성의 방열 조성물을 제조하기 힘든 단점이 있다. 또한 상기 금속나노입자는 바람직하게 금, 은, 구리, 알루미늄, 은코팅니켈, 은코팅알루미늄, 산화알루미늄, 산화철, 산화마그네슘, 산화아연, 산화규소, 수산화알루미늄, 수산화마그네슘, 탄화규소, 질화알루미늄, 질화붕소, 질화규소, 질화티타늄 중 한 가지 이상의 금속일 수 있다. 더욱 바람직하게는 전기 및 열전도성이 높은 금, 은, 구리 중 한가지 이상의 금속일 수 있다.The metal nanoparticles that may be included in the composition of the filler preferably have an average particle size of 10 to 300 nm. When the average particle size of the metal nanoparticles is smaller than 10 nm, the effect of improving thermal conductivity is reduced, and when it is larger than 300 nm, dispersibility is lowered in relation to expanded graphite, making it difficult to prepare a heat dissipation composition with constant physical properties. In addition, the metal nanoparticles are preferably gold, silver, copper, aluminum, silver-coated nickel, silver-coated aluminum, aluminum oxide, iron oxide, magnesium oxide, zinc oxide, silicon oxide, aluminum hydroxide, magnesium hydroxide, silicon carbide, aluminum nitride, It may be one or more metals of boron nitride, silicon nitride, and titanium nitride. More preferably, it may be one or more metals of gold, silver, and copper having high electrical and thermal conductivity.

상기 충전제는 분산안정성을 높이기 위해 분산제(Dispersant) 및 계면활성제 중 하나 이상을 이용하여 표면 개질을 할 수 있다. 표면 개질은 질산, 황산, 염산, 아세트산, 카르복실산 및 이들의 하나 이상의 혼합물로 이루어진 군으로부터 선택되는 어느 하나를 이용하여 처리할 수 있다. 예를 들어, 질산과 황산의 혼합산을 이용하여 처리할 수 있으며, 이때 질산과 황산은 0.1:1 ~ 1:1 부피비로 혼합하여 수행할 수 있다. 상기 표면 개질을 통해 도입되는 기능화기는 산소함유 기능화기인 것이 바람직하며, 카르복실기, 하이드록실기, 에폭시기, 카르보닐기 중 어느 하나 이상일 수 있다. 상기 기능화기의 도입으로 인하여 상기 충전재가 더욱 미립화될 수 있으며, 구조적 안정성을 나타낼 수 있다. 이렇게 조성물이 구조적으로 안정됨으로써 충전제의 침전을 방지하고, 실리콘계 수지와의 결합력, 밀착력 및 분산성을 향상시켜 보다 균질한 조성물을 제공할 수 있고, 또한 이와 같은 균일한 분산을 통하여 조성물의 방열성이 향상될 수 있다.The filler may be surface-modified by using at least one of a dispersant and a surfactant to increase dispersion stability. The surface modification may be performed using any one selected from the group consisting of nitric acid, sulfuric acid, hydrochloric acid, acetic acid, carboxylic acid, and mixtures thereof. For example, the treatment may be performed using a mixed acid of nitric acid and sulfuric acid, and in this case, nitric acid and sulfuric acid may be mixed in a volume ratio of 0.1:1 to 1:1. The functionalizing group introduced through the surface modification is preferably an oxygen-containing functionalizing group, and may be any one or more of a carboxyl group, a hydroxyl group, an epoxy group, and a carbonyl group. Due to the introduction of the functionalizing group, the filler may be further atomized, and structural stability may be exhibited. As the composition is structurally stable in this way, it is possible to prevent precipitation of the filler, and to provide a more homogeneous composition by improving bonding strength, adhesion and dispersibility with the silicone-based resin. can be

상기 기재고분자에 포함되는 실리콘계 수지는 바람직하게 폴리비닐실록산(Polyvinyl siloxane) 및 폴리디메틸실록산(Poly(dimethylsiloxane)) 중 하나 이상을 포함할 수 있다. 상기 폴리비닐실록산 및 폴리디메틸실록산 모두 기재 고분자에 포함되는 경우에는 폴리비닐실록산과 폴리디메틸실록산의 중량비는 60:40 내지 90:10인 것이 바람직하며, 고점도의 폴리비닐실록산의 중량비가 높아질수록 방열 조성물의 점도가 증가하는 특성이 나타난다. 고점도의 폴리비닐실록산과 저점도의 폴리디메틸실록산의 중량비를 조절하여 필요한 점도의 방열 조성물을 제조할 수 있다. 하지만 폴리비닐실록산이 상기 90:10 보다 많이 첨가된 경우, 방열 조성물의 점도가 너무 높아 접착제 및 코팅제로 도포되는 경우에 적합하지 않으며, 폴리비닐실록산이 상기 60:40 보다 적게 첨가되는 경우, 방열 조성물의 점도가 너무 낮아 접착제 또는 코팅제로 도포 시 흘러내리는 단점이 있다.The silicone-based resin included in the base polymer may preferably include at least one of polyvinyl siloxane and poly(dimethylsiloxane). When both the polyvinylsiloxane and the polydimethylsiloxane are included in the base polymer, the weight ratio of the polyvinylsiloxane to the polydimethylsiloxane is preferably 60:40 to 90:10, and the higher the weight ratio of the high-viscosity polyvinylsiloxane, the higher the heat dissipation composition is characterized by an increase in the viscosity of By adjusting the weight ratio of polyvinylsiloxane of high viscosity and polydimethylsiloxane of low viscosity, it is possible to prepare a heat dissipation composition having a required viscosity. However, when polyvinylsiloxane is added in more than 90:10, the viscosity of the heat-dissipating composition is too high, so it is not suitable when applied as an adhesive or coating agent, and when polyvinylsiloxane is added in less than 60:40, the heat-dissipating composition Its viscosity is too low, so it has a disadvantage of dripping when applied as an adhesive or coating agent.

본 발명의 다른 실시예는 팽창 그라파이트, 탄소나노튜브, 그래핀 및 금속나노입자 중 둘 이상을 포함하는 충전제(Filler) 및 실리콘계 수지를 포함하는 기재고분자(Base Polymer)를 포함하는 방열 조성물을 포함하는 방열 코팅제 또는 방열 접착제 일 수 있다.Another embodiment of the present invention comprises a heat dissipation composition comprising a filler comprising at least two of expanded graphite, carbon nanotubes, graphene and metal nanoparticles and a base polymer comprising a silicone-based resin. It may be a heat dissipation coating agent or a heat dissipation adhesive.

상기 방열 코팅제 및 방열 접착제는 산업용으로 열전도도가 2.5 내지 3.0 W/Mk일 수 있다.The heat dissipation coating agent and heat dissipation adhesive may have a thermal conductivity of 2.5 to 3.0 W/Mk for industrial use.

상기 방열 접착제는 금속과 실리콘 소재를 접착하는 용도로 사용될 수 있다. 이때, 상기 방열 접착제의 접착력을 높이기 위해 금속의 부착하려는 부위를 프라이머(Primer) 처리를 할 수 있다. 접착용 프라이머로는 실란 커플링제와 같은 저분자 화합물 또는 고형분이 낮은 저점도의 고분자 화합물이 사용될 수 있으나, 이에 한정되지 않는다.The heat dissipation adhesive may be used for bonding a metal and a silicon material. At this time, in order to increase the adhesive force of the heat dissipation adhesive, a primer treatment may be performed on a portion of the metal to be attached. A low-molecular compound such as a silane coupling agent or a low-viscosity high-molecular compound having a low solid content may be used as the adhesion primer, but is not limited thereto.

상기 방열 접착제는 LED(Light Emitting Diode) 조명의 기판 부분에 도포되어 금속기재에 부착시키는 용도로 이용될 수 있다. LED 조명은 고출력일수록 발열량 또한 많은 특성이 있다. 따라서 LED 조명으로부터 방출되는 열을 기판을 통해 본 발명의 방열접착제를 사용하여 금속에 접착시킨다면, LED 조명으로부터 방출되는 열이 효율적으로 금속기판으로 이동하여 열을 빠르게 방출 시킬 수 있다. The heat dissipation adhesive may be applied to a substrate portion of an LED (Light Emitting Diode) lighting and used for attaching to a metal substrate. LED lighting has a characteristic that the higher the output, the greater the amount of heat generated. Therefore, if the heat emitted from the LED lighting is adhered to the metal using the heat dissipation adhesive of the present invention through the substrate, the heat emitted from the LED lighting can efficiently move to the metal substrate to quickly release the heat.

본 발명의 또 다른 실시예는 a) 팽창 그라파이트 분산액에 탄소나노튜브 분산액을 혼합하는 과정을 포함하는 혼합 충전제 제조단계, b) 폴리비닐실록산에 폴리디메틸실록산을 첨가하는 과정을 포함하는 기재고분자 제조단계, 및 c) 상기 b)단계에서 제조된 기재고분자(Base Polymer)에 상기 a)단계에서 제조된 혼합 충전제를 첨가하는 과정을 포함하는 단계를 포함하는 방열 조성물 제조방법일 수 있다.Another embodiment of the present invention is a base polymer manufacturing step comprising a) mixing the carbon nanotube dispersion with the expanded graphite dispersion, b) adding polydimethylsiloxane to polyvinylsiloxane , and c) adding the mixed filler prepared in step a) to the base polymer prepared in step b).

상기 방열 조성물 제조방법에서 백금과 같은 촉매가 더 첨가 될 수 있으며, 상기 방열 조성물 제조방법은 일반적인 접착제 또는 코팅제에 첨가되는 조성물을 더 포함할 수 있다.In the method for preparing the heat dissipation composition, a catalyst such as platinum may be further added, and the method for preparing the heat dissipation composition may further include a composition added to a general adhesive or coating agent.

[실험예: 방열 코팅제의 물성 측정][Experimental Example: Measurement of Physical Properties of Heat Dissipation Coatings]

하기 [표 1]은 종래 단일 팽창 그라파이트 만을 사용하여 충전제을 제조한 경우(비교예1)와 본 발명의 일 실시예에 따른 팽창 그라파이트와 탄소나노튜브를 혼합하여 충전제를 제조한 경우(실시예1)의 방열 코팅제의 물성을 비교하였다.The following [Table 1] shows a case where a filler was prepared using only a conventional single expanded graphite (Comparative Example 1) and a case where a filler was prepared by mixing expanded graphite and carbon nanotubes according to an embodiment of the present invention (Example 1) The physical properties of the heat dissipation coatings were compared.

구분division 비교예1Comparative Example 1 실시예1Example 1 충전제 조성물filler composition 팽창 그라파이트expanded graphite 팽창 그라파이트+CNT 혼합Expanded graphite + CNT mixture 충전제 입도(Particle Size)
<시험규격: ISO-13320-1>
Filler Particle Size
<Test standard: ISO-13320-1>
100미크론 이하100 microns or less 100~200미크론100-200 microns
충전제 제타전위(Zeta Potential)
<시험규격: ISO 13099>
Filler Zeta Potential
<Test standard: ISO 13099>
22 mV22 mV 38~40 mV38-40 mV
방열 코팅제 열전도도<시험규격: ASTM C518>Thermal Conductivity of Heat Dissipation Coatings <Test Standard: ASTM C518> 1.5 W/mK1.5 W/mK 2.5~3.0 W/mK2.5 to 3.0 W/mK 코팅 성능<시험규격: ASTM D3359>Coating performance <Test standard: ASTM D3359> 2B2B 4B4B 내열 성능(부피변화=물성파괴 온도)
<시험규격: ASTM D648>
Heat-resistance performance (volume change = temperature of destruction of properties)
<Test standard: ASTM D648>
120℃ 120℃ 138~150 ℃138~150℃

(CNT: 탄소나노튜브) (CNT: carbon nanotube)

표 1에서와 같이 본 발명에 따른 충전제는 제타전위가 종래 충전제의 제타 범위에 비해 높은 것을 알 수 있다. 제타전위 값이 클수록 입자들간의 반발력이 크고 안정된 특성이 있다. 따라서 본 발명에 따른 충전제는 종래 충전제에 비하여 분산성이 크고 충전제가 기재 고분자에 골고루 분산되는 것을 알 수 있다.As shown in Table 1, it can be seen that the zeta potential of the filler according to the present invention is higher than that of the conventional filler. The larger the zeta potential value, the greater the repulsive force between the particles and the more stable it is. Therefore, it can be seen that the filler according to the present invention has a greater dispersibility than the conventional filler and the filler is uniformly dispersed in the base polymer.

또한 상기 실시예1에 따른 방열 코팅제의 열 전도도는 비교에1에 따른 방열 코팅제의 열전도도에 비하여 최대 2배 높은 수치를 나타내고 있다. In addition, the thermal conductivity of the heat dissipation coating agent according to Example 1 is up to two times higher than the thermal conductivity of the heat dissipation coating agent according to Comparative Example 1.

이상의 설명은 본 발명의 방열 조성물, 상기 방열 조성물의 용도 및 본 발명의 방열 조성물 제조방법을 예시적으로 설명한 것에 불과한 것이므로, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.Since the above description is merely illustrative of the heat dissipation composition of the present invention, the use of the heat dissipation composition, and the method of manufacturing the heat dissipation composition of the present invention, those of ordinary skill in the art to which the present invention pertains. It will be understood that it may be implemented in a modified form without departing from the essential characteristics. Therefore, the disclosed embodiments are to be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

Claims (11)

팽창 그라파이트, 탄소나노튜브, 그래핀 및 금속나노입자 중 둘 이상을 포함하는 충전제(Filler), 및
실리콘계 수지를 포함하는 기재고분자(Base Polymer)를 포함하는 방열 조성물.
A filler comprising two or more of expanded graphite, carbon nanotubes, graphene, and metal nanoparticles, and
A heat dissipation composition comprising a base polymer comprising a silicone-based resin.
제1항에 있어서,
상기 팽창 그라파이트는 평균 입도가 100 내지 200미크론인 것을 특징으로 하는 방열 조성물.
According to claim 1,
The expanded graphite is characterized in that the average particle size is 100 to 200 microns. a heat dissipation composition.
제1항에 있어서,
상기 충전제는, 상기 팽창 그라파이트와 상기 탄소나노튜브가 9:1 내지 5:5의 중량비로 혼합된 것을 특징으로 하는 방열 조성물.
According to claim 1,
The filler is a heat dissipation composition, characterized in that the expanded graphite and the carbon nanotubes are mixed in a weight ratio of 9:1 to 5:5.
제1항에 있어서,
상기 금속나노입자는 평균 입도가 10 내지 300nm이고,
금, 은, 구리, 알루미늄, 은코팅니켈, 은코팅알루미늄, 산화알루미늄, 산화철, 산화마그네슘, 산화아연, 산화규소, 수산화알루미늄, 수산화마그네슘, 탄화규소, 질화알루미늄, 질화붕소, 질화규소 및 질화티타늄 중 한가지 이상의 금속나노입자인 것을 특징으로 하는 방열 조성물.
According to claim 1,
The metal nanoparticles have an average particle size of 10 to 300 nm,
Among gold, silver, copper, aluminum, silver-coated nickel, silver-coated aluminum, aluminum oxide, iron oxide, magnesium oxide, zinc oxide, silicon oxide, aluminum hydroxide, magnesium hydroxide, silicon carbide, aluminum nitride, boron nitride, silicon nitride and titanium nitride Heat dissipation composition, characterized in that one or more metal nanoparticles.
제1항에 있어서,
상기 충전제는 분산제 및 계면활성제 중 하나 이상을 더 포함하는 것을 특징으로 하는 방열 조성물.
According to claim 1,
The filler is a heat dissipation composition, characterized in that it further comprises at least one of a dispersant and a surfactant.
제1항에 있어서,
상기 실리콘계 수지는 폴리비닐실록산(Polyvinyl siloxane) 및 폴리디메틸실록산(Poly(dimethylsiloxane)) 중 하나 이상을 포함하는 것을 특징으로 하는 방열 조성물.
According to claim 1,
The silicone-based resin is a heat dissipation composition comprising at least one of polyvinyl siloxane and poly(dimethylsiloxane).
제1항 내지 제7항 중 어느 한 항에 따른 방열 조성물을 포함하는 방열 코팅제.
A heat dissipation coating agent comprising the heat dissipation composition according to any one of claims 1 to 7.
제1항 내지 제7항 중 어느 한 항에 따른 방열 조성물을 포함하는 방열 접착제.
A heat dissipation adhesive comprising the heat dissipation composition according to any one of claims 1 to 7.
제8항에 있어서,
상기 방열 접착제는 금속-실리콘 소재 간 접착제인 것을 특징으로 하는 방열 접착제.
9. The method of claim 8,
The heat dissipation adhesive is a heat dissipation adhesive, characterized in that the metal-silicon material adhesive.
제9항에 있어서,
상기 방열 접착제는 LED(Light Emitting Diode) 조명용 접착제인 것을 특징으로 하는 방열 접착제.
10. The method of claim 9,
The heat dissipation adhesive is a heat dissipation adhesive, characterized in that the LED (Light Emitting Diode) lighting adhesive.
a) 팽창 그라파이트 분산액에 탄소나노튜브 분산액을 혼합하는 과정을 포함하는 혼합 충전제 제조단계;
b) 폴리비닐실록산에 폴리디메틸실록산을 첨가하는 과정을 포함하는 기재고분자 제조단계; 및
c) 상기 b)단계에서 제조된 기재고분자(Base Polymer)에 상기 a)단계에서 제조된 혼합 충전제를 첨가하는 과정을 포함하는 단계;를
포함하는 방열 조성물 제조방법.
a) a mixed filler manufacturing step comprising the process of mixing the carbon nanotube dispersion with the expanded graphite dispersion;
b) preparing a base polymer comprising the step of adding polydimethylsiloxane to polyvinylsiloxane; and
c) including the step of adding the mixed filler prepared in step a) to the base polymer prepared in step b);
A method for producing a heat dissipation composition comprising.
KR1020200071799A 2020-06-12 2020-06-12 High heat dissipation composition using mixed filler and manufacturing method thereof KR102495653B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2020/007678 WO2021251533A1 (en) 2020-06-12 2020-06-12 Highly heat-dissipating composition using mixture filler and preparation method therefor
KR1020200071799A KR102495653B1 (en) 2020-06-12 2020-06-12 High heat dissipation composition using mixed filler and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200071799A KR102495653B1 (en) 2020-06-12 2020-06-12 High heat dissipation composition using mixed filler and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20210154617A true KR20210154617A (en) 2021-12-21
KR102495653B1 KR102495653B1 (en) 2023-02-06

Family

ID=78846164

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200071799A KR102495653B1 (en) 2020-06-12 2020-06-12 High heat dissipation composition using mixed filler and manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR102495653B1 (en)
WO (1) WO2021251533A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230053363A (en) * 2021-10-14 2023-04-21 경일대학교산학협력단 Sealing composition to shield electromagnetic wave for nuclear power decommissioning instrument

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114213922B (en) * 2022-01-24 2022-07-05 东莞市安宿泰电子科技有限公司 Heat dissipation coating and preparation method thereof
CN115505309A (en) * 2022-10-26 2022-12-23 天津中电立正石墨烯科技有限公司 Water-based graphene heat dissipation coating and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160021061A (en) * 2014-08-14 2016-02-24 주식회사 한국알테코 Conductive composite and preparing method thereof
KR20170102590A (en) * 2016-03-02 2017-09-12 주식회사 대신테크젠 Highly thermally conductive complex composition for applying automotive lighting housing, and manufacturing method thereof
KR20170105546A (en) * 2015-02-02 2017-09-19 다나카 기킨조쿠 고교 가부시키가이샤 The thermally conductive conductive adhesive composition
JP2019112568A (en) * 2017-12-25 2019-07-11 日本ゼオン株式会社 Heat conduction sheet
CN110800388A (en) * 2017-07-06 2020-02-14 株式会社Lg化学 Composite material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216353A (en) * 2014-04-23 2015-12-03 日東電工株式会社 Wavelength conversion junction member, wavelength conversion heat dissipation member, and light-emitting device
KR102254221B1 (en) * 2014-10-07 2021-05-20 삼성전자주식회사 Refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160021061A (en) * 2014-08-14 2016-02-24 주식회사 한국알테코 Conductive composite and preparing method thereof
KR20170105546A (en) * 2015-02-02 2017-09-19 다나카 기킨조쿠 고교 가부시키가이샤 The thermally conductive conductive adhesive composition
KR20170102590A (en) * 2016-03-02 2017-09-12 주식회사 대신테크젠 Highly thermally conductive complex composition for applying automotive lighting housing, and manufacturing method thereof
CN110800388A (en) * 2017-07-06 2020-02-14 株式会社Lg化学 Composite material
JP2019112568A (en) * 2017-12-25 2019-07-11 日本ゼオン株式会社 Heat conduction sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230053363A (en) * 2021-10-14 2023-04-21 경일대학교산학협력단 Sealing composition to shield electromagnetic wave for nuclear power decommissioning instrument

Also Published As

Publication number Publication date
WO2021251533A1 (en) 2021-12-16
KR102495653B1 (en) 2023-02-06

Similar Documents

Publication Publication Date Title
KR102495653B1 (en) High heat dissipation composition using mixed filler and manufacturing method thereof
TWI700243B (en) Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material
CN107207935B (en) Thermally and electrically conductive adhesive composition
JP2016135730A (en) Boron nitride aggregated particle, and method for producing the same, composition containing the same, and molding containing the same
Akhtar et al. Hybridization of hexagonal boron nitride nanosheets and multilayer graphene: Enhanced thermal properties of epoxy composites
Hong et al. A review on thermal conductivity of polymer composites using carbon-based fillers: carbon nanotubes and carbon fibers
CN109181511B (en) High-thermal-conductivity insulating water-based paint
JP2018104260A (en) Hexagonal boron nitride powder, method for producing the same, resin composition and resin sheet
KR100972753B1 (en) Aluminum nitride coating composite for sinking heat, heat sink using the composite and manufacturing method of the heat sink
JP2007516314A (en) Nanocomposites and methods for nanocomposites
JP7069162B2 (en) Conductive adhesive composition
JPWO2020049817A1 (en) Hexagonal boron nitride powder and its manufacturing method, as well as compositions and heat radiating materials using it.
JP5899303B2 (en) High performance die attach adhesive (DAA) nanomaterials for high brightness LEDs
TW201107393A (en) Highly thermally-conductive moldable thermoplastic composites and compositions
JP2008303263A (en) Thermally conductive coating material
Aparna et al. Recent advances in boron nitride based hybrid polymer nanocomposites
JP6633266B2 (en) Nanodiamond-containing composite and method for producing the same
TWI651262B (en) Hexagonal boron nitride powder, a method for producing the same, a resin composition, and a resin sheet
JPWO2020090796A1 (en) Boron Nitride Nanomaterials and Resin Compositions
CN108659457A (en) A kind of boron nitride cladding sulfonated graphene-epoxy resin composite material and preparation method thereof
JP2019131669A (en) Resin composition and insulation heat conductive sheet
JP6379579B2 (en) Boron nitride sheet
Nayak et al. Silver nanoparticles decorated α-alumina as a hybrid filler to fabricate epoxy-based thermal conductive hybrid composite for electronics packaging application
Wang et al. Thermally conductive electrically insulating polymer nanocomposites
JP2015209546A (en) Nano carbon composite material

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant