KR20210151460A - Tandem Solar cell and the method for manufacturing the same - Google Patents

Tandem Solar cell and the method for manufacturing the same Download PDF

Info

Publication number
KR20210151460A
KR20210151460A KR1020200068324A KR20200068324A KR20210151460A KR 20210151460 A KR20210151460 A KR 20210151460A KR 1020200068324 A KR1020200068324 A KR 1020200068324A KR 20200068324 A KR20200068324 A KR 20200068324A KR 20210151460 A KR20210151460 A KR 20210151460A
Authority
KR
South Korea
Prior art keywords
solar cell
layer
metal
laser
cell unit
Prior art date
Application number
KR1020200068324A
Other languages
Korean (ko)
Other versions
KR102442419B1 (en
Inventor
김인호
이도권
정증현
우예은
이영석
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020200068324A priority Critical patent/KR102442419B1/en
Publication of KR20210151460A publication Critical patent/KR20210151460A/en
Application granted granted Critical
Publication of KR102442419B1 publication Critical patent/KR102442419B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • H01L51/4206
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/451Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

An objective of the present invention is to provide a bonding structure with low loss, excellent transparency, simple process, low cost, and reduced defect rate. The present invention relates to a tandem solar cell comprising: a first solar cell unit; a second solar cell unit; and a bonding structure for coupling the first solar cell unit and the second solar cell unit. The bonding structure includes: a crystalline silicon layer; an insulating layer having a plurality of openings for opening the crystalline silicon layer; a metal nano-particle layer including a plurality of metal particles formed on an upper part of the crystalline silicon layer of the plurality of open openings; and a transparent conductive layer covering the insulating layer and the opening. The tandem solar cell is manufactured by transferring the metal nanoparticles by irradiating a metal layer formed under the transparent substrate using a laser.

Description

탠덤 태양전지 및 그 제조방법 {Tandem Solar cell and the method for manufacturing the same}Tandem solar cell and its manufacturing method {Tandem Solar cell and the method for manufacturing the same}

본 발명은 탠덤 태양전지에서 2개의 태양전지를 결합하는 새로운 형태의 결합구조물과 그 제조방법에 관한 것이다. The present invention relates to a new type of coupling structure for combining two solar cells in a tandem solar cell and a method for manufacturing the same.

결정질 실리콘 태양전지는 전체 태양전지 시장 중 90 % 이상의 높은 점유율을 보이며, 기술개발과 규모의 경제 달성을 통해 발전단가는 지속적으로 낮아지고 있다. 최근, 태양전지 시장은 수요의 다변화와 함께 고출력, 경량 태양전지의 수요가 증대할 것으로 기대하고 있다.Crystalline silicon solar cells have a high share of over 90% of the total solar cell market, and the unit cost of power generation continues to decrease through technological development and achievement of economies of scale. Recently, the solar cell market is expected to increase the demand for high-power and lightweight solar cells along with the diversification of demand.

결정질 실리콘 태양전지의 셀 효율은 지속적으로 증가해 왔으며, 최근 최고 효율 26.7 %을 기록하여, 이론 효율 29.4 %에 근접해 왔다. 그러나, 상용 실리콘 태양전지의 효율은 27 % 수준일 것으로 예측하고 있어, 가까운 장래에 효율 개선은 한계에 도달할 것으로 예측된다.The cell efficiency of crystalline silicon solar cells has been continuously increasing, and recently recorded the highest efficiency of 26.7%, close to the theoretical efficiency of 29.4%. However, the efficiency of commercial silicon solar cells is predicted to be at the level of 27%, so efficiency improvement is expected to reach its limit in the near future.

이러한 실리콘 태양전지의 효율 한계를 극복하기 위한 방법 중 하나로 탠덤 태양전지 개발이 대표적인 기술이다. 실리콘 태양전지와 전기 및 광학적 접합성이 우수한 금속 할라이드 또는 CIGS와 같은 박막태양전지와의 결합을 통해 단일셀의 효율 한계를 극복할 수 있을 것으로 기대 된다. One of the methods for overcoming the efficiency limitations of silicon solar cells is the development of tandem solar cells. It is expected that the efficiency limit of a single cell can be overcome by combining a silicon solar cell with a thin film solar cell such as a metal halide or CIGS with excellent electrical and optical bonding properties.

최근 금속할라이드, CIGS 태양전지 효율 역시 매우 빠르게 증가하여 24 % 이상의 효율을 보이고 있어, 고효율 실리콘 태양전지와의 일체형 결합을 통해 이론 효율 35 % 이상 달성이 가능할 것으로 예상한다.Recently, the efficiency of metal halide and CIGS solar cells has also increased very rapidly, showing efficiencies of more than 24%, and it is expected that theoretical efficiencies of more than 35% can be achieved through integral combination with high-efficiency silicon solar cells.

이와 같은 탠덤 태양전지에서는 양자를 결합시키는 터널 재결합 접합이라고 일컫는 전기 광학적 결합구조물이 중요한 기술 중 하나이다. 결합 접합 구조물을 저손실이면서 투명도가 우수하고 공정적으로도 단순하면서 비용이 적게 들며 불량율도 줄일 수 있도록 하는데 대한 요구가 높은 실정이다.In such a tandem solar cell, an electro-optical coupling structure called a tunnel recombination junction that couples protons is one of the important technologies. There is a high demand for a bonding joint structure with low loss, excellent transparency, simple process, low cost, and reduced defect rate.

(특허문헌 1) KR2012-0150513 P (Patent Document 1) KR2012-0150513 P

본 발명의 목적은 결합 접합 구조물을 저손실이면서 투명도가 우수하고 공정적으로도 단순하면서 비용이 적게 들며 불량율도 줄일 수 있도록 하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a bonding bonding structure with low loss, excellent transparency, simple process, low cost, and reduced defect rate.

본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Other specific details of the invention are included in the detailed description and drawings.

상술한 목적을 달성하기 위한 기술적 수단으로서, 본 발명의 일측면은 탠덤 태양전지에 있어서, 제1 태양전지부; 제2 태양전지부; 및 제1 태양전지부와 상기 제2 태양전지부를 결합하는 결합구조물을 포함하되,As a technical means for achieving the above object, one aspect of the present invention is a tandem solar cell, comprising: a first solar cell unit; a second solar cell unit; and a coupling structure for coupling the first solar cell unit and the second solar cell unit,

상기 결합 구조물은,The bonding structure is

결정질 실리콘층; 상기 결정질 실리콘층을 오픈하는 복수의 개구부를 가지는 절연층; 오픈된 복수의 개구부의 상기 결정질 실리콘층 상부에 형성된 복수의 금속입자들을 포함하는 금속나노입자층; 및 상기 절연층과 상기 개구부를 덮는 투명도전층을 포함하고, 상기 금속나노입자들은 레이저를 이용하여 투명기판 하부에 형성된 금속층에 조사함으로써 전사하는 방식으로 제조된 탠덤 태양전지를 제공한다.crystalline silicon layer; an insulating layer having a plurality of openings for opening the crystalline silicon layer; a metal nano-particle layer including a plurality of metal particles formed on the crystalline silicon layer of the plurality of open openings; and a transparent conductive layer covering the insulating layer and the opening, wherein the metal nanoparticles are transferred by irradiating a metal layer formed under the transparent substrate using a laser to provide a tandem solar cell manufactured by transfer.

바람직하게는, 절연층은 알루미나 층, 실리콘 옥사이드층과 실리콘 나이트라이드층을 적어도 포함한다.Preferably, the insulating layer comprises at least an alumina layer, a silicon oxide layer and a silicon nitride layer.

바람직하게는, 상기 결합구조물은 상기 제1 태양전지부 상부에 형성되어, 상기 제2 태양전지부와 결합되는 구조이고, 상기 제1 태양전지부는 실리콘 태양전지이고, 제2 태양전지부는 페로브스카이트 태양전지, CIS 계 태양전지, CdTe계태양전지일 수 있다. Preferably, the coupling structure is formed on the first solar cell unit and is coupled to the second solar cell unit, the first solar cell unit is a silicon solar cell, and the second solar cell unit is perovsky. It may be a T-solar cell, a CIS-based solar cell, or a CdTe-based solar cell.

본 발명의 다른 측면은 탠덤 태양전지의 제조방법에 있어서, 제1 태양전지부를 제조하는 단계; 태양전지부들을 결합하는 결합구조물을 제조하는 단계; 및 제2 태양전지부를 제조하는 단계를 포함하되,Another aspect of the present invention provides a method for manufacturing a tandem solar cell, comprising: manufacturing a first solar cell unit; manufacturing a coupling structure for coupling solar cell parts; and manufacturing a second solar cell unit,

상기 결합구조물을 제조하는 단계는, The step of manufacturing the bonding structure,

결정질 실리콘층과 그 상부에 절연층을 형성하는 단계; 상기 결정질 실리콘층을 오픈하여 복수의 개구부를 형성하는 단계; 오픈된 복수의 개구부의 상기 결정질 실리콘층 상부에 형성된 복수의 금속입자들을 포함하는 금속나노입자층을 형성하는 단계; 및 상기 절연층과 상기 개구부를 덮는 투명도전층을 형성하는 단계를 포함하고, 상기 금속나노입자층을 형성하는 단계는, 레이저를 이용하여 투명기판 하부에 형성된 금속층에 조사함으로써 전사하는 방식으로 제조된 탠덤 태양전지의 제조방법을 제공한다.forming a crystalline silicon layer and an insulating layer thereon; forming a plurality of openings by opening the crystalline silicon layer; forming a metal nano-particle layer including a plurality of metal particles formed on the crystalline silicon layer of the plurality of open openings; and forming a transparent conductive layer covering the insulating layer and the opening, wherein the forming of the metal nanoparticle layer is a tandem solar manufactured by transferring by irradiating the metal layer formed under the transparent substrate using a laser. A method for manufacturing a battery is provided.

바람직하게는, 상기 결정질 실리콘층을 오픈하여 복수의 개구부를 형성하는 단계는 레이저를 이용하여 수행한다.Preferably, the step of opening the crystalline silicon layer to form a plurality of openings is performed using a laser.

바람직하게는, 상기 결정질 실리콘층을 오픈하여 복수의 개구부를 형성하는 단계와, 상기 금속나노입자층을 형성하는 단계는 동일 레이저를 이용하여 연속 공정으로 진행한다. 한편, 상기 레이저 연속 공정에 이용되는 레이저 장치에는 스테이지 위에 투명기판을 지지하면서 샘플과 투명기판의 거리를 조절할 수 있는 갭제어 지그가 구비되는 것이 바람직하다.Preferably, the step of opening the crystalline silicon layer to form a plurality of openings and the step of forming the metal nanoparticle layer are performed in a continuous process using the same laser. On the other hand, the laser device used in the laser continuous process preferably includes a gap control jig capable of adjusting the distance between the sample and the transparent substrate while supporting the transparent substrate on the stage.

바람직하게는, 상기 금속나노입자층을 형성하는 단계는, 레이저를 이용하여 투명기판 하부에 형성된 금속층에 조사하되 복수회 조사를 수행한다.Preferably, in the forming of the metal nanoparticle layer, the metal layer formed under the transparent substrate is irradiated using a laser, but irradiation is performed a plurality of times.

바람직하게는, 상기 절연층은 알루미나 층, 실리콘 옥사이드층과 실리콘 나이트라이드층을 적어도 포함한다. Preferably, the insulating layer comprises at least an alumina layer, a silicon oxide layer and a silicon nitride layer.

바람직하게는, 상기 제1 태양전지부는 실리콘 태양전지이고, 상기 제2 태양전지부는 페로브스카이트 태양전지, CIS 계 태양전지, CdTe계태양전지이다.Preferably, the first solar cell unit is a silicon solar cell, and the second solar cell unit is a perovskite solar cell, a CIS-based solar cell, or a CdTe-based solar cell.

본 명세서는 상기 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The present specification is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.

본 발명의 결합구조물에 따르면 전기적 손실이 저감된 국부 개방형 터널 재결합 접합 형성이 가능하여 우수한 효율의 일체형 탠덤 태양전지를 제공할 수 있다.According to the bonding structure of the present invention, it is possible to form a locally open tunnel recombination junction with reduced electrical loss, thereby providing an integrated tandem solar cell with excellent efficiency.

또한, 기존의 공정 대비 공정의 복잡도와 공정시간을 크게 단축시킬 수 있으면서 높은 태양전지 효율을 구현할 수 있어서 태양전지의 생산비용과 생산시간을 크게 단축시킬 수 있다.In addition, compared to the conventional process, the complexity and process time of the process can be greatly reduced, and high solar cell efficiency can be realized, so that the production cost and production time of the solar cell can be greatly reduced.

도 1은 본 발명의 실시예에 따른 탠덤 태양전지의 단면도와 결합구조물을 확대한 단면도이다.
도 2는 본 발명의 실시예에 따른 결합구조물을 제조하는 단계를 3D 이미지와 단면도 이미지로 함께 도시한 도면들이다.
도 3은 본 발명의 실시예에 따른 2-스텝 레이저 프로세스 공정을 통해 얻어지는 기판의 탑뷰 이미지이다.
도 4a는 본 발명의 실시예에 따라서, 결합구조물을 제조시 이용되는 레이저 가공 장치의 구성도이고, 도 4b는 본 발명의 실시예에 따라서 2 스텝 레이저 프로세스를 진행하는 상황을 도시한 도면이다.
도 5는 본 발명의 실시예에 따라서, 공정에 이용된 레이저의 사양의 일예이다.
도 6은 레이저 프로세스 스텝 2 후 결과 사진들로, LIFT 1 회 후 SEM 저배율, 고배율 이미지를 보여준다.
도 7은 레이저 프로세스 스텝 2 후 결과 사진들로, LIFT 회수를 증가함에 따라서 SEM 저배율, 고배율 이미지를 보여준다.
도 8은 본 발명의 결합구조물의 접촉저항 측정 결과를 도시한 도면들이다.
도 9는 본 발명의 실험에서, 개구율(%)이 증가함에 따른 소수반송자 수명(minority carrier lifetime), implied Voc, J0ee 의 변화를 도시한 그래프들이다.
1 is a cross-sectional view of a tandem solar cell according to an embodiment of the present invention and an enlarged cross-sectional view of a coupling structure.
Figure 2 is a view showing the steps of manufacturing a coupling structure according to an embodiment of the present invention together with a 3D image and a cross-sectional image.
3 is a top view image of a substrate obtained through a two-step laser process process according to an embodiment of the present invention.
4A is a block diagram of a laser processing apparatus used for manufacturing a coupling structure according to an embodiment of the present invention, and FIG. 4B is a diagram illustrating a situation in which a two-step laser process is performed according to an embodiment of the present invention.
5 is an example of specifications of a laser used in a process according to an embodiment of the present invention.
6 is a result photograph after laser process step 2, and shows SEM low magnification and high magnification images after 1 LIFT.
7 is a result photograph after laser process step 2, and shows SEM low magnification and high magnification images as the number of LIFT increases.
8 is a view showing a contact resistance measurement result of the coupling structure of the present invention.
9 is a graph showing changes in minority carrier lifetime, implied V oc , and J 0ee as the aperture ratio (%) increases in an experiment of the present invention.

본 명세서에 개시된 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 명세서가 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 명세서의 개시가 완전하도록 하고, 본 명세서가 속하는 기술 분야의 통상의 기술자(이하 '당업자')에게 본 명세서의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 명세서의 권리 범위는 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the invention disclosed herein, and methods of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present specification is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only the present embodiments allow the disclosure of the present specification to be complete, and those of ordinary skill in the art to which this specification belongs. It is provided to fully inform those skilled in the art (hereinafter, 'those skilled in the art') the scope of the present specification, and the scope of the present specification is only defined by the scope of the claims.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 실시예에 따른 탠덤 태양전지의 단면도와 결합구조물을 확대한 단면도이다.1 is a cross-sectional view of a tandem solar cell according to an embodiment of the present invention and an enlarged cross-sectional view of a coupling structure.

도 1을 참조하면, 탠덤 태양전지는 제1 태양전지부(100)와 제2 태양전지부(200), 및 제1 태양전지부(100)와 제2 태양전지부(200)를 결합하는 결합구조물(300)을 포함하여 구성된다.Referring to FIG. 1 , a tandem solar cell is a combination of a first solar cell unit 100 and a second solar cell unit 200 , and a first solar cell unit 100 and a second solar cell unit 200 . It is configured to include a structure (300).

결합 구조물(300)은 결정질 실리콘층(330), 결정질 실리콘층을 오픈하는 복수의 개구부를 가지는 절연층(310,320), 그리고, 오픈된 복수의 개구부의 상기 결정질 실리콘층 상부에 형성된 복수의 금속나노입자들을 포함하는 금속나노입자층(340), 및 투명도전층(150)을 포함한다.The bonding structure 300 includes a crystalline silicon layer 330, insulating layers 310 and 320 having a plurality of openings for opening the crystalline silicon layer, and a plurality of metal nanoparticles formed on the crystalline silicon layer of the plurality of openings. It includes a metal nano-particle layer 340, and a transparent conductive layer 150 including the.

여기서, 본 실시예에서는 금속나노입자들의 제조는, 투명기판 하부에 형성된 금속층에 레이저를 조사함으로써 전사하는 방식으로 제조된다. 금속나노입자의 직경, 높이는 대략적으로 50nm 이하로 형성되고, 개방된 유전체 국소부위 내에서의 금속나노입자의 충진율은 10 내지 90%인데, 바람직하게는 30 내지 70%이다. 충진율이 너무 낮으면 접촉 저항이 충분히 낮게 확보되지 못하고, 충진율이 너무 높으면 투명도가 저하될 수 있다. Here, in the present embodiment, the metal nanoparticles are manufactured in a manner of transferring by irradiating a laser to the metal layer formed under the transparent substrate. The diameter and height of the metal nanoparticles are approximately 50 nm or less, and the filling rate of the metal nanoparticles in the open dielectric local area is 10 to 90%, preferably 30 to 70%. If the filling ratio is too low, the contact resistance may not be sufficiently low, and if the filling ratio is too high, transparency may be deteriorated.

금속나노입자의 소재는 Ti, Cr, Ni 또는 이들의 조합이 가능하다. The material of the metal nanoparticles may be Ti, Cr, Ni, or a combination thereof.

한편, 절연층(310,320)은 2개의 층으로 도시되어 있지만 이는 예시에 불과하고 실리콘옥사이드층, 실리콘나이트라이드층, 실리콘옥시나이트라이드층, 알루미늄 옥사이드층 각각의 단일층 또는 이들의 조합이 가능하다. On the other hand, although the insulating layers 310 and 320 are shown as two layers, this is only an example, and a single layer of each of a silicon oxide layer, a silicon nitride layer, a silicon oxynitride layer, and an aluminum oxide layer or a combination thereof is possible.

절연층(310,320)의 개방율은 0.1% 내지 10%이고, 바람직하게는, 0.5% 내지 2% 정도이다. The opening ratio of the insulating layers 310 and 320 is 0.1% to 10%, preferably, about 0.5% to 2%.

탠덤 태양전지의 결합구조물에서, 절연층의 개구부 형성을 포토리쏘그라피를 이용한 경우는 이미 종래에도 소개된 바 있다. 그러나, 이 공정은 양산화가 어렵고, 고비용이라는 단점이 있었다. 따라서 본 발명에서 초단파 펄스레이저를 이용하여 공정 단순화가 가능하게 되는 효과가 있다. 또한, 레이저를 이용하여 금속나노층을 형성하고, 금속 나노입자층를 버퍼층으로 활용하는 것도 가능하게 된다. In the bonding structure of the tandem solar cell, the case of using photolithography to form the opening of the insulating layer has already been previously introduced. However, this process has disadvantages of being difficult to mass-produce and high cost. Therefore, there is an effect that the process can be simplified by using the ultra-short pulse laser in the present invention. In addition, it becomes possible to form a metal nano-layer by using a laser and to utilize the metal nano-particle layer as a buffer layer.

이하, 도 1의 전체 탠덤 태양전지의 예를 설명한다. 도 1의 도시에서는 탠덤 태양전지의 예로서, 하부 태양전지가 결정질 실리콘 태양전지(200)이고, 상부 태양전지가 페로브스카이트 태양전지(100)인 경우를 설명하고 있다. Hereinafter, an example of the entire tandem solar cell of FIG. 1 will be described. As an example of the tandem solar cell in FIG. 1 , a case in which the lower solar cell is a crystalline silicon solar cell 200 and the upper solar cell is a perovskite solar cell 100 is described.

P형 실리콘 반도체 기판(210)의 전면 또는 후면, 또는 전후 양면에 입사광의 반사율을 최소화하기 위해 텍스쳐링 구조(미도시)를 형성시킨다. 그 후, 반도체 기판 전면에 POCl3등의 가스를 이용하여 n형 반도체 불순물을 열 확산시켜 n+ 에미터 층인 결정질 반도체층(330)을 형성시켜 p-n 접합을 제조한다.A texturing structure (not shown) is formed on the front or rear surface of the P-type silicon semiconductor substrate 210 , or on both front and rear surfaces to minimize the reflectance of incident light. Thereafter, the n-type semiconductor impurity is thermally diffused over the entire surface of the semiconductor substrate by using a gas such as POCl 3 to form a crystalline semiconductor layer 330 that is an n + emitter layer, thereby manufacturing a pn junction.

다음으로 전후면에 표면 재결합을 저감하기 위한 패시베이션 층(310,320)을 증착한다. 후면에 후면 전극(240)과 전기적 접합을 위해 펄스 레이저를 이용 패시에이션 층(220,230)을 국부적으로 개방하는 공정을 수행하고 후면 전극(240)을 증착한다. 후면 국부적 개방 부위에서 후면전계층 형성을 위해 고온 소성 공정을 수행할 수 있다. Next, passivation layers 310 and 320 for reducing surface recombination are deposited on the front and rear surfaces. A process of locally opening the passivation layers 220 and 230 using a pulse laser for electrical bonding with the rear electrode 240 is performed on the rear surface, and the rear electrode 240 is deposited. A high-temperature sintering process may be performed to form a rear electric field layer in the locally open rear surface.

본 발명에서 적용되는 결정질 실리콘 하부 태양전지의 종류는 PERC 셀 구조에 국한하지 않고 확산형 태양전지에 속하는 Al BSF, PERT, PERL을 모두 포함하며, 사용되는 웨이퍼의 종류도 p형 뿐 아니라, n형을 포함할 수 있다. 결정질 실리콘 태양전지 셀 종류에 따라 상부셀의 구조는 2단자형 탠덤 태양전지를 구성할 수 있도록 구조가 달라지는 것도 가능하다. The type of the crystalline silicon lower solar cell applied in the present invention is not limited to the PERC cell structure, but includes all of Al BSF, PERT, and PERL belonging to the diffusion type solar cell, and the type of wafer used is not only p-type but also n-type may include According to the type of crystalline silicon solar cell, the structure of the upper cell may be changed to constitute a two-terminal tandem solar cell.

본 결합구조물의 상부에 배치되는 상부셀인 페로브스카이트 태양전지(100)는 투명도전층(150)의 상부에 순서대로, 정공수송층(140), 금속할라이드 페로브스카이트(135), 전자수송층(130), 그리고 투명전극(미도시) 순서로 박막이 형성된다. 박막 증착공정으로 스핀코팅, 블레이드 코팅과 같은 용액공정, 스퍼터, 열 증발증착과 같은 진공증착을 이용할 수 있다. 마지막으로 상부 투명전극에 전류 수집을 위한 금속 그리드 전극(120)을 형성한다.The perovskite solar cell 100, which is an upper cell disposed on top of the present bonding structure, is sequentially on top of the transparent conductive layer 150, a hole transport layer 140, a metal halide perovskite 135, an electron transport layer. A thin film is formed in the order of 130 and a transparent electrode (not shown). As the thin film deposition process, solution processes such as spin coating and blade coating, sputtering, and vacuum deposition such as thermal evaporation can be used. Finally, a metal grid electrode 120 for collecting current is formed on the upper transparent electrode.

도 2는 본 발명의 실시예에 따른 결합구조물을 제조하는 단계를 3D 이미지와 단면도 이미지로 함께 도시한 도면들이다.Figure 2 is a view showing the steps of manufacturing a coupling structure according to an embodiment of the present invention together with a 3D image and a cross-sectional image.

먼저 (a)단계에 대해 설명한다. (a)단계에서는 하부 태양전지가 제조된 예를 도시하고 있다. 이하에서는 하부 태양전지가 결정실 실리콘 태양전지인 경우를 예로 들어 설명한다. P형 실리콘 반도체 기판의 전면 또는 후면, 또는 전후 양면에 입사광의 반사율을 최소화하기 위해 텍스쳐링 구조를 형성시킨다. 그 후, 반도체 기판 전면에 POCl3등의 가스를 이용하여 n형 반도체 불순물을 열 확산시켜 n+ 에미터 층인 결정질 반도체층(330)을 형성시켜 p-n 접합을 제조한다.First, step (a) will be described. In step (a), an example in which the lower solar cell is manufactured is shown. Hereinafter, a case in which the lower solar cell is a crystalline silicon solar cell will be described as an example. A texturing structure is formed on the front or rear surface of the P-type silicon semiconductor substrate, or on both front and rear surfaces to minimize the reflectance of incident light. Thereafter, the n-type semiconductor impurity is thermally diffused over the entire surface of the semiconductor substrate by using a gas such as POCl 3 to form a crystalline semiconductor layer 330 that is an n + emitter layer, thereby manufacturing a pn junction.

다음으로 전후면에 표면 재결합을 저감하기 위한 패시베이션 층(310,320)을 증착한다. 후면에 후면 전극(240)과 전기적 접합을 위해 펄스 레이저를 이용 패시에이션 층(220,230)을 국부적으로 개방하는 공정을 수행하고 후면 전극을 증착한다. 후면 국부적 개방 부위에서 후면전계층 형성을 위해 고온 소성 공정을 수행할 수 있다. Next, passivation layers 310 and 320 for reducing surface recombination are deposited on the front and rear surfaces. A process of locally opening the passivation layers 220 and 230 using a pulsed laser for electrical bonding with the rear electrode 240 is performed on the rear surface, and the rear electrode is deposited. A high-temperature sintering process may be performed to form a rear electric field layer in the locally open rear surface.

다음으로 (b)단계에 대해 설명한다. 종래 일체형 다중접합(탠덤) 태양전지의 도전형 국부적 터널 재결합 접합부 형성을 위한 공정은 포토리쏘그라피를 이용한 유전체 개구 공정을 이용한다. 이 공정은 양산화가 어렵고, 고비용이라는 단점이 있었다. 따라서 본 발명의 실시예에서는 초단파 펄스레이저를 이용하여 공정 단순화 및 금속 나노입자를 버퍼층으로 활용하는 구조를 제시한다. Next, step (b) will be described. A process for forming a conductive localized tunnel recombination junction of a conventional integrated multi-junction (tandem) solar cell uses a dielectric opening process using photolithography. This process had the disadvantages of being difficult to mass-produce and high cost. Therefore, in an embodiment of the present invention, a structure is presented in which a process is simplified using a microwave pulse laser and a metal nano-particle is used as a buffer layer.

(b)단계에서는, 실리콘 반도체 기판, 상기 기판의 전면에 형성된 n+ 도핑된 결정질 반도체층(330), 기판 전면에 형성된 패시베이션층(310,320), 후면전극층(240)과 기판 후면의 패시베이션층(220,230)을 포함한다.In step (b), the silicon semiconductor substrate, the n+ doped crystalline semiconductor layer 330 formed on the front surface of the substrate, the passivation layers 310 and 320 formed on the front surface of the substrate, the rear electrode layer 240 and the passivation layers 220 and 230 on the rear surface of the substrate includes

유전체층인 패시베이션층(310,320)은 반사방지막으로 보통 실리콘 질화물(SiNx)로 구성된 단일층일 수 있으나 이에 한정하지 않고, SiNx, SiOx, AlOx 등의 물질을 사용할 수 있으며, 이들 물질층이 포함된 다층으로 구현할 수도 있다. 이러한 반사방지막은 입사하는 빛을 반사를 억제하여 효율적인 광포획을 유도할 수 있으며, 아울러 실리콘 반도체 기판의 패시베이션으로도 가능하게 된다. 본 실시예에서의 유전체 두께 20 nm 내지 60 nm 가 가능하며, 바람직하게는 40 nm이며 이에 대한 수치는 반드시 제한적인 것은 아니다. The passivation layers 310 and 320, which are dielectric layers, are antireflection films and may be a single layer usually made of silicon nitride (SiN x ), but is not limited thereto , and materials such as SiN x , SiO x , AlO x may be used, and these material layers are included It can also be implemented in multiple layers. Such an anti-reflection film can induce efficient light capture by suppressing reflection of incident light, and also enables passivation of the silicon semiconductor substrate. In this embodiment, the dielectric thickness of 20 nm to 60 nm is possible, preferably 40 nm, and the numerical value thereof is not necessarily limited.

(b)단계에서는, 초단파 펄스 레이저를 이용하여 빠르게 스캔해 유전체층인 패시베이션층(310,320)에 결정질 실리콘층(330)을 오픈하는 개구 공정을 실시한다. (b)단계의 레이저 프로세서 1 (Laser process step 1)은 레이저를 이용한 유전체층(310,320)의 개구 공정이다. 패시베이션 효과의 저하를 최소화하며, 실리콘 웨이퍼 기판에 데미지를 주지 않고 유전체를 개구시키는 것이 바람직하다. 유전체 개구 구멍 크기 약 30㎛, 전체 개구 면적 1%이하로 제시하며 이에 대한 수치는 반드시 제한적인 것은 아니다. In step (b), an opening process of opening the crystalline silicon layer 330 in the passivation layers 310 and 320, which are dielectric layers, is performed by rapidly scanning using an ultrashort pulse laser. The laser process step 1 of step (b) is an opening process of the dielectric layers 310 and 320 using a laser. It is desirable to open the dielectric without damaging the silicon wafer substrate while minimizing the degradation of the passivation effect. It is suggested that the dielectric aperture size is about 30 μm and the total aperture area is 1% or less, and the numerical value thereof is not necessarily limited.

다음으로 (c)단계를 설명한다.Next, step (c) will be described.

(c)단계에서는, 유전체층의 개구부에 복수의 금속나노입자들로 이루어진 금속나노입자층을 형성한다. 이 단계는 레이저 프로세서 2 (Laser process step 2)로 표시되어 있으며, LIFT 공정으로써 상부셀과의 접촉저항 저감을 위해 유전체 개구 공정 시 이용한 동일 펄스 레이저를 이용하여 금속나노입자를 전사시키는 공정이다. In step (c), a metal nanoparticle layer made of a plurality of metal nanoparticles is formed in the opening of the dielectric layer. This step is marked as Laser process step 2, and is a LIFT process, in which the metal nanoparticles are transferred using the same pulse laser used in the dielectric opening process to reduce the contact resistance with the upper cell.

전사된 나노입자 형태는 도 3의 확대이미지로 확인 가능하다. 형상은 판상형태구형의 나노입자구조를 보인다. 분산 크기는 50㎛ 이하, 금속나노입자 크기는 횡방향 10 ~ 50 nm, 종방향(높이)는 LIFT 1회 시준 평균 5 ~ 10 nm 이다. The form of the transferred nanoparticles can be confirmed by the enlarged image of FIG. 3 . The shape shows a plate-shaped spherical nanoparticle structure. The dispersion size is 50 μm or less, the size of the metal nanoparticles is 10 to 50 nm in the transverse direction, and the average of 5 to 10 nm in the longitudinal direction (height) of one LIFT collimation.

본 발명에 따르면 나노입자 금속 접합은 접촉저항 저감을 용이하게 한다. 전사된 나노입자 금속으로도 접촉 저항을 낮추는 우수한 효과를 가질 수 있다. According to the present invention, nanoparticle metal bonding facilitates the reduction of contact resistance. The transferred nanoparticle metal may also have an excellent effect of lowering the contact resistance.

도 3은 본 발명의 실시예에 따른 2-스텝 레이저 프로세스 공정을 통해 얻어지는 기판의 탑뷰 이미지이다. 레이저 스캔 공정을 통해 닷 형태로 개구 면적 1%이하의 피치 500um 배열을 가지는 국부적 유전체 개구 및 금속 접촉 이미지를 확인할 수 있다. 3 is a top view image of a substrate obtained through a two-step laser process process according to an embodiment of the present invention. Through the laser scanning process, it is possible to confirm the local dielectric opening and the metal contact image having a pitch 500um arrangement of 1% or less of the opening area in a dot shape.

또한 도 3의 금속 접촉확대 이미지를 통해 금속나노입자 형태, 분산도, 커버리지를 확인할 수 있다. 형태는 판상형태구형으로 관측된다. 레이저 가공 빔사이즈 21㎛ 기준 2배 크기의 분산도를 보인다. 커버리지는 유전체 개구 영역 기준 40% 수준으로 LIFT 횟수 증가 시 커버리지 증가 가능하다. 도 3에서의 각 패턴 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기를 의미하는 것은 아니다. 이미지 설명을 위해 실제 크기보다 과장하여 표현하였다.In addition, the metal nanoparticle shape, dispersion, and coverage can be confirmed through the magnified image of the metal contact of FIG. 3 . The shape is observed as plate-shaped spherical. It shows a dispersion that is twice as large as the laser processing beam size of 21㎛. The coverage is 40% based on the dielectric opening area, and it is possible to increase the coverage when the number of LIFTs increases. Each pattern size in FIG. 3 may be exaggerated for explanation, and does not mean a size actually applied. For the purpose of explaining the image, it is exaggerated than the actual size.

다음으로 (d)단계를 설명한다.Next, step (d) will be described.

(c) 단계에서의 제조된 구조물에 상부 태양전지를 형성하게 되는데, 먼저 터널 재결합 접합 기능을 하며, 동시에 상부 태양전지의 양극 역할을 하면서 상부 태양전지에서 흡수되지 않은 장파장대역의 빛을 투과시켜 줄 수 있는 투명전극층(150)을 상기 기판의 전면에 증착한다.The upper solar cell is formed on the structure manufactured in step (c). First, it functions as a tunnel recombination junction, and at the same time serves as the anode of the upper solar cell and transmits light in the long wavelength band not absorbed by the upper solar cell. A transparent electrode layer 150 capable of being deposited on the entire surface of the substrate.

도 4a는 본 발명의 실시예에 따라서, 결합구조물을 제조시 이용되는 레이저 가공 장치의 구성도이고, 도 4b는 본 발명의 실시예에 따라서 2 스텝 레이저 프로세스를 진행하는 상황을 도시한 도면이다. 4A is a block diagram of a laser processing apparatus used for manufacturing a coupling structure according to an embodiment of the present invention, and FIG. 4B is a diagram illustrating a situation in which a two-step laser process is performed according to an embodiment of the present invention.

도 4a를 참조하면, 본 레이저 가공 장치는 펄스 레이저 발생을 위한 레이저 발진기를 포함한 광원, 그리고 광학계와 스테이지를 포함하여 구성되는데, 제어장치는 레이저 광원과 광학계, 스테이지를 제어한다. Referring to Figure 4a, the present laser processing apparatus is configured to include a light source including a laser oscillator for generating a pulsed laser, and an optical system and a stage, the control device controls the laser light source, the optical system, and the stage.

광학계는 레이저 빔의 크기를 확장하기 위한 빔 익스팬더, 레이저 빔을 원하는 위치에 조사하기 위한 Galvo 스캐너, 각종 미러들을 포함할 수 있다.The optical system may include a beam expander for expanding the size of the laser beam, a Galvo scanner for irradiating the laser beam to a desired position, and various mirrors.

스테이지에는 갭제어 지그(gap control jig)를 상부에 배치할 수 있다. 그리고 스테이지는 x,y,z 방향으로 이동가능하도록 구성되는 것은 자명하다. A gap control jig may be disposed on the stage. And it is obvious that the stage is configured to be movable in the x, y, and z directions.

전사 금속이 증착되어 있는 투명한 기판과 실리콘 셀 간의 거리는 마이크로미터 수준으로 정밀하게 제어되어야 한다. 이를 위해 기판과 실리콘 셀의 갭을 정밀하게 조절할 수 있는 장치를 포함한다. The distance between the transparent substrate on which the transfer metal is deposited and the silicon cell must be precisely controlled at the micrometer level. To this end, a device capable of precisely controlling the gap between the substrate and the silicon cell is included.

도 4b는 본 발명에서 제안한 two step laser process 공정 순서에 따른 레이저 가공 장치 중 스테이지 활용에 대한 설명을 포함한다. Figure 4b includes a description of the stage utilization of the laser processing apparatus according to the two step laser process process sequence proposed in the present invention.

도 4b를 참조하면, 제안된 장치는 국부적 유전체 개방 공정과 금속나노입자 전사 공정을 단계적으로 수행할 수 있다. 금속입자 전사공정을 통해 직경 50 nm 이하의 금속나노입자를 상온, 상압에서 증착하여, 터널 재결합 접합의 저항을 저감할 수 있다.Referring to FIG. 4B , the proposed device can perform a local dielectric opening process and a metal nanoparticle transfer process step by step. Through the metal particle transfer process, metal nanoparticles having a diameter of 50 nm or less are deposited at room temperature and pressure to reduce the resistance of the tunnel recombination junction.

레이저 프로세스 1 (Laser process step 1)에서는, 유전체 개구 공정 시 레이저 가공 장치 활용은 다음과 같이 이루어 진다. 진공흡착판을 이용하여 기판이 움직이지 않도록 고정 가능하다. 제어장치를 이용하여 진공흡착판 X,Y,Z 방향 이동을 통해 가공하고자 하는 기판위치 조정을 10㎛이하 수준으로 정밀 제어 가능하다. In the laser process step 1, the laser processing apparatus is utilized in the dielectric opening process as follows. It is possible to fix the substrate so that it does not move by using a vacuum suction plate. By using the control device, it is possible to precisely control the position of the substrate to be processed to a level of 10 μm or less by moving the vacuum suction plate in the X, Y, and Z directions.

레이저 프로세스 2 (Laser process step 2)는 LIFT 공정 시 레이저 가공 장치 활용은 다음과 같이 이루어 진다. 유전체가 개구 되어 있는 지점에 정확히 나노입자 금속 접합 형성을 위해 기판고정이 중요하고, 진공 흡착판의 역할이 중요시 되어진다. 또한 이때 추가로 gap control jig 레이저 가공 장치를 활용한다. 전사 금속이 증착 되어 있는 투명한 기판과 실리콘 기판 간의 거리는 5 ~ 30㎛ 수준으로 정밀 제어 된다. 전사 금속이 증착 되어 있는 투명한 기판과 실리콘 기판 간의 거리는 15 ㎛로 제시하며 이에 대한 수치는 반드시 제한적인 것은 아니다. In the laser process step 2, the laser processing equipment is used in the LIFT process as follows. It is important to fix the substrate to precisely form the nanoparticle metal junction at the point where the dielectric is open, and the role of the vacuum suction plate is important. In addition, a gap control jig laser processing device is used at this time. The distance between the transparent substrate on which the transfer metal is deposited and the silicon substrate is precisely controlled at the level of 5 ~ 30㎛. The distance between the transparent substrate on which the transfer metal is deposited and the silicon substrate is suggested to be 15 μm, and the numerical value is not necessarily limited thereto.

(실험예들)(Experimental examples)

도 5는 본 발명의 실시예에 따라서, 공정에 이용된 레이저의 사양의 일예이다. 레이저 종류는 Nd:YVO4 picosecond 펄스 레이저를 이용한 실험을 수행하였다. 5 is an example of specifications of a laser used in a process according to an embodiment of the present invention. For the laser type, an experiment was performed using a Nd:YVO4 picosecond pulse laser.

실험예1은 레이저 프로세스 스텝 1 으로서 유전체 개구에 관한 내용을 보여준다. 532nm 파장, 100 KHz주파수를 가진 피코초 펄스 레이저 시스템을 이용한다. 유전체 두께는 SiNx 30nm, SiOx 10nm로 총 40nm이다. 레이저 파워 및 펄스에 따른 유전체 개구 영역 분석, 레이저 파워 및 펄스에 따른 실리콘 데미지 분석을 통해 실리콘기판에 데미지 없이 유전체만 개구 시켜주는 프로세스 윈도우를 구하였다. 국부적 유전체 오프닝 홀 크기는 30 ㎛ 크기를 가지며 빠른 스캔 스피드로 전체 면적의 1% 이하로 유전체를 개구시킨다. 유전체 개구 최적화 조건은 laser fluence 0.42J/㎠, 3 pulses 였다. Experimental Example 1 shows the contents of the dielectric opening as the laser process step 1. A picosecond pulse laser system with a wavelength of 532 nm and a frequency of 100 KHz is used. The dielectric thickness is SiN x 30 nm and SiO x 10 nm, for a total of 40 nm. A process window that opens only the dielectric without damage to the silicon substrate was obtained through analysis of the dielectric opening area according to laser power and pulse, and silicon damage analysis according to laser power and pulse. The local dielectric opening hole size has a size of 30 μm, and the dielectric is opened to less than 1% of the total area at a fast scan speed. The dielectric aperture optimization condition was a laser fluence of 0.42J/cm 2 and 3 pulses.

실험예 2 는 레이저 프로세스 스텝 2 관련 실험이다. 도 6은 레이저 프로세스 스텝 2 후 결과 사진들로, metal LIFT 1 회 후 SEM 저배율, 고배율 이미지를 보여준다. 532nm 파장과 100kHz주파수를 가진 피코초 펄스 레이저 시스템을 이용하였다. 유전체가 개구 되어 있는 지점에 나노입자 금속 접합을 목적으로 한다. 10nm 두께로 금속이 증착 되어 있는 글라스에 레이저를 조사해 금속을 전사 시켜 금속나노입자층을 형성시킨다. LIFT 후 형상은 판상형태구형의 나노입자를 보인다. 분산된 크기는 ~50 ㎛, 금속나노입자 크기 횡방향 10 ~ 100 nm이며, 높이(종방향)은 LIFT 1회 기준 평균 5 ~ 10 nm 이다. 레이저 파워 세기가 높은 중심부는 수나노 ~ 수십나노 크기로 상대적으로 작은 나노입자 분포를 보이며, 레이저 파워 세기가 낮은 주변부는 수십나노에서 크게는 100나노 이상의 크기 분포를 보인다. LIFT 최적화 조건은 laser fluence 0.064J/㎠, 2 pulses 이다. Experimental Example 2 is an experiment related to laser process step 2. 6 is a result photograph after laser process step 2, and shows SEM low magnification and high magnification images after 1 metal LIFT. A picosecond pulsed laser system with a wavelength of 532 nm and a frequency of 100 kHz was used. The purpose of the nanoparticle metal bonding is at the point where the dielectric is open. A metal nano-particle layer is formed by irradiating a laser on the glass on which the metal is deposited to a thickness of 10 nm to transfer the metal. After LIFT, the shape of the nanoparticles is plate-shaped and spherical. The dispersed size is ~50 μm, the size of the metal nanoparticles is 10 ~ 100 nm in the transverse direction, and the height (longitudinal direction) is 5 ~ 10 nm on average based on one LIFT. The central region with high laser power intensity shows a relatively small distribution of nanoparticles ranging in size from several nanometers to several tens of nanometers, and the periphery with low laser power intensity shows a size distribution of tens of nanometers to 100 nanometers or more. LIFT optimization conditions were laser fluence 0.064J/cm2, 2 pulses.

실험예3은 레이저 프로세스 스텝 2에서 LIFT 횟수를 증가시킴에 따은 따른 결과 실험이다. 도 7은 레이저 프로세스 스텝 2 후 결과 사진들로, LIFT 회수를 증가함에 따라서 SEM 저배율, 고배율 이미지를 보여준다. 도 7에 의하면, LIFT 횟수 증가에 따라 커버리지가 증가 하는 것을 확인할 수 있다. 커버리지는 LIFT 1회 기준 40% 이상이며 LIFT 횟수가 증가 할 수록 커버리지는 20%씩 증가한다. SEM 고배율 이미지와 AFM 이미지를 통해 판상형태구형의 나노입자형상 관측 가능하다. Experimental Example 3 is a result experiment according to increasing the number of LIFTs in laser process step 2. 7 is a result photograph after laser process step 2, and shows SEM low magnification and high magnification images as the number of LIFT increases. Referring to FIG. 7 , it can be seen that the coverage increases as the number of LIFTs increases. The coverage is more than 40% based on one LIFT, and the coverage increases by 20% as the number of LIFTs increases. Through the high-magnification SEM image and the AFM image, it is possible to observe the nanoparticle shape of plate-shaped spherical shape.

도 8은 본 발명의 결합구조물의 접촉저항 측정 결과를 도시한 도면들이다. 유전체 개구(LCO) & LIFT 공정을 통한 접촉저항 결과를 ref와 비교 분석 하였다. 8 is a view showing a contact resistance measurement result of the coupling structure of the present invention. The results of contact resistance through dielectric aperture (LCO) & LIFT process were compared and analyzed with ref.

Ref 는 총 3개 조건으로 측정되었다. Ref(1)은 실리콘 에미터 n+층과 투명전극(TCO,ITO)과의 접합 시 접촉저항, Ref(2)는 유전체 개구 공정이 추가되어, 실리콘 에미터 n+층 위에 유전체 증착 및 유전체 개구(LCO) 후 투명전극 (TCO,ITO)과의 접합 시 접촉저항 그리고 Ref(3)은 Ref(2) 공정에서 투명전극과의 접합 전 증착기를 이용한 금속 접합이 추가된 기판이다. Ref was measured under three conditions. Ref(1) is the contact resistance when bonding the silicon emitter n+ layer and the transparent electrode (TCO, ITO), Ref(2) is the dielectric opening process added, dielectric deposition and dielectric opening (LCO) on the silicon emitter n+ layer ), contact resistance when bonding with transparent electrodes (TCO, ITO), and Ref(3) is a substrate with metal bonding added using an evaporator before bonding with transparent electrodes in Ref(2) process.

LCO & LIFT 공정의 접촉저항 결과를 분석해 보았을 때, 유전체 개구 (LCO) 파워에 따라 개구 면적이 3㎛씩 증가하지만 접촉저항 변화는 0.5~1mΩ㎠ 수준으로 거의 없었다. LIFT 횟수가 증가함에 따라 접촉저항은 감소하였으며, LIFT 횟수가 1회 증가함에 따라 ~ 1.5 배 감소하는 경향을 보인다.When analyzing the contact resistance results of the LCO & LIFT process, the opening area increased by 3 μm according to the dielectric aperture (LCO) power, but there was little change in the contact resistance at the level of 0.5 to 1 mΩcm2. As the number of LIFTs increased, the contact resistance decreased, and as the number of LIFTs increased by one, it showed a tendency to decrease by ~1.5 times.

LCO & LIFT 접촉저항 결과, Evaporator를 이용해 metal 증착한 Ref(3) 샘플과 비교했을 때 LIFT 3회에서 비슷한 수준의 접촉저항을 얻었다. As a result of LCO & LIFT contact resistance, a similar level of contact resistance was obtained in 3 LIFT cycles compared to the Ref(3) sample deposited with metal using an evaporator.

다음으로, 레이저 공정에 따른 소수반송자 수명,implied Voc 변화 및 터널 재결합 접합 형성에 따른 J0e 값 변화를 분석 하였다. 도 9는 본 발명의 실험에서, opening fraction(%)이 증가함에 따른 소수반송자 수명(lifetime), implied Voc, J0e 의 변화를 도시한 그래프들이다. Next, the minority carrier lifetime, implied V oc change according to laser process, and J 0e value change according to tunnel recombination junction formation were analyzed. 9 is a graph showing changes in minority carrier lifetime, implied V oc, and J 0e as the opening fraction (%) increases in the experiment of the present invention.

소수반송자 수명, implied Voc는 QSSPC 측정으로 얻어질 수 있으며 J0e는 QSSPC에서 얻은 데이터를 이용하여 다음과 같은 식으로 구해진다. The minority carrier lifetime, implied V oc , can be obtained by QSSPC measurement, and J 0e is obtained using the data obtained from QSSPC in the following way.

Figure pat00001
Figure pat00001

개구율(%)이 증가할수록 소수반송자 수명(lifetime), implied Voc 가 감소하지만 개구율 1% 미만에서는 감소율이 4% 이하의 값이 얻어진다. 개구율(%)에 따른 Joe 결과로부터 추출할 수 있는 J0met 값은 ~2000 fA/㎠ 수준으로 문헌상에 보고 된 수치와 유사하다. As the aperture ratio (%) increases, the minority carrier lifetime (lifetime) and implied V oc decrease, but when the aperture ratio is less than 1%, a value of 4% or less is obtained. J 0met value that can be extracted from the J oe result of the opening ratio (%) is similar to the value reported in the literature to ~ 2000 fA / ㎠ level.

이상, 첨부된 도면을 참조로 하여 본 명세서의 실시예를 설명하였지만, 본 명세서가 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다. As mentioned above, although the embodiments of the present specification have been described with reference to the accompanying drawings, those skilled in the art to which this specification belongs can realize that the present invention may be embodied in other specific forms without changing the technical spirit or essential features thereof. you will be able to understand Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (10)

탠덤 태양전지에 있어서,
제1 태양전지부; 제2 태양전지부; 및 제1 태양전지부와 상기 제2 태양전지부를 결합하는 결합구조물을 포함하되,
상기 결합 구조물은,
결정질 실리콘층;
상기 결정질 실리콘층을 오픈하는 복수의 개구부를 가지는 절연층;
오픈된 복수의 개구부의 상기 결정질 실리콘층 상부에 형성된 복수의 금속입자들을 포함하는 금속나노입자층; 및
상기 절연층과 상기 개구부를 덮는 투명도전층을 포함하되,
상기 금속나노입자들은 레이저를 이용하여 투명기판 하부에 형성된 금속층에 조사함으로써 전사하는 방식으로 제조된 것을 특징으로 하는 탠덤 태양전지.
In the tandem solar cell,
a first solar cell unit; a second solar cell unit; and a coupling structure for coupling the first solar cell unit and the second solar cell unit,
The bonding structure is
crystalline silicon layer;
an insulating layer having a plurality of openings for opening the crystalline silicon layer;
a metal nano-particle layer including a plurality of metal particles formed on the crystalline silicon layer of the plurality of open openings; and
A transparent conductive layer covering the insulating layer and the opening,
The tandem solar cell, characterized in that the metal nanoparticles are prepared by transferring the metal by irradiating the metal layer formed under the transparent substrate using a laser.
제1 항에 있어서, 상기 절연층은 실리콘 옥사이드층, 알루미나층 과 실리콘 나이트라이드층을 적어도 포함하는 탠덤 태양전지.
The tandem solar cell of claim 1 , wherein the insulating layer includes at least a silicon oxide layer, an alumina layer, and a silicon nitride layer.
제1 항에 있어서,
상기 결합구조물은 상기 제1 태양전지부 상부에 형성되어, 상기 제2 태양전지부와 결합되는 구조이고,
상기 제1 태양전지부는 실리콘 태양전지이고,
상기 제2 태양전지부는 페로브스카이트 태양전지, CIS 계 태양전지, CdTe계태양전지인 탠덤 태양전지.
According to claim 1,
The coupling structure is formed on the upper portion of the first solar cell unit, and has a structure coupled to the second solar cell unit,
The first solar cell unit is a silicon solar cell,
The second solar cell unit is a tandem solar cell that is a perovskite solar cell, a CIS-based solar cell, or a CdTe-based solar cell.
탠덤 태양전지의 제조방법에 있어서,
제1 태양전지부를 제조하는 단계; 태양전지부들을 결합하는 결합구조물을 제조하는 단계; 및 제2 태양전지부를 제조하는 단계를 포함하되,
상기 결합구조물을 제조하는 단계는,
결정질 실리콘층과 그 상부에 절연층을 형성하는 단계;
상기 결정질 실리콘층을 오픈하여 복수의 개구부를 형성하는 단계;
오픈된 복수의 개구부의 상기 결정질 실리콘층 상부에 형성된 복수의 금속입자들을 포함하는 금속나노입자층을 형성하는 단계; 및
상기 절연층과 상기 개구부를 덮는 투명도전층을 형성하는 단계를 포함하되,
상기 금속나노입자층을 형성하는 단계는, 레이저를 이용하여 투명기판 하부에 형성된 금속층에 조사함으로써 전사하는 방식으로 제조된 것을 특징으로 하는 탠덤 태양전지의 제조방법.
In the manufacturing method of a tandem solar cell,
manufacturing a first solar cell unit; manufacturing a coupling structure for coupling solar cell parts; and manufacturing a second solar cell unit,
The step of manufacturing the bonding structure,
forming a crystalline silicon layer and an insulating layer thereon;
forming a plurality of openings by opening the crystalline silicon layer;
forming a metal nanoparticle layer including a plurality of metal particles formed on the crystalline silicon layer of the plurality of open openings; and
Comprising the step of forming a transparent conductive layer covering the insulating layer and the opening,
The step of forming the metal nanoparticle layer is a method of manufacturing a tandem solar cell, characterized in that the transfer method is produced by irradiating the metal layer formed under the transparent substrate using a laser.
제4 항에 있어서,
상기 결정질 실리콘층을 오픈하여 복수의 개구부를 형성하는 단계는 레이저를 이용하여 수행하는 것을 특징으로 하는 탠덤 태양전지의 제조방법.
5. The method of claim 4,
The forming of the plurality of openings by opening the crystalline silicon layer is performed using a laser.
제5 항에 있어서,
상기 결정질 실리콘층을 오픈하여 복수의 개구부를 형성하는 단계와, 상기 금속나노입자층을 형성하는 단계는 동일 레이저를 이용하여 연속 공정으로 진행하는 것을 특징으로 하는 탠덤 태양전지의 제조방법.
6. The method of claim 5,
A method of manufacturing a tandem solar cell, characterized in that the steps of opening the crystalline silicon layer to form a plurality of openings and forming the metal nanoparticle layer are performed in a continuous process using the same laser.
제6 항에 있어서,
상기 레이저 연속 공정에 이용되는 레이저 장치에는 스테이지 위에 투명기판을 지지하면서 샘플과 투명기판의 거리를 조절할 수 있는 갭제어 지그가 구비되는 것을 특징으로 하는 탠덤 태양전지의 제조방법.
7. The method of claim 6,
A method of manufacturing a tandem solar cell, characterized in that the laser device used in the laser continuous process includes a gap control jig capable of adjusting the distance between the sample and the transparent substrate while supporting the transparent substrate on the stage.
제4 항에 있어서,
상기 금속나노입자층을 형성하는 단계는, 레이저를 이용하여 투명기판 하부에 형성된 금속층에 조사하되 복수회 조사를 수행하는 것을 특징으로 하는 탠덤 태양전지의 제조방법.
5. The method of claim 4,
The forming of the metal nanoparticle layer comprises irradiating the metal layer formed on the lower part of the transparent substrate using a laser, but irradiating the metal layer a plurality of times.
제4 항에 있어서,상기 절연층은 알루미나층, 실리콘 옥사이드층과 실리콘 나이트라이드층을 적어도 포함하는 탠덤 태양전지의 제조방법.
The method of claim 4 , wherein the insulating layer includes at least an alumina layer, a silicon oxide layer, and a silicon nitride layer.
제4 항에 있어서,
상기 제1 태양전지부는 실리콘 태양전지이고,
상기 제2 태양전지부는 페로브스카이트 태양전지, CIS 계 태양전지, CdTe계태양전지인 탠덤 태양전지의 제조방법.




5. The method of claim 4,
The first solar cell unit is a silicon solar cell,
The second solar cell unit is a perovskite solar cell, a CIS-based solar cell, a method of manufacturing a tandem solar cell that is a CdTe-based solar cell.




KR1020200068324A 2020-06-05 2020-06-05 Tandem Solar cell and the method for manufacturing the same KR102442419B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200068324A KR102442419B1 (en) 2020-06-05 2020-06-05 Tandem Solar cell and the method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200068324A KR102442419B1 (en) 2020-06-05 2020-06-05 Tandem Solar cell and the method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20210151460A true KR20210151460A (en) 2021-12-14
KR102442419B1 KR102442419B1 (en) 2022-09-14

Family

ID=78935163

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200068324A KR102442419B1 (en) 2020-06-05 2020-06-05 Tandem Solar cell and the method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR102442419B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234627A1 (en) * 2022-05-30 2023-12-07 한화솔루션(주) Tandem solar cell and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090042943A (en) * 2007-02-16 2009-05-04 미츠비시 쥬고교 가부시키가이샤 Photoelectric converter and method for fabricating the same
KR101006747B1 (en) * 2008-07-24 2011-01-10 (주)미래컴퍼니 Apparatus and method for manufacturing solar cell panel
KR20110025304A (en) * 2009-09-04 2011-03-10 한국철강 주식회사 Photovoltaic device and method for manufacturing the same
KR20140082012A (en) * 2012-12-21 2014-07-02 엘지전자 주식회사 Solar cell and method for manufacturing the same
KR101958930B1 (en) * 2017-11-22 2019-03-19 한국과학기술연구원 Monolithic solar cell and fabricating method thereof
KR20200006791A (en) * 2018-07-11 2020-01-21 울산과학기술원 Hetero junction tandem solar cell and manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090042943A (en) * 2007-02-16 2009-05-04 미츠비시 쥬고교 가부시키가이샤 Photoelectric converter and method for fabricating the same
KR101006747B1 (en) * 2008-07-24 2011-01-10 (주)미래컴퍼니 Apparatus and method for manufacturing solar cell panel
KR20110025304A (en) * 2009-09-04 2011-03-10 한국철강 주식회사 Photovoltaic device and method for manufacturing the same
KR20140082012A (en) * 2012-12-21 2014-07-02 엘지전자 주식회사 Solar cell and method for manufacturing the same
KR101958930B1 (en) * 2017-11-22 2019-03-19 한국과학기술연구원 Monolithic solar cell and fabricating method thereof
KR20200006791A (en) * 2018-07-11 2020-01-21 울산과학기술원 Hetero junction tandem solar cell and manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234627A1 (en) * 2022-05-30 2023-12-07 한화솔루션(주) Tandem solar cell and method for manufacturing same

Also Published As

Publication number Publication date
KR102442419B1 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
US9508886B2 (en) Method for making a crystalline silicon solar cell substrate utilizing flat top laser beam
KR102045001B1 (en) Solar cell and method for manufacturing the same
US20170236969A1 (en) Laser irradiation aluminum doping for monocrystalline silicon substrates
US20130130430A1 (en) Spatially selective laser annealing applications in high-efficiency solar cells
US20150270422A1 (en) Method for producing crystalline silicon solar cell, method for producing solar cell module, crystalline silicon solar cell, and solar cell module
US8241945B2 (en) Solar cells and methods of fabrication thereof
KR20100125375A (en) Improved junctions in substrate solar cells
TW201338184A (en) Solar cell, manufacturing method thereof, and solar cell module
US20130164883A1 (en) Laser annealing applications in high-efficiency solar cells
CN111108609A (en) Interdigitated back contact solar cell with p-type conductivity
KR102644518B1 (en) Method for manufacturing solar cell
US20100313945A1 (en) Solar Cell Substrate and Methods of Manufacture
KR102442419B1 (en) Tandem Solar cell and the method for manufacturing the same
Trinh et al. Progress in and potential of liquid phase crystallized silicon solar cells
CN114256385B (en) TBC back contact solar cell and preparation method thereof
TW201205679A (en) Improved method for manufacturing a photovoltaic cell comprising a TCO layer
CN113314627B (en) PERC solar cell and preparation method thereof
US20130344637A1 (en) Mask for manufacturing dopant layer of solar cell, method for manufacturing dopant layer of solar cell, and method for manufacturing dopant layer of solar cell using the mask
WO2014134515A1 (en) High-efficiency, low-cost silicon-zinc oxide heterojunction solar cells
US20240030371A1 (en) Photovoltaic cell and manufacturing method for photovoltaic cell
US10141467B2 (en) Solar cell and method for manufacturing the same
JP2014503130A (en) Solar cell and manufacturing method thereof
CN115483311A (en) Preparation method of solar cell
Mousumi et al. Localized laser printing and sintering of silver nanoparticles for silicon solar cell metallization
WO2012153640A1 (en) Photoelectric conversion element and solar cell

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant