KR20210149016A - 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법, 장치 및 컴퓨터프로그램 - Google Patents
인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법, 장치 및 컴퓨터프로그램 Download PDFInfo
- Publication number
- KR20210149016A KR20210149016A KR1020210170172A KR20210170172A KR20210149016A KR 20210149016 A KR20210149016 A KR 20210149016A KR 1020210170172 A KR1020210170172 A KR 1020210170172A KR 20210170172 A KR20210170172 A KR 20210170172A KR 20210149016 A KR20210149016 A KR 20210149016A
- Authority
- KR
- South Korea
- Prior art keywords
- biometric information
- event
- occurrence
- image
- data
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7282—Event detection, e.g. detecting unique waveforms indicative of a medical condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/742—Details of notification to user or communication with user or patient ; user input means using visual displays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/746—Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Physiology (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- General Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Primary Health Care (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Pulmonology (AREA)
- Quality & Reliability (AREA)
- Human Computer Interaction (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Image Analysis (AREA)
Abstract
인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법, 장치 및 컴퓨터프로그램이 개시된다. 본 발명의 다양한 실시예에 따른 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법은, 컴퓨팅 장치에 의해 수행되는 방법에 있어서, 시각화된 생체 정보 데이터를 수집하는 단계, 상기 시각화된 생체 정보 데이터를 이용하여 생체 정보 이미지를 생성하는 단계, 상기 생체 정보 이미지를 분석하는 단계 및 상기 생체 정보 이미지의 분석 결과에 따라 상기 사용자에 대한 이벤트 발생을 감지하는 단계를 포함한다.
Description
본 발명의 다양한 실시예는 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법, 장치 및 컴퓨터프로그램에 관한 것이다.
중환자실은 환자의 생존, 사망에 큰 영향을 미치며, 국내 의료비의 25%를 차지하는 중요한 보건의료체에도 중환자 전담 의료인의 부족, 병원/지역 간 질 편차, 환자 이송 중 높은 사망률 등 진료의 질과 효율성 측면에서 매우 낙후된 상황이다.
2018년 5월 22일 한국일보 기사에 의하면, 건강보험심사평가원이 지난 2016년 발표한 ‘2014년(1차)중환자실 적정성 평가결과’에 따르면, 우리나라 중환자실 전담전문의 1인당 중환자실 평균 병상수는 무려 44.7병상에 달하고, 상급종합 병원은 40.4병상, 종합병원은 48.9병상이다. 이와 같이 전담전문의의 1인당 평균 병상수가 높다보니 중환자실에 입원한 환자가 전문의 얼굴조차 보기 힘들다는 문제가 있다.
이렇다 보니 패혈증 등을 조기에 발견하지 못해 사망하는 일도 잇따르는 현실이고 심평원 조사에 따르면 우리나라 중환자실에 입원한 성인 환자 평균 사망률은 16.9%로 상급병원은 14.3%, 종합병원은 17.4%에 달한다.
중환자실은 생명 유지를 위한 필수 기능인 호흡과 심장 박동 등에 매우 큰 문제를 가지고 있는 환자들을 위한 곳이고, 24시간 주7일 365일 집중적인 치료를 받는 곳이며, 언제든 달라질 수 있는 집중 돌봄 환자들의 상태 변화를 놓치지 않기 위해서는 환자들의 생체 데이터를 실시간으로 측정, 분석해야 한다.
그러나, 각 의료기기들에서 생성되는 데이터는 종류도 많고 형식도 다양하고 생성되는 데이터의 양도 방대하여, 대규모의 복잡한 데이터 속에서 가치 있는 정보를 추출하기 어렵다는 문제가 있다.
본 발명이 해결하고자 하는 과제는 환자의 생체 정보를 측정하는 방대한 데이터를 분석하여 환자에게 발생되는 각종 이벤트와 이벤트 발생 가능성을 감지함으로써, 환자의 상태 변화에 대한 실시간 정보를 제공하는 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법, 장치 및 컴퓨터프로그램을 제공하는 것이다.
본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법은, 컴퓨팅 장치에 의해 수행되는 방법에 있어서, 시각화된 생체 정보 데이터를 수집하는 단계, 상기 시각화된 생체 정보 데이터를 이용하여 생체 정보 이미지를 생성하는 단계, 상기 생체 정보 이미지를 분석하는 단계 및 상기 생체 정보 이미지의 분석 결과에 따라 상기 사용자에 대한 이벤트 발생을 감지하는 단계를 포함할 수 있다.
상술한 과제를 해결하기 위한 본 발명의 다른 실시예에 따른 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 장치는, 하나 이상의 인스트럭션을 저장하는 메모리 및 상기 메모리에 저장된 상기 하나 이상의 인스트럭션을 실행하는 프로세서를 포함할 수 있고, 상기 프로세서는 상기 하나 이상의 인스트럭션을 실행함으로써, 시각화된 생체 정보 데이터를 수집하는 단계, 상기 시각화된 생체 정보 데이터를 이용하여 생체 정보 이미지를 생성하는 단계, 상기 생체 정보 이미지를 분석하는 단계 및 상기 생체 정보 이미지의 분석 결과에 따라 상기 사용자에 대한 이벤트 발생을 감지하는 단계를 포함하는 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법을 수행할 수 있다.
상술한 과제를 해결하기 위한 본 발명으 또 다른 실시예에 따른 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 컴퓨터프로그램은, 하드웨어인 컴퓨터와 결합되어, 시각화된 생체 정보 데이터를 수집하는 단계, 상기 시각화된 생체 정보 데이터를 이용하여 생체 정보 이미지를 생성하는 단계, 상기 생체 정보 이미지를 분석하는 단계 및 상기 생체 정보 이미지의 분석 결과에 따라 상기 사용자에 대한 이벤트 발생을 감지하는 단계를 포함하는 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법을 수행할 수 있도록 컴퓨터에서 독출가능한 기록매체에 저장될 수 있다.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명이 해결하고자 하는 과제는 환자의 생체 정보를 측정하는 방대한 데이터를 분석하여 환자에게 발생되는 각종 이벤트와 이벤트 발생 가능성을 감지함으로써, 환자의 상태 변화에 대한 실시간 정보를 제공한다는 이점이 있다.
또한, 환자의 위험 징후를 정확히 예측하기 위해서 환자들 상태를 24시 간 365일 실시간 모니터링 하고 인공지능 기반의 예측을 수행하여 이상 징후가 나타나면 담당 간호사 등에게 즉시 알람을 보내 사전에 대처하도록 함과 동시에 시각화 기능을 갖추어 경과를 한눈에 파악할 수 있도록 한다.
또한, 간호 인력의 환자 활력 정보에 대한 수작업 입력 등을 제거하고 환자 데이터의 실시간 처리를 보장함으로써 상대적으로 취약한 노령 중환자 진료의 질 향상에 기여할 수 있다.
또한, 중증환자의 입원 기간 단축 효과를 달성 가능함에 따라 국가 전체적인 중증환자 의료비용 감소가 가능하다는 이점이 있다.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 시스템의 구성도이다.
도 2는 본 발명의 다른 실시예에 따른 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 장치의 하드웨어 구성도이다.
도 3은 본 발명의 또 다른 실시예에 따른 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법의 순서도이다.
도 4는 다양한 실시예에서, 이벤트 발생 감지 장치가 생체 정보 데이터를 이미지화하는 구성을 도시한 도면이다.
도 5는 다양한 실시예에서, 이벤트 발생 감지 장치가 제1 인공지능 모델 및 제2 인공지능 모델을 학습하는 과정을 도시한 도면이다.
도 6은 다양한 실시예에서, 인공지능 모델을 이용하여 이벤트 발생 감지 방법의 순서도이다.
도 2는 본 발명의 다른 실시예에 따른 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 장치의 하드웨어 구성도이다.
도 3은 본 발명의 또 다른 실시예에 따른 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법의 순서도이다.
도 4는 다양한 실시예에서, 이벤트 발생 감지 장치가 생체 정보 데이터를 이미지화하는 구성을 도시한 도면이다.
도 5는 다양한 실시예에서, 이벤트 발생 감지 장치가 제1 인공지능 모델 및 제2 인공지능 모델을 학습하는 과정을 도시한 도면이다.
도 6은 다양한 실시예에서, 인공지능 모델을 이용하여 이벤트 발생 감지 방법의 순서도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야의 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
명세서에서 사용되는 "부" 또는 “모듈”이라는 용어는 소프트웨어, FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, "부" 또는 “모듈”은 어떤 역할들을 수행한다. 그렇지만 "부" 또는 “모듈”은 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. "부" 또는 “모듈”은 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 "부" 또는 “모듈”은 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 "부" 또는 “모듈”들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 "부" 또는 “모듈”들로 결합되거나 추가적인 구성요소들과 "부" 또는 “모듈”들로 더 분리될 수 있다.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 구성요소와 다른 구성요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 구성요소들의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들어, 도면에 도시되어 있는 구성요소를 뒤집을 경우, 다른 구성요소의 "아래(below)"또는 "아래(beneath)"로 기술된 구성요소는 다른 구성요소의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 구성요소는 다른 방향으로도 배향될 수 있으며, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.
본 명세서에서, 컴퓨터는 적어도 하나의 프로세서를 포함하는 모든 종류의 하드웨어 장치를 의미하는 것이고, 실시 예에 따라 해당 하드웨어 장치에서 동작하는 소프트웨어적 구성도 포괄하는 의미로서 이해될 수 있다. 예를 들어, 컴퓨터는 스마트폰, 태블릿 PC, 데스크톱, 노트북 및 각 장치에서 구동되는 사용자 클라이언트 및 애플리케이션을 모두 포함하는 의미로서 이해될 수 있으며, 또한 이에 제한되는 것은 아니다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.
본 명세서에서 설명되는 각 단계들은 컴퓨터에 의하여 수행되는 것으로 설명되나, 각 단계의 주체는 이에 제한되는 것은 아니며, 실시 예에 따라 각 단계들의 적어도 일부가 서로 다른 장치에서 수행될 수도 있다.
도 1은 본 발명의 일 실시예에 따른 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 시스템의 구성도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 시스템은 이벤트 발생 감지 장치(100), 사용자 단말(200) 및 외부 서버(300)를 포함할 수 있다.
여기서, 도 1에 도시된 인공지능 기반 이미지 분석을 통한 이벤트 발생 감지 시스템은 일 실시예에 따른 것이고, 그 구성요소가 도 1에 도시된 실시예에 한정되는 것은 아니며, 필요에 따라 부가, 변경 또는 삭제될 수 있다.
일 실시예에서, 이벤트 발생 감지 장치(100)는 사용자로부터 감지되는 생체 정보 데이터를 수집할 수 있다. 예를 들어, 이벤트 발생 감지 장치(100)는 사용자의 신체의 적어도 일부에 설치되며 사용자의 생체 정보를 감지하는 복수의 센서(예: 혈압 센서, 체온 센서, 맥박 센서 및 호흡수 센서 등)로부터 혈압 데이터, 체온 데이터, 맥박 데이터 및 호흡수 데이터 중 적어도 하나의 데이터를 포함하는 바이탈 사인(Vital sign) 데이터를 수집할 수 있다.
다양한 실시예에서, 이벤트 발생 감지 장치(100)는 외부로부터 생체 정보 데이터를 수집하되, 그래프와 같이 시각화된 생체 정보 데이터를 수집할 수 있다.
다양한 실시예에서, 이벤트 발생 감지 장치(100)는 외부로부터 스칼라 형태의 생체 정보 데이터를 수집할 수 있다. 그러나, 이에 한정되지 않고, 사용자의 생체 정보를 나타내는 다양한 형태의 데이터를 수집할 수 있다.
일 실시예에서, 이벤트 발생 감지 장치(100)는 시각화된 생체 정보 데이터를 이용하여 생체 정보 이미지를 생성할 수 있다. 예를 들어, 이벤트 발생 감지 장치(100)는 실시간으로 수집되는 그래프 형태의 생체 정보 데이터를 기 설정된 주기마다 캡쳐(Capture)하여 생체 정보 이미지를 생성할 수 있다.
다양한 실시예에서, 외부로부터 수집되는 생체 정보 데이터가 스칼라 형태인 경우, 스칼라 형태의 생체 정보 데이터를 그래프 형태로 시각화 하고, 시각화된 생체 정보 데이터를 캡쳐하여 생체 정보 이미지를 생성할 수 있다. 그러나, 이에 한정되지 않는다.
일 실시예에서, 이벤트 발생 감지 장치(100)는 생체 정보 이미지를 분석하여 사용자에 대한 이벤트 발생 감지를 판단할 수 있다. 예를 들어, 이벤트 발생 감지 장치(100)는 이미지 분석 모델을 이용하여 생체 정보 이미지를 분석함으로써, 사용자에 대한 이벤트 발생 감지를 판단할 수 있다.
여기서, 이미지 분석 모델은 특정 이미지와 특정 이미지가 가리키는 정보를 학습 데이터로써 기 학습된 인공지능 모델(예: 제1 인공지능 모델 및 제2 인공지능 모델)일 수 있다. 그러나, 이에 한정되지 않는다.
또한, 여기서 이벤트는 사용자로부터 발생되는 이상 상태를 의미한다. 예를 들어, 이벤트는 저혈량성 쇼크, 심인성 쇼크, 폐쇄성 쇼크 및 분배성 쇼크 중 어느 하나 이상을 포함할 수 있다.
일 실시예에서, 이벤트 발생 감지 장치(100)는 사용자의 생체 정보 데이터, 생체 정보 이미지, 이벤트 발생 여부 등과 같은 이벤트와 관련된 정보를 출력하는 사용자 인터페이스(User interface, UI)를 제공할 수 있다.
일 실시예에서, 사용자 단말(200)은 사용자 단말(200)의 적어도 일부분에 디스플레이를 포함할 수 있으며, 네트워크(400)를 통해 이벤트 발생 감지 장치(100)로부터 제공되는 각종 정보(예: 이벤트 발생 여부에 대한 정보 및 이벤트 발생 가능성에 대한 정보)를 출력할 수 있다. 예를 들어, 사용자 단말(200)은 이벤트 발생 감지 장치(100)로부터 제공되는 UI(예; 사용자의 생체 정보 및 이벤트 발생과 관련된 정보를 출력하는 UI)를 출력할 수 있으며, UI를 통해 이벤트 발생 감지 장치(100)로부터 제공되는 각종 정보를 출력할 수 있다.
다양한 실시예에서, 사용자 단말(200)은 스마트폰, 태블릿 PC, 노트북 데스크탑 및 키오스크 중 적어도 하나를 포함할 수 있다. 그러나, 이에 한정되지 않는다.
일 실시예에서, 외부 서버(300)는 네트워크(400)를 통해 이벤트 발생 감지 장치(100)와 유무선 연결될 수 있으며, 이벤트 발생 감지 장치(100)로부터 각종 정보(예: 이벤트 발생 여부에 대한 정보 및 이벤트 발생 가능성에 대한 정보)를 제공받아 저장할 수 있다.
여기서, 도 1에 도시된 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 시스템은 이벤트 발생 감지 장치(100)에서 생성되는 각종 데이터가 외부 서버(300)에 저장되는 형태로 기재되어 있으나, 이에 한정되지 않고, 이벤트 발생 감지 장치(100)가 별도의 저장 장치를 구비하여 별도로 구비된 저장장치에 각종 데이터를 저장할 수 있다.
다양한 실시예에서, 외부 서버(300)는 환자와 관련된 다양한 정보(예: 환자의 신상 정보, 환자의 질병 정보 등)를 저장할 수 있고, 저장된 환자와 관련된 데이터 중 어느 하나 이상의 데이터를 이벤트 발생 감지 장치(100)로 제공할 수 있다. 예를 들어, 외부 서버(300)는 병원 서버일 수 있으며, 이벤트 발생 감지 장치(100)로부터 특정 환자에 대한 정보 요청을 수신하는 경우, 특정 환자와 관련된 다양한 정보를 선택하여 이벤트 발생 감지 장치(100)로 제공할 수 있다. 이하, 도 2를 참조하여, 이벤트 발생 감지 장치(100)의 하드웨어 구성에 대해 설명하도록 한다.
도 2는 본 발명의 다른 실시예에 따른 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 장치의 하드웨어 구성도이다.
도 2를 참조하면, 본 발명의 다른 실시예에 따른 이벤트 발생 감지 장치(100)(이하, "컴퓨팅 장치(100)")는 프로세서(110) 및 메모리(120)를 포함할 수 있다. 다양한 실시예에서, 컴퓨팅 장치(100)는 네트워크 인터페이스(또는 통신 인터페이스)(미도시), 스토리지(미도시), 버스(bus)(미도시)를 더 포함할 수 있다.
일 실시예에서, 프로세서(110)는 컴퓨팅 장치(100)의 각 구성의 전반적인 동작을 제어할 수 있다. 프로세서(110)는 CPU(Central Processing Unit), MPU(Micro Processor Unit), MCU(Micro Controller Unit), 또는 본 발명의 기술 분야에 잘 알려진 임의의 형태의 프로세서를 포함하여 구성될 수 있다.
다양한 실시예에서, 프로세서(110)는 본 발명의 실시예들에 따른 방법을 실행하기 위한 적어도 하나의 애플리케이션 또는 프로그램에 대한 연산을 수행할 수 있다. 다양한 실시예에서, 프로세서(110)는 하나 이상의 코어(core, 미도시) 및 그래픽 처리부(미도시) 및/또는 다른 구성 요소와 신호를 송수신하는 연결 통로(예: 버스(bus) 등)를 포함할 수 있다.
다양한 실시예에서, 프로세서(110)는 프로세서(110) 내부에서 처리되는 신호(또는, 데이터)를 일시적 및/또는 영구적으로 저장하는 램(RAM: Random Access Memory, 미도시) 및 롬(ROM: Read-Only Memory, 미도시)을 더 포함할 수 있다. 또한, 프로세서(110)는 그래픽 처리부, 램 및 롬 중 적어도 하나를 포함하는 시스템온칩(SoC: system on chip) 형태로 구현될 수 있다.
일 실시예에서, 프로세서(110)는 메모리(120)에 저장된 하나 이상의 인스트럭션(instruction)을 실행함으로써, 도 3 내지 8과 관련하여 설명될 방법(인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법)을 수행할 수 있다. 예를 들어, 프로세서(110)는 메모리(120)에 저장된 하나 이상의 인스트럭션을 실행함으로써, 시각화된 생체 정보 데이터를 수집하는 동작, 시각화된 생체 정보 데이터를 이용하여 생체 정보 이미지를 생성하는 동작, 생체 정보 이미지를 분석하는 동작 및 생체 정보 이미지의 분석 결과에 따라 사용자에 대한 이벤트 발생을 감지하는 동작을 수행할 수 있다.
일 실시예에서, 메모리(120)는 각종 데이터, 명령 및/또는 정보를 저장할 수 있다. 메모리(120)에는 프로세서(110)의 처리 및 제어를 위한 프로그램들(하나 이상의 인스트럭션들)을 저장할 수 있다. 메모리(120)에 저장된 프로그램들은 기능에 따라 복수 개의 모듈들로 구분될 수 있다.
다양한 실시예에서, 본 발명의 실시예와 관련하여 설명된 방법 또는 알고리즘의 단계들은 하드웨어로 직접 구현되거나, 하드웨어에 의해 실행되는 소프트웨어 모듈로 구현되거나, 또는 이들의 결합에 의해 구현될 수 있다. 소프트웨어 모듈은 RAM(Random Access Memory), ROM(Read Only Memory), EPROM(Erasable Programmable ROM), EEPROM(Electrically Erasable Programmable ROM), 플래시 메모리(Flash Memory), 하드 디스크, 착탈형 디스크, CD-ROM, 또는 본 발명이 속하는 기술 분야에서 잘 알려진 임의의 형태의 컴퓨터 판독가능 기록매체에 상주할 수 있다.
본 발명의 구성 요소들은 하드웨어인 컴퓨터와 결합되어 실행되기 위해 프로그램(또는 애플리케이션)으로 구현되어 매체에 저장될 수 있다. 본 발명의 구성 요소들은 소프트웨어 프로그래밍 또는 소프트웨어 요소들로 실행될 수 있으며, 이와 유사하게, 실시 예는 데이터 구조, 프로세스들, 루틴들 또는 다른 프로그래밍 구성들의 조합으로 구현되는 다양한 알고리즘을 포함하여, C, C++, 자바(Java), 어셈블러(assembler) 등과 같은 프로그래밍 또는 스크립팅 언어로 구현될 수 있다. 기능적인 측면들은 하나 이상의 프로세서들에서 실행되는 알고리즘으로 구현될 수 있다. 이하, 도 3 내지 8을 참조하여, 컴퓨팅 장치(100)가 수행하는 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법에 대하여 설명하도록 한다.
도 3은 본 발명의 또 다른 실시예에 따른 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법의 순서도이다.
도 3을 참조하면, S110 단계에서, 컴퓨팅 장치(100)는 외부로부터 생체 정보 데이터를 수집할 수 있다. 예를 들어, 예를 들어, 컴퓨팅 장치(100)는 환자의 생체 정보를 감지하는 복수의 센서(예: 혈압 센서, 체온 센서, 맥박 센서 및 호흡 센서)로부터 생성된 혈압 데이터, 체온 데이터, 맥박 데이터 및 호흡수 데이터 중 적어도 하나의 데이터를 포함하는 바이탈 사인 데이터를 수집할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 환자의 생체 정보를 감지하는 복수의 센서(예: 혈압 센서, 체온 센서, 맥박 센서 및 호흡 센서)로부터 생성된 혈압 데이터, 체온 데이터, 맥박 데이터 및 호흡수 데이터 중 적어도 하나의 데이터를 포함하는 바이탈 사인 데이터를 시각화 하여 출력하는 생체 정보 출력 장치(예: 중환자실의 Bed-side 모니터링 장치)로부터 시각화된 바이탈 사인 데이터를 수집할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 환자의 생체 정보를 감지하는 복수의 센서로부터 혈압 데이터, 체온 데이터, 맥박 데이터 및 호흡수 데이터 중 적어도 하나의 데이터를 포함하는 바이탈 사인 데이터를 직접 수집하고, 직접 수집한 바이탈 사인 데이터를 그래프 형태로 시각화 할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 외부로부터 수집되는 생체 정보 데이터에 대하여 이상치 분석(Outlier analysis)(예: 정형화된 이상치 패턴이 있는 경우, 이상치를 제거, 마할라노비스 거리 등 표준편차를 이용한 필터를 사용하여 노이즈를 제거)을 수행할 수 있고, 후술되는 S120 단계에서 이상치 분석을 통해 노이즈가 제거된 생체 정보 데이터만을 이용하여 생체 정보 이미지를 생성할 수 있다.
S120 단계에서, 컴퓨팅 장치(100)는 S110 단계에서 수집한 시각화된 생체 정보 데이터를 이용하여 생체 정보 이미지를 생성할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 시각화된 생체 정보 데이터를 이용하여 생체 정보 이미지를 생성하고, 생체 정보 이미지를 기 설정된 시간 단위로 분할하여 이미지 분석 모델의 학습을 위한 복수의 단위 생체 정보 이미지를 생성할 수 있다. 이하, 도 4를 참조하여, 컴퓨팅 장치(100)가 수행하는 생체 정보 이미지 생성 방법에 대하여 설명하도록 한다.
도 4는 다양한 실시예에서, 이벤트 발생 감지 장치가 생체 정보 데이터를 이미지화하는 구성을 도시한 도면이다.
도 4를 참조하면, 다양한 실시예에서, 컴퓨팅(100) 장치는 외부로부터 수집한 생체 정보 데이터를 이용하여 생체 정보 이미지를 생성할 수 있고, 생체 정보 이미지를 분할하여 복수의 단위 생체 정보 이미지를 생성할 수 있다.
먼저, 컴퓨팅 장치(100)는 외부로부터 그래프 형태로 시각화된 생체 정보 데이터(예: 바이탈 사인 데이터)를 수집하거나, 외부로부터 스칼라 형태의 생체 정보 데이터를 수집하고 수집한 스칼라 형태의 생체 정보 데이터를 그래프 형태로 시각화하여 시각화된 생체 정보 데이터를 생성할 수 있다.
다양한 실시예에서 컴퓨팅 장치(100)는 기 설정된 제1 주기(T) 마다 사용자의 생체 정보 데이터를 수집할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 복수의 센서 각각으로부터 생체 정보 데이터가 감지되는 주기가 서로 상이한 경우, 복수의 센서 각각에 설정된 생체 정보 데이터 감지 주기 중 가장 짧은 주기를 가지는 센서를 기준으로 생체 정보 데이터를 수집할 수 있다. 그러나, 이에 한정되지 않는다.
이후, 컴퓨팅 장치(100)는 그래프 형태로 시각화된 생체 정보 데이터를 이용하여 생체 정보 이미지를 생성할 수 있다. 예를 들어, 컴퓨팅 장치(100)는 실시간으로 수집되는 그래프 형태의 생체 정보 데이터를 기 설정된 제2 주기마다 캡쳐(Capture)하여 생체 정보 이미지를 생성할 수 있다.
여기서, 컴퓨팅 장치(100)는 제2 주기를 제1 주기와 동일하게 설정하거나 제1 주기보다 짧게 설정할 수 있으나, 이에 한정되지 않는다.
이후, 컴퓨팅 장치(100)는 캡쳐하여 생성된 생체 정보 이미지를 분할하여 복수의 단위 생체 정보 이미지를 생성할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 기 설정된 시간 단위를 기준으로 생체 정보 이미지를 분할함으로써, 복수의 단위 생체 정보 이미지를 생성할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 기 설정된 개수로 생체 정보 이미지를 분할함으로써, 복수의 단위 생체 정보 이미지를 생성할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 이벤트 발생 여부 및 이벤트 발생 가능성에 기초하여 복수의 단위 생체 정보 이미지 각각의 시간 단위를 조절하거나, 둘 이상의 단위 생체 정보 이미지를 하나로 결합할 수 있다.
여기서, 컴퓨팅 장치(100)는 이미지 분석 모델에서 수행되는 이미지 분석의 입력 값으로써, 복수의 단위 생체 정보 이미지를 이용할 수 있으며, 이미지 분석 이후에는 이미지 분석 모델의 학습을 위한 학습 데이터로써 이용할 수 있다. 그러나, 이에 한정되지 않는다.
다양한 실시예에서, 컴퓨팅 장치(100)는 복수의 생체 정보 데이터(예: 그래프 형태의 바이탈 사인 데이터)를 이용하여 생체 정보 이미지를 생성하되, 생체 정보 데이터의 종류에 따라 서로 상이한 형태 및 패턴으로 시각화하거나 서로 상이한 색상으로 시각화 하여 생체 정보 이미지를 생성할 수 있다. 예를 들어, 컴퓨팅 장치(100)는 생체 정보 데이터가 혈압 데이터인 경우, 최저 혈압 값과 최고 혈압 값을 나타내는 막대 그래프 형태로 시각화할 수 있고, 생체 정보 데이터가 체온 데이터인 경우, 감지 시점의 체온 값을 꺾은 선 그래프 형태로 시각화할 수 있다.
또한, 컴퓨팅 장치(100)는 복수의 생체 정보를 꺾은 선 그래프 형태로 시각화 하되, 혈압 값을 파란색으로 설정하고, 체온 값을 빨간색으로 설정하며, 맥박수 값을 주황색으로 설정할 수 있다.즉, 컴퓨팅 장치(100)는 생체 정보 데이터의 종류별로 상이하게 시각화 하거나 색상의 차이를 둠으로써, 생체 정보 데이터별로 수치의 변화, 패턴의 변화를 확인할 수 있을 뿐만 아니라 각각의 생체 정보 데이터 간의 상관관계를 확인할 수 있으며, 이를 이용하여 이벤트 발생 여부와 이벤트 발생 가능성을 판단하는데 활용할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 복수의 생체 정보 데이터(예: 그래프 형태의 바이탈 사인 데이터)를 이용하여 생체 정보 이미지를 생성하되, 각각의 생체 정보 데이터를 개별적으로 이용하여 각각의 생체 정보 데이터에 대응되는 복수의 생체 정보 이미지를 생성할 수 있다.
다시 도 3을 참조하면, S130 단계에서, 컴퓨팅 장치(100)는 S120 단계에서 생성된 생체 정보 이미지에 대하여 이미지 분석을 수행할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 생체 정보 이미지 자체를 이미지 분석하거나, 생체 정보 이미지를 분할함으로써 생성된 복수의 단위 생체 정보 이미지 각각에 대하여 이미지 분석할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 기 학습된 인공지능 모델을 이용하여 생체 정보 이미지를 분석하되, 생체 정보 이미지를 분석함으로써 도출하고자 하는 분석 결과의 종류에 따라 인공지능 모델을 선택적으로 이용할 수 있다.
예를 들어, 컴퓨팅 장치(100)는 생체 정보 이미지를 분석함으로써 도출하고자 하는 분석 결과의 종류가 이벤트 발생 여부인 경우, 기 학습된 제1 인공지능 모델을 이용하여 생체 신호 이미지 및 복수의 단위 생체 정보 이미지를 이미지 분석할 수 있다. 여기서, 기 학습된 제1 인공지능 모델은 이벤트의 발생 여부가 레이블링(Labeling)된 복수의 생체 신호 이미지를 학습데이터로써 학습한 모델을 의미할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 생체 정보 이미지를 분석함으로써 도출하고자 하는 분석 결과의 종류가 이벤트 발생 가능성인 경우, 기 학습된 제2 인공지능 모델을 이용하여 생체 신호 이미지 및 복수의 단위 생체 정보 이미지를 이미지 분석할 수 있다. 여기서, 이벤트가 발생된 제1 시점을 기준으로, 제1 시점보다 소정의 시간 이전의 제2 시점에서의 생체 정보 이미지를 학습 데이터로써 학습한 모델을 의미할 수 있다.
여기서, 제1 인공지능 모델과 제2 인공지능 모델은 서로 다른 학습 데이터(예: 이벤트의 발생 여부가 레이블링된 복수의 생체 신호 이미지, 이벤트 발생 이전의 생체 정보 이미지)를 이용하여 학습된 모델인 것으로 기재되어 있으나, 이에 한정되지 않고, 하나의 인공지능 모델(예: CNN모델, NN 모델, RNN 모델)이 이벤트의 발생 여부가 레이블링된 복수의 생체 신호 이미지, 이벤트 발생 이전의 생체 정보 이미지를 모두 학습하여, 하나의 인공지능 모델이 제1 인공지능 모델과 제2 인공지능 모델의 기능을 모두 수행할 수 있다.
여기서, 제1 인공지능 모델과 제2 인공지능 모델은 서로 다른 학습 데이터(예: 이벤트의 발생 여부가 레이블링된 복수의 생체 신호 이미지, 이벤트 발생 이전의 생체 정보 이미지)를 이용하여 학습된 모델인 것으로 기재되어 있으나, 이에 한정되지 않고, 하나의 인공지능 모델(예: CNN모델, NN 모델, RNN 모델)이 이벤트의 발생 여부가 레이블링된 복수의 생체 신호 이미지, 이벤트 발생 이전의 생체 정보 이미지를 모두 학습하여, 하나의 인공지능 모델이 제1 인공지능 모델과 제2 인공지능 모델의 기능을 모두 수행할 수 있다. 이하, 도 5를 참조하여 컴퓨팅 장치(100)가 제1 인공지능 모델과 제2 인공지능 모델을 학습하는 과정을 설명하도록 한다.
다양한 실시예에서, 컴퓨팅 장치(100)는 외부로부터 스칼라 형태로 생체 정보 데이터가 수집되는 경우, 스칼라 형태의 생체 정보 데이터를 학습 데이터로써 기 학습된 제3 인공지능 모델을 이용하여 생체 정보 데이터를 분석할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 S120 단계에서 생성된 생체 정보 이미지를 분석하되, 생체 정보 이미지에 포함된 생체 정보 데이터의 시각화 형태 및 색상에 기초하여 해당 생체 정보 데이터의 종류를 판단하고, 판단된 생체 정보 데이터의 종류에 따라 서로 다른 인공지능 모델을 적용하여 이미지를 분석할 수 있다.
도 5는 다양한 실시예에서, 이벤트 발생 감지 장치가 제1 인공지능 모델 및 제2 인공지능 모델을 학습하는 과정을 도시한 도면이다.
다양한 실시예에서, 컴퓨팅 장치(100)는 생체 정보 이미지 및 복수의 단위 생체 정보 이미지를 이용하여 제1 인공지능 모델 및 제2 인공지능 모델을 학습시킬 수 있다.
먼저, 컴퓨팅 장치(100)는 생체 정보 이미지를 기 설정된 시간 단위로 분할하거나, 기 설정된 개수로 분할하여 복수의 단위 생체 정보 이미지를 생성할 수 있다.
이후, 컴퓨팅 장치(100)는 복수의 단위 생체 정보 이미지 중 학습 데이터로써 사용할 단위 생체 정보 이미지를 선택할 수 있다. 예를 들어, 컴퓨팅 장치(100)는 복수의 단위 생체 정보 이미지 중 이미지 분석을 통해 이벤트가 발생된 것으로 판단되는 시점을 포함하는 단위 생체 정보 이미지와 이벤트가 발생된 시점을 기준으로 이벤트바 발생된 시점 이전의 단위 생체 정보 이미지를 학습 데이터로써 선택할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 복수의 단위 생체 정보 이미지 중 이벤트와 관련된 생체 정보 이미지를 선택받는 UI를 사용자 단말(200)로 제공할 수 있으며, UI를 통해 복수의 단위 생체 정보 이미지 중 이벤트와 관련된 생체 정보 이미지를 선택받을 수 있다.
이후, 컴퓨팅 장치(100)는 학습 데이터로써 선택한 단위 생체 정보 이미지에 대하여 레이블링을 수행할 수 있다. 예를 들어, 컴퓨팅 장치(100)는 학습 데이터로써 선택한 단위 생체 정보 이미지 각각의 정답을 레이블링(예: 이벤트가 발생된 시점을 포함하는 단위 생체 정보 이미지를 class 1로 레이블링하고, 이벤트 발생과 관련 없는 단위 생체 정보 이미지를 class 0으로 레이블링)할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 이벤트와 관련된 생체 정보 이미지를 선택받는 UI를 통해 사용자로부터 이벤트와 관련된 생체 정보 이미지에 대한 레이블링을 직접 입력받을 수 있다. 예를 들어, 컴퓨팅 장치(100)는 전문의의 단말로 이벤트와 관련된 생체 정보 이미지를 선택받는 UI를 제공할 수 있으며, 복수의 단위 생체 정보 이미지 중 이벤트와 관련된 생체 정보 이미지를 선택받음과 동시에 선택받은 생체 정보 이미지의 레이블링 정보를 함께 입력받을 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 이벤트가 발생된 시점을 포함하는 단위 생체 정보 이미지에 대하여 이벤트의 발생 원인과 이벤트의 종류에 따라 서로 다르게 레이블링을 할 수 있다. 그러나, 이에 한정되지 않는다.
다양한 실시예에서, 컴퓨팅 장치(100)는 사용자의 생체 정보 이미지에 기초하여 이벤트가 발생되는 것으로 판단된 경우, 이벤트가 발생된 시점으로부터 소정의 시간 이전의 생체 정보 이미지들에 대하여 자동적으로 레이블링을 수행할 수 있다. 이때, 컴퓨팅 장치(100)는 이벤트 발생 시점으로부터 몇시간 이전의 생체 정보인지를 가리키는 정보도 함께 레이블링할 수 있다. 예를 들어, 컴퓨팅 장치(100)는 이벤트 발생 시점으로부터 6시간 전, 12시간 전, 24시간 전의 생체 정보 이미지를 서로 다른 클래스로 레이블링할 수 있다.
이후, 컴퓨팅 장치(100)는 레이블링된 단위 생체 정보 이미지를 이용하여 제1 인공지능 모델 및 제2 인공지능 모델을 지도학습(Supervised Learning) 시킬 수 있다. 예를 들어, 컴퓨팅 장치(100)를 레이블링 결과에 따라 획득된 학습 데이터(이벤트와 관련된 생체 정보 이미지)를 이용하여 지도학습 함으로써, 제1 인공지능 모델 및 제2 인공지능 모델을 학습시킬 수 있다. 그러나, 이에 한정되지 않고, 생체 정보 이미지를 이용하여 인공지능 모델을 학습시키는 다양한 방법이 적용될 수 있다.
다시 도 3을 참조하면, S140 단계에서, 컴퓨팅 장치(100)는 S130 단계에서 수행한 이미지 분석을 통해 도출된 분석 결과를 이용하여 이벤트 발생을 감지할 수 있다. 이하, 도 6을 참조하여, 컴퓨팅 장치(100)가 수행하는 이벤트 발생 감지 방법에 대하여 설명하도록 한다.
도 6은 다양한 실시예에서, 인공지능 모델을 이용하여 이벤트 발생 감지 방법의 순서도이다.
도 6을 참조하면, S210 단계에서, 컴퓨팅 장치(100)는 S130 단계에서 수행한 이미지 분석을 통해 도출된 분석 결과를 이용하여 이벤트 발생 여부를 판단할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 이벤트 발생 여부를 판단하고자 하는 생체 정보 이미지를 이벤트의 발생 여부가 레이블링된 복수의 생체 신호 이미지를 학습데이터로써 기 학습한 제1 인공지능 모델에 입력하고, 제1 인공지능 모델을 이용하여 도출된 분석 결과에 기초하여 이벤트의 발생 여부를 판단할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 이벤트 발생 여부를 판단하고자 하는 생체 정보 이미지와 이벤트가 발생된 경우에 감지되는 생체 정보 이미지를 비교함으로써, 이벤트 발생 여부를 판단할 수 있다.
S220 단계에서, 컴퓨팅 장치(100)는 S210 단계를 거쳐 이벤트가 발생된 것으로 판단되는 경우, 이벤트가 발생된 원인을 판단할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 제1 인공지능 모델을 이용하여 이벤트가 발생된 원인을 판단할 수 있다.
예를 들어, 컴퓨팅 장치(100)는 제1 인공지능 모델을 통해 도출된 분석 결과에 따라 이벤트가 발생된 것으로 판단되는 것에 응답하여, 복수의 단위 생체 정보 이미지 각각을 분석한 분석 결과로부터 생체 정보 이미지의 이미지 패턴을 검출할 수 있다.
이후, 컴퓨팅 장치(100)는 검출된 이미지 패턴을 이용하여 발생된 이벤트의 종류 및 원인을 판단할 수 있다. 예를 들어, 컴퓨팅 장치(100)는 검출된 이미지 패턴이 제1 패턴을 가지는 경우, 발생된 이벤트가 저혈량성 쇼크인 것으로 판단할 수 있고, 제2 패턴을 가지는 경우, 발생된 이벤트가 심인성 쇼크인 것으로 판단할 수 있다. 그러나, 이에 한정되지 않는다.
S230 단계에서, 컴퓨팅 장치(100)는 S210 단계를 거쳐 이벤트가 발생되지 않은 것으로 판단되는 경우, 이벤트 발생 가능성을 판단할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 이벤트 발생 가능성을 판단하고자 하는 생체 정보 이미지를 이벤트가 발생된 제1 시점을 기준으로, 제1 시점보다 소정의 시간 이전의 제2 시점에서의 생체 정보 이미지를 학습 데이터로써 기 학습한 제2 인공지능 모델에 입력하고, 제2 인공지능 모델을 이용하여 분석한 분석 결과에 기초하여 이벤트의 발생 가능성을 판단할 수 있다. 여기서, S210 단계 내지 S230 단계는 도 3의 S140 단계에 대응될 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 사용자의 생체 정보 이미지를 분석함으로써 이벤트 발생 가능성을 판단하되, 판단된 이벤트 발생 가능성이 기준 값 이상인 경우, 이벤트 발생 위험군으로 분류할 수 있다. 이후, 컴퓨팅 장치(100)는 이벤트 발생 위험군으로 분류된 사용자에 대하여 생체 정보 데이터 수집 및 생체 정보 이미지를 생성하는 주기를 짧게 설정함으로써, 보다 빈번하게 사용자의 상태를 모니터링할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 위험군으로 분류된 사용자에 대한 생체 정보 이미지와 해당 사용자의 실제 이벤트 발생 여부를 학습 데이터로 이용하여 제1 인공지능 모델 및 제2 인공지능 모델을 학습시킬 수 있다. 이를 통해, 컴퓨팅 장치(100)는 인공지능 모델을 이용하여 이벤트 발생 가능성에 따른 실제 이벤트 발생 여부를 판단할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 사용자와 관련된 정보, 사용자의 생체 정보 데이터 및 사용자에 대한 이벤트 발생 여부를 시각화하여 하나의 화면으로 구성하여 출력하는 사용자 인터페이스(User interface, UI)를 제공할 수 있다. 이를 통해, 컴퓨팅 장치(100)는 환자에 대한 정보와 상태 정보를 한눈에 볼 수 있는 대시보드를 제공함으로써, 환자의 상태를 모니터링하는 사용자가 보다 용이하게 환자의 상태를 모니터링하고, 이벤트 발생에 따라 빠르게 대처할 수 있도록 유도할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 이벤트가 발생되는 경우, UI를 통해 이벤트 발생 여부와 발생된 이벤트와 관련된 정보를 안내하는 안내 메시지 및 경고 신호를 출력할 수 있다. 예를 들어, 컴퓨팅 장치(100)는 생체 정보 이미지에 대한 이미지 분석을 통해 이벤트가 발생된 것으로 판단되는 경우, UI를 통해 이벤트와 관련된 정보를 안내하는 안내 메시지와 음성 형태의 경고 신호를 함께 출력함으로써, 환자의 상태를 실시간으로 모니터링하는 사용자가 이벤트 발생 여부를 빠르게 인지할 수 있도록 할 수 있다.
다양한 실시예에서, 컴퓨팅 장치(100)는 생체 정보 이미지를 통해 판단된 이벤트의 종류에 기초하여, 경고 신호가 출력되는 형태를 설정할 수 있다. 예를 들어, 컴퓨팅 장치(100)는 이벤트의 종류에 따라 출력되는 음성 데이터의 종류를 설정(예: 이벤트가 저혈량성 쇼크인 경우 제1 음성 데이터를 출력하고, 심인성 쇼크인 경우 제2 음성 데이터를 출력)하거나, 음성 데이터의 출력 시간을 설정할 수 있다. 그러나, 이에 한정되지 않는다.
다양한 실시예에서, 컴퓨팅 장치(100)는 복수의 사용자에 대한 정보와 복수의 사용자 각각에 대한 생체 정보 및 이벤트와 관련된 정보를 출력하는 UI를 제공할 수 있으며, UI를 통해 특정 사용자에 대한 정보 요청이 입력되는 경우, 특정 사용자에 대한 정보와 특정 사용자에 대한 생체 정보 및 이벤트와 관련된 정보만을 하나의 화면으로 구성하여 UI를 통해 출력할 수 있다. 예를 들어, 컴퓨팅 장치(100)는 특정 사용자에 대한 정보와 특정 사용자에 대한 생체 정보 및 이벤트와 관련된 정보만을 하나의 화면으로 구성하여 팝업창 형태로 출력할 수 있다. 그러나, 이에 한정되지 않는다.
전술한 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법은 도면에 도시된 순서도를 참조하여 설명하였다. 간단한 설명을 위해 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법은 일련의 블록들로 도시하여 설명하였으나, 본 발명은 상기 블록들의 순서에 한정되지 않고, 몇몇 블록들은 본 명세서에 도시되고 시술된 것과 상이한 순서로 수행되거나 또는 동시에 수행될 수 있다. 또한, 본 명세서 및 도면에 기재되지 않은 새로운 블록이 추가되거나, 일부 블록이 삭제 또는 변경된 상태로 수행될 수 있다.
이상, 첨부된 도면을 참조로 하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다.
100 : 이벤트 발생 감지 장치(컴퓨팅 장치)
200 : 사용자 단말
300 : 외부 서버
400 : 네트워크
200 : 사용자 단말
300 : 외부 서버
400 : 네트워크
Claims (3)
- 컴퓨팅 장치에 의해 수행되는 방법에 있어서,
사용자의 생체 정보를 그래프 형태로 시각화하여 출력하는 생체 정보 출력 장치로부터 상기 그래프 형태로 시각화된 생체 정보 데이터를 수집하는 단계;
상기 그래프 형태로 시각화된 생체 정보 데이터를 기 설정된 주기마다 캡쳐(Capture)하여 생체 정보 이미지를 생성하는 단계;
상기 생체 정보 이미지를 분석하는 단계; 및
상기 생체 정보 이미지의 분석 결과에 따라 검출된 이미지 패턴에 기초하여 상기 사용자에 대한 이벤트 발생을 감지하는 단계를 포함하며,
상기 생체 정보 이미지를 분석하는 단계는,
상기 생체 정보 이미지를 기 설정된 시간 단위로 분할하여 복수의 단위 생체 정보 이미지를 생성하는 단계; 및
이미지 분석 모델을 이용하여 상기 복수의 단위 생체 정보 이미지 각각에 대한 이미지 분석을 수행하는 단계를 포함하고,
상기 이벤트 발생을 감지하는 단계는,
상기 이벤트가 발생된 제1 시점을 기준으로, 상기 제1 시점보다 소정의 시간 이전의 제2 시점에서의 생체 정보 이미지를 학습 데이터로써 기 학습한 제2 인공지능 모델을 이용하여 분석한 분석 결과에 기초하여 상기 사용자에 대한 이벤트 발생 가능성을 판단하는 단계를 포함하고,
상기 생체 정보 이미지를 생성하는 단계는,
상기 이벤트 발생 가능성이 기준 값 이상인 경우, 상기 사용자를 이벤트 발생 위험군으로 분류하고 상기 그래프 형태로 시각화된 생체 정보 데이터를 캡쳐하는 주기가 짧아지도록 조절하는 단계를 포함하며,
상기 이벤트 발생을 감지하는 단계는,
상기 이벤트 발생 위험군으로 분류된 사용자의 생체 정보 이미지와 상기 사용자의 실제 이벤트 발생 여부를 학습 데이터로 하여 상기 제2 인공지능 모델을 학습시키고, 상기 학습된 제2 인공지능 모델을 이용하여 복수의 사용자 각각의 이벤트 발생 가능성에 따른 실제 이벤트 발생 여부를 판단하는 단계를 더 포함하는,
인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법. - 하나 이상의 인스트럭션을 저장하는 메모리; 및
상기 메모리에 저장된 상기 하나 이상의 인스트럭션을 실행하는 프로세서를 포함하고,
상기 프로세서는 상기 하나 이상의 인스트럭션을 실행함으로써,
제1 항의 방법을 수행하는, 장치. - 하드웨어인 컴퓨터와 결합되어, 제1 항의 방법을 수행할 수 있도록 컴퓨터에서 독출가능한 기록매체에 저장된 컴퓨터프로그램.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210170172A KR102494308B1 (ko) | 2019-12-20 | 2021-12-01 | 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법, 장치 및 컴퓨터프로그램 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190171436A KR102186486B1 (ko) | 2019-12-20 | 2019-12-20 | 인공지능 기반의 이미지 분석을 통한 의학적 이벤트 발생 감지 방법, 장치 및 컴퓨터프로그램 |
KR1020200162421A KR20210080208A (ko) | 2019-12-20 | 2020-11-27 | 인공지능 기반의 이미지 분석을 통한 이벤트 발생 감지 방법, 장치 및 컴퓨터프로그램 |
KR1020210170172A KR102494308B1 (ko) | 2019-12-20 | 2021-12-01 | 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법, 장치 및 컴퓨터프로그램 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200162421A Division KR20210080208A (ko) | 2019-12-20 | 2020-11-27 | 인공지능 기반의 이미지 분석을 통한 이벤트 발생 감지 방법, 장치 및 컴퓨터프로그램 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210149016A true KR20210149016A (ko) | 2021-12-08 |
KR102494308B1 KR102494308B1 (ko) | 2023-02-07 |
Family
ID=73779541
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190171436A KR102186486B1 (ko) | 2019-12-20 | 2019-12-20 | 인공지능 기반의 이미지 분석을 통한 의학적 이벤트 발생 감지 방법, 장치 및 컴퓨터프로그램 |
KR1020200162421A KR20210080208A (ko) | 2019-12-20 | 2020-11-27 | 인공지능 기반의 이미지 분석을 통한 이벤트 발생 감지 방법, 장치 및 컴퓨터프로그램 |
KR1020210170174A KR102494310B1 (ko) | 2019-12-20 | 2021-12-01 | 시각화된 바이탈 사인 데이터 분석을 통한 쇼크 발생 가능성 판단 방법, 장치 및 컴퓨터프로그램 |
KR1020210170175A KR102531993B1 (ko) | 2019-12-20 | 2021-12-01 | 이미지 분석 모델을 통한 생체 정보 이미지 분석 방법과 이를 이용한 쇼크 발생 예측 방법 |
KR1020210170172A KR102494308B1 (ko) | 2019-12-20 | 2021-12-01 | 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법, 장치 및 컴퓨터프로그램 |
KR1020210170173A KR102494309B1 (ko) | 2019-12-20 | 2021-12-01 | 인공지능 모델의 생체 정보 이미지 분석을 통한 쇼크 발생 감지 방법, 장치 및 컴퓨터프로그램 |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190171436A KR102186486B1 (ko) | 2019-12-20 | 2019-12-20 | 인공지능 기반의 이미지 분석을 통한 의학적 이벤트 발생 감지 방법, 장치 및 컴퓨터프로그램 |
KR1020200162421A KR20210080208A (ko) | 2019-12-20 | 2020-11-27 | 인공지능 기반의 이미지 분석을 통한 이벤트 발생 감지 방법, 장치 및 컴퓨터프로그램 |
KR1020210170174A KR102494310B1 (ko) | 2019-12-20 | 2021-12-01 | 시각화된 바이탈 사인 데이터 분석을 통한 쇼크 발생 가능성 판단 방법, 장치 및 컴퓨터프로그램 |
KR1020210170175A KR102531993B1 (ko) | 2019-12-20 | 2021-12-01 | 이미지 분석 모델을 통한 생체 정보 이미지 분석 방법과 이를 이용한 쇼크 발생 예측 방법 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210170173A KR102494309B1 (ko) | 2019-12-20 | 2021-12-01 | 인공지능 모델의 생체 정보 이미지 분석을 통한 쇼크 발생 감지 방법, 장치 및 컴퓨터프로그램 |
Country Status (1)
Country | Link |
---|---|
KR (6) | KR102186486B1 (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102186486B1 (ko) * | 2019-12-20 | 2020-12-03 | 주식회사 슈파스 | 인공지능 기반의 이미지 분석을 통한 의학적 이벤트 발생 감지 방법, 장치 및 컴퓨터프로그램 |
KR20230064391A (ko) * | 2021-11-03 | 2023-05-10 | 홍석우 | 포도당 대사 유전자 마이크로 어레이 칩 기반 pan 암세포 진단 키트를 이용한 생체신호 시각화 서비스 시스템 |
KR20240116213A (ko) | 2023-01-20 | 2024-07-29 | 사회복지법인 삼성생명공익재단 | 심인성 쇼크 환자의 사망 확률 분석 방법 및 분석 장치 |
WO2024205254A1 (ko) * | 2023-03-28 | 2024-10-03 | 주식회사 메디컬에이아이 | 인공지능 기반 감염병 모니터링 방법, 프로그램 및 장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101070389B1 (ko) | 2010-12-30 | 2011-10-06 | 김용중 | 환자 상태 모니터링 시스템 |
KR20180079208A (ko) * | 2016-12-30 | 2018-07-10 | 서울대학교산학협력단 | 대사이상 질환의 질병 위험도를 예측하는 장치 및 방법 |
JP2019097828A (ja) * | 2017-11-30 | 2019-06-24 | パラマウントベッド株式会社 | 異常報知装置、プログラム及び異常報知方法 |
JP2019097830A (ja) * | 2017-11-30 | 2019-06-24 | パラマウントベッド株式会社 | 異常判定装置、プログラム |
KR102186486B1 (ko) * | 2019-12-20 | 2020-12-03 | 주식회사 슈파스 | 인공지능 기반의 이미지 분석을 통한 의학적 이벤트 발생 감지 방법, 장치 및 컴퓨터프로그램 |
-
2019
- 2019-12-20 KR KR1020190171436A patent/KR102186486B1/ko active IP Right Grant
-
2020
- 2020-11-27 KR KR1020200162421A patent/KR20210080208A/ko active Application Filing
-
2021
- 2021-12-01 KR KR1020210170174A patent/KR102494310B1/ko active IP Right Grant
- 2021-12-01 KR KR1020210170175A patent/KR102531993B1/ko active IP Right Grant
- 2021-12-01 KR KR1020210170172A patent/KR102494308B1/ko active IP Right Grant
- 2021-12-01 KR KR1020210170173A patent/KR102494309B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101070389B1 (ko) | 2010-12-30 | 2011-10-06 | 김용중 | 환자 상태 모니터링 시스템 |
KR20180079208A (ko) * | 2016-12-30 | 2018-07-10 | 서울대학교산학협력단 | 대사이상 질환의 질병 위험도를 예측하는 장치 및 방법 |
JP2019097828A (ja) * | 2017-11-30 | 2019-06-24 | パラマウントベッド株式会社 | 異常報知装置、プログラム及び異常報知方法 |
JP2019097830A (ja) * | 2017-11-30 | 2019-06-24 | パラマウントベッド株式会社 | 異常判定装置、プログラム |
KR102186486B1 (ko) * | 2019-12-20 | 2020-12-03 | 주식회사 슈파스 | 인공지능 기반의 이미지 분석을 통한 의학적 이벤트 발생 감지 방법, 장치 및 컴퓨터프로그램 |
Also Published As
Publication number | Publication date |
---|---|
KR102186486B1 (ko) | 2020-12-03 |
KR20210151742A (ko) | 2021-12-14 |
KR102494309B1 (ko) | 2023-02-07 |
KR102494310B1 (ko) | 2023-02-07 |
KR20210151743A (ko) | 2021-12-14 |
KR102531993B1 (ko) | 2023-05-15 |
KR102494308B1 (ko) | 2023-02-07 |
KR20210150340A (ko) | 2021-12-10 |
KR20210080208A (ko) | 2021-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102494308B1 (ko) | 인공지능 기반의 이미지 분석 모델을 이용한 쇼크 발생 예측 방법, 장치 및 컴퓨터프로그램 | |
CN111863236B (zh) | 医疗机器合成数据和对应事件生成 | |
AU2022201530B2 (en) | Apparatus, systems and methods for predicting, screening and monitoring of encephalopathy/delirium | |
JP5841196B2 (ja) | ヒトの健康に関する残差ベースの管理 | |
US11195616B1 (en) | Systems and methods using ensemble machine learning techniques for future event detection | |
WO2020121308A9 (en) | Systems and methods for diagnosing a stroke condition | |
KR20070009478A (ko) | 온라인 모니터링용 생리적 신호들의 3d 해부학적 가시화 | |
EP2763029A1 (en) | Biological information monitor and biological information monitoring system | |
CA2866969C (en) | Method and system for determining hrv and rrv and use to identify potential condition onset | |
JP2017503569A (ja) | 患者モニタリングシステムのための医療行為データ表示 | |
US20210236023A1 (en) | TECHNOLOGY ADAPTED TO ENABLE IMPROVED COLLECTION OF INVOLUNTARY EYELlD MOVEMENT PARAMETERS, INCLUDING COLLECTION OF EYELlD MOVEMENT PARAMETERS TO SUPPORT ANALYSIS OF NEUROLOGICAL FACTORS | |
US20190159713A1 (en) | System and method for evaluating mental disease treatment contents using complex biometric information | |
CN117653053A (zh) | 一种通过智能手表预测健康风险的方法 | |
JP7339005B2 (ja) | 生体情報監視システム | |
US10172526B2 (en) | System and method of detection of sensor removal in a monitoring system | |
WO2018158704A1 (en) | Work management apparatus, method, and program | |
KR20220047187A (ko) | 피처 결합을 이용한 인지 기능 검사 방법 및 서버 | |
KR20210050424A (ko) | 딥러닝 컴퓨터 비전 기반 응급환자 쇼크 징후 발견 시스템 | |
US20160228067A1 (en) | System and method for intelligent monitoring of patient vital signs | |
JP2019504404A (ja) | 挙動学習臨床支援 | |
US20230377741A1 (en) | Patient monitoring system | |
EP4184522A1 (en) | A device and method for providing clinical information of a subject | |
US20240172990A1 (en) | Prepartum and postpartum monitoring and related recommended medical treatments | |
Szczepanski | Decision Support Systems for Real-Time Monitoring of Hospital Patients–Automated implementation of the National Early Warning Score II–a preclinical study | |
TW202326635A (zh) | 跌倒評估風險警示系統 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |