KR20210141144A - Metal sheet having excellent handling property - Google Patents

Metal sheet having excellent handling property Download PDF

Info

Publication number
KR20210141144A
KR20210141144A KR1020200058410A KR20200058410A KR20210141144A KR 20210141144 A KR20210141144 A KR 20210141144A KR 1020200058410 A KR1020200058410 A KR 1020200058410A KR 20200058410 A KR20200058410 A KR 20200058410A KR 20210141144 A KR20210141144 A KR 20210141144A
Authority
KR
South Korea
Prior art keywords
plate
thin metal
thin
metal plate
metal sheet
Prior art date
Application number
KR1020200058410A
Other languages
Korean (ko)
Inventor
쥰이치 니시다
Original Assignee
히타치 긴조쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히타치 긴조쿠 가부시키가이샤 filed Critical 히타치 긴조쿠 가부시키가이샤
Priority to KR1020200058410A priority Critical patent/KR20210141144A/en
Publication of KR20210141144A publication Critical patent/KR20210141144A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention aims to provide a metal sheet with excellent handling property, for a thin metal plate with a plate thickness of 0.5 mm or less. To this end, the metal sheet of the present invention is a metal sheet wherein a plate thickness is equal to or less than 0.5 mm and a half width of an intensity peak representing the maximum intensity in X-ray diffraction at a position where a thickness from the surface is 1/4 of the plate thickness is 0.3-1.0°. The metal sheet is, for example, a thin metal plate made of carbon steel, stainless steel, etc., or an iron based alloy thin plate made of Fe-Ni based alloy or Fe-Ni-Co based alloy, which is a metal sheet used for a metal component such as a mechanical component, an electric component, and an electronic component.

Description

핸들링성이 우수한 금속박판{Metal sheet having excellent handling property}Metal sheet having excellent handling property

본 발명은 각종 기계부품, 전기부품, 전자부품 등에 널리 사용되는 금속박판에 관한 것이다. The present invention relates to a metal thin plate widely used in various mechanical parts, electrical parts, electronic parts, and the like.

종래, 기계부품, 전기부품, 전자부품 등의 금속부품에 사용되는 금속박판으로서, 탄소강, 스테인리스강 등으로 이루어지는 「박강판」이나, Fe-Ni계 합금, Fe-Ni-Co계 합금 등으로 이루어지는 「철기 합금 박판」이 대표적이다. 이러한 금속박판으로 제작되는 금속부품은, 예를 들면 코일 형상으로 감긴 금속박판의 최종 소재(띠재)가 전개된 후에, 그것에 절단이나 성형 등의 각종 가공, 표면처리 등의 공정을 거쳐 제작된다(예를 들면 특허문헌 1). Conventionally, as a metal thin plate used for metal parts such as mechanical parts, electric parts, and electronic parts, "thin steel plate" made of carbon steel, stainless steel, etc., Fe-Ni alloy, Fe-Ni-Co alloy, etc. "Iron-based alloy thin plate" is representative. Metal parts made of such a thin metal plate, for example, after the final material (strip material) of the thin metal plate wound in a coil shape is developed, it is manufactured through various processing such as cutting or forming, and processes such as surface treatment (e.g. For example, Patent Document 1).

일본국 특허공개 제2002-193539호 공보Japanese Patent Laid-Open No. 2002-193539

상기 각 공정에서 금속박판이 반송될 때, 금속박판에 뜻하지 않은 충격이 가해지면, 금속박판이 절곡되어 변형되는 것이 우려된다. 최근, 각종 부품의 정치화(精緻化)에 의해 금속박판이 얇아지고 있어, 상기 절곡 변형에 대해서는, 종래 이상의 「내-절곡 변형성」을 필요로 한다. 그리고, 금속박판이 반송될 때, 자석에 의한 흡착을 이용한 것이라면, 금속박판이 갖는 「착자성」의 정도에 따라서는, 금속박판이 자석으로부터 뜻하지 않게 떨어지는 것이 우려된다. 그리고, 자석으로부터 떨어진 금속박판이 낙하하여 충격이 가해지는 것으로도 또한, 상기 절곡 변형이 우려된다. 이들 사실에 의해 금속박판의 「핸들링성」이 저하된다. When the thin metal plate is conveyed in each process, when an unexpected impact is applied to the thin metal plate, there is a concern that the thin metal plate is bent and deformed. In recent years, thin metal plates are becoming thinner due to the staticization of various parts, and the above-mentioned bending deformation requires "bending deformation resistance" higher than that of the prior art. And, when the thin metal plate is conveyed, if the suction by the magnet is used, depending on the degree of "magnetism" that the thin metal plate has, there is a concern that the metal thin plate unexpectedly falls from the magnet. In addition, the bending deformation is also concerned that the metal thin plate separated from the magnet falls and an impact is applied. Due to these facts, the "handling property" of the thin metal plate is lowered.

본 발명의 목적은 판두께가 0.5 ㎜ 이하인 얇은 금속박판을 대상으로 하여 핸들링성이 우수한 금속박판을 제공하는 것이다. An object of the present invention is to provide a thin metal plate having excellent handling properties for a thin metal plate having a plate thickness of 0.5 mm or less.

본 발명은 판두께가 0.5 ㎜ 이하이고, 표면으로부터의 깊이가 판두께의 1/4의 위치에서의 엑스선 회절에 있어서 최대 강도를 나타내는 강도 피크의 반치폭이 0.3∼1.0°인 금속박판이다. The present invention is a metal thin plate having a plate thickness of 0.5 mm or less and a half width of the intensity peak representing the maximum intensity in X-ray diffraction at a position of 1/4 of the plate thickness from the surface of 0.3 to 1.0°.

본 발명의 금속박판에 의하면, 얇더라도 절곡 변형되기 어려우며, 또한 착자성도 우수한 것으로부터, 판두께가 작은 금속박판의 핸들링성을 향상시킬 수 있다.According to the thin metal plate of the present invention, even if it is thin, it is difficult to bend and deform, and since it is also excellent in magnetization, handling properties of the thin metal plate having a small thickness can be improved.

도 1은 금속박판의 굽힘 시험의 양태를 나타내는 모식도이다. 1 is a schematic diagram showing an aspect of a bending test of a thin metal plate.

본 발명자들은 금속박판의 내-절곡 변형성과 착자성에 영향을 미치는 인자를 조사하였다. 그 결과, 금속박판을 굽혔을 때의 「스프링백(굽힘 후 위치로부터의 돌아오는 양)」이 큼으로써, 금속박판의 내-절곡 변형성이 향상되는 것을 알 수 있었다. 또한, 금속박판의 「최대자속밀도」가 큼으로써, 금속박판의 착자성이 향상되는 것을 알 수 있었다. 그리고, 스프링백 및 최대자속밀도의 값이 금속박판의 「내부 변형」에 의존하며, 또한 이 내부 변형을 후술하는 「엑스선 회절에 있어서의 강도 피크의 반치폭」의 지표값으로 정량화 가능한 것으로부터, 이들 지표값을 최적화함으로써 금속박판의 핸들링성을 재현성 좋게 향상시킬 수 있는 것을 밝혀내었다. The present inventors investigated the factors affecting the bending deformability and magnetization of the thin metal plate. As a result, it was found that the bending deformation resistance of the thin metal plate was improved because the “springback (the amount of return from the position after bending)” when the thin metal plate was bent was large. In addition, as the "maximum magnetic flux density" of the thin metal plate was large, it was found that the magnetization of the thin metal plate was improved. In addition, the values of springback and maximum magnetic flux density depend on the "internal strain" of the thin metal plate, and this internal strain can be quantified as an index value of the "full width at half maximum in X-ray diffraction", which will be described later. It has been found that the handling properties of thin metal plates can be improved with good reproducibility by optimizing the index values.

먼저, 금속박판의 절곡 변형의 난이(難易)는 금속박판을 굽혔을 때의 스프링백으로 평가할 수 있다. 즉, 스프링백이 큼으로써, 금속박판이 절곡되어도 원래의 형상으로 돌아가기 쉽다. 그리고, 특히 판두께가 0.5 ㎜ 이하인 "얇은" 금속박판에 있어서는, 실온에 있어서의 60°굽힘 시험을 행하였을 때의 스프링백을 대략 「25°이상」으로 함으로써, 금속박판이 반송되는 환경에서 상정되는 충격에 대해, 금속박판을 과잉으로(감각적으로) 고강도화하지 않더라도, 절곡 변형을 충분히 억제할 수 있는 것을 알 수 있었다. 상기 스프링백을 대략 「29°이상」으로 하면, 보다 충분하다. 그리고, 스프링백은 금속박판의 내부 변형에 의존하여, 이 내부 변형이 클수록 스프링백이 커진다. 따라서, 금속박판에 적정한 내부 변형을 도입함으로써, 상기 「25°이상」의 스프링백으로 조정할 수 있다. First, the difficulty of bending deformation of the thin metal plate can be evaluated as a springback when the thin metal plate is bent. That is, since the springback is large, it is easy to return to the original shape even if the thin metal plate is bent. And, in particular, in the case of a "thin" metal sheet having a plate thickness of 0.5 mm or less, the springback when a 60° bending test at room temperature is approximately “25° or more” is assumed in an environment in which the thin metal sheet is conveyed. It was found that bending deformation can be sufficiently suppressed even without excessively (sensibly) strengthening the metal thin plate against the impact. If the springback is approximately "29 degrees or more", it is more sufficient. And, the springback depends on the internal deformation of the thin metal plate, the greater the internal deformation, the greater the springback. Therefore, by introducing an appropriate internal strain to the thin metal plate, the springback of “25° or more” can be adjusted.

또한, 금속박판의 착자의 난이는 금속박판의 최대자속밀도로 평가할 수 있다. 즉, 최대자속밀도가 큼으로써 금속박판은 착자하기 쉽다. 그리고, 판두께가 0.5 ㎜ 이하인 금속박판에 있어서, 외부 인가자장이 2,000 A/m일 때의 최대자속밀도를 대략 「0.1 T 이상」으로 함으로써, 금속박판이 자석에 의한 흡착을 이용하여 반송되는 환경에 대응한 충분한 착자성을, 감각에 의지하지 않고 금속박판에 부여할 수 있는 것을 알 수 있었다. 상기 최대자속밀도를 대략 「0.3 T 이상」으로 하면, 보다 충분하다. 그리고, 최대자속밀도도 또한, 금속박판의 내부 변형에 의존하여, 이 내부 변형이 작을수록 최대자속밀도가 커진다. 따라서, 금속박판에 적정한 내부 변형을 도입함으로써, 다양한 성분 조성을 갖는 금속박판의 최대자속밀도를 상기 「0.1 T 이상」으로 조정할 수 있다. In addition, the difficulty of magnetization of the thin metal plate can be evaluated by the maximum magnetic flux density of the thin metal plate. That is, since the maximum magnetic flux density is large, the thin metal plate is easily magnetized. And, in the thin metal plate having a plate thickness of 0.5 mm or less, the maximum magnetic flux density when the external magnetic field is 2,000 A/m is approximately “0.1 T or more”, so that the thin metal plate is conveyed using the adsorption by the magnet. It was found that sufficient magnetic properties corresponding to If the maximum magnetic flux density is approximately "0.3 T or more", it is more sufficient. And, the maximum magnetic flux density also depends on the internal strain of the thin metal plate, and the smaller the internal strain, the larger the maximum magnetic flux density. Therefore, by introducing an appropriate internal strain to the thin metal plate, the maximum magnetic flux density of the thin metal plate having various component compositions can be adjusted to the above “0.1 T or more”.

그리고, 상기 금속박판의 내부 변형을 후술하는 「엑스선 회절에 있어서의 강도 피크의 반치폭」의 지표값으로 정량화 가능한 것으로부터, 우수한 내-절곡 변형성과 착자성을 동시에 달성하기에 최적인 내부 변형의 도입 상태를 "수치적으로" 나타낼 수 있어, 금속박판의 핸들링성을 재현성 좋게 향상시킬 수 있다.And, since the internal strain of the metal thin plate can be quantified as an index value of “the half width of the intensity peak in X-ray diffraction” to be described later, the best internal strain is introduced to achieve excellent bending deformability and magnetization at the same time The state can be expressed "numerically", so that the handling properties of the thin metal plate can be improved with good reproducibility.

반치폭(full-width-at-half-maximum;FWHM)이란, 산모양 함수의 퍼짐 정도를 나타내는 지표를 말한다. 그리고, 본 발명에 있어서는 금속으로부터 얻어지는 엑스선 회절 스펙트럼의 강도 피크에 있어서, 그 절반의 강도값에 있어서의 양끝을 연결한 폭을 말하는 것으로, 결정립내의 변형 분포를 평가하는 값이다. 그리고, 이 반치폭이 클수록 내부 변형이 큰 상태이다. The full-width-at-half-maximum (FWHM) refers to an index indicating the degree of spread of the mountain-shaped function. Incidentally, in the present invention, in the intensity peak of the X-ray diffraction spectrum obtained from the metal, it refers to the width connecting both ends at half the intensity value, and is a value for evaluating the strain distribution in the crystal grain. And it is a state with a large internal distortion, so that this half width is large.

그리고, 금속박판으로부터 얻어지는 X선 회절 스펙트럼에는 통상 복수의 강도 피크가 확인되는 바, 강도 피크의 반치폭에 의해 금속박판의 변형 분포를 "수치적으로" 평가할 때, 피크 높이가 낮은(즉, 작은 결정면에 상당하는) 강도 피크의 반치폭은 금속박판의 "전체적인" 내부 변형을 반영하고 있지 않은 경향이 있다. 따라서, 금속박판에서 보다 정확하고 재현성 좋은 내부 변형(핸들링성)을 실현하기 위해, 본 발명에서는 최대 강도를 나타내는 강도 피크의 반치폭을 채용한다. 이 최대 강도를 나타내는 강도 피크로서, 예를 들면 소재가 페라이트계 스테인리스강이나, Ni량이 대략 5 질량% 이상 20 질량% 이하인 Fe-Ni계 합금, Fe-Ni-Co계 합금이라면, 실시예에 나타내는 바와 같이, bcc상의 (211) 결정면의 강도 피크일 수 있다. 또한, 소재가 Ni량이 대략 20 질량% 초과 50 질량% 이하인 Fe-Ni계 합금, Fe-Ni-Co계 합금이라면, 실시예에 나타내는 바와 같이, fcc상의 (200) 결정면의 강도 피크일 수 있다.And, in the X-ray diffraction spectrum obtained from the metal thin plate, a plurality of intensity peaks are usually identified, and when the strain distribution of the metal thin plate is evaluated "numerically" by the half width of the intensity peak, the peak height is low (that is, a small crystal plane). The half width of the intensity peak (corresponding to . Therefore, in order to realize a more accurate and reproducible internal deformation (handling property) in a thin metal plate, the half width of the intensity peak showing the maximum strength is adopted in the present invention. As the intensity peak showing this maximum strength, for example, if the material is a ferritic stainless steel, an Fe-Ni alloy having an Ni content of 5 mass% or more and 20 mass% or less, a Fe-Ni-Co alloy, As shown, it may be an intensity peak of the (211) crystal plane of the bcc phase. In addition, if the material is an Fe-Ni-based alloy or a Fe-Ni-Co-based alloy in which the amount of Ni is greater than about 20% by mass and not more than 50% by mass, as shown in Examples, it may be the strength peak of the (200) crystal plane of the fcc phase.

또한, 본 발명의 경우, 상기 반치폭을 측정하는 금속박판의 위치는, 그 「표면(압연면)으로부터의 깊이가 판두께의 1/4의 위치」로 한다. 통상, 금속박판이 압연에 의해 제작되는 것을 생각할 때, 금속박판에 도입된 내부 변형은 그의 두께방향에서 상이할 수 있는 바, 금속박판의 표면이나 판두께 중앙에서는 판두께의 다른 위치에 비해 내부 변형이 "국소적"으로 변동되기 쉽기 때문에, 반치폭의 측정에 적합하지 않다. In addition, in the case of the present invention, the position of the thin metal plate for measuring the half width is "a position where the depth from the surface (rolling surface) is 1/4 of the plate thickness". In general, when considering that a thin metal plate is manufactured by rolling, the internal deformation introduced to the thin metal plate may be different in its thickness direction, and the internal deformation of the surface or the center of the plate thickness on the surface of the thin metal plate compared to other positions of the plate thickness Since this "local" fluctuates easily, it is not suitable for the measurement of the full width at half maximum.

그리고, 본 발명의 판두께가 0.5 ㎜ 이하인 금속박판의 경우, 그 표면으로부터의 깊이가 판두께의 1/4의 위치에서의 상기 반치폭을 「0.3°이상」으로 함으로써, 금속박판의 내부 변형이 적당히 커져, 상기 스프링백을 「25°이상」으로 하는 것에 효과적이다. 단, 상기 반치폭이 지나치게 커지면, 내부 변형의 국부적인 편차가 커질 뿐 아니라, 금속부품까지의 제조공정에서 프레스 성형공정이 들어가는 경우에, 형상 동결성이 저하되어(예를 들면, 상기 스프링백이 「50°초과」라고 하는 커다란 값이 되어), 프레스 변위량의 조정이나 온간 성형 등으로의 배려를 필요로 한다. 그리고, 상기 반치폭을 「1.0°이하」로 함으로써, 금속박판의 내부 변형이 적당히 작아져, 상기 최대자속밀도를 「0.1 T 이상」으로 하기에 충분하다. 따라서, 본 발명의 금속박판은 표면으로부터의 깊이가 판두께의 1/4의 위치에서의 엑스선 회절에 있어서 최대 강도를 나타내는 강도 피크의 반치폭을 「0.3∼1.0°」로 한다. 바람직하게는 「0.4°이상」이고, 보다 바람직하게는 「0.5°이상」이다. 더욱 바람직하게는 「0.6°이상」이다. 또한, 바람직하게는 「0.9°이하」이고, 보다 바람직하게는 「0.8°이하」이다. 더욱 바람직하게는 「0.7°이하」이다.And, in the case of the metal thin plate having a plate thickness of 0.5 mm or less of the present invention, by setting the half width at a position of 1/4 of the plate thickness from the surface to "0.3° or more", the internal deformation of the metal thin plate is moderately It becomes large, and it is effective in making the said springback "25 degrees or more". However, if the half width is excessively large, not only the local variation of internal deformation increases, but also when the press forming process enters the manufacturing process up to the metal part, the shape freezeability is reduced (for example, the springback is "50 ° Exceeded”), it is necessary to adjust the amount of press displacement or consider warm forming. And, by setting the half width to "1.0 degrees or less", the internal strain of the thin metal plate is moderately small, and it is sufficient to set the maximum magnetic flux density to "0.1 T or more". Therefore, in the thin metal plate of the present invention, the half width of the intensity peak showing the maximum intensity in X-ray diffraction at a position where the depth from the surface is 1/4 of the plate thickness is "0.3 to 1.0 degrees". Preferably it is "0.4 degrees or more", More preferably, it is "0.5 degrees or more". More preferably, it is "0.6 degrees or more." Moreover, Preferably it is "0.9 degrees or less", More preferably, it is "0.8 degrees or less". More preferably, it is "0.7 degrees or less".

본 발명의 금속박판은 얇더라도 절곡 변형되기 어려우며, 또한 착자성도 우수한 것으로부터, 이러한 금속박판이 반송될 때의 환경에 대응한, 우수한 핸들링성을 달성할 수 있다. 그리고, 상기 우수한 핸들링성이 보다 얇은 금속박판에서도 달성할 수 있기 때문에, 판두께가 바람직하게는 0.4 ㎜ 이하인 금속박판에도 적합하다. 보다 바람직하게는 0.3 ㎜ 이하, 더욱 바람직하게는 0.2 ㎜ 이하이다. 그리고, 보다 더욱 바람직하게는 0.15 ㎜ 이하, 특히 바람직하게는 0.1 ㎜ 이하이다. 또한, 판두께의 하한에 대해서 특단의 지정을 필요로 하지 않으나, 현실적으로는 0.05 ㎜ 정도이다. Since the thin metal plate of the present invention is not easily bent and deformed even though it is thin, and also has excellent magnetization, excellent handling properties can be achieved corresponding to the environment when such a thin metal plate is conveyed. And, since the excellent handling property can be achieved even with a thinner metal sheet, it is also suitable for a metal sheet having a thickness of preferably 0.4 mm or less. More preferably, it is 0.3 mm or less, More preferably, it is 0.2 mm or less. And more preferably, it is 0.15 mm or less, Especially preferably, it is 0.1 mm or less. In addition, although special designation is not required about the lower limit of plate|board thickness, in reality, it is about 0.05 mm.

본 발명의 금속박판에는, 예를 들면 페라이트계 스테인리스강으로 이루어지는 박강판이나, Ni량이 대략 5 질량% 이상 50 질량% 이하인 Fe-Ni계 합금, Fe-Ni-Co계 합금으로 이루어지는 철기 합금 박판을 들 수 있다. In the metal thin plate of the present invention, for example, a thin steel plate made of ferritic stainless steel, an Fe-Ni alloy having an Ni content of 5 mass% or more and 50 mass% or less, or an iron-based alloy thin plate made of an Fe-Ni-Co alloy. can be heard

본 발명의 금속박판이 상기 박강판인 경우, 본 발명의 반치폭은 "좀 높게" 조정하는 것이 효과적이다. 예를 들면 상기 반치폭이 「0.5°이상」인 것이 바람직하고, 「0.6°이상」인 것이 보다 바람직하다. 이는 상기 박강판의 영률(예를 들면 170 ㎬ 이상)이, 상기 철기 합금 박판의 영률(예를 들면 120 ㎬ 이상)과 비교하여 큰 것에 기인하는 것으로 생각된다. 먼저, 본 발명의 반치폭을 만족시킴으로써, 본 발명의 금속박판은 충분히 큰 스프링백을 달성할 수 있다. 그러나, 그 충분히 큰 스프링백을 달성한 금속박판 중에서, 영률이 큰 금속박판의 스프링백은 작은 경향에 있다. 이에, 영률이 큰 금속박판인 경우, 본 발명의 반치폭을 "좀 높게" 조정함으로써, 충분히 큰 스프링백의 보증에 효과적이다. When the thin metal sheet of the present invention is the thin steel sheet, it is effective to adjust the half width at half maximum of the present invention "a little higher". For example, it is preferable that the said half width is "0.5 degrees or more", and it is more preferable that it is "0.6 degrees or more." This is considered to be due to the fact that the Young's modulus (eg, 170 GPa or more) of the thin steel sheet is larger than that of the iron-based alloy thin sheet (eg, 120 GPa or more). First, by satisfying the half width of the present invention, the thin metal plate of the present invention can achieve a sufficiently large springback. However, among the thin metal plates achieving sufficiently large springback, the springback of the thin metal plate having a large Young's modulus tends to be small. Therefore, in the case of a thin metal plate having a large Young's modulus, by adjusting the half width of the present invention "a little higher", it is effective to guarantee a sufficiently large springback.

실시예Example

페라이트계 스테인리스강(SUS430), Fe-Ni계 합금(Fe-10 질량% Ni 합금, Fe-36 질량% Ni 합금, Fe-39 질량% Ni 합금)의 중간 소재를 사용하여, 표 1에 나타내는 제조공정에 의해 금속박판의 최종 소재를 제작하였다. 상기 중간 소재는 가열온도 1,150℃에서 판두께 3 ㎜까지 열간압연한 것이다. Manufacturing shown in Table 1 using an intermediate material of ferritic stainless steel (SUS430) and Fe-Ni alloy (Fe-10 mass% Ni alloy, Fe-36 mass% Ni alloy, Fe-39 mass% Ni alloy) The final material of the thin metal plate was manufactured by the process. The intermediate material was hot-rolled at a heating temperature of 1,150° C. to a plate thickness of 3 mm.

Figure pat00001
Figure pat00001

제작한 각 금속박판 폭의 중심 부근으로부터 시험편을 채취하였다. 그리고, 채취한 시험편의 압연면으로부터의 깊이가 판두께의 1/4의 위치에서, 압연면과 평행이 되는 면을 경면연마하고, 추가로 전해연마를 행하여 엑스선 회절법에 의한 회절 스펙트럼(각 결정면의 존재비나 강도 피크의 반치폭)의 측정면으로 하였다. A test piece was taken from the vicinity of the center of the width of each of the produced thin metal plates. Then, at a position where the depth from the rolled surface of the sampled test piece is 1/4 of the plate thickness, the surface parallel to the rolling surface is mirror polished, and further electropolishing is performed, and the diffraction spectrum by the X-ray diffraction method (each crystal surface) of the abundance ratio and the half width at half maximum) of the intensity peak).

회절 스펙트럼의 측정은 주식회사 리가쿠 제조 엑스선 회절장치「RINT2500」을 사용해서 행하였다. 선원에는 Co를 사용하고, 전압 40 kV, 전류 200 mA의 조건으로 하였다. 그리고, 회절 스펙트럼에서 강도 피크가 확인된 복수의 결정면에 대해서, 그들의 강도비로부터 각 결정면의 존재비를 구함과 동시에, 그들의 강도 피크 중에서 최대 강도를 나타내는 강도 피크의 반치폭을 구하였다.The diffraction spectrum was measured using an X-ray diffractometer "RINT2500" manufactured by Rigaku Corporation. Co was used as the source, and the conditions were a voltage of 40 kV and a current of 200 mA. Then, for a plurality of crystal planes in which the intensity peaks were confirmed in the diffraction spectrum, the abundance ratio of each crystal plane was determined from their intensity ratio, and the half width of the intensity peak showing the maximum intensity among those intensity peaks was determined.

그리고, 이러한 금속박판에 대해서 굽힘 시험에 의한 스프링백과, 최대자속밀도를 측정하였다. 시험편은 동일하게 금속박판 폭의 중심 부근으로부터 채취하였다. 그리고 굽힘 시험은 각각의 치수가 금속박판의 길이와 폭에 대응한, 길이 20 ㎜×폭 10 ㎜의 굽힘 시험편을, 도 1의 요령으로 금속박판(1) 길이방향의 일단을 블록(2) 사이에 끼워 고정하고(굽힘 반경 0.38 ㎜, 돌출 10 ㎜), 실온에 있어서의 60°굽힘을 행하였을 때의 스프링백(θ)을 측정하는 것으로 하였다. 최대자속밀도의 측정은 외부 인가자장이 2,000 A/m일 때의 최대자속밀도로 하였다. 이상의 결과를 결정면의 존재비 및 반치폭과 함께 표 2에 나타낸다. Then, the springback by the bending test and the maximum magnetic flux density were measured for these thin metal plates. The test piece was also taken from the vicinity of the center of the width of the thin metal plate. And in the bending test, each dimension corresponds to the length and width of the thin metal plate, a bending test piece of length 20 mm × width 10 mm, the one end in the longitudinal direction of the thin metal plate 1 as shown in FIG. The spring back (θ) was measured when it was sandwiched and fixed (bending radius: 0.38 mm, protrusion: 10 mm), and bent at 60° at room temperature. The maximum magnetic flux density was measured as the maximum magnetic flux density when the externally applied magnetic field was 2,000 A/m. The above results are shown in Table 2 together with the abundance ratio and full width at half maximum of the crystal planes.

Figure pat00002
Figure pat00002

본 발명의 금속박판은 그 소재의 종류별에 있어서, 표 1에 나타낸 제조공정(압연과 소둔의 실시 타이밍, 압연율과 소둔온도)의 미세한 조정에 의해, 엑스선 회절에 있어서 최대 강도를 나타내는 강도 피크의 반치폭을 「0.3°이상」으로 함으로써, 판두께가 0.5 ㎜ 이하인 금속박판에서 「25°이상」의 스프링백을 달성하였다. 또한, 「0.1 T 이상」의 충분한 최대자속밀도도 유지하고 있었다. In the metal thin plate of the present invention, by the fine adjustment of the manufacturing process (rolling and annealing execution timing, rolling rate and annealing temperature) shown in Table 1 in the type of the material, the intensity peak showing the maximum intensity in X-ray diffraction By setting the half width to "0.3 degrees or more", a springback of "25 degrees or more" was achieved in a metal thin plate having a plate thickness of 0.5 mm or less. In addition, a sufficient maximum magnetic flux density of "0.1 T or more" was also maintained.

이상의 결과로부터, 본 발명의 금속박판은 얇더라도 절곡 변형되기 어려우며, 또한 착자성도 우수한 것으로부터, 이러한 금속박판이 반송될 때의 환경에 대응한 금속박판의 핸들링성의 향상을 기대할 수 있다. From the above results, even if the thin metal plate of the present invention is thin, it is difficult to bend and deform, and since it is also excellent in magnetization, it can be expected that the handling property of the thin metal plate corresponding to the environment when the thin metal plate is conveyed is improved.

1 금속박판
2 블록
1 metal sheet
2 blocks

Claims (1)

판두께가 0.5 ㎜ 이하이고, 표면으로부터의 깊이가 판두께의 1/4의 위치에서의 엑스선 회절에 있어서 최대 강도를 나타내는 강도 피크의 반치폭이 0.3∼1.0°인 것을 특징으로 하는 핸들링성이 우수한 금속박판.
A metal with excellent handling properties, characterized in that the plate thickness is 0.5 mm or less and the half width of the intensity peak showing the maximum intensity in X-ray diffraction at a position of 1/4 of the plate thickness from the surface is 0.3 to 1.0° lamination.
KR1020200058410A 2020-05-15 2020-05-15 Metal sheet having excellent handling property KR20210141144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200058410A KR20210141144A (en) 2020-05-15 2020-05-15 Metal sheet having excellent handling property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200058410A KR20210141144A (en) 2020-05-15 2020-05-15 Metal sheet having excellent handling property

Publications (1)

Publication Number Publication Date
KR20210141144A true KR20210141144A (en) 2021-11-23

Family

ID=78695370

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200058410A KR20210141144A (en) 2020-05-15 2020-05-15 Metal sheet having excellent handling property

Country Status (1)

Country Link
KR (1) KR20210141144A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193539A (en) 2000-12-26 2002-07-10 Toppan Printing Co Ltd Cutting mechanism for shadow mask

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193539A (en) 2000-12-26 2002-07-10 Toppan Printing Co Ltd Cutting mechanism for shadow mask

Similar Documents

Publication Publication Date Title
CN104136645B (en) The excellent high-strength stainless steel wire of resistance to heat distorsion, high-strength spring and manufacture method thereof
CN102741437B (en) Alloy composition, Fe-based nanocrystalline alloy and manufacturing method therefor, and magnetic component
RU2724810C2 (en) Sheet or strip of feco alloy, fesi alloy or fe, method of their manufacture, transformer magnetic core made from said sheet or strip, and transformer including such core
EP2489752A1 (en) Ferrous shape memory alloy and production method therefor
CN104114724A (en) Process for manufacturing a thin strip made of soft magnetic alloy and strip obtained
JP2010138491A5 (en)
KR20130048774A (en) Directional magnetic steel plate
US4540453A (en) Magnetically soft ferritic Fe-Cr-Ni alloys
EP2316980A1 (en) Non-oriented electromagnetic steel plate and method for manufacturing the same
KR20180043306A (en) Dissipative ferritic stainless steel material and manufacturing method
JP2010248559A (en) Nonoriented electrical steel sheet
JP2008127659A (en) Non-oriented electromagnetic steel sheet with less anisotropy
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
KR20210141144A (en) Metal sheet having excellent handling property
JP5206017B2 (en) Method for producing high silicon steel sheet
KR102326688B1 (en) Metal sheet having excellent handling property
JP2021169645A (en) Metal sheet having excellent handleability
JP6222498B2 (en) Metastable austenitic stainless steel strip or steel plate
JP2021169644A (en) Metal sheet having excellent handleability
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JPH0768584B2 (en) Manufacturing method of stainless steel for springs having excellent spring characteristics
JP4835346B2 (en) Steel sheet and manufacturing method thereof
JP4828095B2 (en) Non-oriented electrical steel sheet
JP4844314B2 (en) Steel sheet and manufacturing method thereof
JPH08134604A (en) Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application