KR20210120577A - System for liquid organic hydrogen carrier using waste heat from catalytic combustion burner in fuel cell and operation method for the same - Google Patents

System for liquid organic hydrogen carrier using waste heat from catalytic combustion burner in fuel cell and operation method for the same Download PDF

Info

Publication number
KR20210120577A
KR20210120577A KR1020200037471A KR20200037471A KR20210120577A KR 20210120577 A KR20210120577 A KR 20210120577A KR 1020200037471 A KR1020200037471 A KR 1020200037471A KR 20200037471 A KR20200037471 A KR 20200037471A KR 20210120577 A KR20210120577 A KR 20210120577A
Authority
KR
South Korea
Prior art keywords
fuel cell
hydrogen
liquid compound
catalytic combustion
combustion burner
Prior art date
Application number
KR1020200037471A
Other languages
Korean (ko)
Other versions
KR102332811B1 (en
Inventor
배중면
이상훈
김태홍
Original Assignee
한국과학기술원
재단법인 멀티스케일 에너지시스템 연구단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원, 재단법인 멀티스케일 에너지시스템 연구단 filed Critical 한국과학기술원
Priority to KR1020200037471A priority Critical patent/KR102332811B1/en
Publication of KR20210120577A publication Critical patent/KR20210120577A/en
Application granted granted Critical
Publication of KR102332811B1 publication Critical patent/KR102332811B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0833Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

The present invention provides a liquid compound-based hydrogen storage system to increase efficiency of the system. According to the present invention, the liquid compound-based hydrogen storage system comprises: a reservoir (100) accommodating a liquid compound (liquid organic hydrogen carrier (LOHC)) for storing hydrogen; a dehydrogenation reactor (200) receiving the liquid compound and heat from the reservoir (100) to separate hydrogen from the liquid compound; a fuel cell (300) generating electricity by receiving the hydrogen from the dehydrogenation reactor (200); a catalytic combustion burner (400) generating combustion heat by receiving and inducing a reaction of oxygen and the hydrogen supplied from the fuel cell (300) or residual hydrogen discharged from the fuel cell; and a heat supply line (500) supplying combustion heat generated in the catalytic combustion burner (400) to the dehydrogenation reactor (200).

Description

연료전지 촉매연소 버너의 폐열을 이용한 액상화합물 기반 수소저장 시스템 및 그 운용방법{System for liquid organic hydrogen carrier using waste heat from catalytic combustion burner in fuel cell and operation method for the same} System for liquid organic hydrogen carrier using waste heat from catalytic combustion burner in fuel cell and operation method for the same

본 발명은 연료전지 촉매연소 버너의 폐열을 이용한 액상화합물 기반 수소저장 시스템 및 그 운용방법에 관한 것으로, 보다 상세하게는 연료전지 시스템의 촉매연소 버너로부터의 폐열을 수소저장 시스템에서의 탈수소화 반응에 필요한 반응열로 공급하여 외부 에너지 필요량을 감소시키면서 액상화합물 기반 수소저장 시스템의 효율을 향상시킬 수 있는 연료전지 촉매연소 버너의 폐열을 이용한 액상화합물 기반 수소저장 시스템 및 그 운용방법에 관한 것이다. The present invention relates to a liquid compound-based hydrogen storage system using waste heat of a fuel cell catalytic combustion burner and an operating method thereof, and more particularly, to the dehydrogenation reaction of waste heat from a catalytic combustion burner of a fuel cell system in a hydrogen storage system. It relates to a liquid compound-based hydrogen storage system using waste heat of a fuel cell catalytic combustion burner, which can improve the efficiency of a liquid compound-based hydrogen storage system while reducing the amount of external energy required by supplying it as necessary reaction heat, and a method for operating the same.

2015년 기후변화를 억제하기 위한 제 21차 유엔기후변화협약 당사국총회 (COP21)에 195개국이 지구 온도 상승을 2℃ 이내로 억제하기 위한 계획에 서명함에 따라 우리나라도 동참하게 되었다. 기후변화 억제를 위해서는 에너지전환이 필수적이며, 모든 산업은 해당 분야에서 탈탄소화의 필요성에 직면했다. 이를 위하여 새로운 수소가 새로운 에너지원으로 부각되고 있다.In 2015, as 195 countries signed a plan to limit the increase in global temperature to within 2℃ at the 21st United Nations Framework Convention on Climate Change (COP21) to curb climate change, Korea also joined the party. Energy transition is essential to curb climate change, and all industries are faced with the need for decarbonization in this field. For this purpose, new hydrogen is emerging as a new energy source.

이러한 수소의 생산 후 저장하는 기술로 액상화합물 기반 수소저장기술(Liquid organic hydrogen carrier, LOHC)이 대두되고 있다. 액상화합물 기반 수소저장기술은 벤젠, 톨루엔, 다이벤질 톨루엔 등의 방향족 화합물에 수소를 화학반응 시킴으로서 화학적 방법으로 수소를 저장하는 방식으로, 높은 수소저장밀도, 상압 수소저장을 통한 저장안전성 확보, 액체상 수소저장을 통한 취급의 용이성 등을 확보할 수 있는 장점이 있다. Liquid organic hydrogen carrier (LOHC) is emerging as a technology for producing and storing such hydrogen. Liquid compound-based hydrogen storage technology is a method of chemically reacting hydrogen with aromatic compounds such as benzene, toluene, and dibenzyl toluene to store hydrogen. There is an advantage in that it is possible to secure the ease of handling and the like through storage.

액상화합물 기반 수소저장기술은 리튬이온 배터리와 비교하여 4배 이상이고, 압축수소 방식에 비해 2배 이상의 수소저장 밀도를 가진다. 이와 같은 장점으로 인하여, 도 1과 같이 신재생에너지로부터 생산된 수소를 액상화합물 형태로 저장하여 에너지 저장장치로 활용하고자 하는 연구가 이어지고 있다(하기 선행기술문헌 참조) Liquid compound-based hydrogen storage technology is more than 4 times higher than lithium-ion batteries and has more than twice the hydrogen storage density compared to compressed hydrogen. Due to these advantages, studies are continuing to store hydrogen produced from renewable energy in the form of a liquid compound and utilize it as an energy storage device as shown in FIG. 1 (see the following prior art literature)

일반적으로 이러한 LOHC 시스템에서 탈수소화 반응은 약 64kJ/mol H2의 큰 반응열을 필요로 하는 반응이므로, 외부로부터 고온의 열에너지가 공급되어야 하지만, 이러한 액상화합물 기반 수소저장 시스템에 수소 방출에 필요한 열에너지를 효과적으로 공급하는 시스템은 아직 개시되지 못한 상황이다. In general, since the dehydrogenation reaction in such a LOHC system requires a large reaction heat of about 64 kJ/mol H 2 , high-temperature thermal energy must be supplied from the outside. An effective supply system has not yet been disclosed.

1. 액체 화합물 및 이를 수소 저장소로 사용하는 방법: 1019543050000 (2019.02.26)1. Liquid compounds and methods of using them as hydrogen storage: 1019543050000 (2019.02.26) 2. 촉매 펩타이드 형성 및 수소화에 기초한 액체-유기 수소 캐리어 시스템: 1020177008895 (2015.09.03.)2. Liquid-Organic Hydrogen Carrier System Based on Catalytic Peptide Formation and Hydrogenation: 1020177008895 (2015.09.03.) 3. 액상 수소저장물질 및 이를 이용한 수소 저장 방법: 1020160126557 (2016.09.30.)3. Liquid hydrogen storage material and hydrogen storage method using the same: 1020160126557 (2016.09.30.) 4. 피리딘계 수소저장 물질을 활용한 수소 저장 및 방출 시스템: 1020160116140 (2016.09.09)4. Hydrogen storage and release system using pyridine-based hydrogen storage material: 1020160116140 (2016.09.09)

따라서, 본 발명이 해결하는 과제는 탈수소화 반응시 필요한 외부 열에너지를 효과적으로 공급시켜 전체적인 에너지 효율이 향상된 액상화합물 기반 수소저장 시스템 및 그 운용방법을 제공하는 것이다. Accordingly, an object of the present invention is to provide a liquid compound-based hydrogen storage system with improved overall energy efficiency by effectively supplying external thermal energy required for the dehydrogenation reaction, and a method for operating the same.

상기 과제를 해결하기 위하여, 본 발명은, In order to solve the above problems, the present invention,

수소를 저장하는 액상화합물(LOHC)을 수용하는 저장기(100); a reservoir 100 for accommodating a liquid compound (LOHC) for storing hydrogen;

상기 저장기(100)로부터 액상화합물 및 열을 공급받아 상기 액상화합물로부터 수소를 분리하는 탈수소화 반응기(200); a dehydrogenation reactor 200 receiving a liquid compound and heat from the reservoir 100 and separating hydrogen from the liquid compound;

상기 탈수소화 반응기(200)로부터 수소를 공급받아 전력을 생산하는 연료전지(300); 및 a fuel cell 300 for generating electricity by receiving hydrogen from the dehydrogenation reactor 200; and

상기 연료전지(300)로부터 공급되는 수소 또는 연료전지로부터 배출되는 잔여수소와, 산소를 공급받아 반응시켜 연소열을 발생시키는 촉매연소버너(400); 및 a catalytic combustion burner 400 for generating combustion heat by receiving and reacting hydrogen supplied from the fuel cell 300 or residual hydrogen discharged from the fuel cell and oxygen; and

상기 촉매연소버너(400)에서 발생한 연소열을 상기 탈수소화반응기(200)로 공급하는 열공급라인(500)을 포함하는 것을 특징으로 하는 연료전지 촉매연소 버너의 폐열을 이용한 액상화합물 기반 수소저장 시스템을 제공한다. A liquid compound-based hydrogen storage system using waste heat of a fuel cell catalytic combustion burner, characterized in that it includes a heat supply line (500) for supplying combustion heat generated in the catalytic combustion burner (400) to the dehydrogenation reactor (200). do.

본 발명의 일 실시예에서, 상기 액상화합물 기반 수소저장 시스템은 상기 탈수소화 반응기(200)로 반응에 필요한 열에너지를 공급하는 열에너지 공급수단(600)을 더 포함하며, 상기 열에너지 공급수단(600)은 상기 열공급라인 (500)을 통하여 상기 촉매연소버너(400)로부터 열에너지가 공급되기 전 상기 탈수소화 반응기(200)에 열을 공급하는 것을 특징으로 한다. In an embodiment of the present invention, the liquid compound-based hydrogen storage system further includes a thermal energy supply means 600 for supplying thermal energy required for the reaction to the dehydrogenation reactor 200, and the thermal energy supply means 600 includes It is characterized in that heat is supplied to the dehydrogenation reactor 200 before heat energy is supplied from the catalytic combustion burner 400 through the heat supply line 500 .

또한, 본 발명은, In addition, the present invention,

상기 열에너지 공급수단(600)으로부터 상기 탈수소화 반응기(200)에 반응열을 공급하여 탈수소화 반응을 진행하는 단계; supplying reaction heat from the thermal energy supply means 600 to the dehydrogenation reactor 200 to perform a dehydrogenation reaction;

상기 탈수소화 반응에 따라 생산된 수소를 공급받아 상기 연료전지(300)로부터 전력을 생산하는 단계; receiving hydrogen produced according to the dehydrogenation reaction and producing electric power from the fuel cell 300;

상기 연료전지(300)로 공급되는 수소 또는 연료전지의 동작 후 배출되는 잔여 수소를 공급받아 상기 촉매연소버너(400)에서 연소시키는 단계;및 receiving hydrogen supplied to the fuel cell 300 or residual hydrogen discharged after operation of the fuel cell, and burning it in the catalytic combustion burner 400; and

상기 촉매연소버너(400)로부터 배출된 연소가스로부터 열에너지를 상기 탈수소화 반응기(200)에 공급하는 단계를 포함하는 것을 특징으로 하는 액상화합물 기반 수소저장 시스템 운용방법을 제공한다.It provides a liquid compound-based hydrogen storage system operating method comprising the step of supplying thermal energy from the combustion gas discharged from the catalytic combustion burner (400) to the dehydrogenation reactor (200).

본 발명에 따르면, 종래에 여러 장치에 도입되어 왔으나, LOHC와 연계한 경우가 없었던 촉매연소 버너를 활용하여 액상화합물 기반 수소저장 시스템의 탈수소화 반응의 반을열을 제공한다. 특히 촉매연소 버너는 연료전지에 공급되는 일부의 수소, 혹은 연료전지에서 필연적으로 발생하게 되는 사용되지 않은 잔여수소 연소시켜 열을 확보하며, 이렇게 확보된 열을 이용하여 액상화합물 기반 수소저장 시스템의 효율을 향상시킬 수 있다. According to the present invention, half heat of the dehydrogenation reaction of a liquid compound-based hydrogen storage system is provided by utilizing a catalytic combustion burner that has been conventionally introduced in various devices, but has not been linked to LOHC. In particular, the catalytic combustion burner secures heat by burning some of the hydrogen supplied to the fuel cell or the unused residual hydrogen that is inevitably generated from the fuel cell. can improve

도 1은 본 발명의 일 실시예에 따른 시스템의 모식도이다.
도 2 및 3은 각각 본 발명의 일 실시예에 따른 탈수소화반응-연료전지 통합 시스템에 대한 아스펜(ASPEN) 모델, 탈수소화 반응시 필요 열에너지 변화와 촉매연소버너로부터 공급되는 열에너지를 시뮬레이션한 결과이다.
도 4는 본 발명의 또 다른 일 실시예에 따른 액상화합물 기반 수소저장 시스템의 모식도이다.
도 5는 상술한 액상화합물 기반 수소저장 시스템 운용방법의 단계도이다.
1 is a schematic diagram of a system according to an embodiment of the present invention.
2 and 3 are results of simulating the Aspen (ASPEN) model for the dehydrogenation reaction-fuel cell integrated system according to an embodiment of the present invention, the change in thermal energy required for the dehydrogenation reaction and the thermal energy supplied from the catalytic combustion burner, respectively. .
4 is a schematic diagram of a liquid compound-based hydrogen storage system according to another embodiment of the present invention.
5 is a step diagram of the above-described liquid compound-based hydrogen storage system operating method.

이하, 본 발명에 따른 액상화합물 기반 수소저장 시스템 및 그 운용방법의 바람직한 실시예를 첨부한 도면들에 의거하여 상세히 설명한다. 참고로, 본 명세서 및 청구범위에 사용된 용어와 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석해야만 한다. 또한, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, preferred embodiments of a liquid compound-based hydrogen storage system and an operating method thereof according to the present invention will be described in detail based on the accompanying drawings. For reference, the terms and words used in the present specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventor must properly understand the concept of the term in order to best describe his invention. Based on the principle that it can be defined, it should be interpreted as meaning and concept consistent with the technical idea of the present invention. In addition, the configurations shown in the embodiments and drawings described in this specification are only the most preferred embodiment of the present invention, and do not represent all of the technical spirit of the present invention, so at the time of the present application, various It should be understood that there may be equivalents and variations.

도 1은 본 발명의 일 실시예에 따른 시스템의 모식도이다. 1 is a schematic diagram of a system according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 일 실시예에 따른 시스템은 액상화합물 기반 수소저장 시스템으로, 수소를 저장하는 액상화합물(LOHC)을 수용하는 저장기(100); 상기 저장기(100)로부터 액상화합물 및 열을 공급받아 상기 액상화합물로부터 수소를 분리하는 탈수소화 반응기(200); 상기 탈수소화 반응기(200)로부터 수소를 공급받아 전력을 생산하는 연료전지(300); 상기 연료전지(300)로부터 공급되는 수소 또는 연료전지로부터 배출되는 잔여수소와, 산소를 공급받아 반응시켜 연소열을 발생시키는 연소버너(400); 상기 촉매연소버너(400)에서 발생한 연소열을 상기 탈수소화반응기1, the system according to an embodiment of the present invention is a liquid compound-based hydrogen storage system, comprising: a reservoir 100 for accommodating a liquid compound (LOHC) for storing hydrogen; a dehydrogenation reactor 200 receiving a liquid compound and heat from the reservoir 100 and separating hydrogen from the liquid compound; a fuel cell 300 for generating electricity by receiving hydrogen from the dehydrogenation reactor 200; a combustion burner 400 for generating combustion heat by receiving and reacting hydrogen supplied from the fuel cell 300 or residual hydrogen discharged from the fuel cell with oxygen; The combustion heat generated in the catalytic combustion burner 400 is transferred to the dehydrogenation reactor.

(200)로 공급하는 열공급라인(500)을 포함한다. It includes a heat supply line 500 for supplying to the 200 .

본 발명은 액상화합물 기반 수소저장 시스템과 연료전지를 통합시켜, 상기 액상화합물 기반 수소저장 시스템으로부터 발생한 수소를 이용, 전력을 생산하고, 이때 공급되는 수소 또는 연료전지로부터 배출되는 잔여수소로 탈수소화 반응에 필요한 반응열을 생산하다. The present invention integrates a liquid compound-based hydrogen storage system and a fuel cell, using the hydrogen generated from the liquid compound-based hydrogen storage system, to produce electricity, and at this time, a dehydrogenation reaction with hydrogen supplied or residual hydrogen discharged from the fuel cell to produce the heat of reaction required for

본 발명의 일 실시예에서 상기 반응열을 생산하는 것은 산소와 수소를 반응, 연소시킬 수 있는 촉매 기반의 촉매연소버너이다. 예를 들어 촉매연소버너는 대한민국 등록특허 10-0522435호 등에 개시된 바와 같이 다양한 형태일 수 있으며, 적어도 수소+산소의 반응, 연소가 가능하다면 이는 모두 본 발명의 범위에 속한다. In an embodiment of the present invention, it is a catalyst-based catalytic combustion burner capable of reacting and burning oxygen and hydrogen to produce the heat of reaction. For example, the catalytic combustion burner may be in various forms as disclosed in Korean Patent Registration No. 10-0522435, etc., and if at least hydrogen + oxygen reaction and combustion are possible, these all fall within the scope of the present invention.

또한, 본 발명에서, "액상화합물"이라 함은 액체 유기 수소 운반체(liquid organic hydrogen carrier, LOHC)를 의미하는 것으로, 액체 상태 화합물에 수소를 결합하여 저장 및 운송하는 물질이다. 특히, 이러한 액체 유기 수소 운반체는 부피당 에너지밀도가 낮은 수소기체를 액체 형태로 바꿔 효율적으로 저장 및 운송이 가능할 수 있다. 이러한 기술을 활용하면 압축 수소 대비 무게 1/5, 부피 1/3 수준으로 같은 양의 수소 저장이 가능할 수 있다. Also, in the present invention, the term "liquid compound" refers to a liquid organic hydrogen carrier (LOHC), which is a substance that stores and transports hydrogen by binding hydrogen to a liquid compound. In particular, such a liquid organic hydrogen carrier can be efficiently stored and transported by changing the hydrogen gas having a low energy density per volume into a liquid form. Using this technology, the same amount of hydrogen can be stored at 1/5 of the weight and 1/3 of the volume compared to compressed hydrogen.

본 발명의 일 실시예에서, 상기 열공급라인(500)은 상기 촉매연소버너(400)로부터 배출되는 상온을 초과하는 고온의 연소가스가 직접 상기 탈수소화 반응기(200)와 접촉하여 열 에너지를 상기 탈수소화 반응기(200)에 공급할 수 있다. In one embodiment of the present invention, in the heat supply line 500 , the combustion gas of high temperature exceeding room temperature discharged from the catalytic combustion burner 400 directly contacts the dehydrogenation reactor 200 to convert thermal energy into the dehydration. It may be supplied to the digestion reactor 200 .

이와는 달리 상기 열공급라인(500)은, 상기 촉매연소버너(400)로부터 배출되는 고온 연소가스로 열교환기 등에서 가열된 별도의 매질(예를 들어 물)이 주입되며, 상기 별도 매질이 주입된 열공급라인(500)은 상기 촉매연소버너(400)로부터 배출되는 고온 연소가스로 가열되어, 상기 탈수소화 반응기(200)와 접촉, 열 에너지를 상기 탈수소화 반응기(200)에 공급한다. In contrast to this, the heat supply line 500 is a high-temperature combustion gas discharged from the catalytic combustion burner 400, and a separate medium (eg, water) heated in a heat exchanger is injected, and the separate medium is injected into the heat supply line. 500 is heated with high-temperature combustion gas discharged from the catalytic combustion burner 400 , and comes into contact with the dehydrogenation reactor 200 , and supplies thermal energy to the dehydrogenation reactor 200 .

즉, 본 발명에서 연료전지는 1) 탈수소화반응기로부터 발생한 수소를 사용하는 수소 사용수단 2) 탈수소화반응에 필요한 열에너지를 공급하는 에너지 공급수단으로 사용된다. That is, in the present invention, the fuel cell is used as 1) a means for using hydrogen using hydrogen generated from the dehydrogenation reactor and 2) as an energy supply means for supplying thermal energy required for the dehydrogenation reaction.

도 2 및 3은 각각 본 발명의 일 실시예에 따른 탈수소화반응-연료전지 통합 시스템에 대한 아스펜(ASPEN) 모델, 탈수소화 반응시 필요 열에너지 변화와 촉매연소버너로부터 공급되는 열에너지를 시뮬레이션한 결과이다. 2 and 3 are results of simulations of the Aspen (ASPEN) model for the dehydrogenation reaction-fuel cell integrated system according to an embodiment of the present invention, the change in thermal energy required during the dehydrogenation reaction and the thermal energy supplied from the catalytic combustion burner, respectively. .

도 2를 참조하면, 연료전지와 탈수소화 반응기 사이에는 생산된 수조를 정제하는 별도의 정체 장치가 구비되며, 도 2의 모델에 따른 폐열 사용시의 열에너지 변화를 측정한 결과는 도 3이다. Referring to FIG. 2 , a separate stagnant device for purifying the produced water tank is provided between the fuel cell and the dehydrogenation reactor, and the result of measuring the change in thermal energy when using waste heat according to the model of FIG. 2 is FIG. 3 .

도 3을 참조하면, 촉매연소버너는 필요한 열부하(heat duty)를 만족시킬 수 있는 것을 알 수 있다. Referring to FIG. 3 , it can be seen that the catalytic combustion burner can satisfy a required heat duty.

특히 도 3의 결과로부터, 촉매연소 버너(400)를 사용하지 않는 경우 필요한 86KJ/mol H2의 반응열은, 촉매연소 버너(400)를 사용하는 경우 14KJ/mol H2까지 낮출 수 있다. In particular, from the result of FIG. 3 , when the catalytic combustion burner 400 is not used, the reaction heat of 86KJ/mol H2 required can be lowered to 14KJ/mol H2 when the catalytic combustion burner 400 is used.

본 발명의 또 다른 일 실시예는 연료전지 동작 초기 단계에서의 불충분한 폐열을 보충하기 위하여 별도의 외부버너와 같은 별도의 에너지 공급수단을 사용한다. Another embodiment of the present invention uses a separate energy supply means such as a separate external burner to compensate for insufficient waste heat in the initial stage of operation of the fuel cell.

도 4는 본 발명의 또 다른 일 실시예에 따른 액상화합물 기반 수소저장 시스템의 모식도이다. 4 is a schematic diagram of a liquid compound-based hydrogen storage system according to another embodiment of the present invention.

도 4를 참조하면, 본 발명의 일 실시예에 따른 액상화합물 기반 수소저장 시스템은, 도 1과 동일한 구성에 상기 탈수소화 반응기(200)로 반응에 필요한 열에너지를 공급하는 열에너지 공급수단(600)을 더 포함한다. Referring to FIG. 4, the liquid compound-based hydrogen storage system according to an embodiment of the present invention includes a thermal energy supply means 600 for supplying thermal energy required for the reaction to the dehydrogenation reactor 200 in the same configuration as in FIG. 1 . include more

본 발명의 일 실시예에서 상기 열에너지 공급수단(600)은 촉매연소 버너와 달리 별도로 탈수소화 반응기(200)에 열을 공급하는 장치로서, 초기 수소가 촉매연소버너(400)로 공급되지 않는 경우, 상기 탈수소화 반응기(200)에 반응열을 공급한다. In an embodiment of the present invention, the heat energy supply means 600 is a device for supplying heat to the dehydrogenation reactor 200 separately from the catalytic combustion burner, and when initial hydrogen is not supplied to the catalytic combustion burner 400, Reaction heat is supplied to the dehydrogenation reactor 200 .

도 5는 상술한 액상화합물 기반 수소저장 시스템 운용방법의 단계도이다. 5 is a step diagram of the above-described liquid compound-based hydrogen storage system operating method.

도 5를 참조하면, 본 발명의 일 실시예에 따른 액상화합물 기반 수소저장 시스템 운용방법은, 상술한 열에너지 공급수단(600)으로부터 상기 탈수소화 반응기(200)에 반응열을 공급하여 탈수소화 반응을 진행하는 단계; 상기 탈수소화 반응에 따라 생산된 수소를 공급받아 상기 연료전지(300)로부터 전력을 생산하는 단계; 상기 연료전지(300)로 공급되는 수소 또는 연료전지의 동작 후 배출되는 잔여 수소를 공급받아 상기 촉매연소버너(400)에서 연소시키는 단계;및 상기 촉매연소버너(400)로부터 배출된 연소가스로부터 열에너지를 상기 탈수소화 반응기(200)에 공급하는 단계를 포함한다. Referring to FIG. 5 , in the liquid compound-based hydrogen storage system operating method according to an embodiment of the present invention, the dehydrogenation reaction is performed by supplying reaction heat to the dehydrogenation reactor 200 from the above-described thermal energy supply means 600 . to do; receiving hydrogen produced according to the dehydrogenation reaction and producing electric power from the fuel cell 300; receiving hydrogen supplied to the fuel cell 300 or residual hydrogen discharged after operation of the fuel cell and burning it in the catalytic combustion burner 400; and thermal energy from the combustion gas discharged from the catalytic combustion burner 400 It includes the step of supplying the dehydrogenation reactor (200).

본 발명의 일 실시예에 따른 방법은, 상기 촉매연소버너(400)의 배출가스로부터 열에너지를 상기 탈수소화 반응기(200)에 공급함에 따라, 상기 촉매연소버너 (400)의 배출가스로부터 공급되는 열에너지에 의하여 상기 열에너지 공급수단(600)으로부터 공급되는 반응열량이 결정될 수 있다. In the method according to an embodiment of the present invention, as thermal energy is supplied from the exhaust gas of the catalytic combustion burner 400 to the dehydrogenation reactor 200, thermal energy supplied from the exhaust gas of the catalytic combustion burner 400 The amount of reaction heat supplied from the heat energy supply means 600 may be determined by

즉, 상기 열에너지 공급수단(600)은 연료전지의 초기 운전에 필요한 수소를 생산하기 위하여 탈수소화 반응기(200)에 반응시 필요한 열을 공급하게 되며, 촉매연소버너(400)로부터 배출되는 연소가스로부터의 열 공급이 진행됨에 따라, 상기 열에너지 공급수단(600)으로부터 공급되는 반응열량이 상기 촉매연소버너 (400)의 배출가스로부터 공급되는 열에너지에 의해 결정될 수 있다. That is, the heat energy supply means 600 supplies heat necessary for the reaction to the dehydrogenation reactor 200 in order to produce hydrogen necessary for the initial operation of the fuel cell, and from the combustion gas discharged from the catalytic combustion burner 400 . As the heat supply proceeds, the amount of reaction heat supplied from the thermal energy supply means 600 may be determined by the thermal energy supplied from the exhaust gas of the catalytic combustion burner 400 .

Claims (9)

액상화합물 기반 수소저장 시스템으로,
수소를 저장하는 액상화합물(LOHC)을 수용하는 저장기(100);
상기 저장기(100)로부터 액상화합물 및 열을 공급받아 상기 액상화합물로부터 수소를 분리하는 탈수소화 반응기(200);
상기 탈수소화 반응기(200)로부터 수소를 공급받아 전력을 생산하는 연료전지(300); 및
상기 연료전지(300)로부터 공급되는 수소 또는 연료전지로부터 배출되는 잔여수소와, 산소를 공급받아 반응시켜 연소열을 발생시키는 촉매연소버너(400); 및
상기 촉매연소버너(400)에서 발생한 연소열을 상기 탈수소화반응기(200)로 공급하는 열공급라인(500)을 포함하는 것을 특징으로 하는, 연료전지 촉매연소 버너의 폐열을 이용한 액상화합물 기반 수소저장 시스템.
As a liquid compound-based hydrogen storage system,
a reservoir 100 for accommodating a liquid compound (LOHC) for storing hydrogen;
a dehydrogenation reactor 200 receiving a liquid compound and heat from the reservoir 100 to separate hydrogen from the liquid compound;
a fuel cell 300 for generating electricity by receiving hydrogen from the dehydrogenation reactor 200; and
a catalytic combustion burner 400 for generating combustion heat by receiving and reacting hydrogen supplied from the fuel cell 300 or residual hydrogen discharged from the fuel cell and oxygen; and
A liquid compound-based hydrogen storage system using waste heat of a fuel cell catalytic combustion burner, characterized in that it comprises a heat supply line (500) for supplying combustion heat generated in the catalytic combustion burner (400) to the dehydrogenation reactor (200).
제 1항에 있어서,
상기 촉매연소버너(400)는 상기 수소와 산소를 반응시킬 수 있는 촉매가 구비된 촉매연소버너인 것을 특징으로 하는 액상화합물 기반 수소저장 시스템.
The method of claim 1,
The catalytic combustion burner 400 is a liquid compound-based hydrogen storage system, characterized in that it is a catalytic combustion burner equipped with a catalyst capable of reacting the hydrogen and oxygen.
제 1항에 있어서,
상기 열공급라인(500)은 상기 촉매연소버너(400)로부터 배출되는 고온 가스가 상기 탈수소화 반응기(200)와 직접 접촉하는 것을 특징으로 하는 액상화합물 기반 수소저장 시스템.
The method of claim 1,
The heat supply line (500) is a liquid compound-based hydrogen storage system, characterized in that the high-temperature gas discharged from the catalytic combustion burner (400) is in direct contact with the dehydrogenation reactor (200).
제 1항에 있어서,
상기 열공급라인(500)은, 상기 촉매연소버너(400)로부터 배출되는 고온 가스로 가열된 별도의 매질이 주입되며, 상기 별도 매질이 주입된 열공급라인(500)은 상기 탈수소화 반응기(200)와 접촉하여 열 에너지를 상기 탈수소화 반응기(200)에 공급하는 것을 특징으로 하는 액상화합물 기반 수소저장 시스템.
The method of claim 1,
The heat supply line 500, a separate medium heated with the high-temperature gas discharged from the catalytic combustion burner 400 is injected, and the heat supply line 500 into which the separate medium is injected is connected to the dehydrogenation reactor 200 and A liquid compound-based hydrogen storage system, characterized in that contacting and supplying thermal energy to the dehydrogenation reactor (200).
제 1항에 있어서,
상기 연료전지는 수소를 사용하는 연료전지인 것을 특징으로 하는 액상화합물 기반 수소저장 시스템.
The method of claim 1,
The fuel cell is a liquid compound-based hydrogen storage system, characterized in that it is a fuel cell using hydrogen.
제 1항에 있어서, 상기 액상화합물 기반 수소저장 시스템은,
상기 탈수소화 반응기(200)로 반응에 필요한 열에너지를 공급하는 열에너지 공급수단(600)을 더 포함하며, 상기 열에너지 공급수단(600)은 상기 열공급라인 (500)을 통하여 상기 촉매연소버너(400)로부터 열에너지가 공급되기 전 상기 탈수소화 반응기(200)에 열을 공급하는 것을 특징으로 하는 액상화합물 기반 수소저장 시스템.
According to claim 1, wherein the liquid compound-based hydrogen storage system,
It further comprises a thermal energy supply means 600 for supplying thermal energy necessary for the reaction to the dehydrogenation reactor 200, and the thermal energy supply means 600 is from the catalytic combustion burner 400 through the heat supply line 500. A liquid compound-based hydrogen storage system, characterized in that heat is supplied to the dehydrogenation reactor 200 before thermal energy is supplied.
제 6항에 따른 액상화합물 기반 수소저장 시스템을 이용한 액상화합물 기반 수소저장 시스템 운용방법으로,
상기 열에너지 공급수단(600)으로부터 상기 탈수소화 반응기(200)에 반응열을 공급하여 탈수소화 반응을 진행하는 단계;
상기 탈수소화 반응에 따라 생산된 수소를 공급받아 상기 연료전지(300)로부터 전력을 생산하는 단계;
상기 연료전지(300)로 공급되는 수소 또는 연료전지의 동작 후 배출되는 잔여 수소를 공급받아 상기 촉매연소버너(400)에서 연소시키는 단계;및
상기 촉매연소버너(400)로부터 배출된 연소가스로부터 열에너지를 상기 탈수소화 반응기(200)에 공급하는 단계를 포함하는 것을 특징으로 하는 액상화합물 기반 수소저장 시스템 운용방법.
A liquid compound-based hydrogen storage system operating method using the liquid compound-based hydrogen storage system according to claim 6,
supplying reaction heat from the thermal energy supply means 600 to the dehydrogenation reactor 200 to perform a dehydrogenation reaction;
receiving hydrogen produced according to the dehydrogenation reaction and producing electric power from the fuel cell 300;
receiving hydrogen supplied to the fuel cell 300 or residual hydrogen discharged after operation of the fuel cell, and burning it in the catalytic combustion burner 400; and
and supplying thermal energy from the combustion gas discharged from the catalytic combustion burner (400) to the dehydrogenation reactor (200).
제 7항에 있어서,
상기 촉매연소버너(400)의 배출가스로부터 열에너지를 상기 탈수소화 반응기(200)에 공급함에 따라, 상기 촉매연소버너 (400)의 배출가스로부터 공급되는 열에너지에 의하여 상기 열에너지 공급수단(600)으로부터 공급되는 반응열량이 결정되는 것을 특징으로 하는 수소저장 시스템 운용방법.
8. The method of claim 7,
As thermal energy from the exhaust gas of the catalytic combustion burner 400 is supplied to the dehydrogenation reactor 200, the thermal energy supplied from the exhaust gas of the catalytic combustion burner 400 is supplied from the thermal energy supply means 600 A method of operating a hydrogen storage system, characterized in that the amount of heat of reaction is determined.
제 7항에 있어서,
상기 연료전지는 수소를 사용하는 연료전지인 것을 특징으로 하는 수소저장 시스템 운용방법.

8. The method of claim 7,
The fuel cell is a hydrogen storage system operating method, characterized in that the fuel cell using hydrogen.

KR1020200037471A 2020-03-27 2020-03-27 System for liquid organic hydrogen carrier using waste heat from catalytic combustion burner in fuel cell and operation method for the same KR102332811B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200037471A KR102332811B1 (en) 2020-03-27 2020-03-27 System for liquid organic hydrogen carrier using waste heat from catalytic combustion burner in fuel cell and operation method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200037471A KR102332811B1 (en) 2020-03-27 2020-03-27 System for liquid organic hydrogen carrier using waste heat from catalytic combustion burner in fuel cell and operation method for the same

Publications (2)

Publication Number Publication Date
KR20210120577A true KR20210120577A (en) 2021-10-07
KR102332811B1 KR102332811B1 (en) 2021-12-01

Family

ID=78114640

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200037471A KR102332811B1 (en) 2020-03-27 2020-03-27 System for liquid organic hydrogen carrier using waste heat from catalytic combustion burner in fuel cell and operation method for the same

Country Status (1)

Country Link
KR (1) KR102332811B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4282816A1 (en) 2022-05-25 2023-11-29 Umicore AG & Co. KG Catalytic system for storing and releasing of hydrogen from liquid organic hydrogen carriers
EP4362146A1 (en) 2022-10-26 2024-05-01 Umicore AG & Co. KG Phosphorus doped pgm-type catalysts and catalytic system for storing and releasing of hydrogen of organic hydrogen carriers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230123732A (en) 2022-02-17 2023-08-24 한국화학연구원 Catalyst for Dehydrogenation Reaction Based on LOHC and Method for Preparing the Same
KR20230123721A (en) 2022-02-17 2023-08-24 한국화학연구원 Catalyst Module for Dehydrogenation Reaction Based on LOHC and Hydrogen Release System Using the Same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062887A (en) * 2004-08-24 2006-03-09 Kansai Electric Power Co Inc:The Apparatus for supplying hydrogen
KR20160116140A (en) 2015-03-26 2016-10-07 계양전기 주식회사 Connecting apparatus of supplementary battery for electric tool
KR20160126557A (en) 2015-04-24 2016-11-02 전북대학교산학협력단 Insect net with filter function
KR101684767B1 (en) * 2015-02-11 2016-12-08 대우조선해양 주식회사 Hydrogen supply apparatus and method of submarine using organic chemical hydride
KR101954305B1 (en) 2012-11-28 2019-03-05 하이드로지니어스 테크놀로지스 게엠베하 Liquid compounds and method for the use thereof as hydrogen stores

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062887A (en) * 2004-08-24 2006-03-09 Kansai Electric Power Co Inc:The Apparatus for supplying hydrogen
KR101954305B1 (en) 2012-11-28 2019-03-05 하이드로지니어스 테크놀로지스 게엠베하 Liquid compounds and method for the use thereof as hydrogen stores
KR101684767B1 (en) * 2015-02-11 2016-12-08 대우조선해양 주식회사 Hydrogen supply apparatus and method of submarine using organic chemical hydride
KR20160116140A (en) 2015-03-26 2016-10-07 계양전기 주식회사 Connecting apparatus of supplementary battery for electric tool
KR20160126557A (en) 2015-04-24 2016-11-02 전북대학교산학협력단 Insect net with filter function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4282816A1 (en) 2022-05-25 2023-11-29 Umicore AG & Co. KG Catalytic system for storing and releasing of hydrogen from liquid organic hydrogen carriers
WO2023227640A1 (en) 2022-05-25 2023-11-30 Umicore Ag & Co. Kg Catalytic system for storing and releasing of hydrogen from liquid organic hydrogen carriers
EP4362146A1 (en) 2022-10-26 2024-05-01 Umicore AG & Co. KG Phosphorus doped pgm-type catalysts and catalytic system for storing and releasing of hydrogen of organic hydrogen carriers
WO2024089176A1 (en) 2022-10-26 2024-05-02 Umicore Ag & Co. Kg Phosphorus doped pgm-type catalysts and catalytic system for storing and releasing of hydrogen of organic hydrogen carriers

Also Published As

Publication number Publication date
KR102332811B1 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
KR102332811B1 (en) System for liquid organic hydrogen carrier using waste heat from catalytic combustion burner in fuel cell and operation method for the same
CN104170139A (en) Fuel cell hybrid system
JP2009077457A (en) Operation system of distributed type power supply and its operation method
CN102460797A (en) Device for producing electricity for a submarine comprising a fuel cell
JP2006031989A (en) Method and system for power generation by solid oxide fuel cell
JP2014519177A (en) Hybrid system of fuel cell and reciprocating gasoline / diesel engine
US3266938A (en) Method of operating a fuel cell system
CN102986074A (en) Fuel cell system and method for operating same
JP2009117054A (en) Power generation method and system by high temperature operating fuel cell
CN208062172U (en) A kind of movable type methanol SOFC electricity generation systems
KR101179390B1 (en) Fuel cell system
KR20170002143A (en) Solid oxide fuel cell system heated by externel hear source
DE50003031D1 (en) FUEL CELL WITH INTERNAL REFORMER AND METHOD FOR THEIR OPERATION
KR20210120550A (en) System for liquid organic hydrogen carrier and operation method for the same
JP2000215901A (en) Solid polymer type fuel cell system
KR101461166B1 (en) Hybrid electric generating system
JPS6134865A (en) Fuel cell power generating system
JP2004119298A (en) Fuel cell power generation system
KR101684767B1 (en) Hydrogen supply apparatus and method of submarine using organic chemical hydride
KR20190067544A (en) Apparatus for producing hydrogen with preventing co2 gas and of saving natural gas
JP6677458B2 (en) System and method for power generation using series fuel cells
JP4307060B2 (en) Fuel cell device
JPH01183073A (en) Operation suspending method for fuel cell power generating system
JP2005216488A (en) Operation method of fuel cell power generation device
KR20140032535A (en) Fuel cell system

Legal Events

Date Code Title Description
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right