KR20210109980A - 광트랜시버 및 광트랜시버의 파장 설정 방법 - Google Patents

광트랜시버 및 광트랜시버의 파장 설정 방법 Download PDF

Info

Publication number
KR20210109980A
KR20210109980A KR1020200025321A KR20200025321A KR20210109980A KR 20210109980 A KR20210109980 A KR 20210109980A KR 1020200025321 A KR1020200025321 A KR 1020200025321A KR 20200025321 A KR20200025321 A KR 20200025321A KR 20210109980 A KR20210109980 A KR 20210109980A
Authority
KR
South Korea
Prior art keywords
optical
wavelength
output
different wavelengths
laser diodes
Prior art date
Application number
KR1020200025321A
Other languages
English (en)
Other versions
KR102656374B1 (ko
Inventor
이지현
강세경
이준기
장순혁
허준영
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to KR1020200025321A priority Critical patent/KR102656374B1/ko
Priority to US16/907,682 priority patent/US20210273406A1/en
Publication of KR20210109980A publication Critical patent/KR20210109980A/ko
Application granted granted Critical
Publication of KR102656374B1 publication Critical patent/KR102656374B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02453Heating, e.g. the laser is heated for stabilisation against temperature fluctuations of the environment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07957Monitoring or measuring wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Abstract

광트랜시버 및 광트랜시버의 파장 설정 방법이 개시된다. 광트랜시버는 상기 광트랜시버의 설치 환경에 기초하여 상기 광트랜시버를 구성하는 광송신 모듈의 동작 온도를 일정하게 유지하는 열전 소자; 상기 열전 소자의 상단에 배치되어 서로 다른 파장을 가지는 광신호들을 각각 출력하는 복수의 레이저 다이오드들; 상기 복수의 레이저 다이오드들을 통해 출력된 서로 다른 파장을 가지는 광신호들을 다중화 하는 광다중화기; 및 상기 광다중화기를 거쳐 검출되는 서로 다른 파장을 가지는 광신호들 각각의 광출력이 최대가 되도록 상기 복수의 레이저 다이오드들 각각을 통해 출력되는 광신호들의 파장을 제어하는 파장 제어기;를 포함하고, 상기 파장 제어기는 상기 복수의 레이저 다이오드들 각각의 일영역에 개별적으로 배치될 수 있다.

Description

광트랜시버 및 광트랜시버의 파장 설정 방법{OPTICAL TRANSCEIVER AND METHOD OF SETTING THE WAVELENGTH OF THE OPTICAL TRANSCEIVER}
본 발명은 광트랜시버에 관한 것으로, 보다 구체적으로는 서로 다른 파장을 가지는 광신호들을 다중화하여 전송 용량을 늘리는 광트랜시버에 관한 것이다.
최근 스마트폰 및 소셜 네트워크의 일상화 등에 의하여 광통신을 기반으로 한 네트워크는 고속화와 대용량화에 대한 요구가 끊임없이 이어지고 있다. 인터넷을 위한 이더넷(Ethernet) 신호는 10G 이더넷이 2002년도에 표준화 완료된 이후, 40G/100G 표준이 제정되었고, 최근에는 200G/400G 표준도 개발 완료되었다.
이러한 대용량 광트랜시버는 복수의 광신호를 다중화하는 방식으로 구현되어 있다. 예를 들어, 100G 이더넷 광트랜시버의 경우, 4개의 25G 전기 신호가 모듈 내부로 입력되면, 이를 IEEE에서 표준화된 LAN-WDM 파장을 갖는 4채널의 광신호로 변환되고, 변환된 4개 파장의 광신호는 광다중화부를 통해 파장분할 다중화되어 하나의 광섬유로 전송이 된다.
200G/400G의 경우 파장당 전송용량을 높이기 위해 펄스진폭변조(Pulse Amplitude Modulation: 이하 PAM) 방식의 광신호를 새로운 표준 방식으로 지정함으로써 채널당 전송 용량을 2배로 높이는 기술을 채택하였다. 즉, 200G/400G 광트랜시버의 경우, 4개의 50G 전기 신호 또는 8개의 50G 전기 신호를 입력받아, 광신호로 변환하여 전송하도록 표준 세부 내용이 지정되어 있다.
800G 이상의 테라급 이더넷은 아직 표준화가 되어 있지 않으나, 광트랜시버의 전송용량을 증대시키기 위해 파장당 전송 용량을 높이는 방법과 다중화되는 파장 채널의 수를 늘리는 방법이 접목되는 방향으로 표준이 개발될 것으로 예상된다. 이 경우, 사용 가능한 파장 대역이 한정적이므로, 파장 채널 간격이 이전보다 조밀해지고, 이를 위해 출력 파장이 정밀한 레이저 다이오드를 사용해야 할 것으로 예상된다.
레이저 다이오드의 출력 파장은 공진 주기를 결정하는 회절 격자의 주기에 의해 결정된다. 그렇기 때문에 레이저 다이오드의 칩 제조 과정에서 회절 격자의 주기가 정확하게 패터닝되지 않을 경우, 레이저 다이오드의 출력 파장이 설계된 값과 어느 정도의 오차를 가지고 제작될 수 있다. 이 경우, 레이저 다이오드의 동작 온도를 일정하게 유지시키기 위해 사용하는 열전소자(Thermo Electric Cooler: 이하 TEC)를 이용하여, 동작 온도를 높이거나 낮추어 출력 파장을 변화시킴으로써 레이저 다이오드의 제조 과정에서 발생한 출력 파장의 오차를 보상할 수 있다.
그러나, 다중화되는 파장 채널 수가 여럿일 경우, 레이저의 동작 온도를 변화시키는 것은 여러 반도체 레이저 다이오드의 파장을 동시에 같은 방향으로 변화시키기 때문에 레이저 다이오드의 칩 제조 과정에서 생긴 패터닝 오류를 보정하기에 적합하지 않는 문제가 있다.
본 발명은 광트랜시버의 광송신 모듈을 구성하는 복수의 레이저 다이오드들 각각에 열발생원과 같은 파장 제어기를 배치함으로써 동일한 TEC 위에 배치된 복수의 레이저 다이오드들을 통해 출력되는 광신호들의 파장을 개별적으로 제어하는 방법 및 장치를 제공한다.
또한, 본 발명은 광송신 모듈을 구성하는 광다중화기의 후단에 포토 다이오드를 배치함으로써 복수의 레이저 다이오드들을 통해 출력되는 광신호들이 광다중화기의 패스밴드를 통과하여 다중화되었는 지를 손쉽게 파악할 수 있는 방법 및 장치를 제공한다.
본 발명의 일실시예에 따른 광트랜시버는 상기 광트랜시버의 설치 환경에 기초하여 상기 광트랜시버를 구성하는 광송신 모듈의 동작 온도를 일정하게 유지하는 열전 소자; 상기 열전 소자의 상단에 배치되어 서로 다른 파장을 가지는 광신호들을 각각 출력하는 복수의 레이저 다이오드들; 상기 복수의 레이저 다이오드들을 통해 출력된 서로 다른 파장을 가지는 광신호들을 다중화 하는 광다중화기; 및 상기 광다중화기를 거쳐 검출되는 서로 다른 파장을 가지는 광신호들 각각의 광출력이 최대가 되도록 상기 복수의 레이저 다이오드들 각각을 통해 출력되는 광신호들의 파장을 제어하는 파장 제어기;를 포함하고, 상기 파장 제어기는 상기 복수의 레이저 다이오드들 각각의 일영역에 개별적으로 배치될 수 있다.
상기 파장 제어기는 열발생원을 통해 상기 레이저 다이오드의 온도를 조절하여 상기 레이저 다이오드를 통해 출력되는 광신호의 파장을 제어할 수 있다.
상기 광다중화기의 후단에 상기 광다중화기를 거쳐 검출되는 서로 다른 파장을 가지는 광신호들 각각의 광출력을 검출하기 위한 포토 다이오드를 더 포함할 수 있다.
상기 포토 다이오드는 주기적 또는 비주기적으로 상기 광다중화기를 거쳐 정상적으로 상기 서로 다른 파장을 가지는 광신호들이 검출되는지 여부를 감지할 수 있다.
본 발명의 일실시예에 따른 광트랜시버의 프로세서가 수행하는 광송신 모듈의 파장 설정 방법은 상기 광트랜시버의 설치 환경에 기초하여 상기 광트랜시버를 구성하는 광송신 모듈의 동작 온도를 일정하게 유지하도록 열전 소자의 온도를 설정하는 단계; 상기 열전 소자의 상단에 배치되어 서로 다른 파장을 가지는 광신호들을 각각 출력하는 복수의 레이저 다이오드들 각각에 대한 구동 조건을 설정하는 단계; 포토 다이오드를 이용하여 상기 설정된 구동 조건에 따라 상기 복수의 레이저 다이오드들 각각을 통해 출력된 서로 다른 파장을 가지는 광신호들이 광다중화기를 거쳐 검출되는 지 여부를 식별하는 단계; 및 상기 서로 다른 파장을 가지는 광신호들이 광다중화기를 거쳐 검출되는 경우, 검출된 광신호들의 광출력이 최대가 되도록 상기 복수의 레이저 다이오드들 각각의 일영역에 개별적으로 배치된 파장 제어기를 제어하는 단계를 포함할 수 있다.
상기 파장 제어기는 열발생원을 통해 상기 레이저 다이오드의 온도를 조절하여 상기 레이저 다이오드를 통해 출력되는 광신호의 파장을 제어할 수 있다.
상기 제어하는 단계는 상기 서로 다른 파장을 가지는 광신호들 중 적어도 하나의 광신호가 광다중화기를 거쳐 검출되지 않는 경우, 상기 열전 소자의 온도를 재설정할 수 있다.
상기 식별하는 단계는 상기 포토 다이오드를 이용하여 주기적 또는 비주기적으로 상기 광다중화기를 거쳐 정상적으로 상기 서로 다른 파장을 가지는 광신호들이 검출되는지 여부를 감지할 수 있다.
본 발명은 광트랜시버의 광송신 모듈을 구성하는 복수의 레이저 다이오드들 각각에 열발생원과 같은 파장 제어기를 배치함으로써 동일한 TEC 위에 배치된 복수의 레이저 다이오드들을 통해 출력되는 광신호들의 파장을 개별적으로 제어할 수 있다.
또한, 본 발명은 광송신 모듈을 구성하는 광다중화기의 후단에 포토 다이오드를 배치함으로써 복수의 레이저 다이오드들을 통해 출력되는 광신호들이 광다중화기의 패스밴드를 통과하여 다중화 되었는 지를 손쉽게 파악할 수 있어 대용량 광트랜시버의 제작/시험 및 운용 비용을 줄일 수 있다
도 1은 본 발명의 일실시예에 따른 광트랜시버의 간략도를 도시한 도면이다.
도 2는 본 발명의 일실시예에 따른 광트랜시버의 실시예를 도시한 도면이다.
도 3은 본 발명의 일실시예에 따른 광트랜시버의 파장 설정 방법을 플로우챠트로 도시한 도면이다.
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 본 발명의 일실시예에 따른 광트랜시버의 간략도를 도시한 도면이다.
도 1을 참고하면, 일반적인 광트랜시버(100)는 광송신 모듈(Transmitter Optical Sub-assembly: 이하 TOSA)(110), 광수신 모듈(Receiver Optical Sub-assembly: 이하 ROSA)(120) 및 이들을 구동하기 위한 프로세싱 모듈(130)으로 구성되어 있다. 이때, 광트랜시버(100)는 해당 광트랜시버(100)가 사용되는 환경에서 온도 변화에 따른 광력 특성 및 전송 성능의 변화를 방지하기 위하여 열전소자(TEC)를 이용하여 광송신 모듈(110)의 온도를 일정하게 유지할 수 있다.
본 발명의 광트랜시버(100)는 전송 용량을 증대시키기 위하여 서로 다른 파장을 가지는 광신호들을 다중화하여 하나의 광섬유를 통해 출력하는 광송신 모듈(110)과 광섬유를 통해 복수 파장이 다중화된 광신호를 수신하여 역다중화한 후 전기 신호로 변환시키는 광수신 모듈(120)로 구성될 수도 있다.
이때, 서로 다른 파장을 가지는 광신호들을 다중화 하는 광다중화기는 광송신 모듈(110)의 내부에 배치되고, 복수 파장이 다중화된 광신호를 역다중화 하는 역광다중화기는 광수신 모듈(120)의 내부에 배치되기 때문에 파장 정렬의 이슈가 존재할 수 있다.
다시 말해, 광송신 모듈(110)은 내부에 배치된 복수의 레이저 다이오드들의 출력을 광다중화기를 거쳐서 획득할 수 있으므로 복수의 레이저 다이오드들의 파장이 광다중화기의 패스밴드(passband) 내에 정렬되지 않을 경우, 최대 광출력이 아닌 감쇄된 광출력을 얻을 수 있다. 따라서, 광송신 모듈(110)은 이와 같이 최대 광출력을 얻기 위하여 레이저 다이오드의 출력 파장을 제어하기 위한 방법이 필요하게 되었고, 이러한 파장 정렬 문제는 복수의 광신호들 사이의 파장 채널 간격이 조밀한 대용량의 광트랜시버(100)에서 그 중요성이 점점 증가하고 있다.
광트랜시버(100)에 사용되는 광송신 모듈(110)은 DFB-LD, VCSEL, DBR-LD 등과 같이 레이저 다이오드를 직접 변조하는 방식을 사용하거나, 레이저 다이오드의 광출력을 EAM(Electro-Absorption Modulator), MZM(Mach-Zehnder modulator) 등을 이용하여 외부 변조하는 방식을 사용할 수 있다. 이러한 광트랜시버(100)의 출력 파장은 광송신 모듈(110)의 변조 방식에 상관없이 레이저 다이오드에 의해 결정되는데, 보다 구체적으로는 레이저 다이오드의 공진 주기를 결정하는 회절격자의 주기에 의해 출력 파장이 결정될 수 있다.
따라서, 만약 레이저 다이오드의 칩 제조 과정에서 회절 격자의 주기가 정확하게 패터닝(patterning) 되어 제작되지 않을 경우, 해당 레이저 다이오드의 출력 파장은 설계된 값과 비교하여 어느 정도의 오차를 가질 수 있다.
또한, 광송신 모듈(110)을 동작시키기 위해 프로세싱 모듈(130)이 광송신 모듈(110)로 구동 전류 또는 구동 전압을 인가함에 따라, 반도체 레이저 활성층의 온도 변화에 의해 레이저 다이오드의 출력 파장이 변화될 수 있다.
이와 같은 다양한 원인에 의해 발생 가능한 광송신 모듈(110)에 대한 출력 파장의 변화를 보정하기 위하여, 기존에는 열전 소자(TEC)를 이용하여 광송신 모듈(110)에 배치된 레이저 다이오드의 동작 온도를 인위적으로 높이거나 낮추어 출력 파장의 변화를 일부 보정하는 방법이 사용되었다.
그러나, 서로 다른 파장을 가지는 광신호들을 출력하는 레이저 다이오드들이 하나의 TEC 위에 배치되기 때문에 TEC를 이용하여 출력 파장을 조절하는 데는 한계가 있을 수 있다. 또한, 레이저 다이오드들에 대응하는 파장 채널 간격이 조밀한 경우 TEC를 이용하여 특정 채널의 출력 파장을 조절하면, 다른 채널의 출력 파장이 틀어지는 원인이 되기도 한다.
도 2는 본 발명의 일실시예에 따른 광트랜시버의 실시예를 도시한 도면이다.
위에서 언급한 바와 같이 하나의 TEC 위에 복수의 레이저 다이오드들이 배치된 경우, TEC의 온도를 높이거나 낮추게 되면 복수의 레이저 다이오드들 모두에 영향을 미쳐 특정 채널의 출력 파장을 조절하기가 어려울 수 있다.
이러한 문제를 해결하기 위하여 본 발명은 도 2와 같이 광트랜시버(100)의 광송신 모듈(110)에 배치된 복수의 레이저 다이오드들 각각에 열발생원과 같은 파장 제어기(111)가 개별적으로 배치할 수 있다. 이때, 개별적으로 배치된 파장 제어기는 동일한 TEC 위에 배치된 복수의 레이저 다이오드들 각각의 온도를 변화시킴으로써 대응하는 레이저 다이오드를 통해 출력되는 광 신호의 출력 파장을 개별적으로 제어할 수 있다.
보다 구체적으로 본 발명의 파장 제어기(111)는 레이저 다이오드의 출력 파장을 결정하는 브라그 격자(Bragg Grating)의 상면 일부 영역에 금속을 배치하고, 배치된 금속에 열을 가하여 브라그 격자를 변화시킴으로써 레이저 다이오드의 출력 파장을 변화시킬 수 있다.
또한, 광트랜시버(100)는 광다중화기 출력의 일부를 탭을 내어 포토 다이오드(Photodiode, PD)(112)에 연결한 구조로 제작될 수 있다. 이와 같은 포토 다이오드(112)는 광다중화기를 통과하여 검출되는 광출력 세기를 감지할 수 있으므로 파장 감지 역할을 수행할 수 있다.
광트랜시버(100)는 이와 같은 포토 다이오드(112)를 광송신 모듈(110)의 내부에 배치시킴으로써, 광송신 모듈(110)을 통해 출력되는 광신호들의 출력 파장이 정상적으로 광다중화기를 통해 출력되는지 여부를 개별 레이저 다이오드에 대한 전원 온/오프(ON/OFF) 과정을 통해 손쉽게 파악할 수 있다. 이러한 과정은 광트랜시버(100)에 전원이 처음 공급되는 과정에서 이루어질 수도 있고, 유휴 상태(idle)일 때 주기적으로 수행하도록 할 수도 있다.
도 3은 본 발명의 일실시예에 따른 광트랜시버의 파장 설정 방법을 플로우챠트로 도시한 도면이다.
단계(310)에서, 광트랜시버(100)의 프로세싱 모듈(130)은 대용량 광트랜시버(100)가 설치될 환경을 고려하여, 광송신 모듈(110)의 동작 온도를 일정하게 유지하기 위하여 열전소자(TEC)의 온도를 설정할 수 있다.
단계(320)에서, 프로세싱 모듈(130)은 열전 소자의 상단에 배치되어 서로 다른 파장을 가지는 광신호들을 각각 출력하는 복수의 레이저 다이오드들 각각에 대한 구동 조건을 설정할 수 있다. 이때, 프로세싱 모듈(130)은 복수의 레이저 다이오드들 각각에 대한 구동 조건을 하나의 레이저 다이오드씩 순서대로 설정할 수 있다.
이때, 레이저 다이오드의 구동 조건은 광송신 모듈(110)의 종류에 따라 전압 또는 전류가 될 수도 있고, DC 바이어스 신호와 AC 신호 모두를 의미할 수 있다. 이들 신호들은 각각 인가될 수도 있고, 레이저 드라이버 구동부(LD DRV) 등의 칩을 통해 동시에 인가될 수도 있으며, 일례로, PAM-4와 같은 멀티레벨 신호가 인가될 수도 있다.
단계(330)에서, 프로세싱 모듈(130)은 포토 다이오드(112)를 이용하여 상기 설정된 구동 조건에 따라 복수의 레이저 다이오드들 각각을 통해 출력된 서로 다른 파장을 가지는 광신호들이 광다중화기를 거쳐 검출되는 지 여부를 식별할 수 있다. 보다 구체적으로 광송신 모듈(110)의 출력 파장에 대한 정렬 상태는 광다중화기를 거쳐서 검출되는 광출력의 세기를 통해 확인 가능할 수 있다. 따라서, 프로세싱 모듈(130)은 복수의 레이저 다이오드들 중 특정 채널을 선택하여 개별적으로 파장 정렬 상태를 확인하여야 한다.
만약, 설정된 구동 조건에 따라 특정 채널에 대응하는 레이저 다이오드를 통해 출력된 광신호에 대한 광출력이 광다중화기를 통과하여 검출되는 경우, 단계(340)에서, 프로세싱 모듈(130)은 해당 특정 채널에 대응하는 레이저 다이오드의 일영역에 배치된 파장 제어기(111)를 제어하여 검출되는 광신호에 대한 광출력이 최대가 되도록 설정할 수 있다.
이와는 달리 프로세싱 모듈(130)은 설정된 구동 조건에 따라 레이저 다이오드를 통해 출력된 광신호에 대한 광출력이 광다중화기를 통과하여 검출되지 않는 경우, 단계(350)에서, 해당 특정 채널에 대응하는 레이저 다이오드의 일영역에 배치된 파장 제어기(111)를 제어하여 광출력이 검출되는지를 판단할 수 있다. 이때, 광출력이 검출된다고 판단된 경우, 프로세싱 모듈(130)은 단계(340)에서, 해당 특정 채널에 대응하는 레이저 다이오드의 파장 제어기(111)를 제어하여 검출되는 광출력이 최대가 되도록 설정할 수 있다. 이와는 달리 광출력이 검출되지 않는 것으로 판단된 경우, 프로세싱 모듈(130)은 단계(410)으로 되돌아가 열전 소자의 온도를 재설정 한 후 이후의 단계를 반복할 수 있다.
이후 단계(360)에서, 프로세싱 모듈(130)은 모든 채널에 대응하는 레이저 다이오드에 대한 구동 조건의 설정이 완료되었는지 여부를 판단하고, 설정이 완료되었다고 판단되면 파장 설정을 종료할 수 있다. 이와는 달리 설정이 완료되지 않았다고 판단되면, 프로세싱 모듈(130)은 단계(370)과 같이 직전에 구동 조건이 설정된 레이저 다이오드는 끄고, 다음 순서의 레이저 다이오드의 구동 조건을 설정하여 광다중화기를 거쳐 광출력이 검출되는 지 여부를 판단할 수 있다.
한편, 프로세싱 모듈(130)은 광트랜시버(100)를 구성하는 복수 채널의 레이저 다이오드에 대한 파장 설정 과정에서 열전 소자의 설정값을 조절하는 경우, 기존에 이미 파장 설정이 완료된 레이저 다이오드에 대해 기 설정된 구동 조건 및 파장 제어기(111)의 설정 값들에 의해 광출력이 여전히 검출되는지 여부를 개별적으로 확인하여야 한다.
이와 같이 본 발명의 광트랜시버(100)는 광송신 모듈(110)을 구성하는 복수의 레이저 다이오드들 각각에 열발생원과 같은 파장 제어기(111)를 배치함으로써 동일한 TEC위에 복수의 레이저 다이오드들이 배치되더라도 레이저 다이오드들 각각을 통해 출력되는 광신호의 출력 파장을 개별적으로 제어할 수 있다. 이를 통해, 파장 채널 간격이 조밀한 광링크에도 레이저 다이오드들의 출력 파장을 조절하여 사용함으로써 광트랜시버(100)의 가격 경쟁력을 높일 수 있다.
또한 본 발명의 광트랜시버(100)은 광송신 모듈(110)의 광다중화기의 후단에 포토 다이오드를 추가적으로 배치함으로써 복수의 레이저 다이오드들을 통해 출력되는 복수의 광신호들에 대한 출력 파장들이 광다중화기의 패스밴드를 통과해 다중화되는지 여부를 손쉽게 파악할 수 있다.
한편, 본 발명에 따른 방법은 컴퓨터에서 실행될 수 있는 프로그램으로 작성되어 마그네틱 저장매체, 광학적 판독매체, 디지털 저장매체 등 다양한 기록 매체로도 구현될 수 있다.
본 명세서에 설명된 각종 기술들의 구현들은 디지털 전자 회로조직으로, 또는 컴퓨터 하드웨어, 펌웨어, 소프트웨어로, 또는 그들의 조합들로 구현될 수 있다. 구현들은 데이터 처리 장치, 예를 들어 프로그램가능 프로세서, 컴퓨터, 또는 다수의 컴퓨터들의 동작에 의한 처리를 위해, 또는 이 동작을 제어하기 위해, 컴퓨터 프로그램 제품, 즉 정보 캐리어, 예를 들어 기계 판독가능 저장 장치(컴퓨터 판독가능 매체) 또는 전파 신호에서 유형적으로 구체화된 컴퓨터 프로그램으로서 구현될 수 있다. 상술한 컴퓨터 프로그램(들)과 같은 컴퓨터 프로그램은 컴파일된 또는 인터프리트된 언어들을 포함하는 임의의 형태의 프로그래밍 언어로 기록될 수 있고, 독립형 프로그램으로서 또는 모듈, 구성요소, 서브루틴, 또는 컴퓨팅 환경에서의 사용에 적절한 다른 유닛으로서 포함하는 임의의 형태로 전개될 수 있다. 컴퓨터 프로그램은 하나의 사이트에서 하나의 컴퓨터 또는 다수의 컴퓨터들 상에서 처리되도록 또는 다수의 사이트들에 걸쳐 분배되고 통신 네트워크에 의해 상호 연결되도록 전개될 수 있다.
컴퓨터 프로그램의 처리에 적절한 프로세서들은 예로서, 범용 및 특수 목적 마이크로프로세서들 둘 다, 및 임의의 종류의 디지털 컴퓨터의 임의의 하나 이상의 프로세서들을 포함한다. 일반적으로, 프로세서는 판독 전용 메모리 또는 랜덤 액세스 메모리 또는 둘 다로부터 명령어들 및 데이터를 수신할 것이다. 컴퓨터의 요소들은 명령어들을 실행하는 적어도 하나의 프로세서 및 명령어들 및 데이터를 저장하는 하나 이상의 메모리 장치들을 포함할 수 있다. 일반적으로, 컴퓨터는 데이터를 저장하는 하나 이상의 대량 저장 장치들, 예를 들어 자기, 자기-광디스크들, 또는 광디스크들을 포함할 수 있거나, 이것들로부터 데이터를 수신하거나 이것들에 데이터를 송신하거나 또는 양쪽으로 되도록 결합될 수도 있다. 컴퓨터 프로그램 명령어들 및 데이터를 구체화하는데 적절한 정보 캐리어들은 예로서 반도체 메모리 장치들, 예를 들어, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(Magnetic Media), CD-ROM(Compact Disk Read Only Memory), DVD(Digital Video Disk)와 같은 광기록 매체(Optical Media), 플롭티컬 디스크(Floptical Disk)와 같은 자기-광매체(Magneto-Optical Media), 롬(ROM, Read Only Memory), 램(RAM, Random Access Memory), 플래시 메모리, EPROM(Erasable Programmable ROM), EEPROM(Electrically Erasable Programmable ROM) 등을 포함한다. 프로세서 및 메모리는 특수 목적 논리 회로조직에 의해 보충되거나, 이에 포함될 수 있다.
또한, 컴퓨터 판독가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용매체일 수 있고, 컴퓨터 저장매체 및 전송매체를 모두 포함할 수 있다.
본 명세서는 다수의 특정한 구현물의 세부사항들을 포함하지만, 이들은 어떠한 발명이나 청구 가능한 것의 범위에 대해서도 제한적인 것으로서 이해되어서는 안되며, 오히려 특정한 발명의 특정한 실시형태에 특유할 수 있는 특징들에 대한 설명으로서 이해되어야 한다. 개별적인 실시형태의 문맥에서 본 명세서에 기술된 특정한 특징들은 단일 실시형태에서 조합하여 구현될 수도 있다. 반대로, 단일 실시형태의 문맥에서 기술한 다양한 특징들 역시 개별적으로 혹은 어떠한 적절한 하위 조합으로도 복수의 실시형태에서 구현 가능하다. 나아가, 특징들이 특정한 조합으로 동작하고 초기에 그와 같이 청구된 바와 같이 묘사될 수 있지만, 청구된 조합으로부터의 하나 이상의 특징들은 일부 경우에 그 조합으로부터 배제될 수 있으며, 그 청구된 조합은 하위 조합이나 하위 조합의 변형물로 변경될 수 있다.
마찬가지로, 특정한 순서로 도면에서 동작들을 묘사하고 있지만, 이는 바람직한 결과를 얻기 위하여 도시된 그 특정한 순서나 순차적인 순서대로 그러한 동작들을 수행하여야 한다거나 모든 도시된 동작들이 수행되어야 하는 것으로 이해되어서는 안 된다. 특정한 경우, 멀티태스킹과 병렬 프로세싱이 유리할 수 있다. 또한, 상술한 실시형태의 다양한 장치 컴포넌트의 분리는 그러한 분리를 모든 실시형태에서 요구하는 것으로 이해되어서는 안되며, 설명한 프로그램 컴포넌트와 장치들은 일반적으로 단일의 소프트웨어 제품으로 함께 통합되거나 다중 소프트웨어 제품에 패키징 될 수 있다는 점을 이해하여야 한다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시 예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 것이다.
100 : 광트랜시버
110 : 광송신 모듈
111 : 파장 제어기
112 : 포토 다이오드
120 : 광수신 모듈
130 : 프로세싱 모듈

Claims (8)

  1. 광트랜시버에 있어서,
    상기 광트랜시버의 설치 환경에 기초하여 상기 광트랜시버를 구성하는 광송신 모듈의 동작 온도를 일정하게 유지하는 열전 소자;
    상기 열전 소자의 상단에 배치되어 서로 다른 파장을 가지는 광신호들을 각각 출력하는 복수의 레이저 다이오드들;
    상기 복수의 레이저 다이오드들을 통해 출력된 서로 다른 파장을 가지는 광신호들을 다중화 하는 광다중화기; 및
    상기 광다중화기를 거쳐 검출되는 서로 다른 파장을 가지는 광신호들 각각의 광출력이 최대가 되도록 상기 복수의 레이저 다이오드들 각각을 통해 출력되는 광신호들의 파장을 제어하는 파장 제어기;
    를 포함하고,
    상기 파장 제어기는,
    상기 복수의 레이저 다이오드들 각각의 일영역에 개별적으로 배치되는 광트랜시버.
  2. 제1항에 있어서,
    상기 파장 제어기는,
    열발생원을 통해 상기 레이저 다이오드의 온도를 조절하여 상기 레이저 다이오드를 통해 출력되는 광신호의 파장을 제어하는 광트랜시버.
  3. 제1항에 있어서,
    상기 광다중화기의 후단에 상기 광다중화기를 거쳐 검출되는 서로 다른 파장을 가지는 광신호들 각각의 광출력을 검출하기 위한 포토 다이오드
    를 더 포함하는 광트랜시버.
  4. 제3항에 있어서,
    상기 포토 다이오드는,
    주기적 또는 비주기적으로 상기 광다중화기를 거쳐 정상적으로 상기 서로 다른 파장을 가지는 광신호들이 검출되는지 여부를 감지하는 광트랜시버.
  5. 광트랜시버의 프로세서가 수행하는 광송신 모듈의 파장 설정 방법에 있어서,
    상기 광트랜시버의 설치 환경에 기초하여 상기 광트랜시버를 구성하는 광송신 모듈의 동작 온도를 일정하게 유지하도록 열전 소자의 온도를 설정하는 단계;
    상기 열전 소자의 상단에 배치되어 서로 다른 파장을 가지는 광신호들을 각각 출력하는 복수의 레이저 다이오드들 각각에 대한 구동 조건을 설정하는 단계;
    포토 다이오드를 이용하여 상기 설정된 구동 조건에 따라 상기 복수의 레이저 다이오드들 각각을 통해 출력된 서로 다른 파장을 가지는 광신호들이 광다중화기를 거쳐 검출되는 지 여부를 식별하는 단계; 및
    상기 서로 다른 파장을 가지는 광신호들이 광다중화기를 거쳐 검출되는 경우, 검출된 광신호들의 광출력이 최대가 되도록 상기 복수의 레이저 다이오드들 각각의 일영역에 개별적으로 배치된 파장 제어기를 제어하는 단계
    를 포함하는 파장 설정 방법.
  6. 제5항에 있어서,
    상기 파장 제어기는,
    열발생원을 통해 상기 레이저 다이오드의 온도를 조절하여 상기 레이저 다이오드를 통해 출력되는 광신호의 파장을 제어하는 파장 설정 방법.
  7. 제5항에 있어서,
    상기 제어하는 단계는,
    상기 서로 다른 파장을 가지는 광신호들 중 적어도 하나의 광신호가 광다중화기를 거쳐 검출되지 않는 경우, 상기 열전 소자의 온도를 재설정하는 파장 설정 방법.
  8. 제5항에 있어서,
    상기 식별하는 단계는,
    상기 포토 다이오드를 이용하여 주기적 또는 비주기적으로 상기 광다중화기를 거쳐 정상적으로 상기 서로 다른 파장을 가지는 광신호들이 검출되는지 여부를 감지하는 파장 설정 방법.
KR1020200025321A 2020-02-28 2020-02-28 광트랜시버 및 광트랜시버의 파장 설정 방법 KR102656374B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200025321A KR102656374B1 (ko) 2020-02-28 2020-02-28 광트랜시버 및 광트랜시버의 파장 설정 방법
US16/907,682 US20210273406A1 (en) 2020-02-28 2020-06-22 Optical transceiver and method of setting wavelength of optical transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200025321A KR102656374B1 (ko) 2020-02-28 2020-02-28 광트랜시버 및 광트랜시버의 파장 설정 방법

Publications (2)

Publication Number Publication Date
KR20210109980A true KR20210109980A (ko) 2021-09-07
KR102656374B1 KR102656374B1 (ko) 2024-04-12

Family

ID=77464005

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200025321A KR102656374B1 (ko) 2020-02-28 2020-02-28 광트랜시버 및 광트랜시버의 파장 설정 방법

Country Status (2)

Country Link
US (1) US20210273406A1 (ko)
KR (1) KR102656374B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118562A (en) * 1997-05-16 2000-09-12 Electronics And Telecommunications Research Institute Wavelength aligning apparatus using arrayed waveguide grating
US20030011841A1 (en) * 2001-07-10 2003-01-16 Lg Electronics Inc. Optical wavelength locking apparatus and method for a multi-channel optical communication system
US9964720B2 (en) * 2014-06-04 2018-05-08 Applied Optoelectronics, Inc. Monitoring and controlling temperature across a laser array in a transmitter optical subassembly (TOSA) package

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2463502C (en) * 2001-10-09 2011-09-20 Infinera Corporation Digital optical network architecture
US9557487B2 (en) * 2014-04-29 2017-01-31 Stmicroelectronics S.R.L. Arrayed waveguide grating multiplexer-demultiplexer and related control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118562A (en) * 1997-05-16 2000-09-12 Electronics And Telecommunications Research Institute Wavelength aligning apparatus using arrayed waveguide grating
US20030011841A1 (en) * 2001-07-10 2003-01-16 Lg Electronics Inc. Optical wavelength locking apparatus and method for a multi-channel optical communication system
US9964720B2 (en) * 2014-06-04 2018-05-08 Applied Optoelectronics, Inc. Monitoring and controlling temperature across a laser array in a transmitter optical subassembly (TOSA) package

Also Published As

Publication number Publication date
US20210273406A1 (en) 2021-09-02
KR102656374B1 (ko) 2024-04-12

Similar Documents

Publication Publication Date Title
US5917637A (en) Method of and device for driving optical modulator, and optical communications system
JP5785589B2 (ja) バースト光信号送信装置及びバースト光信号送信装置の制御方法
EP3550680B1 (en) Cwdm transmit module for wavelength tuning and tracking
US20190245642A1 (en) Optical transport apparatus, optical demultiplexer, and method of controlling optical demultiplexing
US8472811B2 (en) Variable optical attenuator integration into transmitter optical subassemblies
US10355783B2 (en) Optical-to-optical transceiver and methods of making and using the same
CN102934376A (zh) 具有多用途光学驱动能力的主机设备
US20160301478A1 (en) Optical differential signal sending method, apparatus and system
CN107078809B (zh) 突发光信号发送装置和突发光信号发送方法
US20090080904A1 (en) Optical transmitting apparatus and setting-value determining method
US9778415B2 (en) Arrayed waveguide grating multiplexer-demultiplexer and related control method
US20140233945A1 (en) Wavelength division multiplexing optical transmitting apparatus and operating method of the same
KR20130090912A (ko) 열원을 통해 ont 파장 튜닝을 수행하는 방법 및 장치
CN102820931A (zh) 双模光网络单元光模块
JP6825248B2 (ja) 光受信器、これを用いた光トランシーバ、及び光信号の受信制御方法
US9420357B2 (en) Method and apparatus for selecting wavelength by wavelength tunable optical receiver
US20230275672A1 (en) Electronic device and method for tuning wavelenth in optical network
KR20210109980A (ko) 광트랜시버 및 광트랜시버의 파장 설정 방법
WO2022237483A1 (en) Methods and apparatus for feedback control of mode mux and demux
CN105025401A (zh) 一种基于子网扩展的twdm-pon结构、设备及控制方法
CN110798265A (zh) 光模块、得到光信号的方法、装置、系统及存储介质
KR102557191B1 (ko) 광 시분할 다중화 기반 광송신기
US11606149B2 (en) Optical transmitter based on optical time division multiplexing
KR102582760B1 (ko) 광 신호의 세기에 기반하여 광 트랜시버의 파장을 조정하는 방법 및 그 전자 장치
Lee et al. Compact 4× 25 Gb/s optical receiver and transceiver for 100G ethernet interface

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right